WO2016072335A1 - 無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法 - Google Patents

無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法 Download PDF

Info

Publication number
WO2016072335A1
WO2016072335A1 PCT/JP2015/080449 JP2015080449W WO2016072335A1 WO 2016072335 A1 WO2016072335 A1 WO 2016072335A1 JP 2015080449 W JP2015080449 W JP 2015080449W WO 2016072335 A1 WO2016072335 A1 WO 2016072335A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation conductor
seal
rfic element
terminal electrode
main surface
Prior art date
Application number
PCT/JP2015/080449
Other languages
English (en)
French (fr)
Inventor
加藤 登
邦宏 駒木
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to EP20174965.2A priority Critical patent/EP3719707B1/en
Priority to JP2016502128A priority patent/JP5907365B1/ja
Priority to EP15856392.4A priority patent/EP3091483B1/en
Priority to CN201580009081.4A priority patent/CN106030618B/zh
Publication of WO2016072335A1 publication Critical patent/WO2016072335A1/ja
Priority to US15/234,304 priority patent/US9836686B2/en
Priority to US15/790,095 priority patent/US10210449B2/en
Priority to US16/234,665 priority patent/US20190138873A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07752Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna using an interposer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07722Physical layout of the record carrier the record carrier being multilayered, e.g. laminated sheets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07728Physical layout of the record carrier the record carrier comprising means for protection against impact or bending, e.g. protective shells or stress-absorbing layers around the integrated circuit

