WO2016084843A1 - 発光媒体およびその検査方法 - Google Patents

発光媒体およびその検査方法 Download PDF

Info

Publication number
WO2016084843A1
WO2016084843A1 PCT/JP2015/083067 JP2015083067W WO2016084843A1 WO 2016084843 A1 WO2016084843 A1 WO 2016084843A1 JP 2015083067 W JP2015083067 W JP 2015083067W WO 2016084843 A1 WO2016084843 A1 WO 2016084843A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
wavelength region
light emitter
emitter
Prior art date
Application number
PCT/JP2015/083067
Other languages
English (en)
French (fr)
Inventor
祐子 青山
佐藤 潤
山内 豪
北村 満
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2016561912A priority Critical patent/JP6642449B2/ja
Publication of WO2016084843A1 publication Critical patent/WO2016084843A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation

Definitions

  • the present invention relates to a light-emitting medium that emits light in the visible wavelength region by wavelength conversion of light, and an inspection method thereof.
  • the electrons When light in a certain wavelength range is irradiated, the electrons are excited, and when the electrons return to the original ground state, the light that emits light according to the energy of the electrons is used.
  • Materials having a wavelength conversion function for emitting light in the region are known.
  • a typical example of such a material is a phosphor that converts ultraviolet light into visible light.
  • Patent Document 1 a pattern such as a fluorescent material is formed on a printable material such as a banknote or a securities certificate, or an ID card or an identification card such as a passport, and light from a light source such as a copying machine is used. When irradiated, it hides hidden characters and images and prevents counterfeiting of printed matter.
  • the above-described phosphor since it is not visually recognized unless it is irradiated with specific light, it can be used for the purpose of storing secret information. However, as described above, it is not so difficult to grasp which wavelength band light is irradiated to reveal information. For example, if the wavelength of light applied to the printed material is continuously changed, the wavelength at which information is visually recognized can be easily detected.
  • Patent Document 1 uses a material that converts the wavelength of light from a light source into a wavelength in the visible light band so that information can be visually recognized.
  • information is recorded using a material that emits light in a wavelength band that cannot be visually recognized, and information is automatically grasped using a device that senses this light, the information is not visible, so it is confidential. Therefore, the determination process can be speeded up and accurate.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light emitting medium and an inspection method thereof that can more reliably prevent forgery, prevent duplication, and improve confidentiality. It is.
  • a base material A first light emitter that is disposed on the substrate and emits light in a visible light wavelength region when irradiated with light in a first wavelength region longer than the visible light wavelength region;
  • a light emitting medium comprising: a second light emitter that is disposed on the substrate and emits light in a visible light wavelength region when irradiated with light in a second wavelength region shorter than the visible light wavelength region.
  • the emission color when the first light emitter is irradiated with light in the first wavelength range may be the same color as the emission color when the second light emitter is irradiated with light in the second wavelength range. .
  • the first light emitter and the second light emitter may be arranged so as not to overlap the base material.
  • the first light emitter and the second light emitter are visible when the first light emitter is irradiated with light in the first wavelength range and the second light emitter is irradiated with light in the second wavelength range. It may include at least one piece of specific pattern, picture, character, symbol, and number that can be used.
  • the first light emitter may be a first coating material that emits light in a visible light wavelength region when irradiated with light in the first wavelength region
  • the second light emitter may be a second coating material that emits light in a visible light wavelength region when irradiated with light in the second wavelength region
  • the first coating material and the second coating material may be coated on the substrate in accordance with the contour of the information.
  • a substrate In another embodiment of the present invention, a substrate; A first light emitter that is disposed on the substrate and emits light in the second wavelength region when irradiated with light in the first wavelength region; and A second light emitter that is disposed on the substrate and emits light in the second wavelength range when irradiated with light in a third wavelength range different from the first wavelength range, and
  • the first wavelength range is a wavelength range shorter than the visible light wavelength range
  • the second wavelength region is an infrared light wavelength region
  • the light emitting medium in which the third wavelength range is shorter or longer than the visible wavelength range is provided.
  • the first wavelength range may be an ultraviolet wavelength range.
  • the third wavelength range may be an ultraviolet wavelength range or an infrared wavelength range.
  • the first light emitter emits light in the second wavelength region having a wavelength longer than that of the first wavelength region
  • the second light emitter may emit light in the second wavelength range having a shorter wavelength than the third wavelength range.
  • the first light emitter emits light in the second wavelength region having a wavelength longer than that of the first wavelength region
  • the second light emitter may emit light in the second wavelength band having a longer wavelength than the third wavelength band.
  • a first light emitter that is disposed on a substrate and emits light in a second wavelength region when irradiated with light in the first wavelength region, and the first light emitter disposed on the substrate and the first light emitter.
  • the first light emission on the substrate with respect to a light emitting medium comprising: a second light emitter that emits light in the second wavelength range when irradiated with light in a third wavelength range different from the first wavelength range Irradiating the second light emitter with light in the third wavelength range while irradiating the body with light in the first wavelength range; While irradiating the first light emitter on the substrate with the light of the first wavelength region, and irradiating the second light emitter with the light of the third wavelength region, the first light emitter and the And a step of inspecting the surface of the second light emitter.
  • the first wavelength region is a wavelength region longer than the visible light wavelength region
  • the second wavelength range is a visible light wavelength range
  • the third wavelength range may be shorter than the visible wavelength range.
  • the first wavelength range is a wavelength range shorter than the visible light wavelength range
  • the second wavelength region is an infrared light wavelength region
  • the third wavelength region may be a wavelength region shorter or longer than the visible light wavelength region.
  • forgery prevention, duplication prevention, and confidentiality can be improved more reliably.
  • FIG. 2 is a longitudinal sectional view of the light emitting medium 1.
  • FIG. 3 is a plan view of the light emitting medium 1.
  • FIG. 1 is a diagram showing a schematic configuration of a light emitting medium inspection apparatus 10 according to an embodiment of the present invention. The figure explaining the optical wavelength conversion of 2nd Embodiment.
  • FIG. 1A is a longitudinal sectional view of the light emitting medium 1, and shows a sectional structure in the direction of the AA line of the plan view shown in FIG. 1B.
  • the light emitting medium 1 includes a first light emitter 3 and a second light emitter 4 disposed on a substrate 2.
  • the substrate 2 may be any material as long as it has excellent adhesion to the first light emitter 3 and the second light emitter 4, and any specific material may be used.
  • it may be a transparent or opaque resin material, an inorganic material such as glass, or a fiber material such as paper.
  • the first light emitter 3 and the second light emitter 4 are visible when the second light emitter 4 is irradiated with light in the second wavelength region while the first light emitter 3 is irradiated with light in the first wavelength region.
  • the first light emitter 3 emits light in the visible light wavelength region when irradiated with light in the first wavelength region longer than the visible light wavelength region.
  • the first light emitter 3 is an up-conversion light emitter that converts light having a long wavelength into visible light having a short wavelength.
  • the second light emitter 4 emits light in the visible light wavelength region when irradiated with light in the second wavelength region shorter than the visible light wavelength region.
  • the second light emitter 4 is a fluorescent light emitter that converts light having a short wavelength into visible light having a long wavelength.
  • the first wavelength range is a wavelength longer than 0.8 ⁇ m, for example, and is typically an infrared wavelength range (0.8 ⁇ m to 1 mm). Since the first light emitter 3 only needs to emit light in the visible wavelength range, the first wavelength range may be a wavelength range longer than the infrared wavelength range (for example, a terahertz wave or a millimeter wave).
  • the second wavelength range is a wavelength shorter than 0.4 ⁇ m, for example, and is typically an ultraviolet wavelength range (0.01 ⁇ m to 0.4 ⁇ m). Since the second light emitter 4 only needs to emit light in the visible light wavelength region, the second wavelength region may be a shorter wavelength region (for example, X-rays) than the ultraviolet wavelength region.
  • the visible light wavelength range in which the first light emitter 3 and the second light emitter 4 emit light is, for example, 0.4 ⁇ m to 0.8 ⁇ m.
  • the emission color in the visible light wavelength region emitted by the first light emitter 3 and the emission color in the visible light wavelength region emitted by the second light emitter 4 may be any color that can be visually recognized by the human eye. Then, it is not particularly intended to distinguish between the emission color in the visible light wavelength range emitted by the first light emitter 3 and the emission color in the visible light wavelength range emitted by the second light emitter 4. Therefore, the emission color in the visible light wavelength region emitted by the first light emitter 3 and the emission color in the visible light wavelength region emitted by the second light emitter 4 are preferably similar colors.
