WO2016084447A1 - 竪型ローラミル - Google Patents

竪型ローラミル Download PDF

Info

Publication number
WO2016084447A1
WO2016084447A1 PCT/JP2015/074797 JP2015074797W WO2016084447A1 WO 2016084447 A1 WO2016084447 A1 WO 2016084447A1 JP 2015074797 W JP2015074797 W JP 2015074797W WO 2016084447 A1 WO2016084447 A1 WO 2016084447A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
rotary
classification
blades
degrees
Prior art date
Application number
PCT/JP2015/074797
Other languages
English (en)
French (fr)
Inventor
松本 慎治
卓一郎 大丸
有馬 謙一
宮崎 拓
和司 福井
英睦 内田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US15/524,052 priority Critical patent/US10722899B2/en
Priority to KR1020177012580A priority patent/KR101941797B1/ko
Priority to CN201580059990.9A priority patent/CN106999943B/zh
Priority to DE112015005341.7T priority patent/DE112015005341B4/de
Publication of WO2016084447A1 publication Critical patent/WO2016084447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/007Mills with rollers pressed against a rotary horizontal disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/30Passing gas through crushing or disintegrating zone the applied gas acting to effect material separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier

Definitions

  • the present invention relates to a vertical roller mill having a rotary classifying unit.
  • a roller mill having a classifier that pulverizes a solid fuel such as coal and classifies it into fine powder having a particle size smaller than a predetermined particle size is known (for example, see Patent Document 1).
  • the roller mill disclosed in Patent Document 1 includes a classification assist cone in which a rotary classifier is disposed.
  • the classification auxiliary cone is provided with a plurality of drift plates at its upper end for changing into a lateral swirl flow to the rotary classifier.
  • the roller mill disclosed in Patent Document 1 guides solid fuel rising by hot air to the inside of the classification auxiliary cone as a lateral swirl flow by the drift plate, and causes coarse particles contained in the solid fuel to move downward from the inner wall surface of the classification auxiliary cone. Let fall. Coarse-grained powder dropped from the classification auxiliary cone is pulverized again by a pulverizing roller on the table. The fine powder smaller than the predetermined particle size classified by the rotary classifier inside the classification auxiliary cone is guided to the outside of the roller mill.
  • the roller mill disclosed in Patent Document 1 includes a rotary blade whose rotary classifying unit is inclined downward. Therefore, when the rotor impinges on the coarse powder, the coarse powder is scattered downward. If it is a rotary classifier provided with a classification auxiliary cone like the roller mill disclosed in Patent Document 1, coarse particles scattered downward are collected by the classification auxiliary cone and supplied to the table.
  • the present invention has been made in order to solve the above-mentioned problem, while increasing the inflow efficiency of fine powder from the outer peripheral side space of the rotary classifying unit to the inner peripheral side space, while the coarse powder from the outer peripheral side space.
  • An object of the present invention is to provide a vertical roller mill that suppresses the flow into the inner circumferential space.
  • a vertical roller mill includes a rotary table that rotates around an axis by a driving force from a drive unit, a fuel supply unit that supplies solid fuel to the rotary table, and the rotary table that is supplied to the rotary table.
  • a roller for crushing solid fuel, a rotary classifying unit provided above the rotary table and rotating around a plurality of blades arranged around the axis, and the solid fuel crushed by the roller A blower that blows an oxidizing gas to be supplied to the rotary classifying unit, and the rotary classifying unit is configured to output fine particles smaller than a predetermined particle size of the solid fuel pulverized by the roller to the outer peripheral space.
  • each of the plurality of blades suppresses the scattering direction in which the coarse powder colliding with the blade does not interfere with the inflow direction in which the fine powder is guided to the inner circumferential space, and the scattering direction Has a shape that is directed upward from the horizontal direction.
  • the solid fuel supplied to the rotary table by the fuel supply unit is mixed with the oxidizing gas blown by the blower unit after being crushed by the roller, and the outer peripheral side of the rotary classifying unit Guided to space.
  • fine particles smaller than a predetermined particle diameter are guided from the outer space to the inner space surrounded by the plurality of blades.
  • coarse powder larger than the predetermined particle size is prevented from entering the inner circumferential space by collision with a plurality of blades.
  • the scattering direction in which the coarse powder colliding with the blades of the rotary classifying unit and the inflow direction in which the fine powder is guided to the inner circumferential space do not interfere with each other. Therefore, it is suppressed that the inflow to the inner peripheral side space of the fine powder is inhibited by the coarse powder, and the inflow efficiency of the fine powder from the outer peripheral side space to the inner peripheral space can be increased.
  • wing collides with coarse-grained powder coarse-grained powder will be scattered in the direction which turned upwards rather than the horizontal direction. Therefore, the flow of airflow from the lower side to the upper side is formed in the area near the blades in the outer space, and the coarse powder flows into the inner space from the outer space due to the turbulence of the air flow. Can be suppressed.
  • a side surface of the truncated cone in which a surface through which an outer peripheral side end portion of the plurality of blades around the axis passes is projected downward from above along the axis.
  • the angle formed by the side surface of the truncated cone and the plane orthogonal to the axis may be 65 degrees or more and 75 degrees or less. Particularly preferably, the angle is set to 70 degrees.
  • the inventors changed the angle formed by the side surface of the truncated cone, which is a surface through which the outer peripheral end portions of the plurality of blades pass, and the plane formed perpendicular to the axis, and compared the classification performance of the rotary classification unit.
  • this angle is set to 65 degrees or more and 75 degrees or less, high classification performance can be obtained.
  • a high classification performance can be obtained by setting this angle to 70 degrees.
  • classification performance refers to the cumulative weight ratio of fine particles having a first particle size (for example, 75 ⁇ m) or less in the solid carbonaceous fuel after classification that has passed through the rotary classification section and the rotary classification section.
  • the inclination angle of the side surface of the truncated cone which is the surface through which the outer peripheral end portions of the plurality of blades pass, is 65 degrees or more and 75 degrees or less (preferably 70 degrees) with respect to the plane orthogonal to the axis.
  • each of the plurality of blades is a flat plate in which one end in the longitudinal direction is disposed above the axis and the other end is disposed below the axis. And the longitudinal direction is inclined with respect to the axial direction so that the one end portion is in a position retracted upstream of the other end portion in the rotational direction of the rotary classifying portion. There may be.
  • the longitudinal direction is inclined from the axial direction so that one end portion in the longitudinal direction of the flat blade is located at a position retracted upstream from the other end portion in the rotational direction of the rotary classifying portion. ing. Therefore, the normal direction of the flat blade is a direction inclined upward from the horizontal direction. Therefore, the coarse-grained powder colliding with the blades is scattered in a direction directed upward from the horizontal direction.
  • the flow of airflow from the lower side to the upper side is more reliably formed in the region in the vicinity of the blades in the outer circumferential side space, and the disturbance of the airflow flow It is possible to suppress a problem that the coarse powder flows from the outer space to the inner space.
  • the longitudinal direction when the blade is viewed from a radial direction perpendicular to the axis and passing through the blade and the axis, the longitudinal direction is not less than 13 degrees and not more than 23 degrees from the axis direction. It may be inclined at an angle.
  • the inventors changed the inclination angle of a flat blade whose longitudinal direction is inclined from the axial direction (the angle that the longitudinal direction of the blade becomes the axial direction when the blade is viewed from the radial direction) to classify the rotary classification unit.
  • high classification performance can be obtained by setting this angle to 13 degrees or more and 23 degrees or less.
  • a high classification performance can be obtained by setting this angle to 18 degrees.
  • the inclination angle of a flat blade whose longitudinal direction is inclined from the axial direction is 13 degrees or more and 23 degrees or less.