Definitions

  • the present invention relates to a wireless communication device and a method for manufacturing the same, and more particularly to a radio frequency integrated circuit (RFIC) element having a radiation conductor base material having a principal surface on which a radiation conductor is formed and a principal surface having terminal electrodes formed thereon.
  • RFIC radio frequency integrated circuit
  • the present invention relates to a wireless communication device such as an RFID (Radio Frequency IDentifier) tag including the same and a manufacturing method thereof.
  • the present invention also relates to a seal with an RFIC element and a method for manufacturing the same, and in particular, an RFIC including an RFIC element having a main surface on which terminal electrodes are formed and a seal having an adhesive surface whose size exceeds the size of the main surface of the RFIC element.
  • the present invention relates to a seal with an element and a manufacturing method thereof.
  • RFID inlays and RFID tags are manufactured by mounting an RFIC element (a package or strap in which an RFIC chip is sealed) on a radiation conductor base material on which a radiation conductor (radiation pattern) is formed.
  • RFIC element a package or strap in which an RFIC chip is sealed
  • radiation conductor base material on which a radiation conductor (radiation pattern) is formed.
  • connection method between the RFIC element and the radiation conductor connection by soldering and melting of solder (see Patent Document 1 or Patent Document 2) or connection by ultrasonic bonding (see Patent Document 3 or Patent Document 4) is adopted.
  • connection by soldering and melting the solder it is necessary to heat the connection part to the melting point of the solder or higher. Since the radiation conductor base material is required to have high heat resistance, an inexpensive material such as PET cannot be used as the radiation conductor base material. Further, in connection by ultrasonic bonding, it is necessary to melt the bumps by ultrasonic waves, so that it takes time to complete the bonding.
  • a main object of the present invention is to provide a wireless communication device that can be manufactured in a simple manner and that can reduce the concern that the reliability of the connection between the RFIC element and the radiation conductor is reduced, and a manufacturing direction thereof. It is to be.
  • Another object of the present invention is to provide a seal with an RFIC element capable of simply manufacturing a wireless communication device and alleviating the concern that the reliability of the connection between the RFIC element and the radiation conductor is reduced, and the production thereof. Is to provide a method.
  • a wireless communication device includes a radiation conductor base material having a radiation conductor and having a principal surface on which at least a part of the radiation conductor is formed, an RFIC element having a principal surface on which a terminal electrode is formed, and a seal
  • the RFIC element has a main surface of the base material for the radiating conductor so that the terminal electrode is in direct or indirect and slidable contact with a part of the radiating conductor.
  • the seal is affixed to the radiation conductor base material so as to cover at least a part of the RFIC element with an adhesive surface, and the RFIC element is fixed to the radiation conductor base material.
  • the seal includes a protective material provided on the main surface of the seal base material, and is attached to the radiation conductor base material so that the protective material overlaps the terminal electrode in plan view.
  • a part of the radiation conductor has a first slit
  • the protective material of the seal has a second slit
  • the base material for the radiation conductor is arranged so that the second slit overlaps the first slit in plan view. It is pasted.
  • the adhesive surface has a first adhesive region and a second adhesive region surrounding the first adhesive region, and the first adhesive region and the second adhesive region adhere to the RFIC element and the substrate for the radiation conductor, respectively.
  • the radiation conductor substrate, the RFIC element, and the seal are flexible.
  • the RFIC element includes an RFIC chip for processing a high-frequency signal, a power supply circuit having a resonance frequency corresponding to a communication frequency, a substrate on which the RFIC chip is mounted and the power supply circuit is incorporated, and the terminal electrode is It is formed on the main surface of the substrate and connected to the RFIC chip via a power feeding circuit.
  • the seal with an RFIC element includes an RFIC element having a main surface on which a terminal electrode is formed, and a seal having an adhesive surface on a sealing substrate, and the RFIC element is disposed so that the terminal electrode is exposed.
  • a seal with an RFIC element that is attached to a partial area of the adhesive surface, and the other partial area of the adhesive surface is one of the radiation conductors having terminal electrodes formed on the main surface of the base material for the radiation conductor. This is a region that adheres to the base material for radiation conductor so as to contact the part directly or indirectly and slidably.
  • a method of manufacturing a wireless communication device includes a radiation conductor base material having a main surface on which at least a part of the radiation conductor is formed, and an RFIC element having a main surface on which terminal electrodes are formed. And a preparation step for preparing a seal having an adhesive surface on a base material for sealing, and an RFIC element is attached to a partial area of the adhesive surface of the seal so that the terminal electrode is exposed to produce a seal with an RFIC element The other part of the adhesive surface of the seal with the RFIC element so that the terminal electrode contacts the part of the radiation conductor directly or indirectly and slidably. A second attaching step for attaching to the main surface of the material.
  • a method of manufacturing a wireless communication device includes an RFIC element having a main surface on which a terminal electrode is formed, and a seal having an adhesive surface on a base material for sealing, and the RFIC so that the terminal electrode is exposed.
  • the method for producing a seal with an RFIC element includes a preparation step of preparing an RFIC element having a main surface on which a terminal electrode is formed, a seal having an adhesive surface on a sealing substrate, and exposing the terminal electrode.
  • a method for producing a seal with an RFIC element wherein the RFIC element is attached to an adhesive surface of the seal so as to produce a seal with an RFIC element.
  • the terminal electrode is a member that is affixed to the base material for radiation conductor so that the terminal electrode is in direct or indirect and slidable contact with at least a part of the radiation conductor formed on the main surface of the substrate.
  • the RFIC element is connected to the radiation conductor using a seal, an inexpensive material such as PET can be adopted as the base material for the radiation conductor, and the time for connecting the RFIC element to the radiation conductor can be shortened. Thereby, a wireless communication device can be manufactured simply.
  • the terminal electrode of the RFIC element stays only in contact with the radiation conductor, no stress is concentrated on the contact portion between the terminal electrode and the end even if the base material for the radiation conductor is bent. As a result, the concern that the reliability of the connection between the RFIC element and the radiation conductor is reduced is reduced.
  • FIG. (A) is a perspective view showing a state of viewing the RFID tag of the first embodiment obliquely from above
  • FIG. (B) is an exploded perspective view showing a state of disassembling the RFID tag of the first embodiment and viewing from obliquely above.
  • FIG. (A) is a top view which shows the state which looked at the base material for radiation conductors of 1st Example from right above
  • (B) shows the state which looked at the base material for radiation conductors of 1st Example from right side. It is a side view
  • (C) is the bottom view which shows the state which looked at the base material for radiation conductors of 1st Example from right below.
  • FIG. 4 is a bottom view showing a state in which the seal of the first embodiment is viewed from directly below. It is sectional drawing which shows the structure of the RFIC element of 1st Example.
  • FIG. 16 is a circuit diagram showing an equivalent circuit of the RFIC element shown in FIG. 15.
  • FIG. 16 is a bottom view showing a state in which the RFIC element shown in FIG. 15 is viewed from directly below.
  • A) is a top view showing a state in which an upper insulating layer of the multilayer substrate forming the RFIC element shown in FIG. 15 is viewed from directly above
  • B) is a middle view of the multilayer substrate forming the RFIC element shown in FIG. It is a top view which shows the state which looked at the insulating layer of No.
  • FIG. 18 is a cross-sectional view showing an A1-A1 cross section of the insulating layer shown in FIG. 18 (A)
  • (B) is a cross-sectional view showing a B1-B1 cross section of the insulating layer shown in FIG. 18 (B)
  • FIG. 19C is a cross-sectional view showing a C1-C1 cross section of the insulating layer shown in FIG. It is an illustration figure which shows an example of the generation state of the magnetic field on an equivalent circuit.
  • (A) is the perspective view which shows the state which looked at the RFID tag of the other Example which deform
  • (B) is the RFID tag of the other Example which deform
  • an RFID tag 10 is an RFID tag having a communication frequency typically in the 900 MHz band as an example of a wireless communication device. From a plate-shaped radiation conductor base 12 having a main surface, a plate-like RFIC element 16 having a rectangular main surface that is much smaller than the main surface of the radiation conductor base 12, and a main surface of the RFIC element 16 And a thin film-like seal 18 having a large circular main surface.
  • the X axis is assigned to the length direction of the radiating conductor base material 12
  • the Y axis is assigned to the width direction of the radiating conductor base material 12
  • the thickness direction of the radiating conductor base material 12 is set. Is assigned the Z axis.
  • the radiation conductor substrate 12 has flexibility, and strip-shaped radiation conductors 14a and 14b are formed on the main surface (specifically, the upper surface).
  • the Each of the radiation conductors 14a and 14b has a length that is less than half the length of the radiation conductor base material 12 and a width that is less than half the width of the radiation conductor base material 12, and the radiation conductor base material 12
  • the central position of the upper surface in the Y-axis direction extends along the X-axis.
  • the radiation conductor 14a is disposed on the negative side in the X-axis direction
  • the radiation conductor 14b is disposed on the positive side in the X-axis direction.
  • the RFIC element 16 has a flexible substrate 16c made of a thermoplastic resin having high heat resistance such as LCP resin or polyimide resin.
  • a first terminal electrode 16a and a second terminal electrode 16b are formed on the main surface (specifically, the lower surface) of the substrate 16c.
  • the first terminal electrode 16a is provided at the negative end in the X-axis direction
  • the second terminal electrode 16b is provided at the positive end in the X-axis direction
  • the distance between the first terminal electrode 16a and the second terminal electrode 16b is This substantially coincides with the interval between the first end 141a and the second end 141b described above.
  • the seal 18 has a flexible seal substrate 18a such as paper or resin.
  • An adhesive 18b such as acrylic resin or epoxy resin is applied to the lower surface of the seal substrate 18a, and the lower surface functions as an adhesive surface.
  • a rectangular first adhesive region R1 having substantially the same size as the size of the main surface of the substrate 16c is assigned to the center of the adhesive surface.
  • a second adhesive region R2 is assigned around the first adhesive region R1, and the first adhesive region R1 is surrounded by the second adhesive region R2.
  • the long side and the short side of the rectangle forming the first adhesive region R1 extend along the X axis and the Y axis, respectively. Based on this, a reference line LN1 extending along the X axis is drawn at the center of the upper surface of the seal base material 18a in the Y axis direction. In addition, a reference line LN2 indicating the outer edge of the first adhesive region R1 is drawn on the lower surface of the seal substrate 18a. The arrangement of the first adhesive region R1 can be easily grasped from the upper surface side and the lower surface side of the seal 18 by referring to the reference lines LN1 and LN2.
  • the RFIC element 16 includes a first terminal electrode 16a slidably contacting the first end 141a and a second terminal electrode 16b slidable. It arrange
  • the seal 18 is affixed to the radiation conductor substrate 12 so as to cover the RFIC element 16 disposed on the upper surface of the radiation conductor substrate 12.
  • the first adhesive region R1 adheres to the substrate 16c
  • the second adhesive region R2 adheres to the radiation conductor base 12 and the radiation conductors 14a and 14b formed on the upper surface thereof. Since the first adhesive region R1 is surrounded by the second adhesive region R2, the RFIC element 16 is firmly fixed to the radiation conductor substrate 12. Further, the RFIC element 16 is a portion where the terminal electrodes 16 a and 16 b are most protruded with respect to the seal 18.
  • the seal 18 When this seal 18 is affixed to the radiation conductor substrate 12, the seal 18 is curved and affixed to the radiation conductor substrate 12 so as to cover the RFIC element 16, so that the seal 18 is in an original flat state after being affixed. Stress is generated to return to Since this stress presses the electrode terminals 16a and 16b of the RFIC element 16 against the radiation conductors 14a and 14b, the electrical connection between the electrode terminals 16a and 16b and the radiation conductors 14a and 14b is stably maintained. As a result, the RFIC element 16 can be slidable, and a stable electrical connection can be created.
  • the radiation conductor substrate 12 and / or the seal 18 are made transparent, it is easy to determine whether the first terminal electrode 16a and the second terminal electrode 16b of the RFIC element 16 are connected to the radiation conductors 14a and 14b. Can be confirmed.
  • an RFIC chip 16e and a power feeding circuit 16d are mounted on a substrate 16c forming the RFIC element 16.
  • the RFIC chip 16e is a circuit for processing RFID signals (high frequency signals), and has a first input / output terminal and a second input / output terminal (both not shown).
  • the power feeding circuit 16d has a resonance circuit having a resonance frequency corresponding to the communication frequency (carrier frequency), and is a circuit for expanding the pass band of the communication signal.
  • the RFIC chip 16e is connected to the radiation conductors 14a and 14b through the power feeding circuit 16d.
  • the power feeding circuit 16d built in the substrate 16c has a resonance frequency corresponding to the communication frequency
  • the communication characteristics of the RFID tag 10 are the size of the radiation conductors 14a and 14b, the size of the object to which the RFID tag 10 is attached. It does not depend greatly on the material, the joining state between the radiation conductors 14a and 14b and the RFIC element 16, or the like. Therefore, the radiation conductors 14a and 14b do not necessarily have an electrical length that is an integral multiple of ⁇ / 2.
  • the power feeding circuit 16d resonates and current flows in the circuit in a concentrated manner.
  • the power feeding circuit 16d needs to be made of a material having high conductivity.
  • the radiation conductor is a conductor with electric field (voltage) distribution, If the contact resistance between the electrode terminals 16a and 16b and the radiation conductors 14a and 14b is several tens of ⁇ or less, the electrical characteristics of the RFID tag 10 are unlikely to deteriorate.
  • the first terminal electrode 16a and the second terminal electrode 16b formed on the lower surface of the substrate 16c are connected to the first input / output terminal and the second input / output terminal of the RFIC chip 16e, respectively, via the feeder circuit 16d.
  • the RFIC element 16 is attached to the lower surface of the seal 18. Specifically, the upper surface of the substrate 16 c that forms the RFIC element 16 is attached to the first adhesive region R 1 of the seal 18. Thereby, the seal 20 with the RFIC element in which the first terminal electrodes 16a and 16b are exposed to the outside is manufactured.
  • the seal 20 with the RFIC element is then attached to the base material 12 for the radiation conductor.
  • the first terminal electrode 16a is in contact with or pressed against the first end 141a of the radiation conductor 14a
  • the second terminal electrode 16b is in contact with or pressed against the second end 141b of the radiation conductor 14b.
  • the second adhesive region R2 adheres to the radiation conductor base 12 and the radiation conductors 14a and 14b.
  • the RFID tag 10 is completed.
  • the state which the 1st terminal electrode 16a contacted the 1st edge part 141a of the radiation conductor 14a is expanded and shown in FIG.
  • the seal 18a is curved so as to cover the RFIC element 16 and is attached to the base member 12 for radiation conductor. Therefore, after the attachment, a stress is generated that the seal 18 tends to return to the original flat state. This stress becomes a pressure for pressing the electrode terminal 16a of the RFIC element 16 against the radiating conductor 141a. After the sticking, the electrode terminal 16a is stably maintained in electrical connection with the radiating conductor 141a by this pressure. As a result, the RFIC element 16 can be slidable, and a stable electrical connection can be created.
  • the material of the seal 18 may be a PET film or paper, and the adhesive may be a strong adhesive paste.
  • the seal 20 with the RFIC element may be attached to the mount 22 as shown in FIG.
  • a mount with a seal 24 By producing such a mount with a seal 24, it is possible to separate a business operator who is responsible for producing the seal 20 with an RFIC element and a business operator who manufactures the RFID tag 10 using the seal 20 with an RFIC element.
  • the business operator who manufactures the RFID tag 10 can freely change the shape of the tag, and the tag can be designed according to the application.
  • the RFID tag can be produced simply by sticking the seal 20 to the radiation conductor 14, it is possible to produce the RFID tag even without special equipment.
  • the RFID tag 10 can be simply manufactured. That is, an inexpensive material such as PET cannot be used as the base material 12 for the radiation conductor in the joining by heating and melting the solder, and it takes time to complete the joining in the ultrasonic joining.
  • an inexpensive conductor material such as an aluminum foil can be used as the radiation conductor
  • an inexpensive material such as PET can be employed as the radiation conductor substrate 12
  • the RFIC element 16 can be used as the radiation conductors 14a and 14b. Connection time can be shortened.
  • the manufacturing process of the RFID tag 10 is simplified. Note that paper may be used as the base material for the radiation conductor, and a conductive pattern drawn with conductive ink whose main component is a conductive material such as Ag may be used on the paper as the radiation conductor.
  • the RFIC element 16 is provided with a power feeding circuit 16d that widens the resonance frequency band, even with a simple mounting method in which the RFIC element 16 is fixed with the seal 18, desired communication characteristics can be obtained.
  • first terminal electrodes 16a and 16b of the RFIC element 16 remain in contact with the first end 141a of the radiating conductor 14a and the second end 141b of the radiating conductor 14b. That is, although the first terminal electrodes 16a and 16b are electrically connected to the first end 141a and the second end 141b, they are not physically or mechanically joined.
  • the radiation conductors 14a and 14b are formed to extend in a straight line along the X axis.
  • the radiation conductors 14a and 14b may be formed to meander with respect to the X axis (see FIG. 10).
  • the RFIC element 16 is arranged so as to straddle the first end 141a of the radiating conductor 14a and the second end 141b of the radiating conductor 14b, and the radiating conductors 14a and 14b function as a dipole antenna.
  • the loop-shaped radiation conductor 14 shown in FIG. 11 is formed on the upper surface of the radiation conductor base 12 and the RFIC element 16 is disposed so as to straddle both ends of the radiation conductor 14, the radiation conductor 14 is looped. Functions as an antenna.
  • the lower surface of the seal 18 is an adhesive surface.
  • an adhesive may be applied to a region other than the region where the radiation conductors 14a and 14b are formed on the upper surface of the radiation conductor substrate 12 so that the upper surface of the radiation conductor substrate 12 is an additional adhesion surface. Good. As a result, the RFID tag 10 can be attached to another article.
  • Such a problem can be solved by drawing a reference line LN3 on the upper surface of the radiation conductor base 12 in the manner shown in FIG.
  • the main surface of the seal 18 forms a perfect circle, but the shape of the main surface of the seal 18 may be an ellipse or a rectangle, and the long axis or the long side may be aligned with the X axis.
  • the arrangement of the first adhesive region R1 can be easily grasped from the upper surface side of the seal 18 without the reference line LN1.
  • the radiation conductors 14a and 14b are formed on the upper surface of the radiation conductor base material 12, and the first terminal electrode 16a and the second terminal electrode 16b are formed on the lower surface of the substrate 16c.
  • the radiating conductor 14b is omitted from the upper surface of the base material 12 for the radiating conductor, and the second radiating conductor 14b is formed from the lower surface of the substrate 16c.
  • the two-terminal electrode 16b is omitted.
  • the radiation conductors 14a and 14b are formed only on the upper surface of the base material 12 for radiation conductor. However, except for the first end portion 141a and the second end portion 141b, the radiation conductors 14a and 14b are formed on the lower surface of the base member 12 for the radiation conductor, and the first end portion 141a and the second end portion 141b are formed on the base for the radiation conductor. You may make it pull out to the upper surface of the material 12.
  • the size of the main surface of the seal 18 exceeds the size of the main surface of the RFIC element 16.