  • the similar color refers to, for example, that the emission color of the second light emitter 4 is within a range of 1/6 centering on the emission color of the first light emitter 3 in the hue ring.
  • the emission color in the visible light wavelength region emitted by the first light emitter 3 and the emission color in the visible light wavelength region emitted by the second light emitter 4 may not be similar colors. That is, the light emission color of the first light emitter 3 and the light emission color of the second light emitter 4 may be different from each other to such an extent that the color difference can be identified by human eyes.
  • the first light emitter 3 when the light in the first wavelength region is irradiated, the electrons in the first light emitter 3 are excited, and extra energy is emitted as visible light when the excited electrons return to the ground state.
  • Specific materials of the first light emitter 3 include, for example, erbium (Er), holmium (Ho), praseodymium (Pr), thulium (Tm), neodymium (Nd), gadolinium (Gd), europium (Eu), It contains at least one or more rare earth elements selected from the group consisting of samarium (Sm), terbium (Tb), dysprosium (Dy) and cerium (Ce), and the base material of the phosphor particles includes a halide and the like. It is done.
  • the second light emitter 4 electrons in the second light emitter 4 are excited when irradiated with light in the second wavelength region, and extra energy is emitted as visible light when the excited electrons return to the ground state.
  • Specific materials of the second luminous body 4 include, for example, fluorescein fluorescent dyes, coumarin fluorescent dyes, rhodamine fluorescent dyes as dyes, europium / manganese activated barium magnesium aluminate, Examples thereof include zinc silicate activated with manganese, europium activated yttrium oxide, europium activated yttrium sulfide, zinc oxide, zinc germanate activated with manganese, europium activated yttrium phosphovanadate, and the like.
  • Some illuminants start to emit light when irradiated with light in a certain wavelength range and continue to emit light for a while even when light irradiation is stopped, so-called phosphorescence is generated,
  • the first light emitter 3 is a first coating material (for example, ink) that emits light in the visible light wavelength region when irradiated with light in the first wavelength region.
  • the second light emitter 4 is a second coating material (for example, ink) that emits light in the visible light wavelength region when irradiated with light in the second wavelength region.
  • the first coating material and the second coating material are coated on the substrate 2 in accordance with the contour of information.
  • the first light emitter 3 and the second light emitter 4 are, for example, colorless or nearly colorless materials, and it is impossible to visually recognize where the first light emitter 3 and the second light emitter 4 are arranged in the light emitting medium 1. There is a fear. Therefore, the first light emitter 3 and the second light emitter 4 may be colored with a predetermined pigment. However, it is necessary that the content of information represented by the first light emitter 3 and the second light emitter 4 cannot be specified by the color of the pigment. For example, as shown in FIG. 2A, instead of mixing the first light emitter 3 and the second light emitter 4 with a pigment, the base material 2 is formed on the base 2 according to the formation range of the first light emitter 3 and the second light emitter 4.
  • the color on the base material 2 showing the formation range 5a of the first light emitter 3 is different from the color on the base material 2 showing the formation range 5b of the second light emitter 4, thereby coloring each color. This makes it possible to grasp that it is necessary to make the wavelengths of the light to be irradiated to the areas 5a and 5b different.
  • the frames 6a and 6b indicating the arrangement locations of the first light emitter 3 and the second light emitter 4 are printed on the base material 2, and the colorless and transparent first inside the frames 6a and 6b.
  • the light emitter 3 and the second light emitter 4 may be disposed.
  • the presence of the colorless and transparent first light emitter 3 and the second light emitter 4 cannot be visually recognized, but by providing the frames 6a and 6b on the substrate 2, the first light emission is provided inside the frames 6a and 6b. It can be easily recognized that the body 3 and the second light emitter 4 are arranged.
  • FIG. 2B the frames 6a and 6b indicating the arrangement locations of the first light emitter 3 and the second light emitter 4 are printed on the base material 2, and the colorless and transparent first inside the frames 6a and 6b.
  • the light emitter 3 and the second light emitter 4 may be disposed.
  • the presence of the colorless and transparent first light emitter 3 and the second light emitter 4 cannot be visually recognized, but by providing the frames 6a and 6
  • the first light emitter 3 and the second light emitter 4 are irradiated on the entire surface of the light emitting medium 1, these lights are also applied to the first light emitter 3 and the second light emitter 4. Therefore, even if both the first light emitter 3 and the second light emitter 4 are colorless and transparent, the first light emitter 3 and the second light emitter 4 can emit light without any trouble. Therefore, it is not essential to add a color to the first light emitter 3 and the second light emitter 4 by mixing pigments.
  • the second light emitter 4 emits light by the light for the first light emitter 3.
  • the frequency range in which each of the first light emitter 3 and the second light emitter 4 emits light is set as much as possible so that the first light emitter 3 does not emit light due to the light for the second light emitter 4. It needs to be narrow so that the frequency ranges do not overlap.
  • 3A and 3B show information that is visible when the first light emitter 3 is irradiated with light in the first wavelength region, and information that is visible when the second light emitter 4 is irradiated with light in the second wavelength region. It is a figure which shows an example.
  • the first light emitter 3 and the second light emitter 4 are arranged at different locations on the substrate 2. There are mainly two reasons for arranging them at different locations. The first reason is that when the first light emitter 3 and the second light emitter 4 are arranged in the same position on the base material 2, the light in one of the first wavelength region and the second wavelength region is light. This is because it becomes difficult to specify whether the information visually recognized when the light is irradiated is formed on the first light emitter 3 or the second light emitter 4. The second reason is that when light in both the first wavelength region and the second wavelength region is irradiated simultaneously, information on the first light emitter 3 and information on the second light emitter 4 are obtained.
  • the information is visually recognized by being overlapped, and information cannot be separated and extracted in the overlapped area.
  • the line of the first light emitter 3 and the line of the second light emitter 4 intersect, or when at least a part of the first light emitter 3 and the second light emitter 4 are in contact, the first light emitter 3.
  • the second illuminant 4 are visually recognized in similar colors, it is not possible to know which illuminant is a line or region. Therefore, it is desirable to arrange the first light emitter 3 and the second light emitter 4 at some distance from each other.
  • the first light emitter 3 and the second light emitter 4 that are the same size and the same rectangular shape are arranged adjacent to each other, but the sizes of the first light emitter 3 and the second light emitter 4 are the same.
  • the shape There is no particular limitation on the shape.
  • the plurality of first light emitters 3 are arranged in a distributed manner, and the plurality of second light emitters 4 are also arranged in a dispersed manner, but the first light emitter 3 and the second light emitter 4 are arranged.
  • a plurality of first light emitters 3 may be arranged together in one region, and a plurality of second light emitters 4 may be arranged together in another region.
  • the information visually recognized by the light emission by the first light emitter 3 and the information visually recognized by the light emission by the second light emitter 4 are combined to complete one meaningful information for the first time. I am doing so.
  • the character “A” is visually recognized by combining information visually recognized by light emission by the first light emitter 3 and information visually recognized by light emission by the second light emitter 4. I am doing so.
  • the pattern representing the house is visually recognized by combining the information visually recognized by the light emission by the first light emitter 3 and the information visually recognized by the light emission by the second light emitter 4. I have to.
  • the light emitting medium 1 is meaningful only when the first light emitter 3 is irradiated with light in the first wavelength region and the second light emitter 4 is irradiated with light in the second wavelength region. Some information is visible. Accordingly, if the second light emitter 4 is not irradiated with light in the second wavelength region while the first light emitter 3 is irradiated with light in the first wavelength region, meaningful information is output from the light emitting medium 1. It becomes impossible to obtain information, and the confidentiality of information can be improved.
  • the emission wavelength is specified by continuously changing the emission wavelength of the irradiation light
  • the first light emitter 3 and the second light emitter 4 emit light in separate wavelength ranges. Therefore, the possibility that information is acquired by irradiating light in the wavelength regions respectively corresponding to the first light emitter 3 and the second light emitter 4 at the same timing becomes very low.
  • the first light emitter 3 is not visible unless it emits light in the first wavelength range, and the second light emitter 4 does not emit light in the second wavelength range. Since it cannot be visually recognized as much as possible, there is less possibility that both the emission wavelength region of the first light emitter 3 and the emission wavelength region of the second light emitter 4 will be noticed, and the possibility of duplication is reduced.
  • the light emitting medium 1 according to the present embodiment is used for authenticity determination
  • the first light emitter 3 is irradiated with light in the first wavelength region and the second light emitter 4 is irradiated with light in the second wavelength region. Since it suffices to check whether or not the meaningful information that was originally planned is visually recognized, it is possible to determine the authenticity only with the first light emitter 3 and the second light emitter 4, and the authentication determination process. Can be simplified, and authenticity can be easily determined visually by human eyes.
