WO2016088449A1 - 基準信号発生装置 - Google Patents

基準信号発生装置 Download PDF

Info

Publication number
WO2016088449A1
WO2016088449A1 PCT/JP2015/078626 JP2015078626W WO2016088449A1 WO 2016088449 A1 WO2016088449 A1 WO 2016088449A1 JP 2015078626 W JP2015078626 W JP 2015078626W WO 2016088449 A1 WO2016088449 A1 WO 2016088449A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
timing
unit
positioning
assist information
Prior art date
Application number
PCT/JP2015/078626
Other languages
English (en)
French (fr)
Inventor
真也 小和田
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2016088449A1 publication Critical patent/WO2016088449A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Definitions

  • the present invention relates to a reference signal generator.
  • a reference signal generator for generating a reference signal for synchronizing a signal transmission timing and frequency in a mobile phone base station, a digital terrestrial broadcasting transmission station, and the like is known.
  • the reference signal generator receives a positioning signal from a GNSS satellite ⁇ constituting a GNSS (Global Navigation Satellite System).
  • the reference signal generator includes an oscillator, and performs a positioning operation (including accurate GNSS time calculation) using a signal output from the oscillator and a saddle positioning signal received from an antenna.
  • a reference signal (for example, 1PPS signal or the like) is generated based on the above.
  • Patent Document 1 discloses the above GNSS receiver.
  • This GNSS receiver is configured as a GPS receiver that receives a positioning signal from a GPS satellite in GPS (Global Positioning System, a global positioning system) which is a kind of GNSS.
  • GPS Global Positioning System, a global positioning system
  • a navigation satellite receiver that has just been turned on (a receiver in the case of a so-called cold start) has an exact orbital position of the visible satellite in the current orbit of the receiver itself.
  • the position, degree of error of the crystal oscillator of the receiver, its adjustment frequency, and the current time are not yet known. However, if you have a rough position within a few seconds or a little more accurate time and in the range of several hundred kilometers, it is possible to use the existing information even if it is such an approximate value. This is a great advantage for quickly completing the positioning calculation.
  • GNSS receivers cannot reliably perform reception and demodulation if the reception level of the received navigation data is too weak. For this reason, if the GPS receiver of Patent Document 1 cannot receive the navigation data because the reception level is too weak, the satellite calendar information, orbital calendar information, navigation data, By requesting support for other information, etc., the satellite acquisition is achieved.
  • Patent Document 1 discloses a method in which a GPS receiver changes a capturing method of the GPS satellite according to the strength of a positioning signal from the GPS satellite.
  • the GPS receiver of Patent Document 1 captures a satellite by a method called outdoor search (ODSM) when the strength of the positioning signal is high (when it is about ⁇ 142 [dBm] or more), A satellite is tracked by a method called a time tracking state machine (TSM).
  • TSM time tracking state machine
  • IDSM indoor search method
  • each GPS satellite transmits a signal (1575.72 MHz) called an L1 wave as a positioning signal.
  • L1 wave signal a navigation message including the orbit information of the satellite dredger and the current time based on a very accurate clock mounted on the satellite is generated at a chip rate of 1023 MHz / chip with a period of 1 ms.
  • the satellite is phase-modulated with a satellite-specific C / A code (Coarse / Acquisition code).
  • the C / A / code is sometimes called a pseudo random noise code.
  • the navigation message expresses one bit by inverting the phase every time the C / A code with a period of 1 millisecond is repeated 20 times. Therefore, the transmission speed of the navigation message is 50 bits per second.
  • the beginning timing of the C / A code transmitted by the GPS satellite is synchronized with the time based on the accurate clock mounted on the satellite.
  • the navigation message is modulated by a method of inverting the phase of the C / A code in accordance with the switching of bits every time the C / A code having a period of 1 millisecond is repeated 20 times.
  • the GPS receiver obtains the millisecond unit of the accurate time based on the timing of phase inversion at the time of positioning calculation.
  • the GPS receiver can demodulate the C / A code and the navigation message included in the positioning signal. Therefore, the GPS satellite can be tracked by the time tracking state machine (TSM) by acquiring the orbit information of the GPS satellite from the navigation data message. Accordingly, the GPS receiver can acquire positioning results and the like at sufficiently short time intervals (specifically, every second).
  • TSM time tracking state machine
  • the reception level of the positioning signal from the GPS satellite is not good because the GPS receiver is installed indoors, etc., the navigation message or the like cannot be demodulated from the signal. Therefore, as one of the indoor search methods described above, a weak signal received from the GPS satellite is accumulated for a certain time to search for the peak of the signal, and the positioning of the GPS satellite can be continued using the peak. Conceivable. In this case, since the positioning calculation cannot be performed until the peak of the signal can be detected, the GPS receiver cannot obtain the positioning result at such a short time interval.
  • the partial time in milliseconds in the accurate time is obtained based on the timing of phase inversion of the C / A code according to the bit change of the navigation message as described above. become.
  • the strength of the positioning signal is weak, the C / A code cannot be discriminated, and therefore the timing at which the phase of the C / A code is inverted according to the bit change of the navigation message cannot be obtained accurately. Therefore, an error in units of milliseconds can occur at the time obtained by the method of searching for a peak by integrating weak signals and positioning.
  • the reference signal generator continues to generate the reference signal based on the internal oscillator (hereinafter, this state may be referred to as a free-running state).
  • this state may be referred to as a free-running state.
  • a highly accurate oscillator is used for the reference signal generator, but it cannot be denied that there is a possibility of misalignment in milliseconds due to aging or temperature change of the soot oscillator itself.
  • Patent Document 1 in a GPS receiver, from a server connected via a network, for example, satellite calendar information, orbital calendar information, etc. regarding GPS satellites are acquired, and information on time that is accurate to some extent is also obtained. It can be considered to receive the offer.
  • This is called assist GPS (assist GNSS). According to this, even in the cold start situation described above, a weak signal is accumulated for a certain time from the beginning to search for the peak of the signal. It becomes possible to measure the position.
  • the time information provided by the server connected via the network is accurate, a delay in receiving information is unavoidable on the receiver side because of the information acquisition via the network.
  • the reception delay varies depending on the situation, but it may be about 100 milliseconds or sometimes a delay of several seconds or more. Therefore, even if the time information is acquired from the server, it is not practical to correct the above-described misalignment in milliseconds caused by the method of positioning by integrating weak signals.
  • the present invention has been made in view of the above circumstances, and an object thereof is to generate a reference signal generator capable of outputting an accurate reference signal even when a positioning signal from a GNSS satellite is weak even from a cold start state. Is to provide.
  • a reference signal generator having the following configuration. That is, the reference signal generator includes a receiving unit, an assist information input unit, an external timing signal input unit, a positioning calculation unit, a synchronization signal generation unit, an error detection unit, a timing correction unit, and a signal output.
  • the receiving unit receives a GNSS signal. ⁇ ⁇ ⁇ ⁇ Assist information including information on the orbit of the GNSS satellite and current time information is input to the assist information input unit.
  • the external timing signal input unit receives a timing signal from the outer casing.
  • the positioning calculation unit can determine the position of the GNSS satellite at the current time based on the assist information input from the assist information input unit.
  • the synchronization signal generation unit generates a signal signal having a timing synchronized with the current time obtained as a result of the positioning calculation by the positioning calculation unit.
  • the error detection unit detects an error generated between the signal generated by the synchronization signal generation unit and the timing signal input to the external timing signal input unit.
  • the timing correction unit corrects the timing of the signal output from the synchronization signal generation unit based on the error detected by the error detection unit.
  • the signal output unit ⁇ outputs a signal whose timing is corrected by the timing correction unit.
  • the positioning calculation unit can quickly perform the positioning calculation using the assist information input from the assist information input unit. Even if an error occurs in the current time obtained as a result of the positioning calculation by the positioning calculation unit, and the timing of the signal generated by the synchronization signal generation unit is shifted, the error detection unit shifts the timing shift. Accordingly, the timing of the output signal of the synchronization signal generation unit can be corrected by the timing correction unit. Therefore, it is possible to obtain a highly accurate output signal.
  • the positioning calculation unit is configured to perform positioning by integrating signals and searching for a signal peak when the reception level of the GNSS signal is low. Is preferred.
  • the current time can be obtained by performing positioning by integrating the signals and searching for the peak. Further, even when an error occurs in the obtained current time, the accuracy of the output signal can be improved by correcting by the timing correction unit. Therefore, it is particularly suitable when the reference signal generator is installed indoors where the GNSS signal is difficult to reach.
  • the timing correction unit corrects the timing of the signal generated by the synchronization signal generation unit in milliseconds based on the error detected by the detection unit.
  • the obtained current time error may be an exact multiple of 1 millisecond.
  • the timing correction unit corrects the signal timing in milliseconds, so that a highly accurate output signal can be obtained. Further, since it is sufficient that correction can be made in milliseconds, it is sufficient for the external timing signal input to the external timing signal input unit to have an accuracy of, for example, about 0.1 milliseconds. Therefore, it is not necessary to install an expensive device such as an atomic oscillator as an external timing signal supply source, so that an inexpensive system as a whole can be configured.
  • the external timing signal input unit inputs information on the current time as an external timing signal from a time distribution device connected via a LAN based on the Precision Time Protocol.