  • the size of the main surface of the seal 18 does not necessarily need to exceed the size of the main surface of the RFIC element 16 (it is not necessary to cover the entire RFIC element 16).
  • the first terminal electrode 16a is in direct contact with the first end 141a of the radiating conductor 14a (directly conducting), and the second terminal electrode 16b is the second end 141b of the radiating conductor 14b. Directly contact (directly conducting).
  • the first terminal electrode 16a and the second terminal electrode 16b may indirectly contact (capacitive coupling via a dielectric) with the first end 141a and the second end 141b.
  • the RFID tag 10 ′ of the second embodiment is typically 900 MHz as an example of a wireless communication device.
  • An RFID tag having a band as a communication frequency, a plate-shaped radiation conductor base material 12 having a rectangular main surface, and a plate shape having a rectangular main surface that is much smaller than the main surface of the radiation conductor base material 12 And a thin-film seal 181 having a true circular main surface larger than the main surface of the RFIC element 16.
  • the X axis is assigned to the length direction of the radiation conductor base material 12
  • the Y axis is assigned to the width direction of the radiation conductor base material 12
  • Z is arranged in the thickness direction of the radiation conductor base material 12.
  • An axis is assigned.
  • a strip-shaped radiation conductor 14c is formed on the main surface (specifically, the upper surface) of the radiation conductor substrate 12.
  • the radiation conductor 14c extends in a loop shape near the outer edge of the upper surface of the radiation conductor substrate 12, and a slit SLT1 is formed between both ends thereof.
  • the slit SLT ⁇ b> 1 is disposed at the center position in the X-axis direction and the positive position in the Y-axis direction on the upper surface of the radiation conductor base material 12.
  • the width of the slit SLT1 is uniform over the entire length of the slit SLT1.
  • the seal 181 includes a flexible seal substrate 181b.
  • a protective material 181a is provided on the upper surface of the seal substrate 181b, and an adhesive 181c is applied to the lower surface of the seal substrate 181b.
  • the main surface of the seal substrate 181b is a perfect circle.
  • the protective material 181a prepares a protective material having a main surface having the same size as the main surface of the seal base material 181b, and forms a slit SLT2 that extends in a straight line across the center of the main surface in the protective material. It is produced by doing.
  • the width of the slit SLT2 is preferably substantially the same as the width of the slit SLT1.
  • the protective material 181a thus manufactured is provided on the upper surface of the seal base material 181b in such a posture that the arc extends along the outer edge of the seal base material 181b and the shape of the slit SLT2 is maintained.
  • the diameter of the main surface of the seal 181 is slightly larger than the length of the RFIC element 16.
  • the RFIC element 16 is affixed to the lower surface of the seal 181 with the upper surface facing the lower surface of the seal 181 and the length direction orthogonal to the extending direction of the slit SLT2. Therefore, when viewed from the Z-axis direction, the first terminal electrode 16a and the second terminal electrode 16b overlap the protective material 181a. Further, the RFIC chip 16e embedded in the RFIC element 16 is stored in the area of the slit SLT2 when viewed from the Z-axis direction.
  • the RFIC element-attached seal 20 ′ having such a structure is attached to the upper surface of the radiation conductor substrate 12 so that the slit SLT 2 overlaps the slit SLT 1 when viewed from the Z-axis direction.
  • the RFIC element 16 is placed on the upper surface (specifically, a position straddling the slit SLT1) of the radiation conductor base 12 so that the first terminal electrode 16a and the second terminal electrode 16b are in contact with both ends of the radiation conductor 14c. Arranged.
  • the radiation conductor 14c functions as a loop antenna.
  • the seal 20 ′ with the RFIC element is attached to the upper surface of the base material 12 for the radiation conductor, the slit SLT2 is used as an alignment mark. As a result, the work burden for manufacturing the RFID tag 10 'is reduced.
  • the first terminal electrode 16a and the second terminal electrode 16b overlap with the protective material 181a when viewed from the Z-axis direction, when the seal 20 ′ with an RFIC element is attached to the upper surface of the radiation conductor substrate 12, the first terminal A strong bonding force can be applied to the electrode 16a, the second terminal electrode 16b, and both ends of the radiation conductor 14c. As a result, it is possible to reduce the concern that the first terminal electrode 16a and the second terminal electrode 16b are separated from the radiation conductor 14c in the use stage.
  • the RFIC chip 16e is accommodated in the region of the slit SLT1 or SLT2 when viewed from the Z-axis direction, the RFIC element 16 is excessively large when the seal 20 ′ with the RFIC element is attached to the upper surface of the radiation conductor substrate 12. The concern about stress can be reduced.
  • the RFIC element 100 of the third embodiment is also typically an RFIC element corresponding to a communication frequency in the 900 MHz band, that is, the UHF band, and has a multilayer substrate 120 whose main surface is rectangular.
  • the multilayer substrate 120 is made of a laminate in which flexible resin insulation layers such as polyimide and liquid crystal polymer are laminated, and the multilayer substrate 120 itself exhibits flexibility.
  • the dielectric constant of each insulating layer made of these materials is smaller than the dielectric constant of a ceramic base layer represented by LTCC.
  • the X axis is assigned to the length direction of the multilayer substrate 120
  • the Y axis is assigned to the width direction of the multilayer substrate 120
  • the Z axis is assigned to the thickness direction of the multilayer substrate 120.
  • the multilayer substrate 120 includes the RFIC chip 160 and A power feeding circuit 180 is built in, and a first terminal electrode 140 a and a second terminal electrode 140 b are formed on one main surface of the multilayer substrate 120.
  • the RFIC chip 160 has a structure in which various elements are incorporated in a hard semiconductor substrate made of a semiconductor such as silicon, and one main surface and the other main surface draw a square. A first input / output terminal 160a and a second input / output terminal 160b are formed on the other main surface of the RFIC chip 160 (details will be described later).
  • the RFIC chip 160 has a posture in which each side of the square extends along the X axis or the Y axis, and one main surface and the other main surface face the positive side and the negative side in the Z axis direction, respectively. , Located in the center in each of the X-axis direction, the Y-axis direction and the Z-axis direction.
  • the power feeding circuit 180 is formed by the coil conductor 200 and interlayer connection conductors 240a and 240b (details will be described later).
  • the coil conductor 200 is formed by coil patterns 200a to 200c.
  • the first coil part CIL1 forms part of the coil pattern 200a
  • the second coil part CIL2 forms part of the coil pattern 200b
  • the third coil part CIL3 and the fourth coil part CIL4 form part of the coil pattern 200c. .
  • the first coil portion CIL1, the third coil portion CIL3, and the interlayer connection conductor 240a are arranged in the Z-axis direction at the negative side position in the X-axis direction
  • the second coil portion CIL2, the fourth coil portion CIL4, and the interlayer connection conductor 240b is arranged in the Z-axis direction at the positive position in the X-axis direction.
  • the RFIC chip 160 is between the first coil unit CIL1 and the second coil unit CIL2 and the third coil unit CIL3. It arrange
  • the first terminal electrode 140a is disposed at the negative position in the X-axis direction
  • the second terminal electrode 140b is disposed at the positive position in the X-axis direction.
  • Each of the first terminal electrode 140a and the second terminal electrode 140b is formed in a strip shape using a flexible copper foil as a raw material, and the sizes of the respective main surfaces coincide with each other.
  • the short side of the strip extends along the X axis
  • the long side of the strip extends along the Y axis.
  • the RFIC chip 160 is sandwiched between a part of the power feeding circuit 180 and the other part of the power feeding circuit 180 when the multilayer substrate 120 is viewed in plan from the stacking direction of each insulating layer. Further, when the multilayer substrate 120 is viewed from the X-axis direction, the RFIC chip 160 overlaps the power feeding circuit 180. Furthermore, when the multilayer substrate 120 is viewed in plan, the power feeding circuit 180 partially overlaps each of the first terminal electrode 140a and the second terminal electrode 140b.
  • each insulating layer which comprises a laminated body is as thin as 10 micrometers or more and 100 micrometers or less, the RFIC chip 160 and the electric power feeding circuit 180 which were built in the multilayer substrate 120 can be seen through from the outside. For this reason, the connection state (the presence or absence of disconnection) of the RFIC chip 160 and the power feeding circuit 180 can be easily confirmed.
  • the multilayer substrate 120 is formed by three stacked sheet-like insulating layers 120a to 120c.
  • the insulating layer 120a is an upper layer
  • the insulating layer 120b is a middle layer
  • the insulating layer 120c is a lower layer.
  • the first terminal electrode 140a and the second terminal electrode 140b are formed on one main surface of the insulating layer 120a. As described above, the first terminal electrode 140a is disposed on the negative side in the X-axis direction, and the second terminal electrode 140b is disposed on the positive side in the X-axis direction.
  • a rectangular through hole HL1 reaching the other main surface is formed at the center position of one main surface of the insulating layer 120b.
  • the size of the through hole HL1 is matched to the size of the RFIC chip 160.
  • a coil pattern 200c extending in a strip shape using a flexible copper foil as a material is formed around the through hole HL1 on one main surface of the insulating layer 120b.
  • One end of the coil pattern 200c is arranged at a position overlapping the first terminal electrode 140a in plan view, and is connected to the first terminal electrode 140a by an interlayer connection conductor 220a extending in the Z-axis direction.
  • the other end of the coil pattern 200c is arranged at a position overlapping the second terminal electrode 140b in plan view, and is connected to the second terminal electrode 140b by an interlayer connection conductor 220b extending in the Z-axis direction.
  • the interlayer connection conductors 220a and 220b and later-described interlayer connection conductors 240a and 240b are hard metal bulks mainly composed of Sn.
  • the coil pattern 200c When one end of the coil pattern 200c is set as a start end, the coil pattern 200c extends around the one end twice in the counterclockwise direction and extends to the vicinity of the negative end in the Y-axis direction, and then the X-axis. Extends to the positive side of the direction. The coil pattern 200c then bends the vicinity of the positive end in the X-axis direction to the positive side in the Y-axis direction, and rotates around the other end twice counterclockwise before reaching the other end.
  • coil patterns 200a and 200b extending in a strip shape from a flexible copper foil are formed on one main surface of the insulating layer 120c.
  • the end T1) is arranged at a position that overlaps the negative corner in the X-axis direction and the positive corner in the Y-axis direction among the four corners of the rectangle drawn by the through hole HL1.
  • the four corners of the rectangle to be drawn they are arranged at positions that overlap the positive side corner in the X-axis direction and the positive side corner in the Y-axis direction. Note that both the first coil end T1 and the second coil end T2 are rectangular when the insulating layer 120c is viewed in plan.
  • the coil pattern 200a When starting from one end of the coil pattern 200a, the coil pattern 200a rotates around the one end in the clockwise direction by 2.5 and then bends to the negative side in the Y-axis direction to reach the other end. Similarly, when starting from one end of the coil pattern 200b, the coil pattern 200b rotates 2.5 times counterclockwise around the one end and then bends to the negative side in the Y-axis direction to the other end. To reach. Furthermore, one end of the coil pattern 200a is connected to one end of the coil pattern 200c by an interlayer connection conductor 240a extending in the Z-axis direction, and one end of the coil pattern 200b is connected to the coil pattern by an interlayer connection conductor 240b extending in the Z-axis direction. It is connected to the other end of 200c.
  • a part of the coil pattern 200a overlaps a part of the coil pattern 200c, and a part of the coil pattern 200b is also a part of another part of the coil pattern 200c. And overlap.
  • the power feeding circuit 180 is formed by the coil patterns 200a to 200c and the interlayer connection conductors 240a and 240b thus arranged.
  • the section on the coil pattern 200a side is defined as “first coil part CIL1”, and the section on the coil pattern 200c side is defined as “third coil part CIL3”.
  • the section on the coil pattern 200b side is defined as “second coil part CIL2”, and the section on the coil pattern 200c side is defined as “fourth coil part CIL4”.
  • the position of one end of the coil pattern 200a or one end of the coil pattern 200c is defined as “first position P1”, and the position of one end of the coil pattern 200b or the other end of the coil pattern 200c is defined as “second position P2”. It is defined as
  • Rectangular dummy conductors 260a and 260b made of flexible copper foil are also formed on one main surface of the insulating layer 120c.
  • the dummy conductors 260a and 260b are arranged so as to overlap two corners arranged in the X-axis direction on the negative side in the Y-axis direction among the four corners of the rectangle drawn by the through hole HL1.
  • the RFIC chip 160 is mounted on the insulating layer 120c so that the four corners of the other principal surface face the first coil end T1, the second coil end T2, and the dummy conductors 260a and 260b, respectively.
  • the first input / output terminal 160a is disposed on the other main surface of the RFIC chip 160 so as to overlap the first coil end T1 in plan view.
  • the second input / output terminal 160b is disposed on the other main surface of the RFIC chip 160 so as to overlap the second coil end T2 in plan view.
  • the RFIC chip 160 is connected to the first coil end T1 by the first input / output terminal 160a, and is connected to the second coil end T2 by the second input / output terminal 160b.
  • FIG. 16 shows an equivalent circuit of the RFIC element 100 configured as described above.
  • the inductor L1 corresponds to the first coil part CIL1
  • the inductor L2 corresponds to the second coil part CIL2.
  • the inductor L3 corresponds to the third coil part CIL3, and the inductor L4 corresponds to the fourth coil part CIL4.
  • the characteristic of impedance matching by the power feeding circuit 180 is defined by the values of the inductors L1 to L4.
  • the one end of the inductor L1 and the one end of the inductor L2 are connected to a first input / output terminal 160a and a second input / output terminal 160b provided on the RFIC chip 160, respectively.
  • the other end of the inductor L1 is connected to one end of the inductor L3, and the other end of the inductor L2 is connected to one end of the inductor L4.
  • the other end of the inductor L3 is connected to the other end of the inductor L4.
  • the first terminal electrode 140a is connected to the connection point between the inductors L1 and L3, and the second terminal electrode 140b is connected to the connection point between the inductors L2 and L4.
  • the first coil part CIL1, the second coil part CIL2, the third coil part CIL3, and the fourth coil part CIL4 are wound so that the magnetic fields are in phase and are connected in series with each other. Therefore, the magnetic field is generated so as to be directed in the direction indicated by the arrow in FIG. 20 at a certain time, and to be directed in the direction opposite to the arrow at another time.
  • the first coil portion CIL1 and the third coil portion CIL3 have substantially the same loop shape and the same first winding axis
  • the coil part CIL2 and the fourth coil part CIL4 also have substantially the same loop shape and the same second winding axis.
  • the first winding shaft and the second winding shaft are arranged at positions sandwiching the RFIC chip 160.
  • first coil part CIL1 and the third coil part CIL3 are magnetically and capacitively coupled
  • second coil part CIL2 and the fourth coil part CIL4 are also magnetically and capacitively coupled.
  • the RFIC chip 160 has a first input / output terminal 160 a and a second input / output terminal 160 b and is built in the multilayer substrate 120.
  • the power feeding circuit 180 is built in the multilayer substrate 120 including the coil patterns 200a to 200c.
  • first coil portion CIL1 exists in a section from the first coil end T1 to the first position P1, and has a first winding axis in a direction intersecting with one main surface of the multilayer substrate 120.
  • the second coil portion CIL2 exists in a section from the second coil end T2 to the second position P2, and has a second winding axis in a direction intersecting with one main surface of the multilayer substrate 120.
  • the third coil part CIL3 is arranged to overlap the first coil part CIL1 in plan view
  • the fourth coil part CIL4 is arranged to overlap the second coil part CIL2 in plan view.
  • the first coil part CIL1, the third coil part CIL3, the second coil part CIL2, and the fourth coil part CIL4 are arranged at positions sandwiching the RFIC chip 160 in plan view of the multilayer substrate 120.
  • the power feeding circuit 180 for impedance matching is built in the multilayer substrate 120.
  • the multilayer substrate 120 also includes the RFIC chip 160, and the first coil unit CIL1, the third coil unit CIL3, the second coil unit CIL2, and the fourth coil unit CIL2.
  • the coil part CIL4 is arranged at a position sandwiching the RFIC chip 160 when the multilayer substrate 120 is viewed in plan.
  • the RFIC chip 160 Since the RFIC chip 160 is formed of a semiconductor substrate, the RFIC chip 160 functions as a ground or a shield for the first coil unit CIL1, the second coil unit CIL2, the third coil unit CIL3, and the fourth coil unit CIL4.
  • the coil part CIL1 and the second coil part CIL2 are difficult to be coupled to each other both magnetically and capacitively, and the third coil part CIL3 and the fourth coil part CIL4 are also difficult to couple to each other both magnetically and capacitively. . This can alleviate the concern that the communication signal pass band will be narrowed.
  • FIG. 21A and FIG. 21B show an example of an RFID tag on which the RFIC element 100 of the third embodiment is mounted.
  • This RFID tag is a dipole type RFID tag
  • the radiating element 300a includes a radiating conductor base 320a and radiating conductors 340a and 340b disposed on the base plate 320a.
  • the base material 320a for the radiation conductor is a strip-shaped base material that exhibits flexibility using PET as a material.
  • Each of the radiation conductors 340a and 340b is a strip-shaped conductor that exhibits flexibility using an aluminum foil or a copper foil as a material.
  • the radiation conductors 340a and 340b have a common width and length. However, the width of each of the radiation conductors 340a and 340b is smaller than the width of the base material 320a for the radiation conductor, and the length of each of the radiation conductors 340a and 340b is less than half the length of the base material 320a for the radiation conductor.
  • the distance between the first terminal electrode 140a and the second terminal electrode 140b is adjusted.
  • the RFIC element 100 is mounted at a central position on the surface of the radiation conductor base material 320a with one main surface facing the surface of the radiation conductor base material 320a.
  • the first terminal electrode 140a is connected to one end of the radiation conductor 340a
  • the second terminal electrode 140b is connected to one end of the radiation conductor 340b.
  • the first terminal electrode 140a is fixed to the radiation conductor 340a by the conductive bonding material 360a
  • the second terminal electrode 140b is fixed to the radiation conductor 340b by the conductive bonding material 360b (see FIG. 23).
  • an insulating bonding material may be used instead of the conductive bonding materials 360a and 360b, and the connection may be made via a capacitor. That is, the first terminal electrode 140a and the second terminal electrode 140b may be electrically connected to the radiation conductors 340a and 340b.
  • the multilayer substrate 120 is made of flexible polyimide or liquid crystal polymer, and the coil patterns 200a to 200c, the first terminal electrodes 140a, and the second terminal electrodes 140b are made of flexible copper foil.
  • the interlayer connection conductors 220a, 220b, 240a, and 240b are hard conductors made of Sn
  • the substrate of the RFIC chip 160 is also a hard substrate made of silicon.
  • the flexibility of copper foil becomes small, and also by providing plating films, such as Ni / Au and Ni / Sn, the flexibility Is lost.
  • the region where each of the first terminal electrode 140a, the second terminal electrode 140b and the RFIC chip 160 is disposed is a rigid region, and the other region is a flexible region.
  • each of the first terminal electrode 140a and the second terminal electrode 140b is provided at a position separated from the RFIC chip 160 in plan view, each of the first terminal electrode 140a and the second terminal electrode 140b and the RFIC chip 160 is provided.
  • a flexible region is formed between them.
  • the interlayer connection conductors 220a, 220b, 240a, 240b are arranged in the rigid region.
  • the RFIC element 100 bends as shown in FIG. 23, for example.
  • the first resonance is a resonance that occurs in the current path constituted by the radiation conductors 340a to 340b, the inductor L3, and the inductor L4.
  • the second resonance is a current path that is constituted by the inductors L1 to L4 and the parasitic capacitance Cp ( Resonance in the current loop.
  • the two resonances are coupled by the inductors L3 to L4 shared by the current paths, and the two currents I1 and I2 corresponding to the two resonances flow in the manner shown in FIG.
  • Both the first resonance frequency and the second resonance frequency are affected by the inductors L3 to L4.
  • a difference of several tens of MHz (specifically, about 5 to 50 MHz) is generated between the first resonance frequency and the second resonance frequency.
  • These resonance frequency characteristics are represented by curves A and B in FIG.
  • a broadband resonance frequency characteristic as indicated by a curve C in FIG. 25 is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)