  • FIG. 4 is a diagram showing a schematic configuration of the luminescent medium inspection apparatus 10 according to one embodiment of the present invention.
  • the light emitting medium inspection apparatus 10 of FIG. 4 includes an infrared light irradiation unit 11 that irradiates the light emitting medium 1 with infrared light, an ultraviolet light irradiation unit 12 that irradiates the light emitting medium 1 with ultraviolet light, and the light emitting medium 1.
  • An imaging unit 13 that images the surface and a display unit 14 that displays the captured image are provided.
  • the infrared light irradiation unit 11 irradiates the first light emitter 3 on the light emitting medium 1 with light in the first wavelength region (for example, infrared wavelength region), and the ultraviolet light irradiation unit 12 emits the second light emission on the light emitting medium 1.
  • the body 4 is irradiated with light in a second wavelength region (for example, an ultraviolet wavelength region).
  • the second light emitter 4 is irradiated with light in the second wavelength region while the first light emitter 3 is irradiated with light in the first wavelength region. That is, the timing at which the infrared light irradiation unit 11 irradiates light to the first light emitter 3 and the timing at which the ultraviolet light irradiation unit 12 irradiates light to the second light emitter 4 are the same.
  • the beam diameter of the light emitted from the infrared light irradiation unit 11 is smaller than the surface area of the first light emitter 3, the light emitted from the infrared light irradiation unit 11 is reflected on the first light emitter 3.
  • the ultraviolet light irradiation unit 12 By scanning at high speed, it may appear to the human eye as if the entire surface of the first light emitter 3 is irradiated at the same timing. The same applies to the ultraviolet light irradiation unit 12.
  • the infrared light irradiation unit 11 irradiates light according to the position of the first light emitter 3. It is desirable to irradiate light from the ultraviolet light irradiation unit 12 in accordance with the position of the second light emitter 4. In this case, first, the entire surface of the light emitting medium 1 is imaged, the positions of the first light emitter 3 and the second light emitter 4 are automatically detected, and the infrared light irradiation unit 11 is matched with the detected positions. The irradiation direction of light from the ultraviolet light irradiation unit 12 may be automatically switched.
  • the infrared light irradiation unit 11 and the ultraviolet light irradiation unit 12 may be applied to the entire surface of the light emitting medium 1.
  • the beam diameter of the light from the infrared light irradiation unit 11 and the ultraviolet light irradiation unit 12 is smaller than the surface area on the light emitting medium 1, the light from the infrared light irradiation unit 11 and the ultraviolet light irradiation unit 12 is used. May be scanned on the light emitting medium 1 at high speed.
  • an optical system is provided on the rear side of the optical axis with respect to the infrared light irradiation unit 11 and the ultraviolet light irradiation unit 12, and the entire surface on the light emitting medium 1 is irradiated by expanding the beam diameter of light from each irradiation unit. Also good.
  • the display unit 14 in FIG. 4 is a luminescent medium in a state where the infrared light irradiation unit 11 irradiates the first light emitter 3 with light and the ultraviolet light irradiation unit 12 irradiates the second light emitter 4 with light. The entire surface on 1 is imaged and displayed.
  • the light emitting medium inspection apparatus 10 of FIG. 4 is used for at least one of inspection of whether the light emitting medium 1 is authentic, detection of specific information embedded in the light emitting medium 1, and prevention of duplication of the light emitting medium 1. be able to.
  • the originally intended information is visually recognized by both the first light emitter 3 and the second light emitter 4 in the surface image on the light emitting medium 1 displayed on the display unit 14 in FIG. Can be determined to be genuine. Since this information is visible only when the first light emitter 3 is irradiated with light in the first wavelength region and the second light emitter 4 is irradiated with light in the second wavelength region, secret information is emitted. Even if the information is recorded on the medium 1, there is a low possibility that the information can be read without permission.
  • the light emitting medium according to the present embodiment since a third party cannot easily recognize that information is visually recognized when the first light emitter 3 and the second light emitter 4 are each irradiated with light in a specific wavelength range, the light emitting medium according to the present embodiment. The possibility of copying 1 is also reduced.
  • the first light emitter 3 that emits light in the visible wavelength region when irradiated with light in the first wavelength region, and the visible light wavelength when irradiated in the second wavelength region.
  • the second light emitter 4 that emits light in the region on the light emitting medium 1
  • the first light emitter 3 and the second light emitter 4 are irradiated with light in the corresponding wavelength ranges respectively.
  • Both the body 3 and the second light emitter 4 emit light so that specific information can be visually recognized. Since this information is not visible unless light in the wavelength region corresponding to each of the first light emitter 3 and the second light emitter 4 is irradiated, secret information that cannot be easily read is recorded on the light emitting medium 1. be able to. Accordingly, it is possible to check whether or not the light emitting medium 1 is authentic, use the light emitting medium 1 as a secret information storage place, or prevent the light emitting medium 1 from being duplicated.
  • the cross-sectional structure of the luminescent medium according to the second embodiment is the same as that shown in FIGS. 1A and 1B.
  • the first light emitter 3 according to the second embodiment emits light in the second wavelength region when irradiated with light in the first wavelength region.
  • the second light emitter 4 emits light in the second wavelength region when irradiated with light in a third wavelength region different from the first wavelength region.
  • the first wavelength range is a shorter wavelength range than the visible light wavelength range.
  • the first wavelength range is an ultraviolet wavelength range or an infrared wavelength range.
  • the second wavelength region is an infrared light wavelength region.
  • the third wavelength range is a wavelength range shorter or longer than the visible light wavelength range. More specifically, the third wavelength range is an infrared wavelength range.
  • FIG. 5 is a diagram for explaining optical wavelength conversion according to the second embodiment. That is, FIG. 5A and FIG. 5B are diagrams schematically illustrating wavelength conversion of light of the first light emitter 3 and the second light emitter 4. The first light emitter 3 and the second light emitter 4 may perform wavelength conversion as shown in FIG. 5A or may perform wavelength conversion as shown in FIG.
  • the first light emitter 3 performs down conversion by irradiating light in the ultraviolet wavelength region to emit light in the infrared wavelength region.
  • the 2nd light-emitting body 4 irradiates the light of an infrared-light wavelength range, and performs the up-conversion which light-emits the light of the infrared-light wavelength range shorter than the light.
  • the first light emitter 3 performs down-conversion in which light in the ultraviolet wavelength region is irradiated and light in the infrared wavelength region is emitted.
  • the 2nd light-emitting body 4 irradiates the light of an infrared-light wavelength range, and performs the down conversion which light-emits the light of the infrared-light wavelength range longer than the light.
  • a material that emits light in the infrared wavelength region by irradiating light in the ultraviolet wavelength region and a material that emits light in another infrared wavelength region by irradiating light in the infrared wavelength region is not particularly limited.
  • an inorganic phosphor such as YVO 4 : Nd or Y 2 O 2 S: Nd is applicable as a specific material that emits light in the infrared wavelength region by irradiating light in the ultraviolet wavelength region. is there.
  • an organic light conversion material such as nanodiamond may be applied.
  • phosphor fine particles having a perovskite structure represented by BaSnO 3 may be applied.
  • the first light emitter 3 and the second light emitter 4 according to the second embodiment emit light in the infrared wavelength region when irradiated with light in the ultraviolet wavelength region or the infrared wavelength region. It is not possible to visually recognize the light. Therefore, a dedicated device for detecting the light emitted from the first light emitter 3 and the second light emitter 4 is required.
  • the luminescent medium inspection apparatus 10 incorporating such a dedicated apparatus can be configured in the same manner as in FIG. In the case of the first embodiment, the imaging unit 13 in the luminescent medium inspection apparatus 10 in FIG. 4 detects visible light, whereas the imaging unit 13 according to the second embodiment uses infrared light. Is detected. More specifically, the imaging unit 13 according to the second embodiment detects infrared light emitted from the light emitting medium 1 and converts it into an image signal. This image signal is displayed on the display unit 14.
  • the light in the ultraviolet light wavelength region when the light in the ultraviolet light wavelength region is irradiated, the light in the infrared light wavelength region is emitted, or when the light in the infrared light wavelength region is irradiated, the wavelength region is shifted. Emits light in the infrared wavelength region. It is not possible to visually determine whether or not the light is shining in a desired wavelength range, and since it can be determined only by using a dedicated device, the security performance is improved. Therefore, the light emitting medium according to the present embodiment is suitable for uses where security is important, such as forgery prevention purposes. In addition, by applying the light emitting medium of the present embodiment to the light emitting medium inspection apparatus 10 in FIG. 4, it is possible to determine whether the emission wavelength range is regular or not more accurately and faster than relying on visual observation.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Credit Cards Or The Like (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Luminescent Compositions (AREA)
  • Printing Methods (AREA)