  • the reference signal generator described above preferably has the following configuration. That is, the positioning calculation unit determines the position of the GNSS satellite based on the current time obtained from the assist information input from the assist information input unit.
  • the positioning calculation unit is configured to perform positioning by obtaining the position of the GNSS satellite using the current time obtained from the external timing signal input unit instead of the current time when the positioning cannot be performed. ing.
  • the above reference signal generator can be configured as follows. That is, the assist information input unit inputs assist information from an assist information distribution device connected by a WAN.
  • the positioning calculation unit is configured to perform positioning by determining the position of the GNSS satellite using the current time obtained from the external timing signal input unit.
  • positioning is performed using the current time acquired from the external timing signal input unit without using the current time of assist information that may contain a large delay from the beginning, so positioning is performed quickly and accurately. be able to.
  • the positioning calculation unit if the positioning calculation unit cannot measure the position based on the assist information input from the assist information input unit, the current time obtained from the assist information is set to 1 It can also be configured to perform positioning by obtaining the position of the GNSS satellite while shifting each second.
  • a GNSS module having the following configuration. That is, the GNSS module includes a receiving unit, an assist information input unit, an external timing signal input unit, a positioning calculation unit, a synchronization signal generation unit, an error detection unit, a timing correction unit, and a signal output unit. .
  • the receiving unit receives a GNSS signal. Assist information including information on the orbit of the GNSS satellite and current time information is input to the assist information input unit. An external timing signal is input to the external timing signal input unit.
  • the positioning calculation unit can determine the position of the GNSS satellite at the current time based on the assist information input from the assist information input unit.
  • the synchronization signal generation unit generates a signal having a timing signal synchronized with the current time obtained as a result of the positioning calculation by the positioning calculation unit.
  • the error detection unit detects an error occurring between the signal generated by the synchronization signal generation unit and the timing signal input to the external timing signal input unit.
  • the timing correction unit corrects the timing of the signal output from the synchronization signal generation unit based on the error detected by the error detection unit.
  • the signal output force unit outputs the signal corrected by the timing correction unit.
  • the positioning calculation unit can quickly perform the positioning calculation using the assist information input from the assist information input unit. Even if an error occurs in the current time obtained as a result of the positioning calculation by the positioning calculation unit and the timing of the signal generated by the synchronization signal generation unit is shifted, the error of the timing is detected by the error detection unit. Accordingly, the timing of the output signal of the synchronization signal generator can be corrected by the timing corrector. Therefore, a highly accurate output signal can be obtained.
  • the reference signal generation method includes a reception process, an assist information input process, an external timing signal input process, a positioning calculation process, a synchronization signal generation process, an error detection process, a timing correction process, and a signal output process. And including.
  • a GNSS signal is received.
  • assist information input step assist information including information on the orbit of the GNSS satellite and information on the current time is input.
  • external timing signal input step an external timing signal is input.
  • the positioning calculation process the position of the GNSS satellite at the current time is determined based on the assist information input in the assist information input process.
  • synchronization signal generation step a saddle signal having a timing synchronized with the current time obtained as a result of the positioning calculation in the positioning calculation step is generated.
  • error detection step an error that occurs between the signal generated in the synchronization signal generation step and the timing signal input in the external timing signal input step is detected.
  • timing correction step the timing of the signal generated in the synchronization signal generation step is corrected based on the error detected in the error detection step.
  • signal output step the signal whose timing is corrected in the timing correction step is output.
  • the positioning calculation can be quickly performed using the assist information input in the assist information input process in the positioning calculation process. Further, even when the timing of the signal generated in the synchronization signal generation process is shifted, the timing shift is detected in the error detection process, and the timing of the signal generated in the synchronization signal generation process is determined accordingly. Correction can be performed by the correction unit. Therefore, a highly accurate output signal can be obtained.
  • FIG. 1 is a block diagram showing an overall configuration of a reference signal generator according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing an overall configuration of a reference signal generator 10 according to an embodiment of the present invention.
  • the reference signal generator 10 of the present embodiment is installed in a mobile phone base station, a terrestrial digital broadcasting transmitter station, a communication facility of WiMAX (Worldwide Interoperability for Microwave Access), and the like.
  • the reference signal generator 10 includes an antenna terminal (reception unit) 31 for connecting the GPS antenna 11.
  • the GPS antenna 11 receives a GPS signal from a GPS satellite and outputs this positioning signal to the reference signal generator 10.
  • the reference signal generator 10 generates a reference signal (1 PPS signal in the present embodiment) based on this positioning signal.
  • the reference signal is provided to the base station or broadcasting station system via a signal output terminal (signal output unit) 34 provided in the reference signal generator 10.
  • the reference signal generator 10 includes an oscillator 21, a synthesizer 22, a down-converter unit 23, a baseband processing unit 24, a positioning calculation unit 25 ⁇ ⁇ ⁇ ⁇ ⁇ , and a timing adjustment unit (timing correction unit) 26. And a frequency divider (synchronization signal generator) 27 and a phase comparator (error detector) 28.
  • the oscillator 21 is constituted by, for example, a temperature compensated crystal oscillator (TCXO).
  • the oscillator 21 generates and outputs a signal having a predetermined frequency.
  • the synthesizer 22 converts the signal output from the vibrator 21 into a clock signal having a predetermined frequency.
  • the synthesizer 22 outputs the oscillation signal to the down converter unit 23, the baseband processing unit 24, the timing adjustment unit 26, and the like.
  • the oscillator 21 and the synthesizer 22 constitute an oscillation unit 20 that generates a predetermined clock signal (oscillation signal).
  • the positioning signal input from the antenna terminal 31 and the clock signal output from the synthesizer 22 are input to the down converter 23.
  • the down-converter unit 23 uses this clock signal as a demodulation signal, down-converts the positioning signal and converts it to an IF signal.
  • the IF signal converted by the down-converter unit 23 is output to the baseband processing unit 24.
  • the baseband processing unit 24 receives the IF signal and the clock signal.
  • the baseband processing unit 24 demodulates the baseband signal from the IF signal using the clock signal as a demodulation signal and outputs the demodulated baseband signal to the positioning calculation unit 25.
  • Positioning calculation unit 25 reads the navigation message included in the baseband signal output from baseband processing unit 24 to acquire satellite orbit information and time information, and performs positioning calculation. By this positioning calculation, an accurate current time can be obtained at any time with an accuracy of about 1 microsecond. However, as will be described in detail later, when the level of the received signal is low, an error in milliseconds may occur in the current time obtained by the positioning calculation.
  • the positioning calculation unit 25 compares the timing based on the current time acquired by the above positioning calculation with the timing of the clock signal. Then, the positioning calculation unit 25 generates timing adjustment information (specifically, clock offset information and clock drift information) for synchronizing the timing of the signal output from the frequency division unit 27 with the current time. The positioning calculation unit 25 outputs this timing adjustment information to the timing adjustment unit 26.
  • timing adjustment information specifically, clock offset information and clock drift information
  • the reference signal generator 10 includes an assist information input terminal (assist information input unit) 32 that can be connected to the Internet, which is a WAN.
  • the reference signal generator 10 can obtain assist information including information on the orbit of the GPS satellite and information on the current time from the assist information distribution server 41 via the Internet.
  • the obtained assist information is input to the positioning calculation unit 25.
  • the data related to the orbit of the GPS satellite is included in the navigation message received from the GPS satellite, but since the transmission speed of the navigation message is relatively slow at 50 bits per second, it is necessary to receive all the data necessary for positioning. It takes a long time. For this reason, the positioning calculation unit of the present embodiment stores the data related to the orbit of the GPS satellite ⁇ and the data related to the time in a non-volatile storage unit that is not illustrated, and performs the positioning quickly using the stored contents in the next and subsequent times. It is configured like this (so-called hot start).
  • the positioning calculation unit 25 may use the Internet as necessary. By acquiring the assist information described above, positioning can be performed quickly.
  • the intensity of the GPS signal that can be received by the GPS antenna 11 varies depending on whether the installation location is outdoor or indoor.
  • the positioning calculation unit 25 can demodulate the C / A code and the navigation message included in the positioning signal. it can. For this reason, the positioning calculation unit 25 can acquire an accurate current time including a millisecond unit by performing positioning by a method called a time tracking state machine (TSM).
  • TSM time tracking state machine
  • the positioning pad calculation unit 25 can perform positioning by a method of integrating the received signals and searching for a peak.
  • the current time obtained by the positioning calculation by this method may include an error in milliseconds.
  • the error is an integral multiple of 1 millisecond, and that a precise timing is obtained with an accuracy of about 1 microsecond in a portion less than millisecond.