Abstract

 放射導体用基材12の上面には、第1端部141aおよび第2端部141bをそれぞれ有する放射導体14aおよび14bが形成される。RFIC素子16の下面には、第1端部141aおよび第2端部141bの間隔とほぼ同じ間隔で第1端子電極および第2端子電極が形成される。シール18は、RFIC素子16の主面のサイズを上回るサイズの粘着面を有する。RFIC素子16は第1端子電極および第2端子電極が第1端部141aおよび第2端部141bにそれぞれ接触するように放射導体用基材12の上面に配され、シール18はRFIC素子16を覆うように放射導体用基材12に貼り付けられる。

Description

無線通信デバイスおよびその製造方法、ならびにRFIC素子付きシールおよびその作製方法
 この発明は、無線通信デバイスおよびその製造方法に関し、特に、放射導体が形成された主面を有する放射導体用基材と端子電極が形成された主面を有するRFIC(Radio Frequency Integrated Circuit)素子とを備えるRFID(Radio Frequency IDentifier)タグのような無線通信デバイスおよびその製造方法に関する。
 この発明はまた、RFIC素子付きシールおよびその作製方法に関し、特に、端子電極が形成された主面を有するRFIC素子とRFIC素子の主面のサイズを上回るサイズの粘着面を有するシールとを備えるRFIC素子付きシールおよびその作製方法に関する。
 RFIDインレイやRFIDタグは、放射導体(放射パターン)が形成された放射導体用基材にRFIC素子(RFICチップを封止したパッケージやストラップ)を搭載することによって製造される。通常、RFIC素子と放射導体との接続手法としては、はんだの加熱溶融による接続(特許文献1または特許文献2参照)や、超音波接合による接続(特許文献3または特許文献4参照)が採用される。
特開2009-87068号 特開2009-129093号 特開2012-32931号 特開2013-45780号
 しかし、はんだの加熱溶融による接続では、接続部分をはんだの融点以上に加熱する必要がある。放射導体用基材には高い耐熱性が要求されるため、PET等の安価な材料を放射導体用基材として採用することはできない。また、超音波接合による接続では、超音波によってバンプを溶融する必要があるため、接合が完了するまでに時間を要する。
 特に、可撓性を持った放射導体用基材を利用し、RFIDインレイやRFIDタグを曲面部材や可撓性部材に貼り付ける場合、RFIC素子と放射導体との接続部に応力が集中してしまい、その接続部が破壊されてしまうことがある。
 それゆえに、この発明の主たる目的は、簡素に製造することができ、かつ、RFIC素子と放射導体との接続の信頼性が低下する懸念を軽減することができる無線通信デバイスおよびその製造方向を提供することである。
 この発明の他の目的は、無線通信デバイスを簡素に製造することができ、かつ、RFIC素子と放射導体との接続の信頼性が低下する懸念を軽減することができるRFIC素子付きシールおよびその作製方法を提供することである。
 この発明に係る無線通信デバイスは、放射導体を備え、放射導体の少なくとも一部が形成された主面を有する放射導体用基材と、端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールと、を備え、RFIC素子は、端子電極が放射導体の一部に直接あるいは間接的かつ摺動可能に接触するように、放射導体用基材の主面に配され、シールは、粘着面にて、RFIC素子の少なくとも一部を覆うように放射導体用基材に貼り付けられ、RFIC素子を放射導体用基材に固定している。
 好ましくは、シールは、シール基材の主面に設けられた保護材を含み、平面視で保護材が端子電極と重なるように放射導体用基材に貼り付けられる。
 さらに好ましくは、放射導体の一部は第1スリットを有し、シールの保護材は、第2スリットを有し、平面視で第2スリットが第1スリットと重なるように放射導体用基材に貼り付けられる。
 好ましくは、粘着面は第1粘着領域と第1粘着領域を囲む第2粘着領域とを有し、第1粘着領域および第2粘着領域はそれぞれRFIC素子および放射導体用基材に粘着する。
 好ましくは、放射導体用基材、RFIC素子およびシールは可撓性である。
 好ましくは、RFIC素子は、高周波信号を処理するRFICチップと、通信周波数に相当する共振周波数を持った給電回路と、RFICチップを実装し、給電回路を内蔵した基板とを有し、端子電極は基板の主面に形成されかつ給電回路を介してRFICチップに接続される。
 この発明に係るRFIC素子付きシールは、端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールと、を備え、端子電極が露出するようにRFIC素子を粘着面の一部の領域に貼り付けてなるRFIC素子付きシールであって、粘着面の他の一部の領域は、端子電極が放射導体用基材の主面に形成された放射導体の一部に直接あるいは間接的かつ摺動可能に接触するように、放射導体用基材に粘着する領域である。
 この発明に係る無線通信デバイスの製造方法は、放射導体を備え、放射導体の少なくとも一部が形成された主面を有する放射導体用基材と、端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールとを準備する準備工程と、端子電極が露出するようにRFIC素子をシールの粘着面の一部の領域に貼り付けてRFIC素子付きシールを作製する第1貼り付け工程と、端子電極が放射導体の一部に直接あるいは間接的かつ摺動可能に接触するように、RFIC素子付きシールの粘着面の他の一部の領域を放射導体用基材の主面に貼り付ける第2貼り付け工程と、を有する。
 この発明に係る無線通信デバイスの製造方法は、端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールと、を備え、端子電極が露出するようにRFIC素子を粘着面に貼り付けてなるRFIC素子付きシールを用いてRFIDタグを製造する製造方法であって、放射導体を備え、放射導体の少なくとも一部が形成された主面を有する放射導体用基材を準備する準備工程と、端子電極が放射導体の一部に直接あるいは間接的かつ摺動可能に接触するように、RFIC素子付きシールを放射導体用基材の主面に貼り付ける貼り付け工程と、を有する。
 この発明に係るRFIC素子付きシールの作製方法は、端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールとを準備する準備工程と、端子電極が露出するようにRFIC素子をシールの粘着面に貼り付けてRFIC素子付きシールを作製する貼り付け工程と、を有するRFIC素子付きシールの作製方法であって、RFIC素子付きシールは、放射導体用基材の主面に形成された放射導体の少なくとも一部に端子電極が直接あるいは間接的かつ摺動可能に接触するように放射導体用基材に貼り付けられる部材である。
 RFIC素子はシールを利用して放射導体に接続されるため、PET等の安価な材料を放射導体用基材として採用できるとともに、RFIC素子を放射導体に接続する時間を短縮できる。これによって、無線通信デバイスを簡素に製造することができる。
 また、RFIC素子の端子電極は放射導体に接触するに留まるため、放射導体用基材が撓んでも端子電極と端部との接触部に応力が集中することはない。これによって、RFIC素子と放射導体との接続の信頼性が低下する懸念が軽減される。
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
(A)は第1実施例のRFIDタグを斜め上から眺めた状態を示す斜視図であり、(B)は第1実施例のRFIDタグを分解して斜め上から眺めた状態を示す分解斜視図である。 (A)は第1実施例の放射導体用基材を真上から眺めた状態を示す上面図であり、(B)は第1実施例の放射導体用基材を真横から眺めた状態を示す側面図であり、(C)は第1実施例の放射導体用基材を真下から眺めた状態を示す下面図である。 (A)は第1実施例のRFIC素子を真上から眺めた状態を示す上面図であり、(B)は第1実施例のRFIC素子を真横から眺めた状態を示す側面図であり、(C)は第1実施例のRFIC素子を真下から眺めた状態を示す下面図である。 (A)は第1実施例のシールを真上から眺めた状態を示す上面図であり、(B)は第1実施例のシールを真横から眺めた状態を示す側面図であり、(C)は第1実施例のシールを真下から眺めた状態を示す下面図である。 第1実施例のRFIC素子の構造を示す断面図である。 第1実施例のRFIC素子付きシールを真下から眺めた状態を示す下面図である。 (A)は第1実施例のRFIDタグの製造工程の一部を示す図解図であり、(B)は第1実施例のRFIDタグの製造工程の他の一部を示す図解図である。 第1実施例のRFIDタグの構造の一部を示す拡大図である。 複数のRFIC素子付きシールが貼り付けられた台紙を真上から眺めた状態を示す上面図である。 第1実施例を変形した他の実施例の放射導体用基材を真上から眺めた状態を示す上面図である。 第1実施例を変形したその他の実施例の放射導体用基材を真上から眺めた状態を示す上面図である。 第1実施例を変形したさらにその他の実施例の放射導体用基材を斜め上から眺めた状態を示す斜視図である。 (A)は第2実施例のRFIDタグを分解して真上から眺めた状態を示す分解平面図であり、(B)は第2実施例のRFIDタグのA-A断面を示す断面図である。 (A)は第2実施例のRFIDタグをなすRFIC素子付きシールを真上から眺めた状態を示す上面図であり、(B)は第2実施例のRFIDタグをなすRFIC素子付きシールを真下から眺めた状態を示す下面図であり、(C)は第2実施例のRFIDタグをなすRFIC素子付きシールのB-B断面を示す断面図である。 第3実施例のRFIC素子を斜め上から眺めた状態を示す斜視図である。 図15に示すRFIC素子の等価回路を示す回路図である。 (A)は図15に示すRFIC素子を真上から眺めた状態を示す上面図であり、(B)は図15に示すRFIC素子を真横から眺めた状態を示す側面図であり、(C)は図15に示すRFIC素子を真下から眺めた状態を示す下面図である。 (A)は図15に示すRFIC素子をなす多層基板の上位の絶縁層を真上から眺めた状態を示す上面図であり、(B)は図15に示すRFIC素子をなす多層基板の中位の絶縁層を真上から眺めた状態を示す上面図であり、(C)は図15に示すRFIC素子をなす多層基板の下位の絶縁層を真上から眺めた状態を示す上面図である。 (A)は図18(A)に示す絶縁層のA1-A1断面を示す断面図であり、(B)は図18(B)に示す絶縁層のB1-B1断面を示す断面図であり、(C)は図18(C)に示す絶縁層のC1-C1断面を示す断面図である。 等価回路上での磁界の発生状態の一例を示す図解図である。 (A)は第3実施例を変形したその他の実施例のRFIDタグを斜め上から眺めた状態を示す斜視図であり、(B)は第3実施例を変形したその他の実施例のRFIDタグを分解して斜め上から眺めた状態を示す斜視図である。 図15に示すRFIC素子におけるリジット領域およびフレキシブル領域の分布状態を示す図解図である。 放射素子に実装されたRFIC素子が撓んだ状態を示す図解図である。 等価回路を電流が流れる状態の一例を示す図解図である。 RFIDタグの周波数特性の一例を示すグラフである。
[第1実施例]
 図1(A)~図1(B)を参照して、第1実施例のRFIDタグ10は、無線通信デバイスの一例として代表的には900MHz帯を通信周波数とするRFIDタグであり、長方形の主面を有する板状の放射導体用基材12と、放射導体用基材12の主面よりも格段に小さい長方形の主面を有する板状のRFIC素子16と、RFIC素子16の主面よりも大きい真円形の主面を有する薄膜状のシール18とを含む。
 なお、第1実施例では、放射導体用基材12の長さ方向にX軸が割り当てられ、放射導体用基材12の幅方向にY軸が割り当てられ、放射導体用基材12の厚み方向にZ軸が割り当てられる。
 図2(A)~図2(C)を参照して、放射導体用基材12は可撓性を有し、その主面(詳しくは上面)には帯状の放射導体14aおよび14bが形成される。放射導体14aおよび14bの各々は、放射導体用基材12の長さの半分に満たない長さと放射導体用基材12の幅の半分に満たない幅とを有し、放射導体用基材12の上面のY軸方向における中央位置をX軸に沿って延びる。また、放射導体14aはX軸方向における負側に配され、放射導体14bはX軸方向における正側に配される。
 放射導体14aのX軸方向における正側端部を“第1端部141a”と定義し、放射導体14bのX軸方向における負側端部を“第2端部141b”と定義すると、第1端部141aおよび第2端部141bの間には、放射導体14aおよび14bのいずれもが欠落した欠落部CT1が形成される。
 図3(A)~図3(C)を参照して、RFIC素子16は、LCP樹脂またはポリイミド樹脂等の耐熱性の高い熱可塑性樹脂を素材とする可撓性の基板16cを有する。基板16cの主面(詳しくは下面)には、第1端子電極16aおよび第2端子電極16bが形成される。第1端子電極16aはX軸方向における負側端部に設けられ、第2端子電極16bはX軸方向における正側端部に設けられ、第1端子電極16aおよび第2端子電極16bの間隔は上述した第1端部141aおよび第2端部141bの間隔とほぼ一致する。
 図4(A)~図4(C)を参照して、シール18は紙や樹脂等の可撓性のシール基材18aを有する。シール基材18aの下面にはアクリル樹脂またはエポキシ樹脂等の粘着剤18bが塗布され、下面は粘着面として機能する。粘着面の中央には、基板16cの主面のサイズとほぼ同じサイズを有する長方形の第1粘着領域R1が割り当てられる。第1粘着領域R1の周りには第2粘着領域R2が割り当てられ、第1粘着領域R1は第2粘着領域R2によって囲まれる。
 第1粘着領域R1をなす長方形の長辺および短辺はそれぞれ、X軸およびY軸に沿って延びる。これを踏まえて、シール基材18aの上面のY軸方向における中央には、X軸に沿って延びる目安線LN1が描かれる。また、シール基材18aの下面には、第1粘着領域R1の外縁を示す目安線LN2が描かれる。第1粘着領域R1の配置は、目安線LN1およびLN2を参照することでシール18の上面側および下面側から容易に把握することができる。
 図1(A)~図1(B)に戻って、RFIC素子16は、第1端子電極16aが摺動可能に第1端部141aに接触しかつ第2端子電極16bが摺動可能に第2端部141bに接触するように、放射導体用基材12の上面(詳しくは欠落部CT1の上)に配される。これによって、放射導体14aおよび14bはダイポールアンテナとして機能する。つまり、RFIC素子の端子電極と放射導体のRFIC素子用接続部とは、電気的には接続されているが、機械的には接続されていない(摺動可能である)。
 また、シール18は、放射導体用基材12の上面に配されたRFIC素子16を覆うように、放射導体用基材12に貼り付けられる。このとき、第1粘着領域R1は基板16cに粘着し、第2粘着領域R2は放射導体用基材12とその上面に形成された放射導体14a,14bとに粘着する。第1粘着領域R1は第2粘着領域R2によって囲まれるため、RFIC素子16は放射導体用基材12に強固に固定される。またRFIC素子16は、端子電極16a,16bがシール18に対しもっとも突起している部分になる。このシール18を放射導体基材12に貼り付ける場合、シール18はRFIC素子16を覆うように湾曲して放射導体用基材12に貼り付けられるので、貼り付け後はシール18が元の平面状態に戻ろうとする応力が発生する。この応力はRFIC素子16の電極端子16a,16bを、放射導体14a,14bに押し付け圧力となるので、電極端子16a,16bと放射導体14a,14b電気的接続が安定して維持される。これによりRFIC素子16は摺動可能でありながら、電気的な接続が安定した状態を作ることが出来る。
