WO2016080332A1 - コイル部品 - Google Patents

コイル部品 Download PDF

Info

Publication number
WO2016080332A1
WO2016080332A1 PCT/JP2015/082077 JP2015082077W WO2016080332A1 WO 2016080332 A1 WO2016080332 A1 WO 2016080332A1 JP 2015082077 W JP2015082077 W JP 2015082077W WO 2016080332 A1 WO2016080332 A1 WO 2016080332A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
conductor
insulating layer
wiring pattern
coil component
Prior art date
Application number
PCT/JP2015/082077
Other languages
English (en)
French (fr)
Inventor
喜人 大坪
黒部 淳司
西出 充良
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201580060347.8A priority Critical patent/CN107077952B/zh
Priority to JP2016560200A priority patent/JP6390715B2/ja
Publication of WO2016080332A1 publication Critical patent/WO2016080332A1/ja
Priority to US15/586,706 priority patent/US11769623B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/043Printed circuit coils by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/08Winding conductors onto closed formers or cores, e.g. threading conductors through toroidal cores

Definitions

  • the present invention relates to a coil component including an insulating layer in which a coil core is embedded and a coil electrode wound around the coil core.
  • a coil component may be used to prevent noise.
  • This type of coil component includes a coil core formed of a magnetic material or the like and a coil electrode around which the coil core is wound.
  • the winding of the coil electrode is often performed manually, and eliminating this manual operation has been an issue in reducing the manufacturing cost of the coil component.
  • the coil component 100 described in Patent Document 1 shown in FIG. 9 is a laminated coil component, and is formed on the magnetic layer 101 formed by laminating a plurality of magnetic sheets, and the magnetic layer 101.
  • a coil electrode 102 is a coil electrode 102.
  • the coil electrode 102 includes a plurality of lower wiring patterns 102a formed on the upper surface of the lowermost magnetic sheet, a plurality of upper wiring patterns 102b formed on the back surface of the uppermost magnetic sheet, and a predetermined upper wiring. It is composed of a plurality of columnar conductors 102c that connect the pattern 102b and the lower wiring pattern 102a. Each columnar conductor 102c is formed in a columnar shape by stacking via conductors formed in each magnetic material sheet to a predetermined length, and the coil component 100 functions as a toroidal coil by these configurations.
  • Japanese Patent No. 3109872 (see paragraphs 0010 to 0013, FIG. 1, etc.)
  • Some coil components of this type are designed to allow a large current to flow through the coil electrodes.
  • the amount of heat generated during use increases. Since the heat generated by the coil component may deteriorate the performance of other components used together, improving the heat dissipation characteristics of the coil component and reducing the resistance of the coil electrode are issues.
  • the conventional coil component 100 as a solution to such a problem, it is conceivable to increase the diameter of each columnar conductor 102c.
  • the space inside the circle is limited. Therefore, when the diameter of the inner columnar conductor 102c is increased, the number of turns of the coil electrode 102 is reduced.
  • the present invention has been made in view of the above problems, and in a coil component including an insulating layer in which an annular coil core is embedded and a coil electrode wound around the coil core, the number of turns of the coil electrode is The purpose is to reduce the resistance of the coil electrode and improve the heat dissipation characteristics without causing the adverse effect of decreasing.
  • a coil component of the present invention includes an insulating layer in which an annular coil core is embedded, and a coil electrode wound around the coil core.
  • a plurality of first wiring patterns arranged on the inner peripheral side of the coil core and the other end arranged on the outer peripheral side of the coil core, arranged on one main surface of the insulating layer, and one end thereof on the inner peripheral side of the coil core
  • a plurality of second wirings arranged on the outer peripheral side of the coil core and arranged on the other main surface of the insulating layer so as to form a plurality of pairs with each of the first wiring patterns.
  • a plurality of patterns arranged on the inner peripheral side of the coil core, and connecting one end of each of the first wiring patterns and one end of the second wiring pattern that forms a pair with the first wiring pattern
  • the second wiring adjacent to the second wiring pattern disposed on the outer side of the side conductor, the coil core, and paired with the other end of each of the first wiring patterns and the first wiring pattern.
  • a plurality of outer conductors connected to the other end of the pattern, and in at least one of the first wiring patterns, the cross-sectional area perpendicular to the thickness direction of the insulating layer of the outer conductor connected to the other end is characterized in that it is formed larger than the area of the cross section perpendicular to the thickness direction of the insulating layer of the inner conductor connected to one end.
  • the outer peripheral side has a relatively large design space compared to the inner peripheral side. Therefore, by utilizing the degree of freedom of the design space, the cross-sectional area (cross-sectional area) perpendicular to the thickness direction of the insulating layer of the outer conductor is formed larger than that of the inner conductor. In this way, since the volume of the metal component can be increased as compared with the coil component in which the outer conductor and the inner conductor are formed with the same cross-sectional area, the heat dissipation characteristics of the coil component can be improved.
  • connection surface between the outer conductor and the wiring pattern can be easily increased, so that the resistance of the entire coil electrode can be reduced.
  • the cross-sectional area of only the outer conductor disposed on the outer peripheral side of the coil core is increased, the number of turns of the coil electrode is reduced in order to improve the heat dissipation characteristics of the coil component and to reduce the resistance of the coil electrode. There is no negative effect.
  • the inner conductor is composed of an inner columnar conductor
  • the outer conductor is composed of a plurality of outer columnar conductors
  • the total area of cross sections perpendicular to the thickness direction of the insulating layer of each outer columnar conductor is The area of the cross section perpendicular to the thickness direction of the insulating layer of the inner columnar conductor may be larger.
  • the cross-sectional area of the outer conductor (area of the cross section perpendicular to the thickness direction of the insulating layer) can be made larger than the cross-sectional area of the inner conductor.
  • the inner conductor is composed of at least two inner columnar conductors
  • the outer conductor is composed of more outer columnar conductors than the inner conductor
  • the thickness direction of the insulating layer of each outer columnar conductor The total area of the cross sections perpendicular to each other may be larger than the total area of the cross sections perpendicular to the thickness direction of the respective inner columnar conductors.
  • the outer conductor is composed of a larger number of outer columnar conductors than the inner columnar conductor, thereby reducing the cross-sectional area of the outer conductor to the inner conductor. It can be larger than the cross sectional area.
  • the outer columnar conductor may be formed thicker than the inner columnar conductor.
  • the cross sectional area of the outer conductor can be easily made larger than the cross sectional area of the inner conductor.
  • the inner columnar conductor may be formed thicker than the outer columnar conductor. In this case, it is possible to reduce the difference between the connection area between the outer conductor and the wiring pattern and the connection area between the inner conductor and the wiring pattern, while making the transverse area of the outer conductor larger than that of the inner conductor.
  • the outer columnar conductors may be arranged in a line along the outer periphery of the coil core. In this case, even if the cross-sectional area of the outer conductor is made larger than that of the inner conductor, the connection portion of the wiring pattern with the outer conductor does not have to be spread outside the coil core, so that the coil component can be reduced in size. .
  • each of the inner columnar conductor and the outer columnar conductor may be formed of a metal pin.
  • via conductors or through-hole conductors that require the formation of through-holes it is necessary to provide a predetermined gap between adjacent conductors in order to form independent through-holes.
  • a metal pin that does not form a through hole it is easy to narrow the gap between adjacent metal pins, so that the number of turns of the coil electrode can be easily increased.
  • the metal pin has a lower specific resistance than a via conductor or a through-hole conductor formed by filling a via hole with a conductive paste, the resistance value of the entire coil electrode can be reduced. Therefore, for example, a coil component excellent in coil characteristics such as Q value can be provided.
  • the volume of the metal component can be increased without causing the adverse effect of reducing the number of turns of the coil electrode as compared with the coil component in which the outer conductor and the inner conductor are formed with the same volume.
  • the heat dissipation characteristics of the coil component can be improved.
  • the connection surface of an outer conductor and a wiring pattern can be increased easily, resistance reduction of the whole coil electrode can be achieved.
  • FIGS. 1 is a sectional view of the coil component 1a
  • FIG. 2 is a plan view of the coil component 1a
  • FIG. 3 is a diagram for explaining the wiring patterns 6a and 6b.
  • FIG. 3A is a plan view of the coil component 1a with the upper wiring pattern 6a removed
  • FIG. 3B is a plan view of the coil component 1a with the lower wiring pattern 6b removed.
  • FIG. 1 is a cross-sectional view taken along the line AA in FIG. In FIG. 3A, the input / output wiring connected to the end of the coil electrode 4 is not shown.
  • the coil component 1a includes an insulating layer 2 in which a coil core 3 is embedded, and a coil electrode 4 wound around the coil core 3. It is mounted on an electronic device such as a mobile phone used.
  • the insulating layer 2 is formed of, for example, a resin such as an epoxy resin, and is formed with a predetermined thickness so as to cover the coil core 3 and a plurality of metal pins 5a and 5b described later.
  • the coil core 3 is formed of a magnetic material that is employed as a general coil core such as Mn—Zn ferrite.
  • the coil core 3 of this embodiment is formed in the annular
  • the coil electrode 4 is spirally wound around the annular coil core 3 and is formed on the lower surface of the insulating layer 2 (corresponding to “one main surface of the insulating layer” of the present invention).
  • a plurality of upper wiring patterns formed on the upper surface of the insulating layer 2 (corresponding to "the other main surface of the insulating layer” of the present invention) so as to form a plurality of pairs with the side wiring patterns 6b and the respective lower wiring patterns 6b. 6a, and a plurality of inner conductors 50 and outer conductors 51 that connect a predetermined lower wiring pattern 6b and an upper wiring pattern 6a.
  • Each lower wiring pattern 6b is arranged in the circumferential direction with one end disposed on the inner peripheral side of the coil core 3 and the other end disposed on the outer peripheral side of the coil core 3.
  • Each upper wiring pattern 6 a is arranged in the circumferential direction in a state where one end is disposed on the inner peripheral side of the coil core 3 and the other end is disposed on the outer peripheral side of the coil core 3, similarly to each lower wiring pattern 6 b.
  • each of the upper and lower wiring patterns 6a and 6b is formed in a tapered shape as it goes from the outer peripheral side to the inner peripheral side.
  • Each of the upper and lower wiring patterns 6a and 6b is laminated with a base electrode 7 formed by screen printing using a conductive paste containing a metal such as Cu or Ag, and the base electrode 7 is laminated by, for example, Cu plating. It is formed in a two-layer structure with the surface electrode 8.
  • Each upper and lower wiring pattern 6a, 6b may have a single layer structure. In this case, similarly to the base electrode 7, it can be formed by screen printing using a conductive paste containing a metal such as Cu or Ag.
  • the above-mentioned upper wiring pattern 6a corresponds to the “second wiring pattern” of the present invention
  • the lower wiring pattern 6b corresponds to the “first wiring pattern” of the present invention.
  • Each inner conductor 50 connects one end of each lower wiring pattern 6b and one end of the upper wiring pattern 6a paired with the lower wiring pattern 6b.
  • one inner conductor 50 is provided. It is comprised by the inner side metal pin 5a.
  • the inner metal pins 5 a are arranged in a line along the inner peripheral surface of the coil core 3 in a state of being erected in the thickness direction of the insulating layer 2.
  • Each outer conductor 51 is connected to the other end of each lower wiring pattern 6b and the upper wiring adjacent to a predetermined side (counterclockwise in this embodiment) of the upper wiring pattern 6a paired with the lower wiring pattern 6b.
  • the other end of the pattern 6a is connected.
  • a plurality of outer metal pins 5 b erected in the thickness direction of the insulating layer 2 are arranged in a line along the outer peripheral surface of the coil core 3, and three outer metal continuous in the circumferential direction.
  • One outer conductor 51 is configured with the pins 5b as a set.
  • the upper end surfaces of the inner metal pins 5a and the outer metal pins 5b are exposed from the upper surface of the insulating layer 2, and the lower end surfaces of the inner metal pins 5a and the outer metal pins 5b are lower surfaces of the insulating layer 2. It is provided exposed from.
  • These metal pins 5a and 5b are formed of a metal material generally employed as a wiring electrode, such as Cu, Au, Ag, Al, or a Cu-based alloy.
  • each of the metal pins 5a and 5b is formed in a columnar shape with substantially the same thickness and length.
  • the conductive paste for forming the upper and lower wiring patterns 6a and 6b is formed by mixing a filler formed of Cu or Ag with an organic solvent, the metal pins 5a and 5b The specific resistance is lower than that of the upper and lower wiring patterns 6a and 6b.
  • the amount of heat generated from the coil electrode 4 increases.
  • the amount of heat generated is approximately proportional to the resistance value of the coil electrode 4.
  • the volume of each of the inner and outer conductors 50, 51 particularly the area of the cross section perpendicular to the thickness direction of the insulating layer 2 (hereinafter referred to as a cross-sectional area) is increased.
  • a cross-sectional area is increased.
  • the arrangement space of the metal pins 5 a is narrower on the inner peripheral side of the coil core 3 than on the outer peripheral side, increasing the volume (for example, the cross-sectional area) of each inner conductor 50 leads to a decrease in the number of turns of the coil electrode 4.
  • the inner conductor 50 disposed on the inner peripheral side of the coil core 3 is constituted by the single inner metal pin 5a, while the outer conductor 51 disposed on the outer peripheral side of the coil core 3.
  • the total that is, while increasing the volume of the outer conductor 51 and increasing the connection area between the outer conductor 51 and the upper or lower wiring patterns 6a and 6b, the number of turns of the coil electrode 4 is maintained and the entire coil electrode 4 is maintained. Reduction of the resistance value and improvement of heat dissipation characteristics of the coil component 1a can be realized.
  • the inner and outer metal pins 5a and 5b are formed in a cylindrical shape, but may be formed in a prismatic shape, for example. Further, the inner and outer metal pins 5a and 5b may be formed of columnar conductors such as via conductors.
  • the metal pins 5a and 5b are arranged on one main surface of the flat transfer plate.
  • the upper end surfaces of the metal pins 5a and 5b are fixed to one main surface of the transfer plate, and the metal pins 5a and 5b are fixed in a standing state.
  • the metal pins 5a and 5b can be formed by, for example, shearing a metal wire (for example, Cu, Au, Ag, Al, or Cu alloy) having a circular cross section.
  • a resin layer is formed on one main surface of the resin sheet with a release layer (flat plate shape).
  • the resin sheet, the release layer, and the resin layer are arranged in this order, and the resin layer is formed in an uncured state.
  • the transfer plate is inverted and mounted on the resin sheet so that the lower end surfaces of the metal pins 5a and 5b are in contact with the resin layer, and then the resin in the resin layer is cured.
  • the coil core 3 is disposed at a predetermined position on the resin sheet, and the metal pins 5a and 5b and the coil core 3 are molded with, for example, epoxy resin to form the insulating layer 2 on the resin sheet. To do.
  • each metal pin 5a, 5b is exposed from the upper surface of the insulating layer 2, and the lower end surface is exposed from the lower surface of the insulating layer 2.
  • the upper wiring patterns 6a are formed on the upper surface of the insulating layer 2, and the lower wiring patterns 6b are formed on the lower surface of the insulating layer 2, thereby completing the coil component 1a.
  • Each of the upper and lower wiring patterns 6a and 6b can be formed by screen printing using a conductive paste containing a metal such as Cu, for example. Further, the upper and lower wiring patterns 6a and 6b may be formed in a two-layer structure by performing Cu plating on the wiring pattern formed of this conductive paste.
  • a predetermined pattern shape is formed by etching a plate member with a Cu foil attached to one main surface.
  • This plate-like member is prepared individually for each of the upper and lower wiring patterns 6a and 6b.
  • the upper and lower wiring patterns 6a and 6b can be bonded to the upper end surface or the lower end surface of the metal pins 5a and 5b by ultrasonic bonding using the plate-like member.
  • the outer peripheral side has a relatively large design space compared to the inner peripheral side. Therefore, the volume of the outer conductor 51 is formed larger than that of the inner conductor 50 by utilizing the degree of freedom of the design space. In this case, since the volume of the metal component can be increased as compared with the coil component in which the outer conductor 51 and the inner conductor 50 are formed with the same volume, the heat dissipation characteristics of the coil component 1a can be improved. it can.
  • one outer conductor 51 is composed of the three outer metal pins 5b, the number of connection surfaces with the wiring patterns 6a and 6b can be easily increased, so that the wiring patterns 6a and 6b and the outer conductor 51 can be connected to each other. As a result, the resistance of the entire coil electrode 4 can be reduced. Further, since the resistance value of the entire coil electrode 4 is reduced, for example, the coil characteristics such as the Q value can be improved. Further, by realizing a reduction in the resistance value of the entire coil electrode 4 and an improvement in the heat dissipation characteristics of the coil component 1a, the coil component 1a can cope with a large current.
  • the heat dissipation characteristics of the coil component 1a can be improved and the coil electrode
  • each metal pin 5a, 5b has the same shape (length, cross-sectional area)
  • the same material metal pins 5a, 5b
  • the manufacturing cost of the coil component 1a can be reduced.
  • the metal pins 5a and 5b it is easy to narrow the gap between the adjacent metal pins 5a and 5b as compared with the via conductor or the through-hole conductor that requires the formation of a through hole in the insulating layer 2. Therefore, the number of turns of the coil electrode 4 can be easily increased. Further, since the metal pins 5a and 5b have a lower specific resistance than a via conductor or a through-hole conductor formed by filling a via hole with a conductive paste, the resistance value of the coil electrode 4 as a whole can be lowered. Therefore, for example, the coil component 1a having excellent coil characteristics such as the Q value can be provided.
  • the outer metal pins 5b are arranged in a line along the outer peripheral surface of the coil core 3, even if the volume and the cross-sectional area of each outer conductor 51 are larger than each inner conductor 50, the coil component 1a. Can be prevented from increasing in size.
  • FIG. 1b is a plan view of the coil component 1b with the lower wiring pattern 6b removed, and corresponds to FIG. 3 (b).
  • the coil component 1b according to this embodiment is different from the coil component 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the outer metal constituting each outer conductor 51 as shown in FIG. That is, the number of pins 5b is different and the outer metal pin 5b is formed thicker than the inner metal pin 5a (excluding the metal pin for external connection). Since the other configuration is the same as that of the coil component 1a of the first embodiment, description thereof is omitted by attaching the same reference numerals.
  • each outer conductor 51 is composed of two outer metal pins 5b, and each outer metal pin 5b is formed thicker than the inner metal pin 5a.
  • each outer metal pin 5b is formed with the same thickness and length.
  • one inner metal pin 5a is formed with the same length and thickness as the outer metal pin 5b, and the rest is formed thinner than the outer metal pin 5b.
  • the thick inner metal pin 5a is used as a metal pin for external connection.
  • FIG. 3 (b) A coil component 1c according to a third embodiment of the present invention will be described with reference to FIG. This figure is a plan view of the coil component 1c with the lower wiring pattern 6b removed, and corresponds to FIG. 3 (b).
  • the coil component 1c according to this embodiment differs from the coil component 1a of the first embodiment described with reference to FIGS. 1 to 3 in that each inner metal pin 5a has each outer metal pin 5a as shown in FIG. That is, it is formed thicker than the metal pin 5b. Since the other configuration is the same as that of the coil component 1a of the first embodiment, description thereof is omitted by attaching the same reference numerals.
  • each outer metal pin 5b is formed with the same thickness and length, and each inner metal pin 5a is also formed with the same thickness and length. And each inner metal pin 5a is formed thicker than each outer metal pin 5b. According to this configuration, the same effects as those of the coil component 1a of the first embodiment can be obtained, the connection area between the inner conductor 50 and the wiring patterns 6a and 6b, and the connection area between the outer conductor 51 and the wiring patterns 6a and 6b. Can be reduced. In this case, the difference between the connection resistance between the inner conductor 50 and the wiring patterns 6a and 6b and the connection resistance between the outer conductor 51 and the wiring patterns 6a and 6b can be reduced.
  • FIG. 2A is a plan view of the coil component 1d with the upper wiring pattern 6a removed
  • FIG. 2B is a plan view of the coil component 1d with the lower wiring pattern 6b removed.
  • each inner conductor 50 has two inner conductors 50 as shown in FIG. That is, it is composed of metal pins 5a, each outer conductor 51 is composed of four outer metal pins 5b, and the shape of each lower wiring pattern 6b is different. Since the other configuration is the same as that of the coil component 1a of the first embodiment, description thereof is omitted by attaching the same reference numerals.
  • one inner conductor 50 is composed of a plurality of (in this embodiment, two) inner metal pins 5a, and one outer conductor 51 is larger than the number of inner metal pins 5a constituting the inner conductor 50.
  • a large number (in this embodiment, four) of outer metal pins 5b is used.
  • the inner and outer metal pins 5a and 5b are formed with the same thickness and length. In this way, the volume and cross-sectional area of the outer conductor 51 can be made larger than the volume and cross-sectional area of the inner conductor 50.
  • each of the upper wiring patterns 6a has a shape of a portion located outside the coil core 3 in a portion located outside the coil core 3 of the lower wiring pattern 6b connected to the upper wiring pattern 6a. It is formed in substantially the same shape as the shape.
  • the shape of the part located inside the coil core 3 is also formed in substantially the same shape by the upper and lower wiring patterns 6a and 6b. In this way, the same effect as that of the coil component 1a of the first embodiment can be obtained, and the upper and lower wiring patterns 6a can be obtained even when the inner and outer conductors 50 and 51 are constituted by a plurality of metal pins 5a and 5b. , 6b can be easily connected.
  • each of the lower wiring patterns 6b of the coil component 1d can be changed as appropriate.
  • each of the lower wiring patterns 6b of this example shown in FIG. 7 has a shape of a portion located on the outer side and a portion located on the inner side of the coil core 3 in a plan view, like the above-described coil component 1d.
  • the pattern 6a is formed in a shape substantially the same as the shape of the portion located outside and the portion located inside the coil core 3.
  • each of the lower wiring patterns 6b has a shape of a portion connecting a portion located outside the coil core 3 and a portion located inside the coil core 3 in a plan view. Different from 6b. Even with such a shape of the lower wiring pattern 6b, the same effect as that of the coil component 1d of the fourth embodiment can be obtained.
  • FIG. 2A is a plan view of the coil component 1e with the upper wiring pattern 6a removed
  • FIG. 2B is a plan view of the coil component 1e with the lower wiring pattern 6b removed.
  • FIG. 8A the input / output wiring connected to the end of the coil electrode 4 is not shown.
  • the coil component 1e according to this embodiment differs from the coil component 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the coil core 3 has an oval shape as shown in FIG.
  • the configurations of the inner and outer conductors 50a, 50b, 51a, 51b are different, and the shapes of the upper and lower wiring patterns 6a, 6b are different. Since the other configuration is the same as that of the coil component 1a of the first embodiment, description thereof is omitted by attaching the same reference numerals.
  • the coil core 3 has an oval shape composed of a straight line portion 3a at the center and curved portions 3b at both ends.
  • the outer conductor 51a and the inner conductor 50a arranged in the straight part 3a are configured by the same number (three in this embodiment) of metal pins 5a and 5b.
  • the outer conductor 51b arranged in the curved portion 3b is composed of four outer metal pins 5b
  • the inner conductor 50b is composed of two inner metal pins 5a.
  • the number of metal pins 5a and 5b constituting the inside and outside conductors 50a and 51a is the same.
  • the number of inner metal pins 5a constituting the inner conductor 50b is set smaller than the number of outer metal pins 5b constituting the outer conductor 51b.
  • the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention.
  • the insulating layer 2 may be formed of a ceramic material, for example.
  • protective films for protecting the upper and lower wiring patterns 6a and 6b may be provided on the upper and lower surfaces of the insulating layer 2.
  • examples of the material for forming the protective film include an epoxy resin and a polyimide resin.
  • the present invention can be widely applied to various coil components including an insulating layer in which an annular coil core is embedded and a coil electrode wound around the coil core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 環状のコイルコアが埋設された絶縁層と、コイルコアを巻回するコイル電極とを備えるコイル部品において、コイル電極の低抵抗化と放熱特性の向上を図る。 コイル部品1aが備えるコイル電極4は、絶縁層2の下面に配列された複数の下側配線パターン6bと、各下側配線パターン6bそれぞれと複数の対を成すように絶縁層2の上面に配列された複数の上側配線パターン6aと、コイルコア3の内周側に配置され、各下側配線パターン6bそれぞれの一端と、当該下側配線パターン6bと対を成す上側配線パターン6aの一端とを接続する複数の内側導体50と、コイルコア3の外周側に配置され、各下側配線パターン6bそれぞれの他端と、当該下側配線パターン6bと対を成す上側配線パターン6aに隣接する上側配線パターン6aの他端とを接続する複数の外側導体51とを有し、外側導体51の体積が、内側導体50の体積よりも大きく形成される。

Description

コイル部品
 本発明は、コイルコアが埋設された絶縁層と、コイルコアの周囲に巻回されたコイル電極とを備えるコイル部品に関する。
 高周波信号が用いられる電子機器では、ノイズを防止するためにコイル部品が使用される場合がある。この種のコイル部品では、磁性体材料などで形成されたコイルコアと、コイルコアを巻回するコイル電極で構成される。ここで、コイル電極の巻回は手作業により行われる場合が多く、この手作業をなくすことがコイル部品の製造コストの低減を図る上での課題となっていた。
 そこで、従来では、手巻き作業が不要なコイル部品が提案されている。例えば、図9に示す特許文献1に記載のコイル部品100は、積層型のコイル部品であり、複数の磁性体シートが積層されて成る磁性体層101と、該磁性体層101に形成されたコイル電極102とを備える。
 このコイル電極102は、最下の磁性体シートの上面に形成された複数の下側配線パターン102aと、最上の磁性体シートの裏面に形成された複数の上側配線パターン102bと、所定の上側配線パターン102bと下側配線パターン102aとを接続する複数の柱状導体102cとで構成される。各柱状導体102cは、各磁性体シートに形成されたビア導体を所定の長さになるまで積み上げて円柱状に形成されており、これらの構成によりコイル部品100がトロイダルコイルとして機能している。
特許第3109872号公報(段落0010~0013、図1等参照)
 この種のコイル部品の中には、コイル電極に大電流を流す仕様のものがあり、このようなコイル部品の場合は使用時の発熱量が多くなる。コイル部品の発熱は、一緒に使用される他の部品の性能等を劣化させるおそれがあるため、コイル部品の放熱特性の向上やコイル電極の低抵抗化が課題となっている。従来のコイル部品100において、このような課題の解決策として、各柱状導体102cの径を大きくすることが考えられる。しかしながら、巻回軸が円状をなすトロイダルコイルの場合は、当該円の内側でのスペースが限られているため、内側の柱状導体102cの径を大きくすると、コイル電極102の巻数が減少する。コイル電極102の巻数が減少すると、インダクタンス値が低下してコイル電極102の特性が劣化するため、コイル特性を劣化させずに、コイル電極の低抵抗化や放熱特性の向上を図る技術が要求されている。
 本発明は、上記した課題に鑑みてなされたものであり、環状のコイルコアが埋設された絶縁層と、当該コイルコアの周囲に巻回されたコイル電極とを備えるコイル部品において、コイル電極の巻数が減少するという弊害を生じさせずに、コイル電極の低抵抗化と放熱特性の向上を図ることを目的とする。
 上記した目的を達成するために、本発明のコイル部品は、環状のコイルコアが埋設された絶縁層と、前記コイルコアの周囲に巻回されたコイル電極とを備え、前記コイル電極は、一端が前記コイルコアの内周側に配置されるとともに他端が前記コイルコアの外周側に配置され、前記絶縁層の一方主面に配列された複数の第1の配線パターンと、一端が前記コイルコアの内周側に配置されるとともに他端が前記コイルコアの外周側に配置され、前記各第1の配線パターンそれぞれと複数の対を成すように前記絶縁層の他方主面に配列された複数の第2の配線パターンと、前記コイルコアの内周側に配置され、前記各第1の配線パターンそれぞれの一端と、当該第1の配線パターンと対を成す前記第2の配線パターンの一端とを接続する複数の内側導体と、前記コイルコアの外周側に配置され、前記各第1の配線パターンそれぞれの他端と、当該第1の配線パターンと対を成す前記第2の配線パターンに隣接する前記第2の配線パターンの他端とを接続する複数の外側導体とを有し、少なくとも1つの前記第1の配線パターンでは、他端に接続される前記外側導体の前記絶縁層の厚み方向に垂直な断面の面積が、一端に接続される前記内側導体の前記絶縁層の厚み方向に垂直な断面の面積よりも大きく形成されていることを特徴としている。
 コイルコアが環状の場合、内周側と比べて外周側は設計スペースに比較的余裕がある。そこで、この設計スペースの自由度を利用して、外側導体の絶縁層の厚み方向に垂直な断面の面積(横断面積)を内側導体よりも大きく形成する。このようにすると、外側導体と内側導体とが同じ横断面積で形成されたコイル部品と比較して、金属成分の体積を増やすことができるため、コイル部品の放熱特性の向上を図ることができる。
 また、外側導体の横断面積を大きくすることで、例えば、外側導体と配線パターンの接続面を容易に増やすことができるため、コイル電極全体の低抵抗化を図ることができる。
 また、コイルコアの外周側に配置される外側導体のみの横断面積を大きくするため、上記したコイル部品の放熱特性の向上やコイル電極の低抵抗化を図るのに、コイル電極の巻数が減少するという弊害も生じない。
 また、前記内側導体が、内側柱状導体で構成され、前記外側導体が、複数本の外側柱状導体で構成され、前記各外側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積の合計が、前記内側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積よりも大きくしてもかまわない。この場合、外側柱状導体の数を複数にすることにより、外側導体の横断面積(絶縁層の厚み方向に垂直な断面の面積)を内側導体の横断面積よりも大きくすることができる。
 また、前記内側導体が、少なくとも2本の内側柱状導体で構成され、前記外側導体が、前記内側導体よりも多い本数の外側柱状導体で構成され、前記各外側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積の合計が、前記各内側柱状導体前記絶縁層の厚み方向に垂直な断面の面積の合計よりも大きくてもかまわない。この構成によると、内側導体が2本以上の内側柱状導体で構成される場合は、外側導体を内側柱状導体よりも多い本数の外側柱状導体で構成することで、外側導体の横断面積を内側導体の横断面積よりも大きくすることができる。
 また、前記外側柱状導体が、前記内側柱状導体よりも太く形成されていてもよい。この場合、外側導体の横断面積を内側導体の横断面積よりも容易に大きくすることができる。
 また、前記内側柱状導体が、前記外側柱状導体よりも太く形成されていてもよい。この場合、外側導体の横断面積を内側導体よりも大きくしつつも、外側導体と配線パターンの接続面積と内側導体と配線パターンの接続面積との差を小さくすることができる。
 また、前記各外側柱状導体が、前記コイルコアの外周に沿って1列に配列されていてもよい。このようにすると、外側導体の横断面積を内側導体よりも大きくしても、配線パターンの外側導体との接続部分をコイルコアの外側に広げずにすむため、コイル部品の小型化を図ることができる。
 また、前記内側柱状導体および前記外側柱状導体それぞれが、金属ピンで形成されていてもよい。貫通孔の形成が必要なビア導体やスルーホール導体の場合、独立した貫通孔を形成するのに隣接する導体間に所定の間隔を空ける必要があるため、隣接する導体間のギャップを狭くしてコイルの巻数を増やすのに限界がある。これに対して、貫通孔を形成しない金属ピンの場合は、隣接する金属ピン間のギャップを狭くするのが容易であるため、コイル電極の巻数を容易に増やすことができる。
 また、金属ピンは、ビアホールに導電性ペーストを充填して形成されたビア導体やスルーホール導体と比較して比抵抗が低いため、コイル電極全体としての抵抗値を下げることができる。そのため、例えば、Q値などのコイル特性に優れたコイル部品を提供することができる。
 本発明によれば、外側導体と内側導体とが同じ体積で形成されたコイル部品と比較して、コイル電極の巻数が減少するという弊害を生じさせずに、金属成分の体積を増やすことができ、コイル部品の放熱特性の向上を図ることができる。また、外側導体と配線パターンの接続面を容易に増やすことができるため、コイル電極全体の低抵抗化を図ることができる。
本発明の第1実施形態にかかるコイル部品の断面図である。 図1のコイル部品の平面図である。 図1の配線パターンを説明するための図である。 本発明の第2実施形態にかかるコイル部品を示す図である。 本発明の第3実施形態にかかるコイル部品を示す図である。 本発明の第4実施形態にかかるコイル部品を示す図である。 配線パターンの変形例を示す図である。 本発明の第5実施形態にかかるコイル部品を示す図である。 従来のコイル部品の斜視図である。
 <第1実施形態>
 本発明の第1実施形態にかかるコイル部品1aについて、図1~図3を参照して説明する。なお、図1はコイル部品1aの断面図、図2はコイル部品1aの平面図、図3は配線パターン6a,6bを説明するための図である。また、図3(a)は上側配線パターン6aを除いた状態のコイル部品1aの平面図、図3(b)は下側配線パターン6bを除いた状態のコイル部品1aの平面図である。なお、図1は、図2のA-A矢視断面図である。また、図3(a)ではコイル電極4の端部に接続される入出力用の配線を図示省略している。
 この実施形態にかかるコイル部品1aは、図1~図3に示すように、コイルコア3が埋設された絶縁層2と、コイルコア3の周囲に巻回されたコイル電極4とを備え、高周波信号が使用される携帯電話機等の電子機器に搭載される。
 絶縁層2は、例えば、エポキシ樹脂などの樹脂で形成され、コイルコア3および後述する複数の金属ピン5a,5bを被覆するように、所定の厚みで形成される。
 コイルコア3は、Mn-Znフェライト等の一般的なコイルコアとして採用される磁性材料で形成されている。なお、この実施形態のコイルコア3は、円環状に形成されている。
 コイル電極4は、円環状のコイルコア3の周囲を螺旋状に巻回するものであり、絶縁層2の下面(本発明の「絶縁層の一方主面」に相当)に形成された複数の下側配線パターン6bと、各下側配線パターン6bそれぞれと複数の対を成すように絶縁層2の上面(本発明の「絶縁層の他方主面」に相当)に形成された複数の上側配線パターン6aと、所定の下側配線パターン6bと上側配線パターン6aとを接続する複数の内側導体50および外側導体51とを備える。
 各下側配線パターン6bは、一端がコイルコア3の内周側に配置され、他端がコイルコア3の外周側に配置された状態で周方向に配列される。各上側配線パターン6aは、各下側配線パターン6bと同様、一端がコイルコア3の内周側に配置され、他端がコイルコア3の外周側に配置された状態で周方向に配列される。また、この実施形態では、各上側、下側配線パターン6a,6bは、外周側から内周側に向かうにつれて先細りの形状で形成されている。
 各上側、下側配線パターン6a,6bは、CuやAg等の金属を含有する導電性ペーストを用いたスクリーン印刷により形成された下地電極7と、該下地電極7に、例えばCuめっきで積層された表面電極8との2層構造で形成されている。なお、各上側、下側配線パターン6a,6bは、1層構造であってもかまわない。この場合、下地電極7と同様、CuやAg等の金属を含有する導電性ペーストを用いたスクリーン印刷により形成することができる。ここで、上述の上側配線パターン6aが、本発明の「第2の配線パターン」に相当し、下側配線パターン6bが、本発明の「第1の配線パターン」に相当する。
 各内側導体50は、各下側配線パターン6bそれぞれの一端と、当該下側配線パターン6bと対を成す上側配線パターン6aの一端とを接続するものであり、この実施形態では、それぞれ1本の内側金属ピン5aで構成される。各内側金属ピン5aは、絶縁層2の厚み方向に立設された状態でコイルコア3の内周面に沿って1列に配列される。
 各外側導体51は、各下側配線パターン6bそれぞれの他端と、当該下側配線パターン6bと対を成す上側配線パターン6aの所定側(この実施形態では、反時計方向)に隣接する上側配線パターン6aの他端とを接続するものである。この実施形態では、絶縁層2の厚み方向に立設された複数の外側金属ピン5bが、コイルコア3の外周面に沿って1列に配列されており、周方向に連続する3本の外側金属ピン5bを一組として、1つの外側導体51が構成されている。
 また、各内側金属ピン5aおよび各外側金属ピン5bそれぞれの上端面は、絶縁層2の上面から露出し、各内側金属ピン5aおよび各外側金属ピン5bそれぞれの下端面は、絶縁層2の下面から露出して設けられる。これらの金属ピン5a,5bは、Cu、Au、Ag、AlやCu系の合金など、配線電極として一般的に採用される金属材料で形成されている。また、この実施形態では、各金属ピン5a,5bそれぞれは、略同じ太さおよび長さで円柱状に形成されている。なお、各上側、下側配線パターン6a,6bを形成する導電性ペーストは、CuやAgで形成されたフィラと有機溶剤などを混合して形成されるため、各金属ピン5a,5bは、各上側、下側配線パターン6a,6bと比較して比抵抗が低い。
 とこで、コイル電極4に大電流を流す場合には、コイル電極4からの発熱量が多くなる。この発熱量は、コイル電極4の抵抗値に概ね比例する。ここで、コイル電極4の抵抗値を下げる方策として、各内側、外側導体50,51の体積、特に、絶縁層2の厚み方向と垂直な断面の面積(以下、横断面積という)を大きくすることが考えられる。しかしながら、コイルコア3の内周側は、金属ピン5aの配置スペースが外周側よりも狭いため、各内側導体50の体積(例えば横断面積)を増やすことは、コイル電極4の巻数の減少に繋がる。
 そこで、この実施形態では、上述のように、コイルコア3の内周側に配置される内側導体50を1本の内側金属ピン5aで構成する一方、コイルコア3の外周側に配置される外側導体51を3本の外側金属ピン5bで構成して、内側導体50の横断面積(1本の内側金属ピン5aの横断面積)よりも外側導体51の横断面積(3本の外側金属ピン5bの横断面積の合計)を大きくしている。すなわち、外側導体51の体積を大きくするとともに、外側導体51と上側または下側配線パターン6a,6bとの接続面積を大きくすることで、コイル電極4の巻数を維持しつつ、コイル電極4全体の抵抗値の低減と、コイル部品1aの放熱特性の向上とを実現できるようになっている。
 なお、この実施形態では、各内側、外側金属ピン5a,5bは、円柱状に形成されているが、例えば、角柱状などに形成されていてもよい。また、各内側、外側金属ピン5a,5bに相当するものを、ビア導体などの柱状導体で形成してもかまわない。
 (コイル部品の製造方法)
 次に、コイル部品1aの製造方法の一例について、簡単に説明する。
 まず、平板状の転写板の一方主面に各金属ピン5a,5bを配置する。この場合、各金属ピン5a,5bの上端面を転写板の一方主面に固定し、各金属ピン5a,5bを立った状態で固定する。なお、各金属ピン5a,5bは、例えば、横断面が円形の金属線材(例えば、Cu、Au、Ag、Al、Cu系の合金)をせん断加工するなどして形成することができる。
 次に、離型層付き樹脂シート(平板状)の一方主面に樹脂層を形成する。この場合、樹脂シート、離型層、樹脂層の順番で配置し、樹脂層を未硬化状態で形成する。
 次に、各金属ピン5a,5bの下端面と樹脂層とが当接するように、転写板を樹脂シート上に反転搭載後、樹脂層の樹脂を硬化させる。
 次に、転写板を剥離した後、樹脂シート上の所定位置にコイルコア3を配置し、例えばエポキシ樹脂で各金属ピン5a,5bおよびコイルコア3をモールドして、樹脂シート上に絶縁層2を形成する。
 次に、離型層付き樹脂シートを剥離し、絶縁層2の表裏面を研磨または研削する。これにより、各金属ピン5a,5bの上端面が絶縁層2の上面から露出し、下端面が絶縁層2の下面から露出する。
 最後に、絶縁層2の上面に各上側配線パターン6aを形成し、絶縁層2の下面に各下側配線パターン6bを形成してコイル部品1aが完成する。各上側、下側配線パターン6a,6bは、例えば、Cu等の金属を含有する導電性ペーストを用いたスクリーン印刷などで形成することができる。また、この導電性ペーストで形成された配線パターン上にCuめっきを施すことで、各上側、下側配線パターン6a,6bを2層構造にしてもよい。また、各上側、下側配線パターン6a,6bの形成方法の他の例としては、例えば、板状部材の一方主面にCu箔を張り付けたものをエッチングにより所定のパターン形状(上側または下側配線パターン6a,6bの形状)に加工する。この板状部材は各上側、下側配線パターン6a,6bで個別に用意する。この場合、各上側、下側配線パターン6a,6bは、前記板状部材を用いた超音波接合により、各金属ピン5a,5bの上端面または下端面に接合することができる。
 したがって、上記した実施形態によれば、以下に示す効果が得られる。具体的には、コイルコア3が環状の場合、内周側と比べて外周側は設計スペースに比較的余裕がある。そこで、この設計スペースの自由度を利用して外側導体51の体積を内側導体50よりも大きく形成する。このようにすると、外側導体51と内側導体50とが同じ体積で形成されたコイル部品と比較して、金属成分の体積を増やすことができるため、コイル部品1aの放熱特性の向上を図ることができる。
 また、1つの外側導体51を3本の外側金属ピン5bで構成することで、配線パターン6a,6bとの接続面を容易に増やすことができるため、配線パターン6a,6bと外側導体51との接続抵抗を下げることができ、結果として、コイル電極4全体の低抵抗化を図ることができる。また、コイル電極4全体の抵抗値が低減することで、例えば、Q値などのコイル特性の向上を図ることができる。また、コイル電極4全体の抵抗値の低減とコイル部品1aの放熱特性の向上が実現することで、コイル部品1aの大電流対応が可能になる。
 また、コイルコア3の外周側に配置される外側導体51のみの体積や横断面積(3本の外側金属ピン5bの横断面積の合計)を大きくするため、コイル部品1aの放熱特性の向上やコイル電極4の低抵抗化を図るのに、コイル電極4の巻数が減少するという弊害も生じない。
 また、各金属ピン5a,5bを同じ形状(長さ、横断面積)にすると、各内側、外側導体50,51を形成するのに同じ材料(金属ピン5a,5b)を用いることができるため、コイル部品1aの製造コストを低減することができる。
 また、金属ピン5a,5bの場合は、絶縁層2に貫通孔の形成が必要なビア導体やスルーホール導体と比較して隣接する金属ピン5a,5b間のギャップを狭くするのが容易であるため、コイル電極4の巻数を容易に増やすことができる。また、金属ピン5a,5bは、ビアホールに導電性ペーストを充填して成るビア導体やスルーホール導体と比較して比抵抗が低いため、コイル電極4全体としての抵抗値を下げることができる。そのため、例えば、Q値などのコイル特性が優れたコイル部品1aを提供することができる。
 また、各外側金属ピン5bは、コイルコア3の外周面に沿って1列に配列されているため、各外側導体51の体積や横断面積を各内側導体50よりも大きくしても、コイル部品1aのサイズが大きくなるのを抑えることができる。
 <第2実施形態>
 本発明の第2実施形態にかかるコイル部品1bについて、図4を参照して説明する。なお、同図は下側配線パターン6bを除いた状態のコイル部品1bの平面図であり、図3(b)に対応する図である。
 この実施形態にかかるコイル部品1bが、図1~図3を参照して説明した第1実施形態のコイル部品1aと異なるところは、図4に示すように、各外側導体51を構成する外側金属ピン5bの本数が異なることと、外側金属ピン5bが、内側金属ピン5a(外部接続用の金属ピンを除く)よりも太く形成されていることである。その他の構成は、第1実施形態のコイル部品1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、各外側導体51それぞれが、2本の外側金属ピン5bで構成され、各外側金属ピン5bが、内側金属ピン5aよりも太く形成される。ここで、各外側金属ピン5bは、同じ太さ、長さで形成されている。一方、各内側金属ピン5aは、1本が外側金属ピン5bと同じ長さ、太さで形成され、残りが外側金属ピン5bよりも細く形成されている。太く形成された内側金属ピン5aは、外部接続用の金属ピンとして使用される。
 この構成によると、内側導体50と比較して外側導体51の体積や横断面積を大きくできるため、第1実施形態のコイル部品1aと同様の効果を得ることができる。
 <第3実施形態>
 本発明の第3実施形態にかかるコイル部品1cについて、図5を参照して説明する。なお、同図は下側配線パターン6bを除いた状態のコイル部品1cの平面図であり、図3(b)に対応する図である。
 この実施形態にかかるコイル部品1cが、図1~図3を参照して説明した第1実施形態のコイル部品1aと異なるところは、図5に示すように、各内側金属ピン5aが、各外側金属ピン5bよりも太く形成されていることである。その他の構成は、第1実施形態のコイル部品1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、各外側金属ピン5bは、同じ太さ、長さで形成され、各内側金属ピン5aも、同じ太さ、長さで形成される。そして、個々の内側金属ピン5aが、個々の外側金属ピン5bよりも太く形成される。この構成によると、第1実施形態のコイル部品1aと同様の効果が得られるほか、内側導体50と配線パターン6a,6bとの接続面積と、外側導体51と配線パターン6a,6bとの接続面積の差を小さくすることができる。この場合、内側導体50と配線パターン6a,6bとの接続抵抗と、外側導体51と配線パターン6a,6bとの接続抵抗との差を小さくすることができる。
 <第4実施形態>
 本発明の第4実施形態にかかるコイル部品1dについて、図6を参照して説明する。なお、同図(a)は上側配線パターン6aを除いた状態のコイル部品1dの平面図、同図(b)は下側配線パターン6bを除いた状態のコイル部品1dの平面図である。
 この実施形態にかかるコイル部品1dが、図1~図3を参照して説明した第1実施形態のコイル部品1aと異なるところは、図6に示すように、各内側導体50が2本の内側金属ピン5aで構成されていることと、各外側導体51が4本の外側金属ピン5bで構成されていることと、各下側配線パターン6bの形状が異なることである。その他の構成は、第1実施形態のコイル部品1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、1つの内側導体50が複数本(この実施形態では、2本)の内側金属ピン5aで構成され、1つの外側導体51が、内側導体50を構成する内側金属ピン5aの本数よりも多い本数(この実施形態では、4本)の外側金属ピン5bで構成される。このとき、各内側、外側金属ピン5a,5bは、同じ太さ、長さで形成されている。このようにすると、外側導体51の体積および横断面積を、内側導体50の体積および横断面積よりも大きくすることができる。
 また、平面視において、各上側配線パターン6aそれぞれは、コイルコア3の外側に位置する部分の形状が、当該上側配線パターン6aに接続される下側配線パターン6bのコイルコア3の外側に位置する部分の形状と略同じ形状に形成される。コイルコア3の内側に位置する部分の形状も、上下配線パターン6a,6bで略同じ形状に形成される。このようにすると、第1実施形態のコイル部品1aと同様の効果が得られるほか、各内側、外側導体50,51が複数本の金属ピン5a,5bで構成される場合でも、上下配線パターン6a,6bを容易に接続することができる。
 (下側配線パターンの変形例)
 次に、下側配線パターン6bの変形例について、図7を参照して説明する。なお、同図は下側配線パターン6bの変形例を示す図であり、各上側配線パターン6aおよびコイルコア3を図示省略している。
 コイル部品1dの各下側配線パターン6bの形状は、適宜、変更することができる。例えば、図7に示す本例の各下側配線パターン6bそれぞれは、平面視で、コイルコア3の外側に位置する部分および内側に位置する部分の形状は、上述のコイル部品1dと同様、上側配線パターン6aのコイルコア3の外側に位置する部分および内側に位置する部分の形状と略同じ形状に形成される。これに対して、各下側配線パターン6bそれぞれは、平面視でコイルコア3の外側に位置する部分と内側に位置する部分とを繋ぐ部分の形状が、上述の第4実施形態の下側配線パターン6bのものとは異なる。このような下側配線パターン6bの形状でも、第4実施形態のコイル部品1dと同様の効果を得ることができる。
 <第5実施形態>
 本発明の第5実施形態にかかるコイル部品1eについて、図8を参照して説明する。なお、同図(a)は上側配線パターン6aを除いた状態のコイル部品1eの平面図、同図(b)は下側配線パターン6bを除いた状態のコイル部品1eの平面図である。また、図8(a)ではコイル電極4の端部に接続される入出力用の配線を図示省略している。
 この実施形態にかかるコイル部品1eが、図1~図3を参照して説明した第1実施形態のコイル部品1aと異なるところは、図8に示すように、コイルコア3が長円形状を有することと、各内側、外側導体50a,50b,51a,51bの構成が異なることと、各上側、下側配線パターン6a,6bの形状が異なることである。その他の構成は、第1実施形態のコイル部品1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、コイルコア3は、中央の直線部3aと、両端の曲線部3bとで構成される長円形状を有する。ここで、直線部3aに配置された外側導体51aおよび内側導体50aは、同本数(この実施形態では、3本)の金属ピン5a,5bで構成される。一方、曲線部3bに配置された外側導体51bは、4本の外側金属ピン5bで構成され、内側導体50bは、2本の内側金属ピン5aで構成される。すなわち、コイルコア3の内側と外側とで、金属ピン5a,5bの配置スペースの余裕度がほぼ同じ直線部3aでは、内側、外側導体50a,51aを構成する金属ピン5a,5bの本数を同じに設定し、配置スペースの余裕度が異なる曲線部3bでは、内側導体50bを構成する内側金属ピン5aの本数を、外側導体51bを構成する外側金属ピン5bの本数よりも少なく設定している。
 この構成によると、コイル部品1eのコイルコア3が長円形状を有する場合において、第1実施形態のコイル部品1aと同様の効果を得ることができる。
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、絶縁層2を、例えば、セラミック材料で形成してもかまわない。
 また、絶縁層2の上下面に、各上側、下側配線パターン6a,6bを保護する保護膜を設けてもよい。この場合、保護膜を形成する材料として、例えば、エポキシ樹脂やポリイミド樹脂などが挙げられる。
 また、本発明は、環状のコイルコアが埋設された絶縁層と、コイルコアの周囲に巻回されたコイル電極とを備える種々のコイル部品に広く適用することができる。
 1a~1e  コイル部品
 2  絶縁層
 3  コイルコア
 4  コイル電極
 5a  内側金属ピン
 5b  外側金属ピン
 6a  上側配線パターン(第2の配線パターン)
 6b  下側配線パターン(第1の配線パターン)
 50,50a,50b  内側導体
 51,51a,51b  外側導体
 

Claims (7)

  1.  環状のコイルコアが埋設された絶縁層と、
     前記コイルコアの周囲に巻回されたコイル電極とを備え、
     前記コイル電極は、
     一端が前記コイルコアの内周側に配置されるとともに他端が前記コイルコアの外周側に配置され、前記絶縁層の一方主面に配列された複数の第1の配線パターンと、
     一端が前記コイルコアの内周側に配置されるとともに他端が前記コイルコアの外周側に配置され、前記各第1の配線パターンそれぞれと複数の対を成すように前記絶縁層の他方主面に配列された複数の第2の配線パターンと、
     前記コイルコアの内周側に配置され、前記各第1の配線パターンそれぞれの一端と、当該第1の配線パターンと対を成す前記第2の配線パターンの一端とを接続する複数の内側導体と、
     前記コイルコアの外周側に配置され、前記各第1の配線パターンそれぞれの他端と、当該第1の配線パターンと対を成す前記第2の配線パターンに隣接する前記第2の配線パターンの他端とを接続する複数の外側導体とを有し、
     少なくとも1つの前記第1の配線パターンでは、他端に接続される前記外側導体の前記絶縁層の厚み方向に垂直な断面の面積が、一端に接続される前記内側導体の前記絶縁層の厚み方向に垂直な断面の面積よりも大きく形成されていることを特徴とするコイル部品。
  2.  前記内側導体が、内側柱状導体で構成され、
     前記外側導体が、複数本の外側柱状導体で構成され、
     前記各外側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積の合計が、前記内側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積よりも大きいことを特徴とする請求項1に記載のコイル部品。
  3.  前記内側導体が、少なくとも2本の内側柱状導体で構成され、
     前記外側導体が、前記内側導体よりも多い本数の外側柱状導体で構成され、
     前記各外側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積の合計が、前記各内側柱状導体の前記絶縁層の厚み方向に垂直な断面の面積の合計よりも大きいことを特徴とする請求項1に記載のコイル部品。
  4.  前記外側柱状導体が、前記内側柱状導体よりも太く形成されていることを特徴とする請求項2または3に記載のコイル部品。
  5.  前記内側柱状導体が、前記外側柱状導体よりも太く形成されていることを特徴とする請求項2または3に記載のコイル部品。
  6.  前記各外側柱状導体が、前記コイルコアの外周に沿って1列に配列されていることを特徴とする請求項2ないし5のいずれかに記載のコイル部品。
  7.  前記内側柱状導体および前記外側柱状導体それぞれが、金属ピンで形成されていることを特徴とする請求項2ないし6のいずれかに記載のコイル部品。
PCT/JP2015/082077 2014-11-19 2015-11-16 コイル部品 WO2016080332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580060347.8A CN107077952B (zh) 2014-11-19 2015-11-16 线圈部件
JP2016560200A JP6390715B2 (ja) 2014-11-19 2015-11-16 コイル部品
US15/586,706 US11769623B2 (en) 2014-11-19 2017-05-04 Coil component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234936 2014-11-19
JP2014234936 2014-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/586,706 Continuation US11769623B2 (en) 2014-11-19 2017-05-04 Coil component

Publications (1)

Publication Number Publication Date
WO2016080332A1 true WO2016080332A1 (ja) 2016-05-26

Family

ID=56013869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082077 WO2016080332A1 (ja) 2014-11-19 2015-11-16 コイル部品

Country Status (4)

Country Link
US (1) US11769623B2 (ja)
JP (1) JP6390715B2 (ja)
CN (1) CN107077952B (ja)
WO (1) WO2016080332A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581121B1 (en) * 2017-09-19 2023-02-14 Embedded Systems Inc. Common mode choke
CN110136922B (zh) * 2018-02-09 2021-03-12 弘邺科技有限公司 具有导电胶成型的线圈导体的电感元件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516056A (ja) * 2007-01-11 2010-05-13 プラナーマグ インコーポレイテッド 平面型広帯域トランス

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709791A (en) * 1950-10-20 1955-05-31 Jr Robert L Anderson Saturable reactor
US4536733A (en) * 1982-09-30 1985-08-20 Sperry Corporation High frequency inverter transformer for power supplies
US5055816A (en) * 1989-06-26 1991-10-08 Motorola, Inc. Method for fabricating an electronic device
US6417754B1 (en) * 1997-12-08 2002-07-09 The Regents Of The University Of California Three-dimensional coil inductor
JP4019071B2 (ja) * 2004-07-12 2007-12-05 Tdk株式会社 コイル部品
US7271697B2 (en) * 2004-12-07 2007-09-18 Multi-Fineline Electronix Miniature circuitry and inductive components and methods for manufacturing same
DE102006025194A1 (de) * 2006-05-29 2007-12-06 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Induktiver Leitfähigkeitssensor
KR101443568B1 (ko) 2007-01-10 2014-09-23 코닌클리케 필립스 엔.브이. 오디오 디코더
US8203418B2 (en) 2007-01-11 2012-06-19 Planarmag, Inc. Manufacture and use of planar embedded magnetics as discrete components and in integrated connectors
US9070509B2 (en) 2007-01-11 2015-06-30 Tyco Electronics Corporation Method for manufacturing a planar electronic device having a magnetic component
DE102008037893B4 (de) * 2008-08-15 2015-11-05 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Induktiver Leitungsfähigkeitssensor
TWI394185B (zh) * 2009-07-01 2013-04-21 Delta Electronics Inc 磁性組件及其組裝方法
US8581114B2 (en) * 2009-11-12 2013-11-12 Planarmag, Inc. Packaged structure having magnetic component and method thereof
US9440378B2 (en) 2010-05-05 2016-09-13 Tyco Electronics Corporation Planar electronic device and method for manufacturing
KR101434351B1 (ko) * 2010-10-21 2014-08-26 티디케이가부시기가이샤 코일 부품 및 그 제조 방법
TW201340812A (zh) 2012-02-28 2013-10-01 Tyco Electronics Corp 平面式電子裝置及製造方法
TWI546000B (zh) * 2012-10-02 2016-08-11 健鼎科技股份有限公司 電路板封裝結構及其製造方法
JP5958548B2 (ja) * 2012-10-04 2016-08-02 愛知製鋼株式会社 マグネトインピーダンス素子およびその製造方法
US9312067B2 (en) * 2013-03-15 2016-04-12 Echostar Uk Holdings Limited Sheet formed inductive winding
CN106463237B (zh) * 2014-06-11 2018-08-31 株式会社村田制作所 线圈部件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516056A (ja) * 2007-01-11 2010-05-13 プラナーマグ インコーポレイテッド 平面型広帯域トランス

Also Published As

Publication number Publication date
US11769623B2 (en) 2023-09-26
JPWO2016080332A1 (ja) 2017-08-24
CN107077952B (zh) 2018-09-07
US20170236635A1 (en) 2017-08-17
JP6390715B2 (ja) 2018-09-19
CN107077952A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6226059B2 (ja) コイル部品およびコイルモジュール、並びに、コイル部品の製造方法
JP6365692B2 (ja) コイル部品
WO2017018109A1 (ja) フレキシブルインダクタ
CN106992056B (zh) 线圈部件
JP2016051765A (ja) インダクタ部品
JP6428792B2 (ja) コイル部品
JP6406354B2 (ja) インダクタ部品
JP6390715B2 (ja) コイル部品
WO2016063762A1 (ja) コイル部品
JP6838635B2 (ja) コイル部品
JP6447090B2 (ja) コイル部品
JP6607312B2 (ja) インダクタ部品
JP6439384B2 (ja) コイル部品
JP6432674B2 (ja) インダクタ部品
JP6520130B2 (ja) コイル部品
JP6573027B2 (ja) インダクタ部品
WO2016068067A1 (ja) コイル部品
JP2019033179A (ja) コイル部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860532

Country of ref document: EP

Kind code of ref document: A1