  • the assist information that can be acquired from the assist information distribution server 41 by the positioning calculation unit 25 includes the current time information box.
  • the assist information received via the Internet includes several hundred milliseconds, sometimes 1 Since a delay of more than a second may occur, it is difficult to correct the millisecond error using the current time included in the assist bag information.
  • the timing adjustment unit 26 generates timing offset information for offsetting the timing at which the frequency divider 27 outputs a signal based on the timing adjustment information output from the positioning key calculator 25 and outputs the timing offset information to the frequency divider 27.
  • the frequency dividing unit 27 outputs a signal synchronized with the current time obtained by the positioning calculation of the positioning calculating unit 25 in principle.
  • the timing adjustment unit 26 appropriately changes the timing offset information, and thereby the timing of the signal output from the frequency division unit 27. Correct. This signal timing correction will be described later.
  • the frequency divider 27 is configured to divide and convert the clock input signal from a high frequency to a low frequency and output the obtained signal to the signal output terminal 34 as an output signal (reference signal). For example, when the frequency of the clock signal is 10 MHz, the frequency divider 27 divides the clock signal by a frequency division ratio of 1 / 10,000,000 to generate an output signal of 1 Hz (1 PPS).
  • the frequency divider 27 has a timing offset function, and can offset the timing of the output signal based on the timing offset information input from the timing adjuster 26. This output signal is output from the signal output terminal 34 to the outside and also input to the phase error comparator 28.
  • Time information is input from the time distribution device 42 to the phase comparator 28 via the external timing signal input terminal (timing signal input unit) 33 provided in the reference signal generator 10, and the frequency divider 27 divides the frequency. An output signal is input.
  • the time distribution device 42 is connected to the external timing signal input terminal 33 by a LAN, and distributes high-accuracy time information based on the Precision Time Protocol (PTP) whose specifications are defined by IEEE 1588.
  • PTP Precision Time Protocol
  • Various sources of time information generated by the time distribution device 42 can be considered.
  • a GPS receiver of a different system from the reference signal generator 10 can be used.
  • This PTP is a protocol defined for the purpose of obtaining highly accurate time synchronization by limiting the use environment to a LAN.
  • the time distribution device 42 operates as a grand master clock that distributes time
  • the reference signal generator 10 operates as a slave that receives time. Note that the mechanism for performing time synchronization between master and slave in PTP is well known in the above-mentioned IEEE 1588 and the like and will not be described.
  • the reference signal generator 10 operates as a PTP client, and based on the time information distributed from the time distribution device 42, the phase of the 1PPS signal generated by synchronizing with an accurate time with an accuracy of about 10 to 100 microseconds. Input to the comparator 28.
  • the accuracy of the 1PPS signal by the above PTP is fairly accurate, about 10 to 100 microseconds, it does not reach the accuracy (about 1 microsecond) based on the current time obtained by GPS positioning. Therefore, in the present embodiment, the external timing signal input from the external timing signal input terminal 33 has an error in units of milliseconds when the current time obtained as a positioning error result of the positioning calculation unit 25 occurs. Used exclusively to correct.
  • the phase comparator 28 detects the phase difference between the 1PPS signal generated based on the information obtained from the external timing signal input terminal 33 and the 1PPS signal input from the frequency divider 27. The phase comparator 28 outputs the detected phase difference to the timing adjustment unit 26.
  • the timing adjustment unit 26 adjusts the timing offset information output to the frequency division unit 27 so as to correct the phase difference. Note that the adjustment of the timing offset information at this time can be performed in units of 1 millisecond, unlike the case of performing adjustment based on the timing adjustment information acquired from the positioning calculation unit 25.
  • the satellite tracking can be quickly performed by the assist information ⁇ acquired from the assist information distribution server 41. Further, even if the signal strength of the GNSS signal is weak and an error of millisecond unit has occurred at the current time because the signals are integrated and measured, it can be corrected by the external timing signal input from the external timing signal input terminal 33. It is possible to obtain an output signal with the same accuracy as when the signal strength is sufficient. Therefore, the reference signal generator 10 of the present embodiment is good even when the situation where the level of the received signal is not good continues for a long time, or when the cold start is performed under the situation where the level of the received signal is not good. A reference signal with high accuracy can be output from an early stage.
  • the timing signal input from the external timing signal input terminal 33 is, for example, an integer multiple of 1 millisecond. An accuracy of about 0.1 milliseconds is sufficient. For this reason, a timing signal generator (for example, an expensive atomic oscillator or the like) that generates a precise timing signal to the nanosecond unit is not necessary, and the system can be configured inexpensively.
  • the positioning calculation unit 25 acquires assist information from the assist information distribution server 41 and performs positioning calculation.
  • the positioning calculation unit 25 can obtain information on the orbit of the GNSS satellite and information on the current time by acquiring the assist information from the assist information distribution server 41.
  • the current time based on the obtained assist information has a large delay (for example, a delay of 1 second or more). There is a possibility that has occurred. If there is a delay of 1 second or more at the current reference time, the position of the satellite calculated by the positioning calculation unit 25 becomes inaccurate, and positioning cannot be performed.
  • the positioning calculation unit 25 assumes that the current time obtained based on the assist information is incorrect in seconds when the positioning cannot be performed, and shifts the current time by one second. However, the positioning calculation is repeated until positioning is possible. Thereby, even if a large delay occurs in the current time included in the assist information, positioning can be reliably performed.
  • the reference signal generator 10 of the present embodiment can obtain the current time with sufficient accuracy from the time distribution device 42. Therefore, when the positioning calculation cannot be performed using the current time of the assist information, the positioning calculation unit 25 performs positioning using the current time obtained from the time distribution device 42 instead of the current time of the assist information. You may comprise as follows. Alternatively, the positioning calculation unit 25 may perform the positioning calculation using the current time obtained from the time distribution device 42 from the beginning instead of the current time of the assist information. Thereby, positioning can be performed quickly.
  • the reference signal generator 10 includes the antenna terminal 31, the assist information input terminal 32, the external timing signal input terminal 33, the positioning calculation unit 25, the frequency dividing unit 27, A phase comparator 28, a timing adjustment unit 26, and a signal output terminal 34 are provided.
  • the antenna terminal 31 receives a GPS signal.
  • the assist information input terminal 32 receives assist information including information on the orbit of the GPS satellite and information on the current time.
  • An external timing signal is input to the external timing signal input terminal 33.
  • the positioning calculation unit 25 can determine the position of the GNSS satellite at the current time on the basis of the assist information input from the assist information input terminal 32 and can perform the positioning operation.
  • the frequency divider 27 generates a signal having a timing synchronized with the current time obtained as a result of the positioning calculation by the positioning calculation unit 25.
  • the phase comparator 28 detects an error that occurs between the signal generated by the frequency divider 27 and the timing signal input to the external timing signal input terminal 33.
  • the timing adjustment unit 26 corrects the timing of the signal output from the frequency division unit 27 based on the error detected by the heel phase comparator 28.
  • the signal output terminal 34 outputs a signal whose timing is corrected by the timing adjustment unit 26.
  • the assist information can be acquired from the assist information distribution server 41, so that the positioning calculation can be performed quickly. Further, even when the timing of the signal generated by the frequency divider 27 is shifted, the timing shift is detected by the phase comparator 28, and the timing of the signal of the frequency divider 27 is detected accordingly. Therefore, a highly accurate output signal can be obtained.
  • the external GPS antenna 11 is connected to the antenna terminal 31, but the antenna terminal 31 may be omitted and the GPS antenna 11 may be built in the reference signal generator 10. In this case, the GPS antenna 11 corresponds to the receiving unit of the present invention.
  • the timing adjustment unit 26 adjusts the timing of the signal output from the frequency division unit 27 so as to be synchronized with the current time obtained by the positioning calculation of the positioning calculation unit 25, and the phase comparator 28.
  • the timing of the signal output from the frequency divider 27 is corrected on the basis of the error detected by.
  • the timing of the output signal of the frequency divider 27 is corrected based on the synchronization unit that synchronizes the output signal of the frequency divider 27 with the current time by the positioning calculation of the positioning calculator 25 ⁇ and the error detected by the phase comparator 28.
  • the error correction unit may be provided separately.
  • the assist information input terminal 32 and the external timing signal input terminal 33 are provided separately in the above embodiment, but may be configured as a common terminal.
  • the reference signal generator 10 outputs an output signal synchronized with the GPS time, but may be configured to be synchronized with Coordinated Universal Time (UTC) or other time.
  • UTC Coordinated Universal Time
  • the reference signal generator 10 may be configured to output a signal of an appropriate frequency (for example, a signal of 10 MHz) as a reference signal instead of or in addition to the 1 PPS signal as in the above embodiment.
  • a signal of an appropriate frequency for example, a signal of 10 MHz
  • the present invention is not limited to the reference signal generator 10, but can be applied to, for example, a GPS module.
  • the present invention can also be applied to a configuration in which a reference signal is generated using a global positioning system (GNSS) other than GPS.
  • GNSS global positioning system