 なお、放射導体用基材12および/またはシール18を透明にすれば、RFIC素子16の第1端子電極16aおよび第2端子電極16bが放射導体14aおよび14bに接続されているか否かを容易に確認することができる。
 図5を参照して、RFIC素子16をなす基板16cには、RFICチップ16eおよび給電回路16dが実装される。RFICチップ16eはRFID信号(高周波信号)を処理する回路であり、第1入出力端子および第2入出力端子(いずれも図示せず)を有する。また、給電回路16dは通信周波数(キャリア周波数)に相当する共振周波数を持った共振回路を有しており、通信信号の通過帯域を広げるための回路である。
 つまり、RFICチップ16eは給電回路16dを介して放射導体14a,14bに接続される。ここで、基板16cに内蔵された給電回路16dは通信周波数に相当する共振周波数を持っているため、RFIDタグ10の通信特性は、放射導体14a,14bのサイズ,RFIDタグ10が取り付けられる物体の材質,放射導体14a,14bとRFIC素子16との接合状態等に大きく依存しない。したがって、放射導体14a,14bは必ずしもλ/2の整数倍の電気長を有している必要は無い。また給電回路16dは共振しており回路内で電流が集中して流れるので導電率の高い材料で構成する必要があるが、放射導体は電界(電圧)分布している導体であるので、給電回路の電極端子16a,16bと放射導体14a,14bの接触抵抗が数十Ω以下であれば、RFIDタグ10の電気特性が劣化しにくい。
 基板16cの下面に形成された第1端子電極16aおよび第2端子電極16bはそれぞれ、給電回路16dを介して、RFICチップ16eの第1入出力端子および第2入出力端子に接続される。
 図6および図7(A)~図7(B)を参照して、RFIDタグ10の製造方法を説明する。まず、RFIC素子16がシール18の下面に貼り付けられる。詳しくは、RFIC素子16をなす基板16cの上面が、シール18の第1粘着領域R1に貼り付けられる。これによって、第1端子電極16aおよび16bが外部に露出したRFIC素子付きシール20が作製される。
 RFIC素子付きシール20はその後、放射導体用基材12に貼り付けられる。このとき、第1端子電極16aは放射導体14aの第1端部141aに接触ないし押圧され、第2端子電極16bは放射導体14bの第2端部141bに接触ないし押圧される。また、第2粘着領域R2は、放射導体用基材12および放射導体14a,14bに粘着する。これによって、RFIDタグ10が完成する。なお、第1端子電極16aが放射導体14aの第1端部141aに接触した状態を図8に拡大して示す。このようにシール18aはRFIC素子16を覆うように湾曲して放射導体用基材12に貼り付けられるので、貼り付け後はシール18が元の平面状態に戻ろうとする応力が発生する。この応力がRFIC素子16の電極端子16aを放射導体141aに押し付ける圧力となり、シール貼り付け後はこの圧力により電極端子16aは放射導体141aに電気的接続が安定して維持される。これによりRFIC素子16は摺動可能でありながら、電気的な接続が安定した状態を作ることが出来る。シール18の材料はPETフィルムや紙などを用い、粘着材は強粘着剤の糊をもちいるとよい。
 RFIC素子付きシール20は、図9に示すように台紙22に貼り付けられてもよい。このようなシール付き台紙24を作製することで、RFIC素子付きシール20の作製を担う事業者とRFIC素子付きシール20を用いてRFIDタグ10を製造する事業者とを分けることができる。これによりRFIDタグ10を製造する事業者はタグの形状を自由に変更することが可能となり、用途に合わせたタグ設計が可能となる。また手作業でシール20を放射導体14に貼り付けだけでRFIDタグが作れるので、専用設備がなくてもRFIDタグを作ることが出来る。
 以上のように、RFIC素子16はシール18を利用して放射導体14a,14bに接続されるため、RFIDタグ10を簡素に製造することができる。つまり、はんだの加熱溶融による接合ではPET等の安価な材料を放射導体用基材12として採用することができず、超音波接合では接合が完了するまでに時間を要するところ、第1実施例のようにシール18を採用すれば、アルミニウム箔等の安価な導体材料を放射導体として、PET等の安価な材料を放射導体用基材12として採用できるとともに、RFIC素子16を放射導体14a,14bに接続する時間を短縮できる。こうして、RFIDタグ10の製造工程が簡素化される。なお、放射導体用基材として紙を用い、放射導体として紙上にAg等の導電材料を主成分とする導電性インクで描かれた導電性パターンを利用してもよい。
 また、RFIC素子16には共振周波数帯域を広げる給電回路16dが設けられるため、RFIC素子16をシール18で固定するような簡素な実装方法でも、所望の通信特性が得られる。
 さらに、RFIC素子16の第1端子電極16aおよび16bは放射導体14aの第1端部141aおよび放射導体14bの第2端部141bに接触するに留まる。つまり、第1端子電極16aおよび16bは第1端部141aおよび第2端部141bに電気的には接続されているものの、物理的または機械的に接合されている訳ではない。
 このため、放射導体用基材12が撓んでも、第1端子電極16aと第1端部141aとの接触部および第2端子電極16bと第2端部141bとの接触部に応力が集中することはない。これによって、RFIC素子16と放射導体14a,14bとの接続の信頼性が低下する懸念(RFIC素子16と放射導体14a,14bとの接続部が破壊される懸念)が軽減される。
 なお、第1実施例では、放射導体14aおよび14bはX軸に沿って一直線に延びるように形成される。しかし、放射導体14aおよび14bはX軸に対して蛇行するように形成してもよい(図10参照)。
 また、第1実施例では、RFIC素子16は放射導体14aの第1端部141aおよび放射導体14bの第2端部141bを跨ぐように配され、放射導体14aおよび14bはダイポールアンテナとして機能する。しかし、図11に示すループ状の放射導体14を放射導体用基材12の上面に形成し、放射導体14の両端を跨ぐようにRFIC素子16を配するようにすれば、放射導体14はループアンテナとして機能する。
 さらに、第1実施例では、シール18の下面のみが粘着面とされる。しかし、放射導体用基材12の上面のうち放射導体14aおよび14bの形成領域以外の領域にも粘着剤を塗布し、放射導体用基材12の上面を追加の粘着面とするようにしてもよい。これによって、RFIDタグ10を別の物品に貼り付けることができる。
 また、放射導体用基材12および/またはシール18が透明でなければ、RFIC素子付きシール20を放射導体用基材12に貼り付ける際に、RFIC素子16と放射導体14a,14bとの相対位置を確認するのに手間取る場合がある。このような問題は、図12に示す要領で放射導体用基材12の上面に目安線LN3を描くことで解決することができる。
 さらに、第1実施例では、シール18の主面は真円をなすが、シール18の主面の形状を楕円形または長方形とし、長軸または長辺をX軸に合わせるようにしてもよい。これによって、目安線LN1がなくても、第1粘着領域R1の配置をシール18の上面側から容易に把握することができる。
 また、第1実施例では、放射導体14aおよび14bを放射導体用基材12の上面に形成するとともに、第1端子電極16aおよび第2端子電極16bを基板16cの下面に形成するようにしている。しかし、放射導体14bよりも格段に小さい別の放射導体をRFIC素子16の内部に形成するようにすれば、放射導体用基材12の上面から放射導体14bが省略され、基板16cの下面から第2端子電極16bが省略される。
 なお、この実施例では、放射導体14aおよび14bは、放射導体用基材12の上面にのみ形成される。しかし、第1端部141aおよび第2端部141bを除いて放射導体14aおよび14bを放射導体用基材12の下面に形成し、第1端部141aおよび第2端部141bを放射導体用基材12の上面に引き出すようにしてもよい。
 また、この実施例では、シール18の主面のサイズは、RFIC素子16の主面のサイズを上回る。しかし、RFIC素子16を放射導体用基材12に固定できる限り、シール18の主面のサイズは必ずしもRFIC素子16の主面のサイズを上回る必要はない(RFIC素子16の全体を覆う必要はない)。
 さらに、この実施例では、第1端子電極16aは放射導体14aの第1端部141aに直接的に接触(直流的に導通)し、第2端子電極16bは放射導体14bの第2端部141bに直接的に接触(直流的に導通)する。しかし、第1端子電極16aおよび第2端子電極16bは、第1端部141aおよび第2端部141bに間接的に接触(誘電体を介して容量結合)してもよい。
[第2実施例]
 図13(A)~図13(B)および図14(A)~図14(C)を参照して、第2実施例のRFIDタグ10´も、無線通信デバイスの一例として代表的には900MHz帯を通信周波数とするRFIDタグであり、長方形の主面を有する板状の放射導体用基材12と、放射導体用基材12の主面よりも格段に小さい長方形の主面を有する板状のRFIC素子16と、RFIC素子16の主面よりも大きい真円形の主面を有する薄膜状のシール181とを含む。
 第2実施例でも、放射導体用基材12の長さ方向にX軸が割り当てられ、放射導体用基材12の幅方向にY軸が割り当てられ、放射導体用基材12の厚み方向にZ軸が割り当てられる。また、後述するように、RFIC素子16は、放射導体用基材12に配される前の段階でシール181に貼り付けられる。したがって、RFIC素子16は、シール181とともにRFIC素子付きシール20´をなす。
 特に図13(A)~図13(B)を参照して、放射導体用基材12の主面(詳しくは上面)には帯状の放射導体14cが形成される。放射導体14cは、放射導体用基材12の上面の外縁近傍をループ状に延び、その両端の間にはスリットSLT1が形成される。スリットSLT1は、放射導体用基材12の上面のうち、X軸方向の中央位置でかつY軸方向の正側の位置に配される。また、スリットSLT1の幅はスリットSLT1の全長にわたって均一とされる。
 図14(A)~図14(C)を参照して、シール181は、可撓性のシール基材181bを有する。シール基材181bの上面には保護材181aが設けられ、シール基材181bの下面には粘着剤181cが塗布される。
 シール基材181bの主面は真円をなす。これを踏まえて、保護材181aは、シール基材181bの主面のサイズと同じサイズの主面を有する保護材を準備し、主面の中心と交わって一直線に延びるスリットSLT2を保護材に形成することで作製される。ここで、スリットSLT2の幅は、好ましくはスリットSLT1の幅とほぼ一致する。こうして作製された保護材181aは、その円弧がシール基材181bの外縁に沿って延び、かつスリットSLT2の形状が保たれる姿勢で、シール基材181bの上面に設けられる。
 シール181の主面の直径は、RFIC素子16の長さを僅かに上回る。RFIC素子16は、その上面がシール181の下面と対向し、かつその長さ方向がスリットSLT2の延在方向に対して直交する姿勢で、シール181の下面に貼り付けられる。したがって、Z軸方向から眺めたとき、第1端子電極16aおよび第2端子電極16bは、保護材181aと重なる。また、RFIC素子16に埋め込まれたRFICチップ16eは、Z軸方向から眺めてスリットSLT2の領域に収められる。
 このような構造を有するRFIC素子付きシール20´は、Z軸方向から眺めてスリットSLT2がスリットSLT1と重なるように、放射導体用基材12の上面に貼り付けられる。この結果、RFIC素子16は、第1端子電極16aおよび第2端子電極16bが放射導体14cの両端にそれぞれ接触するように、放射導体用基材12の上面(詳しくはスリットSLT1を跨ぐ位置)に配される。これによって、放射導体14cはループアンテナとして機能する。
 以上の説明から分かるように、RFIC素子付きシール20´を放射導体用基材12の上面に貼り付けるとき、スリットSLT2は位置合わせマークとして用いられる。これによって、RFIDタグ10´の製造に掛かる作業負担が軽減される。
 また、第1端子電極16aおよび第2端子電極16bはZ軸方向から眺めて保護材181aと重なるため、RFIC素子付きシール20´を放射導体用基材12の上面に貼り付けるとき、第1端子電極16a,第2端子電極16bと放射導体14cの両端とに強い接合力を加えることができる。この結果、使用段階で第1端子電極16a,第2端子電極16bが放射導体14cから離れる懸念を軽減することができる。
 さらに、RFICチップ16eは、Z軸方向から眺めてスリットSLT1またはSLT2の領域に収められるため、RFIC素子付きシール20´を放射導体用基材12の上面に貼り付けるときにRFIC素子16に過大な応力が掛かる懸念も軽減することができる。
[第3実施例]
 図15を参照して、第3実施例のRFIC素子100もまた、代表的には900MHz帯、つまりUHF帯の通信周波数に対応するRFIC素子であり、主面が長方形をなす多層基板120を有する。多層基板120は、ポリイミドや液晶ポリマ等の可撓性の樹脂絶縁層を積層した積層体を素体としていて、多層基板120自体も可撓性を示す。これらの材料からなる各絶縁層の誘電率は、LTCCに代表されるセラミック基材層の誘電率よりも小さい。
 なお、第3実施例では、多層基板120の長さ方向にX軸が割り当てられ、多層基板120の幅方向にY軸が割り当てられ、多層基板120の厚み方向にZ軸が割り当てられる。また、第3実施例のRFIC素子100は、第1実施例または第2実施例のRFIC素子16として使用できることは言うまでもない。
 図17(A)~図17(C),図18(A)~図18(C)および図19(A)~図19(C)をさらに参照して、多層基板120にはRFICチップ160および給電回路180が内蔵され、多層基板120の一方主面には第1端子電極140aおよび第2端子電極140bが形成される。
 具体的には、RFICチップ160は、シリコン等の半導体を素材とする硬質の半導体基板に各種の素子を内蔵した構造を有し、その一方主面および他方主面は正方形を描く。また、RFICチップ160の他方主面には、第1入出力端子160aおよび第2入出力端子160bが形成される(詳細は後述)。多層基板120の内部において、RFICチップ160は、正方形の各辺がX軸またはY軸に沿って延び、かつ一方主面および他方主面がそれぞれZ軸方向の正側および負側を向く姿勢で、X軸方向,Y軸方向およびZ軸方向の各々における中央に位置する。
 給電回路180は、コイル導体200と層間接続導体240aおよび240b(詳細は後述)とによって形成される。また、コイル導体200は、コイルパターン200a~200cによって形成される。第1コイル部CIL1はコイルパターン200aの一部をなし、第2コイル部CIL2はコイルパターン200bの一部をなし、第3コイル部CIL3および第4コイル部CIL4はコイルパターン200cの一部をなす。
 このうち、第1コイル部CIL1,第3コイル部CIL3,層間接続導体240aは、X軸方向における負側位置においてZ軸方向に並び、第2コイル部CIL2,第4コイル部CIL4,層間接続導体240bは、X軸方向における正側位置においてZ軸方向に並ぶ。
 これを踏まえて、RFICチップ160は、多層基板120をZ軸方向、Y軸方向それぞれから見たとき、第1コイル部CIL1と第2コイル部CIL2との間、かつ、第3コイル部CIL3と第4コイル部CIL4との間に配置されている。
 第1端子電極140aはX軸方向における負側位置に配され、第2端子電極140bはX軸方向における正側位置に配される。第1端子電極140aおよび第2端子電極140bはいずれも可撓性の銅箔を素材として短冊状に形成され、各々の主面のサイズは互いに一致する。短冊の短辺はX軸に沿って延び、短冊の長辺はY軸に沿って延びる。