Abstract

【課題】より確実に偽造防止、複製防止、および秘匿性向上を図ることが発光媒体を提供する。 【解決手段】発光媒体1は、基材2と、基材上に配置され、可視光波長域よりも長い第1波長域の光を照射したときに可視光波長域の光を発光する第1発光体3と、基材上に配置され、可視光波長域よりも短い第2波長域の光を照射したときに可視光波長域の光を発光する第2発光体4と、を備える。

Description

発光媒体およびその検査方法
 本発明は、光の波長変換により、可視光波長域の光を発光する発光媒体およびその検査方法に関する。
 ある波長域の光を照射すると電子が励起し、その電子が元の基底状態に戻るときに、電子のエネルギーに応じた光を発光する性質を利用して、照射光の波長域とは異なる波長域の光を発光させる波長変換機能を有する材料が知られている。このような材料の代表例は、紫外光を可視光に変換する蛍光体である。
 特許文献1は、紙幣や有価証券証書等の換金性のある印刷物やID証やパスポート等の身分証明書等に、蛍光体による模様等を形成しておき、複写機等の光源からの光が照射されると、隠れていた文字や画像が浮かび上がるようにして、印刷物の偽造を防止している。
特開2005-88546号公報
 紙幣等の印刷物に上述した蛍光体による模様等が形成されている場合、どの波長帯域で模様等が浮かび上がるかを事前に調査すれば、同じ波長帯域の光源を使用していない複写機を用いて印刷物の違法な複製が行われるおそれがある。
 また、上述した蛍光体は、特定の光を照射しない限り、特定の文字等の情報が視認されないため、秘密の情報を保管する目的でも利用可能である。ただし、上述したように、どの波長帯域の光を照射すれば、情報が浮かび上がるかを把握することは、それほど大変なことではない。例えば、印刷物に照射する光の波長を連続的に変化させれば、情報が視認される波長を容易に検出できてしまう。
 このように、従来の技術では、秘密の情報を保管する目的で蛍光体を用いても、秘匿性が高いとは言えなかった。
 特許文献1は、情報を目視で視認できるように、光源からの光の波長を可視光帯域の波長に変換する材料を用いている。しかしながら、目視では視認できない波長帯域の光を発光する材料を用いて情報を記録し、この光を感知する装置を用いて自動的に情報を把握するようにすれば、情報が視認されないことから秘匿性がより向上し、また情報の真偽を自動的に判断できるため、判断処理の高速化と正確性を担保することができる。
 本発明は、上述した問題点に鑑みてなされたものであり、その目的は、より確実に偽造防止、複製防止、および秘匿性向上を図ることが可能な発光媒体およびその検査方法を提供するものである。
 上記の課題を解決するために、本発明の一態様では、基材と、
 前記基材上に配置され、可視光波長域よりも長い第1波長域の光を照射したときに可視光波長域の光を発光する第1発光体と、
 前記基材上に配置され、可視光波長域よりも短い第2波長域の光を照射したときに可視光波長域の光を発光する第2発光体と、を備える発光媒体が提供される。
 前記第1発光体に前記第1波長域の光を照射したときの発光色は、前記第2発光体に前記第2波長域の光を照射したときの発光色と同系色であってもよい。
 前記第1発光体および前記第2発光体は、前記基材上に重ならないように配置されてもよい。
 前記第1発光体および前記第2発光体は、前記第1発光体に前記第1波長域の光を照射しつつ、前記第2発光体に前記第2波長域の光を照射したときに視認可能となる特定の模様、絵柄、文字、記号および数字の少なくとも一つの情報を含んでいてもよい。
 前記第1発光体は、前記第1波長域の光を照射したときに可視光波長域の光を発光する第1塗布材料であってもよく、
 前記第2発光体は、前記第2波長域の光を照射したときに可視光波長域の光を発光する第2塗布材料であってもよく、
 前記第1塗布材料および前記第2塗布材料は、前記情報の輪郭に合わせて前記基材上に塗布されてもよい。
 また、本発明の他の一態様では、基材と、
 前記基材上に配置され、第1波長域の光を照射したときに第2波長域の光を発光する第1発光体と、
 前記基材上に配置され、前記第1波長域とは異なる第3波長域の光を照射したときに前記第2波長域の光を発光する第2発光体と、を備え、
 前記第1波長域は、可視光波長域より短い波長域であり、
 前記第2波長域は、赤外光波長域であり、
 前記第3波長域は、可視光波長域より短いまたは長い波長域である発光媒体が提供される。
 前記第1波長域は、紫外光波長域であってもよい。
 前記第3波長域は、紫外光波長領域または赤外光波長域であってもよい。
 前記第1発光体は、前記第1波長域よりも波長の長い前記第2波長域の光を発光し、
 前記第2発光体は、前記第3波長域よりも波長の短い前記第2波長域の光を発光してもよい。
 前記第1発光体は、前記第1波長域よりも波長の長い前記第2波長域の光を発光し、
 前記第2発光体は、前記第3波長域よりも波長の長い前記第2波長域の光を発光してもよい。
 本発明の他の一態様では、基材上に配置され第1波長域の光を照射したときに第2波長域の光を発光する第1発光体と、前記基材上に配置され前記第1波長域とは異なる第3波長域の光を照射したときに前記第2波長域の光を発光する第2発光体と、を備える発光媒体に対して、前記基材上の前記第1発光体に前記第1波長域の光を照射しつつ、前記第2発光体に前記第3波長域の光を照射する工程と、
 前記前記基材上の前記第1発光体に前記第1波長域の光を照射しつつ、前記第2発光体に前記第3波長域の光を照射した状態で、前記第1発光体および前記第2発光体の表面を検査する工程と、を備える発光媒体の検査方法が提供される。
 前記第1波長域は、可視光波長域より長い波長域であり、
 前記第2波長域は、可視光波長域であり、
 前記第3波長域は、可視光波長域より短くてもよい。
 前記第1波長域は、可視光波長域より短い波長域であり、
 前記第2波長域は、赤外光波長域であり、
 前記第3波長域は、可視光波長域より短いまたは長い波長域であってもよい。
 本発明によれば、より確実に偽造防止、複製防止、および秘匿性向上を図ることができる。
発光媒体1の長手方向断面図。 発光媒体1の平面図。 第1発光体3と第2発光体4の場所を明示する一例を示す図。 第1発光体3と第2発光体4の場所を明示する他の一例を示す図。 第1発光体3と第2発光体4により表される情報の一例を示す図。 第1発光体3と第2発光体4により表される情報の他の一例を示す図。 本発明の一実施形態による発光媒体検査装置10の概略構成を示す図。 第2の実施形態の光波長変換を説明する図。
 以下、本発明の実施の形態について、詳細に説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、縮尺および縦横の寸法比等を、実物のそれらから適宜変更したり、誇張してある。
 (第1の実施形態)
 図1Aは発光媒体1の長手方向断面図であり、図1Bに示す平面図のA-A線方向の断面構造を示している。図1Aおよび図1Bに示すように、発光媒体1は、基材2上に配置された第1発光体3および第2発光体4を備えている。
 基材2は、第1発光体3および第2発光体4との密着性に優れた材料であればよく、具体的な材料は特に問わない。例えば、透明または不透明の樹脂材料や、ガラス等の無機材料でもよし、紙等の繊維材料でもよい。
 第1発光体3および第2発光体4は、第1発光体3に第1波長域の光を照射しつつ、第2発光体4に第2波長域の光を照射したときに視認可能となる特定の模様、絵柄、文字、記号および数字の少なくとも一つの情報を含んでいる。
 より詳しくは、第1発光体3は、可視光波長域よりも長い第1波長域の光を照射したときに可視光波長域の光を発光する。このように、第1発光体3は、波長の長い光を波長の短い可視光に変換するアップコンバージョン型の発光体である。
 また、第2発光体4は、可視光波長域よりも短い第2波長域の光を照射したときに可視光波長域の光を発光する。このように、第2発光体4は、波長の短い光を波長の長い可視光に変換する蛍光型の発光体である。
 第1波長域は、例えば0.8μmより長い波長であり、典型的には赤外線の波長域(0.8μm~1mm)である。第1発光体3は、可視光波長域の光を発光できればよいため、第1波長域は赤外線の波長域よりも長い波長域(例えば、テラヘルツ波やミリ波など)でもよい。
 第2波長域は、例えば0.4μmより短い波長であり、典型的には紫外線の波長域(0.01μm~0.4μm)である。第2発光体4は、可視光波長域の光を発光できればよいため、第2波長域は紫外線の波長域よりも短い波長域(例えば、X線など)でもよい。
 第1発光体3および第2発光体4が発光する可視光波長域は、例えば0.4μm~0.8μmである。
 第1発光体3が発光する可視光波長域の発光色と、第2発光体4が発光する可視光波長域の発光色とは、人間の目で視認できる色であればよく、本実施形態では、第1発光体3が発光する可視光波長域の発光色と、第2発光体4が発光する可視光波長域の発光色とを識別できるようにすることは特に意図していない。よって、第1発光体3が発光する可視光波長域の発光色と、第2発光体4が発光する可視光波長域の発光色とは、好ましくは同系色である。ここで、同系色とは、例えば、色相環における第1発光体3の発光色を中心として1/6の範囲内に第2発光体4の発光色が入っていることを指す。
 なお、第1発光体3が発光する可視光波長域の発光色と、第2発光体4が発光する可視光波長域の発光色とが同系色でなくてもよい。すなわち、第1発光体3の発光色と第2発光体4の発光色とは、その色の違いを人間の目で識別できる程度に互いに相違していてもよい。
 第1発光体3では、第1波長域の光を照射したときに第1発光体3内の電子が励起し、励起した電子が基底状態に戻る際に余分なエネルギーが可視光として放出される。第1発光体3の具体的な材料としては、例えば、エルビウム(Er)、ホロミウム(Ho)、プラセオジウム(Pr)、ツリウム(Tm)、ネオジウム(Nd)、ガドリニウム(Gd)、ユウロピウム(Eu)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)およびセリウム(Ce)からなる群から選択される少なくとも1つ以上の希土類元素を含有し、前記蛍光体粒子の母材がハロゲン化物などが挙げられる。
 第2発光体4では、第2波長域の光を照射したときに第2発光体4内の電子が励起し、励起した電子が基底状態に戻る際に余分なエネルギーが可視光として放出される。第2発光体4の具体的な材料としては、例えば、染料としてはフルオレセイン系蛍光色素、クマリン系蛍光色素、ローダミン系蛍光色素など、無機系顔料としては、ユーロピウム・マンガン付活アルミン酸バリウムマグネシウム、マンガンで付活されたケイ酸亜鉛、ユウロピウム付活酸化イットリウム、ユウロピウム付活硫化イットリウム、酸化亜鉛、マンガンで付活されたゲルマニウム酸亜鉛、ユウロピウム付活リンバナジン酸イットリウムなどが挙げられる。
 発光体の中には、ある波長域の光を照射したときに発光を開始し、光の照射を停止しても、しばらくの間は発光を継続する、いわゆる燐光を生じさせるものもあるが、本実施形態では、所定の波長域の光を照射している間のみ、発光を行うような材料を選定するのが望ましい。その理由は、後述するように、二種類の波長域の光を同時に照射している場合のみ、発光媒体1に記録された秘密の情報を取得できるようにするという目的で、本実施形態による発光媒体1を用いることができるためである。
 第1発光体3は、第1波長域の光を照射したときに可視光波長域の光を発光する第1塗布材料(例えば、インキ)である。また、第2発光体4は、第2波長域の光を照射したときに可視光波長域の光を発光する第2塗布材料(例えば、インキ)である。これら第1塗布材料および第2塗布材料は、情報の輪郭に合わせて基材2上に塗布されている。
 第1発光体3と第2発光体4は、例えば無色あるいは無色に近い材料であり、目視では、第1発光体3と第2発光体4が発光媒体1のどこに配置されているのかがわからないおそれがある。そこで、第1発光体3と第2発光体4に所定の顔料で何らかの色をつけてもよい。ただし、顔料による色によって、第1発光体3と第2発光体4により表される情報の内容を特定できないようにする必要がある。例えば、図2Aに示すように、第1発光体3と第2発光体4に顔料を混ぜ合わせる代わりに、第1発光体3と第2発光体4の形成範囲に合わせて、基材2上に顔料を塗布してもよい。図2Aは、第1発光体3の形成範囲5aを示す基材2上の色と、第2発光体4の形成範囲5bを示す基材2上の色とを相違させることで、各色で着色された領域5a,5bに照射するべき光の波長を相違させる必要があることを把握できるようにしている。
 あるいは、図2Bに示すように、第1発光体3と第2発光体4の配置場所を示す枠6a,6bを基材2上に印刷し、枠6a,6bの内部に無色透明の第1発光体3と第2発光体4を配置してもよい。この場合、目視では無色透明の第1発光体3と第2発光体4の存在を認識できないが、基材2上に枠6a,6bを設けることにより、枠6a,6bの内部に第1発光体3と第2発光体4が配置されていることを容易に認識することができる。図2Bでは、第1発光体3の形成範囲を取り囲む枠線6aを実線とし、第2発光体4の形成範囲を取り囲む枠線6bを破線とすることで、照射する光の波長を変える必要があることを把握できるようにしている。
 なお、発光媒体1の表面全体に第1発光体3用の光と第2発光体4用の光を照射する場合には、これらの光は第1発光体3と第2発光体4にも照射されることになるため、第1発光体3と第2発光体4がともに無色透明であっても、支障なく、第1発光体3と第2発光体4を発光させることができる。よって、第1発光体3と第2発光体4に顔料を混ぜて色を付けることは必須ではない。
 ただし、発光媒体1の表面全体に第1発光体3用の光と第2発光体4用の光を照射する場合には、第1発光体3用の光によって第2発光体4が発光したり、その逆に、第2発光体4用の光によって第1発光体3が発光したりすることがないよう、第1発光体3と第2発光体4のそれぞれが発光する周波数範囲をできるだけ狭くして、各周波数範囲が重ならないようにする必要がある。
 図3Aおよび図3Bは第1発光体3に第1波長域の光を照射したときに視認される情報と第2発光体4に第2波長域の光を照射したときに視認される情報との一例を示す図である。
 これらの図に示すように、第1発光体3と第2発光体4は、基材2上の互いに異なる場所に配置されている。互いに異なる場所に配置する理由は、主に以下の2つである。1つ目の理由は、第1発光体3と第2発光体4を基材2上の同じ場所に重ねて配置すると、第1波長域と第2波長域のいずれか一方の波長域の光を照射した場合に視認される情報が、第1発光体3と第2発光体4のどちらに形成されたものかを特定することが困難になるためである。また、2つ目の理由は、第1波長域と第2波長域の双方の波長域の光を同時に照射した場合には、第1発光体3の情報と第2発光体4の情報とが重ね合わせて視認されることになり、重ね合わせた領域では、情報を分離して取り出すことができなくなるためである。また、第1発光体3の線と第2発光体4の線とが交差する場合や、第1発光体3と第2発光体4との少なくとも一部が接触する場合、第1発光体3と第2発光体4とが同系色で視認される場合には、どちらの発光体の線や領域であるかがわからなくなる。よって、第1発光体3と第2発光体4は、多少なりとも間隔を隔てて配置するのが望ましい。
 図3Aおよび図3Bの例では、それぞれが同サイズで同じ矩形状の第1発光体3と第2発光体4を隣接配置しているが、第1発光体3と第2発光体4のサイズと形状には特に制限はない。また、図3Aでは、複数の第1発光体3を分散して配置するとともに、複数の第2発光体4も分散して配置しているが、第1発光体3および第2発光体4の数や配置にも特に制限はない。例えば、図3Bに示すように、複数の第1発光体3を一つの領域内にまとめて配置するとともに、複数の第2発光体4を、別の領域内にまとめて配置してもよい。
 図3Aおよび図3Bでは、第1発光体3による発光で視認される情報と、第2発光体4による発光で視認される情報とが組み合わされることで、初めて意味のある一つの情報が完成するようにしている。例えば、図3Aの場合は、第1発光体3による発光で視認される情報と、第2発光体4による発光で視認される情報とが組み合わされることで、「A」という文字が視認されるようにしている。また、図3Bの場合は、第1発光体3による発光で視認される情報と、第2発光体4による発光で視認される情報とが組み合わされることで、家を表す絵柄が視認されるようにしている。
 このように、本実施形態による発光媒体1は、第1波長域の光を第1発光体3に照射しつつ、第2波長域の光を第2発光体4に照射した場合のみ、意味のある情報が視認されるようにしている。これにより、第1波長域の光を第1発光体3に照射している間に、第2波長域の光を第2発光体4に照射しなければ、発光媒体1から意味のある情報を取得できなくなり、情報の秘匿性を向上できる。
 照射光の発光波長を連続的に変化させて、発光波長を特定される可能性はありうるが、本実施形態では、第1発光体3と第2発光体4がそれぞれ別個の波長域で発光するため、第1発光体3と第2発光体4にそれぞれ対応した波長域の光を同タイミングで照射して、情報を取得される可能性は非常に低くなる。
 また、本実施形態による発光媒体1を複製しようとしても、第1発光体3は第1波長域の光を照射しない限り視認できず、第2発光体4は第2波長域の光を照射しない限り視認できないため、第1発光体3の発光波長域と第2発光体4の発光波長域とをともに気づかれるおそれは少なくなり、複製されるおそれも低くなる。
 さらに、本実施形態による発光媒体1を真贋判定に用いる場合、第1発光体3に第1波長域の光を照射しつつ、第2発光体4に第2波長域の光を照射した場合に、当初予定した意味のある情報が視認されることか否かを検査すればよいため、第1発光体3と第2発光体4の部分のみで真贋判定を行うことができ、真贋判定の処理を簡易化できるとともに、人間の目視で真贋判定を容易に行うことができる。
 図4は本発明の一実施形態による発光媒体検査装置10の概略構成を示す図である。図4の発光媒体検査装置10は、上述した発光媒体1に赤外光を照射する赤外光照射部11と、発光媒体1に紫外光を照射する紫外光照射部12と、発光媒体1の表面を撮像する撮像部13と、撮像画像を表示する表示部14とを備えている。
 赤外光照射部11は発光媒体1上の第1発光体3に第1波長域(例えば、赤外波長域)の光を照射し、紫外光照射部12は発光媒体1上の第2発光体4に第2波長域(例えば、紫外波長域)の光を照射する。
 上述したように、本実施形態は、第1発光体3に第1波長域の光を照射しつつ、第2発光体4に第2波長域の光を照射することを念頭に置いている。すなわち、赤外光照射部11が第1発光体3に光を照射するタイミングと、紫外光照射部12が第2発光体4に光を照射するタイミングとは同一である。
 例えば、赤外光照射部11から照射される光のビーム径が第1発光体3の表面積よりも小さい場合には、赤外光照射部11から照射される光を第1発光体3上で高速で走査させて、人間の目には、第1発光体3の表面全体を同タイミングで照射しているように見せかけてもよい。紫外光照射部12についても同様である。
 第1発光体3と第2発光体4が顔料等によって、それぞれ別個の色で識別される場合には、第1発光体3の位置に合わせて赤外光照射部11から光を照射するとともに、第2発光体4の位置に合わせて紫外光照射部12から光を照射するのが望ましい。この場合、まず、発光媒体1の表面全体を撮像して、第1発光体3と第2発光体4の位置を自動的に検出し、検出された位置に合わせて、赤外光照射部11と紫外光照射部12からの光の照射方向を自動的に切り替えてもよい。
 また、上述したように、第1発光体3と第2発光体4が無色透明で、外見では第1発光体3と第2発光体4の位置を特定できない場合には、赤外光照射部11と紫外光照射部12からの光を発光媒体1上の表面全体に照射させてもよい。この場合、赤外光照射部11と紫外光照射部12からの光のビーム径が発光媒体1上の表面積よりも小さい場合には、赤外光照射部11と紫外光照射部12からの光を発光媒体1上で高速で走査させてもよい。あるいは、赤外光照射部11と紫外光照射部12よりも光軸後方側に光学系を設けて、各照射部からの光のビーム径を広げて発光媒体1上の表面全体を照射してもよい。
 図4の表示部14は、赤外光照射部11が第1発光体3に光を照射しつつ、紫外光照射部12が第2発光体4に光を照射している状態で、発光媒体1上の表面全体を撮像して表示する。
 図4の発光媒体検査装置10は、発光媒体1が真性なものかどうかの検査と、発光媒体1に埋め込まれた特定情報の検出と、発光媒体1の複製防止との少なくとも一つに利用することができる。
 例えば、図4の表示部14に表示された発光媒体1上の表面画像にて、第1発光体3と第2発光体4の双方に、当初意図した情報が視認されれば、発光媒体1は真性なものと判断することができる。この情報は、第1発光体3に第1波長域の光を照射しつつ、第2発光体4に第2波長域の光を照射した場合のみ、視認可能になるため、秘密の情報を発光媒体1に記録しても、勝手にその情報を読み出されるおそれは低くなる。
 また、第1発光体3と第2発光体4にそれぞれ特定の波長域の光を照射したときに情報が視認されることは第三者が容易には認識できないため、本実施形態による発光媒体1を複製されるおそれも低くなる。
 このように、本実施形態では、第1波長域の光を照射したときに可視光波長域の光を発光する第1発光体3と、第2波長域の光を照射したときに可視光波長域の光を発光する第2発光体4とを発光媒体1上に配置するため、第1発光体3と第2発光体4にそれぞれ対応する波長域の光を照射したときに、第1発光体3と第2発光体4とをともに発光させて、特定の情報を視認可能になる。この情報は、第1発光体3と第2発光体4にそれぞれ対応する波長域の光を照射しない限り視認できないため、発光媒体1上に、容易には読み取ることができない秘密の情報を記録することができる。これにより、発光媒体1が真性か否かの検査を行ったり、発光媒体1を秘密の情報の保管場所として利用したり、発光媒体1の複製を防止したりすることができる。
 (第2の実施形態)
 上述した第1の実施形態では、第1発光体3と第2発光体4が可視光波長域の光を発光する例を説明したが、以下に説明する第2の実施形態は、第1発光体3と第2発光体4が赤外光波長域の光を発光するものである。
 第2の実施形態による発光媒体の断面構造は、図1Aおよび図1Bと同様である。第2の実施形態による第1発光体3は、第1波長域の光を照射したときに第2波長域の光を発光する。第2発光体4は、第1波長域とは異なる第3波長域の光を照射したときに第2波長域の光を発光する。
 第1波長域は、可視光波長域より短い波長域である。より具体的な一例としては、第1波長域は、紫外光波長域または赤外光波長域である。
 第2波長域は、赤外光波長域である。第3波長域は、可視光波長域より短いまたは長い波長域である。より具体的には、第3波長域は赤外光波長域である。
 図5は第2の実施形態の光波長変換を説明する図である。すなわち、図5(a)および図5(b)は第1発光体3と第2発光体4の光の波長変換を模式的に示す図である。第1発光体3と第2発光体4は、図5(a)のような波長変換を行ってもよいし、図5(b)のような波長変換を行ってもよい。
 図5(a)の例では、第1発光体3は、紫外光波長域の光を照射して、赤外光波長域の光を発光するダウンコンバージョンを行う。また、第2発光体4は、赤外光波長域の光を照射して、その光よりも短い赤外光波長域の光を発光するアップコンバージョンを行う。
 図5(b)の例では、第1発光体3は、紫外光波長域の光を照射して、赤外光波長域の光を発光するダウンコンバージョンを行う。また、第2発光体4は、赤外光波長域の光を照射して、その光よりも長い赤外光波長域の光を発光するダウンコンバージョンを行う。
 紫外光波長域の光を照射して赤外光波長域の光を発光する材料と、赤外光波長域の光を照射して、別の赤外光波長域の光を発光する材料との具体的な種類は特に問わない。例えば、紫外光波長域の光を照射して赤外光波長域の光を発光する具体的な材料としては、YVO:NdやYS:Ndなどの無機蛍光体を適用可能である。あるいは、ナノダイヤモンドなどの有機光変換材料を適用してもよい。あるいは、BaSnOで表されるペロブスカイト型構造を有する蛍光体微粒子を適用してもよい。あるいは、EuやCeなどの希土類金属を適用してもよい。
 第2の実施形態による第1発光体3と第2発光体4は、紫外光波長域または赤外光波長域の光を照射したときに、赤外光波長域の光を発光するため、発光した光を目視で認識することはできない。よって、第1発光体3と第2発光体4の発光光を検出する専用の装置が必要となる。このような専用の装置を組み込んだ発光媒体検査装置10は、図4と同様に構成可能である。図4の発光媒体検査装置10内の撮像部13は、第1の実施形態の場合は、可視光を検出するものであるのに対し、第2の実施形態による撮像部13は、赤外光を検出するものである。より詳細には、第2の実施形態による撮像部13は、発光媒体1で発光された赤外光を検出して画像信号に変換する。この画像信号は、表示部14に表示される。
 このように、第2の実施形態では、紫外光波長域の光を照射すると、赤外光波長域の光を発光するか、または赤外光波長域の光を照射すると、波長域がずれた赤外光波長域の光を発光する。目視では、所望の波長域で光っているかを否かを判別できず、専用の装置を用いて初めて判別できることから、セキュリティ性能が向上する。よって、本実施形態の発光媒体は、偽造防止目的などのセキュリティを重視したい用途に適している。また、本実施形態の発光媒体は、図4の発光媒体検査装置10に適用することにより、発光波長域が正規のものか否かを、目視に頼るよりも、より正確かつ高速に判別できる。
 本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
  1 発光媒体、2 基材、3 第1発光体、4 第2発光体、10 発光媒体検査装置、11 赤外光照射部、12 紫外光照射部、13 撮像部、14 表示部

Claims (13)

  1.  基材と、
     前記基材上に配置され、可視光波長域よりも長い第1波長域の光を照射したときに可視光波長域の光を発光する第1発光体と、
     前記基材上に配置され、可視光波長域よりも短い第2波長域の光を照射したときに可視光波長域の光を発光する第2発光体と、を備える発光媒体。
  2.  前記第1発光体に前記第1波長域の光を照射したときの発光色は、前記第2発光体に前記第2波長域の光を照射したときの発光色と同系色である請求項1に記載の発光媒体。
  3.  前記第1発光体および前記第2発光体は、前記基材上に互いに分離して配置される請求項1または2に記載の発光媒体。
  4.  前記第1発光体および前記第2発光体は、前記第1発光体に前記第1波長域の光を照射しつつ、前記第2発光体に前記第2波長域の光を照射したときに視認可能となる特定の模様、絵柄、文字、記号および数字の少なくとも一つの情報を含む請求項1乃至3のいずれかに記載の発光媒体。
  5.  前記第1発光体は、前記第1波長域の光を照射したときに可視光波長域の光を発光する第1塗布材料であり、
     前記第2発光体は、前記第2波長域の光を照射したときに可視光波長域の光を発光する第2塗布材料であり、
     前記第1塗布材料および前記第2塗布材料は、前記情報の輪郭に合わせて前記基材上に塗布される請求項4に記載の発光媒体。
  6.  基材と、
     前記基材上に配置され、第1波長域の光を照射したときに第2波長域の光を発光する第1発光体と、
     前記基材上に配置され、前記第1波長域とは異なる第3波長域の光を照射したときに前記第2波長域の光を発光する第2発光体と、を備え、
     前記第1波長域は、可視光波長域より短い波長域であり、
     前記第2波長域は、赤外光波長域であり、
     前記第3波長域は、可視光波長域より短いまたは長い波長域である発光媒体。
  7.  前記第1波長域は、紫外光波長域である請求項6に記載の発光媒体。
  8.  前記第3波長域は、紫外光波長域または赤外光波長域である請求項6に記載の発光媒体。
  9.  前記第1発光体は、前記第1波長域よりも波長の長い前記第2波長域の光を発光し、
     前記第2発光体は、前記第3波長域よりも波長の短い前記第2波長域の光を発光する請求項6に記載の発光媒体。
  10.  前記第1発光体は、前記第1波長域よりも波長の長い前記第2波長域の光を発光し、
     前記第2発光体は、前記第3波長域よりも波長の長い前記第2波長域の光を発光する請求項6に記載の発光媒体。
  11.  基材上に配置され第1波長域の光を照射したときに第2波長域の光を発光する第1発光体と、前記基材上に配置され前記第1波長域とは異なる第3波長域の光を照射したときに前記第2波長域の光を発光する第2発光体と、を備える発光媒体に対して、前記基材上の前記第1発光体に前記第1波長域の光を照射しつつ、前記第2発光体に前記第3波長域の光を照射する工程と、
     前記前記基材上の前記第1発光体に前記第1波長域の光を照射しつつ、前記第2発光体に前記第3波長域の光を照射した状態で、前記第1発光体および前記第2発光体の表面を検査する工程と、を備える発光媒体の検査方法。
  12.  前記第1波長域は、可視光波長域より長い波長域であり、
     前記第2波長域は、可視光波長域であり、
     前記第3波長域は、可視光波長域より短い請求項11に記載の発光媒体の検査方法。
  13.  前記第1波長域は、可視光波長域より短い波長域であり、
     前記第2波長域は、赤外光波長域であり、
     前記第3波長域は、可視光波長域より短いまたは長い波長域である請求項11に記載の発光媒体の検査方法。
PCT/JP2015/083067 2014-11-28 2015-11-25 発光媒体およびその検査方法 WO2016084843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561912A JP6642449B2 (ja) 2014-11-28 2015-11-25 発光媒体およびその検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241763 2014-11-28
JP2014-241763 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084843A1 true WO2016084843A1 (ja) 2016-06-02

Family

ID=56074395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083067 WO2016084843A1 (ja) 2014-11-28 2015-11-25 発光媒体およびその検査方法

Country Status (2)

Country Link
JP (1) JP6642449B2 (ja)
WO (1) WO2016084843A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129107A (ja) * 1996-11-01 1998-05-19 Toppan Printing Co Ltd 画像表示体
JP2002086889A (ja) * 2000-09-20 2002-03-26 Hitachi Maxell Ltd 偽造防止印刷物
JP2004101647A (ja) * 2002-09-05 2004-04-02 Dainippon Printing Co Ltd ホログラム転写シートとホログラム被転写媒体
JP2009006724A (ja) * 2008-09-29 2009-01-15 Hitachi Omron Terminal Solutions Corp 記録媒体
JP2010072933A (ja) * 2008-09-18 2010-04-02 Toshiba Corp 蛍光検知装置
JP2010173292A (ja) * 2009-02-02 2010-08-12 Nikon Corp 印刷方法および印刷物
JP2012035453A (ja) * 2010-08-04 2012-02-23 Dainippon Printing Co Ltd 発光媒体および発光媒体の確認方法
JP2012051362A (ja) * 2010-08-04 2012-03-15 Dainippon Printing Co Ltd 発光媒体および発光媒体の確認方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036711A (ja) * 2000-07-31 2002-02-06 Toppan Forms Co Ltd 偽造防止用シート
JP4775727B1 (ja) * 2010-08-17 2011-09-21 貞宏 平山 印刷物の微小マークによる一般人が容易にできる真贋判定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129107A (ja) * 1996-11-01 1998-05-19 Toppan Printing Co Ltd 画像表示体
JP2002086889A (ja) * 2000-09-20 2002-03-26 Hitachi Maxell Ltd 偽造防止印刷物
JP2004101647A (ja) * 2002-09-05 2004-04-02 Dainippon Printing Co Ltd ホログラム転写シートとホログラム被転写媒体
JP2010072933A (ja) * 2008-09-18 2010-04-02 Toshiba Corp 蛍光検知装置
JP2009006724A (ja) * 2008-09-29 2009-01-15 Hitachi Omron Terminal Solutions Corp 記録媒体
JP2010173292A (ja) * 2009-02-02 2010-08-12 Nikon Corp 印刷方法および印刷物
JP2012035453A (ja) * 2010-08-04 2012-02-23 Dainippon Printing Co Ltd 発光媒体および発光媒体の確認方法
JP2012051362A (ja) * 2010-08-04 2012-03-15 Dainippon Printing Co Ltd 発光媒体および発光媒体の確認方法

Also Published As

Publication number Publication date
JPWO2016084843A1 (ja) 2017-10-19
JP6642449B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
JP5391369B1 (ja) 顔料が付された基板にuvレーザーを照射することでカラー画像を生成する方法及び装置並びにそれらにより生成される生成物。
RU2470792C2 (ru) Ценный и/или защищенный от подделки документ
WO2017102723A1 (en) Security element formed from at least two materials present in partially or fully overlapping areas, articles carrying the security element, and authentication methods
US8277612B2 (en) Controlling the detectability of an article and method for authenticating the article
JP2008055639A (ja) 真偽判別印刷物及び真偽判別方法
ES2230508T3 (es) Imagen de medios tonos generada por impresion.
KR101945966B1 (ko) 보안 요소 형성 방법 및 보안 요소
AU2013346725B2 (en) Security element for a document of value and/or a security document
WO2022131238A1 (ja) 情報記録体、情報記録体の読取装置、プログラム、読取方法およびシステム
JP7294353B2 (ja) 印刷物、冊子体、および光源と印刷物との組み合わせ体、および印刷物の真偽判定方法
JP2007193387A (ja) セキュリティ情報媒体読取装置
WO2016111334A1 (ja) 発光媒体および発光媒体の読み取り方法
JP2009137129A (ja) 情報記録媒体及び読み取り方法
JP5050287B2 (ja) 偽造防止用印刷物
WO2016084843A1 (ja) 発光媒体およびその検査方法
CN107153860B (zh) 防伪标签识别装置、防伪标签识别方法和防伪标签
JP4599586B2 (ja) 偽造防止媒体とその判別方法
JP6954126B2 (ja) 印刷物、その読み取り方法および読み取り装置
JP2014030921A (ja) 識別媒体および識別装置
WO2021130035A1 (en) Personalizable luminescent security element
JP2016091121A (ja) 偽造防止媒体の真贋判定方法および偽造防止媒体用真贋判定装置
JP7342560B2 (ja) 複写牽制媒体及び真贋判定装置
WO2023228925A1 (ja) 情報記録体、印刷物および情報記録体の読取装置
WO2021201259A1 (ja) 印刷物、冊子体、および光源と印刷物との組み合わせ体、および印刷物の真偽判定方法
JP6003335B2 (ja) 情報記録媒体の読取方法、情報記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864219

Country of ref document: EP

Kind code of ref document: A1