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Electric Clocks (AREA)

Abstract

【課題】GNSS衛星からの測位信号が微弱であっても正確な基準信号を出力できる基準信号発生装置を提供する。 【解 決手段】基準信号発生装置10が備える測位演算部25は、アンテナ端子31から受信したGPS信号に基づいて測位を行うとともに、アシスト情報入力端子 32から入力されたアシスト情報に基づいて、現在時刻におけるGPS衛星の位置を求めて測位を行うことが可能である。タイミング調整部26は、測位演算部 25による測位演算の結果として得られた現在時刻に基づいて、発振部20の信号に基づいて生成される信号のタイミングを補正し、この補正された信号が信号 出力端子34から出力される。ただし、当該信号と、外部タイミング信号入力端子33に入力されたタイミング信号との間に生じる誤差が位相比較器28によっ て検出され、タイミング調整部26は、当該誤差に基づいて、信号出力端子34から出力される信号のタイミングを更に補正する。

Description

基準信号発生装置
 本発明は、基準信号発生装置に関する。
 従来から、携帯電話の基地局や地上デジタル放送の送信局等において、信号を送信するタイミングや周波数の同期を行うための基準信号を発生させる基準信号発生装置が知られている。
  基準信号発生装置は、GNSS(Global Navigation Satelite System、全地球航法衛星システム)を構成するGNSS衛星 からの測位信号を、GNSS受信機によって受信する。また、基準信号発生装置は、発振器を備えており、この発振器の出力する信号と、アンテナから受信した 測位信号と、を用いて測位演算(正確なGNSS時刻の計算を含む)を行い、この結果に基づいて基準信号(例えば、1PPS信号等)を生成する。
 特許文献1は、上記のGNSS受信機を開示する。このGNSS受信機は、GNSSの一種であるGPS(Global Positioning System、全地球測位システム)において、GPS衛星からの測位信号を受信するGPS受信機として構成されている。
  特許文献1も指摘するように、電源を投入したばかりの航法衛星受信機(いわゆるコールドスタートをした場合の受信機)は、見えている衛星の正確な軌道上の 位置も、受信機自体の現在位置も、受信機の水晶発振器の誤差の程度やその調整周波数も、現在時刻もまだ分からない。ただし、数秒以内もしくはもう少し正確 な時刻と、数百キロメートルの範囲で大体の位置を掴んでいる場合は、このようなおおよその値であっても既にある情報が使用できることは、受信機の初期化を 素早く完了させて測位演算を素早く行う上で大きな利点となる。
 GNSS受信機は、受信する航法データの受信レベルが弱す ぎると、受信及び復調を確実に行うことができない。このため、特許文献1のGPS受信機は、受信レベルが弱すぎて航法データが判読できない場合は、ネット ワークで接続されたサーバに、例えばGPS衛星に関する衛星暦情報、軌道暦情報、航法データ、その他の情報等の支援を要求することにより、衛星の捕捉を達 成する構成になっている。
 更に、特許文献1では、GPS受信機が、GPS衛星からの測位信号の強度によって、当該GPS 衛星の捕捉方法を変化させる手法が開示されている。具体的に説明すると、特許文献1のGPS受信機は、測位信号の強度が高いとき(-142[dBm]程度 以上のとき)、屋外探索法(ODSM)と呼ばれる方法によって衛星の捕捉を行い、時間追跡ステートマシン(TSM)と呼ばれる方法によって衛星を追跡す る。測位信号の強度があまり高くないとき(-150[dBm]程度のとき)、屋内探索法(IDSM)によって衛星の捕捉を行う。
特開2004-170422号公報
  ところで、GPSにおいて、それぞれのGPS衛星はL1波と呼ばれる信号(1575.42MHz)を測位信号として送信している。L1波の信号には、衛星 の軌道情報や、当該衛星が搭載するきわめて正確な時計に基づく現在時刻等を含む航法メッセージを、1023MHz/チップのチップレートで1023チップ を周期1ミリ秒で発生させた衛星固有のC/Aコード(Coarse/Acquisition code)で位相変調したものが含まれている。なお、C/A コードは、疑似ランダムノイズコードと呼ばれることもある。
 航法メッセージは、周期1ミリ秒のC/Aコードが20回繰り返されるごとに位相を反転させることで1ビットを表現する。従って、航法メッセージの送信速度は50ビット毎秒である。
  GPS衛星が送信するC/Aコードの先頭のタイミングは、当該衛星が搭載する正確な時計に基づく時刻に同期している。また、航法メッセージは、周期1ミリ 秒のC/Aコードが20回繰り返されるごとに、ビットの切り換わりに応じてC/Aコードの位相を反転させる方法で変調される。GPS受信機では、この位相 反転のタイミングに基づいて、測位演算の際、正確な時刻のうちミリ秒単位の部分を求めている。
 GPS衛星からの測位信号 の受信レベルが良好な場合、GPS受信機は、当該測位信号に含まれるC/Aコードと、航法メッセージと、を復調することができる。このため、航法データ メッセージから当該GPS衛星の軌道情報を取得することで、上記の時間追跡ステートマシン(TSM)によって、当該GPS衛星の追跡が可能となる。これに より、GPS受信機は、測位結果等を十分に短い時間間隔で(具体的には、毎秒毎に)取得することができる。
 しかし、 GPS受信機が屋内等に設置される等して、GPS衛星からの測位信号の受信レベルが良好でない場合、当該信号から航法メッセージ等を復調することができな い。そのため、上記の屋内探索法の1つとして、当該GPS衛星から受信した微弱な信号を一定時間積算することで信号のピークを探索し、そのピークを利用し てGPS衛星の測位を継続することが考えられる。この場合、信号のピークが検出できるまで測位演算をすることができないので、GPS受信機は、測位結果を 上記のような短い時間間隔で得ることができない。
 GPS受信機が測位演算をする場合、正確な時刻のうちミリ秒単位の部分 は、上記のように、航法メッセージのビット変化に応じたC/Aコードの位相反転のタイミングを基準にして求めることになる。しかし、測位信号の強度が弱い 場合は、C/Aコードの判別ができないため、航法メッセージのビット変化に応じてC/Aコードの位相が反転するタイミングも正確に得ることができない。 従って、微弱な信号を積算することでピークを探索して測位する方法で得られた時刻には、ミリ秒単位の誤差が生じ得ることになる。
  なお、上記の時間追跡ステートマシン(TSM)による測位結果に基づく時刻には、ミリ秒単位の誤差は生じない。また、測位信号の受信レベルが低下し、 C/Aコードの判別ができなくなる状況(即ち、正確な時刻のうちミリ秒単位の部分が不明になる状況)に陥ったとしても、信号の積算によりピークを探すこと で測位自体は可能である。従って、いったん時間追跡ステートマシンでの測位に成功して正確な時刻を取得してしまえば、その後に測位信号の受信レベルが低下 しても、測位により得られた時刻に生じるミリ秒未満(例えば、ナノ秒単位)での変動を追跡することでミリ秒を跨ぐタイミングを検出し、当該タイミングで1 ミリ秒ずつ適切に調整を行うことで、測位結果としての時刻にミリ秒単位の誤差が生じることを回避できる。
 ただし、GPS 受信機においては、測位信号の受信レベルが悪く測位ができない状況が長時間継続する状況も起こり得る。この場合、基準信号発生装置は、内部の発振器に基づ いて基準信号の発生を継続することになる(以下、この状態を自走状態と呼ぶことがある)。一般的に基準信号発生装置には精度の高い発振器が用いられるが、 発振器自体の経年変化や温度変化等で、ミリ秒単位のズレが発生している可能性も否定できない。前述のように測位信号の受信レベルが低くなっている状態で発 振器に上記のようなミリ秒単位のズレが発生すると、そのズレは、時間追跡ステートマシンによる測位が成功しない限り(自走状態が継続する限り)、いつまで も修正することができない。
 一方で、特許文献1に示すように、GPS受信機において、ネットワークで接続されたサーバか ら、例えばGPS衛星に関する衛星暦情報、軌道暦情報等を取得するとともに、ある程度正確な時刻の情報についても提供を受けるようにすることが考えられ る。これはアシストGPS(アシストGNSS)と呼ばれており、これによれば、上述のコールドスタートの状況であっても、最初から、微弱な信号を一定時間 積算して信号のピークを探索する方法で測位することが可能になる。
 しかしながら、ネットワークで接続されたサーバが提供 する時刻情報が正確だったとしても、受信機側としては、ネットワークを介して情報を取得する関係上、情報の受信に遅延が生じることは避けられない。イン ターネット等の一般的なWANを利用した場合、受信の遅延は状況によって様々であるが、100ミリ秒程度になったり、時には数秒以上の遅延が生じることも ある。従って、サーバから時刻の情報を取得したとしても、微弱な信号を積算して測位する方法によって生じた上述のミリ秒単位のズレを正確に修正することは 現実的でない。
 本発明は以上の事情に鑑みてされたものであり、その目的は、GNSS衛星からの測位信号が微弱であっても正確な基準信号をコールドスタート状態からであっても出力できる基準信号発生装置を提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
  本発明の第1の観点によれば、以下の構成の基準信号発生装置が提供される。即ち、この基準信号発生装置は、受信部と、アシスト情報入力部と、外部タイミン グ信号入力部と、測位演算部と、同期信号生成部と、誤差検出部と、タイミング補正部と、信号出力部と、を備える。前記受信部は、GNSS信号を受信する。 前記アシスト情報入力部には、GNSS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報が入力される。前記外部タイミング信号入力部には、外 部からのタイミング信号が入力される。前記測位演算部は、前記アシスト情報入力部から入力されたアシスト情報に基づいて、現在時刻におけるGNSS衛星の 位置を求めて測位を行うことが可能である。前記同期信号生成部は、前記測位演算部による測位演算の結果として得られた現在時刻に同期したタイミングの信号 を生成する。前記誤差検出部は、前記同期信号生成部が生成した信号と前記外部タイミング信号入力部に入力されたタイミング信号との間に生じる誤差を検出す る。前記タイミング補正部は、前記誤差検出部が検出した誤差に基づいて、前記同期信号生成部から出力される信号のタイミングを補正する。前記信号出力部 は、前記タイミング補正部によってタイミングが補正された信号を出力する。
 これにより、GNSS信号の受信レベルが弱い 場合であっても、測位演算部が、アシスト情報入力部から入力されるアシスト情報を用いて測位計算を迅速に行うことができる。また、測位演算部による測位演 算の結果として得られた現在時刻に誤差が生じ、同期信号生成部が生成した信号のタイミングがズレていた場合でも、当該タイミングのズレを誤差検出部によっ て検出し、それに応じて、同期信号生成部の出力信号のタイミングをタイミング補正部により補正することができる。従って、高精度の出力信号を得ることがで きる。
 前記の基準信号発生装置においては、前記測位演算部は、GNSS信号の受信レベルが低い場合に、信号を積算して信号のピークを探索することで測位を行うことが可能に構成されていることが好ましい。
  これにより、GNSS信号の受信レベルが低い場合でも、信号を積算してピークを探索することで、測位を行って現在時刻を得ることができる。また、得られた 現在時刻に誤差が生じた場合でも、タイミング補正部によって補正することで、出力信号の精度を高めることができる。従って、基準信号発生装置を、GNSS 信号が到達しにくい屋内等に設置する場合に特に好適である。
 前記の基準信号発生装置においては、前記タイミング補正部は、前記検出部が検出した誤差に基づいて、前記同期信号生成部が生成する信号のタイミングをミリ秒単位で補正することが好ましい。
  即ち、信号を積算して信号のピークを探索する測位方法を採った場合、得られる現在時刻の誤差が、正確に1ミリ秒の整数倍になることがある。この場合、タイ ミング補正部が信号のタイミングをミリ秒単位で補正することで、高精度の出力信号を得ることができる。また、ミリ秒単位で補正できれば良いので、外部タイ ミング信号入力部に入力される外部タイミング信号としては、例えば0.1ミリ秒程度の確度が得られれば十分である。従って、外部タイミング信号の供給源と して例えば原子発振器等の高価な機器を設置する必要がなくなるので、全体として安価なシステムを構成することができる。
 前記の基準信号発生装置においては、前記外部タイミング信号入力部は、LANで接続された時刻配信機器から、Precision Time Protocolに基づいて、現在時刻の情報を外部タイミング信号として入力することが好ましい。
 これにより、GNSS測位により得られた現在時刻にある程度の時間(例えば、1ミリ秒)の正確に整数倍となる誤差が生じた場合に、当該誤差を確実に補正により除去することができる。
  前記の基準信号発生装置においては、以下の構成とすることが好ましい。即ち、前記測位演算部は、前記アシスト情報入力部から入力されたアシスト情報により 得られた現在時刻に基づいてGNSS衛星の位置を求めて測位を行う。前記測位演算部は、測位ができなかった場合、当該現在時刻に代えて、前記外部タイミン グ信号入力部から得られた現在時刻を用いてGNSS衛星の位置を求めて測位を行うように構成されている。
 これにより、取得したアシスト情報に含まれる現在時刻に大きな遅延が生じていた場合でも、測位を確実に行うことができる。
  前記の基準信号発生装置においては、以下の構成とすることもできる。即ち、前記アシスト情報入力部は、WANで接続されたアシスト情報配信機器からアシス ト情報を入力する。前記測位演算部は、前記外部タイミング信号入力部から得られた現在時刻を用いてGNSS衛星の位置を求めて測位を行うように構成されて いる。
 この場合、大きな遅延が含まれている可能性があるアシスト情報の現在時刻を最初から用いずに、外部タイミング信号入力部から取得した現在時刻を用いて測位を行うので、測位を正確に素早く行うことができる。
  前記の基準信号発生装置においては、前記測位演算部は、前記アシスト情報入力部から入力されたアシスト情報に基づいて測位をすることができなかった場合、 当該アシスト情報により得られた現在時刻を1秒ずつズラしながらGNSS衛星の位置を求めて測位を行うように構成することもできる。
 この場合でも、測位を確実に行うことができる。
  本発明の第2の観点によれば、以下の構成のGNSSモジュールが提供される。即ち、このGNSSモジュールは、受信部と、アシスト情報入力部と、外部タイ ミング信号入力部と、測位演算部と、同期信号生成部と、誤差検出部と、タイミング補正部と、信号出力部と、を備える。前記受信部は、GNSS信号を受信す る。前記アシスト情報入力部には、GNSS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報が入力される。前記外部タイミング信号入力部に は、外部からのタイミング信号が入力される。前記測位演算部は、前記アシスト情報入力部から入力されたアシスト情報に基づいて、現在時刻におけるGNSS 衛星の位置を求めて測位を行うことが可能である。前記同期信号生成部は、前記測位演算部による測位演算の結果として得られた現在時刻に同期したタイミング の信号を生成する。前記誤差検出部は、前記同期信号生成部が生成した信号と前記外部タイミング信号入力部に入力されたタイミング信号との間に生じる誤差を 検出する。前記タイミング補正部は、前記誤差検出部が検出した誤差に基づいて、前記同期信号生成部から出力される信号のタイミングを補正する。前記信号出 力部は、前記タイミング補正部によって補正された信号を出力する。
 これにより、GNSS信号の受信レベルが弱い場合で あっても、測位演算部が、アシスト情報入力部から入力されるアシスト情報を用いて測位計算を迅速に行うことができる。また、測位演算部による測位演算の結 果として得られた現在時刻に誤差が生じ、同期信号生成部が生成した信号のタイミングがズレていた場合でも、当該タイミングのズレを誤差検出部によって検出 し、それに応じて、同期信号生成部の出力信号のタイミングをタイミング補正部により補正することができる。従って、高精度の出力信号を得ることができる。
  本発明の第3の観点によれば、以下の基準信号発生方法が提供される。即ち、この基準信号発生方法は、受信工程と、アシスト情報入力工程と、外部タイミング 信号入力工程と、測位演算工程と、同期信号生成工程と、誤差検出工程と、タイミング補正工程と、信号出力工程と、を含む。前記受信工程では、GNSS信号 を受信する。前記アシスト情報入力工程では、GNSS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報を入力する。前記外部タイミング信号入 力工程では、外部からのタイミング信号を入力する。前記測位演算工程では、アシスト情報入力工程で入力されたアシスト情報に基づいて、現在時刻における GNSS衛星の位置を求めて測位を行う。前記同期信号生成工程では、前記測位演算工程による測位演算の結果として得られた現在時刻に同期したタイミングの 信号を生成する。前記誤差検出工程では、前記同期信号生成工程で生成された信号と前記外部タイミング信号入力工程で入力されたタイミング信号との間に生じ る誤差を検出する。前記タイミング補正工程では、前記誤差検出工程で検出された誤差に基づいて、前記同期信号生成工程で生成される信号のタイミングを補正 する。前記信号出力工程では、前記タイミング補正工程でタイミングが補正された信号を出力する。