 したがって、RFICチップ160は、多層基板120を各絶縁層の積層方向から平面視したとき給電回路180の一部と給電回路180の他の一部とによって挟まれる。また、X軸方向から多層基板120を眺めたとき、RFICチップ160は給電回路180と重なる。さらに、多層基板120を平面視したとき、給電回路180は、第1端子電極140aおよび第2端子電極140bの各々と部分的に重なる。
 なお、積層体を構成する各絶縁層は10μm以上100μm以下と薄いため、多層基板120に内蔵されたRFICチップ160および給電回路180は、外側から透けて見える。このため、RFICチップ160および給電回路180の接続状態(断線の有無)を容易に確認することができる。
 特に図18(A)~図18(C)および図19(A)~図19(C)を参照して、多層基板120は、積層された3つのシート状の絶縁層120a~120cによって形成される。このうち、絶縁層120aは上位層をなし、絶縁層120bは中位層をなし、絶縁層120cは下位層をなす。
 絶縁層120aの一方主面には、第1端子電極140aおよび第2端子電極140bが形成される。上述のように、第1端子電極140aはX軸方向の負側に配され、第2端子電極140bはX軸方向の正側に配される。
 絶縁層120bの一方主面の中央位置には、他方主面に達する矩形の貫通孔HL1が形成される。ここで、貫通孔HL1のサイズはRFICチップ160のサイズに合わせられる。また、絶縁層120bの一方主面のうち貫通孔HL1の周辺には、可撓性の銅箔を素材として帯状に延びるコイルパターン200cが形成される。
 コイルパターン200cの一方端は、平面視で第1端子電極140aと重なる位置に配され、Z軸方向に延びる層間接続導体220aによって第1端子電極140aと接続される。また、コイルパターン200cの他方端は、平面視で第2端子電極140bと重なる位置に配され、Z軸方向に延びる層間接続導体220bによって第2端子電極140bと接続される。なお、層間接続導体220a,220bおよび後述する層間接続導体240a,240bは、Snを主成分とする硬質の金属バルクである。
 コイルパターン200cの一方端を始端としたとき、コイルパターン200cは、一方端の周りを反時計回り方向に2回転してY軸方向における負側の端部付近まで延在し、その後にX軸方向の正側に延在する。コイルパターン200cは続いて、X軸方向における正側の端部付近をY軸方向における正側に屈曲し、他方端の周りを反時計回り方向に2回転してから他方端に達する。
 絶縁層120cの一方主面には、可撓性の銅箔を素材として帯状に延びるコイルパターン200aおよび200bが形成される。絶縁層120bおよび120cを平面視したとき、コイルパターン200aの一方端は、コイルパターン200cの一方端よりもY軸方向やや負側の位置に配され、コイルパターン200aの他方端(=第1コイル端T1)は、貫通孔HL1が描く矩形の四隅のうちX軸方向の負側でかつY軸方向の正側の隅と重なる位置に配される。
 また、コイルパターン200bの一方端は、コイルパターン200cの他方端よりもY軸方向やや負側の位置に配され、コイルパターン200bの他方端(=第2コイル端T2)は、貫通孔HL1が描く矩形の四隅のうちX軸方向の正側でかつY軸方向の正側の隅に重なる位置に配される。なお、第1コイル端T1および第2コイル端T2のいずれも、絶縁層120cを平面視したとき矩形をなす。
 コイルパターン200aの一方端を起点としたとき、コイルパターン200aは、一方端の周りを時計回り方向に2.5回転し、その後にY軸方向における負側に屈曲して他方端に達する。同様に、コイルパターン200bの一方端を起点としたとき、コイルパターン200bは、一方端の周りを反時計回り方向に2.5回転し、その後にY軸方向における負側に屈曲して他方端に達する。さらに、コイルパターン200aの一方端は、Z軸方向に延びる層間接続導体240aによってコイルパターン200cの一方端と接続され、コイルパターン200bの一方端は、Z軸方向に延びる層間接続導体240bによってコイルパターン200cの他方端と接続される。
 絶縁層120bおよび120cを平面視したとき、コイルパターン200aの一部の区間はコイルパターン200cの一部の区間と重なり、コイルパターン200bの一部の区間もコイルパターン200cの他の一部の区間と重なる。給電回路180は、こうして配されたコイルパターン200a~200cと層間接続導体240aおよび240bとによって形成される。
 第3実施例では、コイルパターン200aおよび200cが重なり合う区間のうち、コイルパターン200a側の区間を“第1コイル部CIL1”と定義し、コイルパターン200c側の区間を“第3コイル部CIL3”と定義する。また、コイルパターン200bおよび200cが重なり合う区間のうち、コイルパターン200b側の区間を“第2コイル部CIL2”と定義し、コイルパターン200c側の区間を“第4コイル部CIL4”と定義する。さらに、コイルパターン200aの一方端またはコイルパターン200cの一方端の位置を“第1位置P1”と定義し、コイルパターン200bの一方端またはコイルパターン200cの他方端の位置を“第2位置P2”と定義する。
 絶縁層120cの一方主面にはまた、可撓性の銅箔を素材とする矩形のダミー導体260aおよび260bが形成される。絶縁層120bおよび120cを平面視したとき、ダミー導体260aおよび260bは、貫通孔HL1が描く矩形の四隅のうちY軸方向の負側においてX軸方向に並ぶ2つの隅にそれぞれ重なるように配される。
 RFICチップ160は、その他方主面の四隅が第1コイル端T1,第2コイル端T2,ダミー導体260a,260bとそれぞれ対向するように、絶縁層120cに実装される。第1入出力端子160aは、平面視で第1コイル端T1と重なるようにRFICチップ160の他方主面に配される。同様に、第2入出力端子160bは、平面視で第2コイル端T2と重なるようにRFICチップ160の他方主面に配される。
 この結果、RFICチップ160は、第1入出力端子160aによって第1コイル端T1と接続され、第2入出力端子160bによって第2コイル端T2と接続される。
 こうして構成されたRFIC素子100の等価回路を図16に示す。インダクタL1は第1コイル部CIL1に対応し、インダクタL2は第2コイル部CIL2に対応する。また、インダクタL3は第3コイル部CIL3に対応し、インダクタL4は第4コイル部CIL4に対応する。給電回路180によるインピーダンス整合の特性は、インダクタL1~L4の値によって規定される。
 インダクタL1の一方端およびインダクタL2の一方端はそれぞれ、RFICチップ160に設けられた第1入出力端子160aおよび第2入出力端子160bに接続される。インダクタL1の他方端はインダクタL3の一方端に接続され、インダクタL2の他方端はインダクタL4の一方端に接続される。インダクタL3の他方端は、インダクタL4の他方端に接続される。第1端子電極140aはインダクタL1およびL3の接続点に接続され、第2端子電極140bはインダクタL2およびL4の接続点に接続される。
 この等価回路から分かるように、第1コイル部CIL1,第2コイル部CIL2,第3コイル部CIL3および第4コイル部CIL4は、磁界が同相となるように巻回されかつ互いに直列接続される。したがって、磁界は、或る時点において図20に矢印で示す方向を向くように発生し、別の時点においてこの矢印とは反対の方向を向くように発生する。
 また、図18(B)および図18(C)から分かるように、第1コイル部CIL1および第3コイル部CIL3はほぼ同一のループ形状でかつ同一の第1巻回軸を有し、第2コイル部CIL2および第4コイル部CIL4もほぼ同一のループ形状でかつ同一の第2巻回軸を有する。さらに、第1巻回軸および第2巻回軸は、RFICチップ160を挟む位置に配される。
 つまり、第1コイル部CIL1および第3コイル部CIL3は磁気的かつ容量的に結合しており、第2コイル部CIL2および第4コイル部CIL4も磁気的かつ容量的に結合している。
 以上の説明から分かるように、RFICチップ160は、第1入出力端子160aおよび第2入出力端子160bを有して多層基板120に内蔵される。また、給電回路180は、コイルパターン200a~200cを含んで多層基板120に内蔵される。このうち、コイルパターン200aは第1入出力端子160aに接続された他方端(=第1コイル端T1)を有し、コイルパターン200bは第2入出力端子160bに接続された他方端(=第2コイル端T2)を有する。さらに、第1端子電極140aおよび第2端子電極140bは、多層基板120の一方主面に設けられ、コイルパターン200aの一方端(=第1位置P1)およびコイルパターン200bの一方端(=第2位置P2)にそれぞれ接続される。
 また、第1コイル部CIL1は第1コイル端T1から第1位置P1までの区間に存在し、多層基板120の一方主面と交差する方向に第1巻回軸を有する。第2コイル部CIL2は第2コイル端T2から第2位置P2までの区間に存在し、多層基板120の一方主面と交差する方向に第2巻回軸を有する。第3コイル部CIL3は平面視で第1コイル部CIL1と重なるように配され、第4コイル部CIL4は平面視で第2コイル部CIL2と重なるように配される。さらに、第1コイル部CIL1,第3コイル部CIL3と第2コイル部CIL2,第4コイル部CIL4とは、多層基板120を平面視してRFICチップ160を挟む位置に配される。
 インピーダンス整合のための給電回路180は多層基板120に内蔵されるところ、多層基板120にはRFICチップ160も内蔵され、第1コイル部CIL1,第3コイル部CIL3と第2コイル部CIL2,第4コイル部CIL4とは、多層基板120を平面視してRFICチップ160を挟む位置に配される。
 RFICチップ160は半導体基板で構成されているため、第1コイル部CIL1,第2コイル部CIL2,第3コイル部CIL3および第4コイル部CIL4にとってRFICチップ160はグランドないしシールドとして機能し、第1コイル部CIL1および第2コイル部CIL2は磁気的にも容量的にも互いに結合し難くなり、第3コイル部CIL3および第4コイル部CIL4もまた磁気的にも容量的にも互いに結合し難くなる。これによって、通信信号の通過帯域が狭くなる懸念を軽減することができる。
 第3実施例のRFIC素子100が実装されたRFIDタグの一例を図21(A)および図21(B)に示す。このRFIDタグはダイポール型のRFIDタグであり、放射素子300aは、放射導体用基材320aおよびこれに配された放射導体340a,340bからなる。
 放射導体用基材320aは、PETを素材として可撓性を示す帯状の基材である。また、放射導体340aおよび340bの各々は、アルミ箔または銅箔を素材として可撓性を示す帯状の導体である。ここで、放射導体340aおよび340bは、共通の幅および長さを有する。ただし、放射導体340aおよび340bの各々の幅は放射導体用基材320aの幅よりも小さく、放射導体340aおよび340bの各々の長さは放射導体用基材320aの長さの半分に満たない。
 放射導体340aおよび340bは、放射導体用基材320aの表面(=Z軸方向の負側を向く面)に設けられる。具体的には、放射導体340aは、放射導体用基材320aの長さ方向に沿って延びる姿勢で、放射導体用基材320aの表面のうちX軸方向における負側の領域に設けられる。同様に、放射導体340bは、放射導体用基材320aの長さ方向に沿って延びる姿勢で、放射導体用基材320aの表面のうちX軸方向における正側の領域に設けられる。
 さらに、放射導体340aの一方端(=X軸方向における正側端部)と放射導体340bの一方端(=X軸方向における負側端部)との間隔は、RFIC素子100に設けられた第1端子電極140aおよび第2端子電極140bの間隔に合わせられる。
 RFIC素子100は、その一方主面が放射導体用基材320aの表面に対向する姿勢で、放射導体用基材320aの表面の中央位置に実装される。この結果、第1端子電極140aは放射導体340aの一方端と接続され、第2端子電極140bは放射導体340bの一方端と接続される。
 なお、第1端子電極140aは導電性接合材360aによって放射導体340aに固定され、第2端子電極140bは導電性接合材360bによって放射導体340bに固定される(図23参照)。ただし、導電性接合材360aおよび360bの代わりに絶縁性の接合材を採用し、容量を介して接続するようにしてもよい。つまり、第1端子電極140aおよび第2端子電極140bは、電気的に放射導体340aおよび340bと接続されればよい。
 上述のように、多層基板120は、可撓性のポリイミドまたは液晶ポリマを素材とし、コイルパターン200a~200c,第1端子電極140a,第2端子電極140bは、可撓性の銅箔を素材とする。これに対して、層間接続導体220a,220b,240a,240bはSnを素材とする硬質の導体であり、RFICチップ160の基板もまたシリコンを素材とする硬質の基板である。また、面積が大きな第1端子電極140aおよび第2端子電極140bでは、銅箔の可撓性が小さくなるし、さらにNi/AuやNi/Sn等のめっき膜を施すことで、その可撓性が失われる。
 この結果、RFIC素子100には、図22に示すようにリジッド領域およびフレキシブル領域が形成される。図22によれば、第1端子電極140a,第2端子電極140bおよびRFICチップ160の各々が配された領域がリジッド領域とされ、他の領域がフレキシブル領域とされる。特に、第1端子電極140aおよび第2端子電極140bの各々は平面視でRFICチップ160から離間した位置に設けられるため、第1端子電極140aおよび第2端子電極140bの各々とRFICチップ160との間にフレキシブル領域が形成される。なお、層間接続導体220a,220b,240a,240bは、リジッド領域に配される。
 したがって、RFIDタグが曲面に貼り付けられると、RFIC素子100はたとえば図23に示すように撓む。
 図24を参照して、第1入出力端子160aおよび第2入出力端子160bの間には、RFICチップ160自身が持つ寄生容量(浮遊容量)Cpが存在し、RFIC素子100では2つの共振が発生する。1つ目の共振は放射導体340a~340b、インダクタL3およびインダクタL4で構成される電流経路に生じる共振であり、2つ目の共振はインダクタL1~L4および寄生容量Cpで構成される電流経路(電流ループ)に生じる共振である。この2つの共振は、各電流経路に共有されるインダクタL3~L4によって結合され、2つの共振にそれぞれ対応する2つの電流I1およびI2は図24に示す要領で流れる。
 また、1つ目の共振周波数および2つ目の共振周波数のいずれも、インダクタL3~L4の影響を受ける。1つ目の共振周波数と2つ目の共振周波数との間には数10MHz(具体的には5~50MHz程度)の差を生じさせている。これらの共振周波数特性は図25において曲線AおよびBで表現される。このような共振周波数を有する2つの共振を結合させることで、図25において曲線Cで示すような広帯域の共振周波数特性が得られる。
 なお、第1実施例ないし第3実施例およびその変形例の構成は、矛盾しない範囲で適宜組み合わせることができることは言うまでもない。
 10,10´ …RFIDタグ
 12 …放射導体用基材
 14a,14b,14c,14 …放射導体
 16,100 …RFIC素子
 16a,140a …第1端子電極
 16b,140b …第2端子電極
 16c …基板
 16d …給電回路
 16e,180 …RFICチップ
 18 …シール
 R1 …第1粘着領域
 R2 …第2粘着領域
 120 …多層基板
 160a …第1入出力端子
 160b …第2入出力端子
 200 …コイル導体
 200a~200c …コイルパターン
 300a …放射素子
 CIL1 …第1コイル部
 CIL2 …第2コイル部
 CIL3 …第3コイル部
 CIL4 …第4コイル部

Claims (10)

  1.  放射導体を備え、前記放射導体の少なくとも一部が形成された主面を有する放射導体用基材と、
     端子電極が形成された主面を有するRFIC素子と、
     シール用基材上に粘着面を有するシールと、
    を備え、
     前記RFIC素子は、前記端子電極が前記放射導体の前記一部に直接あるいは間接的かつ摺動可能に接触するように、前記放射導体用基材の前記主面に配され、
     前記シールは、前記粘着面にて、前記RFIC素子の少なくとも一部を覆うように前記放射導体用基材に貼り付けられ、前記RFIC素子を前記放射導体用基材に固定している、
    無線通信デバイス。
  2.  前記シールは、前記シール基材の主面に設けられた保護材を含み、平面視で前記保護材が前記端子電極と重なるように前記放射導体用基材に貼り付けられる、請求項1記載の無線通信デバイス。
  3.  前記放射導体の前記一部は第1スリットを有し、
     前記シールの前記保護材は、第2スリットを有し、平面視で前記第2スリットが前記第1スリットと重なるように前記放射導体用基材に貼り付けられる、請求項2記載の無線通信デバイス。
  4.  前記粘着面は第1粘着領域と前記第1粘着領域を囲む第2粘着領域とを有し、
     前記第1粘着領域および前記第2粘着領域はそれぞれ前記RFIC素子および前記放射導体用基材に粘着する、請求項1ないし3のいずれかに記載の無線通信デバイス。
  5.  前記放射導体用基材、前記RFIC素子および前記シールは可撓性である、請求項1または4記載の無線通信デバイス。
  6.  前記RFIC素子は、高周波信号を処理するRFICチップと、通信周波数に相当する共振周波数を持った給電回路と、前記RFICチップを実装し、前記給電回路を内蔵した基板とを有し、
     前記端子電極は前記基板の主面に形成されかつ前記給電回路を介して前記RFICチップに接続される、請求項1ないし5のいずれかに記載の無線通信デバイス。
  7.  端子電極が形成された主面を有するRFIC素子と、
     シール用基材上に粘着面を有するシールと、
    を備え、
     前記端子電極が露出するように前記RFIC素子を前記粘着面の一部の領域に貼り付けてなるRFIC素子付きシールであって、
     前記粘着面の他の一部の領域は、前記端子電極が放射導体用基材の主面に形成された放射導体の一部に直接あるいは間接的かつ摺動可能に接触するように、前記放射導体用基材に粘着する領域である、RFIC素子付きシール。
  8.  放射導体を備え、前記放射導体の少なくとも一部が形成された主面を有する放射導体用基材と、端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールとを準備する準備工程と、
     前記端子電極が露出するように前記RFIC素子を前記シールの前記粘着面の一部の領域に貼り付けてRFIC素子付きシールを作製する第1貼り付け工程と、
     前記端子電極が前記放射導体の前記一部に直接あるいは間接的かつ摺動可能に接触するように、前記RFIC素子付きシールの前記粘着面の他の一部の領域を前記放射導体用基材の前記主面に貼り付ける第2貼り付け工程と、
    を有する、無線通信デバイスの製造方法。
  9.  端子電極が形成された主面を有するRFIC素子と、
     シール用基材上に粘着面を有するシールと、
    を備え、
     前記端子電極が露出するように前記RFIC素子を前記粘着面に貼り付けてなるRFIC素子付きシールを用いて無線通信デバイスを製造する製造方法であって、
     放射導体を備え、前記放射導体の少なくとも一部が形成された主面を有する放射導体用基材を準備する準備工程と、
     前記端子電極が前記放射導体の前記一部に直接あるいは間接的かつ摺動可能に接触するように、前記RFIC素子付きシールを前記放射導体用基材の前記主面に貼り付ける貼り付け工程と、
    を有する、無線通信デバイスの製造方法。
  10.  端子電極が形成された主面を有するRFIC素子と、シール用基材上に粘着面を有するシールとを準備する準備工程と、
     前記端子電極が露出するように前記RFIC素子を前記シールの前記粘着面に貼り付けてRFIC素子付きシールを作製する貼り付け工程と、
    を有するRFIC素子付きシールの作製方法であって、
     前記RFIC素子付きシールは、放射導体用基材の主面に形成された放射導体の少なくとも一部に前記端子電極が直接あるいは間接的かつ摺動可能に接触するように前記放射導体用基材に貼り付けられる部材である、RFIC素子付きシールの作製方法。
PCT/JP2015/080449 2014-11-07 2015-10-28 無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法 WO2016072335A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20174965.2A EP3719707B1 (en) 2014-11-07 2015-10-28 Wireless communication device and method for manufacturing same
JP2016502128A JP5907365B1 (ja) 2014-11-07 2015-10-28 無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法
EP15856392.4A EP3091483B1 (en) 2014-11-07 2015-10-28 Wireless communication device, method for manufacturing same, and method for producing seal fitted with rfic element
CN201580009081.4A CN106030618B (zh) 2014-11-07 2015-10-28 无线通信装置及其制造方法、以及带rfic元件贴片及其制作方法
US15/234,304 US9836686B2 (en) 2014-11-07 2016-08-11 Wireless communication device, method for manufacturing same, seal fitted with RFIC element, and method for producing same
US15/790,095 US10210449B2 (en) 2014-11-07 2017-10-23 Wireless communication device, method for manufacturing same, seal fitted with RFIC element, and method for producing same
US16/234,665 US20190138873A1 (en) 2014-11-07 2018-12-28 Wireless communication device, method for manufacturing same, seal fitted with rfic element, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-227195 2014-11-07
JP2014227195 2014-11-07
JP2015-044178 2015-03-06
JP2015044178 2015-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/234,304 Continuation US9836686B2 (en) 2014-11-07 2016-08-11 Wireless communication device, method for manufacturing same, seal fitted with RFIC element, and method for producing same

Publications (1)

Publication Number Publication Date
WO2016072335A1 true WO2016072335A1 (ja) 2016-05-12

Family

ID=55909061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080449 WO2016072335A1 (ja) 2014-11-07 2015-10-28 無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法

Country Status (5)

Country Link
US (3) US9836686B2 (ja)
EP (2) EP3091483B1 (ja)
JP (1) JP6176350B2 (ja)
CN (2) CN109376837A (ja)
WO (1) WO2016072335A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155382A1 (ja) * 2017-02-21 2018-08-30 株式会社村田製作所 Rfidタグ
JP6424995B1 (ja) * 2017-07-14 2018-11-21 株式会社村田製作所 Rfidタグ
WO2019012767A1 (ja) * 2017-07-14 2019-01-17 株式会社村田製作所 Rfidタグおよびrfidタグ管理方法
WO2019012766A1 (ja) * 2017-07-14 2019-01-17 株式会社村田製作所 Rfidタグ付きメガネおよびrfidタグ付き物品
WO2019017022A1 (ja) * 2017-07-21 2019-01-24 株式会社村田製作所 無線通信デバイス
DE112019006728T5 (de) 2019-01-25 2021-10-28 Murata Manufacturing Co., Ltd. Drahtloskommunikationsvorrichtung und verfahren zum herstellen derselben
US12014235B2 (en) 2018-10-15 2024-06-18 Murata Manufacturing Co., Ltd. Wireless communication device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668241B (zh) * 2010-03-24 2015-01-28 株式会社村田制作所 Rfid***
EP3091483B1 (en) * 2014-11-07 2020-08-12 Murata Manufacturing Co., Ltd. Wireless communication device, method for manufacturing same, and method for producing seal fitted with rfic element
US10654365B2 (en) * 2015-04-29 2020-05-19 Aptiv Technologies Limited Bifurcated balanced electromagnetic resonator
JP6614364B2 (ja) * 2016-12-02 2019-12-04 株式会社村田製作所 Rfidタグ付き包装袋および包装袋の開封管理システム、並びに、rfidタグ付き貼付シートおよび貼付シートを貼付した容器の開封管理システム
CN215266637U (zh) * 2019-11-08 2021-12-21 株式会社村田制作所 Rfic模块和rfid标签
DE212020000366U1 (de) 2019-11-25 2021-02-23 Murata Manufacturing Co., Ltd. RFIC-Modul und RFID-Transponder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267150A (ja) * 2009-05-15 2010-11-25 Toppan Forms Co Ltd 非接触型情報記録媒体
WO2010140429A1 (ja) * 2009-06-03 2010-12-09 株式会社村田製作所 無線icデバイス及びその製造方法
JP2012043282A (ja) * 2010-08-20 2012-03-01 Toppan Forms Co Ltd 非接触型データ受送信体
JP2012108695A (ja) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd 非接触通信用icカード
JP2014160515A (ja) * 2007-10-10 2014-09-04 Kovio Inc プリント集積回路を含む無線デバイス並びにその製造及び使用方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710273B2 (en) * 1999-09-02 2010-05-04 Round Rock Research, Llc Remote communication devices, radio frequency identification devices, wireless communication systems, wireless communication methods, radio frequency identification device communication methods, and methods of forming a remote communication device
US6606247B2 (en) * 2001-05-31 2003-08-12 Alien Technology Corporation Multi-feature-size electronic structures
FR2844621A1 (fr) * 2002-09-13 2004-03-19 A S K Procede de fabrication d'une carte a puce sans contact ou hybride contact-sans contact a planeite renforcee
US6940408B2 (en) * 2002-12-31 2005-09-06 Avery Dennison Corporation RFID device and method of forming
TWI339358B (en) * 2005-07-04 2011-03-21 Hitachi Ltd Rfid tag and manufacturing method thereof
KR101314036B1 (ko) * 2006-02-22 2013-10-01 도요세이칸 그룹 홀딩스 가부시키가이샤 금속재 대응 rfid 태그용 기재
CN101346852B (zh) * 2006-04-14 2012-12-26 株式会社村田制作所 无线ic器件
CN101542835B (zh) * 2007-04-12 2012-10-10 松下电器产业株式会社 天线装置
WO2009011400A1 (ja) * 2007-07-17 2009-01-22 Murata Manufacturing Co., Ltd. 無線icデバイス及び電子機器
ITTO20070563A1 (it) 2007-07-30 2009-01-31 St Microelectronics Srl Dispositivo di identificazione a radiofrequenza con antenna accoppiata in near field
US7880614B2 (en) * 2007-09-26 2011-02-01 Avery Dennison Corporation RFID interposer with impedance matching
JP5037286B2 (ja) 2007-09-28 2012-09-26 富士通株式会社 Rfidタグおよびrfidタグの製造方法
JP5050803B2 (ja) 2007-11-21 2012-10-17 富士通株式会社 Rfidタグおよびrfidタグ製造方法
JP5018488B2 (ja) * 2008-01-15 2012-09-05 Tdk株式会社 アンテナモジュール
JP5414996B2 (ja) * 2008-01-21 2014-02-12 株式会社フジクラ アンテナ及び無線通信装置
EP2251934B1 (en) * 2008-03-03 2018-05-02 Murata Manufacturing Co. Ltd. Wireless ic device and wireless communication system
CN101981323B (zh) 2008-04-15 2013-11-13 博格华纳公司 开放式叶片发动机冷却风扇护罩导向翼瓣
EP2278662A4 (en) * 2008-04-24 2015-05-27 Toray Industries CONTACT-FREE IC LABEL
EP2840648B1 (en) * 2008-05-21 2016-03-23 Murata Manufacturing Co., Ltd. Wireless IC device
US20110168784A1 (en) * 2010-01-14 2011-07-14 Rfmarq, Inc. Wireless Communication Device for Remote Authenticity Verification of Semiconductor Chips, Multi-Chip Modules and Derivative Products
US8851388B2 (en) * 2010-07-06 2014-10-07 Chin Hua Lin RFID (radio frequency identification) tag
JP2012032931A (ja) 2010-07-29 2012-02-16 Hitachi Ltd Rfidタグ及びrfidタグの製造方法
JP5304956B2 (ja) 2011-01-14 2013-10-02 株式会社村田製作所 Rfidチップパッケージ及びrfidタグ
JP2013045780A (ja) 2011-08-22 2013-03-04 Hitachi Ltd 半導体装置及びその製造方法
JP2013242698A (ja) * 2012-05-21 2013-12-05 Murata Mfg Co Ltd 無線icモジュール付き基材シートの製造方法
JP2014081828A (ja) * 2012-10-17 2014-05-08 Fujitsu Ltd Rfidタグ
EP2736001A1 (fr) * 2012-11-27 2014-05-28 Gemalto SA Module électronique à interface de communication tridimensionnelle
EP3091483B1 (en) * 2014-11-07 2020-08-12 Murata Manufacturing Co., Ltd. Wireless communication device, method for manufacturing same, and method for producing seal fitted with rfic element
JP5907365B1 (ja) * 2014-11-07 2016-04-26 株式会社村田製作所 無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法
JP6551007B2 (ja) * 2015-07-27 2019-07-31 富士通株式会社 Rfidタグ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160515A (ja) * 2007-10-10 2014-09-04 Kovio Inc プリント集積回路を含む無線デバイス並びにその製造及び使用方法
JP2010267150A (ja) * 2009-05-15 2010-11-25 Toppan Forms Co Ltd 非接触型情報記録媒体
WO2010140429A1 (ja) * 2009-06-03 2010-12-09 株式会社村田製作所 無線icデバイス及びその製造方法
JP2012043282A (ja) * 2010-08-20 2012-03-01 Toppan Forms Co Ltd 非接触型データ受送信体
JP2012108695A (ja) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd 非接触通信用icカード

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155382A1 (ja) * 2017-02-21 2018-08-30 株式会社村田製作所 Rfidタグ
US11641714B2 (en) 2017-02-21 2023-05-02 Murata Manufacturing Co., Ltd. RFID tag
JPWO2018155382A1 (ja) * 2017-02-21 2019-06-27 株式会社村田製作所 Rfidタグ
WO2019012766A1 (ja) * 2017-07-14 2019-01-17 株式会社村田製作所 Rfidタグ付きメガネおよびrfidタグ付き物品
WO2019012767A1 (ja) * 2017-07-14 2019-01-17 株式会社村田製作所 Rfidタグおよびrfidタグ管理方法
US10599970B2 (en) 2017-07-14 2020-03-24 Murata Manufacturing Co., Ltd. RFID tag and RFID tag management method
JP6424995B1 (ja) * 2017-07-14 2018-11-21 株式会社村田製作所 Rfidタグ
WO2019017022A1 (ja) * 2017-07-21 2019-01-24 株式会社村田製作所 無線通信デバイス
JP6504324B1 (ja) * 2017-07-21 2019-04-24 株式会社村田製作所 無線通信デバイス
US10862541B2 (en) 2017-07-21 2020-12-08 Murata Manufacturing Co., Ltd. Wireless communication device
US12014235B2 (en) 2018-10-15 2024-06-18 Murata Manufacturing Co., Ltd. Wireless communication device
DE112019006728T5 (de) 2019-01-25 2021-10-28 Murata Manufacturing Co., Ltd. Drahtloskommunikationsvorrichtung und verfahren zum herstellen derselben
US11875210B2 (en) 2019-01-25 2024-01-16 Murata Manufacturing Co., Ltd. Wireless communication device and method of manufacturing same

Also Published As

Publication number Publication date
US20160350638A1 (en) 2016-12-01
JP2016167274A (ja) 2016-09-15
EP3091483A4 (en) 2017-10-25
EP3719707A1 (en) 2020-10-07
EP3091483B1 (en) 2020-08-12
US9836686B2 (en) 2017-12-05
US10210449B2 (en) 2019-02-19
CN106030618A (zh) 2016-10-12
JP6176350B2 (ja) 2017-08-09
US20190138873A1 (en) 2019-05-09
CN106030618B (zh) 2018-11-20
EP3091483A1 (en) 2016-11-09
CN109376837A (zh) 2019-02-22
US20180060717A1 (en) 2018-03-01
EP3719707B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6176350B2 (ja) 無線通信デバイスおよびその製造方法
JP6057042B1 (ja) キャリアテープ及びその製造方法、並びにrfidタグの製造方法
WO2016072301A1 (ja) キャリアテープ及びその製造方法、並びにrfidタグの製造方法
JP5170156B2 (ja) 無線icデバイス
JP5703977B2 (ja) 無線通信デバイス付き金属物品
US9627759B2 (en) Antenna device antenna module
JP5904316B1 (ja) キャリアテープ及びその製造方法、並びにrfidタグの製造方法
CN209328060U (zh) 部件内置器件
JP6319464B2 (ja) アンテナ装置およびその製造方法
JP5907365B1 (ja) 無線通信デバイスおよびその製造方法、ならびにrfic素子付きシールおよびその作製方法
JP5896594B2 (ja) 無線icデバイス
JP7021720B2 (ja) Rficモジュール及びrfidタグ
JP6394822B2 (ja) 部品内蔵デバイス、rfidタグ、および部品内蔵デバイスの製造方法
JPWO2020012726A1 (ja) 無線通信デバイスおよびその製造方法
JP6137347B2 (ja) 無線icデバイス及び無線icデバイス付き金属体
JP2015002479A (ja) 共振アンテナ及びアンテナ装置
JP2011175340A (ja) Icタグ媒体、および同媒体を貼付された導電性物品
JP2017116997A (ja) 部品内蔵デバイス、rfidタグ、および部品内蔵デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016502128

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856392

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015856392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015856392

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE