WO2016075197A1 - Dotierter katalysator-formkörper - Google Patents

Dotierter katalysator-formkörper Download PDF

Info

Publication number
WO2016075197A1
WO2016075197A1 PCT/EP2015/076343 EP2015076343W WO2016075197A1 WO 2016075197 A1 WO2016075197 A1 WO 2016075197A1 EP 2015076343 W EP2015076343 W EP 2015076343W WO 2016075197 A1 WO2016075197 A1 WO 2016075197A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxide
metal oxides
shaped body
dopants
Prior art date
Application number
PCT/EP2015/076343
Other languages
English (en)
French (fr)
Inventor
Anja Roscher
Hans-Jürgen EBERLE
Christoph RÜDINGER
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2016075197A1 publication Critical patent/WO2016075197A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • C07C67/055Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the invention relates to a doped shaped catalyst body and its use in processes for the preparation of vinyl acetate by means of gas phase oxidation of acetic acid and ethylene.
  • Suitable catalysts may contain as catalytically active components palladium and / or its compounds and alkali compounds, as well as additionally gold and / or its compounds (system Pd / alkali / Au).
  • the catalytically active components are applied to shaped bodies as catalyst supports.
  • Suitable support materials are metal oxides such as silicon dioxides, in particular pyrogenically prepared metal oxides such as fumed silicas.
  • the production of the shaped bodies from the metal-oxide powders is generally carried out by pressing or extrusion, if appropriate using binders and lubricants, in order to obtain stable shaped bodies.
  • Several types of catalyst are known in the prior art, for example, balls, (hole) cylinders or rings.
  • the catalyst molding is doped with other metals in addition to the equipment with the active components palladium, gold and alkali metal (potassium).
  • WO 2008/145395 A2 describes doped palladium-gold shell catalysts. It is described that the activity and
  • WO 2010/060649 A2 relates to a coated catalyst comprising a zirconium oxide-containing catalyst support which contains palladium, gold and potassium. It is claimed that the shell catalyst is additionally doped with at least one oxide of a metal selected from the group consisting of hafnium, titanium, niobium, tantalum, tungsten, magnesium, rhenium, yttrium and iron.
  • the object of the present invention was to increase the activity of catalysts for the production of vinyl acetate by means of gas phase oxidation of acetic acid and ethylene.
  • the invention relates to shaped catalyst bodies of metal oxides, which are equipped with palladium and gold and an alkali compound and dopants, characterized in that the catalyst shaped body having at least two dopants from the group consisting of the oxides of tungsten, titanium, zirconium, aluminum , Boron, iron and niobium are equipped.
  • Suitable metal oxides for the catalyst moldings are Silizi ⁇ oxide (Si x O y), aluminum oxide (Al x O y), titanium oxide (Ti x O y), zirconium ⁇ oxide (ZrxOy), cerium oxide (CexOy) or mixtures of these metal oxides.
  • Fumed silica is preferably used, particularly preferably silicon dioxide (Si02), such as WACKER HDK ® T40 from Wacker Chemie AG.
  • the dopants are used as ⁇ based in each case in an amount of 0.001 to 3.0 wt .-% each based on the total weight of metal oxide and dopants.
  • the amount of dopant is in each case 1.0 to 3.0 wt .-%, each based on the total weight of metal oxide and dopants.
  • the method can be used from DE 10 2006 058 800 AI, the relevant information is part of the application (incorporated by reference).
  • the metal oxide and the dopants are suspended in water, for example by means of a dissolver or planetary dissolver.
  • the solids content of the aqueous metal oxide / dopant suspension is preferably adjusted to values of 15 to 30% by weight.
  • the aqueous suspension of the metal oxide and the dopants is coagulated.
  • the mass thus obtained is then shaped into shaped articles, for example spheres, cylinders, perforated cylinders or rings.
  • the shaped catalyst bodies have a diameter of 1 to 20 mm, preferably 2 to 10 mm.
  • their length is preferably 1 to 10 mm.
  • rings with a length of 1 mm to 2 mm, an outer diameter of 3 mm to 5 mm, an inner diameter of 2 mm to 3 mm and a wall thickness of 0.5 mm to 1.5 mm.
  • the shaping is preferably carried out by means of extrusion, wherein the length of the extrudates is adjusted by cutting the extrudates accordingly with a cutting device.
  • the moldings thus obtained are then dried, preferably at a temperature of 25 ° C to 100 ° C.
  • the drying step is followed by the calcination of the moldings.
  • the calcination can be carried out in an oven under an air atmosphere, if appropriate under protective gas. Generally this is done to a temperature of Heated to 500 ° C to 1000 ° C.
  • the sintering time is generally between 2 and 10 hours.
  • the conversion of the catalyst molding in an active catalyst is done by applying one or more catalytically active compounds such as palladium and gold or their precursor compounds and the alkali compound.
  • the shaped catalyst bodies can be impregnated with a solution containing palladium salt and gold salt.
  • the support materials used can be impregnated with a basic solution.
  • the latter serves to transfer the palladium compound and gold compound into their hydroxides.
  • Suitable palladium salts are, for example, palladium chloride, sodium or potassium palladium chloride, palladium acetate or palladium nitrate.
  • Suitable gold salts are gold (III) chloride and tetrachloroauric (III) acid.
  • the compounds in the basic solution are preferably potassium hydroxide, sodium hydroxide or sodium metasilicate.
  • the reaction of the noble metal salt solution with the basic solution to form insoluble noble metal compounds can be slow and, depending on the preparation method, is generally completed after 1 to 24 hours. Thereafter, the water-insoluble noble metal compounds are treated with reducing agents. It can be made a gas phase reduction, for example with hydrogen, ethene or forming gas.
  • the chloride which may be present on the support can be removed by a thorough washing with water. After the wash, the catalyst preferably contains less than 500 ppm of chloride.
  • the catalyst precursor obtained after the reduction can be dried and finally treated with alkali metal acetates or alkali compounds which are under the reaction conditions in the production of vinyl acetate monomer completely or partially in alkali metal acetates, impregnated. Preferably, it can be impregnated with potassium acetate.
  • the finished catalyst can then be dried to a residual moisture of less than 5%. The drying can be carried out in air, optionally under nitrogen, as an inert gas.
  • the palladium content of the Pd / alkali / Au catalysts is 0.2 to 5.0 wt .-%, preferably 0.3 to 3.0 wt .-%, each based on the total weight of the shaped catalyst body.
  • the gold content of the Pd / alkali / Au catalysts is 0.2 to 5.0 wt .-%, preferably 0.3 to 3.0 wt .-%, each based on the total weight of the shaped catalyst body.
  • the alkali content of the Pd / alkali / Au catalysts is 0.5 to 15 wt .-%, preferably 1.0 to 12 wt .-%, each based on the total weight of the shaped catalyst body.
  • potassium is used as the alkali metal.
  • Another object of the invention is the use of the catalyst moldings of the invention in the production of vinyl acetate by gas phase oxidation of acetic acid and ethylene.
  • the catalyst moldings doped with the combination according to the invention show, in comparison to non-doped or only with a dopant doped catalyst moldings higher yield with high selectivity.
  • Comparative Example 1 4 kilograms of fumed silica (WACKER HDK ® T40) were stirred into 35 kilograms of deionized water. By addition of hydrochloric acid, a pH of 2.8 was set and kept constant. With constant stirring, an additional 4.5 kilograms of fumed silica (WACKER HDK® T40) were stirred in. After complete addition of the metal oxide powder was homogenized for a further 10 minutes before the suspension for a period of 45 minutes in a stirred ball mill with grinding beads of silicon nitride (diameter of the grinding beads 2.0 mm, degree of filling 70 vol .-%) under pH consistency at a pH of 2.8 was milled by the addition of further hydrochloric acid.
  • the angular velocity during the milling step was 11 meters per second.
  • an aqueous ammonia solution was added to the suspension with constant stirring until a pH of 6.2 was obtained and at this point gelation of the mass took place.
  • the resulting mass was extruded and cut in a ram extruder by a suitable tool.
  • the resulting molded articles - in this case rings of 1 mm in length, 4 mm in outer diameter and 2.5 mm in bore - were dried for 24 hours at a temperature of 85 ° C. and a relative humidity of 70% and then for calcined at 900 ° C for a period of 2 hours.
  • the rings had a surface area (BET surface area) of 212 m 2 / g and a pore volume of 0.99 ml / g. Bulk density was 202 grams per liter.
  • the catalyst was dried at a temperature of 80 ° C for a period of 5 hours in vacuo. Subsequently, the catalyst was treated with an aqueous ammonia solution containing 0.25% by weight of ammonia for a period washed for 45 hours. The catalyst was reduced at a temperature of 200 ° C for 5 hours with forming gas (95% N 2 /5% H 2 ). Subsequently, the catalyst was impregnated with acetic acid-containing Kaiiumacetat solution (71.65 grams of potassium acetate in 375 milliliters of acetic acid) and finally dried at a temperature of 80 ° C for a period of 5 hours in vacuo. The final catalyst had a concentration of 2.0 wt% palladium (7.4 g / l), 2.0 wt% gold (7.4 g / l) and 6.5 wt% potassium ( 24.1 g / l).
  • Example 2 Example 2:
  • the impregnation of the catalyst moldings with palladium, gold and potassium was likewise carried out analogously to Comparative Example 1.
  • the finished catalyst likewise had a concentration of 2.0% by weight of palladium, 2.0% by weight of gold and 6.5% by weight. -% potassium, and additionally 2.5 wt .-% tungsten, 2.5 wt .-% titanium, 2.5 wt .-% zirconium, 2.5 wt .-% aluminum, 0.003 wt .-% boron.
  • Activity and selectivity of the catalysts of Comparative Example 1 and Example 2 were measured over a period of 200 hours.
  • the catalysts were tested in an oil tempered flow reactor (reactor length 1200 mm, inner diameter 19 mm) at an absolute pressure of 9.5 bar and a space velocity (GHSV) of 3500 Nm3 / (m3 * h) with the following gas composition: 60 vol. % Ethene, 19.5% by volume of carbon dioxide, 13% by volume of acetic acid and 7.5% by volume of oxygen.
  • the catalysts were investigated in the temperature range from 130 ° C to 180 ° C, measured in the catalyst bed.
  • the reaction products were in the outlet of the reactor by means of online

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

Gegenstand der Erfindung sind Katalysator-Formkörper aus Metalloxiden, welche mit Palladium und Gold sowie einer Alkaliverbindung und Dotierstoffen ausgerüstet sind, dadurch gekennzeichnet, dass die Katalysator-Formkörper mit mindestens zwei Dotierstoffen aus der Gruppe bestehend aus den Oxiden von Wolfram, Titan, Zirkonium, Aluminium, Bor, Eisen und Niob ausgerüstet sind. Ein weiterer Gegenstand ist die Verwendung der Katalysator-Formkörper in Verfahren zur Herstellung von Vinylacetat mittels Gasphasenoxidation von Essigsäure und Ethylen.

Description

Dotierter Katalysator-Formkörper
Die Erfindung betrifft einen dotierten Katalysator-Formkörper und dessen Verwendung in Verfahren zur Herstellung von Vinylacetat mit- tels Gasphasenoxidation von Essigsäure und Ethylen.
Es ist bekannt, dass man Ethylen in der Gasphase mit Essigsäure und Sauerstoff an Festbettkatalysatoren zu Vinylacetat umsetzen kann. Geeignete Katalysatoren können als katalytisch aktive Komponenten Pal- ladium und/oder dessen Verbindungen und Alkaliverbindungen, sowie zusätzlich Gold und/oder dessen Verbindungen (System Pd/Alkali/Au) enthalten. Die katalytisch aktiven Komponenten sind auf Formkörpern als Katalysatorträger aufgetragen. Als Trägermaterialien eignen sich Metalloxide wie Siliziumdioxide, insbesondere pyrogen hergestellte Metalloxide wie pyrogene Siliziumdioxide. Die Herstellung der Formkörper aus den metalloxydischen Pulvern erfolgt in der Regel durch Pressen, oder Extrusion, gegebenenfalls unter Verwendung von Bindern und Gleitmitteln, um stabile Form- körper zu erhalten. Aus dem Stand der Technik sind mehrere Katalysatorformen bekannt, beispielsweise Kugeln, (Loch) Zylinder oder Ringe.
Zur Steigerung der Aktivität von solchen Katalysatoren wird der Katalysator-Formkörper zusätzlich zur Ausrüstung mit den Aktivkomponenten Palladium, Gold und Alkalimetall (Kalium) mit weiteren Metallen dotiert. In der WO 2008/145392 A2 wird beispielsweise die Dotierung mit Hafniumoxid Hf02 beansprucht .
In der WO 2008/145395 A2 werden dotierte Palladium-Gold-Schalenkata- lysatoren beschrieben. Es wird beschrieben, dass die Aktivität und
Selektivität bei der Vinylacetat-Herstellung unter Verwendung solcher Schalenkatalystoren gesteigert werden kann, wenn der Katalysatorträger mit zumindest einem Oxid eines Elements ausgewählt aus der Gruppe bestehend aus Lithium, Phosphor, Calcium, Vanadium, Chrom, Mangan, Eisen, Strontium, Niob, Tantal, Wolfram, Lanthan und den Seltenerdmetallen dotiert wird. Die WO 2010/060649 A2 betrifft einen Schalenkatalysator umfassend einen Zirkonoxid enthaltenden Katalysatorträger, welcher Palladium, Gold und Kalium enthält. Es wird beansprucht, dass der Schalenkataly- sator zusätzlich noch mit zumindest einem Oxid eines Metalls ausgewählt aus der Gruppe bestehend aus Hafnium, Titan, Niob, Tantal, Wolfram, Magnesium, Rhenium, Yttrium und Eisn dotiert ist.
Der vorliegenden Erfindung lag die Aufgabe zugrunde die Aktivität von Katalysatoren für die Herstellung von Vinylacetat mittels Gaspha- senoxidation von Essigsäure und Ethylen zu erhöhen.
Gegenstand der Erfindung sind Katalysator-Formkörper aus Metalloxiden, welche mit Palladium und Gold sowie einer AlkaliVerbindung und Dotierstoffen ausgerüstet sind, dadurch gekennzeichnet, dass die Katalysator-Formkörper mit mindestens zwei Dotierstoffen aus der Gruppe bestehend aus den Oxiden von Wolfram, Titan, Zirkonium, Aluminium, Bor, Eisen und Niob ausgerüstet sind. Als Metalloxide für den Katalysator-Formkörper geeignet sind Silizi¬ umoxid (SixOy) , Aluminiumoxid (AlxOy) , Titanoxid (TixOy) , Zirkonium¬ oxid (ZrxOy) , Ceroxid (CexOy) oder Mischungen dieser Metalloxide. Bevorzugt wird pyrogen hergestelltes Siliziumoxid verwendet, besonders bevorzugt Siliziumdioxid (Si02), beispielsweise WACKER HDK® T40 von der Wacker Chemie AG.
Bevorzugt wird mit einem Blend aus Wolframoxid, Titanoxid, Zirkonium¬ oxid, Aluminiumoxid und Boroxid dotiert. Die Dotierstoffe werden da¬ bei jeweils in einer Menge von 0,001 bis 3,0 Gew.-% jeweils bezogen auf das Gesamtgewicht aus Metalloxid und Dotierstoffe eingesetzt. Vorzugsweise beträgt die Menge an Dotierstoff jeweils 1,0 bis 3,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht aus Metalloxid und Dotierstoffe . Zur Herstellung der Katalysator-Formkörper kann das Verfahren aus der DE 10 2006 058 800 AI eingesetzt werden, deren diesbezügliche Angaben Teil der Anmeldung sind ( incorporated by reference) . Dazu werden das Metalloxid und die Dotierstoffe in Wasser suspendiert, bei- spielsweise mittels eines Dissolvers oder Planetendissolvers .
Der Feststoffgehalt der wässerigen Metalloxid/Dotierstoff -Suspension wird vorzugsweise auf Werte von 15 bis 30 Gew.-% eingestellt. Der pH- Wert der Metalloxid/Dotierstoff-Suspension wird während deren Her- Stellung in einem Bereich von pH = 2,0 bis 4,0 gehalten. Dies kann durch Zugabe einer Säure, beispielsweise Phosphorsäure, oder durch Zugabe von Base, beispielsweise wässerige Ammoniaklösung, erfolgen.
Im nächsten Schritt wird die wässerige Suspension des Metalloxids und der Dotierstoffe zur Koagulation gebracht. Im Falle von Siliziumdioxid kann das beispielsweise durch Verschiebung des pH-Wertes der Suspension in einen Bereich von pH = 5 bis 10 erfolgen.
Die damit erhaltene Masse wird dann zu den Formkörpern geformt, bei- spielsweise zu Kugeln, Zylindern, Lochzylindern oder Ringen. Im Allgemeinen haben die Katalysator-Formkörper einen Durchmesser von 1 bis 20 mm, bevorzugt von 2 bis 10 mm. Im Falle von Zylindern, Lochzylindern und Ringen beträgt deren Länge vorzugsweise 1 bis 10 mm. Am meisten bevorzugt werden Ringe mit einer Länge von 1 mm bis 2 mm, ei- nem Außendurchmesser von 3 mm bis 5 mm, einem Innendurchmesser von 2 mm bis 3 mm und einer Wandstärke von 0,5 mm bis 1,5 mm. Die Formgebung erfolgt vorzugsweise mittels Extrusion, wobei die Länge der Extrudaten dadurch eingestellt wird, dass die Extrudate mit einer Schneidvorrichtung entsprechend geschnitten werden.
Die damit erhaltenen Formkörper werden anschließend getrocknet, vorzugsweise bei einer Temperatur von 25°C bis 100°C. Dem Trocknungsschritt schließt sich die Kalzinierung der Formkörper an. Die Kalzinierung kann in einem Ofen unter Luftatmosphäre, gegebenenfalls unter Schutzgas, erfolgen. Im Allgemeinen wird dazu auf eine Temperatur von 500°C bis 1000°C erhitzt. Die Sinterzeit beträgt im Allgemeinen zwischen 2 und 10 Stunden.
Die Überführung des Katalysator-Formkörpers in einen aktiven Kataly- sator geschieht durch Aufbringen einer oder mehrerer katalytisch aktiver Verbindungen wie Palladium und Gold oder deren Precursor- Verbindungen und der Alkaliverbindung.
Zur Beladung mit Palladium und Gold können die Katalysator-Formkörper mit einer Palladiumsalz und Goldsalz enthaltenden Lösung imprägniert werden. Gleichzeitig mit der edelmetallhaltigen Lösung können die eingesetzten Trägermaterialien mit einer basischen Lösung imprägniert werden. Letztere dient zur Überführung der Palladiumverbindung und Goldverbindung in ihre Hydroxide. Geeignete Palladiumsalze sind bei- spielsweise Palladiumchlorid, Natrium- oder Kaliumpalladiumchlorid, Palladiumacetat oder Palladiumnitrat. Als Goldsalze eignen sich Gold (III) -Chlorid und Tetrachlorogold (III) -säure . Die Verbindungen in der basischen Lösung sind vorzugsweise Kaliumhydroxid, Natriumhydroxid oder Natriummetasilikat verwendet.
Die Umsetzung der Edelmetallsalzlösung mit der basischen Lösung zu unlöslichen Edelmetallverbindungen kann langsam erfolgen und ist je nach Präparationsmethode im Allgemeinen erst nach 1 bis 24 Stunden abgeschlossen. Danach werden die wasserunlöslichen Edelmetallverbin- düngen mit Reduktionsmitteln behandelt. Es kann eine Gasphasenreduktion beispielsweise mit Wasserstoff, Ethen oder Formiergas vorgenommen werden.
Vor und/oder nach der Reduktion der Edelmetallverbindungen kann das auf dem Träger gegebenenfalls vorhandene Chlorid durch eine gründliche Waschung mit Wasser entfernt werden. Nach der Waschung enthält der Katalysator bevorzugt weniger als 500 ppm Chlorid.
Die nach der Reduktion erhaltene Katalysatorvorstufe kann getrocknet und abschließend mit Alkaliacetaten oder AlkaliVerbindungen, die sich unter den Reaktionsbedingungen bei der Produktion von Vinylacetatmo- nomer ganz oder teilweise in Alkaliacetate umwandeln, imprägniert werden. Vorzugsweise kann mit Kaliumacetat imprägniert werden. Der fertige Katalysator kann anschließend bis auf eine Restfeuchte von weniger als 5 % getrocknet werden. Die Trocknung kann an Luft, gegebenenfalls unter Stickstoff, als Inertgas erfolgen.
Der Palladium-Gehalt der Pd/Alkali/Au-Katalysatoren beträgt 0,2 bis 5,0 Gew.-%, bevorzugt 0,3 bis 3,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Katalysator-Formkörper.
Der Gold-Gehalt der Pd/Alkali/Au-Katalysatoren beträgt 0,2 bis 5,0 Gew.-%, bevorzugt 0,3 bis 3,0 Gew.-% , jeweils bezogen auf das Gesamtgewicht der Katalysator-Formkörper.
Der Alkali-Gehalt der Pd/Alkali/Au-Katalysatoren beträgt 0,5 bis 15 Gew.-%, vorzugsweise 1,0 bis 12 Gew.-% , jeweils bezogen auf das Gesamtgewicht der Katalysator-Formkörper. Vorzugsweise wird Kalium als Alkalimetall verwendet. Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Katalysator-Formkörper bei der Herstellung von Vinyl- acetat mittels Gasphasenoxidation von Essigsäure und Ethylen.
Die mit der erfindungsgemäßen Kombination dotierten Katalysator- Formkörper zeigen im Vergleich zu nicht dotierten oder nur mit einem Dotierstoff dotierten Katalysator-Formkörpern höhere Ausbeute mit hoher Selektivität.
In den folgenden Beispielen wird die Leistungsfähigkeit der erfin- dungsgemäßen dotierten Katalysator-Formkörper mit der von herkömmlichen Katalysator-Formkörpern ohne Dotierung verglichen.
Beispiele : Vergleichsbeispiel 1: 4 Kilogramm pyrogene Kieselsäure (WACKER HDK® T40) wurden in 35 Kilogramm entionisiertem Wasser eingerührt. Durch Zugabe von Salzsäure wurde ein pH-Wert von 2,8 eingestellt und konstant gehalten. Unter ständigem Rühren wurden weitere 4,5 Kilogramm pyrogener Kieselsäure (WACKER HDK® T40) eingerührt. Nach abgeschlossener Zugabe des Metalloxid-Pulvers wurde für eine Dauer von weiteren 10 Minuten homogenisiert, bevor die Suspension für eine Dauer von 45 Minuten in einer Rührwerkskugelmühle mit Mahlperlen aus Siliciumnitrid (Durchmesser der Mahlperlen 2,0 mm, Füllgrad 70 Vol.-%) unter pH-Konstanz bei einem pH-Wert von 2,8 durch Zugabe weiterer Salzsäure vermählen wurde. Die Winkelgeschwindigkeit während des Mahlschrittes betrug 11 Meter pro Sekunde. Nach Abschluss der Mahlung wurde der Suspension unter ständigem Rühren eine wässrige Ammoniaklösung zugegeben, bis sich ein pH-Wert von 6,2 ergab und an diesem Punkt eine Vergelung der Masse erfolgte. Die erhaltene Masse wurde in einer Kolbenstrangpresse durch ein geeignetes Werkzeug verstrangt und geschnitten. Die erhaltenen Formkörper - in diesem Fall Ringe mit einer Länge von 1 mm, einem Außendurchmesser von 4 mm und einer Bohrung von 2,5 mm - wurden 24 Stunden lang getrocknet bei einer Temperatur von 85°C und einer Luftfeuchtigkeit von 70 % und anschließend für eine Dauer von 2 Stunden bei 900°C kalziniert. Die Ringe wiesen eine Oberfläche (BET- Oberfläche) von 212 m2/g und ein Porenvolumen von 0,99 ml/g auf. Die Schüttdichte betrug 202 Gramm pro Liter.
500 Gramm des Trägermaterials wurden mit 375 Millilitern einer wäss- rigen Lösung imprägniert, die 27,60 Gramm einer 41,8 %igen (Gew.-%) Lösung von Tetrachlorogoldsäure und 42,20 Gramm einer 20,8 %igen (Gew.-%) Lösung von Tetrachloropalladiumsäure enthielt. Nach einer Dauer von 2 Stunden wurde in einem nächsten Schritt der Katalysator bei einer Temperatur von 80°C für eine Dauer von 5 Stunden im Vakuum getrocknet. Anschließend wurden 236 Milliliter einer 1 molaren Natri- umcarbonatlösung zusammen mit 139 Millilitern destilliertem Wasser aufgebracht. Nach einer Dauer von 2 Stunden wurde der Katalysator bei einer Temperatur von 80°C für eine Dauer von 5 Stunden im Vakuum getrocknet. Anschließend wurde der Katalysator mit einer wässrigen Ammoniaklösung mit einem Anteil von 0,25 Gew.-% Ammoniak für eine Dauer von 45 Stunden gewaschen. Der Katalysator wurde bei einer Temperatur von 200 °C für eine Dauer von 5 Stunden mit Formiergas (95 % N2 / 5 % H2) reduziert. Anschließend wurde der Katalysator mit einer Essigsäure-haltigen Kaiiumacetat-Lösung imprägniert (71,65 Gramm Kaliumacetat in 375 Millilitern Essigsäure) und abschließend bei einer Temperatur von 80°C für eine Dauer von 5 Stunden im Vakuum getrocknet. Der fertige Katalysator hatte eine Konzentration von 2,0 Gew.-% Palladium (7,4 g/1) , 2,0 Gew.-% Gold (7,4 g/l)und 6,5 Gew.-% Kalium (24,1 g/1) . Beispiel 2:
Es wurde analog Vergleichsbeispiel 1 vorgegangen mit dem Unterschied, dass zusammen mit 4 Kilogramm pyrogener Kieselsäure (WACKER HDK® T40) noch 128 g Wolframoxid W203( 173 g Titanoxid Ti02, 139 g Zirkoniumoxid Zr02, 197 g Aluminiumoxid A1203 und 0,39 g Boroxid B203 in 35 Kilogramm entionisiertem Wasser eingerührt wurden.
Die Imprägnierung der Katalysator-Formkörper mit Palladium, Gold und Kalium erfolgte ebenfalls analog zu Vergleichsbeispiel 1. Der fertige Katalysator hatte ebenfalls eine Konzentration von 2,0 Gew.-% Palladium, 2,0 Gew.-% Gold und 6,5 Gew.-% Kalium, und zusätzlich noch 2,5 Gew.-% Wolfram, 2,5 Gew.-% Titan, 2,5 Gew.-% Zirkonium, 2,5 Gew.-% Aluminium, 0,003 Gew.-% Bor. Aktivität und Selektivität der Katalysatoren aus dem Vergleichsbeispiel 1 und dem Beispiel 2 wurden über die Dauer von 200 Stunden gemessen. Die Katalysatoren wurden in einem Öl temperierten Strömungsreaktor (Reaktorlänge 1200 mm, Innendurchmesser 19 mm) bei einem absoluten Druck von 9,5 bar und einer Raumgeschwindigkeit (GHSV) von 3500 Nm3/(m3*h) mit folgender Gaszusammensetzung geprüft: 60 Vol.-% Ethen, 19,5 Vol.-% Kohlendioxid, 13 Vol.-% Essigsäure und 7,5 Vol.-% Sauerstoff. Die Katalysatoren wurden im Temperaturbereich von 130°C bis 180°C, gemessen im Katalysatorbett, untersucht. Die Reaktionsprodukte wurden im Ausgang des Reaktors mittels online
Gaschromatographie analysiert. Als Maß für die Katalysatoraktivität wurde die Raum- Zeit-Ausbeute des Katalysators in Gramm Vinylacetatmo- nomer pro Stunde und Liter Katalysator (g (VAM) /lKat*h) bestimmt. Kon lendioxid, das insbesondere durch die Verbrennung von Ethen gebildet wird, wurde ebenfalls bestimmt und zur Beurteilung der Katalysatorse lektivität herangezogen.
Tabelle 1
Figure imgf000009_0001
* = 2,5 Gew.-% Wolfram, 2,5 Gew.-% Titan, 2,5 Gew.-% Zirkonium, 2,5 Gew.-% Aluminium, 0,003 Gew.-% Bor

Claims

Patentansprüche :
1. Katalysator-Formkörper aus Metalloxiden, welche mit Palladium und Gold sowie einer AlkaliVerbindung und Dotierstoffen ausgerüstet sind, dadurch gekennzeichnet, dass die Katalysator- Formkörper mit mindestens zwei Dotierstoffen aus der Gruppe bestehend aus den Oxiden von Wolfram, Titan, Zirkonium, Aluminium, Bor, Eisen und Niob ausgerüstet sind.
2. Katalysator-Formkörper aus Metalloxiden nach Anspruch 1, dadurch gekennzeichnet, dass mit einem Dotierstoff-Blend aus Wolfram- oxid, Titanoxid, Zirkoniumoxid, Aluminiumoxid und Boroxid dotiert wird.
3. Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dotierstoffe jeweils in einer Menge von 0,001 bis 3,0 Gew.-% jeweils bezogen auf das Gesamtgewicht aus Metalloxid und Dotierstoffe eingesetzt werden.
4. Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass als Metalloxid Siliziumoxid, Aluminiumoxid, Titanoxid, Zirkoniumoxid, Ceroxid oder Mischungen dieser Metalloxide eingesetzt werden.
5. Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass der Palladium-Gehalt 0,2 bis 3,5 Gew. -% beträgt .
6. Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass der Gold-Gehalt 0,2 bis 3,5 Gew.-%, beträgt .
7. Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass der als AlkaliVerbindung Kalium eingesetzt wird, wobei der Kalium-Gehalt 0,5 bis 15 Gew.-% beträgt . Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass diese Ringe mit einer Länge von 1 mm bis 2 mm, einem Außendurchmesser von 3 mm bis 5 mm, einem Innendurchmesser von 2 mm bis 3 mm und einer Wandstärke von 0,5 mm bis 1,5 mm sind .
Verwendung der Katalysator-Formkörper aus Metalloxiden nach Anspruch 1 bis 8 bei der Herstellung von Vinylacetat mittels Gas- phasenoxidation von Essigsäure und Ethylen.
PCT/EP2015/076343 2014-11-14 2015-11-11 Dotierter katalysator-formkörper WO2016075197A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014223241.4 2014-11-14
DE102014223241.4A DE102014223241A1 (de) 2014-11-14 2014-11-14 Dotierter Katalysator-Formkörper

Publications (1)

Publication Number Publication Date
WO2016075197A1 true WO2016075197A1 (de) 2016-05-19

Family

ID=54545118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/076343 WO2016075197A1 (de) 2014-11-14 2015-11-11 Dotierter katalysator-formkörper

Country Status (2)

Country Link
DE (1) DE102014223241A1 (de)
WO (1) WO2016075197A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019072655A1 (de) 2017-10-13 2019-04-18 Wacker Chemie Ag Katalysator zur herstellung von vinylacetat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808136A (en) * 1995-01-23 1998-09-15 Degussa Aktiengesellschaft Catalyst, method of its production and its use for the production of vinyl acetate monomer
US20030195114A1 (en) * 2001-12-21 2003-10-16 Thomas Tacke Supported catalyst
US6821922B1 (en) * 1998-09-24 2004-11-23 Degussa - Huls Ag Supported catalyst for the production of vinyl acetate monomer
DE102006058813A1 (de) * 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur Herstellung von stabilen, hochreinen Formkörpern aus pyrogenen Metalloxiden ohne Zusatz von Bindemitteln

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006058800A1 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur Herstellung von Katalysatoren und deren Verwendung für die Gasphasenoxidation von Olefinen
DE102007025443A1 (de) 2007-05-31 2008-12-04 Süd-Chemie AG Pd/Au-Schalenkatalysator enthaltend HfO2, Verfahren zu dessen Herstellung sowie dessen Verwendung
DE102007025362A1 (de) 2007-05-31 2008-12-11 Süd-Chemie AG Dotierter Pd/Au-Schalenkatalysator, Verfahren zu dessen Herstellung sowie dessen Verwendung
DE102008059342A1 (de) 2008-11-30 2010-06-10 Süd-Chemie AG Schalenkatalysator, Verfahren zu seiner Herstellung sowie Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808136A (en) * 1995-01-23 1998-09-15 Degussa Aktiengesellschaft Catalyst, method of its production and its use for the production of vinyl acetate monomer
US6821922B1 (en) * 1998-09-24 2004-11-23 Degussa - Huls Ag Supported catalyst for the production of vinyl acetate monomer
US20030195114A1 (en) * 2001-12-21 2003-10-16 Thomas Tacke Supported catalyst
DE102006058813A1 (de) * 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur Herstellung von stabilen, hochreinen Formkörpern aus pyrogenen Metalloxiden ohne Zusatz von Bindemitteln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VOM FACHBEREICH: "Development of high performance vinyl acetate monomer (VAM) catalysts", 1 January 2009 (2009-01-01), XP055246546, Retrieved from the Internet <URL:http://tuprints.ulb.tu-darmstadt.de/2003/1/Development_of_high_performance_vinyl_acetate_monomer_(VAM)_catalysts.pdf> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019072655A1 (de) 2017-10-13 2019-04-18 Wacker Chemie Ag Katalysator zur herstellung von vinylacetat
DE102017218375A1 (de) 2017-10-13 2019-04-18 Wacker Chemie Ag Katalysator zur Herstellung von Vinylacetat

Also Published As

Publication number Publication date
DE102014223241A1 (de) 2016-05-19

Similar Documents

Publication Publication Date Title
EP1189694B1 (de) Katalysatoren für die gasphasenoxidation von ethylen und essigsäure zu vinylacetat, verfahren zu ihrer herstellung und ihre verwendung
EP1106247B1 (de) Katalysator, Verfahren zu seiner Herstellung und seine Verwendung für die Produktion von Vinylacetatmonomer
WO2009010167A1 (de) Temperaturstabiler katalysator für die chlorwasserstoffgasphasenoxidation
EP2696973A1 (de) Katalysator für die herstellung von ehtylenoxid
WO2012025483A2 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
WO2013060628A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
DE10163180A1 (de) Trägerkatalysator
DE10024437A1 (de) Verfahren zur selektiven Herstellung von Essigsäure durch katalytische Oxidation von Ethan
EP3012021B1 (de) Verfahren zur herstellung einer katalysatorzusammensetzung, die mindestens ein edelmetall und mindestens ein si-zr-mischoxid umfasst
EP2401072B1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und silber und/oder calcium
WO2012140613A1 (de) Verfahren zur herstellung eines katalysators zur oxidation von ethen zu ethylenoxid
EP2608880B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
WO2016075197A1 (de) Dotierter katalysator-formkörper
DE102007047430A1 (de) Katalysator
WO2016075201A1 (de) Katalysator-formkörper für die herstellung von vinylacetat
DE102007033113A1 (de) Temperaturstabiler Katalysator für die Chlorwasserstoffgasphasenoxidation
EP2696972B1 (de) Zink enthaltender katalysator für die herstellung von ethylenoxid
WO2016075200A1 (de) Verfahren zur herstellung von vinylacetat
WO2016150894A1 (de) Katalysator-formkörper für die herstellung von vinylacetat
EP2408555B1 (de) Urankatalysator auf träger besonderer porengrössenverteilung und verfahren zu dessen herstellung, sowie dessen verwendung
DE102015222196A1 (de) Verfahren zur Herstellung von Acrylsäure
EP2844646A1 (de) Katalysator zur epoxidation von alkenen
WO2015132246A1 (de) Katalysator für die fischer-tropsch-synthese und verfahren zu seiner herstellung enthaltend ein trägermaterial auf basis von mit magnesium modifizierter pyrogener kieselsäure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15794888

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15794888

Country of ref document: EP

Kind code of ref document: A1