 これにより、GNSS信 号の受信レベルが弱い場合であっても、測位演算工程で、アシスト情報入力工程で入力されるアシスト情報を用いて測位演算を迅速に行うことができる。また、 同期信号生成工程で生成された信号のタイミングがズレていた場合でも、当該タイミングのズレを誤差検出工程で検出し、それに応じて、同期信号生成工程で生 成された信号のタイミングをタイミング補正部により補正することができる。従って、高精度の出力信号を得ることができる。
本発明の一実施形態に係る基準信号発生装置の全体的な構成を示すブロック図。
 次に、図面を参照して本発明の実施の形態を説明する。図1は本発明の一実施形態に係る基準信号発生装置10の全体的な構成を示すブロック図である。
 本実施形態の基準信号発生装置10は、携帯電話の基地局、地上デジタル放送の送信局及びWiMAX(Worldwide Interoperability for Microwave Access)の通信設備等に設置される。
 基準信号発生装置10は、GPSアンテナ11を接続するためのアンテナ端子(受信部)31を備える。GPSアンテナ11は、GPS衛星からGPS信号を受信し、この測位信号を基準信号発生装置10へ出力する。
 基準信号発生装置10は、この測位信号に基づいて、基準信号(本実施形態では、1PPS信号)を生成する。基準信号は、基準信号発生装置10が備える信号出力端子(信号出力部)34を介して、上記の基地局や放送局のシステムに提供される。
  図1に示すように、基準信号発生装置10は、発振器21と、シンセサイザ22と、ダウンコンバータ部23と、ベースバンド処理部24と、測位演算部25 と、タイミング調整部(タイミング補正部)26と、分周部(同期信号生成部)27と、位相比較器(誤差検出部)28と、を備える。
  発振器21は、例えば温度補償型水晶発振器(TCXO)で構成されている。発振器21は、所定の周波数の信号を生成して出力する。シンセサイザ22は、発 振器21が出力した信号を、所定の周波数のクロック信号に変換する。シンセサイザ22は、発振信号をダウンコンバータ部23、ベースバンド処理部24、及 びタイミング調整部26等へ出力する。本実施形態では、発振器21とシンセサイザ22により、所定のクロック信号(発振信号)を生成する発振部20が構成 されている。
 ダウンコンバータ部23には、アンテナ端子31から入力された測位信号と、シンセサイザ22が出力するク ロック信号と、が入力される。ダウンコンバータ部23は、このクロック信号を復調用信号として使用して、測位信号をダウンコンバートしてIF信号へ変換す る。ダウンコンバータ部23が変換したIF信号は、ベースバンド処理部24へ出力される。
 ベースバンド処理部24には、このIF信号と、クロック信号と、が入力される。ベースバンド処理部24は、クロック信号を復調用信号として使用して、IF信号からベースバンド信号を復調して測位演算部25へ出力する。
  測位演算部25は、ベースバンド処理部24が出力するベースバンド信号に含まれる航法メッセージを読み取ることにより、衛星の軌道情報と時刻情報を取得 し、測位演算を行う。この測位演算により、1マイクロ秒程度の確度で正確な現在時刻を随時得ることができる。ただし、詳細は後述するが、受信信号のレベル が低い場合には、測位演算により得られる現在時刻にはミリ秒単位の誤差が生じることもある。
 測位演算部25は、上記の測 位演算により取得した現在時刻に基づくタイミングと、クロック信号のタイミングと、を比較する。そして、測位演算部25は、分周部27が出力する信号のタ イミングを、当該現在時刻に同期させるためのタイミング調整情報(具体的には、クロックオフセット情報及びクロックドリフト情報)を生成する。測位演算部 25は、このタイミング調整情報をタイミング調整部26へ出力する。
 基準信号発生装置10は、WANであるインターネッ トに接続可能なアシスト情報入力端子(アシスト情報入力部)32を備えている。基準信号発生装置10は、アシスト情報配信サーバ41からインターネットを 介して、GPS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報を取得することができる。得られたアシスト情報は、測位演算部25に入力され る。
 なお、GPS衛星の軌道に関するデータは、GPS衛星から受信する航法メッセージに含まれているが、航法メッセージ の送信速度は50ビット毎秒と比較的遅いため、測位に必要なデータをすべて受信するのに長時間を要する。このため、本実施形態の測位演算部は、GPS衛星 の軌道に関するデータや時刻に関するデータを不揮発性の図略の記憶部に保存しておき、次回以降では当該記憶内容を用いて測位を素早く行うように構成されて いる(いわゆるホットスタート)。また、GPS衛星の軌道に関するデータが記憶部に記憶されていない場合や、記憶内容が古くて用いることができない場合 (いわゆるコールドスタートの場合)においても、測位演算部25は、必要に応じてインターネットを介して上記のアシスト情報を取得することにより、測位を 素早く行うことができる。
 ここで、上述したとおり、GPSアンテナ11が受信できるGPS信号の強度は、設置場所が屋外であるか屋内であるか等に応じて様々である。
  GPS信号の強度が十分に高い場合(例えば-145[dBm]程度以上の場合)、測位演算部25は、当該測位信号に含まれるC/Aコードと、航法メッセー ジと、を復調することができる。このため、測位演算部25は、時間追跡ステートマシン(TSM)と呼ばれる方法で測位を行うことで、ミリ秒単位も含めて正 確な現在時刻を取得することができる。
 一方、GPS信号の強度が低い場合(例えば-160[dBm]程度の場合)、測位 演算部25は、受信した信号を積算してピークを探索する方法により測位を行うことはできるが、上述したとおり、この方法による測位演算で得られた現在時刻 には、ミリ秒単位の誤差が含まれている可能性がある。ただし、当該誤差は1ミリ秒の整数倍となっており、ミリ秒未満の部分では、1マイクロ秒程度の確度で 正確なタイミングが得られている点に注意すべきである。なお、測位演算部25がアシスト情報配信サーバ41から取得できるアシスト情報には現在時刻の情報 が含まれているが、インターネットを介して受信するアシスト情報には、数百ミリ秒、場合によっては1秒以上の遅延が生じる場合も考えられるので、アシスト 情報に含まれている現在時刻を用いて上記のミリ秒単位の誤差を修正することは困難である。
 タイミング調整部26は、測位 演算部25が出力したタイミング調整情報に基づき、分周部27が信号を出力するタイミングをオフセットさせるためのタイミングオフセット情報を生成して分 周部27へ出力する。これにより、分周部27は原則として、測位演算部25の測位演算により得られた現在時刻に同期した信号を出力する。ただし、測位演算 により得られた現在時刻に上記のミリ秒単位の誤差がある場合は、タイミング調整部26はタイミングオフセット情報を適宜変更することにより、分周部27か ら出力される信号のタイミングを補正する。なお、この信号タイミングの補正については後述する。
 分周部27は、クロック 信号を分周して高い周波数から低い周波数に変換し、得られた信号を、出力信号(基準信号)として信号出力端子34に出力するように構成されている。例え ば、クロック信号の周波数が10MHzである場合、分周部27は、当該クロック信号を分周比1/10000000で分周して、1Hz(1PPS)の出力信 号を生成する。
 なお、分周部27はタイミングオフセット機能を備えており、タイミング調整部26から入力されたタイミン グオフセット情報に基づき、出力信号のタイミングをオフセットさせることができる。この出力信号は、信号出力端子34から外部に出力されるとともに、位相 比較器28に入力される。
 位相比較器28には、基準信号発生装置10が備える外部タイミング信号入力端子(タイミング信号入力部)33を介して時刻配信機器42から時刻情報が入力されるとともに、分周部27が分周した出力信号が入力される。
  時刻配信機器42は、外部タイミング信号入力端子33に対してLANによって接続されており、IEEE1588で仕様が定義されるPrecision  Time Protocol(PTP)に基づいて、高精度な時刻情報を配信する。時刻配信機器42が生成する時刻情報のソースは様々に考えられるが、例え ば基準信号発生装置10とは別系統のGPS受信機とすることができる。