  • the angle preferably 18 degrees
  • the coarse powder flows from the outer space to the inner space while increasing the inflow efficiency of the fine powder from the outer space to the inner space of the rotary classifier. Can be suppressed.
  • a mold roller mill can be provided.
  • FIG. 3 is a cross-sectional view of the rotary classifying unit shown in FIG.
  • FIG. 3 is a cross-sectional view of the rotary classifying unit shown in FIG.
  • FIG. 3 is a cross-sectional view of the rotary classifying unit shown in FIG.
  • FIG. 3 is the longitudinal cross-sectional view which expanded the principal part of the rotary classification part shown in FIG.
  • FIG. is a figure which shows the relationship between the accumulated weight ratio of the solid fuel of the particle size which passes 200 meshes, and the accumulated weight ratio of the solid fuel of the particle diameter which does not pass 100 meshes.
  • the vertical roller mill 100 is an apparatus that classifies a solid fuel such as coal and pulverizes it into a fine powder having a particle size smaller than a predetermined particle size.
  • the vertical roller mill 100 of the present embodiment includes a rotary table 10, a fuel supply unit 20, a roller 30, a rotary classification unit 40, a blowout port 50 (blower unit), and a housing 60. And a drive unit 70 and a turning vane 80.
  • the rotary table 10 is a disk-shaped member that extends in the vertical direction and rotates around the axis X that is the central axis of the vertical roller mill 100.
  • the turntable 10 has a central portion 10a and an outer peripheral portion 10b.
  • the outer peripheral part 10b has a concave shape directed downward along the axis X.
  • the rotary table 10 rotates around the axis X by the driving force transmitted from the driving unit 70 via the driving shaft 71.
  • the fuel supply unit 20 is a cylindrical member that supplies solid fuel to the central portion 10 a along the axis X from above the turntable 10.
  • the fuel supply unit 20 supplies solid fuel supplied from a coal feeder (not shown) to the central portion 10 a of the turntable 10.
  • the roller 30 includes a roller main body 32 that presses the outer peripheral portion 10 b of the rotary table 10, a swing shaft 31 that is a central axis that swings the roller main body 32, and a support shaft 33 that supports the roller main body 32.
  • the roller 30 rotates the roller body 32 around the swing shaft 31 by pressing the support shaft 33 by a pressing mechanism (not shown).
  • the roller body 32 presses the outer peripheral portion 10 b of the rotary table 10 as the roller body 32 rotates around the swing shaft 31.
  • the roller body 32 rotates about the axis Y as the outer peripheral portion 10b of the rotary table 10 is pressed.
  • the roller body 32 pulverizes the solid fuel that moves from the central portion 10 a to the outer peripheral portion 10 b with the rotation of the rotary table 10 by the pressing force applied to the rotary table 10.
  • roller 30 In FIG. 1, only one roller 30 is shown, but a plurality of rollers 30 are arranged at regular intervals in the circumferential direction around the axis X so as to press the outer peripheral portion 10 b of the rotary table 10.
  • the portions where the three rollers 30 are in contact with the outer peripheral portion 10 b of the rotary table 10 are equidistant from the central portion 10 a of the rotary table 10.
  • the rotary classifier 40 rotates a plurality of classifying blades 41 (blades) arranged at regular intervals around the axis X to rotate the solid fuel pulverized by the roller 30 to a fine particle smaller than a predetermined particle size. It is a device that classifies into powder. As shown in FIG. 1, the rotary classification unit 40 is provided above the turntable 10 so as to surround the fuel supply unit 20 around the axis X. The rotary classifier 40 is provided with power that rotates about the axis X by a drive motor (not shown). Details of the rotary classifier 40 will be described later.
  • the rotary classifier 40 has centrifugal force (force in a direction away from the axis X) generated by the classifying blade 41 rotating around the axis X, and centripetal force (on the axis X due to the air flow of primary air flowing from the outlet 50 described later).
  • the solid fuel is classified into fine powder having a particle size smaller than a predetermined particle size and coarse particle powder having a particle size larger than a predetermined particle size. That is, the rotary classifying unit 40 guides fine powder having a particle size smaller than a predetermined particle size from the solid fuel pulverized by the roller 30 from the outer space S1 to the inner space S2 surrounded by the plurality of classification blades 41. Further, the rotary classifying unit 40 suppresses the entry of coarse particles larger than a predetermined particle size into the inner circumferential space S ⁇ b> 2 due to the collision with the plurality of classifying blades 41.
  • the predetermined particle diameter is, for example, a particle diameter of 75 ⁇ m or less.
  • the rotary classifying unit 40 classifies the airflow in which solid fuels having various particle sizes are mixed into fine powder and coarse powder. Since the fine powder and the coarse powder are fine particles, the rotary classification unit 40 cannot completely separate the fine powder and the coarse powder.
  • the rotary classifying unit 40 classifies the solid fuel so that the integrated weight ratio of the solid fuel having a predetermined particle diameter or less included in the solid fuel supplied to the supply flow path 42 becomes a certain ratio or more.
  • the target classification performance is, for example, such that the integrated weight ratio of the solid fuel having a particle diameter of 75 ⁇ m or less contained in the solid fuel supplied to the supply flow path 42 is 80% or more.
  • the blower outlet 50 is a device that blows primary air (primary oxidizing gas) for supplying the solid fuel crushed by the roller 30 to the rotary classifying unit 40.
  • the air outlets 50 are provided at a plurality of locations around the axis X on the outer peripheral side of the turntable 10.
  • the blower outlet 50 causes the primary air flowing in from the primary air flow path 51 to flow out into the space above the rotary table in the housing 60.
  • a swirl vane 80 is installed above the blower outlet 50, and a turning force swirling around the axis X is given to the primary air flowing out from the blower outlet 50.
  • the primary air given the turning force by the turning vane 80 converts the solid fuel crushed on the rotary table 10 to the rotary classification unit 40 above the housing 60. Lead.
  • those having a large particle size do not reach the inner circumferential space S ⁇ b> 2 of the rotary classifying unit 40. It is dropped and returned to the rotary table 10 again.
  • the housing 60 is a housing that accommodates each part of the vertical roller mill 100.
  • a cylindrical fuel supply unit 20 is inserted above the housing 60. Further, the upper part of the housing 60 communicates with a supply flow path 42 for supplying fine powder smaller than a predetermined particle diameter to the outside by the rotary classifying unit 40.
  • the lower part of the housing 60 communicates with a primary air flow path 51 that supplies primary air.
  • the drive unit 70 is a drive source that rotates the drive shaft 71 around the axis X.
  • the tip of the drive shaft 71 is connected to the rotary table 10.
  • the rotary table 10 rotates about the axis X as the drive shaft 71 rotates about the axis X.
  • the rotary classifying unit 40 of the present embodiment will be described with reference to FIGS.
  • the rotary classifier 40 protrudes from the upper side along the axis X toward the lower side, and the cross-sectional area of the cross section perpendicular to the axis X from the upper side toward the lower side gradually decreases. It has become.
  • a position (a position indicated by a broken line in FIG. 3) through which the outer peripheral side end portions 41 c of the plurality of classification blades 41 centering on the axis X passes on the circumference centering on the axis X. It has become the position.
  • the surface through which the outer peripheral side end portions 41c of the plurality of classification blades 41 with the axis X as the center passes is a side surface of a truncated cone that protrudes downward along the axis X from the upper side.
  • the angle formed by the side surface of the truncated cone through which the outer peripheral end portions 41 c of the plurality of classification blades 41 pass and the plane orthogonal to the axis X is ⁇ 1.
  • each of the plurality of classification blades 41 is a flat plate member extending in the longitudinal direction along the axis Z.
  • one end portion 41a in the longitudinal direction is disposed above the axis line X, and the other end portion 41b is disposed below the axis line X.
  • the one end 41 a is retreated more upstream than the other end 41 b in the rotational direction of the rotary classifying unit 40 (the direction from the right to the left indicated by the arrow in FIG. 2).
  • the longitudinal direction along the axis Z is inclined by ⁇ 2 from the axis X direction.
  • the rotary classifying unit 40 has the centrifugal force (force in the direction away from the axis X) generated by the classifying blade 41 and the centripetal force (in the direction approaching the axis X) due to the airflow of the primary air flowing in from the outlet 50.
  • the solid fuel is classified into fine powder having a particle size smaller than a predetermined particle size and coarse particle powder having a particle size larger than a predetermined particle size. For this reason, it is desirable that the inflow direction of the fine powder that tends to flow into the inner peripheral space S2 from the outer space S1 does not interfere with the scattering direction of the coarse powder that collides with the classification blade 41.
  • the inflow direction of the fine powder and the scattering direction of the coarse powder interfere, the inflow of the fine powder is hindered by the scattering of the coarse powder, and the scattering of the coarse powder is hindered by the inflow of the fine powder. Then, the cumulative weight ratio of the fine powder contained in the solid fuel discharged from the rotary classifier 40 to the supply flow path 42 is decreased, and the cumulative weight ratio of the coarse powder contained in the solid fuel is increased, so that the rotary classification is performed. The classification performance of the part 40 will be reduced.
  • the coarse powder that has flowed from below along the inflow direction Fi1 parallel to the axis X collides with the classification blade 41 at the position P and is scattered in the scattering direction Fo1 and along the inflow direction Fi2 inclined from the axis X.
  • the coarse powder that flows in from below collides with the classification blade 41 at the position P and is scattered in the scattering direction Fo2.
  • the shape of the classification blade 41 is set so that the inflow direction of the fine powder and the scattering direction of the coarse powder do not interfere with each other, as shown in FIG. A flow is formed which scatters upward from the horizontal direction and reaches the inner peripheral surface of the housing 60 and falls downward along the inner peripheral surface of the housing 60.
  • the longitudinal direction is from the axis X direction so that the one end portion 41a of the classification blade 41 is in a position retracted upstream of the other end portion 41b in the rotational direction of the rotary classification portion 40. It is inclined by ⁇ 2. By inclining in this way, the coarse particle powder that has collided with the classification blade 41 is given a force of scattering in the upward direction by ⁇ 2 from the horizontal direction.
  • the shape of the classification blade 41 is such that the scattering directions Fo1 and Fo2 in which the coarse particles are scattered do not interfere with the inflow directions Fi1 and Fi2 in which the fine particles are guided to the inner circumferential space S2, and the scattering direction Fo1.
  • Fo2 is preferably in a shape that is directed upward from the horizontal direction. The inventors compared the classification performance of the rotary classifying unit 40 using the classifying blades 41 having various shapes in which the angles of ⁇ 1 and ⁇ 2 were changed, and obtained the results shown in FIG.
  • FIG. 5 is a graph showing the relationship between the cumulative weight ratio of solid fuel having a particle diameter passing through 200 mesh and the cumulative weight ratio of solid fuel having a particle diameter remaining without passing through 100 mesh.
  • the 200 mesh passage rate shown in FIG. 5 is the solid fuel discharged from the rotary classifier 40 to the supply flow path 42 (solid powder having a particle diameter of 75 ⁇ m or less) that passes through a 200 mesh sieve. This indicates the cumulative weight ratio.
  • the 100-mesh remaining ratio shown in FIG. 5 is a solid fuel that does not pass through a 100-mesh sieve among solid fuel discharged from the rotary classifier 40 to the supply flow path 42 (coarse particles having a particle diameter of 150 ⁇ m or more). This indicates the cumulative weight ratio of the powder.
  • the 100 mesh residual ratio shown in FIG. 5 indicates the ratio of the residual ratio when the constant 100 mesh residual ratio is 1.
  • the classification performance is higher when the 100 mesh remaining rate ratio is smaller.
  • the ratio is the same 100 mesh remaining rate, the smaller the 200 mesh pass rate, the higher the classification performance.
  • the shape of the classification blade 41 includes the scattering directions Fo1, Fo2 in which the coarse powder is scattered and the inflow directions Fi1, Fi2 in which the fine powder is guided to the inner space S2. Does not interfere with each other, and the scattering directions Fo1 and Fo2 are in a direction upward from the horizontal direction.
  • ⁇ 2 may be set in the range of the following expression (3). 0 ° ⁇ ⁇ 2 ⁇ 23 ° (3)
  • the shape of the classification blade 41 satisfying higher classification performance can be set by satisfying both the expressions (1) and (2).
  • the solid fuel supplied to the rotary table 10 by the fuel supply unit 20 is pulverized by the roller 30 and then the primary air blown by the air outlet 50 together with the primary air of the rotary classifying unit 40. It is guided to the outer peripheral space S1.
  • fine particles smaller than a predetermined particle diameter are guided from the outer space S1 to the inner space S2 surrounded by the plurality of classification blades 41.
  • coarse particles larger than the predetermined particle size are prevented from entering the inner circumferential space S ⁇ b> 2 due to collision with the plurality of classification blades 41.
  • the vertical roller mill 100 of the present embodiment includes a side surface of a truncated cone in which the surface through which the outer peripheral side end portions 41c of the plurality of classification blades 41 centering on the axis line X protrude downward from the upper side along the axis line X.
  • the angle formed by the side surface of the truncated cone and the plane orthogonal to the axis X is 65 degrees or more and 75 degrees or less.
  • a particularly preferable configuration is a configuration in which this angle is set to 70 degrees.
  • the inventors change the angle ⁇ 1 formed by the side surface of the truncated cone, which is the surface through which the outer peripheral end portions 41c of the plurality of classification blades 41 pass, and the plane formed orthogonal to the axis X to change the classification of the rotary classification unit 40.
  • a high classification performance can be obtained by setting the angle to 65 degrees or more and 75 degrees or less.
  • a high classification performance can be obtained by setting this angle to 70 degrees.
  • the inclination angle ⁇ 1 of the side surface of the truncated cone which is the surface through which the outer peripheral end portions 41c of the plurality of classification blades 41 pass, is 65 degrees or more and 75 degrees or less with respect to the plane orthogonal to the axis X. (Preferably 70 degrees), while increasing the inflow efficiency of the fine powder from the outer peripheral side space S1 to the inner peripheral side space S2 of the rotary classifying unit 40, the coarse powder is increased from the outer peripheral side space S1 to the inner peripheral side. It is possible to suppress the flow into the space S2.
  • each of the plurality of classification blades 41 has one end 41a in the longitudinal direction along the axis Z disposed above the axis X and the other end 41b along the axis X.
  • the longitudinal direction is only ⁇ 2 from the axial direction so that the one end portion 41a is in a position retracted to the upstream side in the rotational direction of the rotary classifying portion 40 than the other end portion 41b. Inclined.
  • the longitudinal direction of the one end 41a in the longitudinal direction of the flat plate-like classification blade 41 is set to a position retracted to the upstream side in the rotational direction of the rotary classifying unit 40 from the other end 41b. Is inclined by ⁇ 2 from the direction of the axis X. Therefore, the normal direction of the plate-like classification blade 41 is a direction inclined by an angle ⁇ 2 upward from the horizontal direction. Therefore, the coarse powder collided with the classification blade 41 is scattered in a direction directed upward from the horizontal direction.
  • the plate-like classification blade 41 whose longitudinal direction is inclined by the angle ⁇ 2 from the axis X direction, the flow of the airflow from the lower side to the upper side is more reliably performed in the region near the classification blade 41 in the outer circumferential side space S1. It is possible to suppress a problem that the coarse powder is formed and flows into the inner space S2 from the outer space S1 due to the disturbance of the airflow.
  • the longitudinal direction is 13 degrees or more from the axis X direction and 23 It is inclined at an angle of less than or equal to degrees.
  • the inventors change the inclination angle of the plate-shaped classification blade 41 whose longitudinal direction is inclined from the axis X direction (the angle that the longitudinal direction of the classification blade 41 makes with the axis X direction when the classification blade 41 is viewed from the radial direction).
  • the coarse powder flows from the outer peripheral space S1 to the inner peripheral space S2 while increasing the inflow efficiency of the fine powder from the outer peripheral space S1 to the inner peripheral space S2 of the rotary classifier 40. Can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

回転テーブルの上方に設けられるとともに軸線(X)回りに配置される複数の分級羽根(41)を軸線(X)回りに回転させる回転式分級部(40)を備え、回転式分級部(40)は、ローラにより粉砕された固体燃料のうち所定粒径より小さい微粒粉を外周側空間(S1)から複数の分級羽根(41)に囲まれる内周側空間(S2)へ導くとともに、複数の分級羽根(41)との衝突によって所定粒径より大きい粗粒粉が内周側空間(S2)へ侵入することを抑制し、複数の分級羽根(41)のそれぞれは、分級羽根(41)と衝突した粗粒粉が飛散する飛散方向(Fo1,Fo2)と微粒粉が内周側空間(S2)へ導かれる流入方向(Fi1,Fi2)とが干渉せず、かつ飛散方向(Fo1,Fo2)が水平方向よりも上方に向けた方向となる形状となっている竪型ローラミル(100)を提供する。

Description

竪型ローラミル
 本発明は、回転式分級部を備えた竪型ローラミルに関するものである。
 従来、石炭等の固体燃料を粉砕して所定粒径より小さい微粒粉に分級する分級器を備えるローラミルが知られている(例えば、特許文献1参照。)。特許文献1に開示されたローラミルは、回転式分級器が内部に配置された分級補助コーンを備えている。分級補助コーンは、その上端部に回転式分級器への横向の旋回流に変える複数個の偏流板を備えている。
 特許文献1に開示されたローラミルは、熱風により上昇する固体燃料を偏流板によって横向の旋回流として分級補助コーンの内部に導き、固体燃料に含まれる粗粒粉を分級補助コーンの内壁面から下方に落下させる。分級補助コーンから落下した粗粒粉は、テーブルにて粉砕ローラにより再び粉砕される。分級補助コーンの内部で回転式分級器により分級された所定粒径よりも小さい微粒粉は、ローラミルの外部に導かれる。
特許第2617623号公報
 特許文献1に開示されたローラミルは、回転式分級部が下向きに傾斜した回転翼を備えるものである。そのため、回転翼が粗粒粉に衝突すると粗粒粉は下方に向かって飛散する。特許文献1に開示されたローラミルのように、分級補助コーンを備える回転式分級器であれば、下方に向かって飛散した粗粒粉が分級補助コーンによって回収されてテーブルに供給される。
 しかしながら、分級補助コーンを用いない回転式分級器を備えるローラミルの場合、粗粒粉が下方に向かって飛散すると、飛散する粗粒粉と回転式分級器の内周側空間に流入しようとする微粒粉とが干渉し、内周側空間への微粒粉の流入効率が低下してしまう。
 また、この干渉のため、飛散する粗粒粉の一部が内周側空間へ流入する微粒粉に混入して外周側空間から内周側空間へ流入してしまう。
 本発明は、上記の課題を解決するためになされたものであり、回転式分級部の外周側空間から内周側空間への微粒粉の流入効率を高めつつ、粗粒粉が外周側空間から内周側空間へ流入することを抑制した竪型ローラミルを提供することを目的とする。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の一態様に係る竪型ローラミルは、駆動部からの駆動力により軸線回りに回転する回転テーブルと、前記回転テーブルに固体燃料を供給する燃料供給部と、前記回転テーブルに供給された前記固体燃料を粉砕するローラと、前記回転テーブルの上方に設けられるとともに前記軸線回りに配置される複数の羽根を該軸線回りに回転させる回転式分級部と、前記ローラにより粉砕された固体燃料を前記回転式分級部へ供給するための酸化性ガスを送風する送風部と、を備え、前記回転式分級部は、前記ローラにより粉砕された固体燃料のうち所定粒径より小さい微粒粉を外周側空間から前記複数の羽根に囲まれる内周側空間へ導くとともに、前記複数の羽根との衝突によって前記所定粒径より大きい粗粒粉が前記内周側空間へ侵入することを抑制し、前記複数の羽根のそれぞれは、該羽根と衝突した前記粗粒粉が飛散する飛散方向と前記微粒粉が前記内周側空間へ導かれる流入方向とが干渉せず、かつ前記飛散方向が水平方向よりも上方に向けた方向となる形状となっている。
 本発明の一態様に係る竪型ローラミルによれば、燃料供給部によって回転テーブルに供給される固体燃料は、ローラによって粉砕された後に送風部が送風する酸化性ガスとともに回転式分級部の外周側空間に導かれる。粉砕された固体燃料のうち所定粒径より小さい微粒粉は、外周側空間から複数の羽根に囲まれる内周側空間へ導かれる。一方、所定粒径より大きい粗粒粉は、複数の羽根との衝突によって内周側空間へ侵入することが抑制される。
 本発明の一態様に係る竪型ローラミルによれば、回転式分級部の羽根と衝突した粗粒粉が飛散する飛散方向と微粒粉が内周側空間へ導かれる流入方向とが干渉しない。そのため、微粒粉の内周側空間への流入が粗粒粉によって妨げられることが抑制され、外周側空間から内周側空間への微粒粉の流入効率を高めることができる。
 また、羽根が粗粒粉に衝突すると、粗粒粉は水平方向よりも上方に向けた方向へ飛散する。そのため、外周側空間の羽根の近傍の領域で下方から上方に向けた気流の流れが形成され、気流の流れの乱れによって粗粒粉が外周側空間から内周側空間へ流入してしまう不具合を抑制することができる。
 本発明の一態様に係る竪型ローラミルにおいて、前記軸線を中心とした前記複数の羽根の外周側端部が通過する面が前記軸線に沿った上方から下方に向けて突出する円錐台の側面となっており、該円錐台の側面と前記軸線に直交する平面とが形成する角度が65度以上かつ75度以下である構成としてもよい。特に好ましくは、この角度を70度とする構成である。
 発明者らは、複数の羽根の外周側端部が通過する面である円錐台の側面と軸線に直交する平面とが形成する角度を変化させて回転式分級部の分級性能の比較を行ったところ、この角度を65度以上かつ75度以下とすることにより、高い分級性能が得られるという知見を得た。特に、この角度を70度とすることにより、高い分級性能が得られるという知見を得た。
 ここでいう分級性能とは、回転式分級部を通過した分級後の固体炭素質燃料のうち第1の粒径(例えば、75μm)以下の微粒粉の積算重量割合と、回転式分級部を通過した分級後の固体炭素質燃料のうち第1の粒径より大きい第2の粒径(例えば、150μm)以上の粗粒粉の積算重量割合とをいう。前者の数値が大きくかつ後者の数値が小さいほど、微粒分の割合が高くかつ粗粒粉の割合が低くなり、分級性能が高いと評価される。
 本構成によれば、複数の羽根の外周側端部が通過する面である円錐台の側面の傾斜角度を、軸線に直交する平面に対して65度以上かつ75度以下(好ましくは70度)とすることにより、回転式分級部の外周側空間から内周側空間への微粒粉の流入効率を高めつつ、粗粒粉が外周側空間から内周側空間へ流入することを抑制することができる。
 本発明の一態様に係る竪型ローラミルにおいて、前記複数の羽根のそれぞれは、長手方向の一端部を前記軸線に沿った上方に配置するとともに他端部を前記軸線に沿った下方に配置した平板状であるとともに、前記一端部の方が前記他端部よりも前記回転式分級部の回転方向の上流側に後退した位置となるように前記長手方向が前記軸線方向から傾斜している構成であってもよい。
 本構成によれば、平板状の羽根の長手方向の一端部の方が他端部よりも回転式分級部の回転方向の上流側に後退した位置となるように長手方向が軸線方向から傾斜している。そのため、平板状の羽根の法線方向は、水平方向よりも上方に向けて傾斜した方向となる。よって、羽根に衝突した粗粒粉は、水平方向よりも上方に向けた方向に飛散する。
 そのため、長手方向が軸線方向から傾斜した平板状の羽根の作用によって、外周側空間の羽根の近傍の領域で下方から上方に向けた気流の流れがより確実に形成され、気流の流れの乱れによって粗粒粉が外周側空間から内周側空間へ流入してしまう不具合を抑制することができる。
 上記構成の竪型ローラミルにおいては、前記羽根を前記軸線に直交しかつ該羽根と該軸線とを通過する径方向からみた場合に、前記長手方向が前記軸線方向から13度以上かつ23度以下の角度で傾斜しているようにしてもよい。
 発明者らは、長手方向が軸線方向から傾斜した平板状の羽根の傾斜角度(羽根を径方向からみた場合に羽根の長手方向が軸線方向となす角度)を変化させて回転式分級部の分級性能の比較を行ったところ、この角度を13度以上かつ23度以下の角度とすることにより、高い分級性能が得られるという知見を得た。特に、この角度を18度とすることにより、高い分級性能が得られるという知見を得た。
 本構成によれば、長手方向が軸線方向から傾斜した平板状の羽根の傾斜角度(羽根を径方向からみた場合に羽根の長手方向が軸線方向となす角度)を13度以上かつ23度以下の角度(好ましくは18度)とすることにより、回転式分級部の外周側空間から内周側空間への微粒粉の流入効率を高めつつ、粗粒粉が外周側空間から内周側空間へ流入することを抑制することができる。
 本発明によれば、回転式分級部の外周側空間から内周側空間への微粒粉の流入効率を高めつつ、粗粒粉が外周側空間から内周側空間へ流入することを抑制した竪型ローラミルを提供することができる。
一実施形態の竪型ローラミルを示す縦断面図である。 図1に示す回転式分級部の正面図である。 図2に示す回転式分級部のA-A矢視断面図である。 図1に示す回転式分級部の要部を拡大した縦断面図である。 200メッシュを通過する粒径の固体燃料の積算重量割合と100メッシュを通過せずに残存する粒径の固体燃料の積算重量割合との関係を示す図である。
 以下、本発明の一実施形態の竪型ローラミルについて、図面を参照して説明する。
 竪型ローラミル100は、石炭等の固体燃料を粉砕しつつ乾燥させ、所定粒径よりも小さい微粒粉に分級する装置である。
 図1に示すように、本実施形態の竪型ローラミル100は、回転テーブル10と、燃料供給部20と、ローラ30と、回転式分級部40と、吹出口50(送風部)と、ハウジング60と、駆動部70と、旋回用ベーン80とを備える。
 回転テーブル10は、鉛直方向に延びるとともに竪型ローラミル100の中心軸である軸線X回りに回転する円板状の部材である。回転テーブル10は、中央部10aと外周部10bとを有する。外周部10bは軸線Xに沿った下方に向けた凹形状となっている。回転テーブル10は、駆動部70から駆動軸71を介して伝達される駆動力により、軸線X回りに回転する。
 燃料供給部20は、回転テーブル10の上方から軸線Xに沿って中央部10aに固体燃料を供給する筒状の部材である。燃料供給部20は、給炭機(図示略)から供給される固体燃料を回転テーブル10の中央部10aへ供給する。
 ローラ30は、回転テーブル10の外周部10bを押圧するローラ本体32と、ローラ本体32を揺動させる中心軸となる揺動軸31と、ローラ本体32を支持する支持軸33とを有する。ローラ30は、押圧機構(図示略)により支持軸33を押圧することによりローラ本体32を揺動軸31回りに回転させる。ローラ本体32は、ローラ本体32が揺動軸31回りに回転するのに伴って、回転テーブル10の外周部10bを押圧する。
 ローラ本体32は、回転テーブル10の外周部10bを押圧するのに伴って軸線Y回りに回転する。ローラ本体32は、回転テーブル10の回転に伴って中央部10aから外周部10bに移動する固体燃料を回転テーブル10に付与する押圧力によって粉砕する。
 図1では、ローラ30が1つのみ示されているが、回転テーブル10の外周部10bを押圧するように、軸線X回りの周方向に一定の間隔を空けて、複数のローラ30が配置される。例えば、外周部10b上に軸線X回りに120°の角度間隔を空けて、3つのローラ30が配置される。この場合、3つのローラ30が回転テーブル10の外周部10bと接する部分(押圧する部分)は、回転テーブル10の中央部10aからの距離が等距離となる。
 回転式分級部40は、軸線X回りに一定間隔で配置される複数の分級羽根41(羽根)を軸線X回りに回転させることにより、ローラ30により粉砕された固体燃料を所定粒径より小さい微粒粉に分級する装置である。図1に示すように、回転式分級部40は、回転テーブル10の上方に燃料供給部20を軸線X回りに取り囲むように設けられている。回転式分級部40は、駆動モータ(図示略)によって軸線X回りに回転する動力が与えられる。回転式分級部40の詳細については後述する。
 回転式分級部40は、軸線X回りに回転する分級羽根41が発生させる遠心力(軸線Xから遠ざかる方向の力)と、後述する吹出口50から流入する一次空気の気流による向心力(軸線Xに近づく方向の力)とのバランスにより、固体燃料を所定粒径より小さい微粒粉と、所定粒径より大きい粗粒粉とに分級する。すなわち、回転式分級部40は、ローラ30により粉砕された固体燃料のうち所定粒径より小さい微粒粉を外周側空間S1から複数の分級羽根41に囲まれる内周側空間S2へ導く。また、回転式分級部40は、複数の分級羽根41との衝突によって所定粒径より大きい粗粒粉が内周側空間S2へ侵入することを抑制する。
 ここでいう所定粒径とは、例えば、75μm以下の粒径である。回転式分級部40は、様々な粒径の固体燃料が混合した状態の気流を微粒粉と粗粒粉とに分級するものである。微粒粉と粗粒粉とはそれぞれ細かい粒子であるため、回転式分級部40は、微粒粉と粗粒粉とを完全に分離させることはできない。回転式分級部40は、供給流路42へ供給される固体燃料に含まれる所定粒径以下の固体燃料の積算重量割合が一定割合以上となるように固体燃料を分級する。目標とする分級性能は、例えば、供給流路42へ供給される固体燃料に含まれる75μm以下の粒径の固体燃料の積算重量割合が80%以上となるようにすることである。
 吹出口50は、ローラ30により粉砕された固体燃料を回転式分級部40へ供給するための一次空気(一次酸化性ガス)を送風する装置である。吹出口50は回転テーブル10の外周側において軸線X回りの複数箇所に設けられている。吹出口50は、一次空気流路51から流入する一次空気をハウジング60内の回転テーブルの上方の空間に流出させる。
 吹出口50の上方には旋回用ベーン80が設置されており、吹出口50から流出した一次空気に軸線X回りに旋回する旋回力が与えられるようになっている。図1に実線と破線の矢印で示すように、旋回用ベーン80により旋回力が与えられた一次空気は、回転テーブル10上で粉砕された固体燃料をハウジング60の上方の回転式分級部40へ導く。なお、図1に実線と破線の矢印で示すように、一次空気に混合した固体燃料の粉砕物のうち、粒径の大きいものは回転式分級部40の内周側空間S2まで到達することなく落下して回転テーブル10に再び戻される。
 ハウジング60は、竪型ローラミル100の各部を収容する筐体である。ハウジング60の上方には、筒状の燃料供給部20が挿入されている。また、ハウジング60の上方は、回転式分級部40で所定粒径よりより小さい微粒粉を外部へ供給する供給流路42と連通している。また、ハウジング60の下方は、一次空気を供給する一次空気流路51と連通している。
 駆動部70は、軸線X回りに駆動軸71を回転させる駆動源である。駆動軸71の先端は回転テーブル10に連結されている。回転テーブル10は、駆動軸71が軸線X回りに回転するのに伴って軸線X回りに回転する。
 次に、本実施形態の回転式分級部40について図2~図4を参照して説明する。
 図2に示すように、回転式分級部40は、軸線Xに沿った上方から下方に向けて突出するとともに、上方から下方に向けて軸線Xに直交する断面の断面積が徐々に小さくなる形状となっている。また、図3に示すように、軸線Xを中心とした複数の分級羽根41の外周側端部41cが通過する位置(図3に破線で示す位置)は、軸線Xを中心とした円周上の位置となっている。
 そのため、軸線Xを中心とした複数の分級羽根41の外周側端部41cが通過する面は、軸線Xに沿った上方から下方に向けて突出する円錐台の側面となっている。
 図4に示すように、複数の分級羽根41の外周側端部41cが通過する円錐台の側面と、軸線Xに直交する平面とが形成する角度はθ1となっている。
 図2に示すように、複数の分級羽根41のそれぞれは、軸線Zに沿った長手方向に延びる平板状の部材である。複数の分級羽根41のそれぞれは、長手方向の一端部41aが軸線Xに沿った上方に配置され、他端部41bが軸線Xに沿った下方に配置されている。図2に示すように、一端部41aの方が他端部41bよりも回転式分級部40の回転方向(図2に矢印で示す右から左に向けた方向)の上流側に後退した位置となるように、軸線Zに沿った長手方向が軸線X方向からθ2だけ傾斜している。
 前述したように、回転式分級部40は、分級羽根41が発生させる遠心力(軸線Xから遠ざかる方向の力)と、吹出口50から流入する一次空気の気流による向心力(軸線Xに近づく方向の力)とのバランスにより、固体燃料を所定粒径より小さい微粒粉と、所定粒径より大きい粗粒粉とに分級するものである。そのため、外周側空間S1から内周側空間S2へ流入しようとする微粒粉の流入方向と、分級羽根41に衝突した粗粒粉の飛散方向とが干渉しないのが望ましい。
 微粒粉の流入方向と粗粒粉の飛散方向とが干渉すると、微粒粉の流入が粗粒粉の飛散によって妨げられるとともに、粗粒粉の飛散が微粒粉の流入によって妨げられてしまう。そうすると、回転式分級部40から供給流路42に排出される固体燃料に含まれる微粒粉の積算重量割合が減少するとともに固体燃料に含まれる粗粒粉の積算重量割合が増加し、回転式分級部40の分級性能が低下してしまう。
 図4では、軸線Xに平行な流入方向Fi1に沿って下方から流入した粗粒粉が位置Pで分級羽根41に衝突して飛散方向Fo1へ飛散し、軸線Xから傾斜した流入方向Fi2に沿って下方から流入した粗粒粉が位置Pで分級羽根41に衝突して飛散方向Fo2へ飛散する例が示されている。
 微粒粉の流入方向と粗粒粉の飛散方向とが干渉しないように分級羽根41の形状が設定されている場合、図4に示すように、分級羽根41に衝突して飛散した粗粒粉が水平方向より上方に向けて飛散してハウジング60の内周面に到達し、ハウジング60の内周面に沿って下方へ落下する流れが形成される。
 図4に示すように粗粒粉をハウジング60の内周面に沿って下方へ落下する流れを形成するには、分級羽根41に衝突した粗粒粉をハウジング60の上方へ向けて飛散させて内周面近傍まで確実に到達させるようにするのが望ましい。
 そのため、本実施形態では、分級羽根41の一端部41aの方が他端部41bよりも回転式分級部40の回転方向の上流側に後退した位置となるように、長手方向が軸線X方向からθ2だけ傾斜させている。このように傾斜させることで、分級羽根41に衝突した粗粒粉には、水平方向からθ2だけ上向きの方向に飛散する力が与えられる。
 以上のように、分級羽根41の形状は、粗粒粉が飛散する飛散方向Fo1,Fo2と微粒粉が内周側空間S2へ導かれる流入方向Fi1,Fi2とが干渉せず、かつ飛散方向Fo1,Fo2が水平方向よりも上方に向けた方向となる形状とするのが望ましい。
 発明者らは、前述したθ1とθ2の角度を変化させた種々の形状の分級羽根41を用いて回転式分級部40の分級性能の比較を行ったところ、図5に示す結果を得た。
 図5は、200メッシュを通過する粒径の固体燃料の積算重量割合と100メッシュを通過せずに残存する粒径の固体燃料の積算重量割合との関係を示す図である。
 図5に示す200メッシュ通過率とは、回転式分級部40から供給流路42に排出される固体燃料のうち、200メッシュのふるいを通過する固体燃料(粒子径が75μm以下の微粒粉)の積算重量割合を示すものである。
 一方、図5に示す100メッシュ残存率比とは、回転式分級部40から供給流路42に排出される固体燃料のうち100メッシュのふるいを通過しない固体燃料(粒子径が150μm以上の粗粒粉)の積算重量割合を示すものである。図5に示す100メッシュ残存率比は、一定の100メッシュ残存率を1とした場合の残存率の比率を示すものである。
 図5において、同一の200メッシュ通過率である場合には、100メッシュ残存率比が小さい方が分級性能が高い。また、同一の100メッシュ残存率比である場合には、200メッシュ通過率が小さい方が分級性能が高い。
 図5に示す結果は、分級羽根41の長手方向を軸線X方向から傾斜させない(θ2=0°)形状とする場合、θ1を70°に設定する方が、θ1を60°あるいは80°に設定する場合よりも分級性能が高いことを示している。
 また、図5に示す結果は、分級羽根41をθ1が70°である形状とする場合、θ2を18°近傍に設定すると、θ2を0°とする場合よりも分級性能が高くなることを示している。
 図5に示す結果から、発明者らは、θ1を以下の式(1)の範囲に設定することにより、高い分級性能を示すという知見を得た。特に、θ1を70°に設定することにより、高い分級性能を示すという知見を得た。
 65°≦θ1≦75°     (1)
 また、図5に示す結果から、発明者らは、θ2を以下の式(2)の範囲に設定することにより、更に高い分級性能を示すという知見を得た。特に、θ2を18°に設定することにより、高い分級性能を示すという知見を得た。
 13°≦θ2≦23°     (2)
 以上の式(1)を満たすようにすることにより、分級羽根41の形状は、粗粒粉が飛散する飛散方向Fo1,Fo2と微粒粉が内周側空間S2へ導かれる流入方向Fi1,Fi2とが干渉せず、かつ飛散方向Fo1,Fo2が水平方向よりも上方に向けた方向となる形状となる。
 この場合、θ2は、以下の式(3)の範囲に設定すればよい。
 0°≦θ2≦23°      (3)
 また、式(1)および式(2)の双方を満たすようにすることにより、より高い分級性能を満たす分級羽根41の形状を設定することができる。
 以上説明した本実施形態の竪型ローラミル100が奏する作用および効果について説明する。
 本実施形態の竪型ローラミル100によれば、燃料供給部20によって回転テーブル10に供給される固体燃料は、ローラ30によって粉砕された後に吹出口50が送風する一次空気とともに回転式分級部40の外周側空間S1に導かれる。粉砕された固体燃料のうち所定粒径より小さい微粒粉は、外周側空間S1から複数の分級羽根41に囲まれる内周側空間S2へ導かれる。一方、所定粒径より大きい粗粒粉は、複数の分級羽根41との衝突によって内周側空間S2へ侵入することが抑制される。
 本実施形態の竪型ローラミル100によれば、回転式分級部40の分級羽根41と衝突した粗粒粉が飛散する飛散方向Fo1,Fo2と微粒粉が内周側空間S2へ導かれる流入方向Fi1,Fi2とが干渉しない。そのため、微粒粉の内周側空間S2への流入が粗粒粉によって妨げられることが抑制され、外周側空間S1から内周側空間S2への微粒粉の流入効率を高めることができる。
 また、分級羽根41が粗粒粉に衝突すると、粗粒粉は水平方向よりも上方に向けた方向へ飛散する。そのため、外周側空間S1の分級羽根41の近傍の領域で下方から上方に向けた気流の流れが形成され、気流の流れの乱れによって粗粒粉が外周側空間S1から内周側空間S2へ流入してしまう不具合を抑制することができる。
 本実施形態の竪型ローラミル100は、軸線Xを中心とした複数の分級羽根41の外周側端部41cが通過する面が軸線Xに沿った上方から下方に向けて突出する円錐台の側面となっており、円錐台の側面と軸線Xに直交する平面とが形成する角度が65度以上かつ75度以下である。特に好ましい構成は、この角度を70度とする構成である。
 発明者らは、複数の分級羽根41の外周側端部41cが通過する面である円錐台の側面と軸線Xに直交する平面とが形成する角度θ1を変化させて回転式分級部40の分級性能の比較を行ったところ、この角度を65度以上かつ75度以下とすることにより、高い分級性能が得られるという知見を得た。特に、この角度を70度とすることにより、高い分級性能が得られるという知見を得た。
 本実施形態によれば、複数の分級羽根41の外周側端部41cが通過する面である円錐台の側面の傾斜角度θ1を、軸線Xに直交する平面に対して65度以上かつ75度以下(好ましくは70度)とすることにより、回転式分級部40の外周側空間S1から内周側空間S2への微粒粉の流入効率を高めつつ、粗粒粉が外周側空間S1から内周側空間S2へ流入することを抑制することができる。
 本実施形態の竪型ローラミル100において、複数の分級羽根41のそれぞれは、軸線Zに沿った長手方向の一端部41aを軸線Xに沿った上方に配置するとともに他端部41bを軸線Xに沿った下方に配置した平板状であるとともに、一端部41aの方が他端部41bよりも回転式分級部40の回転方向の上流側に後退した位置となるように長手方向が軸線方向からθ2だけ傾斜している。
 本実施形態によれば、平板状の分級羽根41の長手方向の一端部41aの方が他端部41bよりも回転式分級部40の回転方向の上流側に後退した位置となるように長手方向が軸線X方向からθ2だけ傾斜している。そのため、平板状の分級羽根41の法線方向は、水平方向よりも上方に向けて角度θ2だけ傾斜した方向となる。よって、分級羽根41に衝突した粗粒粉は、水平方向よりも上方に向けた方向に飛散する。
 そのため、長手方向が軸線X方向から角度θ2だけ傾斜した平板状の分級羽根41の作用によって、外周側空間S1の分級羽根41の近傍の領域で下方から上方に向けた気流の流れがより確実に形成され、気流の流れの乱れによって粗粒粉が外周側空間S1から内周側空間S2へ流入してしまう不具合を抑制することができる。
 本実施形態の竪型ローラミル100においては、分級羽根41を軸線Xに直交しかつ分級羽根41と軸線Xとを通過する径方向からみた場合に、長手方向が軸線X方向から13度以上かつ23度以下の角度で傾斜している。
 発明者らは、長手方向が軸線X方向から傾斜した平板状の分級羽根41の傾斜角度(分級羽根41を径方向からみた場合に分級羽根41の長手方向が軸線X方向となす角度)を変化させて回転式分級部40の分級性能の比較を行ったところ、この角度を13度以上かつ23度以下の角度とすることにより、高い分級性能が得られるという知見を得た。特に、この角度を18度とすることにより、高い分級性能が得られるという知見を得た。
 本実施形態によれば、回転式分級部40の外周側空間S1から内周側空間S2への微粒粉の流入効率を高めつつ、粗粒粉が外周側空間S1から内周側空間S2へ流入することを抑制することができる。
10  回転テーブル
10a 中央部
10b 外周部
20  燃料供給部
30  ローラ
31  揺動軸
32  ローラ本体
33  支持軸
40  回転式分級部
41  分級羽根(羽根)
41a 一端部
41b 他端部
41c 外周側端部
42  供給流路
50  吹出口(送風部)
51  一次空気流路
60  ハウジング
70  駆動部
71  駆動軸
80  旋回用ベーン
100 竪型ローラミル
S1  外周側空間
S2  内周側空間
X,Y 軸線

Claims (6)

  1.  駆動部からの駆動力により軸線回りに回転する回転テーブルと、
     前記回転テーブルに固体燃料を供給する燃料供給部と、
     前記回転テーブルに供給された前記固体燃料を粉砕するローラと、
     前記回転テーブルの上方に設けられるとともに前記軸線回りに配置される複数の羽根を該軸線回りに回転させる回転式分級部と、
     前記ローラにより粉砕された固体燃料を前記回転式分級部へ供給するための酸化性ガスを送風する送風部と、を備え、
     前記回転式分級部は、前記ローラにより粉砕された固体燃料のうち所定粒径より小さい微粒粉を外周側空間から前記複数の羽根に囲まれる内周側空間へ導くとともに、前記複数の羽根との衝突によって前記所定粒径より大きい粗粒粉が前記内周側空間へ侵入することを抑制し、
     前記複数の羽根のそれぞれは、該羽根と衝突した前記粗粒粉が飛散する飛散方向と前記微粒粉が前記内周側空間へ導かれる流入方向とが干渉せず、かつ前記飛散方向が水平方向よりも上方に向けた方向となる形状となっている竪型ローラミル。
  2.  前記軸線を中心とした前記複数の羽根の外周側端部が通過する面が前記軸線に沿った上方から下方に向けて突出する円錐台の側面となっており、
     該円錐台の側面と前記軸線に直交する平面とが形成する角度が65度以上かつ75度以下である請求項1に記載の竪型ローラミル。
  3.  前記円錐台の側面と前記軸線に直交する平面とが形成する角度が70度である請求項2に記載の竪型ローラミル。
  4.  前記複数の羽根のそれぞれは、長手方向の一端部を前記軸線に沿った上方に配置するとともに他端部を前記軸線に沿った下方に配置した平板状であるとともに、前記一端部の方が前記他端部よりも前記回転式分級部の回転方向の上流側に後退した位置となるように前記長手方向が前記軸線方向から傾斜している請求項1から請求項3のいずれか1項に記載の竪型ローラミル。
  5.  前記羽根を前記軸線に直交しかつ該羽根と該軸線とを通過する径方向からみた場合に、前記長手方向が前記軸線方向から13度以上かつ23度以下の角度で傾斜している請求項4に記載の竪型ローラミル。
  6.  前記羽根を前記軸線に直交しかつ該羽根と該軸線とを通過する径方向からみた場合に、前記長手方向が前記軸線方向から18度傾斜している請求項5に記載の竪型ローラミル。
PCT/JP2015/074797 2014-11-28 2015-08-31 竪型ローラミル WO2016084447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/524,052 US10722899B2 (en) 2014-11-28 2015-08-31 Vertical roller mill
KR1020177012580A KR101941797B1 (ko) 2014-11-28 2015-08-31 세로형 롤러 밀
CN201580059990.9A CN106999943B (zh) 2014-11-28 2015-08-31 立式辊磨机
DE112015005341.7T DE112015005341B4 (de) 2014-11-28 2015-08-31 Vertikalwalzenmühle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-241590 2014-11-28
JP2014241590A JP6352162B2 (ja) 2014-11-28 2014-11-28 竪型ローラミル

Publications (1)

Publication Number Publication Date
WO2016084447A1 true WO2016084447A1 (ja) 2016-06-02

Family

ID=56074028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074797 WO2016084447A1 (ja) 2014-11-28 2015-08-31 竪型ローラミル

Country Status (6)

Country Link
US (1) US10722899B2 (ja)
JP (1) JP6352162B2 (ja)
KR (1) KR101941797B1 (ja)
CN (1) CN106999943B (ja)
DE (1) DE112015005341B4 (ja)
WO (1) WO2016084447A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469343B2 (ja) * 2013-12-13 2019-02-13 三菱日立パワーシステムズ株式会社 固体燃料粉砕装置および固体燃料粉砕装置の製造方法
US10744534B2 (en) * 2016-12-02 2020-08-18 General Electric Technology Gmbh Classifier and method for separating particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247888A (ja) * 1988-08-09 1990-02-16 Nec Corp 半導体レーザの製造方法
JPH0210698B2 (ja) * 1983-11-22 1990-03-09 Ube Industries
JPH0270737U (ja) * 1988-11-18 1990-05-29

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150678A (ja) * 1984-08-18 1986-03-12 川崎重工業株式会社 分級器
JPS6422386A (en) * 1987-07-20 1989-01-25 Mitsubishi Heavy Ind Ltd Rotary type sorter
DE3863803D1 (de) * 1987-03-24 1991-08-29 Mitsubishi Heavy Ind Ltd Walzenmuehle.
US4855360A (en) 1988-04-15 1989-08-08 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
JPH0210698A (ja) 1988-06-29 1990-01-16 Toshiba Lighting & Technol Corp 放電灯点灯装置
JPH0226651A (ja) * 1988-07-14 1990-01-29 Babcock Hitachi Kk 粉砕分級装置
JPH02137940A (ja) 1988-11-18 1990-05-28 Seiko Epson Corp 印写装置
JP2813361B2 (ja) 1989-03-03 1998-10-22 三菱重工業株式会社 微粉炭燃焼方法
JPH02137940U (ja) * 1989-04-24 1990-11-16
US5244157A (en) * 1989-07-04 1993-09-14 Loesche Gmbh Air flow rolling mill
JP2617623B2 (ja) 1991-01-21 1997-06-04 三菱重工業株式会社 ローラミル
JP2792576B2 (ja) * 1991-05-24 1998-09-03 宇部興産株式会社 竪型粉砕機
JP2715355B2 (ja) 1992-03-19 1998-02-18 宇部興産株式会社 竪型粉砕機
JPH0655088A (ja) * 1992-08-04 1994-03-01 Mitsubishi Heavy Ind Ltd 竪型ローラミル
JP3207702B2 (ja) * 1995-04-04 2001-09-10 三菱重工業株式会社 ローラミル用回転式分級機
JP4340395B2 (ja) 2001-02-08 2009-10-07 バブコック日立株式会社 竪型粉砕機
DE10141414B4 (de) * 2001-08-23 2004-03-04 Loesche Gmbh Wälzmühle, Luftstrom-Wälzmühle, und Verfahren zur Vermahlung von Stoffen mit magnetisierbaren, insbesondere eisenhaltigen Bestandteilen, beispielsweise Schlacken
US7913851B2 (en) * 2004-04-19 2011-03-29 Jin-Hong Chang Separator for grinding mill
US7118055B2 (en) * 2004-04-19 2006-10-10 Jin-Hong Chang Grinding mill
JP4550486B2 (ja) 2004-05-13 2010-09-22 バブコック日立株式会社 分級機およびそれを備えた竪型粉砕機、ならびにその竪型粉砕機を備えた石炭焚ボイラ装置
WO2009093346A1 (ja) * 2008-01-24 2009-07-30 Mitsubishi Heavy Industries, Ltd. ローラミル構造
JP5544832B2 (ja) * 2009-11-16 2014-07-09 株式会社Ihi 竪型ミル
MX2013000515A (es) * 2010-07-16 2013-08-08 Savvy Engineering Llc Clasificador pulverizador.
US8517292B2 (en) * 2011-01-12 2013-08-27 Jin-Hong Chang Particle separator
US8820535B2 (en) * 2012-02-07 2014-09-02 Rickey E. Wark Classifier with variable entry ports

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210698B2 (ja) * 1983-11-22 1990-03-09 Ube Industries
JPH0247888A (ja) * 1988-08-09 1990-02-16 Nec Corp 半導体レーザの製造方法
JPH0270737U (ja) * 1988-11-18 1990-05-29

Also Published As

Publication number Publication date
CN106999943B (zh) 2019-06-11
CN106999943A (zh) 2017-08-01
DE112015005341B4 (de) 2023-12-21
KR20170066619A (ko) 2017-06-14
US20170320064A1 (en) 2017-11-09
KR101941797B1 (ko) 2019-01-23
JP2016101557A (ja) 2016-06-02
US10722899B2 (en) 2020-07-28
JP6352162B2 (ja) 2018-07-04
DE112015005341T5 (de) 2017-08-10

Similar Documents

Publication Publication Date Title
JP5905366B2 (ja) 回転式分級機及び竪型ミル
WO2014117031A1 (en) Classifier
JP2009189909A (ja) ローラミル構造
JP6352162B2 (ja) 竪型ローラミル
JP2009297597A (ja) 竪型ローラミル
JP5927992B2 (ja) バイオマスミル
JP4614132B2 (ja) 分級装置
JP5269688B2 (ja) 分級機構
WO2015049912A1 (ja) 竪型ローラミル
JP6570272B2 (ja) 分級機能付粉砕装置
JP2018027514A (ja) 竪型ローラミル
JP6248718B2 (ja) 竪型粉砕機
JP2016083638A (ja) 竪型ローラミル
TWI671132B (zh) 分級機、直立式粉碎機以及燃煤鍋爐
JP6087100B2 (ja) 解砕装置
JP6767410B2 (ja) 粉砕装置
JP6430200B2 (ja) 竪型ローラミル
JP7009349B2 (ja) 分級機能付き粉砕装置及び被処理物の粉砕方法
JP2008149257A (ja) 粉砕分級装置
JP2009095717A (ja) 粉砕処理装置
JP2007222741A (ja) 分級機
JP2018001055A (ja) 竪型粉砕機
JP2005288272A (ja) 遠心式破砕機
JP6221548B2 (ja) 竪型粉砕機
JP2005205266A (ja) 粉砕装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15524052

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177012580

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005341

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863938

Country of ref document: EP

Kind code of ref document: A1