 このPTPは、利用環境をLANに限ることで、高 精度な時刻同期を得ることを目的として定められたプロトコルである。本実施形態において時刻配信機器42は、時刻を配信するグランドマスタクロックとして 動作し、基準信号発生装置10は時刻を受信するスレーブとして動作する。なお、PTPにおいてマスタ-スレーブ間で時刻同期を行う仕組みは上記の IEEE1588等で公知であるため、説明を省略する。
 基準信号発生装置10はPTPクライアントとして動作し、時刻配信機器42から配信された時刻情報に基づき、正確な時刻に対して10~100マイクロ秒程度の精度で同期させて生成された1PPS信号を位相比較器28に入力させる。
  なお、上記のPTPによる1PPS信号の確度は10~100マイクロ秒程度と相当に正確であるものの、GPS測位により得られる現在時刻に基づく確度(1 マイクロ秒程度)には及ばない。従って、本実施形態において、外部タイミング信号入力端子33から入力される外部タイミング信号は、測位演算部25の測位 結果として得られた現在時刻にミリ秒単位の誤差が生じた場合に、当該誤差を補正するために専ら用いられる。
 位相比較器28は、外部タイミング信号入力端子33から得られた情報に基づいて生成された1PPS用信号と、分周部27から入力される1PPS信号と、の位相差を検出する。位相比較器28は、検出された位相差をタイミング調整部26に出力する。
  タイミング調整部26は、位相比較器28から位相差が入力されると、当該位相差を補正するように、分周部27に出力するタイミングオフセット情報を調整す る。なお、このときのタイミングオフセット情報の調整は、測位演算部25から取得したタイミング調整情報に基づいて行う場合と異なり、1ミリ秒単位で行わ れる。
 以上の構成により、GNSS信号の信号強度が弱い場合でも、アシスト情報配信サーバ41から取得したアシスト情報 によって、迅速に衛星追尾を行うことができる。また、GNSS信号の信号強度が弱く、信号を積算して測位したために現在時刻にミリ秒単位の誤差が生じた場 合でも、外部タイミング信号入力端子33から入力された外部タイミング信号によって修正できるため、信号強度が十分な場合と同等の精度の出力信号を得るこ とができる。従って、本実施形態の基準信号発生装置10は、受信信号のレベルが良好でない状況が長時間継続する場合や、受信信号のレベルが良好でない状況 下でコールドスタートした場合等であっても、良好な確度の基準信号を早い段階から出力することができる。また、信号を積算して測位する場合に生じる現在時 刻の誤差は正確に1ミリ秒の整数倍となることがわかっているため、外部タイミング信号入力端子33から入力されるタイミング信号は、例えば0.1ミリ秒程 度の確度で十分である。このため、ナノ秒単位まで精密なタイミング信号を生成するタイミング信号発生器(例えば、高価な原子発振器等)は必要なくなり、安 価にシステムを構成することができる。
 次に、測位演算部25がアシスト情報配信サーバ41からアシスト情報を取得して測 位演算を行う場合について説明する。例えばコールドスタートの状態において、測位演算部25はアシスト情報をアシスト情報配信サーバ41から取得すること により、GNSS衛星の軌道に関する情報及び現在時刻の情報を得ることができる。しかしながら上述したように、アシスト情報配信サーバ41と基準信号発生 装置10とはインターネットを介して接続されているため、得られたアシスト情報に基づく現在時刻には大きな遅延(例えば1秒以上の遅延)が発生している可 能性がある。基準とする現在時刻に1秒以上の遅延が生じていると、測位演算部25が計算する衛星の位置が正確でなくなるため、測位ができなくなる。そのた め、測位演算部25は、測位ができなかった場合は、アシスト情報に基づいて得られた現在時刻が秒単位で誤っているものと仮定し、当該現在時刻を1秒ずつズ ラしながら、測位ができるまで測位計算を繰り返し行う。これにより、アシスト情報に含まれる現在時刻に大きな遅延が生じていても、測位を確実に行うことが できる。
 ただし、本実施形態の基準信号発生装置10では、時刻配信機器42から十分な精度の現在時刻を得ることができ る。従って、アシスト情報の現在時刻を用いて測位計算ができなかった場合、測位演算部25は、当該アシスト情報の現在時刻に代えて、時刻配信機器42から 得られた現在時刻を用いて測位を行うように構成しても良い。あるいは、測位演算部25は、アシスト情報の現在時刻の代わりに時刻配信機器42から得られた 現在時刻を最初から用いて測位計算を行っても良い。これにより、測位を素早く行うことができる。
 以上に説明したように、 本実施形態の基準信号発生装置10は、アンテナ端子31と、アシスト情報入力端子32と、外部タイミング信号入力端子33と、測位演算部25と、分周部 27と、位相比較器28と、タイミング調整部26と、信号出力端子34と、を備える。アンテナ端子31は、GPS信号を受信する。アシスト情報入力端子 32には、GPS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報が入力される。外部タイミング信号入力端子33には、外部からのタイミング 信号が入力される。測位演算部25は、アシスト情報入力端子32から入力されたアシスト情報に基づいて、現在時刻におけるGNSS衛星の位置を求めて測位 を行うことが可能である。分周部27は、測位演算部25による測位演算の結果として得られた現在時刻に同期したタイミングの信号を生成する。位相比較器 28は、分周部27が生成した信号と外部タイミング信号入力端子33に入力されたタイミング信号との間に生じる誤差を検出する。タイミング調整部26は、 位相比較器28が検出した誤差に基づいて、分周部27から出力される信号のタイミングを補正する。信号出力端子34は、タイミング調整部26によってタイ ミングが補正された信号を出力する。
 これにより、GPS信号の受信レベルが弱い場合であっても、アシスト情報配信サーバ 41からアシスト情報を取得できるため、測位計算を迅速に行うことができる。また、分周部27が生成した信号のタイミングがズレていた場合でも、当該タイ ミングのズレを位相比較器28によって検出し、それに応じて、分周部27の信号のタイミングをタイミング調整部26によって補正することができるため、高 精度の出力信号を得ることができる。
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
 上記の実施形態では、アンテナ端子31に外部のGPSアンテナ11を接続する構成となっているが、アンテナ端子31を省略し、GPSアンテナ11を基準信号発生装置10に内蔵させる構成としても良い。この場合、GPSアンテナ11が本発明の受信部に相当する。
  上記の実施形態においては、タイミング調整部26が、分周部27が出力する信号のタイミングが測位演算部25の測位演算により得られた現在時刻に同期する ように調整するとともに、位相比較器28が検出した誤差に基づいて、分周部27が出力する信号のタイミングを補正している。しかしながら、測位演算部25 の測位演算による現在時刻に分周部27の出力信号を同期させる同期部と、位相比較器28が検出した誤差に基づいて分周部27の出力信号のタイミングを補正 する誤差補正部とが、別々に設けられても良い。
 アシスト情報入力端子32と外部タイミング信号入力端子33は、上記の実施形態では別々に備えられているが、共通の端子として構成しても良い。
 上記の実施形態において、基準信号発生装置10は、GPS時刻に同期する出力信号を出力するが、協定世界時(UTC)や、その他の時刻に同期する構成でも良い。
 基準信号発生装置10は、上記の実施形態のような1PPSの信号に代えて、あるいはそれに加えて、適宜の周波数の信号(例えば、10MHzの信号)を基準信号として出力する構成としてもよい。
 本発明は、基準信号発生装置10に限らず、例えばGPSモジュールに適用することもできる。
 本発明は、GPS以外の全地球測位システム(GNSS)を利用して基準信号を発生させる構成にも適用することができる。
 10 基準信号発生装置
 11 GNSSアンテナ
 20 発振部
 25 測位演算部
 26 タイミング調整部(タイミング補正部)
 27 分周部(同期信号生成部)
 28 位相比較器(誤差検出部)
 31 アンテナ端子(受信部)
 32 アシスト情報入力端子(アシスト情報入力部)
 33 外部タイミング信号入力端子(外部タイミング信号入力部)
 34 信号出力端子(信号出力部)
 41 アシスト情報配信サーバ
 42 時刻配信機器

Claims (9)

  1.  GNSS信号を受信する受信部と、
     GNSS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報が入力されるアシスト情報入力部と、
     外部からのタイミング信号が入力される外部タイミング信号入力部と、
     前記アシスト情報入力部から入力されたアシスト情報に基づいて、現在時刻におけるGNSS衛星の位置を求めて測位を行うことが可能な測位演算部と、
     前記測位演算部による測位演算の結果として得られた現在時刻に同期したタイミングの信号を生成する同期信号生成部と、
     前記同期信号生成部が生成した信号と前記外部タイミング信号入力部に入力されたタイミング信号との間に生じる誤差を検出する誤差検出部と、
     前記誤差検出部が検出した誤差に基づいて、前記同期信号生成部から出力される信号のタイミングを補正するタイミング補正部と、
     前記タイミング補正部によってタイミングが補正された信号を出力する信号出力部と、
    を備えることを特徴とする基準信号発生装置。
  2.  請求項1に記載の基準信号発生装置であって、
     前記測位演算部は、GNSS信号の受信レベルが低い場合に、信号を積算して信号のピークを探索することで測位を行うことが可能に構成されていることを特徴とする基準信号発生装置。
  3.  請求項1又は2に記載の基準信号発生装置であって、
     前記タイミング補正部は、前記誤差検出部が検出した誤差に基づいて、前記同期信号生成部から出力される信号のタイミングをミリ秒単位で補正することを特徴とする基準信号発生装置。
  4.  請求項1から3までの何れか一項に記載の基準信号発生装置であって、
     前記外部タイミング信号入力部は、LANで接続された時刻配信機器から、Precision Time Protocolに基づいて、現在時刻の情報を外部タイミング信号として入力することを特徴とする基準信号発生装置。
  5.  請求項4に記載の基準信号発生装置であって、
     前記測位演算部は、前記アシスト情報入力部から入力されたアシスト情報により得られた現在時刻に基づいてGNSS衛星の位置を求めて測位を行い、
     前記測位演算部は、測位ができなかった場合、当該現在時刻に代えて、前記外部タイミング信号入力部から得られた現在時刻を用いてGNSS衛星の位置を求めて測位を行うように構成されていることを特徴とする基準信号発生装置。
  6.  請求項4に記載の基準信号発生装置であって、
     前記アシスト情報入力部は、WANで接続されたアシスト情報配信機器からアシスト情報を入力し、
     前記測位演算部は、前記外部タイミング信号入力部から得られた現在時刻を用いてGNSS衛星の位置を求めて測位を行うように構成されていることを特徴とする基準信号発生装置。
  7.  請求項1から4までの何れか一項に記載の基準信号発生装置であって、
      前記測位演算部は、前記アシスト情報入力部から入力されたアシスト情報に基づいて測位をすることができなかった場合、当該アシスト情報により得られた現在 時刻を1秒ずつズラしながらGNSS衛星の位置を求めて測位を行うように構成されていることを特徴とする基準信号発生装置。
  8.  GNSS信号を受信する受信部と、
     GNSS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報が入力されるアシスト情報入力部と、
     外部からのタイミング信号が入力される外部タイミング信号入力部と、
     前記アシスト情報入力部から入力されたアシスト情報に基づいて、現在時刻におけるGNSS衛星の位置を求めて測位を行うことが可能な測位演算部と、
     前記測位演算部による測位演算の結果として得られた現在時刻に同期したタイミングの信号を生成する同期信号生成部と、
     前記同期信号生成部が生成した信号と前記外部タイミング信号入力部に入力されたタイミング信号との間に生じる誤差を検出する誤差検出部と、
     前記誤差検出部が検出した誤差に基づいて、前記同期信号生成部から出力される信号のタイミングを補正するタイミング補正部と、
     前記タイミング補正部によってタイミングが補正された信号を出力する信号出力部と、
    を備えることを特徴とするGNSSモジュール。
  9.  GNSS信号を受信する受信工程と、
     GNSS衛星の軌道に関する情報及び現在時刻の情報を含むアシスト情報が入力されるアシスト情報入力工程と、
     外部からのタイミング信号を入力する外部タイミング信号入力工程と、
     アシスト情報入力工程で入力されたアシスト情報に基づいて、現在時刻におけるGNSS衛星の位置を求めて測位を行う測位演算工程と、
     前記測位演算工程による測位演算の結果として得られた現在時刻に同期したタイミングの信号を生成する同期信号生成工程と、
     前記同期信号生成工程で生成された信号と前記外部タイミング信号入力工程で入力されたタイミング信号との間に生じる誤差を検出する誤差検出工程と、
     前記誤差検出工程で検出された誤差に基づいて、前記同期信号生成工程で生成される信号のタイミングを補正するタイミング補正工程と、
     前記タイミング補正工程でタイミングが補正された信号を出力する信号出力工程と、
    を含むことを特徴とする基準信号発生方法。
PCT/JP2015/078626 2014-12-05 2015-10-08 基準信号発生装置 WO2016088449A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247102 2014-12-05
JP2014-247102 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088449A1 true WO2016088449A1 (ja) 2016-06-09

Family

ID=56091405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078626 WO2016088449A1 (ja) 2014-12-05 2015-10-08 基準信号発生装置

Country Status (1)

Country Link
WO (1) WO2016088449A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058199A (ja) * 2004-08-23 2006-03-02 Mazeran Systems Japan Kk 衛星測位方法及び衛星測位システム
JP2014057179A (ja) * 2012-09-12 2014-03-27 Hitachi Ltd ネットワーク装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058199A (ja) * 2004-08-23 2006-03-02 Mazeran Systems Japan Kk 衛星測位方法及び衛星測位システム
JP2014057179A (ja) * 2012-09-12 2014-03-27 Hitachi Ltd ネットワーク装置

Similar Documents

Publication Publication Date Title
KR100964937B1 (ko) 위성 위치 확인 시스템에서 시간을 관리하는 방법 및 장치
US6839547B2 (en) Enhanced GPS receiver utilizing wireless infrastructure
JP6109573B2 (ja) 測位システム
US9762341B2 (en) Time synchronization system
AU2013294159B2 (en) Satellite positioning signal receiving method and device
KR101822222B1 (ko) 내비게이션 신호 송신기, 및 내비게이션 신호 생성 방법
JP2007071626A (ja) 端末装置、端末装置の制御方法、端末装置の制御プログラム及び端末装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
US7142878B1 (en) Method of timing calibration
CN101650416B (zh) Gps接收方法和装置及时钟校正方法
JP4848146B2 (ja) 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム
US8023960B2 (en) Positioning system, terminal apparatus, control method of terminal apparatus
EP1107017A2 (en) A method of timing calibration
US20110212718A1 (en) Methods and apparatus for stabilizing reference oscillators
WO2016088449A1 (ja) 基準信号発生装置
JP4916660B2 (ja) 衛星測位システムにおける支援
JP4109097B2 (ja) 衛星信号受信方法及びその受信装置
RU155150U1 (ru) Устройство частотно-временной синхронизации
JPH08105984A (ja) 1秒信号取得装置
JP6461041B2 (ja) 同期信号生成システム、位相差演算装置、及び同期信号生成装置
JP3730387B2 (ja) 衛星航法受信機
JP2006184219A (ja) 測位衛星受信装置
JP2014207534A (ja) 基準信号発生装置及び基準信号発生方法
JP2008281538A (ja) Gps受信装置
JP6681231B2 (ja) 基準信号発生装置及び基準信号発生方法
JP2016195347A (ja) タイミング信号発生装置、電子機器および移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP