WO2016072090A1 - Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell - Google Patents

Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell Download PDF

Info

Publication number
WO2016072090A1
WO2016072090A1 PCT/JP2015/005521 JP2015005521W WO2016072090A1 WO 2016072090 A1 WO2016072090 A1 WO 2016072090A1 JP 2015005521 W JP2015005521 W JP 2015005521W WO 2016072090 A1 WO2016072090 A1 WO 2016072090A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
positive electrode
active material
secondary battery
protective layer
Prior art date
Application number
PCT/JP2015/005521
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 江口
金田 潤
三好 学
一輝 山内
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2016557455A priority Critical patent/JPWO2016072090A1/en
Publication of WO2016072090A1 publication Critical patent/WO2016072090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a current collector for a lithium ion secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.
  • a positive electrode current collector of a lithium ion secondary battery it is common to use a metal such as Al which forms a stable passive film on the surface in order to resist corrosion by electrolytic salt.
  • a metal such as Al which forms a stable passive film on the surface in order to resist corrosion by electrolytic salt.
  • Al when Al is used as a current collector, a passive film of Al 2 O 3 , AlF 3 or the like is formed on the surface.
  • the current collector of Al has the above-mentioned passive film formed on the surface, so it is difficult to be corroded and it is easy to maintain the current collection function.
  • lithium ion secondary batteries are desired to be able to be used well even in a high voltage use environment.
  • corrosion of the current collector of Al progresses gradually, and the storage characteristics and cycle characteristics of the lithium ion secondary battery having the current collector of Al deteriorate. I have a concern.
  • a protective layer on the current collector In order to maintain various battery characteristics of a lithium ion secondary battery under a high voltage use environment, studies are being made to form a protective layer on the current collector. For example, forming a protective layer by a dry process such as an ion sputtering method or a vacuum evaporation method is considered. In addition, it is also studied to form a protective layer by a wet process using an organic solvent. Furthermore, forming a protective layer using a water-based solvent that is environmentally friendly by a wet process has been studied.
  • Patent Document 1 describes a protective layer containing tin-doped indium oxide (ITO) or tin oxide, and specifically discloses a protective layer containing ITO fine particles and a polyester-based resin. There is.
  • Patent Document 2 discloses an aqueous slurry and a protective layer containing a polysaccharide polymer, a hydrophobic filler, and a polybasic acid, and the aqueous slurry is less likely to cause sedimentation of the hydrophobic filler and has high dispersibility. It is disclosed.
  • Patent Document 2 discloses at least one polymer selected from derivatives of cellulose, derivatives of alginic acid, derivatives of chitin and derivatives of chitosan, polyallylamine and polyvinylamine as polysaccharide-based polymers, and as a hydrophobic filler Acetylene black and ketjen black are disclosed, and as polybasic acids, 1,2,3,4-butanetetracarboxylic acid and pyromellitic acid are disclosed.
  • non-aqueous electrolyte secondary batteries are steadily increasing, and in general, non-aqueous electrolyte secondary batteries are recognized as essential in portable devices such as mobile phones and laptop computers .
  • non-aqueous electrolyte secondary batteries lithium ion secondary batteries are generally used because of their small size and large capacity, and are also used in aircraft and automobiles.
  • researches on a lithium ion secondary battery are actively conducted.
  • Patent Document 4 describes a lithium ion secondary battery which does not continuously generate heat even when a nail penetration test is performed.
  • the electrode is divided into sheets of a specific shape.
  • the area and shape of the sheet obtained by dividing the electrode, and the distance between the positive electrode current collector and the negative electrode current collector are specified by a constant relational expression, and the lithium ion secondary battery Several limitations were imposed on the components.
  • the positive electrode current collector made of aluminum which is easy to obtain and has excellent conductivity.
  • the positive electrode current collector made of aluminum may contact and react with the positive electrode active material containing a metal oxide particularly in an abnormal state such as a nail penetration test. This reaction is considered to be difficult to suppress by the aluminum oxide film on the surface of the positive electrode current collector.
  • it is considered that the stability of the film is insufficient in an abnormal state, and it is presumed that the above reaction is also difficult to suppress.
  • Patent Document 6 CaSi 2 is reacted with an acid to synthesize a layered silicon compound having layered polysilane as a main component, and the layered silicon compound is heated at 300 ° C. or higher to manufacture a silicon material. And, a lithium ion secondary battery including the silicon material as an active material is described.
  • the present invention has been made in view of such circumstances, and a first object thereof is to provide a current collector for a lithium ion secondary battery having a novel protective layer and a method for producing the same.
  • the second object is to provide a non-aqueous electrolyte secondary battery having a positive electrode current collector made of aluminum, which has high stability at the time of internal short circuit.
  • the current collector for a lithium ion secondary battery of the present invention comprises a current collector body and a protective layer disposed on the surface of the current collector body, and the protective layer comprises antimony-doped tin oxide and an acrylic resin. It is characterized by including.
  • the method for producing a current collector for a lithium ion secondary battery according to the present invention is a method for producing the current collector for a lithium ion secondary battery, which comprises an aqueous dispersion containing antimony-doped tin oxide under stirring.
  • a process for preparing a composition for forming a protective layer which prepares a composition for forming a protective layer by adding a binder-containing water, and a composition for forming a protective layer are applied to a current collector body, and dried by heating.
  • the non-aqueous electrolyte secondary battery of the present invention is a reaction that is disposed on the surface of a positive electrode current collector made of aluminum and the surface of a positive electrode current collector, and suppresses the reaction between the positive electrode current collector and the positive electrode active material.
  • the reaction suppression layer comprises conductive particles and A binder for a reaction suppression layer
  • the positive electrode active material contains a metal oxide
  • the conductive particles are indium oxide, zinc oxide, zinc peroxide, tin (II) oxide, tin (IV) oxide, tin oxide (VI), germanium nitride, titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, niobium nitride, vanadium nitride, tungsten nitride, element X doped indium oxide (element X is Zn, Mo, W, Ti, Zr, Sn and H
  • a small number selected from Element Y-doped tin (IV) oxide (element Y is at least
  • the negative electrode active material preferably contains a Si-based active material.
  • the conductive particles are preferably antimony-doped tin oxide (IV) in which the doping ratio of Sb (antimony) is more than 0% by mass and 20% by mass or less.
  • the positive electrode preferably has a positive electrode tab portion, and the positive electrode tab portion preferably has a positive electrode current collector and a reaction suppression layer disposed on a part of the positive electrode current collector.
  • the thickness of the reaction suppression layer is preferably 10 nm to 1000 nm.
  • the current collector for a lithium ion secondary battery of the present invention has a novel protective layer containing antimony-doped tin oxide and an acrylic resin.
  • the collector body of the current collector for a lithium ion secondary battery of the present invention is well protected by the protective layer.
  • a novel protective layer containing antimony-doped tin oxide and an acrylic resin can be easily formed on the current collector body.
  • the non-aqueous electrolyte secondary battery of the present invention since the reaction suppression layer for suppressing the reaction between the positive electrode active material and the current collector made of aluminum is provided on the positive electrode, the reaction between the positive electrode active material and the current collector for the positive electrode Is suppressed. Therefore, the non-aqueous electrolyte secondary battery of the present invention can obtain good results in the nail penetration test and is excellent in stability even at the time of internal short circuit.
  • the numerical range “a to b” described in the present specification includes the lower limit a and the upper limit b in that range. Then, the upper limit value and the lower limit value, and the numerical values listed in the examples can be combined arbitrarily to constitute a numerical range. Further, numerical values arbitrarily selected from within the numerical value range can be used as upper limit and lower limit numerical values.
  • the current collector for a lithium ion secondary battery of the present invention has a current collector body and a protective layer.
  • the current collector body When a protective layer is formed on the current collector body, the current collector body is defined in a high voltage operating environment (herein, use at a voltage of 4.3 V or higher is defined as high voltage use). Is well protected from electrolytes and the like.
  • the protective layer since the protective layer is disposed on the surface of the current collector body, it is difficult to form a passive film of Al 2 O 3 , AlF 3 or the like on the surface of the current collector body. Therefore, this protective layer can suppress the formation of a high resistance layer made of a passive film on the surface of the current collector body.
  • FIG. 1 The schematic diagram explaining the collector for lithium ion secondary batteries of this embodiment in FIG. 1 is shown.
  • a protective layer 2 is disposed on the current collector body 1.
  • the current collector body refers to a chemically inactive electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery.
  • the material of the current collector body examples include metal materials such as stainless steel, titanium, nickel, aluminum, copper and the like, and conductive resins.
  • the material of the current collector main body is preferably made of aluminum.
  • To be made of aluminum refers to being made of pure aluminum or an aluminum alloy.
  • Aluminum having a purity of 99.0% or more is referred to as pure aluminum, and an alloy obtained by adding various elements to aluminum is referred to as an aluminum alloy.
  • the aluminum alloy include Al-Cu-based, Al-Mn-based, Al-Fe-based, Al-Si-based, Al-Mg-based, AL-Mg-Si-based and Al-Zn-Mg-based.
  • aluminum alloys include A1000 series alloys (pure aluminum series) such as JIS A 1085 and A1 N30, A3000 series alloys (Al-Mn series) such as JIS A 3003 and A 3004, and A 8000 series alloys (Al-Al alloy such as JIS A 8079 and A 8021). Fe series can be mentioned.
  • the shape of the current collector body can be in the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh or the like.
  • a foil can be suitably used as the shape of the current collector body.
  • the thickness of the current collector body is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 15 ⁇ m to 25 ⁇ m.
  • the current collector body it is preferable to use a degreased current collector body.
  • the degreasing treatment include heat treatment, corona treatment, plasma treatment and the like.
  • the material manufactured by the electrolytic method it is preferable to use the material manufactured by the electrolytic method as a collector body from the point which degreasing processing is unnecessary.
  • the protective layer is disposed on the surface of the current collector body and includes antimony-doped tin oxide and an acrylic resin.
  • Antimony-doped tin oxide (hereinafter sometimes referred to as ATO) is tin oxide doped with antimony. Tin oxide is resistant to atmospheric oxygen, electrolytes and electrolytes, and also maintains its resistance well even in high voltage operating environments. Tin oxide is also excellent in oxidation resistance. While having the characteristics of tin oxide, ATO has a significantly improved conductivity compared to tin oxide.
  • the doping amount of antimony is not particularly limited. As the ATO, for example, one doped with 0.1% by mass to 2% by mass of antimony with respect to tin oxide can be favorably used.
  • antimony-doped tin oxide coated oxide (hereinafter referred to as ATO coated oxide) can also be used, including ATO.
  • Examples of the ATO coating oxide include titanium oxide whose surface is coated with ATO, zirconium oxide whose surface is coated with ATO, and cerium oxide whose surface is coated with ATO.
  • the oxide coated on the surface with ATO has higher conductivity than that of the oxide before coating because the conductivity of ATO is high.
  • ATO particles are preferred.
  • the ATO particles are composed not only of the particle surface but also of the inside of the particle from ATO having high electron conductivity. Therefore, ATO particles have higher electron conductivity than ATO-coated oxide particles, and the volume resistivity of ATO particles is comparable to that of ATO-coated oxide particles in terms of volume resistivity of powder. It is about 1/3 to 1/2 of the volume resistance value.
  • the shape of the ATO and ATO coated oxide is not particularly limited, and examples thereof include spherical particle shape and needle-like particle shape.
  • SN-100P spherical powder
  • SN-100D spherical water dispersion
  • SNS-10M spherical methyl ethyl ketone dispersion
  • FS-10P manufactured by Ishihara Sangyo Co., Ltd. as a material containing ATO particles (Needle-like powder), FS-10D (needle-like water dispersion), T-1 (spherical powder) and TDL-1 (spherical water dispersion) manufactured by Mitsubishi Materials Electronics Chemical Corporation.
  • ATO coating oxide particles specifically, for example, Ishihara Sangyo Kaisha Ltd. ET-300 W (spherical ATO coating TiO 2), ET-500 W (spherical ATO coating TiO 2), ET-600W (spherical ATO coated TiO 2 And FT-1000 (needle-like ATO coated TiO 2 ), FT-2000 (needle-like ATO coated TiO 2 ), and FT-3000 (needle-like ATO coated TiO 2 ).
  • the average particle diameter of the primary particles is preferably 50 nm or less. If the average particle size of the primary particles is larger than 50 nm, the thickness of the protective layer may be too thick.
  • the average particle size of the primary particles can be determined by directly measuring the particle sizes of 20 to 30 particles from the observation image by an electron microscope and taking the average value.
  • the cumulant average particle diameter of the ATO particles or ATO coated oxide particles is preferably 200 nm or less, and more preferably about 100 nm.
  • the cumulant average particle size is a numerical value calculated by measuring the particle size of particles in a liquid by the dynamic light scattering method and analyzing the obtained data by the Cumulant method.
  • the cumulant average particle diameter of the particles is larger than 200 nm, the particles may be significantly aggregated, and it is difficult to coat the composition for forming a protective layer on the current collector body, and the thickness of the protective layer becomes too thick There is a fear.
  • the compounding amount of the particles can be smaller than that of the spherical shape particles.
  • the needle-shaped particles can create long conductive paths in the protective layer even if the number of particles contained in the protective layer is small. Therefore, the needle-like shaped particles can ensure the same conductivity with a smaller blending amount than spherical shaped particles.
  • the needle-shaped particles preferably have a minor axis of 300 nm or less. If the minor axis of the needle-like shaped particles is larger than 300 nm, the particles themselves become very large and easily precipitate, which may make it impossible to maintain the dispersion stability of the composition for forming a protective layer.
  • the major axis is preferably 0.2 ⁇ m to 20 ⁇ m
  • the minor axis is 0.01 ⁇ m to 0.3 ⁇ m
  • the aspect ratio (major axis / minor axis) is preferably 10 to 30.
  • Acrylic resin is a general term for polymers containing monomers of acrylic acid, methacrylic acid and their derivatives, and those obtained by heat-drying polymers.
  • acrylic acid and methacrylic acid are generically referred to as (meth) acrylic acid.
  • Examples of the derivative of (meth) acrylic acid include salts of (meth) acrylic acid ester, (meth) acrylic acid amide and (meth) acrylic acid.
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters and (meth) acrylic acid hydroxyalkyl esters.
  • As (meth) acrylic acid alkyl ester for example, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, pentyl (meth) acrylic acid Examples thereof include esters, hexyl ester of (meth) acrylic acid, heptyl ester of (meth) acrylic acid and octyl ester of (meth) acrylic acid.
  • the (meth) acrylic acid alkyl esters may be used singly or in combination of two or more.
  • (meth) acrylic acid hydroxyalkyl ester those in which a hydroxy group is substituted by the alkyl group of the (meth) acrylic acid alkyl ester can be mentioned.
  • the (meth) acrylic acid hydroxyalkyl esters may be used alone or in combination of two or more.
  • salts of (meth) acrylic acid include sodium salts of (meth) acrylic acid and ammonium salts of (meth) acrylic acid.
  • the acrylic resin acts as a binder for the protective layer which bonds the ATOs and between the ATO and the current collector body.
  • Acrylic resin is excellent in adhesion to ATO and adhesion to the current collector body.
  • the composition for protective layer formation containing an acrylic resin has good dispersibility of ATO, and an acrylic resin and ATO are easy to be mixed uniformly.
  • the acrylic resin can be dissolved or dispersed in an environmentally friendly aqueous solvent.
  • (Meth) acrylic acid has a carboxyl group, and the polymer is very hydrophilic.
  • poly (meth) acrylic acid can be used as a water soluble binder.
  • Acrylic emulsions can also be used as water dispersible binders.
  • poly (meth) acrylic acid having a mass average molecular weight (hereinafter referred to as weight average molecular weight) of 3000 or more and 10000 or less as the acrylic resin. If the weight average molecular weight of the poly (meth) acrylic acid is too large, the storage stability of the coating liquid may be deteriorated, and a precipitate may be precipitated during storage of the coating liquid. If the weight-average molecular weight of poly (meth) acrylic acid is too small, the adhesion to the current collector after coating and drying will be reduced, and there is a risk of dissolution and peeling due to the solvent when coating the electrode mixture layer.
  • poly (meth) acrylic acid is preferable because it has a large amount of carboxylic acid groups and has high adhesion to the current collector body after coating and drying.
  • an acrylic resin is a dispersion in which particles of acrylic resin are dispersed in water.
  • Acrylic emulsions are of non-reactive type, reactive type, self-crosslinking type, etc., and have a wide range of polymer composition and glass transition point (hereinafter referred to as Tg).
  • the non-reaction type is one in which the emulsions are bound together by the caking properties of the acrylic emulsion itself.
  • the acrylic emulsion has a reactive functional group, and the emulsions are crosslinked by blending a crosslinking agent.
  • a self-crosslinking functional group is introduced into the acrylic emulsion, and the emulsions are crosslinked alone.
  • acrylic resin in the acrylic emulsion examples include polymers of (meth) acrylic acid derivatives, and copolymers of (meth) acrylic acid or its derivatives and an ethylenically unsaturated monomer.
  • Ethylenically unsaturated monomers include itaconic acid, fumaric acid, maleic acid, styrene, vinyl chloride, vinylidene chloride, vinyl acetate, acrylonitrile, butadiene.
  • the acrylic emulsion includes not only acrylic resin but also those modified with other resins such as epoxy resin, ester resin, urethane resin, etc.
  • the modified acrylic emulsion has heat resistance and water resistance depending on the constitution of the resin to be modified. It is possible to widely control the physical properties of the coating film, such as chemical resistance and alkali resistance.
  • a commercial item can be used suitably as an acryl-type emulsion.
  • the acrylic emulsion modified with an ester resin under the trade names Joncryl PDX-7341 and Joncryl PDX-7430 (all are BASF Japan Ltd.) have good compatibility with ATO particles, and aluminum current collectors. Adhesion to the body is also high, which is preferable.
  • the thickness of the protective layer may be too thick. 0.5 micrometer or less is preferable and, as for the average particle diameter of the acrylic resin in an acryl-type emulsion, 0.2 micrometer or less is more preferable.
  • Acrylic emulsions are known to be defined at the minimum film forming temperature.
  • the minimum film formation temperature is the temperature required for the emulsions themselves to bind to each other to form a film. If it is an acrylic emulsion having a low minimum film-forming temperature, it becomes an acrylic resin that acts as a binder at a low heat-drying temperature, and is suitably used for the current collector for a lithium ion secondary battery of the present invention.
  • a preferred minimum film-forming temperature range -20 ° C to 80 ° C can be exemplified.
  • the pH of the acrylic emulsion is preferably about 7 to 9.
  • mixing can be performed without significantly changing the zeta potential of the ATO particles when mixed with ATO particles, and the storage stability of the slurry after being mixed is also good.
  • the Tg of the acrylic emulsion is preferably 5 ° C. or more and 50 ° C. or less. If it is an acrylic emulsion having a low Tg, it becomes an acrylic resin that acts as a binder at a low heat drying temperature, and is suitably used for the current collector for a lithium ion secondary battery of the present invention.
  • the thickness of the protective layer is preferably 50 nm or more and 1000 nm or less, more preferably 50 nm or more and less than 275 nm, and more preferably 50 nm or more and less than 100 nm. If the thickness of the protective layer is too thick, the lithium ion secondary battery using the current collector having the protective layer as an electrode may have high resistance. If the thickness of the protective layer is too thin, the protective effect of the current collector by the protective layer may not be obtained. When the thickness of the protective layer is less than 100 nm, the electrode resistance increase rate can be further suppressed.
  • the method for forming the protective layer on the current collector body is not particularly limited, and any known method can be used.
  • the protective layer can be favorably formed on the current collector body by using the following method for producing a current collector for a lithium ion secondary battery of the present invention.
  • the method for producing a current collector for a lithium ion secondary battery of the present invention has a step of preparing a composition for forming a protective layer, and a step of forming a protective layer.
  • the composition preparation step for forming a protective layer is a step of preparing a composition for forming a protective layer by adding an aqueous binder-containing water to an aqueous dispersion containing antimony-doped tin oxide under stirring.
  • an aqueous dispersion containing antimony-doped tin oxide is used.
  • the water dispersion refers to one in which particles are dispersed in water.
  • dispersion means that particles are uniformly dispersed in the form of fine particles in water.
  • the water in the aqueous dispersion is preferably one from which impurities such as distilled water and ion exchanged water have been removed.
  • An alcohol may be added to the water in the aqueous dispersion. Examples of the alcohol include methanol, ethanol and isopropanol.
  • ATO particles or ATO coated oxide particles are highly hydrophilic. When ATO particles or ATO coated oxide particles are mixed with water, an aqueous dispersion can be obtained. Furthermore, the aqueous dispersion may contain a dispersant in order to achieve a more stable dispersion state.
  • the content of particles in the aqueous dispersion of ATO particles or ATO coated oxide particles is preferably 1.0% by mass or more and 40.0% by mass or less based on 100% by mass of the entire aqueous dispersion, More preferably, it is 3.0% by mass or more and 30.0% by mass or less. If the content of the particles is less than 1.0% by mass, the content of water is large, and thus the coatability may be deteriorated and the drying efficiency may also be reduced. When the content of the particles is more than 40.0% by mass, it is difficult to maintain the dispersion stability of the particles, and the particles may be easily aggregated or precipitated.
  • the aqueous binder-containing water is a poly (meth) acrylic acid aqueous solution or an acrylic emulsion.
  • the water in the water-based binder-containing water is preferably one from which impurities such as distilled water and ion-exchanged water have been removed.
  • An alcohol may be added to the water in the aqueous binder-containing water. Examples of the alcohol include methanol, ethanol and isopropanol.
  • the content of the aqueous binder in the aqueous binder-containing water is preferably 0.1% by mass to 50.0% by mass, and more preferably 0.5% by mass to 10.0% by mass. If the content of the water-based binder is too small, the solid content becomes too small when the composition for forming a protective layer is produced, the coatability may deteriorate, and the drying efficiency may decrease. In addition, when the content of the aqueous binder is too large, the viscosity of the aqueous binder-containing water becomes very high, and the mixing property may be deteriorated when it is mixed with the ATO particles or the aqueous dispersion of ATO coated oxide particles.
  • the aqueous dispersion and the aqueous binder-containing water are mixed by adding the aqueous binder-containing water to the aqueous dispersion while stirring the aqueous dispersion of ATO particles or ATO-coated oxide particles with a stirrer at a rotational speed of 1000 rpm or more. It is preferable to do.
  • a stirrer is a stirring device.
  • the stirrer include a homodisper, a homomixer and a homogenizer.
  • the stirrer is preferably a homodisper having high mixing performance and high-speed stirring even with high viscosity.
  • a stirring condition it is preferable to set it as the rotation speed of 1000 rpm-6000 rpm, and it is more preferable to set it as the rotation speed of 1500 rpm-3000 rpm. Agitation at a rotational speed less than 1000 rpm may lead to agglomeration of the ATO particles or ATO coated oxide particles.
  • Aqueous dispersions of ATO particles or ATO-coated oxide particles may aggregate at abrupt pH changes.
  • the aqueous binder-containing water is a poly (meth) acrylic acid aqueous solution exhibiting acidity
  • the aqueous binder-containing water is added to the aqueous dispersion while the aqueous dispersion of ATO particles or ATO coated oxide particles is stirred at high speed with a stirrer. Is preferably added gradually.
  • the addition order is reversed and the aqueous dispersion of ATO particles or ATO coated oxide particles is added to the aqueous poly (meth) acrylic acid solution, the ATO particles or ATO coated oxide particles tend to aggregate.
  • water-based binder-containing water to the aqueous dispersion of ATO particles or ATO coated oxide particles can suppress abrupt pH change of the mixed system by gradually adding it over a while rather than adding it at once.
  • the aggregation behavior of ATO particles or ATO coated oxide particles can be suppressed.
  • an aqueous dispersion of ATO particles or ATO-coated oxide particles having 1.0% by mass or more and 40.0% by mass or less It is preferable to add 60 g to 90 g of water containing an aqueous binder having a content of the aqueous binder of 0.1% by mass to 50.0% by mass in 5 to 60 minutes to 10 g to 40 g.
  • the content ratio of the water-based binder in the protective layer is preferably 0.1% by mass or more and 20% by mass or less.
  • the content of the aqueous binder is too large, the content of the ATO particles or ATO coated oxide particles may be reduced to lower the conductivity of the protective layer, and if the content of the aqueous binder is too small, the ATO particles or ATO may be contained. There is a possibility that the binder effect of binding the coated oxide particles to the current collector body may not be obtained.
  • the protective layer forming step is a step of applying a composition for forming a protective layer on the current collector body and drying by heating to form a protective layer on the surface of the current collector body.
  • composition for forming a protective layer As a method of applying the composition for forming a protective layer, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, and a gravure coating method may be used.
  • the current collector body on which the composition for forming a protective layer is applied is dried by heating to arrange the protective layer on the surface of the current collector body.
  • the heat drying plays a role of evaporating water from the composition for forming a protective layer and binding the ATO particles or ATO coated oxide particles to the current collector main body with an acrylic resin.
  • the heating and drying temperature is preferably such that the water can be evaporated and the temperature is higher than the minimum film forming temperature of the acrylic resin used.
  • the heating and drying conditions vary depending on the acrylic resin used, but for example, the heating and drying can be performed at 40 ° C. to 120 ° C. for 1 minute to 15 minutes.
  • the protective layer forming step may be performed under reduced pressure.
  • the lithium ion secondary battery of the present invention has the above current collector for a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, a separator, and an electrolyte as battery components.
  • the positive electrode has a current collector and a positive electrode active material layer disposed on the current collector.
  • the current collector those described for the current collector body and the above-described current collector for a lithium ion secondary battery can be used. It is preferable to use the said collector for lithium ion secondary batteries as a collector of a positive electrode.
  • the positive electrode active material layer contains a positive electrode active material and a binder.
  • the positive electrode active material layer may further contain a conductive aid, if necessary.
  • a material containing a lithium-containing compound or another metal compound can be used.
  • the positive electrode active material is preferably made of a lithium-containing oxide represented by the chemical formula: LiMO 2 (M is at least one selected from Ni, Co and Mn), and further, lithium cobalt having a layered structure as described above It is preferable to consist of a containing complex metal oxide.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 can be used.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in view of thermal stability.
  • the positive electrode active material is preferably in the form of powder having an average particle diameter D 50 of 1 ⁇ m to 20 ⁇ m.
  • the average particle diameter D 50 of the positive electrode active material is small, the specific surface area of the positive electrode active material is increased.
  • the reaction area of the average particle diameter D 50 of the positive electrode active material is too small and the positive electrode active material and the electrolyte becomes excessive increase it, as a result, are accelerated decomposition of the electrolytic solution, the lithium ion secondary Battery cycle characteristics may be degraded.
  • the average particle diameter D 50 of the positive electrode active material is too large resistance of the lithium ion secondary battery increases, there is a possibility that the output characteristics of the lithium ion secondary battery decreases.
  • the average particle diameter D 50 is that the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.
  • the binder plays a role of securing the positive electrode active material and the conductive auxiliary agent to the current collector.
  • the binder for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbr. FEP), fluorine-containing resin such as fluororubber, thermoplastic resin such as polypropylene, polyethylene, polyimide, Imide-based resins such as polyamideimide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene butadiene rubber, carboxymethyl cellulose, polyethylene glycol, and polyacrylonitrile can be exemplified.
  • the compounding ratio of the binder in the positive electrode active material layer is, in mass ratio, preferably: positive electrode active material: binder 1: 0.001 to 1: 0.3.
  • the positive electrode active material: binder is more preferably 1: 0.005 to 1: 0.2, and still more preferably 1: 0.01 to 1: 0.15. If the amount of the binder is too small, the formability of the electrode may be reduced. If the amount of the binder is too large, the energy density of the electrode may be reduced.
  • a conductive aid is added as needed to enhance the conductivity of the electrode.
  • carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VGCF), etc. are used singly or in combination of two or more. It can be used.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
  • the conventional methods such as roll coating, dip coating, doctor blade, spray coating, curtain coating, lip coating, comma coating, die coating, etc.
  • a known method may be used.
  • a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder and, if necessary, a conductive auxiliary agent is prepared, and a suitable solvent is added to the composition to form a slurry.
  • the binder may be used as a solution or a suspension in which the binder is previously dissolved in a solvent.
  • the solvent include water, N-methyl-2-pyrrolidone (NMP), methanol and methyl isobutyl ketone (MIBK).
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • the drying temperature may be set appropriately, and a temperature above the boiling point of the solvent is preferable.
  • the drying time may be appropriately set according to the amount of application and the drying temperature.
  • a compression step may be added to the current collector after forming the positive electrode active material layer by drying.
  • the negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector.
  • the negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive auxiliary.
  • the current collector, the binder, and the conductive additive are the same as those described for the positive electrode.
  • a carbon-based material capable of occluding and releasing lithium an element capable of alloying with lithium, a compound having an element capable of alloying with lithium, a polymer material, or the like can be used.
  • the carbon-based material examples include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon or carbon blacks.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenol or furan at an appropriate temperature.
  • the elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn At least one of Pb, Sb, and Bi.
  • an element capable of being alloyed with lithium is preferably silicon (Si) or tin (Sn).
  • a compound having an element capable of alloying with lithium for example, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2) SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO 2 or LiSnO.
  • a silicon compound or a tin compound is preferable.
  • a silicon compound SiO x (0.5 ⁇ x ⁇ 1.6) is preferable.
  • tin compounds include tin alloys (Cu-Sn alloy, Co-Sn alloy, etc.).
  • the silicon-based active material a silicon material having a structure in which a plate-like silicon body described in the second embodiment below is laminated in the thickness direction can be mentioned.
  • polymer material examples include polyacetylene and polypyrrole.
  • the negative electrode active material is preferably in the form of powder. If the anode active material is in powder form, it is preferable that the average particle size D 50 of the negative electrode active material is 0.5 ⁇ m or more 30 ⁇ m or less, and more preferably 1 ⁇ m or more 20 ⁇ m or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material increases, the contact area between the powder of the negative electrode active material and the electrolyte increases, and decomposition of the electrolyte proceeds. As a result, the cycle characteristics of the lithium ion secondary battery may be deteriorated. When the average particle diameter D 50 of the negative electrode active material is too large, conductivity of the whole electrode becomes uneven, charging and discharging characteristics may deteriorate.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes.
  • the separator may be, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic.
  • the electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
  • cyclic esters linear esters, ethers
  • cyclic esters for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone and gamma valerolactone
  • chain esters for example, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester can be used.
  • ethers for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be used.
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
  • an electrolytic solution for example, 0.5 mol / l to 1.7 mol / l of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use solutions dissolved at a certain concentration.
  • a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body.
  • the electrode body may be any of a laminated type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are wound.
  • the lithium ion secondary battery can be mounted on a vehicle.
  • Any vehicle may be used as long as it uses electric energy from batteries for all or part of the power source.
  • electric vehicles for example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, electric forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode having a positive electrode current collector, a reaction suppression layer, and a positive electrode active material layer, and a negative electrode.
  • the positive electrode of the non-aqueous electrolyte secondary battery of the present invention comprises a current collector for a positive electrode, a reaction suppression layer disposed on the surface of the current collector for the positive electrode, and a positive electrode active material layer disposed on the surface of the reaction suppression layer.
  • the positive electrode current collector is made of aluminum and made of pure aluminum or an aluminum alloy.
  • Aluminum having a purity of 99.0% or more is referred to as pure aluminum, and an alloy obtained by adding various elements to aluminum is referred to as an aluminum alloy.
  • the aluminum alloy include Al-Cu-based, Al-Mn-based, Al-Fe-based, Al-Si-based, Al-Mg-based, AL-Mg-Si-based and Al-Zn-Mg-based.
  • aluminum alloys include A1000 series alloys (pure aluminum series) such as JIS A 1085 and A1 N30, A3000 series alloys (Al-Mn series) such as JIS A 3003 and A 3004, and A 8000 series alloys (Al-Al alloy such as JIS A 8079 and A 8021). Fe series can be mentioned.
  • the shape of the positive electrode current collector can be in the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like.
  • a positive electrode current collector for example, a foil can be suitably used.
  • the thickness of the current collector for the positive electrode is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 15 ⁇ m to 25 ⁇ m.
  • the current collector refers to a chemically inactive electron high conductor for keeping current flow to the electrode during discharge or charge of the non-aqueous electrolyte secondary battery.
  • Pure aluminum or an aluminum alloy is also stable in a non-aqueous electrolyte under high voltage use environment (herein, use at a voltage of 4.3 V or higher is defined as high voltage use). Therefore, an aluminum current collector made of pure aluminum or an aluminum alloy is preferably used for the positive electrode of the non-aqueous electrolyte secondary battery.
  • reaction suppression layer is disposed on the surface of the positive electrode current collector, and suppresses the reaction between the positive electrode current collector and the positive electrode active material.
  • a reaction suppression layer is provided on the surface of the current collector for the positive electrode.
  • the reaction suppression layer has conductive particles and a binder for the reaction suppression layer.
  • the conductive particles include indium oxide, zinc oxide, zinc peroxide, tin (II) oxide, tin (IV) oxide, tin (VI) oxide, germanium nitride, titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, niobium nitride Vanadium nitride, tungsten nitride, element X-doped indium oxide (element X is at least one selected from Zn, Mo, W, Ti, Zr, Sn and H), element Y-doped tin (IV) oxide (element Y is At least one selected from F, W, Ta, Sb, P and B) and element Z-doped zinc oxide (element Z is at least one selected from Ga, Al and B) .
  • the conductive particles are conductive, resistant to organic solvents, corrosion resistant to oxidation-reduction reactions, and low in reaction activity. In addition, the conductive particles are less likely to burn by themselves and to be less likely to react with aluminum. The conductive particles are conductive, and thus are unlikely to be resistant to the non-aqueous electrolyte secondary battery.
  • the conductive particles may be used alone or in combination of two or more.
  • antimony-doped tin oxide (IV) (abbr. ATO) in which Sb 2 O 3 is added to tin oxide (IV) is preferable.
  • ATO has high electrical conductivity, is resistant to atmospheric oxygen, electrolytes and salts, and exhibits high resistance even at high voltages. It is preferable that the conductivity of the conductive particles is higher because the increase in the resistance of the positive electrode can be suppressed and the decrease in the capacity of the non-aqueous electrolyte secondary battery can be suppressed.
  • the proportion of the doped amount of antimony in ATO is preferably more than 0% by mass and 20% by mass or less, and more preferably 5% by mass to 16% by mass.
  • the ratio of the doping amount of antimony is large because the electrical conductivity of ATO is high.
  • the electrical conductivity of ATO does not increase in proportion to the amount of antimony even if the proportion of the doped amount of antimony exceeds 20% by mass.
  • the average particle size D 50 of the conductive particles is preferably 10 nm to 1000 nm, more preferably 20 nm to 100 nm, and still more preferably 50 nm to 80 nm.
  • the average particle diameter D 50 can be measured by particle size distribution measurement method.
  • the average particle diameter D 50 is that the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.
  • the binder for reaction suppression layer bonds the conductive particles to each other, and bonds the conductive particles and the current collector for the positive electrode.
  • the binder for the reaction suppression layer is not particularly limited as long as it is a binder that can be used for the non-aqueous electrolyte secondary battery.
  • a binder for the reaction suppression layer for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbr. FEP), fluorine-containing resin such as fluororubber, thermoplastic resin such as polypropylene, polyethylene, etc.
  • fluorine-containing resin such as fluororubber
  • thermoplastic resin such as polypropylene, polyethylene, etc.
  • examples thereof include polyimide, imide resins such as polyamideimide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene butadiene rubber, carboxymethyl cellulose, polyethylene glycol and polyacrylonitrile.
  • binders for reaction suppression layer can be used individually or in combination of 2 or more types.
  • polyacrylic acid polytetrafluoroethylene and polyethylene glycol are preferably used. These binders for reaction suppression layer are excellent in adhesion to the current collector for the positive electrode, and excellent in coatability on the current collector for the positive electrode.
  • the compounding ratio of the conductive particles to the binder for the reaction suppression layer is preferably such that the mass ratio of conductive particles to the binder for the reaction suppression layer is 1: 1 to 100: 1. If the compounding ratio is within this range, the conductive particles and the conductive particles and the positive electrode current collector are favorably bound in the reaction suppression layer. Moreover, if it is this compounding ratio, it can suppress that resistance of an electrode rises excessively by the reaction suppression layer.
  • the thickness of the reaction suppression layer is preferably 10 nm to 1000 nm, and more preferably 20 nm to 500 nm. If the thickness of the reaction suppression layer is too small, it may be difficult to obtain the effect of the reaction suppression between the positive electrode active material and the positive electrode current collector by the reaction suppression layer. If the thickness of the reaction suppression layer is too large, the volume occupied by the reaction suppression layer in the non-aqueous electrolyte secondary battery becomes too large, and the amount of the active material has to be reduced, which may lower the battery capacity.
  • the method for arranging the reaction suppression layer on the positive electrode current collector is not particularly limited, but the following method can be employed.
  • a binder for reaction suppression layer and conductive particles are mixed with a solvent to obtain a slurry for reaction suppression layer.
  • the solvent can be water or an organic solvent.
  • the organic solvent ethanol, methanol, benzene, dichloromethane and the like can be used.
  • Water contains a small amount of inorganic salts and the like, and the pH can be used even in the range of pH 4 to pH 9.
  • water preferably has a pH of 6 to 8 from which impurities have been removed, such as distilled water or ion-exchanged water.
  • the conductive particles are preferably dispersed in the reaction suppression layer slurry.
  • the conductive particles are easily disposed in the entire reaction suppression layer in the completed reaction suppression layer.
  • the addition amount of the reaction suppression layer binder which is an organic substance, may be appropriately adjusted so that the conductive particles do not aggregate.
  • the slurry for the reaction suppression layer is applied to the positive electrode current collector.
  • a coating method conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, and a gravure coating method may be used.
  • the positive electrode current collector coated with the reaction suppression layer slurry is dried, and the reaction suppression layer is disposed on the surface of the positive electrode current collector.
  • the positive electrode active material layer is disposed on the surface of the reaction suppression layer and has a positive electrode active material containing a metal oxide.
  • the positive electrode active material layer may contain a binder and a conductive additive as needed.
  • a lithium ion secondary battery will be described as an example of a non-aqueous electrolyte secondary battery.
  • the positive electrode active material contains a metal oxide.
  • Metal oxides include lithium-containing oxides or other metal oxides.
  • a titanium oxide, a vanadium oxide, or manganese dioxide is mentioned, for example.
  • LiMO 2 is at least one selected from Ni, Co and Mn
  • D is at least one selected from Al, Mg, Ti, Sn, Zn
  • LiMO 2 As a lithium-containing oxide represented by a chemical formula: LiMO 2 (M is at least one selected from Ni, Co and Mn), for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 and the like. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in view of thermal stability.
  • the positive electrode active material may contain another positive electrode active material in addition to the metal oxide.
  • positive electrode active materials include elemental sulfur (S), compounds in which sulfur and carbon are complexed, and metal sulfides such as TiS 2 .
  • the positive electrode active material is preferably in the form of powder having an average particle diameter D 50 of 1 ⁇ m to 20 ⁇ m.
  • the average particle diameter D 50 of the positive electrode active material is small, the specific surface area of the positive electrode active material is increased. Therefore, if the average particle size D 50 of the positive electrode active material is too small, the reaction area between the positive electrode active material and the electrolyte solution will be excessively increased, and as a result, the decomposition of the electrolyte solution is promoted. The cycle characteristics of the secondary battery may be deteriorated. Resistance of the average particle diameter D 50 is too the nonaqueous electrolyte secondary battery size of the positive electrode active material becomes large, there is a possibility that the output characteristics of the nonaqueous electrolyte secondary battery decreases.
  • the binding agent plays a role of fixing the positive electrode active material to the reaction suppression layer.
  • the binder for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbr. FEP), fluorine-containing resin such as fluororubber, thermoplastic resin such as polypropylene, polyethylene, polyimide, Imide-based resins such as polyamideimide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene butadiene rubber, carboxymethyl cellulose, polyethylene glycol, and polyacrylonitrile can be exemplified.
  • the compounding ratio of the binder in the positive electrode active material layer is, in mass ratio, preferably: positive electrode active material: binder 1: 0.001 to 1: 0.3.
  • the positive electrode active material: binder is more preferably 1: 0.005 to 1: 0.2, and still more preferably 1: 0.01 to 1: 0.15. If the amount of the binder is too small, the formability of the electrode may be reduced. If the amount of the binder is too large, the energy density of the electrode may be reduced.
  • the conductive aid is added to the positive electrode active material layer as needed to enhance the conductivity of the electrode.
  • carbon black fine particles such as carbon black, graphite, acetylene black (abbr. AB), ketjen black (registered trademark) (abbr. KB), vapor grown carbon fiber (abbr. VGCF), etc. alone or in combination
  • the above can be used in combination.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the electrode.
  • a composition for forming a positive electrode active material layer containing a positive electrode active material and a binder, and optionally a conductive auxiliary agent is prepared, and this composition is further provided.
  • a suitable solvent may be added to form a paste, and the paste may be applied to the surface of the reaction suppression layer and then dried. If necessary, the positive electrode current collector on which the positive electrode active material layer is disposed may be compressed to increase the electrode density.
  • composition for forming the positive electrode active material layer may be applied by any of the conventionally known methods such as roll coating, dip coating, doctor blade, spray coating, curtain coating, lip coating, comma coating, and die coating. The method may be used.
  • water N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and the like can be used.
  • FIG. 3 The schematic diagram explaining the positive electrode for non-aqueous electrolyte secondary batteries of 2nd embodiment is shown in FIG.
  • the reaction suppression layer 4 is disposed on the positive electrode current collector 3
  • the positive electrode active material layer 5 is disposed on the surface of the reaction suppression layer 4.
  • the negative electrode has a current collector for the negative electrode and a negative electrode active material layer disposed on the surface of the current collector for the negative electrode.
  • the negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive auxiliary.
  • the binder and the conductive additive are the same as those described for the positive electrode.
  • the material of the current collector for the negative electrode examples include metal materials such as stainless steel, titanium, nickel, aluminum and copper, and conductive resins.
  • copper or stainless steel is preferable as the material of the current collector for the negative electrode from the viewpoint of electrical conductivity, processability and cost.
  • the form of the current collector for the negative electrode can be in the form of a foil, a sheet, a film, a line, a rod, a mesh or the like.
  • metal foils such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably, for example.
  • the thickness of the current collector for the negative electrode is preferably 8 ⁇ m to 100 ⁇ m.
  • a carbon-based material capable of occluding and releasing lithium an element capable of alloying with lithium, a compound having an element capable of alloying with lithium, a polymer material, or the like can be used.
  • the carbon-based material examples include graphite, non-graphitizable carbon, cokes, graphites, glassy carbons, an organic polymer compound fired body, carbon fiber, activated carbon and carbon blacks.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenol or furan at an appropriate temperature.
  • the elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn At least one of Pb, Sb, and Bi.
  • an element capable of being alloyed with lithium is preferably silicon (Si) or tin (Sn).
  • a compound having an element capable of alloying with lithium for example, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO can be used.
  • a silicon compound or a tin compound is preferable.
  • a silicon compound SiO x (0.5 ⁇ x ⁇ 1.5) is preferable.
  • a tin compound for example, a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.) can be used.
  • Examples of the Si-based active material include a silicon material having a structure in which a plate-like silicon body is stacked in the thickness direction.
  • the structure of the silicon material having a structure in which the plate-like silicon bodies are stacked in the thickness direction can be confirmed by observation with a scanning electron microscope or the like.
  • the plate-like silicon body has a thickness in the range of 10 nm to 100 nm for efficient insertion and desorption reaction of lithium ions. Are preferable, and those in the range of 20 nm to 50 nm are more preferable.
  • the length of the plate-like silicon body in the long axis direction is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the plate-like silicon body preferably has a (longitudinal direction length) / (thickness) in the range of 2 to 1,000.
  • the silicon material may be pulverized or classified into particles having a constant particle size distribution.
  • D 50 can be in the range of 1 ⁇ m to 30 ⁇ m, as measured by a general laser diffraction type particle size distribution measuring device.
  • the silicon material is subjected to X-ray diffraction measurement (XRD measurement), and the silicon crystallite size is calculated from Scheller's equation using the half value width of the diffraction peak of the Si (111) plane of the obtained XRD chart.
  • the size of the silicon crystallite is preferably nano-sized.
  • the silicon crystallite size is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, particularly preferably in the range of 1 nm to 10 nm preferable.
  • the silicon material can be manufactured by the following manufacturing process.
  • the manufacturing process includes a process of reacting CaSi 2 with an acid to manufacture a layered silicon compound containing layered polysilane as a main component, and a process of manufacturing the silicon material by heating the layered silicon compound at 300 ° C. or higher.
  • CaSi 2 generally has a structure in which a Ca layer and a Si layer are laminated.
  • CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted.
  • CaSi 2 used for manufacturing the layered silicon compound it is preferable to preliminarily pulverized.
  • the acid hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, methanesulfonic acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoroarsenic acid, fluoro Antimonic acid, hexafluorosilicic acid, hexafluorogermanic acid, hexafluorotin (IV) acid, trifluoroacetic acid, hexafluorotitanic acid, hexafluorozirconic acid, trifluoromethanesulfonic acid and fluorosulfonic acid are exemplified. These acids may be used alone or in combination.
  • the acid is preferably used in the form of an aqueous solution from the viewpoint of the simplicity and safety of operation and the removal of by-products.
  • the acid may be used in an amount capable of supplying two or more equivalents of proton to CaSi 2 . Therefore, in the case of a monovalent acid, 2 moles or more of the acid may be used with respect to 1 mole of CaSi 2 .
  • the reaction conditions are preferably reduced pressure conditions such as vacuum or under an inert gas atmosphere, and temperature conditions below room temperature such as an ice bath are preferable.
  • the reaction time may be set appropriately.
  • reaction formula in the case of using hydrogen chloride as an acid is as follows.
  • Si 6 H 6 which is a polysilane corresponds to an ideal layered silicon compound. This reaction can also be considered to form a Si—H bond while Ca in layered CaSi 2 is replaced by 2H.
  • the layered silicon compound is layered because the basic skeleton of the Si layer in the raw material CaSi 2 is maintained.
  • the acid is preferably used as an aqueous solution in the reaction step of reacting CaSi 2 with the acid.
  • Si 6 H 6 can react with water, normally, a layered silicon compound is hardly obtained only with a compound of Si 6 H 6 and contains an element derived from oxygen or an acid.
  • a silicon material manufacturing process By heating the layered silicon compound at 300 ° C. or higher, hydrogen and the like are released to form a silicon material.
  • the process of heating the layered silicon compound at 300 ° C. or higher may be hereinafter referred to as a silicon material manufacturing process.
  • the silicon material manufacturing process can be represented by the following ideal reaction equation. Si 6 H 6 ⁇ 6 Si + 3 H 2 ⁇
  • the silicon material to be actually obtained also contains an element derived from oxygen or acid, Furthermore, it also contains unavoidable impurities.
  • the molar amount of the oxygen element is preferably 50 or less, and more preferably 40 or less, when the molar amount of silicon is 100.
  • the molar amount of the acid-derived element is preferably 8 or less, and particularly preferably 5 or less.
  • the silicon material production process is preferably carried out in a non-oxidizing atmosphere having a lower oxygen content than in the normal atmosphere.
  • a reduced pressure atmosphere including vacuum and an inert gas atmosphere can be exemplified.
  • the heating temperature is preferably in the range of 350 ° C. to 1200 ° C., and more preferably in the range of 400 ° C. to 1200 ° C. If the heating temperature is too low, desorption of hydrogen may not be sufficient, while if the heating temperature is too high, energy is wasted.
  • the heating time may be appropriately set in accordance with the heating temperature, and it is also preferable to determine the heating time while measuring the amount of hydrogen and the like which leaks out of the reaction system.
  • the ratio of amorphous silicon and silicon crystallite contained in the silicon material to be manufactured, and the size of silicon crystallite can also be adjusted, and further, manufactured
  • the shape and size of a nano-level thick layer including amorphous silicon and silicon crystallite included in silicon material can also be prepared.
  • a silicon material is used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery, it is preferable to use the silicon material coated with carbon.
  • the carbon may be only amorphous carbon or only crystalline carbon, or amorphous carbon and crystalline carbon may be mixed.
  • the method for coating the silicon material with carbon is not particularly limited.
  • a carbon coating method a method of mixing carbon powder and silicon material (for example, mechanical milling), a method of heat treating a mixture obtained from compounding of resin and silicon material to carbonize resin, non-oxidizing silicon material The method (thermal CVD method) etc. which carbonize organic substance gas by making it contact with organic substance gas under atmosphere, and carbonize are mentioned.
  • polyacetylene polypyrrole and the like can be used as the polymer material.
  • the non-aqueous electrolyte secondary battery in which the negative electrode active material is made of a carbon-based material has an effect of suppressing the continuous heat generation of the non-aqueous electrolyte secondary battery in the abnormal state of the nail sticking test.
  • the carbon-based material at the negative electrode in the abnormal state of thermal runaway consumes oxygen.
  • the carbon-based material consumes oxygen, a high temperature reaction in which aluminum becomes aluminum oxide is suppressed. Therefore, the non-aqueous electrolyte secondary battery can suppress the continuous heat generation.
  • the negative electrode active material preferably contains a carbon-based material. When the negative electrode active material is 100% by mass, the carbon-based material is preferably 15% by mass or more and 70% by mass or less, and more preferably 20% by mass or more and 65% by mass or less.
  • non-aqueous electrolyte secondary batteries in which the negative electrode active material is a material that reacts more slowly with oxygen than carbon-based materials, it is difficult to consume oxygen during thermal runaway, so carbon-based materials are used under abnormal conditions of the nail penetration test. As compared with the non-aqueous electrolyte secondary battery, heat generation continues more easily.
  • the non-aqueous electrolyte secondary battery of the present invention has the effect of suppressing the continuous heat generation at the time of the nail penetration test, even if the negative electrode active material uses the negative electrode active material whose reaction with oxygen is slower than the carbon-based material. It is presumed that this is because the reaction suppressing layer suppresses the reaction between the positive electrode active material and the positive electrode current collector made of aluminum.
  • Examples of negative electrode active materials that react more slowly with oxygen than carbon-based materials include Si-based active materials and Sn-based active materials. When these active materials are used as negative electrode active materials, the effects of the present invention are significantly exhibited.
  • Examples of the Si-based active material include the above-described silicon and silicon compounds.
  • Examples of the Sn-based active material include the above-mentioned tin and tin compounds.
  • the content of the Si-based active material is preferably 30% by mass or more and 50% by mass or less.
  • the negative electrode active material is preferably in the form of powder. If the anode active material is in powder form, it is preferable that the average particle size D 50 of the negative electrode active material is 0.5 ⁇ m or more 30 ⁇ m or less, and more preferably 1 ⁇ m or more 20 ⁇ m or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material increases, the contact area between the powder of the negative electrode active material and the electrolyte increases, and decomposition of the electrolyte proceeds. As a result, the cycle characteristics of the non-aqueous electrolyte secondary battery may be deteriorated. When the average particle diameter D 50 of the negative electrode active material is too large, conductivity of the whole electrode becomes uneven, charging and discharging characteristics may deteriorate.
  • the lithium ion secondary battery which is an example of 2nd embodiment of this invention has a separator and electrolyte solution in addition to the above-mentioned positive electrode and negative electrode as a battery structural element.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes.
  • a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic can be used.
  • the electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
  • cyclic esters linear esters, ethers
  • cyclic esters for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone and gamma valerolactone
  • chain esters that can be used include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, alkyl propionic acid esters, malonic acid dialkyl esters and acetic acid alkyl esters.
  • ethers for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be used.
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
  • an electrolytic solution for example, 0.5 mol / l to 1.7 mol / l of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use solutions dissolved at a certain concentration.
  • a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body.
  • the electrode body may be any of a laminated type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are wound.
  • the positive electrode tab portion has a positive electrode current collector and a reaction suppression layer disposed on a part of the positive electrode current collector.
  • the reaction suppression layer is not disposed at a portion connected to the current collection lead or the like.
  • a reaction suppression layer is disposed on the positive electrode current collector other than the connection portion such as the current collection lead in the positive electrode tab portion, and all the positive electrode current collectors other than the connection portion such as the current collector lead.
  • the reaction suppression layer is disposed on the In the positive electrode tab portion, the reaction suppressing layer is disposed on a part of the surface of the positive electrode current collector, whereby the continuous heat generation is further suppressed in the abnormal state of the nail sticking test.
  • FIG. 4 The schematic diagram explaining the positive electrode tab part of this embodiment in FIG. 4 is shown.
  • the reaction suppression layer 4 is disposed on a part of the surface of the positive electrode current collector 3 in the positive electrode tab portion 7.
  • the positive electrode active material layer 5 is not disposed on the surface of the reaction suppression layer 4.
  • the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
  • the lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery is highly safe, a vehicle equipped with the lithium ion secondary battery is highly safe.
  • Any vehicle may be used as long as it uses electric energy from batteries for all or part of the power source.
  • electric vehicles for example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, electric forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
  • non-aqueous electrolyte secondary battery of the present invention has been described by taking the lithium ion secondary battery as an example, but the present invention is not limited to the above embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
  • the protective layer or the reaction suppression layer is not disposed at the conductive connection between the current collectors or between the current collector and the other conductive member in the current collector main body. . If the protective layer or the reaction suppression layer is disposed at the conductive connection point, the connection may be disturbed. Therefore, it is preferable that a place where the protective layer or the reaction suppression layer is not disposed, that is, an uncoated part of the protective layer or the reaction suppression layer be present on the current collector body. Furthermore, it is preferable to ensure that the active material layer is disposed on the protective layer or the reaction suppression layer.
  • the active material layer When the active material layer is disposed on the current collector main body in which the protective layer or the reaction suppression layer is not disposed, the effect of the protective layer or the reaction suppression layer may be reduced. Therefore, in order to apply the active material layer continuously to the current collector having the protective layer or the reaction suppression layer disposed on a part of the surface of the current collector main body, the following apparatus is used. preferable.
  • coating an active material layer to the collector body in which the protective layer or reaction suppression layer was formed in the partial surface of a collector body in FIG. 5 is shown.
  • the coating device 14 includes a coating unit 11, a detection unit 12, and a control unit 13.
  • the current collector body 1 is conveyed in a fixed direction by the conveying means not described in FIG.
  • the current collector body 1 is conveyed in a state of being supported by the roller 10 in the arrow direction shown in FIG. 5.
  • a protective layer or a reaction suppression layer 8 is applied to a part of the current collector body 1. That is, the protective layer or the reaction suppression layer 8 is applied to the central region excluding both ends in the width direction of the current collector body 1. That is, the protective layer or the reaction suppression layer 8 is not applied to both ends in the width direction of the current collector body 1.
  • both end portions in the width direction of the current collector body 1 are used as conductive connection points between the current collectors or between the current collector and another conductive member.
  • the detection unit 12 detects the arrangement position of the protective layer or the reaction suppression layer 8 in the current collector body 1.
  • the detection unit 12 has a resistance measuring instrument 120.
  • the resistance measuring device 120 measures the resistance of the surface of the current collector body 1 and the protective layer or reaction suppression layer 8. Note that the number of resistance measuring instruments 120 installed can be changed as appropriate, and may be more than one as needed.
  • the detection unit 12 outputs a signal of the detected resistance value to the control unit 13.
  • the control unit 13 controls the coating position of the coating unit 11 based on the resistance value sent from the detection unit 12 as follows.
  • the resistance of the protective layer or reaction suppression layer 8 is higher than the resistance of the current collector body 1. Therefore, when the resistance value is higher than the preset reference value, the control unit 13 determines that the protective layer or the reaction suppression layer 8 is coated, and the position and the range of the protective layer or the reaction suppression layer 8 Identify
  • the coating unit 11 has a die coating device 110.
  • a die head portion is illustrated as the die coating apparatus 110.
  • the die coating apparatus 110 has a coating liquid tank and a liquid supply pump not shown.
  • the coating liquid is conveyed from the coating liquid tank to the die head through the liquid supply pump, pushed out from the slit in the die head, and applied according to the specified width of the slit.
  • the die head of the die coating apparatus 110 is movable in the width direction of the current collector body 1.
  • the coating range of the coating liquid is determined in accordance with the position in the width direction of the current collector body 1 of the die head.
  • the control unit 13 moves the position in the width direction of the current collector body 1 of the die head of the die coating apparatus 110 to control the die coating apparatus 110.
  • the die coating apparatus 110 controlled by the control unit 13 forms the active material layer 9 within the range in which the protective layer or the reaction suppression layer 8 is disposed.
  • the means for detecting the arrangement of the protective layer or the reaction suppression layer 8 may be a photodetector which is a non-contact detection device.
  • the photodetector measures the reflection of light of the current collector body 1 and the protective layer or reaction suppression layer 8.
  • the light emitted by the illumination of the room is reflected to the current collector body 1 and the protective layer or reaction suppression layer 8 and is sent to the light receiving element of the light detector.
  • the light detector calculates the luminance value of each position based on the detected light quantity.
  • the detection unit 12 outputs the detected luminance value to the control unit 13. Since the luminance value of the current collector body 1 and the luminance value of the protective layer or the reaction suppression layer 8 are different, the control unit 13 controls the protective layer or the reaction suppression layer when the luminance value is higher or lower than a preset value. Judging that 8 is disposed, the position and range of the protective layer or reaction suppression layer 8 are specified.
  • the coating on one side of the current collector main body 1 is described, but in the case of coating on both sides of the current collector main body 1, collection is performed using a plurality of coating units, a detection unit, and a control unit. Coating may be performed on both sides of the main body 1 at a time or on one side.
  • the protective layer or the reaction suppression layer 8 and the active material layer 9 are coated on both sides of the current collector body 1 first, the positions of the protective layer or the reaction suppression layer 8 are first aligned on both sides of the current collector body 1 Is preferred. In that case, first, the protective layer or the reaction suppression layer 8 is coated on one surface of the current collector body 1. And it is preferable to detect the position of the protective layer or reaction suppression layer 8 of one side, and to apply the protective layer or reaction suppression layer 8 to the other side according to it.
  • the detection unit on one side detects the position of the protective layer or reaction suppression layer 8 on one side, sends the information obtained from the detection unit 12 to the control unit 13 on the other side, and sends the information
  • the control unit 13 may control the coating unit 11 on the other surface side, and the controlled coating unit 11 may coat the protective layer or the reaction suppression layer 8 on the other surface.
  • the coating part 11 can be intermittently coated, and the active material layer 9 can be formed in the range in which the protective layer or the reaction suppression layer 8 is disposed.
  • the coating unit 11 is not limited to the die coating apparatus 110.
  • the coating part 11 should just be a coating apparatus which can form a film on metal foil.
  • Examples 1 to 9, Comparative Examples 1 to 3, Test Examples 1 to 3 ⁇ Preparation of protective layer formation>
  • An aluminum foil (made by UACJ Co., Ltd.) having a thickness of 15 ⁇ m was prepared.
  • the prepared aluminum foil was subjected to a degreasing treatment such as a heat treatment, a corona treatment, a plasma treatment, a washing treatment with a solvent to reduce fats and oils on the surface of the aluminum foil.
  • an ATO water dispersion (TDL-1 (spherical particles having a primary particle diameter of 50 nm or less, solid content 17.5% by mass) manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd. was prepared.
  • a water-soluble acrylic resin, an acrylic emulsion and a fluorine emulsion were prepared as binders for the protective layer.
  • the emulsion it is an acrylic emulsion BASF Japan Ltd.
  • John Krill PDX7341 which is an acrylic emulsion
  • John Flour PDX 7430 which is an acrylic emulsion
  • PTFE fluorine-based emulsion Daikin Industries polytetrafluoroethylene
  • PDX7341 nonvolatile content: 49.0%, viscosity: 400 (mPa ⁇ a), pH: 8.4, solid content acid value: 51 (mg KOH / g), Tg: 15 ° C., minimum film forming temperature: ⁇ 5 ° C.
  • PDX 7430 normal temperature self-crosslinking type, nonvolatile content: 38.0%, viscosity: 50 (mPa ⁇ a), pH: 8.0, solid content acid value: 30 (mg KOH / g), Tg: 34 ° C., minimum film formation Temperature: 44 ° C., average particle size: 0.12 ⁇ m, molecular weight (MW):> 2 ⁇ 10 6 , specific gravity: 1.04 (g / cc)
  • composition A for forming a protective layer A total of 514.3 parts by mass of the ATO aqueous dispersion and 2,834 parts by mass of distilled water were weighed in a plastic container, and a diluted product was prepared by diluting the ATO aqueous dispersion with distilled water.
  • composition B for forming a protective layer A composition B for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of PAA (weight average molecular weight 250,000) was used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). .
  • PAA weight average molecular weight 250,000
  • composition for forming a protective layer C A composition C for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of PAA (weight average molecular weight 1,000,000) was used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). .
  • PAA weight average molecular weight 1,000,000
  • composition D for forming a protective layer A composition D for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of PAANa (weight average molecular weight 5500) was used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). .
  • composition E for forming a protective layer A protective layer is formed in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of acrylic acid / maleic acid copolymer (weight average molecular weight 5000) is used instead of the 10% aqueous solution of PAA (weight average molecular weight 5000). Composition E was obtained.
  • composition F for forming a protective layer It is protected in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of acrylic acid / sulfonic acid monomer copolymer salt (weight average molecular weight 5000) is used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000).
  • the composition F for layer formation was obtained.
  • a composition G for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that the composition was changed to .5.
  • a composition H for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that the composition was changed to .5.
  • a composition I for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except for the above.
  • composition for protective layer formation manufactured as mentioned above was left still at 25 degreeC for 3 days, and it observed visually whether the precipitate could be seen.
  • composition B for forming a protective layer In the composition B for forming a protective layer and the composition C for forming a protective layer, a large amount of precipitate was observed. In the compositions A and D to I for forming a protective layer, no precipitate was observed. From this result, it was found that the presence of PAA having an excessively large weight average molecular weight causes the ATO particles to aggregate, and the storage stability of the composition for forming a protective layer is poor.
  • a collector for a lithium ion secondary battery was produced using compositions A and DI for forming a protective layer, in which no precipitate was observed in storage stability evaluation.
  • Example 1 The composition A for protective layer formation was coated on a degreased aluminum foil having a thickness of 15 ⁇ m using a microgravure coater so that the thickness of the protective layer would be 75 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 1.
  • Example 2 Composition A for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 ⁇ m using a microgravure coater so that the thickness of the protective layer would be 125 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 2.
  • Example 3 Composition A for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 ⁇ m using a microgravure coater so that the thickness of the protective layer would be 150 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 3.
  • Example 4 Composition A for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 ⁇ m using a microgravure coater so that the thickness of the protective layer would be 275 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 4.
  • Example 5 The composition A for forming a protective layer was applied to a degreased 15 ⁇ m thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 500 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 5.
  • Example 6 Composition G for protective layer formation was applied to a degreased 15 ⁇ m thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 75 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Example 6.
  • Example 7 Composition G for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 ⁇ m using a microgravure coater so that the thickness of the protective layer would be 150 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 7.
  • Example 8 The composition H for protective layer formation was coated on a degreased 15 ⁇ m thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 75 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Example 8.
  • Example 9 The composition H for protective layer formation was coated on a degreased 15 ⁇ m thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 150 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Example 9.
  • composition I for protective layer formation was applied to a degreased 15 ⁇ m thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 75 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Comparative Example 1.
  • composition I for protective layer formation was applied to a degreased 15 ⁇ m thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 150 nm.
  • the aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Comparative Example 2.
  • composition D for forming a protective layer was applied to a degreased 15 ⁇ m thick aluminum foil using a microgravure coater, but the composition D for forming a protective layer was significantly repelled on the surface of the aluminum foil, and the protective layer was It could not be formed.
  • composition E for protective layer formation was applied to a degreased 15 ⁇ m thick aluminum foil using a microgravure coater, but the composition E for protective layer formation was significantly repelled on the surface of the aluminum foil, and the protective layer was It could not be formed.
  • composition F for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 ⁇ m using a microgravure coater, but the composition F for protective layer formation was significantly repelled on the surface of the aluminum foil, and the protective layer It could not be formed.
  • compositions A and G to I for forming a protective layer had good wettability with the aluminum foil and good coatability.
  • ⁇ Adhesiveness test of protective layer> The surfaces of the protective layers of the current collectors of Examples 1 to 9 and Comparative Examples 1 and 2 were rubbed with a cotton swab, and the adhesion of the protective layers was evaluated. In the current collector of Comparative Example 1 and the current collector of Comparative Example 2, the protective layer was peeled off. The current collectors of Examples 1 to 9 did not have the protective layer peeled off, and the adhesion of the protective layers of the current collectors of Examples 1 to 9 was good. From this result, it was found that an acrylic resin is suitable as a binder in the protective layer.
  • the positive electrode of Example 1 using the current collector of Example 1 as a current collector for positive electrode was produced as follows. First, 94 parts by mass and 3 parts by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material, acetylene black as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder, respectively The mixture was mixed as 3 parts by mass, and the mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry for a positive electrode active material layer.
  • NMP N-methyl-2-pyrrolidone
  • the slurry for the positive electrode active material layer was placed on the current collector of Example 1 and applied to the current collector of Test Example 1 using a doctor blade so that the slurry became a film.
  • the slurry-coated current collector is dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the coated material on the current collector of Example 1 and the current collector of Example 1 is used by a roll press. Tightly bonded together. At this time, the density of the positive electrode active material layer was adjusted to 3.2 g / cm 3 .
  • the density of the positive electrode active material layer referred to here is the mass (g) of the positive electrode active material layer ⁇ the thickness (cm) of the positive electrode active material layer ⁇ the area (cm 2 ) of the positive electrode active material layer.
  • the joined product was heated at 120 ° C. for 6 hours in a vacuum dryer, and then cut into a predetermined shape (a rectangular shape with a positive electrode active material layer area of 25 mm ⁇ 30 mm) to obtain a positive electrode having a thickness of about 90 ⁇ m. . This was used as the positive electrode of Example 1.
  • Example 2 A positive electrode of Example 2 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 2 was used instead of the current collector of Example 1.
  • Patent electrode of Example 3 A positive electrode of Example 3 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 3 was changed to the current collector of Example 1.
  • Patent electrode of Example 4 A positive electrode of Example 4 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 4 was used instead of the current collector of Example 1.
  • Patent electrode of Example 5 A positive electrode of Example 5 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 5 was used instead of the current collector of Example 1.
  • Example 6 A positive electrode of Example 6 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 6 was used instead of the current collector of Example 1.
  • Patent electrode of Example 7 A positive electrode of Example 7 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 7 was changed to the current collector of Example 1.
  • Patent electrode of Example 8 A positive electrode of Example 8 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 8 was used instead of the current collector of Example 1.
  • Positive electrode of Example 9 A positive electrode of Example 9 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 9 was changed to the current collector of Example 1.
  • (Positive electrode of Comparative Example 1) A positive electrode of Comparative Example 1 was obtained in the same manner as the positive electrode of Example 1, except that the current collector of Test Example 1 was changed to an aluminum foil having no protective layer formed thereon.
  • (Positive electrode of Comparative Example 2) A positive electrode of Comparative Example 2 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Comparative Example 1 was used instead of the current collector of Example 1.
  • Patent electrode of Comparative Example 3 A positive electrode of Comparative Example 3 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Comparative Example 2 was used instead of the current collector of Example 1.
  • Electrode resistance increase rate (((electrode resistivity of each positive electrode-electrode resistivity of positive electrode of Comparative Example 1) / electrode resistivity of positive electrode of Comparative Example 1)) ⁇ 100 The results are shown in Table 1.
  • the positive electrode of Comparative Example 2 and Comparative Example 3 using PTFE as a binder for the protective layer has a higher rate of increase in electrode resistance as compared with the positive electrodes of Examples 1, 3 and 6 to 9 each having the same thickness of the protective layer. I understand.
  • FIG. 2 is a graph showing the relationship between the thickness of the protective layer and the rate of increase in electrode resistance, using the electrode resistance increase rates of the positive electrodes of Examples 1, 2, 4 and 5 and the positive electrode of Comparative Example 1 and the thickness of the protective layer. Show.
  • the electrode resistance increase rate decreases.
  • the electrode resistance increase rate is less than 100%, which is more preferable.
  • a laminate type lithium ion secondary battery of Example 1 using the positive electrode of Example 1 was produced as follows.
  • the average particle diameter D 50 of SiO 2 and an average particle diameter D 50 of 4 ⁇ m was prepared 20 ⁇ m natural graphite.
  • a polyamideimide resin was prepared as a binder resin.
  • Acetylene black was prepared as a conduction aid.
  • An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer.
  • This slurry was coated on one side of a copper foil having a thickness of 20 ⁇ m, which is a current collector for a negative electrode, using a doctor blade to form a film.
  • the current collector coated with the slurry was dried at 100 ° C. for 10 minutes, and then the NMP was volatilized and removed, followed by pressing with a roll press to obtain a bonded product.
  • the density of the negative electrode active material layer was made to be 1.6 g / cm 3 .
  • the density of the negative electrode active material layer referred to here is the mass (g) of the negative electrode active material layer ⁇ the thickness (cm) of the negative electrode active material layer ⁇ the area (cm 2 ) of the negative electrode active material layer.
  • the joined product was heated at 200 ° C. for 2 hours in a vacuum dryer, and then cut into a predetermined shape (a rectangular shape with a negative electrode active material layer area of 25 mm ⁇ 30 mm) to make a negative electrode with a thickness of 50 ⁇ m.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • a solution dissolved to be mol / l was used. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed.
  • the positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • Example 2 (Laminated lithium ion secondary battery of Example 2) A laminated lithium ion secondary battery of Example 2 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 2 was used instead of the positive electrode of Example 1.
  • Example 3 (Laminated lithium ion secondary battery of Example 3) A laminated lithium ion secondary battery of Example 3 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 3 was used instead of the positive electrode of Example 1.
  • Example 4 (Laminated lithium ion secondary battery of Example 4) A laminated lithium ion secondary battery of Example 4 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 4 was used instead of the positive electrode of Example 1.
  • Example 5 (Laminated lithium ion secondary battery of Example 5) A laminated lithium ion secondary battery of Example 5 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 5 was used instead of the positive electrode of Example 1.
  • Example 6 (Laminated Lithium Ion Secondary Battery of Example 6) A laminated lithium ion secondary battery of Example 6 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 6 was used instead of the positive electrode of Example 1.
  • Example 7 (Laminated lithium ion secondary battery of Example 7) A laminated lithium ion secondary battery of Example 7 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 7 was used instead of the positive electrode of Example 1.
  • Example 8 (Laminated Lithium Ion Secondary Battery of Example 8) A laminated lithium ion secondary battery of Example 8 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 8 was used instead of the positive electrode of Example 1.
  • Example 9 (Laminated Lithium Ion Secondary Battery of Example 9) A laminated lithium ion secondary battery of Example 9 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 9 was used instead of the positive electrode of Example 1.
  • ⁇ Measurement of Al content of negative electrode> The amount of Al of the negative electrode after the charge and discharge cycle test was measured for the laminated lithium ion secondary batteries of Examples 1, 2, 4, 5 and Comparative Example 1.
  • the Al content of the negative electrode was measured as follows. Each laminate type lithium ion secondary battery after the charge and discharge cycle test was disassembled to separate each negative electrode. The separated negative electrode was washed with dimethyl carbonate (abbreviated DMC), and the amount of Al in the negative electrode was measured with an inductively coupled plasma analyzer (abbreviated ICP).
  • DMC dimethyl carbonate
  • ICP inductively coupled plasma analyzer
  • CC charge constant current charge
  • CC discharge constant current discharge
  • Al elution rate (%) (Al elution amount of each battery / Al elution amount of the battery of Comparative Example 1) ⁇ 100
  • the average particle diameter D 50 was prepared 30nm of antimony-doped tin oxide (hereinafter referred to as ATO).
  • ATO antimony-doped tin oxide
  • PAA polyacrylic acid
  • PTFE polytetrafluoroethylene
  • PEG polyethylene glycol having an average molecular weight of 20,000
  • ATO, PAA, and ion-exchanged water were mixed so that the mass ratio of ATO: PAA was 90:10, to prepare a slurry for a reaction suppression layer.
  • the slurry for the reaction suppression layer was placed on an aluminum foil and applied using a microgravure coater. The application was carried out on both sides of the aluminum foil, and the aluminum foil after application of the slurry for reaction suppression layer was dried at 200 ° C., and this was taken as a current collector A.
  • the current collector A is composed of an aluminum foil as a current collector for the positive electrode and a reaction suppression layer disposed on both sides of the surface of the aluminum foil. The thickness of the reaction suppression layer of the current collector A was 100 nm on one side.
  • a current collector B was produced in the same manner as the current collector A except that a slurry for the reaction suppression layer was produced such that the mass ratio of ATO: PTFE was 90:10.
  • a current collector C was produced in the same manner as the current collector A except that a slurry for the reaction suppression layer was produced such that the mass ratio of ATO: PEG was 90:10.
  • a current collector E was produced in the same manner as the current collector A except that a slurry for a reaction suppression layer was applied to an aluminum foil which was masked to narrow the coating width using a microgravure coater. The reaction suppression layer is not disposed at the masked portion of the current collector E. By using the current collector E, it is possible to produce a positive electrode in which the reaction suppression layer is not formed on the surface of the positive electrode tab portion.
  • Example 10 ⁇ Production of laminate type lithium ion secondary battery> (Example 10) A laminate type lithium ion secondary battery of Example 10 was produced as follows.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter D 50 of 6 ⁇ m, acetylene black as a conductive additive, and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder were mixed in proportions of 94 parts by mass, 3 parts by mass, and 3 parts by mass, respectively, and this mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to prepare a slurry for positive electrode active material layer did.
  • NMP N-methyl-2-pyrrolidone
  • the slurry for the positive electrode active material layer was applied in the form of a film on the surface of the current collector A using a comma coater. The coating is carried out on both sides, and the current collector A coated with the slurry for positive electrode active material layer is dried at 100 ° C. for 5 minutes to volatilize and remove NMP, and then pressed by a roll press to bond I got a thing. At this time, the density of the positive electrode active material layer was adjusted to 3.2 g / cm 3 .
  • the density of the positive electrode active material layer referred to here is the mass (g) of the positive electrode active material layer ⁇ the thickness (cm) of the positive electrode active material layer ⁇ the area (cm 2 ) of the positive electrode active material layer.
  • the joined product After heating the joined product at 120 ° C. for 6 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a positive electrode active material layer area of 40 mm ⁇ 80 mm), and a positive electrode A having a thickness of about 90 ⁇ m on one side And
  • the average particle diameter D 50 of SiO 2 and an average particle diameter D 50 of 4 ⁇ m was prepared 20 ⁇ m natural graphite.
  • a polyamideimide resin was prepared as a binder resin.
  • Acetylene black was prepared as a conduction aid.
  • An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer.
  • the negative electrode active material was 100% by mass, the carbon-based material was 61% by mass.
  • a copper foil of 20 ⁇ m was prepared as a current collector for a negative electrode, and the slurry for the negative electrode active material layer was applied in a film shape using a comma coater on the copper foil. The coating is carried out on both sides, and the copper foil coated with the slurry for the negative electrode active material layer is dried at 80 ° C. for 5 minutes to volatilize and remove NMP, and then pressed with a roll press to obtain a bonded product. Obtained. At this time, the density of the negative electrode active material layer was made to be 1.6 g / cm 3 .
  • the density of the negative electrode active material layer referred to here is the mass (g) of the negative electrode active material layer ⁇ the thickness (cm) of the negative electrode active material layer ⁇ the area (cm 2 ) of the negative electrode active material layer.
  • a laminated type lithium ion secondary battery was manufactured using the above 30 positive electrodes A and 31 negative electrodes A. Specifically, a rectangular sheet (48 mm ⁇ 88 mm, 25 ⁇ m thickness) made of polyethylene resin as a separator is sandwiched between each positive electrode A and each negative electrode A, and 30 pairs of them are laminated to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • a solution dissolved to give l was used. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed.
  • the positive electrode and the negative electrode are provided with tab portions that can be electrically connected to the outside, and a part of the tab portions extends to the outside of the laminated lithium ion secondary battery.
  • Example 11 A laminated lithium ion secondary battery of Example 11 was produced in the same manner as in Example 10 except that the current collector B was used instead of the current collector A in Example 10.
  • Example 12 A laminated lithium ion secondary battery of Example 12 was produced in the same manner as in Example 10 except that a current collector C was used instead of the current collector A in Example 10.
  • Example 13 A laminated lithium ion secondary battery of Example 13 was produced in the same manner as in Example 10 except that a current collector E was used instead of the current collector A in Example 10. A reaction suppression layer is not formed on the surface of the positive electrode tab portion of the laminate type lithium ion secondary battery of Example 13.
  • a laminate-type lithium ion secondary battery of Comparative Example 4 was produced in the same manner as in Example 10 except for the exception of the above.
  • the negative electrode active material of the laminate type lithium ion secondary battery of Comparative Example 4 is only graphite.
  • Comparative example 5 A laminate-type lithium ion secondary battery of Comparative Example 5 was produced in the same manner as in Example 10 except that a current collector D was used instead of the current collector A in Example 10.
  • the negative electrode active material of the laminate type lithium ion secondary battery of Comparative Example 5 is SiO and graphite.
  • ⁇ Tail test> The laminated lithium ion secondary batteries of Examples 10 to 13 and Comparative Examples 4 to 5 were evaluated for safety by a nail penetration test. Specifically, each battery was charged at a constant current (CC) until it reached 4.5 V at a current value of 3.0 A. Thereafter, charging was continued so as to maintain the voltage within 4.5 V ⁇ 0.02 V, and charging was stopped when the total charging time reached 5 hours.
  • the capacity of each laminate type lithium ion secondary battery was 6 Ah.
  • Each of the laminated lithium ion secondary batteries subjected to the above-mentioned charge treatment was placed on a restraint plate having a hole of 20 mm in diameter.
  • the restraint plate was placed on a press machine with nails attached to the top.
  • the nail was moved from the top to the bottom at a speed of 20 mm / sec until the nail penetrated the laminated lithium ion secondary battery on the restraint plate and the tip of the nail was located inside the hole of the restraint plate.
  • the laminated lithium ion secondary battery was attached with a temperature measurement device capable of measuring the surface temperature.
  • the nail was made of stainless steel (S45C specified by JIS G 4051), and had a diameter of 8 mm and a tip angle of 60 ° of the nail.
  • the nail penetration test was carried out while measuring the surface temperature of the laminated lithium ion secondary battery at room temperature and in the air. By this nail penetration test, the positive electrode and the negative electrode of the laminate type lithium ion secondary battery were shorted
  • the surface temperature of the laminated lithium ion secondary battery at the time of internal short circuit was measured, and the appearance of the battery was observed.
  • the surface temperature of each battery after penetration of the nail gradually decreased after rising once. Table 3 shows the highest temperature among the observed surface temperatures.
  • Table 3 and FIG. 6 show the nail penetration test results of the laminated lithium ion secondary batteries of Examples 10 to 12 and Comparative Examples 4 to 5.
  • the surface temperature is hard to lower, and the case where heat generation is continued is indicated by x, and the case where smoke is generated is indicated by ⁇ .
  • a reaction suppression layer was formed on the surface of the positive electrode tab portion.
  • Table 4 shows the nail penetration test results of the laminate type lithium ion secondary battery of Example 10, the laminate type lithium ion secondary battery of Example 13, and the laminate type lithium ion secondary battery of Comparative Example 4.
  • Table 4 shows the number of cells in which continuous heat generation has occurred among the number of test cells.
  • Example 14 A laminate type lithium ion secondary battery of Example 14 was produced as follows.
  • LiNi is 6 ⁇ m 0.5 Co 0.2 Mn 0.3 O 2 ( hereinafter, referred to as NCM) and that the average particle size D 50 whose surface is a carbon-coated as a cathode active material 67 parts by mass, 27 parts by mass, 3 parts by mass, and 3 parts by mass of 1.5 ⁇ m of LiFePO 4 (hereinafter referred to as LFP), acetylene black as a conductive additive, and PVDF as a binder
  • LFP LiFePO 4
  • acetylene black as a conductive additive
  • PVDF as a binder
  • the slurry for the positive electrode active material layer was applied in the form of a film on the surface of the current collector A using a comma coater. The coating is carried out on both sides, and the current collector A coated with the slurry for positive electrode active material layer is dried at 100 ° C. for 5 minutes to volatilize and remove NMP, and then pressed by a roll press to bond I got a thing. At this time, the density of the positive electrode active material layer was adjusted to 3.2 g / cm 3 . After heating the joined product at 120 ° C. for 6 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a positive electrode active material layer area of 40 mm ⁇ 80 mm), and a positive electrode B having a thickness of about 90 ⁇ m on one side And
  • a mixed solution of 7 ml of a 46% by weight aqueous solution of HF and 56 ml of a 36% by weight aqueous solution of HCl was brought to 0 ° C. in an ice bath, and 3.3 g of CaSi 2 was added thereto in an argon gas stream and stirred. . After confirming that the foaming was completed, the mixed solution was warmed to room temperature and stirred at room temperature for another 2 hours, and then 20 ml of distilled water was added and the mixture was further stirred for 10 minutes. At this time, yellow powder floated.
  • the obtained mixed solution was filtered, and the obtained residue was washed with 10 ml of distilled water and then with 10 ml of ethanol. The washed residue was vacuum dried to obtain 2.5 g of layered polysilane.
  • the obtained silicon material was placed in a rotary kiln type reactor, and a carbonization step by thermal CVD was performed under a propane gas flow at 850 ° C. and a residence time of 5 minutes to obtain a carbon-coated silicon material.
  • a carbonization step by thermal CVD was performed under a propane gas flow at 850 ° C. and a residence time of 5 minutes to obtain a carbon-coated silicon material.
  • the rotational speed of the reactor was 1 rpm.
  • the average particle diameter D 50 of the silicon material coated with this carbon was 5 [mu] m.
  • a silicon material coated with the above carbon and natural graphite having an average particle diameter D 50 of 20 ⁇ m were prepared.
  • a polyamideimide resin was prepared as a binder resin.
  • Acetylene black was prepared as a conduction aid.
  • An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer.
  • the negative electrode active material was 100% by mass, the carbon-based material was 38% by mass.
  • a copper foil of 20 ⁇ m was prepared as a current collector for a negative electrode, and the slurry for the negative electrode active material layer was applied in a film shape using a comma coater on the copper foil.
  • the coating is carried out on both sides, and the copper foil coated with the slurry for the negative electrode active material layer is dried at 80 ° C. for 5 minutes to volatilize and remove NMP, and then pressed with a roll press to obtain a bonded product. Obtained.
  • the density of the negative electrode active material layer was adjusted to 1.2 g / cm 3 . After heating the joined product at 200 ° C. for 2 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a negative electrode active material layer area of 44 mm ⁇ 84 mm), and a negative electrode B with a thickness of 50 ⁇ m on one side did.
  • a laminated lithium ion secondary battery was manufactured using the above 30 positive electrodes B and 31 negative electrodes B. Specifically, a rectangular sheet (48 mm ⁇ 88 mm, 25 ⁇ m thickness) made of polyethylene resin as a separator is sandwiched between each positive electrode B and each negative electrode B, and 30 pairs of them are laminated to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the positive electrode and the negative electrode are provided with tab portions that can be electrically connected to the outside, and a part of the tab portions extends to the outside of the laminated lithium ion secondary battery.
  • An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer.
  • the carbon-based material was 18% by mass.
  • a negative electrode C was produced in the same manner as the negative electrode B except for this. At this time, the thickness of the negative electrode active material layer of the negative electrode C was about 50 ⁇ m.
  • the density of the negative electrode active material layer of the negative electrode C was 1.2 g / cm 3 .
  • a laminated lithium ion secondary battery of Example 15 was produced in the same manner as in Example 14 except that this negative electrode C was used instead of the negative electrode B.
  • Table 5 shows the nail penetration test results of the laminated lithium ion secondary batteries of Examples 14 and 15.
  • Example 14 when the negative electrode active material is 100% by mass, the carbon-based material is 38% by mass, and in Example 15, when the negative electrode active material is 100% by mass, the carbon-based material is 18% by mass. there were.

Abstract

A lithium ion secondary cell current collector having a novel protective layer, and a nonaqueous electrolyte secondary cell that is highly stable during internal short-circuiting are provided. This current collector for a lithium ion secondary cell is characterized by comprising a current collector main body and a protective layer arranged on the surface of the current collector main body, and is characterized in that the protective layer contains antimony-doped tin oxides and an acrylic resin. The nonaqueous electrolyte secondary cell is characterized by comprising a positive electrode having an aluminum positive electrode current collector, a reaction suppression layer which is arranged on the surface of the positive electrode current collector and which suppresses reactions between the positive electrode current collector and a positive electrode active substance, and a positive electrode active substance layer which is arranged on the surface of the reaction suppression layer and which comprises a positive electrode active substance, and a negative electrode comprising a negative electrode active substance, and is characterized in that the reaction suppression layer comprises prescribed conductive particles and a reaction suppression layer binder.

Description

リチウムイオン二次電池用集電体、その製造方法及び非水電解質二次電池Current collector for lithium ion secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
 本発明は、リチウムイオン二次電池用集電体、その製造方法及び非水電解質二次電池に関するものである。 The present invention relates to a current collector for a lithium ion secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.
 リチウムイオン二次電池の正極集電体には、電解塩による腐食に耐えるため、表面に安定な不動態膜を形成するAlなどの金属を使用するのが一般的である。例えばAlを集電体に用いた場合、その表面にAl、AlF等の不動態膜が形成される。Alの集電体は表面に上記不動態膜が形成されるため、腐食されにくく、集電機能を保ちやすい。 As a positive electrode current collector of a lithium ion secondary battery, it is common to use a metal such as Al which forms a stable passive film on the surface in order to resist corrosion by electrolytic salt. For example, when Al is used as a current collector, a passive film of Al 2 O 3 , AlF 3 or the like is formed on the surface. The current collector of Al has the above-mentioned passive film formed on the surface, so it is difficult to be corroded and it is easy to maintain the current collection function.
 近年、リチウムイオン二次電池は、高電圧使用環境下でも良好に使用できることが望まれている。高電圧使用環境下では上記不動態膜が形成されていてもAlの集電体は徐々に腐食が進行し、Alの集電体を有するリチウムイオン二次電池は保存特性やサイクル特性が低下する懸念がある。 In recent years, lithium ion secondary batteries are desired to be able to be used well even in a high voltage use environment. In a high voltage operating environment, even if the above passive film is formed, corrosion of the current collector of Al progresses gradually, and the storage characteristics and cycle characteristics of the lithium ion secondary battery having the current collector of Al deteriorate. I have a concern.
 高電圧使用環境下においてリチウムイオン二次電池の様々な電池特性を維持するために、集電体に保護層を形成する検討がされている。例えば、イオンスパッタ法や真空蒸着法などのドライプロセスによって保護層を形成することが検討されている。また、有機溶剤を用いたウエットプロセスで保護層を形成することも検討されている。さらに、ウエットプロセスで環境に優しい水系溶剤を用いて保護層を形成することが検討されている。 In order to maintain various battery characteristics of a lithium ion secondary battery under a high voltage use environment, studies are being made to form a protective layer on the current collector. For example, forming a protective layer by a dry process such as an ion sputtering method or a vacuum evaporation method is considered. In addition, it is also studied to form a protective layer by a wet process using an organic solvent. Furthermore, forming a protective layer using a water-based solvent that is environmentally friendly by a wet process has been studied.
 例えば特許文献1には、錫をドープした酸化インジウム(ITO)または酸化錫を含む保護層が記載されており、具体的には、ITO微粒子とポリエステル系の樹脂とを含む保護層が開示されている。 For example, Patent Document 1 describes a protective layer containing tin-doped indium oxide (ITO) or tin oxide, and specifically discloses a protective layer containing ITO fine particles and a polyester-based resin. There is.
 また特許文献2には、多糖系ポリマーと疎水性フィラーと多塩基酸とを含む水系スラリー及び保護層が開示されており、水系スラリーは疎水性フィラーの沈降分離が起こりにくく分散性が高いことが開示されている。特許文献2には、多糖系ポリマーとして、セルロースの誘導体、アルギン酸の誘導体、キチンの誘導体及びキトサンの誘導体、ポリアリルアミン、ポリビニルアミンから選ばれる少なくとも1種のポリマーが開示されており、疎水性フィラーとして、アセチレンブラックやケッチェンブラックなどが開示されており、多塩基酸として、1,2,3,4-ブタンテトラカルボン酸やピロメリット酸などが開示されている。 Patent Document 2 discloses an aqueous slurry and a protective layer containing a polysaccharide polymer, a hydrophobic filler, and a polybasic acid, and the aqueous slurry is less likely to cause sedimentation of the hydrophobic filler and has high dispersibility. It is disclosed. Patent Document 2 discloses at least one polymer selected from derivatives of cellulose, derivatives of alginic acid, derivatives of chitin and derivatives of chitosan, polyallylamine and polyvinylamine as polysaccharide-based polymers, and as a hydrophobic filler Acetylene black and ketjen black are disclosed, and as polybasic acids, 1,2,3,4-butanetetracarboxylic acid and pyromellitic acid are disclosed.
 一般的に、水系溶剤を用いて粒子を含む保護層を形成する場合は、粒子は水系溶剤に分散しにくいこと、保護層形成用組成物内の粒子の分散性が悪いと保護層形成用組成物の集電体への塗工が難しくなることが知られている。 In general, when forming a protective layer containing particles using an aqueous solvent, it is difficult to disperse the particles in the aqueous solvent, and if the dispersibility of the particles in the composition for forming a protective layer is poor, the composition for forming a protective layer It is known that it becomes difficult to apply an object to a current collector.
 上記のように様々な保護層が検討されているが、依然として新規な保護層が求められている。 Although various protective layers have been considered as described above, new protective layers are still required.
 他方、非水電解質二次電池を用いた製品は増加の一途を辿っており、一般に、携帯電話やノート型パソコンなどの携帯機器には非水電解質二次電池が必須のものとして認識されている。非水電解質二次電池のうちリチウムイオン二次電池は小型で大容量であるため汎用されており、航空機や自動車にも採用されている。近年、より優れたリチウムイオン二次電池を提供する目的で、リチウムイオン二次電池に対する研究が盛んに行われている。 On the other hand, products using non-aqueous electrolyte secondary batteries are steadily increasing, and in general, non-aqueous electrolyte secondary batteries are recognized as essential in portable devices such as mobile phones and laptop computers . Among non-aqueous electrolyte secondary batteries, lithium ion secondary batteries are generally used because of their small size and large capacity, and are also used in aircraft and automobiles. In recent years, in order to provide a better lithium ion secondary battery, researches on a lithium ion secondary battery are actively conducted.
 さて、リチウムイオン二次電池を安全面からみると、リチウムイオン二次電池の内部短絡時の安全性を確保するのが重要である。特許文献3に紹介されている技術においては、集電体上に絶縁被膜を設けている。そして内部短絡時に過電流が流れると絶縁被膜の下面の集電体が溶断して電流路が遮断される。 Now, from the viewpoint of safety of lithium ion secondary batteries, it is important to ensure the safety at the time of internal short circuit of lithium ion secondary batteries. In the technique introduced in Patent Document 3, an insulating film is provided on the current collector. When an overcurrent flows at the time of internal short circuit, the current collector on the lower surface of the insulating film is melted and the current path is cut off.
 ところで、安全性の確認試験として、例えば釘刺し試験を適用する場合には、釘刺し時に短絡の生じる速度が上記した電流路の溶断速度よりも速くなり、その結果、電池の過加熱が生じる可能性がある。リチウムイオン二次電池の安全性をより高めるためには、釘刺し試験のように試験条件の厳しい確認試験に耐え得る電池構成にすることが求められる。 By the way, when applying a nail sticking test, for example, as a confirmation test of safety, the speed at which a short circuit occurs at nailing becomes faster than the above-mentioned cutting speed of the current path, and as a result, overheating of the battery may occur. There is sex. In order to further enhance the safety of a lithium ion secondary battery, it is required to have a battery configuration that can withstand severe confirmation tests of test conditions, such as a nail penetration test.
 釘刺し試験は、釘を電池に貫通させたときに電池がどのような挙動を示すかを観察する試験である。実際に、特許文献4には、釘刺し試験を行っても、継続して発熱しなかったリチウムイオン二次電池が記載されている。ここで、特許文献4に開示のリチウムイオン二次電池では、電極を特定の形状のシートに分割している。特許文献4に開示の技術では、電極を分割したシートの面積及び形状、並びに正極集電体と負極集電体の間の距離を一定の関係式で規定しており、リチウムイオン二次電池の構成要素に複数の制限が課せられていた。 The nail sticking test is a test for observing how the battery behaves when the nail is penetrated into the battery. In fact, Patent Document 4 describes a lithium ion secondary battery which does not continuously generate heat even when a nail penetration test is performed. Here, in the lithium ion secondary battery disclosed in Patent Document 4, the electrode is divided into sheets of a specific shape. In the technology disclosed in Patent Document 4, the area and shape of the sheet obtained by dividing the electrode, and the distance between the positive electrode current collector and the negative electrode current collector are specified by a constant relational expression, and the lithium ion secondary battery Several limitations were imposed on the components.
 また特許文献5には、集電体と電極合剤層との界面に絶縁部材を点在させて、正極と負極との間の抵抗を大きくしたリチウムイオン二次電池によれば、釘刺し試験を行っても発煙しないことが開示されている。しかしながら、特許文献5に開示の技術では、電池としての抵抗が上昇して、出力特性が悪化することが懸念される。 Moreover, according to a lithium ion secondary battery in which the resistance between the positive electrode and the negative electrode is increased by interposing insulating members at the interface between the current collector and the electrode mixture layer in Patent Document 5, a nail penetration test is performed. It is disclosed that smoking does not occur even if However, in the technology disclosed in Patent Document 5, there is a concern that the resistance as a battery increases and the output characteristics deteriorate.
 ところで、集電体の材料としては、入手が容易でありかつ導電性に優れるアルミニウムを用いるのが良いと考えられる。しかしアルミニウム製の正極用集電体は、特に釘刺し試験時等の異常な状態において、金属酸化物を含む正極活物質と接触し反応する可能性がある。この反応は正極用集電体の表面にあるアルミニウムの酸化被膜では抑制しにくいと考えられる。また正極用集電体と正極活物質とを直接接触させないために、正極用集電体に合金等からなる被膜を形成することが考えられる。しかしながらこの場合でも、異常な状態においては被膜の安定性が不足すると考えられ、やはり上記反応を抑制しにくいと推測される。 By the way, as a material of the current collector, it is considered preferable to use aluminum which is easy to obtain and has excellent conductivity. However, the positive electrode current collector made of aluminum may contact and react with the positive electrode active material containing a metal oxide particularly in an abnormal state such as a nail penetration test. This reaction is considered to be difficult to suppress by the aluminum oxide film on the surface of the positive electrode current collector. In order to prevent the positive electrode current collector and the positive electrode active material from being in direct contact with each other, it is conceivable to form a film made of an alloy or the like on the positive electrode current collector. However, even in this case, it is considered that the stability of the film is insufficient in an abnormal state, and it is presumed that the above reaction is also difficult to suppress.
 近年、リチウムイオン二次電池に対する研究が盛んに行われており、リチウムイオン二次電池の負極活物質として、炭素材料の理論容量を大きく超える充放電容量を持つ珪素、珪素合金、珪素酸化物などの珪素系材料が検討されている。 In recent years, research on lithium ion secondary batteries has been actively carried out, and silicon, silicon alloys, silicon oxides, etc. having charge and discharge capacities which greatly exceed the theoretical capacity of carbon materials as negative electrode active materials of lithium ion secondary batteries. Silicon-based materials are being studied.
 例えば、特許文献6には、CaSiと酸とを反応させ、層状ポリシランを主成分とする層状シリコン化合物を合成したこと、当該層状シリコン化合物を300℃以上で加熱してシリコン材料を製造したこと、及び、当該シリコン材料を活物質として具備するリチウムイオン二次電池が記載されている。 For example, in Patent Document 6, CaSi 2 is reacted with an acid to synthesize a layered silicon compound having layered polysilane as a main component, and the layered silicon compound is heated at 300 ° C. or higher to manufacture a silicon material. And, a lithium ion secondary battery including the silicon material as an active material is described.
特開平10-308222号公報Japanese Patent Application Laid-Open No. 10-308222 WO2011/024797号公報WO 2011/024797 特開2009-176552号公報JP, 2009-176552, A 特開2003-157854号公報JP 2003-157854 A 特開2008-198591号公報JP, 2008-198591, A 国際公開第2014/080608号International Publication No. 2014/080608
 本発明は、このような事情に鑑みて為されたものであり、第一の目的は、新規な保護層を有するリチウムイオン二次電池用集電体及びその製造方法を提供することである。 The present invention has been made in view of such circumstances, and a first object thereof is to provide a current collector for a lithium ion secondary battery having a novel protective layer and a method for producing the same.
 第二の目的は、内部短絡時に安定性が高いアルミニウム製の正極用集電体を有する非水電解質二次電池を提供することである。 The second object is to provide a non-aqueous electrolyte secondary battery having a positive electrode current collector made of aluminum, which has high stability at the time of internal short circuit.
(第一の手段)
 本発明の発明者等は、鋭意研究の結果、アンチモンドープ酸化錫とアクリル樹脂とを含む新規な保護層を形成できることを見いだした。
(First means)
The inventors of the present invention, as a result of intensive research, have found that a novel protective layer containing antimony-doped tin oxide and an acrylic resin can be formed.
 すなわち、本発明のリチウムイオン二次電池用集電体は、集電体本体と、集電体本体の表面に配置された保護層とからなり、保護層は、アンチモンドープ酸化錫とアクリル樹脂とを含むことを特徴とする。 That is, the current collector for a lithium ion secondary battery of the present invention comprises a current collector body and a protective layer disposed on the surface of the current collector body, and the protective layer comprises antimony-doped tin oxide and an acrylic resin. It is characterized by including.
 また、本発明のリチウムイオン二次電池用集電体の製造方法は、上記リチウムイオン二次電池用集電体の製造方法であって、攪拌下のアンチモンドープ酸化錫を含む水分散体に水系バインダー含有水を添加することによって、保護層形成用組成物を調製する保護層形成用組成物調製工程と、集電体本体に保護層形成用組成物を塗布し、加熱乾燥して集電体本体の表面に保護層を形成する保護層形成工程と、を有し、水系バインダー含有水は、ポリ(メタ)アクリル酸水溶液又はアクリル系エマルションであることを特徴とする。 The method for producing a current collector for a lithium ion secondary battery according to the present invention is a method for producing the current collector for a lithium ion secondary battery, which comprises an aqueous dispersion containing antimony-doped tin oxide under stirring. A process for preparing a composition for forming a protective layer, which prepares a composition for forming a protective layer by adding a binder-containing water, and a composition for forming a protective layer are applied to a current collector body, and dried by heating. And a protective layer forming step of forming a protective layer on the surface of the main body, wherein the aqueous binder-containing water is a poly (meth) acrylic acid aqueous solution or an acrylic emulsion.
(第二の手段)
 本発明の発明者等は、鋭意研究の結果、アルミニウム製の正極用集電体上に特定の反応抑制層を形成することで、アルミニウム製の正極用集電体を用いるにもかかわらず釘刺し試験に耐え、内部短絡時にも安定性が高い非水電解質二次電池を提供し得ることを見出した。
(Second means)
As a result of earnest research, the inventors of the present invention formed a specific reaction suppression layer on an aluminum positive electrode current collector, and thus, although using the aluminum positive electrode current collector, a nail sticking was made. It has been found that it is possible to provide a non-aqueous electrolyte secondary battery which withstands the test and has high stability even at the internal short circuit.
 すなわち、本発明の非水電解質二次電池は、アルミニウム製の正極用集電体と、正極用集電体の表面に配置され、正極用集電体と正極活物質との反応を抑制する反応抑制層と、反応抑制層の表面に配置され、正極活物質を有する正極活物質層と、を有する正極と、負極活物質を有する負極と、を有し、反応抑制層は、導電性粒子と、反応抑制層用バインダーとを有し、正極活物質は金属酸化物を含み、導電性粒子は、酸化インジウム、酸化亜鉛、過酸化亜鉛、酸化錫(II)、酸化錫(IV)、酸化錫(VI)、窒化ゲルマニウム、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化タンタル、窒化ニオブ、窒化バナジウム、窒化タングステン、元素Xドープ酸化インジウム(元素XはZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種である)、元素Yドープ酸化錫(IV)(元素YはF、W、Ta、Sb、P及びBから選ばれる少なくとも一種である)並びに元素Zドープ酸化亜鉛(元素ZはGa、Al及びBから選ばれる少なくとも一種である)から選ばれる少なくとも1つであることを特徴とする。 That is, the non-aqueous electrolyte secondary battery of the present invention is a reaction that is disposed on the surface of a positive electrode current collector made of aluminum and the surface of a positive electrode current collector, and suppresses the reaction between the positive electrode current collector and the positive electrode active material. A positive electrode having a suppression layer and a positive electrode active material layer disposed on the surface of the reaction suppression layer and having a positive electrode active material, and a negative electrode having a negative electrode active material, wherein the reaction suppression layer comprises conductive particles and A binder for a reaction suppression layer, the positive electrode active material contains a metal oxide, and the conductive particles are indium oxide, zinc oxide, zinc peroxide, tin (II) oxide, tin (IV) oxide, tin oxide (VI), germanium nitride, titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, niobium nitride, vanadium nitride, tungsten nitride, element X doped indium oxide (element X is Zn, Mo, W, Ti, Zr, Sn and H A small number selected from Element Y-doped tin (IV) oxide (element Y is at least one selected from F, W, Ta, Sb, P and B) and element Z-doped zinc oxide (element Z is Ga, And at least one selected from Al and B).
 負極活物質はSi系活物質を含むことが好ましい。 The negative electrode active material preferably contains a Si-based active material.
 前記導電性粒子は、Sb(アンチモン)のドープ割合が0質量%より多く20質量%以下であるアンチモンドープ酸化錫(IV)であることが好ましい。 The conductive particles are preferably antimony-doped tin oxide (IV) in which the doping ratio of Sb (antimony) is more than 0% by mass and 20% by mass or less.
 正極は、正極タブ部を有し、正極タブ部は、正極用集電体と、正極用集電体の一部に配置された反応抑制層とを有することが好ましい。 The positive electrode preferably has a positive electrode tab portion, and the positive electrode tab portion preferably has a positive electrode current collector and a reaction suppression layer disposed on a part of the positive electrode current collector.
 反応抑制層の厚みは、10nm~1000nmであることが好ましい。 The thickness of the reaction suppression layer is preferably 10 nm to 1000 nm.
(第一の効果)
 本発明のリチウムイオン二次電池用集電体は、アンチモンドープ酸化錫とアクリル樹脂とを含む新規な保護層を有する。この保護層により、本発明のリチウムイオン二次電池用集電体は集電体本体が良好に保護される。また本発明のリチウムイオン二次電池用集電体の製造方法によれば、アンチモンドープ酸化錫とアクリル樹脂とを含む新規な保護層を集電体本体上に容易に形成できる。
(First effect)
The current collector for a lithium ion secondary battery of the present invention has a novel protective layer containing antimony-doped tin oxide and an acrylic resin. The collector body of the current collector for a lithium ion secondary battery of the present invention is well protected by the protective layer. Moreover, according to the method of manufacturing a current collector for a lithium ion secondary battery of the present invention, a novel protective layer containing antimony-doped tin oxide and an acrylic resin can be easily formed on the current collector body.
(第二の効果)
 本発明の非水電解質二次電池は、正極に正極活物質とアルミニウム製の正極用集電体との反応を抑制する反応抑制層を設けたため、正極活物質と正極用集電体との反応が抑制される。そのため本発明の非水電解質二次電池は、釘刺し試験において良好な結果が得られ、内部短絡時でも安定性に優れる。
(Second effect)
In the non-aqueous electrolyte secondary battery of the present invention, since the reaction suppression layer for suppressing the reaction between the positive electrode active material and the current collector made of aluminum is provided on the positive electrode, the reaction between the positive electrode active material and the current collector for the positive electrode Is suppressed. Therefore, the non-aqueous electrolyte secondary battery of the present invention can obtain good results in the nail penetration test and is excellent in stability even at the time of internal short circuit.
第一実施形態のリチウムイオン二次電池用集電体を説明する模式図である。It is a schematic diagram explaining the collector for lithium ion secondary batteries of 1st embodiment. 保護層の厚みと電極抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a protective layer, and an electrode resistance increase rate. 第二実施形態の非水電解質二次電池の正極を説明する模式図である。It is a schematic diagram explaining the positive electrode of the nonaqueous electrolyte secondary battery of 2nd embodiment. 第二実施形態の非水電解質二次電池の正極タブ部を説明する模式図である。It is a schematic diagram explaining the positive electrode tab part of the nonaqueous electrolyte secondary battery of 2nd embodiment. 塗工装置を説明する模式図である。It is a schematic diagram explaining a coating apparatus. 実施例10~12のリチウムイオン二次電池及び比較例4~5のリチウムイオン二次電池の釘刺し試験結果を比較したグラフである。7 is a graph comparing the nail penetration test results of the lithium ion secondary batteries of Examples 10 to 12 and the lithium ion secondary batteries of Comparative Examples 4 to 5.
以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “a to b” described in the present specification includes the lower limit a and the upper limit b in that range. Then, the upper limit value and the lower limit value, and the numerical values listed in the examples can be combined arbitrarily to constitute a numerical range. Further, numerical values arbitrarily selected from within the numerical value range can be used as upper limit and lower limit numerical values.
(第一実施形態)
 <リチウムイオン二次電池用集電体>
 本発明のリチウムイオン二次電池用集電体は、集電体本体と保護層とを有する。
First Embodiment
<Current collector for lithium ion secondary battery>
The current collector for a lithium ion secondary battery of the present invention has a current collector body and a protective layer.
 集電体本体に保護層が形成されると、高電圧使用環境下(本明細書では4.3V以上の電圧で使用することを高電圧使用と定義する。)であっても集電体本体が電解液などから良好に保護される。また集電体本体の表面に保護層が配置されているため、集電体本体の表面にAl、AlF等の不動態膜が形成されにくい。そのため、この保護層によって、不動態膜からなる高抵抗層が集電体本体の表面に形成されることを抑制できる。 When a protective layer is formed on the current collector body, the current collector body is defined in a high voltage operating environment (herein, use at a voltage of 4.3 V or higher is defined as high voltage use). Is well protected from electrolytes and the like. In addition, since the protective layer is disposed on the surface of the current collector body, it is difficult to form a passive film of Al 2 O 3 , AlF 3 or the like on the surface of the current collector body. Therefore, this protective layer can suppress the formation of a high resistance layer made of a passive film on the surface of the current collector body.
 図1に本実施形態のリチウムイオン二次電池用集電体を説明する模式図を示す。図1において、集電体本体1の上に保護層2が配置されている。 The schematic diagram explaining the collector for lithium ion secondary batteries of this embodiment in FIG. 1 is shown. In FIG. 1, a protective layer 2 is disposed on the current collector body 1.
(集電体本体)
 集電体本体は、リチウムイオン二次電池の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。
(Current collector body)
The current collector body refers to a chemically inactive electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery.
 集電体本体の材料として、例えば、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。特に、電気伝導性、加工性、価格の面から、集電体本体の材料としては、アルミニウム製であることが好ましい。アルミニウム製であるとは、純アルミニウム又はアルミニウム合金からなることを指す。 Examples of the material of the current collector body include metal materials such as stainless steel, titanium, nickel, aluminum, copper and the like, and conductive resins. In particular, in terms of electrical conductivity, processability, and cost, the material of the current collector main body is preferably made of aluminum. To be made of aluminum refers to being made of pure aluminum or an aluminum alloy.
 純度99.0%以上のアルミニウムを純アルミニウムと称し、またアルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称す。アルミニウム合金としては、例えば、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、AL-Mg-Si系、Al-Zn-Mg系が挙げられる。またアルミニウム合金としては、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。 Aluminum having a purity of 99.0% or more is referred to as pure aluminum, and an alloy obtained by adding various elements to aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al-Cu-based, Al-Mn-based, Al-Fe-based, Al-Si-based, Al-Mg-based, AL-Mg-Si-based and Al-Zn-Mg-based. Examples of aluminum alloys include A1000 series alloys (pure aluminum series) such as JIS A 1085 and A1 N30, A3000 series alloys (Al-Mn series) such as JIS A 3003 and A 3004, and A 8000 series alloys (Al-Al alloy such as JIS A 8079 and A 8021). Fe series can be mentioned.
 集電体本体の形状としては、箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。集電体本体の形状として、例えば箔を好適に用いることができる。 The shape of the current collector body can be in the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh or the like. For example, a foil can be suitably used as the shape of the current collector body.
 集電体本体が箔、シート又はフィルムの場合は、集電体本体の厚みは、10μm~100μmであることが好ましく、15μm~25μmであることがさらに好ましい。 When the current collector body is a foil, a sheet or a film, the thickness of the current collector body is preferably 10 μm to 100 μm, and more preferably 15 μm to 25 μm.
 集電体本体は、その表面の不純物をあらかじめ取り除いておくことが好ましい。集電体本体の表面に例えば油脂類が付着していると、保護層の密着性が悪くなるおそれがある。そのため集電体本体は脱脂処理済みの集電体本体を使用することが好ましい。脱脂処理としては、例えば加熱処理、コロナ処理、プラズマ処理などが挙げられる。また脱脂処理が不要な点から、集電体本体として電解法で製造された材料を用いることが好ましい。 It is preferable to previously remove impurities on the surface of the current collector body. If, for example, oils and fats adhere to the surface of the current collector body, the adhesion of the protective layer may be deteriorated. Therefore, as the current collector body, it is preferable to use a degreased current collector body. Examples of the degreasing treatment include heat treatment, corona treatment, plasma treatment and the like. Moreover, it is preferable to use the material manufactured by the electrolytic method as a collector body from the point which degreasing processing is unnecessary.
 (保護層)
 保護層は、集電体本体の表面に配置され、アンチモンドープ酸化錫とアクリル樹脂とを含む。
(Protective layer)
The protective layer is disposed on the surface of the current collector body and includes antimony-doped tin oxide and an acrylic resin.
 アンチモンドープ酸化錫(以下ATOと称すことがある。)は、酸化錫にアンチモンがドープされたものである。酸化錫は、大気中の酸素、電解液及び電解塩に耐性があり、また高電圧使用環境下においてもその耐性を良好に維持する。また酸化錫は耐酸化性にも優れている。ATOは、酸化錫の特性を有しながら、さらに酸化錫に比べて大幅に導電性が向上している。アンチモンのドープ量は特に限定されない。ATOとして、例えば、酸化錫に対してアンチモンを0.1質量%~2質量%ドープしたものが良好に使用できる。
 またATOを含むものとして、アンチモンドープ酸化錫被覆酸化物(以下ATO被覆酸化物と称す。)も使用できる。ATO被覆酸化物としては、例えば、ATOで表面が被覆された酸化チタン、ATOで表面が被覆された酸化ジルコニウム、ATOで表面が被覆された酸化セリウムが挙げられる。ATOで表面が被覆された酸化物は、ATOの導電性が高いため、被覆前の酸化物よりも導電性が向上する。
Antimony-doped tin oxide (hereinafter sometimes referred to as ATO) is tin oxide doped with antimony. Tin oxide is resistant to atmospheric oxygen, electrolytes and electrolytes, and also maintains its resistance well even in high voltage operating environments. Tin oxide is also excellent in oxidation resistance. While having the characteristics of tin oxide, ATO has a significantly improved conductivity compared to tin oxide. The doping amount of antimony is not particularly limited. As the ATO, for example, one doped with 0.1% by mass to 2% by mass of antimony with respect to tin oxide can be favorably used.
In addition, antimony-doped tin oxide coated oxide (hereinafter referred to as ATO coated oxide) can also be used, including ATO. Examples of the ATO coating oxide include titanium oxide whose surface is coated with ATO, zirconium oxide whose surface is coated with ATO, and cerium oxide whose surface is coated with ATO. The oxide coated on the surface with ATO has higher conductivity than that of the oxide before coating because the conductivity of ATO is high.
 保護層に使用するATOとしては、ATO粒子が好ましい。ATO粒子は、粒子表面だけでなく、粒子内部も電子伝導性が高いATOで構成されている。そのため、ATO粒子は、ATO被覆酸化物粒子に比べて電子伝導性が高く、粉体の体積抵抗値で比較すればATO粒子の粉体の体積抵抗値は、ATO被覆酸化物粒子の粉体の体積抵抗値の約1/3~1/2である。 As the ATO used for the protective layer, ATO particles are preferred. The ATO particles are composed not only of the particle surface but also of the inside of the particle from ATO having high electron conductivity. Therefore, ATO particles have higher electron conductivity than ATO-coated oxide particles, and the volume resistivity of ATO particles is comparable to that of ATO-coated oxide particles in terms of volume resistivity of powder. It is about 1/3 to 1/2 of the volume resistance value.
 ATO及びATO被覆酸化物の形状は、特に限定されないが、例えば、球状の粒子形状、針状の粒子形状が挙げられる。 The shape of the ATO and ATO coated oxide is not particularly limited, and examples thereof include spherical particle shape and needle-like particle shape.
 ATO粒子を含む材料として、具体的には、例えば、石原産業株式会社製SN-100P(球状粉末)、SN-100D(球状水分散体)、SNS-10M(球状メチルエチルケトン分散体)、FS-10P(針状粉末)、FS-10D(針状水分散体)、三菱マテリアル電子化成株式会社製T-1(球状粉末)、TDL-1(球状水分散体)が挙げられる。 Specifically, for example, SN-100P (spherical powder), SN-100D (spherical water dispersion), SNS-10M (spherical methyl ethyl ketone dispersion), FS-10P manufactured by Ishihara Sangyo Co., Ltd. as a material containing ATO particles (Needle-like powder), FS-10D (needle-like water dispersion), T-1 (spherical powder) and TDL-1 (spherical water dispersion) manufactured by Mitsubishi Materials Electronics Chemical Corporation.
 ATO被覆酸化物粒子として、具体的には、例えば、石原産業株式会社製ET-300W(球状ATO被覆TiO)、ET-500W(球状ATO被覆TiO)、ET-600W(球状ATO被覆TiO)、FT-1000(針状ATO被覆TiO)、FT-2000(針状ATO被覆TiO)、FT-3000(針状ATO被覆TiO)が挙げられる。 As ATO coating oxide particles, specifically, for example, Ishihara Sangyo Kaisha Ltd. ET-300 W (spherical ATO coating TiO 2), ET-500 W (spherical ATO coating TiO 2), ET-600W (spherical ATO coated TiO 2 And FT-1000 (needle-like ATO coated TiO 2 ), FT-2000 (needle-like ATO coated TiO 2 ), and FT-3000 (needle-like ATO coated TiO 2 ).
 ATO粒子及びATO被覆酸化物粒子が球状形状である場合は、一次粒子の平均粒径は、50nm以下が好ましい。一次粒子の平均粒径が、50nmより大きいと保護層の厚みが厚くなりすぎるおそれがある。一次粒子の平均粒径は、電子顕微鏡による観察画像より20個~30個の粒子の粒径を直接計測し、その平均値を取ることで求めることができる。 When the ATO particles and the ATO coated oxide particles have a spherical shape, the average particle diameter of the primary particles is preferably 50 nm or less. If the average particle size of the primary particles is larger than 50 nm, the thickness of the protective layer may be too thick. The average particle size of the primary particles can be determined by directly measuring the particle sizes of 20 to 30 particles from the observation image by an electron microscope and taking the average value.
 またATO粒子又はATO被覆酸化物粒子のキュムラント平均粒子径は、200nm以下であることが好ましく、100nm程度であることがさらに好ましい。キュムラント平均粒子径とは、液体中の粒子の粒径を動的光散乱法により測定し、得られたデータをCumulant法により解析して算出した数値である。粒子のキュムラント平均粒子径が200nmより大きいと、粒子が顕著に凝集しているおそれがあり、保護層形成用組成物を集電体本体に塗工しにくく、また保護層の厚みが厚くなりすぎるおそれがある。 The cumulant average particle diameter of the ATO particles or ATO coated oxide particles is preferably 200 nm or less, and more preferably about 100 nm. The cumulant average particle size is a numerical value calculated by measuring the particle size of particles in a liquid by the dynamic light scattering method and analyzing the obtained data by the Cumulant method. When the cumulant average particle diameter of the particles is larger than 200 nm, the particles may be significantly aggregated, and it is difficult to coat the composition for forming a protective layer on the current collector body, and the thickness of the protective layer becomes too thick There is a fear.
 ATO粒子及びATO被覆酸化物粒子が針状形状である場合は、粒子の配合量を球状形状の粒子に比べて少なくできる。針状形状の粒子は、保護層に含有される粒子の個数が少なくても、保護層中に長い導電パスを作成することができる。そのため球状形状の粒子に比べて少ない配合量で針状形状の粒子は同様の導電性を確保できる。 When the ATO particles and the ATO-coated oxide particles have a needle-like shape, the compounding amount of the particles can be smaller than that of the spherical shape particles. The needle-shaped particles can create long conductive paths in the protective layer even if the number of particles contained in the protective layer is small. Therefore, the needle-like shaped particles can ensure the same conductivity with a smaller blending amount than spherical shaped particles.
 針状形状の粒子においては、短軸が300nm以下であることが好ましい。針状形状の粒子の短軸が300nmより大きいと、粒子そのものが非常に大きくなり、沈殿しやすくなって保護層形成用組成物の分散安定性が保てなくなるおそれがある。例えば、針状形状の粒子においては、長軸が0.2μm~20μm、短軸が0.01μm~0.3μm、アスペクト比(長軸/短軸)が10~30であることが好ましい。 The needle-shaped particles preferably have a minor axis of 300 nm or less. If the minor axis of the needle-like shaped particles is larger than 300 nm, the particles themselves become very large and easily precipitate, which may make it impossible to maintain the dispersion stability of the composition for forming a protective layer. For example, in a needle-shaped particle, the major axis is preferably 0.2 μm to 20 μm, the minor axis is 0.01 μm to 0.3 μm, and the aspect ratio (major axis / minor axis) is preferably 10 to 30.
 アクリル樹脂は、アクリル酸、メタクリル酸及びそれらの誘導体のモノマーを含む重合体並びに重合体を加熱乾燥させたものの総称である。以後、アクリル酸、メタクリル酸を総称して(メタ)アクリル酸と称す。 Acrylic resin is a general term for polymers containing monomers of acrylic acid, methacrylic acid and their derivatives, and those obtained by heat-drying polymers. Hereinafter, acrylic acid and methacrylic acid are generically referred to as (meth) acrylic acid.
 (メタ)アクリル酸の誘導体としては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド、(メタ)アクリル酸の塩が挙げられる。 Examples of the derivative of (meth) acrylic acid include salts of (meth) acrylic acid ester, (meth) acrylic acid amide and (meth) acrylic acid.
 (メタ)アクリル酸エステルとして、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸ペンチルエステル、(メタ)アクリル酸ヘキシルエステル、(メタ)アクリル酸ヘプチルエステル、(メタ)アクリル酸オクチルエステルが挙げられる。(メタ)アクリル酸アルキルエステルは、それぞれ1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また(メタ)アクリル酸ヒドロキシアルキルエステルは上記(メタ)アクリル酸アルキルエステルのアルキル基にヒドロキシ基が置換されたものが挙げられる。(メタ)アクリル酸ヒドロキシアルキルエステルは、それぞれ1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters and (meth) acrylic acid hydroxyalkyl esters. As (meth) acrylic acid alkyl ester, for example, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, pentyl (meth) acrylic acid Examples thereof include esters, hexyl ester of (meth) acrylic acid, heptyl ester of (meth) acrylic acid and octyl ester of (meth) acrylic acid. The (meth) acrylic acid alkyl esters may be used singly or in combination of two or more. As the (meth) acrylic acid hydroxyalkyl ester, those in which a hydroxy group is substituted by the alkyl group of the (meth) acrylic acid alkyl ester can be mentioned. The (meth) acrylic acid hydroxyalkyl esters may be used alone or in combination of two or more.
 (メタ)アクリル酸の塩としては、例えば、(メタ)アクリル酸のナトリウム塩、(メタ)アクリル酸のアンモニウム塩が挙げられる。 Examples of salts of (meth) acrylic acid include sodium salts of (meth) acrylic acid and ammonium salts of (meth) acrylic acid.
 アクリル樹脂はATO同士及びATOと集電体本体との間を結着する保護層用バインダーとして作用する。アクリル樹脂はATOとの密着性及び集電体本体との密着性に優れている。またアクリル樹脂を含む保護層形成用組成物はATOの分散性がよく、アクリル樹脂とATOとは均一に混合されやすい。 The acrylic resin acts as a binder for the protective layer which bonds the ATOs and between the ATO and the current collector body. Acrylic resin is excellent in adhesion to ATO and adhesion to the current collector body. Moreover, the composition for protective layer formation containing an acrylic resin has good dispersibility of ATO, and an acrylic resin and ATO are easy to be mixed uniformly.
 さらにアクリル樹脂は環境に優しい水系溶剤に溶解又は分散することができる。(メタ)アクリル酸はカルボキシル基を有し、その重合体は非常に親水性が高い。そのためポリ(メタ)アクリル酸は水溶性のバインダーとして使用されることができる。またアクリル系エマルションは、水分散性のバインダーとして使用されることができる。 Furthermore, the acrylic resin can be dissolved or dispersed in an environmentally friendly aqueous solvent. (Meth) acrylic acid has a carboxyl group, and the polymer is very hydrophilic. Thus, poly (meth) acrylic acid can be used as a water soluble binder. Acrylic emulsions can also be used as water dispersible binders.
 より塗工性のよい保護層とするために、アクリル樹脂として、質量平均分子量(以下重量平均分子量と称する。)が3000以上10000以下のポリ(メタ)アクリル酸を用いることが好ましい。ポリ(メタ)アクリル酸の重量平均分子量が大きすぎると塗工液の保存安定性が悪くなり、塗工液の保存時に沈殿物が析出するおそれがある。ポリ(メタ)アクリル酸の重量平均分子量が小さすぎると塗工乾燥後の集電体への密着性が低下し、電極合材層を塗工する際に溶剤によって溶解、剥離するおそれがある。 In order to form a protective layer with better coatability, it is preferable to use poly (meth) acrylic acid having a mass average molecular weight (hereinafter referred to as weight average molecular weight) of 3000 or more and 10000 or less as the acrylic resin. If the weight average molecular weight of the poly (meth) acrylic acid is too large, the storage stability of the coating liquid may be deteriorated, and a precipitate may be precipitated during storage of the coating liquid. If the weight-average molecular weight of poly (meth) acrylic acid is too small, the adhesion to the current collector after coating and drying will be reduced, and there is a risk of dissolution and peeling due to the solvent when coating the electrode mixture layer.
 またポリ(メタ)アクリル酸は多量のカルボン酸基を有するため塗工乾燥後、集電体本体と高い密着性を持つため好ましい。 In addition, poly (meth) acrylic acid is preferable because it has a large amount of carboxylic acid groups and has high adhesion to the current collector body after coating and drying.
 また他の塗工性のよい保護層とするために、アクリル樹脂として、アクリル系エマルションを加熱乾燥させたものを用いることが好ましい。アクリル系エマルションは、アクリル樹脂の粒子が水に分散している分散体である。アクリル系エマルションとしては、非反応型、反応型、自己架橋反応型などのタイプがあり、幅広いポリマー組成やガラス転移点(以下Tgと称す)を有する。 Moreover, in order to set it as another protective layer with a good coating property, it is preferable to use what heat-dried the acrylic emulsion as an acrylic resin. An acrylic emulsion is a dispersion in which particles of acrylic resin are dispersed in water. Acrylic emulsions are of non-reactive type, reactive type, self-crosslinking type, etc., and have a wide range of polymer composition and glass transition point (hereinafter referred to as Tg).
 非反応型は、アクリル系エマルション自身の粘結性によってエマルション同士が結着するものである。反応型は、アクリル系エマルションが反応性官能基を有しており、架橋剤を配合することでエマルション同士が架橋するものである。自己架橋反応型は、アクリル系エマルション内に自己架橋性の官能基が導入されており、単独でエマルション同士が架橋するものである。 The non-reaction type is one in which the emulsions are bound together by the caking properties of the acrylic emulsion itself. In the reaction type, the acrylic emulsion has a reactive functional group, and the emulsions are crosslinked by blending a crosslinking agent. In the self-crosslinking reaction type, a self-crosslinking functional group is introduced into the acrylic emulsion, and the emulsions are crosslinked alone.
 アクリル系エマルションにおけるアクリル樹脂として、例えば、(メタ)アクリル酸誘導体の重合体、(メタ)アクリル酸又はその誘導体とエチレン性不飽和モノマーの共重合体が挙げられる。エチレン性不飽和モノマーとしては、イタコン酸、フマル酸、マレイン酸、スチレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、アクリロニトリル、ブタジエンが挙げられる。 Examples of the acrylic resin in the acrylic emulsion include polymers of (meth) acrylic acid derivatives, and copolymers of (meth) acrylic acid or its derivatives and an ethylenically unsaturated monomer. Ethylenically unsaturated monomers include itaconic acid, fumaric acid, maleic acid, styrene, vinyl chloride, vinylidene chloride, vinyl acetate, acrylonitrile, butadiene.
 また、アクリル系エマルションは、アクリル樹脂だけでなく、エポキシ樹脂、エステル樹脂、ウレタン樹脂など他の樹脂と変性させたものが挙げられ、変性アクリルエマルションは変性させる樹脂の構成によって、耐熱性、耐水性、耐薬品性、耐アルカリ性など塗膜の物性を幅広く制御することができる。 The acrylic emulsion includes not only acrylic resin but also those modified with other resins such as epoxy resin, ester resin, urethane resin, etc. The modified acrylic emulsion has heat resistance and water resistance depending on the constitution of the resin to be modified. It is possible to widely control the physical properties of the coating film, such as chemical resistance and alkali resistance.
 アクリル系エマルションとしては、市販品を好適に用いることができる。特に、エステル樹脂と変性されているアクリル系エマルションである、商品名ジョンクリルPDX-7341、ジョンクリルPDX-7430(いずれもBASFジャパン株式会社)は、ATO粒子と混合性がよく、かつアルミニウム集電体本体への密着性も高いため好ましい。 A commercial item can be used suitably as an acryl-type emulsion. In particular, the acrylic emulsion modified with an ester resin, under the trade names Joncryl PDX-7341 and Joncryl PDX-7430 (all are BASF Japan Ltd.) have good compatibility with ATO particles, and aluminum current collectors. Adhesion to the body is also high, which is preferable.
 保護層において、アクリル系エマルション内のアクリル樹脂の平均粒径が大きすぎると保護層の厚みが厚くなりすぎるおそれがある。アクリル系エマルション内のアクリル樹脂の平均粒径は0.5μm以下が好ましく、0.2μm以下がより好ましい。 In the protective layer, when the average particle size of the acrylic resin in the acrylic emulsion is too large, the thickness of the protective layer may be too thick. 0.5 micrometer or less is preferable and, as for the average particle diameter of the acrylic resin in an acryl-type emulsion, 0.2 micrometer or less is more preferable.
 アクリル系エマルションは、最低造膜温度で規定されることが知られている。最低造膜温度はエマルション自体が互いに結着して膜を形成するために必要な温度のことである。最低造膜温度が低いアクリル系エマルションであれば、低い加熱乾燥温度でバインダーとして作用するアクリル樹脂となり、本発明のリチウムイオン二次電池用集電体に好適に用いられる。好ましい最低造膜温度の範囲として、-20℃~80℃を例示できる。 Acrylic emulsions are known to be defined at the minimum film forming temperature. The minimum film formation temperature is the temperature required for the emulsions themselves to bind to each other to form a film. If it is an acrylic emulsion having a low minimum film-forming temperature, it becomes an acrylic resin that acts as a binder at a low heat-drying temperature, and is suitably used for the current collector for a lithium ion secondary battery of the present invention. As a preferred minimum film-forming temperature range, -20 ° C to 80 ° C can be exemplified.
 アクリル系エマルションのpHは、7~9程度であることが好ましい。pHがこの程度であれば、ATO粒子と混合した際にATO粒子のゼータ電位を大幅に変化させることなく混合でき、混合されたあとのスラリーの保存安定性も良好である。 The pH of the acrylic emulsion is preferably about 7 to 9. When the pH is in this order, mixing can be performed without significantly changing the zeta potential of the ATO particles when mixed with ATO particles, and the storage stability of the slurry after being mixed is also good.
 アクリル系エマルションのTgは、5℃以上50℃以下が好ましい。Tgが低いアクリル系エマルションであれば、低い加熱乾燥温度でバインダーとして作用するアクリル樹脂となり、本発明のリチウムイオン二次電池用集電体に好適に用いられる。 The Tg of the acrylic emulsion is preferably 5 ° C. or more and 50 ° C. or less. If it is an acrylic emulsion having a low Tg, it becomes an acrylic resin that acts as a binder at a low heat drying temperature, and is suitably used for the current collector for a lithium ion secondary battery of the present invention.
 保護層は、その厚みが50nm以上1000nm以下であることが好ましく、50nm以上275nm未満であることがさらに好ましく、50nm以上100nm未満であることがより好ましい。保護層の厚みが厚すぎると保護層を有する集電体を電極に用いるリチウムイオン二次電池は、抵抗が高くなるおそれがある。保護層の厚みが薄すぎると、保護層による集電体の保護効果が得られにくいおそれがある。保護層の厚みが100nm未満であると電極抵抗増加率をより抑制できる。 The thickness of the protective layer is preferably 50 nm or more and 1000 nm or less, more preferably 50 nm or more and less than 275 nm, and more preferably 50 nm or more and less than 100 nm. If the thickness of the protective layer is too thick, the lithium ion secondary battery using the current collector having the protective layer as an electrode may have high resistance. If the thickness of the protective layer is too thin, the protective effect of the current collector by the protective layer may not be obtained. When the thickness of the protective layer is less than 100 nm, the electrode resistance increase rate can be further suppressed.
 集電体本体に保護層を形成する方法は特に限定されず、公知の方法を用いることができる。以下の本発明のリチウムイオン二次電池用集電体の製造方法を用いると集電体本体に保護層を良好に形成できる。 The method for forming the protective layer on the current collector body is not particularly limited, and any known method can be used. The protective layer can be favorably formed on the current collector body by using the following method for producing a current collector for a lithium ion secondary battery of the present invention.
 <リチウムイオン二次電池用集電体の製造方法>
 本発明のリチウムイオン二次電池用集電体の製造方法は、保護層形成用組成物調製工程と、保護層形成工程とを有する。
<Method of manufacturing current collector for lithium ion secondary battery>
The method for producing a current collector for a lithium ion secondary battery of the present invention has a step of preparing a composition for forming a protective layer, and a step of forming a protective layer.
 (保護層形成用組成物調製工程)
 保護層形成用組成物調製工程は、攪拌下のアンチモンドープ酸化錫を含む水分散体に水系バインダー含有水を添加することによって、保護層形成用組成物を調製する工程である。
(Step of preparing composition for forming protective layer)
The composition preparation step for forming a protective layer is a step of preparing a composition for forming a protective layer by adding an aqueous binder-containing water to an aqueous dispersion containing antimony-doped tin oxide under stirring.
 保護層形成用組成物調製工程において、アンチモンドープ酸化錫を含む水分散体を使用する。水分散体とは、水に粒子が分散しているものをいう。ここで分散とは、水の中に粒子が微粒子の状態で一様に散在していることをいう。 In the preparation of the composition for forming a protective layer, an aqueous dispersion containing antimony-doped tin oxide is used. The water dispersion refers to one in which particles are dispersed in water. Here, dispersion means that particles are uniformly dispersed in the form of fine particles in water.
 水分散体における水は、蒸留水やイオン交換水など、不純物を取り除いたものが好ましい。また水分散体における水にはアルコールが添加されていてもよい。アルコールとしては、例えば、メタノール、エタノール、イソプロパノールが挙げられる。水にアルコールを添加する場合は、水とアルコールの配合比は、質量比で水:アルコール=99.9:0.1~50:50であることが好ましい。アルコールの配合比が多くなりすぎると、水分散体中の粒子の分散安定性が低下して、粒子が凝集、沈殿を起こしやすくなるおそれがある。 The water in the aqueous dispersion is preferably one from which impurities such as distilled water and ion exchanged water have been removed. An alcohol may be added to the water in the aqueous dispersion. Examples of the alcohol include methanol, ethanol and isopropanol. When an alcohol is added to water, the mixing ratio of water to the alcohol is preferably water: alcohol = 99.9: 0.1 to 50:50 by mass ratio. If the compounding ratio of the alcohol is too large, the dispersion stability of the particles in the aqueous dispersion may be reduced, and the particles may be prone to aggregation and precipitation.
 ATO粒子又はATO被覆酸化物粒子は、親水性が高い。ATO粒子又はATO被覆酸化物粒子を水と混合すれば、水分散体とすることができる。またさらに安定的な分散状態にするために、水分散体は分散剤を含有していてもよい。 ATO particles or ATO coated oxide particles are highly hydrophilic. When ATO particles or ATO coated oxide particles are mixed with water, an aqueous dispersion can be obtained. Furthermore, the aqueous dispersion may contain a dispersant in order to achieve a more stable dispersion state.
 ATO粒子又はATO被覆酸化物粒子の水分散体における粒子の含有量は、水分散体全体を100質量%としたときに、1.0質量%以上40.0質量%以下であることが好ましく、3.0質量%以上30.0質量%以下であることがさらに好ましい。粒子の含有量が1.0質量%より少ないと、水の含有量が多いため、塗工性が悪化し、また乾燥効率も低下するおそれがある。粒子の含有量が40.0質量%より多いと、粒子の分散安定性を維持することが難しくなり、粒子が凝集、沈殿を起こしやすくなるおそれがある。 The content of particles in the aqueous dispersion of ATO particles or ATO coated oxide particles is preferably 1.0% by mass or more and 40.0% by mass or less based on 100% by mass of the entire aqueous dispersion, More preferably, it is 3.0% by mass or more and 30.0% by mass or less. If the content of the particles is less than 1.0% by mass, the content of water is large, and thus the coatability may be deteriorated and the drying efficiency may also be reduced. When the content of the particles is more than 40.0% by mass, it is difficult to maintain the dispersion stability of the particles, and the particles may be easily aggregated or precipitated.
 水系バインダー含有水は、ポリ(メタ)アクリル酸水溶液又はアクリル系エマルションである。 The aqueous binder-containing water is a poly (meth) acrylic acid aqueous solution or an acrylic emulsion.
 水系バインダー含有水における水は、蒸留水やイオン交換水など、不純物を取り除いたものが好ましい。また水系バインダー含有水における水にはアルコールが添加されていてもよい。アルコールとしては、例えば、メタノール、エタノール、イソプロパノールが挙げられる。水にアルコールを添加する場合は、水とアルコールの配合比は、質量比で水:アルコール=99.9:0.1~50:50が好ましい。アルコールの配合比が多くなりすぎると、水系バインダー含有水における水系バインダーの溶解度や分散安定性が低下し、水系バインダーが凝集、沈殿を起こしやすくなるおそれがある。 The water in the water-based binder-containing water is preferably one from which impurities such as distilled water and ion-exchanged water have been removed. An alcohol may be added to the water in the aqueous binder-containing water. Examples of the alcohol include methanol, ethanol and isopropanol. When alcohol is added to water, the mixing ratio of water to alcohol is preferably water: alcohol = 99.9: 0.1 to 50:50 by mass ratio. If the compounding ratio of the alcohol is too large, the solubility and dispersion stability of the aqueous binder in the aqueous binder-containing water may be reduced, and the aqueous binder may be prone to aggregation and precipitation.
 水系バインダー含有水における水系バインダーの含有量は、0.1質量%以上50.0質量%以下であることが好ましく、0.5質量%以上10.0質量%以下であることがさらに好ましい。水系バインダーの含有量が少なすぎると、保護層形成用組成物を作製した際に固形分率が小さくなりすぎて塗工性が悪くなり、乾燥効率が低下するおそれがある。また、水系バインダーの含有量が多すぎると、水系バインダー含有水の粘度が非常に高くなり、ATO粒子又はATO被覆酸化物粒子の水分散体と混合させる際に混合性が悪くなるおそれがある。 The content of the aqueous binder in the aqueous binder-containing water is preferably 0.1% by mass to 50.0% by mass, and more preferably 0.5% by mass to 10.0% by mass. If the content of the water-based binder is too small, the solid content becomes too small when the composition for forming a protective layer is produced, the coatability may deteriorate, and the drying efficiency may decrease. In addition, when the content of the aqueous binder is too large, the viscosity of the aqueous binder-containing water becomes very high, and the mixing property may be deteriorated when it is mixed with the ATO particles or the aqueous dispersion of ATO coated oxide particles.
 ATO粒子又はATO被覆酸化物粒子の水分散体を攪拌機で1000rpm以上の回転数で攪拌しながら上記水分散体に水系バインダー含有水を添加することによって、水分散体と水系バインダー含有水とを混合することが好ましい。 The aqueous dispersion and the aqueous binder-containing water are mixed by adding the aqueous binder-containing water to the aqueous dispersion while stirring the aqueous dispersion of ATO particles or ATO-coated oxide particles with a stirrer at a rotational speed of 1000 rpm or more. It is preferable to do.
 攪拌機は、かき混ぜる装置である。攪拌機として、例えば、ホモディスパー、ホモミキサー、ホモジナイザーが挙げられる。攪拌機は、高粘度でも高速攪拌でき混合性能の高いホモディスパーが好ましい。 A stirrer is a stirring device. Examples of the stirrer include a homodisper, a homomixer and a homogenizer. The stirrer is preferably a homodisper having high mixing performance and high-speed stirring even with high viscosity.
 攪拌条件としては、1000rpm以上6000rpm以下の回転数とすることが好ましく、1500rpm以上3000rpm以下の回転数とすることがより好ましい。1000rpmより小さい回転数で攪拌を行うと、ATO粒子又はATO被覆酸化物粒子の凝集が起こるおそれがある。 As a stirring condition, it is preferable to set it as the rotation speed of 1000 rpm-6000 rpm, and it is more preferable to set it as the rotation speed of 1500 rpm-3000 rpm. Agitation at a rotational speed less than 1000 rpm may lead to agglomeration of the ATO particles or ATO coated oxide particles.
 ATO粒子又はATO被覆酸化物粒子の水分散体は、急激なpH変化で凝集する場合がある。このため、水系バインダー含有水が酸性を示すポリ(メタ)アクリル酸水溶液である場合、ATO粒子又はATO被覆酸化物粒子の水分散体を攪拌機で高速攪拌させながら、水分散体に水系バインダー含有水を徐々に添加することが好ましい。添加順序を逆にしてポリ(メタ)アクリル酸水溶液にATO粒子又はATO被覆酸化物粒子の水分散体を添加するとATO粒子又はATO被覆酸化物粒子が凝集しやすい。 Aqueous dispersions of ATO particles or ATO-coated oxide particles may aggregate at abrupt pH changes. For this reason, when the aqueous binder-containing water is a poly (meth) acrylic acid aqueous solution exhibiting acidity, the aqueous binder-containing water is added to the aqueous dispersion while the aqueous dispersion of ATO particles or ATO coated oxide particles is stirred at high speed with a stirrer. Is preferably added gradually. When the addition order is reversed and the aqueous dispersion of ATO particles or ATO coated oxide particles is added to the aqueous poly (meth) acrylic acid solution, the ATO particles or ATO coated oxide particles tend to aggregate.
 またATO粒子又はATO被覆酸化物粒子の水分散体に対する水系バインダー含有水の添加は、一気に添加するよりは少し時間をかけて徐々に添加する方が、混合系の急激なpH変化が抑制でき、ATO粒子又はATO被覆酸化物粒子の凝集挙動を抑えることができる。例えば、水分散体における粒子の含有量が水分散体全体を100質量%としたときに、1.0質量%以上40.0質量%以下であるATO粒子又はATO被覆酸化物粒子の水分散体10g~40gに水系バインダーの含有量が0.1質量%以上50.0質量%以下である水系バインダー含有水60g~90gを5分~60分で添加するのが好ましい。 In addition, the addition of water-based binder-containing water to the aqueous dispersion of ATO particles or ATO coated oxide particles can suppress abrupt pH change of the mixed system by gradually adding it over a while rather than adding it at once. The aggregation behavior of ATO particles or ATO coated oxide particles can be suppressed. For example, when the content of particles in the aqueous dispersion is 100% by mass with respect to the entire aqueous dispersion, an aqueous dispersion of ATO particles or ATO-coated oxide particles having 1.0% by mass or more and 40.0% by mass or less It is preferable to add 60 g to 90 g of water containing an aqueous binder having a content of the aqueous binder of 0.1% by mass to 50.0% by mass in 5 to 60 minutes to 10 g to 40 g.
 ATO粒子又はATO被覆酸化物粒子と、水系バインダー含有水に含まれる水系バインダーとの配合比は、固形分の質量比でATO粒子又はATO被覆酸化物粒子:水系バインダー=80:20~99.9:0.1であることが好ましい。配合比はATO粒子又はATO被覆酸化物粒子:水系バインダー=90:10~95:5であることがさらに好ましい。保護層における水系バインダーの含有割合は、0.1質量%以上20質量%以下が好ましい。水系バインダーの含有割合が多すぎると、ATO粒子又はATO被覆酸化物粒子の含有割合が少なくなって保護層の導電性が下がるおそれがあり、水系バインダーの含有割合が少なすぎると、ATO粒子又はATO被覆酸化物粒子を集電体本体に結着させるバインダー効果が得られにくいおそれがある。また、言い換えると保護層におけるアンチモンドープ酸化錫とアクリル樹脂との配合比は、固形分の質量比でアンチモンドープ酸化錫:アクリル樹脂=80:20~99.9:0.1であることが好ましい。 The compounding ratio of the ATO particles or ATO coated oxide particles to the aqueous binder contained in the aqueous binder-containing water is the mass ratio of the solid content to the ATO particles or ATO coated oxide particles: aqueous binder = 80: 20 to 99.9 Preferably: 0.1. More preferably, the compounding ratio is ATO particles or ATO coated oxide particles: aqueous binder = 90: 10 to 95: 5. The content ratio of the water-based binder in the protective layer is preferably 0.1% by mass or more and 20% by mass or less. If the content of the aqueous binder is too large, the content of the ATO particles or ATO coated oxide particles may be reduced to lower the conductivity of the protective layer, and if the content of the aqueous binder is too small, the ATO particles or ATO may be contained. There is a possibility that the binder effect of binding the coated oxide particles to the current collector body may not be obtained. In other words, it is preferable that the compounding ratio of antimony-doped tin oxide to acrylic resin in the protective layer is antimony-doped tin oxide: acrylic resin = 80: 20 to 99.9: 0.1 in mass ratio of solid content .
 (保護層形成工程)
 保護層形成工程は、集電体本体に保護層形成用組成物を塗布し、加熱乾燥して集電体本体の表面に保護層を形成する工程である。
(Protective layer formation process)
The protective layer forming step is a step of applying a composition for forming a protective layer on the current collector body and drying by heating to form a protective layer on the surface of the current collector body.
 保護層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法、グラビアコート法などの従来から公知の方法を用いればよい。 As a method of applying the composition for forming a protective layer, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, and a gravure coating method may be used.
 その後、保護層形成用組成物を塗布した集電体本体を加熱乾燥して、保護層を集電体本体の表面に配置する。加熱乾燥は、保護層形成用組成物から水を蒸発させかつアクリル樹脂でATO粒子又はATO被覆酸化物粒子を集電体本体に結着させる役割を果たす。加熱乾燥温度は、水を蒸発させることができかつ使用するアクリル樹脂の最低造膜温度よりも高い温度で行うことが好ましい。加熱乾燥条件は、使用するアクリル樹脂によって異なるが、例えば、40℃~120℃で1分~15分で加熱乾燥を行うことができる。保護層形成工程は減圧下で行ってもよい。 Thereafter, the current collector body on which the composition for forming a protective layer is applied is dried by heating to arrange the protective layer on the surface of the current collector body. The heat drying plays a role of evaporating water from the composition for forming a protective layer and binding the ATO particles or ATO coated oxide particles to the current collector main body with an acrylic resin. The heating and drying temperature is preferably such that the water can be evaporated and the temperature is higher than the minimum film forming temperature of the acrylic resin used. The heating and drying conditions vary depending on the acrylic resin used, but for example, the heating and drying can be performed at 40 ° C. to 120 ° C. for 1 minute to 15 minutes. The protective layer forming step may be performed under reduced pressure.
 <リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、上記リチウムイオン二次電池用集電体を有する。本発明のリチウムイオン二次電池は、電池構成要素として、正極、負極、セパレータ、電解液を有する。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention has the above current collector for a lithium ion secondary battery. The lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, a separator, and an electrolyte as battery components.
 (正極)
 正極は、集電体と、集電体に配置された正極活物質層とを有する。
(Positive electrode)
The positive electrode has a current collector and a positive electrode active material layer disposed on the current collector.
 集電体は集電体本体で説明したもの及び上記したリチウムイオン二次電池用集電体が使用できる。正極の集電体として、上記リチウムイオン二次電池用集電体を用いることが好ましい。 As the current collector, those described for the current collector body and the above-described current collector for a lithium ion secondary battery can be used. It is preferable to use the said collector for lithium ion secondary batteries as a collector of a positive electrode.
 正極活物質層は、正極活物質と結着剤とを含む。正極活物質層は必要に応じて導電助剤をさらに含んでも良い。 The positive electrode active material layer contains a positive electrode active material and a binder. The positive electrode active material layer may further contain a conductive aid, if necessary.
 正極活物質としては、リチウム含有化合物あるいは他の金属化合物よりなるものを用いることができる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式: LiCoNiMn (Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、-0.2≦x-(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物、一般式:LiMPOで示されるオリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:LiMPOFで示されるフッ化オリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:LiMSiOで示されるケイ酸塩系型リチウム複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)を用いることができる。また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、又は硫化チタン若しくは硫化モリブデンなどの硫化物が挙げられる。 As the positive electrode active material, a material containing a lithium-containing compound or another metal compound can be used. As the lithium-containing compound, for example, lithium cobalt composite oxide having a layered structure, lithium nickel composite oxide having a layered structure, lithium manganese composite oxide having a spinel structure, a general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe and Na, p + q + r + s = 1, 0 <p <1, 0 ≦ q <1, 0 Lithium cobalt-containing composite metal oxide having a layered structure represented by ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) things, the general formula: olivine-type lithium phosphate compound oxide represented by LiMPO 4 (at least one of M is Mn, Fe, Co and Ni), the general formula: represented by Li 2 MPO 4 F Fluoride olivine-type lithium phosphate compound oxide (M is Mn, Fe, at least one of Co and Ni), the general formula: Li 2 MSiO silicate lithium composite oxide represented by 4 (M is one or more of Mn And at least one of Fe, Co and Ni) can be used. Moreover, as another metal compound, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or sulfides such as titanium sulfide or molybdenum sulfide can be mentioned.
 正極活物質は、化学式:LiMO(MはNi、Co及びMnから選択される少なくとも1つである)で表されるリチウム含有酸化物よりなることが好ましく、さらに上記した層状構造を有するリチウムコバルト含有複合金属酸化物よりなることが好ましい。 The positive electrode active material is preferably made of a lithium-containing oxide represented by the chemical formula: LiMO 2 (M is at least one selected from Ni, Co and Mn), and further, lithium cobalt having a layered structure as described above It is preferable to consist of a containing complex metal oxide.
 リチウム含有酸化物としては、例えば、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOを用いることができる。中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3は、熱安定性の点で好ましい。 As the lithium-containing oxide, for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 can be used. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in view of thermal stability.
 正極活物質はその平均粒径D50が1μm~20μmである粉末形状であることが好ましい。正極活物質の平均粒径D50が小さいと、正極活物質の比表面積が大きくなる。このため、正極活物質の平均粒径D50が小さすぎると正極活物質と電解液との反応面積が過度に増えることになり、その結果、電解液の分解が促進されて、リチウムイオン二次電池のサイクル特性が悪くなるおそれがある。正極活物質の平均粒径D50が大きすぎるとリチウムイオン二次電池の抵抗が大きくなり、リチウムイオン二次電池の出力特性が下がるおそれがある。平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径のことである。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。 The positive electrode active material is preferably in the form of powder having an average particle diameter D 50 of 1 μm to 20 μm. When the average particle diameter D 50 of the positive electrode active material is small, the specific surface area of the positive electrode active material is increased. Thus, the reaction area of the average particle diameter D 50 of the positive electrode active material is too small and the positive electrode active material and the electrolyte becomes excessive increase it, as a result, are accelerated decomposition of the electrolytic solution, the lithium ion secondary Battery cycle characteristics may be degraded. When the average particle diameter D 50 of the positive electrode active material is too large resistance of the lithium ion secondary battery increases, there is a possibility that the output characteristics of the lithium ion secondary battery decreases. The average particle diameter D 50 is that the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.
 結着剤は、上記正極活物質及び導電助剤を集電体に繋ぎ止める役割を果たす。結着剤として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(略称FEP)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリロニトリルを例示することができる。 The binder plays a role of securing the positive electrode active material and the conductive auxiliary agent to the current collector. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbr. FEP), fluorine-containing resin such as fluororubber, thermoplastic resin such as polypropylene, polyethylene, polyimide, Imide-based resins such as polyamideimide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene butadiene rubber, carboxymethyl cellulose, polyethylene glycol, and polyacrylonitrile can be exemplified.
 正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.001~1:0.3であるのが好ましい。正極活物質:結着剤=1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下するおそれがあり、また、結着剤が多すぎると電極のエネルギー密度が低くなるおそれがある。 The compounding ratio of the binder in the positive electrode active material layer is, in mass ratio, preferably: positive electrode active material: binder 1: 0.001 to 1: 0.3. The positive electrode active material: binder is more preferably 1: 0.005 to 1: 0.2, and still more preferably 1: 0.01 to 1: 0.15. If the amount of the binder is too small, the formability of the electrode may be reduced. If the amount of the binder is too large, the energy density of the electrode may be reduced.
 導電助剤は、必要に応じて電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(VGCF)等を単独で又は二種以上組み合わせて使用することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極に含有される活物質100質量部に対して、1質量部~30質量部程度とすることができる。 A conductive aid is added as needed to enhance the conductivity of the electrode. As conductive aids, carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VGCF), etc. are used singly or in combination of two or more. It can be used. The amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
 上記集電体の表面に正極活物質層を配置するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法、リップコート法、コンマコート法、ダイコート法などの従来から公知の方法を用いればよい。 In order to dispose the positive electrode active material layer on the surface of the above current collector, the conventional methods such as roll coating, dip coating, doctor blade, spray coating, curtain coating, lip coating, comma coating, die coating, etc. A known method may be used.
 具体的には、正極活物質、結着剤及び必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、この組成物に適当な溶媒を加えてスラリーとする。結着剤は、あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液としてから用いてもよい。上記溶媒としては、水、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)を例示できる。上記スラリーを集電体の表面に塗布後、乾燥する。乾燥は、常圧条件で行ってもよいし、真空乾燥機を用いた減圧条件下で行ってもよい。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。正極活物質層の密度を高めるべく、乾燥により正極活物質層を形成させた後の集電体に対し、圧縮工程を加えてもよい。 Specifically, a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder and, if necessary, a conductive auxiliary agent is prepared, and a suitable solvent is added to the composition to form a slurry. The binder may be used as a solution or a suspension in which the binder is previously dissolved in a solvent. Examples of the solvent include water, N-methyl-2-pyrrolidone (NMP), methanol and methyl isobutyl ketone (MIBK). The above slurry is applied to the surface of the current collector and then dried. Drying may be carried out under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. The drying temperature may be set appropriately, and a temperature above the boiling point of the solvent is preferable. The drying time may be appropriately set according to the amount of application and the drying temperature. In order to increase the density of the positive electrode active material layer, a compression step may be added to the current collector after forming the positive electrode active material layer by drying.
 (負極)
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて導電助剤を含む。集電体、結着剤、導電助剤は正極で説明したものと同様である。
(Negative electrode)
The negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector. The negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive auxiliary. The current collector, the binder, and the conductive additive are the same as those described for the positive electrode.
 負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを用いることができる。 As the negative electrode active material, a carbon-based material capable of occluding and releasing lithium, an element capable of alloying with lithium, a compound having an element capable of alloying with lithium, a polymer material, or the like can be used.
 炭素系材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon or carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenol or furan at an appropriate temperature.
 リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biの少なくとも一種である。中でも、リチウムと合金化可能な元素は、珪素(Si)又は錫(Sn)であるとよい。 The elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn At least one of Pb, Sb, and Bi. Among them, an element capable of being alloyed with lithium is preferably silicon (Si) or tin (Sn).
 リチウムと合金化可能な元素を有する化合物としては、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOが挙げられる。リチウムと合金化可能な元素を有する化合物としては、珪素化合物又は錫化合物が好ましい。珪素化合物としては、SiO(0.5≦x≦1.6)が好ましい。錫化合物としては、スズ合金(Cu-Sn合金、Co-Sn合金等)を例示できる。また、珪素系活物質として、下記の第二実施形態で説明する板状シリコン体が厚さ方向に積層された構造を有するシリコン材料が挙げられる。 As a compound having an element capable of alloying with lithium, for example, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2) SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO. As a compound which has an element which can be alloyed with lithium, a silicon compound or a tin compound is preferable. As a silicon compound, SiO x (0.5 ≦ x ≦ 1.6) is preferable. Examples of tin compounds include tin alloys (Cu-Sn alloy, Co-Sn alloy, etc.). Further, as the silicon-based active material, a silicon material having a structure in which a plate-like silicon body described in the second embodiment below is laminated in the thickness direction can be mentioned.
 高分子材料としては、ポリアセチレン、ポリピロールを例示できる。 Examples of the polymer material include polyacetylene and polypyrrole.
 負極活物質は粉末形状であることが好ましい。負極活物質が粉末形状の場合、負極活物質の平均粒径D50は0.5μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。負極活物質の平均粒径D50が小さすぎると、負極活物質の粉末の比表面積が大きくなり、負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、リチウムイオン二次電池のサイクル特性が悪くなるおそれがある。負極活物質の平均粒径D50が大きすぎると、電極全体の導電性が不均一になり、充放電特性が低下するおそれがある。 The negative electrode active material is preferably in the form of powder. If the anode active material is in powder form, it is preferable that the average particle size D 50 of the negative electrode active material is 0.5μm or more 30μm or less, and more preferably 1μm or more 20μm or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material increases, the contact area between the powder of the negative electrode active material and the electrolyte increases, and decomposition of the electrolyte proceeds. As a result, the cycle characteristics of the lithium ion secondary battery may be deteriorated. When the average particle diameter D 50 of the negative electrode active material is too large, conductivity of the whole electrode becomes uneven, charging and discharging characteristics may deteriorate.
 (セパレータ)
 セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、又はセラミックス製の多孔質膜が使用できる。
(Separator)
The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes. The separator may be, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic.
 (電解液)
 電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。
(Electrolyte solution)
The electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
 溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンが使用できる。 As the solvent, for example, cyclic esters, linear esters, ethers can be used. As cyclic esters, for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone and gamma valerolactone can be used. As the chain esters, for example, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester can be used. As ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be used.
 また上記電解液に溶解させる電解質として、例えば、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。 Further, as an electrolyte to be dissolved in the above electrolytic solution, for example, lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
 電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As an electrolytic solution, for example, 0.5 mol / l to 1.7 mol / l of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use solutions dissolved at a certain concentration.
 正極および負極にセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極用集電体および負極用集電体から外部に通ずる正極タブ部および負極タブ部までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。 A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be any of a laminated type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are wound. After connecting the current collector for the positive electrode and the current collector for the negative electrode to the positive electrode tab portion and the negative electrode tab portion leading to the outside using a current collector lead or the like, an electrolytic solution is added to the electrode body to form lithium ion It is good to be a secondary battery. Further, the lithium ion secondary battery of the present invention may be charged and discharged in a voltage range suitable for the type of active material contained in the electrode.
 上記リチウムイオン二次電池は車両に搭載することができる。 The lithium ion secondary battery can be mounted on a vehicle.
 車両としては、電池による電気エネルギーを動力源の全部又は一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 Any vehicle may be used as long as it uses electric energy from batteries for all or part of the power source. For example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, electric forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
 以上、第一実施形態である本発明のリチウムイオン二次電池用集電体の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of the collector for lithium ion secondary batteries of this invention which is 1st embodiment was described, this invention is not limited to the said embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
(第二実施形態)
 <非水電解質二次電池>
 本発明の非水電解質二次電池は、正極用集電体と反応抑制層と正極活物質層とを有する正極と、負極と、を有する。
Second Embodiment
<Non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode having a positive electrode current collector, a reaction suppression layer, and a positive electrode active material layer, and a negative electrode.
 (正極)
 本発明の非水電解質二次電池の正極は、正極用集電体と、正極用集電体の表面に配置された反応抑制層と、反応抑制層の表面に配置された正極活物質層とを有する。
(Positive electrode)
The positive electrode of the non-aqueous electrolyte secondary battery of the present invention comprises a current collector for a positive electrode, a reaction suppression layer disposed on the surface of the current collector for the positive electrode, and a positive electrode active material layer disposed on the surface of the reaction suppression layer. Have.
 (正極用集電体)
 正極用集電体は、アルミニウム製であり、純アルミニウム又はアルミニウム合金からなる。
(Current collector for positive electrode)
The positive electrode current collector is made of aluminum and made of pure aluminum or an aluminum alloy.
 純度99.0%以上のアルミニウムを純アルミニウムと称し、またアルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称す。アルミニウム合金としては、例えば、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、AL-Mg-Si系、Al-Zn-Mg系が挙げられる。またアルミニウム合金としては、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。 Aluminum having a purity of 99.0% or more is referred to as pure aluminum, and an alloy obtained by adding various elements to aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al-Cu-based, Al-Mn-based, Al-Fe-based, Al-Si-based, Al-Mg-based, AL-Mg-Si-based and Al-Zn-Mg-based. Examples of aluminum alloys include A1000 series alloys (pure aluminum series) such as JIS A 1085 and A1 N30, A3000 series alloys (Al-Mn series) such as JIS A 3003 and A 3004, and A 8000 series alloys (Al-Al alloy such as JIS A 8079 and A 8021). Fe series can be mentioned.
 正極用集電体の形状としては、箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。正極用集電体として、例えば箔を好適に用いることができる。 The shape of the positive electrode current collector can be in the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. As a positive electrode current collector, for example, a foil can be suitably used.
 正極用集電体が箔、シート又はフィルムの場合は、正極用集電体の厚みは、10μm~100μmであることが好ましく、15μm~25μmであることがさらに好ましい。 When the current collector for the positive electrode is a foil, a sheet or a film, the thickness of the current collector for the positive electrode is preferably 10 μm to 100 μm, and more preferably 15 μm to 25 μm.
 ここで集電体とは、非水電解質二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。純アルミニウム又はアルミニウム合金は、非水電解液中で高電圧使用環境下(本明細書では4.3V以上の電圧で使用することを高電圧使用と定義する)においても安定である。そのため純アルミニウム又はアルミニウム合金からなるアルミニウム製の集電体は非水電解質二次電池の正極に好ましく用いられる。 Here, the current collector refers to a chemically inactive electron high conductor for keeping current flow to the electrode during discharge or charge of the non-aqueous electrolyte secondary battery. Pure aluminum or an aluminum alloy is also stable in a non-aqueous electrolyte under high voltage use environment (herein, use at a voltage of 4.3 V or higher is defined as high voltage use). Therefore, an aluminum current collector made of pure aluminum or an aluminum alloy is preferably used for the positive electrode of the non-aqueous electrolyte secondary battery.
 (反応抑制層)
 反応抑制層は、正極用集電体の表面に配置され、正極用集電体と正極活物質との反応を抑制する。
(Reaction suppression layer)
The reaction suppression layer is disposed on the surface of the positive electrode current collector, and suppresses the reaction between the positive electrode current collector and the positive electrode active material.
 金属酸化物を含む正極活物質とアルミニウム製の正極用集電体を用いた非水電解質二次電池の場合、釘刺し試験などの何らかの異常な状態になると、金属酸化物とアルミニウム製の正極用集電体とが反応する。すなわちアルミニウムと金属酸化物とが高温で発熱反応して、金属酸化物が還元され、酸化アルミニウム(Al)が生成する。この反応により電池の温度が大きく上昇して、上記異常な状態において継続して発熱すると考えられている。この反応を抑制するために本発明の非水電解質二次電池の正極では、正極用集電体の表面に反応抑制層を設ける。 In the case of a non-aqueous electrolyte secondary battery using a positive electrode active material containing a metal oxide and a positive electrode current collector made of aluminum, if any abnormal state such as a nail penetration test occurs, for the positive electrode made of metal oxide and aluminum It reacts with the current collector. That is, the aluminum and the metal oxide react exothermically at a high temperature, the metal oxide is reduced, and aluminum oxide (Al 2 O 3 ) is formed. It is believed that this reaction causes the temperature of the battery to rise sharply and to continuously generate heat in the above-mentioned abnormal state. In order to suppress this reaction, in the positive electrode of the non-aqueous electrolyte secondary battery of the present invention, a reaction suppression layer is provided on the surface of the current collector for the positive electrode.
 反応抑制層は、導電性粒子と、反応抑制層用バインダーとを有する。 The reaction suppression layer has conductive particles and a binder for the reaction suppression layer.
 導電性粒子は、酸化インジウム、酸化亜鉛、過酸化亜鉛、酸化錫(II)、酸化錫(IV)、酸化錫(VI)、窒化ゲルマニウム、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化タンタル、窒化ニオブ、窒化バナジウム、窒化タングステン、元素Xドープ酸化インジウム(元素XはZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種である)、元素Yドープ酸化錫(IV)(元素YはF、W、Ta、Sb、P及びBから選ばれる少なくとも一種である)並びに元素Zドープ酸化亜鉛(元素ZはGa、Al及びBから選ばれる少なくとも一種である)から選ばれる少なくとも1つである。 The conductive particles include indium oxide, zinc oxide, zinc peroxide, tin (II) oxide, tin (IV) oxide, tin (VI) oxide, germanium nitride, titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, niobium nitride Vanadium nitride, tungsten nitride, element X-doped indium oxide (element X is at least one selected from Zn, Mo, W, Ti, Zr, Sn and H), element Y-doped tin (IV) oxide (element Y is At least one selected from F, W, Ta, Sb, P and B) and element Z-doped zinc oxide (element Z is at least one selected from Ga, Al and B) .
 上記導電性粒子は、導電性があり、有機溶剤耐性があり、酸化還元反応に対して耐腐食性があり、反応活性が低い。また上記導電性粒子は、自身が燃焼しにくく、アルミニウムと反応しにくい。上記導電性粒子は、導電性があるため、非水電解質二次電池の抵抗となりにくい。アルミニウム製の正極用集電体と正極活物質層の間に反応抑制層が介在することで正極活物質とアルミニウム製の正極用集電体との直接的な接触を抑制できる。また反応抑制層はアルミニウムと反応しにくく安定的な化合物で形成されているため、その反応抑制効果が長く続く。 The conductive particles are conductive, resistant to organic solvents, corrosion resistant to oxidation-reduction reactions, and low in reaction activity. In addition, the conductive particles are less likely to burn by themselves and to be less likely to react with aluminum. The conductive particles are conductive, and thus are unlikely to be resistant to the non-aqueous electrolyte secondary battery. By interposing the reaction suppression layer between the positive electrode current collector made of aluminum and the positive electrode active material layer, direct contact between the positive electrode active material and the positive electrode current collector made of aluminum can be suppressed. Moreover, since the reaction suppression layer is formed of a stable compound which is hard to react with aluminum, the reaction suppression effect lasts for a long time.
 上記導電性粒子は単独で用いられてもよいし、2種以上を併用してもよい。 The conductive particles may be used alone or in combination of two or more.
 導電性粒子としては、特に酸化錫(IV)にSbが添加されたアンチモンドープ酸化錫(IV)(略称ATO)が好ましい。ATOは電気伝導性が高く、かつ大気中の酸素、電解液及び電解塩に耐性があり、また高電圧においてもその耐性は発揮される。導電性粒子の電気伝導性が高い方が正極の抵抗上昇を抑制することができ、非水電解質二次電池の容量が低下するのを抑制できるため好ましい。ATOのアンチモンのドープ量の割合は0質量%より多く20質量%以下が好ましく、5質量%~16質量%であることがさらに好ましい。アンチモンのドープ量の割合が大きい方が、ATOの電気伝導性が高いため好ましい。しかしながらアンチモンのドープ量の割合が20質量%を超えてもATOの電気伝導性はアンチモンの量に比例して上がらない。 As the conductive particles, in particular, antimony-doped tin oxide (IV) (abbr. ATO) in which Sb 2 O 3 is added to tin oxide (IV) is preferable. ATO has high electrical conductivity, is resistant to atmospheric oxygen, electrolytes and salts, and exhibits high resistance even at high voltages. It is preferable that the conductivity of the conductive particles is higher because the increase in the resistance of the positive electrode can be suppressed and the decrease in the capacity of the non-aqueous electrolyte secondary battery can be suppressed. The proportion of the doped amount of antimony in ATO is preferably more than 0% by mass and 20% by mass or less, and more preferably 5% by mass to 16% by mass. It is preferable that the ratio of the doping amount of antimony is large because the electrical conductivity of ATO is high. However, the electrical conductivity of ATO does not increase in proportion to the amount of antimony even if the proportion of the doped amount of antimony exceeds 20% by mass.
 導電性粒子の平均粒径D50は、10nm~1000nmであることが好ましく、20nm~100nmであることがより好ましく、50nm~80nmであることがさらに好ましい。導電性粒子の平均粒径D50が小さすぎると、導電性粒子間の抵抗の上昇により、適切な導電性を反応抑制層に持たせにくいおそれがある。導電性粒子の平均粒径D50が大きすぎると、反応抑制層の膜厚が厚くなりすぎるおそれがある。平均粒径D50は粒度分布測定法によって計測できる。平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径のことである。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。 The average particle size D 50 of the conductive particles is preferably 10 nm to 1000 nm, more preferably 20 nm to 100 nm, and still more preferably 50 nm to 80 nm. When the average particle diameter D 50 of the conductive particles is too small, the increase in the resistance between the conductive particles, there is a risk that a suitable conductive unlikely to have the reaction inhibiting layer. If the average particle size D 50 of the conductive particles is too large, the film thickness of the reaction suppression layer may be too thick. The average particle diameter D 50 can be measured by particle size distribution measurement method. The average particle diameter D 50 is that the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.
 反応抑制層用バインダーは、導電性粒子同士を結着し、導電性粒子と正極用集電体とを結着する。反応抑制層用バインダーは非水電解質二次電池に用いることができるバインダーであれば特に限定されない。 The binder for reaction suppression layer bonds the conductive particles to each other, and bonds the conductive particles and the current collector for the positive electrode. The binder for the reaction suppression layer is not particularly limited as long as it is a binder that can be used for the non-aqueous electrolyte secondary battery.
 反応抑制層用バインダーとして、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(略称FEP)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリロニトリルを例示することができる。これらの反応抑制層用バインダーは単独で又は2種以上組み合わせて使用することができる。 As a binder for the reaction suppression layer, for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbr. FEP), fluorine-containing resin such as fluororubber, thermoplastic resin such as polypropylene, polyethylene, etc. Examples thereof include polyimide, imide resins such as polyamideimide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene butadiene rubber, carboxymethyl cellulose, polyethylene glycol and polyacrylonitrile. These binders for reaction suppression layer can be used individually or in combination of 2 or more types.
 反応抑制層用バインダーとして、ポリアクリル酸、ポリテトラフルオロエチレン、ポリエチレングリコールが好ましく用いられる。これらの反応抑制層用バインダーは、正極用集電体への密着性に優れ、また正極用集電体への塗工性に優れている。 As a binder for the reaction suppression layer, polyacrylic acid, polytetrafluoroethylene and polyethylene glycol are preferably used. These binders for reaction suppression layer are excellent in adhesion to the current collector for the positive electrode, and excellent in coatability on the current collector for the positive electrode.
 導電性粒子と反応抑制層用バインダーの配合比は、質量比で導電性粒子:反応抑制層用バインダー=1:1~100:1であることが好ましい。この範囲内の配合比とすれば、反応抑制層において、導電性粒子同士及び導電性粒子と正極用集電体とが良好に結着される。またこの配合比であれば、反応抑制層によって電極の抵抗が過度に上昇することを抑制できる。 The compounding ratio of the conductive particles to the binder for the reaction suppression layer is preferably such that the mass ratio of conductive particles to the binder for the reaction suppression layer is 1: 1 to 100: 1. If the compounding ratio is within this range, the conductive particles and the conductive particles and the positive electrode current collector are favorably bound in the reaction suppression layer. Moreover, if it is this compounding ratio, it can suppress that resistance of an electrode rises excessively by the reaction suppression layer.
 反応抑制層の厚みは10nm~1000nmであることが好ましく、20nm~500nmであることがより好ましい。反応抑制層の厚みが小さすぎると、反応抑制層による正極活物質と正極用集電体との反応抑制の効果が得にくくなるおそれがある。反応抑制層の厚みが大きすぎると、非水電解質二次電池内において、反応抑制層の占める体積が大きくなりすぎて活物質の量を減らさなければならなくなり、電池容量が低下するおそれがある。 The thickness of the reaction suppression layer is preferably 10 nm to 1000 nm, and more preferably 20 nm to 500 nm. If the thickness of the reaction suppression layer is too small, it may be difficult to obtain the effect of the reaction suppression between the positive electrode active material and the positive electrode current collector by the reaction suppression layer. If the thickness of the reaction suppression layer is too large, the volume occupied by the reaction suppression layer in the non-aqueous electrolyte secondary battery becomes too large, and the amount of the active material has to be reduced, which may lower the battery capacity.
 正極用集電体へ反応抑制層を配置する方法は、特に限定されないが、以下の方法が採用できる。 The method for arranging the reaction suppression layer on the positive electrode current collector is not particularly limited, but the following method can be employed.
 溶媒に反応抑制層用バインダー及び導電性粒子を混合して反応抑制層用スラリーとする。 A binder for reaction suppression layer and conductive particles are mixed with a solvent to obtain a slurry for reaction suppression layer.
 溶媒は水または有機溶媒を用いることができる。有機溶媒としては、エタノール、メタノール、ベンゼン、ジクロロメタンなどが使用可能である。水は少量の無機塩などを含み、pHがpH4~pH9の範囲のものでも使用できる。しかしながら使用する正極用集電体の腐食の観点から、水は、蒸留水やイオン交換水などの、不純物を取り除いたpHがpH6~pH8のものが好ましい。また溶媒として有機溶媒と水を任意の比率で混合したものを用いてもよい。 The solvent can be water or an organic solvent. As the organic solvent, ethanol, methanol, benzene, dichloromethane and the like can be used. Water contains a small amount of inorganic salts and the like, and the pH can be used even in the range of pH 4 to pH 9. However, from the viewpoint of the corrosion of the positive electrode current collector to be used, water preferably has a pH of 6 to 8 from which impurities have been removed, such as distilled water or ion-exchanged water. Moreover, you may use what mixed the organic solvent and water by arbitrary ratios as a solvent.
 ここで、反応抑制層用スラリーにおいて導電性粒子が分散していることが好ましい。導電性粒子が分散していると、できあがった反応抑制層において導電性粒子が反応抑制層全体に配置されやすい。反応抑制層用スラリーにおいて導電性粒子を分散させるには、溶媒が水である場合、有機物である反応抑制層用バインダーの添加量を導電性粒子が凝集しないように適宜調整すればよい。 Here, the conductive particles are preferably dispersed in the reaction suppression layer slurry. When the conductive particles are dispersed, the conductive particles are easily disposed in the entire reaction suppression layer in the completed reaction suppression layer. In order to disperse the conductive particles in the reaction suppression layer slurry, when the solvent is water, the addition amount of the reaction suppression layer binder, which is an organic substance, may be appropriately adjusted so that the conductive particles do not aggregate.
 次に正極用集電体に反応抑制層用スラリーを塗布する。塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法、グラビアコート法などの従来から公知の方法を用いればよい。 Next, the slurry for the reaction suppression layer is applied to the positive electrode current collector. As a coating method, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, and a gravure coating method may be used.
 その後、反応抑制層用スラリーを塗布した正極用集電体を乾燥して、反応抑制層を正極用集電体の表面に配置する。 Thereafter, the positive electrode current collector coated with the reaction suppression layer slurry is dried, and the reaction suppression layer is disposed on the surface of the positive electrode current collector.
 (正極活物質層)
 正極活物質層は、反応抑制層の表面に配置され、金属酸化物を含む正極活物質を有する。正極活物質層は、必要に応じて結着剤及び導電助剤を含んでも良い。
(Positive electrode active material layer)
The positive electrode active material layer is disposed on the surface of the reaction suppression layer and has a positive electrode active material containing a metal oxide. The positive electrode active material layer may contain a binder and a conductive additive as needed.
 非水電解質二次電池としてリチウムイオン二次電池を例にとって説明する。 A lithium ion secondary battery will be described as an example of a non-aqueous electrolyte secondary battery.
 正極活物質は、金属酸化物を含む。金属酸化物としては、リチウム含有酸化物あるいは他の金属酸化物が挙げられる。 The positive electrode active material contains a metal oxide. Metal oxides include lithium-containing oxides or other metal oxides.
 リチウム含有酸化物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式: LiCoNiMn (DはAl、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種でありp+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、-0.2≦x-(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物、一般式:LiMPOで示されるオリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiから選択される少なくとも一種)、一般式:LiMPOFで示されるフッ化オリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiから選択される少なくとも一種)、一般式:LiMSiOで示されるケイ酸塩系型リチウム複合酸化物(MはMn、Fe、Co及びNiから選択される少なくとも一種)を用いることができる。 As the lithium-containing oxide, for example, a lithium-cobalt composite oxide having a layered structure, a lithium-nickel composite oxide having a layered structure, a lithium-manganese composite oxide having a spinel structure, a general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe and Na, and p + q + r + s = 1, 0 <p <1, 0 ≦ q <1, Lithium cobalt-containing composite metal having a layered structure represented by 0 ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) oxides of the general formula: olivine-type lithium phosphate compound oxide represented by LiMPO 4 (at least one M is selected Mn, Fe, Co and Ni), the general formula: Li 2 MPO 4 F Fluoride olivine-type lithium phosphate compound oxide represented (at least one M is selected Mn, Fe, Co and Ni), the general formula: Li 2 MSiO silicate lithium composite oxide represented by 4 ( M can use at least 1 type selected from Mn, Fe, Co, and Ni.
 また他の金属酸化物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンが挙げられる。 Moreover, as another metal oxide, a titanium oxide, a vanadium oxide, or manganese dioxide is mentioned, for example.
 また正極活物質は、化学式:LiMO(MはNi,Co及びMnから選択される少なくとも一種である)で表されるリチウム含有酸化物よりなることが好ましく、さらに一般式: LiCoNiMn (DはAl、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種であり、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、-0.2≦x-(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物よりなることが好ましい。 The positive electrode active material is preferably made of a lithium-containing oxide represented by a chemical formula: LiMO 2 (M is at least one selected from Ni, Co and Mn), and more preferably a general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe, and Na, and p + q + r + s = 1, 0 <p <1, 0 ≦ Lithium having a layered structure represented by q <1, 0 ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) It is preferable to consist of cobalt containing complex metal oxide.
 化学式:LiMO(MはNi,Co及びMnから選択される少なくとも一種である)で表されるリチウム含有酸化物としては、例えば、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOが挙げられる。中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3は、熱安定性の点で好ましい。 As a lithium-containing oxide represented by a chemical formula: LiMO 2 (M is at least one selected from Ni, Co and Mn), for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 and the like. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in view of thermal stability.
 正極活物質は、上記金属酸化物に加えて他の正極活物質を含んでもよい。他の正極活物質として、例えば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物等が挙げられる。 The positive electrode active material may contain another positive electrode active material in addition to the metal oxide. Examples of other positive electrode active materials include elemental sulfur (S), compounds in which sulfur and carbon are complexed, and metal sulfides such as TiS 2 .
 正極活物質はその平均粒径D50が1μm~20μmである粉末形状であることが好ましい。正極活物質の平均粒径D50が小さいと、正極活物質の比表面積が大きくなる。このため、正極活物質の平均粒径D50が小さすぎると正極活物質と電解液との反応面積が過度に増えることになり、その結果、電解液の分解が促進されて、非水電解質二次電池のサイクル特性が悪くなるおそれがある。正極活物質の平均粒径D50が大きすぎると非水電解質二次電池の抵抗が大きくなり、非水電解質二次電池の出力特性が下がるおそれがある。 The positive electrode active material is preferably in the form of powder having an average particle diameter D 50 of 1 μm to 20 μm. When the average particle diameter D 50 of the positive electrode active material is small, the specific surface area of the positive electrode active material is increased. Therefore, if the average particle size D 50 of the positive electrode active material is too small, the reaction area between the positive electrode active material and the electrolyte solution will be excessively increased, and as a result, the decomposition of the electrolyte solution is promoted. The cycle characteristics of the secondary battery may be deteriorated. Resistance of the average particle diameter D 50 is too the nonaqueous electrolyte secondary battery size of the positive electrode active material becomes large, there is a possibility that the output characteristics of the nonaqueous electrolyte secondary battery decreases.
 結着剤は、上記正極活物質を反応抑制層に繋ぎ止める役割を果たす。結着剤として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(略称FEP)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリロニトリルを例示することができる。 The binding agent plays a role of fixing the positive electrode active material to the reaction suppression layer. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbr. FEP), fluorine-containing resin such as fluororubber, thermoplastic resin such as polypropylene, polyethylene, polyimide, Imide-based resins such as polyamideimide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene butadiene rubber, carboxymethyl cellulose, polyethylene glycol, and polyacrylonitrile can be exemplified.
 正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.001~1:0.3であるのが好ましい。正極活物質:結着剤=1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下するおそれがあり、また、結着剤が多すぎると電極のエネルギー密度が低くなるおそれがある。 The compounding ratio of the binder in the positive electrode active material layer is, in mass ratio, preferably: positive electrode active material: binder 1: 0.001 to 1: 0.3. The positive electrode active material: binder is more preferably 1: 0.005 to 1: 0.2, and still more preferably 1: 0.01 to 1: 0.15. If the amount of the binder is too small, the formability of the electrode may be reduced. If the amount of the binder is too large, the energy density of the electrode may be reduced.
 導電助剤は、電極の導電性を高めるために必要に応じて正極活物質層に添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(略称AB)、ケッチェンブラック(登録商標)(略称KB)、気相法炭素繊維(略称VGCF)等を単独でまたは二種以上組み合わせて使用することができる。導電助剤の使用量については、特に限定的ではないが、例えば、電極に含有される活物質100質量部に対して、1質量部~30質量部程度とすることができる。 The conductive aid is added to the positive electrode active material layer as needed to enhance the conductivity of the electrode. As conductive additives, carbon black fine particles such as carbon black, graphite, acetylene black (abbr. AB), ketjen black (registered trademark) (abbr. KB), vapor grown carbon fiber (abbr. VGCF), etc. alone or in combination The above can be used in combination. The amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the electrode.
 正極活物質層を反応抑制層の表面に配置するには、正極活物質及び結着剤、並びに必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶剤を加えてペースト状にしてから、反応抑制層の表面に塗布後、乾燥すればよい。なお、必要に応じて電極密度を高めるべく正極活物質層が配置された正極用集電体を圧縮してもよい。 In order to dispose the positive electrode active material layer on the surface of the reaction suppression layer, a composition for forming a positive electrode active material layer containing a positive electrode active material and a binder, and optionally a conductive auxiliary agent is prepared, and this composition is further provided. A suitable solvent may be added to form a paste, and the paste may be applied to the surface of the reaction suppression layer and then dried. If necessary, the positive electrode current collector on which the positive electrode active material layer is disposed may be compressed to increase the electrode density.
 正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法、リップコート法、コンマコート法、ダイコート法などの従来から公知の方法を用いればよい。 The composition for forming the positive electrode active material layer may be applied by any of the conventionally known methods such as roll coating, dip coating, doctor blade, spray coating, curtain coating, lip coating, comma coating, and die coating. The method may be used.
 粘度調整のための溶剤としては、水、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトンなどが使用可能である。 As a solvent for viscosity adjustment, water, N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and the like can be used.
 図3に第二実施形態の非水電解質二次電池用正極を説明する模式図を示す。図3に示すように、正極6において、正極用集電体3に反応抑制層4が配置され、反応抑制層4の表面に正極活物質層5が配置される。 The schematic diagram explaining the positive electrode for non-aqueous electrolyte secondary batteries of 2nd embodiment is shown in FIG. As shown in FIG. 3, in the positive electrode 6, the reaction suppression layer 4 is disposed on the positive electrode current collector 3, and the positive electrode active material layer 5 is disposed on the surface of the reaction suppression layer 4.
 (負極)
 負極は、負極用集電体と、負極用集電体の表面に配置された負極活物質層とを有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて導電助剤を含む。結着剤、導電助剤は正極で説明したものと同様である。
(Negative electrode)
The negative electrode has a current collector for the negative electrode and a negative electrode active material layer disposed on the surface of the current collector for the negative electrode. The negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive auxiliary. The binder and the conductive additive are the same as those described for the positive electrode.
 負極用集電体の材料として、例えば、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。特に、電気伝導性、加工性、価格の面から、負極用集電体の材料としては、銅またはステンレス鋼が好ましい。負極用集電体の形態は、箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。負極用集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス鋼箔などの金属箔を好適に用いることができる。負極用集電体が、箔、シート又はフィルムの場合は、負極用集電体の厚みは8μm~100μmであることが好ましい。 Examples of the material of the current collector for the negative electrode include metal materials such as stainless steel, titanium, nickel, aluminum and copper, and conductive resins. In particular, copper or stainless steel is preferable as the material of the current collector for the negative electrode from the viewpoint of electrical conductivity, processability and cost. The form of the current collector for the negative electrode can be in the form of a foil, a sheet, a film, a line, a rod, a mesh or the like. As a collector for negative electrodes, metal foils, such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably, for example. When the current collector for the negative electrode is a foil, a sheet or a film, the thickness of the current collector for the negative electrode is preferably 8 μm to 100 μm.
 負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを用いることができる。 As the negative electrode active material, a carbon-based material capable of occluding and releasing lithium, an element capable of alloying with lithium, a compound having an element capable of alloying with lithium, a polymer material, or the like can be used.
 炭素系材料としては、黒鉛、難黒鉛化性炭素、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include graphite, non-graphitizable carbon, cokes, graphites, glassy carbons, an organic polymer compound fired body, carbon fiber, activated carbon and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenol or furan at an appropriate temperature.
 リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biの少なくとも1種である。中でも、リチウムと合金化可能な元素は、珪素(Si)または錫(Sn)であるとよい。 The elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn At least one of Pb, Sb, and Bi. Among them, an element capable of being alloyed with lithium is preferably silicon (Si) or tin (Sn).
 リチウムと合金化可能な元素を有する化合物としては、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOなどが使用できる。リチウムと合金化可能な元素を有する化合物としては、珪素化合物または錫化合物が好ましい。珪素化合物としては、SiO(0.5≦x≦1.5)が好ましい。錫化合物としては、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)が使用できる。 As a compound having an element capable of alloying with lithium, for example, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO can be used. As a compound having an element capable of alloying with lithium, a silicon compound or a tin compound is preferable. As a silicon compound, SiO x (0.5 ≦ x ≦ 1.5) is preferable. As a tin compound, for example, a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.) can be used.
 Si系活物質として、例えば、板状シリコン体が厚さ方向に積層された構造を有するシリコン材料が挙げられる。 Examples of the Si-based active material include a silicon material having a structure in which a plate-like silicon body is stacked in the thickness direction.
 板状シリコン体が厚さ方向に積層されてなる構造を有するシリコン材料の構造は、走査型電子顕微鏡などによる観察で確認できる。シリコン材料をリチウムイオン二次電池の活物質として使用することを考慮すると、リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。また、板状シリコン体の長軸方向の長さは、0.1μm~50μmの範囲内のものが好ましい。また、板状シリコン体は、(長軸方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。 The structure of the silicon material having a structure in which the plate-like silicon bodies are stacked in the thickness direction can be confirmed by observation with a scanning electron microscope or the like. Considering the use of a silicon material as the active material of a lithium ion secondary battery, the plate-like silicon body has a thickness in the range of 10 nm to 100 nm for efficient insertion and desorption reaction of lithium ions. Are preferable, and those in the range of 20 nm to 50 nm are more preferable. The length of the plate-like silicon body in the long axis direction is preferably in the range of 0.1 μm to 50 μm. The plate-like silicon body preferably has a (longitudinal direction length) / (thickness) in the range of 2 to 1,000.
 シリコン材料は、粉砕や分級を経て、一定の粒度分布の粒子としてもよい。シリコン材料の好ましい粒度分布としては、一般的なレーザー回折式粒度分布測定装置で測定した場合に、D50が1μm~30μmの範囲内を例示できる。 The silicon material may be pulverized or classified into particles having a constant particle size distribution. As a preferable particle size distribution of the silicon material, D 50 can be in the range of 1 μm to 30 μm, as measured by a general laser diffraction type particle size distribution measuring device.
 シリコン材料に対してX線回折測定(XRD測定)を行い、得られたXRDチャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式からシリコン結晶子サイズが算出される。このシリコン結晶子のサイズとしては、ナノサイズのものが好ましい。具体的には、シリコン結晶子サイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。 The silicon material is subjected to X-ray diffraction measurement (XRD measurement), and the silicon crystallite size is calculated from Scheller's equation using the half value width of the diffraction peak of the Si (111) plane of the obtained XRD chart. The size of the silicon crystallite is preferably nano-sized. Specifically, the silicon crystallite size is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, particularly preferably in the range of 1 nm to 10 nm preferable.
 上記シリコン材料は下記の製造工程によって製造されることができる。製造工程は、CaSiと酸とを反応させ、層状ポリシランを主成分とする層状シリコン化合物を製造する工程と、層状シリコン化合物を300℃以上で加熱してシリコン材料を製造する工程とを含む。 The silicon material can be manufactured by the following manufacturing process. The manufacturing process includes a process of reacting CaSi 2 with an acid to manufacture a layered silicon compound containing layered polysilane as a main component, and a process of manufacturing the silicon material by heating the layered silicon compound at 300 ° C. or higher.
 CaSiは、一般にCa層とSi層が積層した構造からなる。CaSiは、公知の製造方法で合成してもよく、市販されているものを採用してもよい。層状シリコン化合物の製造に用いるCaSiは、あらかじめ粉砕しておくことが好ましい。 CaSi 2 generally has a structure in which a Ca layer and a Si layer are laminated. CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted. CaSi 2 used for manufacturing the layered silicon compound, it is preferable to preliminarily pulverized.
 酸としては、フッ化水素、塩化水素、臭化水素、ヨウ化水素、硫酸、硝酸、リン酸、蟻酸、酢酸、メタンスルホン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、ヘキサフルオロヒ素酸、フルオロアンチモン酸、ヘキサフルオロケイ酸、ヘキサフルオロゲルマン酸、ヘキサフルオロスズ(IV)酸、トリフルオロ酢酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコニウム酸、トリフルオロメタンスルホン酸、フルオロスルホン酸が例示される。これらの酸を単独又は併用して使用すればよい。 As the acid, hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, methanesulfonic acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoroarsenic acid, fluoro Antimonic acid, hexafluorosilicic acid, hexafluorogermanic acid, hexafluorotin (IV) acid, trifluoroacetic acid, hexafluorotitanic acid, hexafluorozirconic acid, trifluoromethanesulfonic acid and fluorosulfonic acid are exemplified. These acids may be used alone or in combination.
 また、酸は水溶液として用いられるのが、作業の簡便性及び安全性の観点、並びに、副生物の除去の観点から好ましい。 The acid is preferably used in the form of an aqueous solution from the viewpoint of the simplicity and safety of operation and the removal of by-products.
 酸は、CaSiに対して2当量以上のプロトンを供給できる量で用いればよい。したがって、1価の酸であれば、CaSi1モルに対して酸を2モル以上で用いればよい。 The acid may be used in an amount capable of supplying two or more equivalents of proton to CaSi 2 . Therefore, in the case of a monovalent acid, 2 moles or more of the acid may be used with respect to 1 mole of CaSi 2 .
 反応条件は、真空などの減圧条件又は不活性ガス雰囲気下とすることが好ましく、また、氷浴などの室温以下の温度条件とするのが好ましい。反応時間は適宜設定すればよい。 The reaction conditions are preferably reduced pressure conditions such as vacuum or under an inert gas atmosphere, and temperature conditions below room temperature such as an ice bath are preferable. The reaction time may be set appropriately.
 さて、CaSiと酸とを反応させる反応工程において、酸として塩化水素を用いた場合の反応式で示すと、以下のとおりとなる。 Now, in the reaction step of reacting CaSi 2 with an acid, the reaction formula in the case of using hydrogen chloride as an acid is as follows.
 3CaSi+6HCl→Si+3CaCl 3CaSi 2 + 6 HCl → Si 6 H 6 + 3 CaCl 2
 ポリシランであるSiが理想的な層状シリコン化合物に該当する。この反応は、層状のCaSiのCaが2Hで置換されつつ、Si-H結合を形成すると考えることもできる。層状シリコン化合物は、原料のCaSiにおけるSi層の基本骨格が維持されているため、層状をなす。 Si 6 H 6 which is a polysilane corresponds to an ideal layered silicon compound. This reaction can also be considered to form a Si—H bond while Ca in layered CaSi 2 is replaced by 2H. The layered silicon compound is layered because the basic skeleton of the Si layer in the raw material CaSi 2 is maintained.
 CaSiと酸とを反応させる反応工程において、酸は水溶液として用いられるのが好ましいことは、前述した。ここで、Siは水と反応し得るため、通常は、層状シリコン化合物がSiなる化合物のみで得られることはほとんどなく、酸素や酸由来の元素を含有する。 As described above, the acid is preferably used as an aqueous solution in the reaction step of reacting CaSi 2 with the acid. Here, since Si 6 H 6 can react with water, normally, a layered silicon compound is hardly obtained only with a compound of Si 6 H 6 and contains an element derived from oxygen or an acid.
 層状シリコン化合物を300℃以上で加熱することで水素などを離脱させ、シリコン材料とする。この層状シリコン化合物を300℃以上で加熱する工程を、以下シリコン材料製造工程ということがある。 By heating the layered silicon compound at 300 ° C. or higher, hydrogen and the like are released to form a silicon material. The process of heating the layered silicon compound at 300 ° C. or higher may be hereinafter referred to as a silicon material manufacturing process.
 シリコン材料製造工程を理想的な反応式で示すと以下のとおりとなる。
 Si→6Si+3H
The silicon material manufacturing process can be represented by the following ideal reaction equation.
Si 6 H 66 Si + 3 H 2
 ただし、シリコン材料製造工程に実際に用いられる層状シリコン化合物は酸素や酸由来の元素を含有し、さらに不可避不純物も含有するため、実際に得られるシリコン材料も酸素や酸由来の元素を含有し、さらに不可避不純物も含有するものとなる。シリコン材料は、珪素のモル量を100としたとき酸素元素のモル量が50以下であることが好ましく、40以下の量となるのが特に好ましい。また、珪素のモル量を100としたとき酸由来の元素のモル量が8以下の量であることが好ましく、5以下の量となるのが特に好ましい。 However, since the layered silicon compound actually used in the silicon material manufacturing process contains an element derived from oxygen or acid and further contains an unavoidable impurity, the silicon material to be actually obtained also contains an element derived from oxygen or acid, Furthermore, it also contains unavoidable impurities. The molar amount of the oxygen element is preferably 50 or less, and more preferably 40 or less, when the molar amount of silicon is 100. When the molar amount of silicon is 100, the molar amount of the acid-derived element is preferably 8 or less, and particularly preferably 5 or less.
 シリコン材料製造工程は、通常の大気下よりも酸素含有量の少ない非酸化性雰囲気下で行われるのが好ましい。非酸化性雰囲気としては、真空を含む減圧雰囲気、不活性ガス雰囲気を例示できる。加熱温度は、350℃~1200℃の範囲内が好ましく、400℃~1200℃の範囲内がより好ましい。加熱温度が低すぎると水素の離脱が十分でない場合があり、他方、加熱温度が高すぎるとエネルギーの無駄になる。加熱時間は加熱温度に応じて適宜設定すれば良く、また、反応系外に抜けていく水素などの量を測定しながら加熱時間を決定するのも好ましい。 The silicon material production process is preferably carried out in a non-oxidizing atmosphere having a lower oxygen content than in the normal atmosphere. As the non-oxidizing atmosphere, a reduced pressure atmosphere including vacuum and an inert gas atmosphere can be exemplified. The heating temperature is preferably in the range of 350 ° C. to 1200 ° C., and more preferably in the range of 400 ° C. to 1200 ° C. If the heating temperature is too low, desorption of hydrogen may not be sufficient, while if the heating temperature is too high, energy is wasted. The heating time may be appropriately set in accordance with the heating temperature, and it is also preferable to determine the heating time while measuring the amount of hydrogen and the like which leaks out of the reaction system.
 加熱温度及び加熱時間を適宜選択することにより、製造されるシリコン材料に含まれるアモルファスシリコン及びシリコン結晶子の割合、並びに、シリコン結晶子の大きさを調製することもでき、さらには、製造されるシリコン材料に含まれる、アモルファスシリコン及びシリコン結晶子を含むナノ水準の厚みの層の形状や大きさを調製することもできる。 By appropriately selecting the heating temperature and the heating time, the ratio of amorphous silicon and silicon crystallite contained in the silicon material to be manufactured, and the size of silicon crystallite can also be adjusted, and further, manufactured The shape and size of a nano-level thick layer including amorphous silicon and silicon crystallite included in silicon material can also be prepared.
 またシリコン材料をリチウムイオン二次電池などの二次電池の負極活物質として使用する場合は、シリコン材料を炭素で被覆して用いるのが好ましい。炭素は、非晶質の炭素のみであってもよいし、結晶質の炭素のみであってもよいし、非晶質の炭素と結晶質の炭素とが混在していてもよい。 When a silicon material is used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery, it is preferable to use the silicon material coated with carbon. The carbon may be only amorphous carbon or only crystalline carbon, or amorphous carbon and crystalline carbon may be mixed.
 シリコン材料に炭素を被覆する方法は特に限定されない。炭素被覆方法としては、炭素粉末とシリコン材料を混合(例えばメカニカルミリング)する方法、樹脂とシリコン材料の複合化から得られる混合物を加熱処理して樹脂を炭素化する方法、シリコン材料を非酸化性雰囲気下にて有機物ガスと接触させ加熱して有機物ガスを炭素化する方法(熱CVD法)などが挙げられる。 The method for coating the silicon material with carbon is not particularly limited. As a carbon coating method, a method of mixing carbon powder and silicon material (for example, mechanical milling), a method of heat treating a mixture obtained from compounding of resin and silicon material to carbonize resin, non-oxidizing silicon material The method (thermal CVD method) etc. which carbonize organic substance gas by making it contact with organic substance gas under atmosphere, and carbonize are mentioned.
 高分子材料としては、ポリアセチレン、ポリピロールなどが使用できる。 As the polymer material, polyacetylene, polypyrrole and the like can be used.
 負極活物質が炭素系材料よりなる非水電解質二次電池では、釘刺し試験という異常な状態において、非水電解質二次電池の継続する発熱を抑制する効果を有する。熱暴走という異常な状態において負極にある炭素系材料は、酸素を消費する。ここで炭素系材料によって酸素が消費されるため、アルミニウムが酸化アルミニウムとなる高温反応が抑制される。そのため非水電解質二次電池は継続する発熱が抑制される。負極活物質は炭素系材料を含むことが好ましい。負極活物質を100質量%とした場合、炭素系材料が15質量%以上70質量%以下であることが好ましく、20質量%以上65質量%以下であることが好ましい。 The non-aqueous electrolyte secondary battery in which the negative electrode active material is made of a carbon-based material has an effect of suppressing the continuous heat generation of the non-aqueous electrolyte secondary battery in the abnormal state of the nail sticking test. The carbon-based material at the negative electrode in the abnormal state of thermal runaway consumes oxygen. Here, since the carbon-based material consumes oxygen, a high temperature reaction in which aluminum becomes aluminum oxide is suppressed. Therefore, the non-aqueous electrolyte secondary battery can suppress the continuous heat generation. The negative electrode active material preferably contains a carbon-based material. When the negative electrode active material is 100% by mass, the carbon-based material is preferably 15% by mass or more and 70% by mass or less, and more preferably 20% by mass or more and 65% by mass or less.
 負極活物質が炭素系材料より酸素との反応が緩慢な物質よりなる非水電解質二次電池では、熱暴走時に酸素を消費しにくいため、釘刺し試験という異常な状態において、炭素系材料を用いた非水電解質二次電池に比べて、継続して発熱しやすくなる。 In non-aqueous electrolyte secondary batteries in which the negative electrode active material is a material that reacts more slowly with oxygen than carbon-based materials, it is difficult to consume oxygen during thermal runaway, so carbon-based materials are used under abnormal conditions of the nail penetration test. As compared with the non-aqueous electrolyte secondary battery, heat generation continues more easily.
 本発明の非水電解質二次電池では、負極活物質に炭素系材料よりも酸素との反応が緩慢な負極活物質を用いても、釘刺し試験時の継続する発熱を抑制する効果がある。これは反応抑制層によって正極活物質とアルミニウム製の正極用集電体との反応が抑制されるためであると推測される。 The non-aqueous electrolyte secondary battery of the present invention has the effect of suppressing the continuous heat generation at the time of the nail penetration test, even if the negative electrode active material uses the negative electrode active material whose reaction with oxygen is slower than the carbon-based material. It is presumed that this is because the reaction suppressing layer suppresses the reaction between the positive electrode active material and the positive electrode current collector made of aluminum.
 炭素系材料よりも酸素との反応が緩慢な負極活物質として、Si系活物質、Sn系活物質などが挙げられる。これらの活物質を負極活物質として用いると、本発明の効果が顕著に発揮される。Si系活物質としては、上記した珪素及び珪素化合物が挙げられる。Sn系活物質としては、上記した錫及び錫化合物が挙げられる。負極活物質層において、負極活物質層を100質量%とした場合に、Si系活物質が30質量%以上50質量%以下であることが好ましい。 Examples of negative electrode active materials that react more slowly with oxygen than carbon-based materials include Si-based active materials and Sn-based active materials. When these active materials are used as negative electrode active materials, the effects of the present invention are significantly exhibited. Examples of the Si-based active material include the above-described silicon and silicon compounds. Examples of the Sn-based active material include the above-mentioned tin and tin compounds. In the negative electrode active material layer, when the negative electrode active material layer is 100% by mass, the content of the Si-based active material is preferably 30% by mass or more and 50% by mass or less.
 負極活物質は粉末形状であることが好ましい。負極活物質が粉末形状の場合、負極活物質の平均粒径D50は0.5μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。負極活物質の平均粒径D50が小さすぎると、負極活物質の粉末の比表面積が大きくなり、負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、非水電解質二次電池のサイクル特性が悪くなるおそれがある。負極活物質の平均粒径D50が大きすぎると、電極全体の導電性が不均一になり、充放電特性が低下するおそれがある。 The negative electrode active material is preferably in the form of powder. If the anode active material is in powder form, it is preferable that the average particle size D 50 of the negative electrode active material is 0.5μm or more 30μm or less, and more preferably 1μm or more 20μm or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material increases, the contact area between the powder of the negative electrode active material and the electrolyte increases, and decomposition of the electrolyte proceeds. As a result, the cycle characteristics of the non-aqueous electrolyte secondary battery may be deteriorated. When the average particle diameter D 50 of the negative electrode active material is too large, conductivity of the whole electrode becomes uneven, charging and discharging characteristics may deteriorate.
 本発明の第二実施形態の一例であるリチウムイオン二次電池は、電池構成要素として、上記した正極及び負極に加えて、セパレータ、電解液を有する。 The lithium ion secondary battery which is an example of 2nd embodiment of this invention has a separator and electrolyte solution in addition to the above-mentioned positive electrode and negative electrode as a battery structural element.
 セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。 The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes. For the separator, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic can be used.
 電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。 The electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
 溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えばジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えばテトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンが使用できる。 As the solvent, for example, cyclic esters, linear esters, ethers can be used. As cyclic esters, for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone and gamma valerolactone can be used. Examples of chain esters that can be used include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, alkyl propionic acid esters, malonic acid dialkyl esters and acetic acid alkyl esters. As ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be used.
 また上記電解液に溶解させる電解質として、例えばLiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。 Further, as an electrolyte to be dissolved in the above electrolytic solution, lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
 電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As an electrolytic solution, for example, 0.5 mol / l to 1.7 mol / l of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use solutions dissolved at a certain concentration.
 正極および負極にセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極用集電体および負極用集電体から外部に通ずる正極タブ部および負極タブ部までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明の実施形態の一例であるリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。 A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be any of a laminated type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are wound. After connecting the current collector for the positive electrode and the current collector for the negative electrode to the positive electrode tab portion and the negative electrode tab portion leading to the outside using a current collector lead or the like, an electrolytic solution is added to the electrode body to form lithium ion It is good to be a secondary battery. Moreover, the lithium ion secondary battery which is an example of embodiment of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.
 ここで正極タブ部は、正極用集電体と、正極用集電体の一部に配置された反応抑制層とを有することが好ましい。正極タブ部において、集電用リード等と接続する箇所には反応抑制層が配置されていない。正極タブ部において集電用リード等の接続箇所以外の正極用集電体には反応抑制層が配置されていることが好ましく、集電用リード等の接続箇所以外の全部の正極用集電体に反応抑制層が配置されていることがより好ましい。正極タブ部において、正極用集電体の表面の一部に反応抑制層が配置されることで、釘刺し試験という異常な状態において、継続する発熱がより抑制される。 Here, it is preferable that the positive electrode tab portion has a positive electrode current collector and a reaction suppression layer disposed on a part of the positive electrode current collector. In the positive electrode tab portion, the reaction suppression layer is not disposed at a portion connected to the current collection lead or the like. Preferably, a reaction suppression layer is disposed on the positive electrode current collector other than the connection portion such as the current collection lead in the positive electrode tab portion, and all the positive electrode current collectors other than the connection portion such as the current collector lead More preferably, the reaction suppression layer is disposed on the In the positive electrode tab portion, the reaction suppressing layer is disposed on a part of the surface of the positive electrode current collector, whereby the continuous heat generation is further suppressed in the abnormal state of the nail sticking test.
 図4に本実施形態の正極タブ部を説明する模式図を示す。図4に示すように、正極6において、正極タブ部7には、正極用集電体3の表面の一部に反応抑制層4が配置されている。正極タブ部7においては、反応抑制層4の表面に正極活物質層5は配置されていない。 The schematic diagram explaining the positive electrode tab part of this embodiment in FIG. 4 is shown. As shown in FIG. 4, in the positive electrode 6, the reaction suppression layer 4 is disposed on a part of the surface of the positive electrode current collector 3 in the positive electrode tab portion 7. In the positive electrode tab portion 7, the positive electrode active material layer 5 is not disposed on the surface of the reaction suppression layer 4.
 リチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
 上記リチウムイオン二次電池は車両に搭載することができる。上記リチウムイオン二次電池は、安全性が高いため、そのリチウムイオン二次電池を搭載した車両は、安全性が高くなる。 The lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery is highly safe, a vehicle equipped with the lithium ion secondary battery is highly safe.
 車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 Any vehicle may be used as long as it uses electric energy from batteries for all or part of the power source. For example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, electric forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
 以上、リチウムイオン二次電池を例にとって本発明の非水電解質二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 The embodiment of the non-aqueous electrolyte secondary battery of the present invention has been described by taking the lithium ion secondary battery as an example, but the present invention is not limited to the above embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
 上記第一実施形態及び第二実施形態において、集電体本体における集電体同士あるいは集電体と他の導電部材との導電接続箇所には、保護層又は反応抑制層は配置されないことが好ましい。導電接続箇所に保護層又は反応抑制層が配置されると、接続に支障がでるおそれがある。そのため、集電体本体上には保護層又は反応抑制層が配置されない箇所、つまり保護層又は反応抑制層の未塗工部が存在することが好ましい。さらに、活物質層は、保護層又は反応抑制層の上に確実に配置されるのが好ましい。活物質層が保護層又は反応抑制層の配置されていない集電体本体上に配置されると、保護層又は反応抑制層の効果が減ずるおそれがある。そこで、集電体本体の一部表面に保護層又は反応抑制層が配置された集電体に、活物質層を連続塗工して確実に配置させるために、以下の装置を使用するのが好ましい。 In the first embodiment and the second embodiment, it is preferable that the protective layer or the reaction suppression layer is not disposed at the conductive connection between the current collectors or between the current collector and the other conductive member in the current collector main body. . If the protective layer or the reaction suppression layer is disposed at the conductive connection point, the connection may be disturbed. Therefore, it is preferable that a place where the protective layer or the reaction suppression layer is not disposed, that is, an uncoated part of the protective layer or the reaction suppression layer be present on the current collector body. Furthermore, it is preferable to ensure that the active material layer is disposed on the protective layer or the reaction suppression layer. When the active material layer is disposed on the current collector main body in which the protective layer or the reaction suppression layer is not disposed, the effect of the protective layer or the reaction suppression layer may be reduced. Therefore, in order to apply the active material layer continuously to the current collector having the protective layer or the reaction suppression layer disposed on a part of the surface of the current collector main body, the following apparatus is used. preferable.
 図5に集電体本体の一部表面に保護層又は反応抑制層が形成された集電体本体へ活物質層を好適に塗布するための塗工装置を説明する模式図を示す。 The schematic diagram explaining the coating apparatus for suitably apply | coating an active material layer to the collector body in which the protective layer or reaction suppression layer was formed in the partial surface of a collector body in FIG. 5 is shown.
 図5において、塗工装置14は、塗工部11と、検知部12と、制御部13とを備える。図5には記載されていない搬送手段によって、集電体本体1は一定方向に搬送される。図5においては、図5に記載の矢印方向に、ローラー10で支持された状態で、集電体本体1は搬送されている。 In FIG. 5, the coating device 14 includes a coating unit 11, a detection unit 12, and a control unit 13. The current collector body 1 is conveyed in a fixed direction by the conveying means not described in FIG. In FIG. 5, the current collector body 1 is conveyed in a state of being supported by the roller 10 in the arrow direction shown in FIG. 5.
 図5において、集電体本体1の一部には保護層又は反応抑制層8が塗布されている。すなわち、集電体本体1の幅方向の両端部を除く中央領域に保護層又は反応抑制層8が塗布されている。つまり、集電体本体1の幅方向の両端部には、保護層又は反応抑制層8は塗布されていない。ここで、集電体本体1の幅方向の両端部は、集電体同士あるいは集電体と他の導電部材との導電接続箇所として使用される。検知部12は集電体本体1において保護層又は反応抑制層8の配置位置を検出する。図5において、検出部12は、抵抗測定器120を有する。抵抗測定器120は、集電体本体1及び保護層又は反応抑制層8の表面の抵抗を測定する。なお、抵抗測定器120の設置台数は、適宜変更可能であり、必要に応じて複数であってもよい。検出部12は検出した抵抗値の信号を制御部13に出力する。 In FIG. 5, a protective layer or a reaction suppression layer 8 is applied to a part of the current collector body 1. That is, the protective layer or the reaction suppression layer 8 is applied to the central region excluding both ends in the width direction of the current collector body 1. That is, the protective layer or the reaction suppression layer 8 is not applied to both ends in the width direction of the current collector body 1. Here, both end portions in the width direction of the current collector body 1 are used as conductive connection points between the current collectors or between the current collector and another conductive member. The detection unit 12 detects the arrangement position of the protective layer or the reaction suppression layer 8 in the current collector body 1. In FIG. 5, the detection unit 12 has a resistance measuring instrument 120. The resistance measuring device 120 measures the resistance of the surface of the current collector body 1 and the protective layer or reaction suppression layer 8. Note that the number of resistance measuring instruments 120 installed can be changed as appropriate, and may be more than one as needed. The detection unit 12 outputs a signal of the detected resistance value to the control unit 13.
 制御部13は、検出部12より送られた抵抗値に基づいて以下のように塗工部11の塗工位置を制御する。集電体本体1の抵抗に比べて保護層又は反応抑制層8の抵抗は高い。そのため、制御部13は、抵抗の値があらかじめ設定された基準値より高い場合に、保護層又は反応抑制層8が塗工されていると判断し、保護層又は反応抑制層8の位置及び範囲を特定する。 The control unit 13 controls the coating position of the coating unit 11 based on the resistance value sent from the detection unit 12 as follows. The resistance of the protective layer or reaction suppression layer 8 is higher than the resistance of the current collector body 1. Therefore, when the resistance value is higher than the preset reference value, the control unit 13 determines that the protective layer or the reaction suppression layer 8 is coated, and the position and the range of the protective layer or the reaction suppression layer 8 Identify
 図5において、塗工部11は、ダイコート装置110を有する。図5では、ダイコート装置110として、ダイヘッド部分を図示している。ダイコート装置110は、図示されていない塗工液タンク、液供給ポンプを有する。塗工液は、液供給ポンプを介して塗工液タンクからダイヘッドに運ばれ、ダイヘッド内のスリットから押し出されて、スリットの特定された幅にあわせて塗布される。ダイコート装置110のダイヘッドは、集電体本体1の幅方向に移動可能である。ダイヘッドの集電体本体1における幅方向の位置にあわせて、塗工液の塗工範囲が確定される。制御部13は、ダイコート装置110のダイヘッドの集電体本体1の幅方向における位置を動かして、ダイコート装置110を制御する。制御部13によって制御されたダイコート装置110は、保護層又は反応抑制層8の配置された範囲内に活物質層9を形成する。 In FIG. 5, the coating unit 11 has a die coating device 110. In FIG. 5, a die head portion is illustrated as the die coating apparatus 110. The die coating apparatus 110 has a coating liquid tank and a liquid supply pump not shown. The coating liquid is conveyed from the coating liquid tank to the die head through the liquid supply pump, pushed out from the slit in the die head, and applied according to the specified width of the slit. The die head of the die coating apparatus 110 is movable in the width direction of the current collector body 1. The coating range of the coating liquid is determined in accordance with the position in the width direction of the current collector body 1 of the die head. The control unit 13 moves the position in the width direction of the current collector body 1 of the die head of the die coating apparatus 110 to control the die coating apparatus 110. The die coating apparatus 110 controlled by the control unit 13 forms the active material layer 9 within the range in which the protective layer or the reaction suppression layer 8 is disposed.
 (変形例)
 図5においては検出部12として、抵抗測定器120を用いたが、保護層又は反応抑制層8の配置を検知する手段は、非接触検知装置である光検出器であってもよい。光検出器は、集電体本体1及び保護層又は反応抑制層8の光の反射を測定する。部屋の照明などによって発せられた光が、集電体本体1及び保護層又は反応抑制層8に対して反射して、光検出器の受光素子に送り込まれる。光検出器は検出した光の光量に基づいて、各位置の輝度値を算出する。
(Modification)
Although the resistance measuring device 120 is used as the detection unit 12 in FIG. 5, the means for detecting the arrangement of the protective layer or the reaction suppression layer 8 may be a photodetector which is a non-contact detection device. The photodetector measures the reflection of light of the current collector body 1 and the protective layer or reaction suppression layer 8. The light emitted by the illumination of the room is reflected to the current collector body 1 and the protective layer or reaction suppression layer 8 and is sent to the light receiving element of the light detector. The light detector calculates the luminance value of each position based on the detected light quantity.
 検出部12は、検出された輝度値を制御部13に出力する。集電体本体1の輝度値と、保護層又は反応抑制層8の輝度値は異なるため、制御部13は、輝度値が、あらかじめ設定した値より高い又は低い場合に、保護層又は反応抑制層8が配置されていると判断し、保護層又は反応抑制層8の位置及び範囲を特定する。 The detection unit 12 outputs the detected luminance value to the control unit 13. Since the luminance value of the current collector body 1 and the luminance value of the protective layer or the reaction suppression layer 8 are different, the control unit 13 controls the protective layer or the reaction suppression layer when the luminance value is higher or lower than a preset value. Judging that 8 is disposed, the position and range of the protective layer or reaction suppression layer 8 are specified.
 図5において、集電体本体1の片面への塗工について説明したが、集電体本体1の両面へ塗工する場合は、複数の塗工部、検出部及び制御部を用いて、集電体本体1の両面へ一度に塗工を行ってもよいし、片面づつ行なってもよい。 In FIG. 5, the coating on one side of the current collector main body 1 is described, but in the case of coating on both sides of the current collector main body 1, collection is performed using a plurality of coating units, a detection unit, and a control unit. Coating may be performed on both sides of the main body 1 at a time or on one side.
 集電体本体1の両面に片面づつ保護層又は反応抑制層8と活物質層9とを塗工する場合は、まず集電体本体1の両面において保護層又は反応抑制層8の位置を合わせることが好ましい。その際には、まず最初に集電体本体1の一面に保護層又は反応抑制層8を塗工する。そして、一面の保護層又は反応抑制層8の位置を検出し、それに合わせて他方の面に保護層又は反応抑制層8を塗工することが好ましい。この際には一面側の検出部によって一面の保護層又は反応抑制層8の位置を検出し、その検出部12から得られた情報を他方の面側の制御部13に送り、送られた情報に基づいて制御部13によって他方の面側の塗工部11を制御し、制御された塗工部11によって他方の面に保護層又は反応抑制層8が塗工されればよい。また、集電体同士あるいは集電体と他の導電部材との導電接続箇所として使用するために、集電体本体1の送り方向に保護層又は反応抑制層8の未塗工部がある場合でも、制御部13によって塗工部11を制御することによって、塗工部11が間欠塗装でき、保護層又は反応抑制層8の配置された範囲内に活物質層9を形成できる。塗工部11は、ダイコート装置110に限らない。塗工部11は、金属箔上に膜を形成できる塗装装置であればよい。 When the protective layer or the reaction suppression layer 8 and the active material layer 9 are coated on both sides of the current collector body 1 first, the positions of the protective layer or the reaction suppression layer 8 are first aligned on both sides of the current collector body 1 Is preferred. In that case, first, the protective layer or the reaction suppression layer 8 is coated on one surface of the current collector body 1. And it is preferable to detect the position of the protective layer or reaction suppression layer 8 of one side, and to apply the protective layer or reaction suppression layer 8 to the other side according to it. In this case, the detection unit on one side detects the position of the protective layer or reaction suppression layer 8 on one side, sends the information obtained from the detection unit 12 to the control unit 13 on the other side, and sends the information The control unit 13 may control the coating unit 11 on the other surface side, and the controlled coating unit 11 may coat the protective layer or the reaction suppression layer 8 on the other surface. When there is an uncoated portion of the protective layer or the reaction suppression layer 8 in the feeding direction of the current collector body 1 in order to use the current collectors or the conductive connection between the current collector and another conductive member However, by controlling the coating part 11 by the control part 13, the coating part 11 can be intermittently coated, and the active material layer 9 can be formed in the range in which the protective layer or the reaction suppression layer 8 is disposed. The coating unit 11 is not limited to the die coating apparatus 110. The coating part 11 should just be a coating apparatus which can form a film on metal foil.
 以下、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail by way of examples.
(実施例1~9、比較例1~3、試験例1~3)
 <保護層形成の準備>
 厚み15μmのアルミニウム箔(株式会社UACJ製箔製)を準備した。集電体本体としては、準備したアルミニウム箔に、加熱処理、コロナ処理、プラズマ処理、溶剤による洗浄処理などの脱脂処理を実施し、アルミニウム箔の表面の油脂類を低減させたものを用いた。
(Examples 1 to 9, Comparative Examples 1 to 3, Test Examples 1 to 3)
<Preparation of protective layer formation>
An aluminum foil (made by UACJ Co., Ltd.) having a thickness of 15 μm was prepared. As the current collector body, the prepared aluminum foil was subjected to a degreasing treatment such as a heat treatment, a corona treatment, a plasma treatment, a washing treatment with a solvent to reduce fats and oils on the surface of the aluminum foil.
 ATOとして、ATO水分散体(三菱マテリアル電子化成株式会社製TDL-1(一次粒子径が50nm以下の球状粒子、固形分17.5質量%)を準備した。
 保護層用バインダーとして水溶性アクリル樹脂とアクリル系エマルション及びフッ素系エマルションを準備した。
As an ATO, an ATO water dispersion (TDL-1 (spherical particles having a primary particle diameter of 50 nm or less, solid content 17.5% by mass) manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd. was prepared.
A water-soluble acrylic resin, an acrylic emulsion and a fluorine emulsion were prepared as binders for the protective layer.
 水溶性アクリル樹脂として、和光純薬工業株式会社製PAA(重量平均分子量5000)、和光純薬工業株式会社製PAA(重量平均分子量25万)、和光純薬工業株式会社製PAA(重量平均分子量100万)、株式会社日本触媒製PAANa塩(重量平均分子量5500)、株式会社日本触媒製アクリル酸/マレイン酸共重合体塩、株式会社日本触媒製アクリル酸/スルホン酸系モノマー共重合体塩を準備した。 As a water-soluble acrylic resin, Wako Pure Chemical Industries, Ltd. PAA (weight average molecular weight 5000), Wako Pure Chemical Industries Ltd. PAA (weight average molecular weight 250,000), Wako Pure Chemical Industries Ltd. PAA (weight average molecular weight 100) 10,000), PAANa salt (weight average molecular weight 5500) manufactured by Nippon Shokubai Co., Ltd., acrylic acid / maleic acid copolymer salt manufactured by Nippon Shokubai Co., Ltd., acrylic acid / sulfonic acid based monomer copolymer salt manufactured by Nippon Shokubai did.
 またエマルションとして、アクリル系エマルションであるBASFジャパン株式会社製ジョンクリルPDX7341、アクリル系エマルションであるBASFジャパン株式会社製ジョンクリルPDX7430、フッ素系エマルションであるダイキン工業製ポリテトラフルオロエチレン(以下PTFEと称す。)を準備した。BASFジャパン株式会社製ジョンクリルPDX7341、PDX7430の物性などは以下の通りである。 Further, as the emulsion, it is an acrylic emulsion BASF Japan Ltd. John Krill PDX7341 which is an acrylic emulsion, BASF Japan Ltd. John Flour PDX 7430 which is an acrylic emulsion, and a fluorine-based emulsion Daikin Industries polytetrafluoroethylene (hereinafter referred to as PTFE). Prepared. Physical properties and the like of John Krill PDX7341 and PDX7430 manufactured by BASF Japan Ltd. are as follows.
 PDX7341:不揮発分:49.0%、粘度:400(mPa・a)、pH:8.4、固形分酸価:51(mgKOH/g)、Tg:15℃、最低造膜温度:<5℃、平均粒径:0.10μm、分子量(MW):>2×10、比重:1.06(g/cc)
 PDX7430:常温自己架橋タイプ,不揮発分:38.0%、粘度:50(mPa・a)、pH:8.0、固形分酸価:30(mgKOH/g)、Tg:34℃、最低造膜温度:44℃、平均粒径:0.12μm、分子量(MW):>2×10、比重:1.04(g/cc)
PDX7341: nonvolatile content: 49.0%, viscosity: 400 (mPa · a), pH: 8.4, solid content acid value: 51 (mg KOH / g), Tg: 15 ° C., minimum film forming temperature: <5 ° C. , Average particle size: 0.10 μm, molecular weight (MW):> 2 × 10 6 , specific gravity: 1.06 (g / cc)
PDX 7430: normal temperature self-crosslinking type, nonvolatile content: 38.0%, viscosity: 50 (mPa · a), pH: 8.0, solid content acid value: 30 (mg KOH / g), Tg: 34 ° C., minimum film formation Temperature: 44 ° C., average particle size: 0.12 μm, molecular weight (MW):> 2 × 10 6 , specific gravity: 1.04 (g / cc)
 <保護層形成用組成物の作製>
 (保護層形成用組成物A)
 ATO水分散体514.3質量部と蒸留水2834質量部をプラスチック容器に秤量し、ATO水分散体を蒸留水で希釈した希釈物を作製した。高速攪拌機(プライミクス株式会社製TKロボミックス)を用いて回転数1400rpmで上記希釈物を攪拌させながら、前もって調製したPAA(重量平均分子量5000)10%水溶液100質量部を上記希釈物に10分かけて、配合比が固形分の質量比でATO粒子/バインダー=90/10となるように添加した。PAA(重量平均分子量5000)10%水溶液を添加後、1400rpmで更にそのまま30分間攪拌して、保護層形成用組成物A(固形分2.9%)を得た。
<Preparation of a composition for forming a protective layer>
(Composition A for forming a protective layer)
A total of 514.3 parts by mass of the ATO aqueous dispersion and 2,834 parts by mass of distilled water were weighed in a plastic container, and a diluted product was prepared by diluting the ATO aqueous dispersion with distilled water. 100 parts by weight of a 10% aqueous solution of PAA (weight-average molecular weight 5000) prepared beforehand while stirring the above-mentioned diluted product at a rotational speed of 1400 rpm using a high-speed stirrer (TK Robomix manufactured by Primix Co., Ltd.) The mixture ratio was such that the mass ratio of the solid content was ATO particles / binder = 90/10. After addition of a 10% aqueous solution of PAA (weight-average molecular weight 5000), the composition was further stirred for 30 minutes at 1400 rpm to obtain a composition A (solid content 2.9%) for forming a protective layer.
 (保護層形成用組成物B)
 PAA(重量平均分子量5000)10%水溶液に換えてPAA(重量平均分子量25万)10%水溶液を使用した以外は保護層形成用組成物Aと同様にして保護層形成用組成物Bを得た。
(Composition B for forming a protective layer)
A composition B for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of PAA (weight average molecular weight 250,000) was used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). .
 (保護層形成用組成物C)
 PAA(重量平均分子量5000)10%水溶液に換えてPAA(重量平均分子量100万)10%水溶液を使用した以外は保護層形成用組成物Aと同様にして保護層形成用組成物Cを得た。
(Composition for forming a protective layer C)
A composition C for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of PAA (weight average molecular weight 1,000,000) was used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). .
 (保護層形成用組成物D)
 PAA(重量平均分子量5000)10%水溶液に換えてPAANa塩(重量平均分子量5500)10%水溶液を使用した以外は保護層形成用組成物Aと同様にして保護層形成用組成物Dを得た。
(Composition D for forming a protective layer)
A composition D for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of PAANa (weight average molecular weight 5500) was used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). .
 (保護層形成用組成物E)
 PAA(重量平均分子量5000)10%水溶液に換えてアクリル酸/マレイン酸共重合体塩(重量平均分子量5000)10%水溶液を使用した以外は保護層形成用組成物Aと同様にして保護層形成用組成物Eを得た。
(Composition E for forming a protective layer)
A protective layer is formed in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of acrylic acid / maleic acid copolymer (weight average molecular weight 5000) is used instead of the 10% aqueous solution of PAA (weight average molecular weight 5000). Composition E was obtained.
 (保護層形成用組成物F)
 PAA(重量平均分子量5000)10%水溶液に換えてアクリル酸/スルホン酸系モノマー共重合体塩(重量平均分子量5000)10%水溶液を使用した以外は保護層形成用組成物Aと同様にして保護層形成用組成物Fを得た。
(Composition F for forming a protective layer)
It is protected in the same manner as the composition A for forming a protective layer except that a 10% aqueous solution of acrylic acid / sulfonic acid monomer copolymer salt (weight average molecular weight 5000) is used instead of a 10% aqueous solution of PAA (weight average molecular weight 5000). The composition F for layer formation was obtained.
 (保護層形成用組成物G)
 PAA(重量平均分子量5000)10%水溶液に換えてアクリル系エマルションであるジョンクリルPDX7341の10%水分散体を使用し、配合比を固形分の質量比でATO粒子/エマルション=92.5/7.5とした以外は保護層形成用組成物Aと同様にして保護層形成用組成物Gを得た。
(Composition G for forming a protective layer)
10% aqueous solution of PAA (weight average molecular weight 5000) is replaced with a 10% aqueous dispersion of an acrylic emulsion, Joncryl PDX7341, and the compounding ratio is the mass ratio of ATO particles / emulsion = 92.5 / 7 A composition G for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that the composition was changed to .5.
 (保護層形成用組成物H)
 PAA(重量平均分子量5000)10%水溶液に換えてアクリル系エマルションであるジョンクリルPDX7430の10%水分散体を使用し、配合比を固形分の質量比でATO粒子/エマルション=92.5/7.5とした以外は保護層形成用組成物Aと同様にして保護層形成用組成物Hを得た。
(Composition H for forming a protective layer)
10% aqueous solution of PAA (weight-average molecular weight 5000) is replaced with a 10% aqueous dispersion of an acrylic emulsion, Joncryl PDX 7430, and the compounding ratio is the mass ratio of ATO particles / emulsion = 92.5 / 7 A composition H for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except that the composition was changed to .5.
 (保護層形成用組成物I)
 PAA(重量平均分子量5000)10%水溶液に換えてフッ素系エマルションであるPTFEの10%水分散体を使用し、配合比を固形分の質量比でATO粒子/エマルション=92.5/7.5とした以外は保護層形成用組成物Aと同様にして保護層形成用組成物Iを得た。
(Composition for forming protective layer I)
10% aqueous solution of PAA (weight average molecular weight 5000) is replaced with a 10% aqueous dispersion of PTFE which is a fluorine-based emulsion, and the compounding ratio is the mass ratio of ATO particles / emulsion = 92.5 / 7.5 A composition I for forming a protective layer was obtained in the same manner as the composition A for forming a protective layer except for the above.
 <保護層形成用組成物の保存安定性の検討>
 保護層形成用組成物A~Iの保存安定性を評価した。
<Study on storage stability of composition for forming protective layer>
The storage stability of the protective layer forming compositions A to I was evaluated.
 上記のように製造した各保護層形成用組成物を25℃で3日間静置して沈殿物が見られるかどうか目視で観察した。 Each composition for protective layer formation manufactured as mentioned above was left still at 25 degreeC for 3 days, and it observed visually whether the precipitate could be seen.
 保護層形成用組成物Bと保護層形成用組成物Cでは多量の沈殿物が観察された。保護層形成用組成物A,D~Iでは、沈殿物は観察されなかった。この結果から、重量平均分子量が大きすぎるPAAの存在はATO粒子を凝集させてしまい、保護層形成用組成物の保存安定性が悪いことがわかった。 In the composition B for forming a protective layer and the composition C for forming a protective layer, a large amount of precipitate was observed. In the compositions A and D to I for forming a protective layer, no precipitate was observed. From this result, it was found that the presence of PAA having an excessively large weight average molecular weight causes the ATO particles to aggregate, and the storage stability of the composition for forming a protective layer is poor.
 <リチウムイオン二次電池用集電体の作製>
 保存安定性評価で沈殿物が観察されなかった保護層形成用組成物A,D~Iを用いてリチウムイオン二次電池用集電体を作製した。
<Fabrication of current collector for lithium ion secondary battery>
A collector for a lithium ion secondary battery was produced using compositions A and DI for forming a protective layer, in which no precipitate was observed in storage stability evaluation.
 (実施例1)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Aを保護層の厚みが75nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例1の集電体を得た。
Example 1
The composition A for protective layer formation was coated on a degreased aluminum foil having a thickness of 15 μm using a microgravure coater so that the thickness of the protective layer would be 75 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 1.
 (実施例2)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Aを保護層の厚みが125nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例2の集電体を得た。
(Example 2)
Composition A for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 μm using a microgravure coater so that the thickness of the protective layer would be 125 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 2.
 (実施例3)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Aを保護層の厚みが150nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例3の集電体を得た。
(Example 3)
Composition A for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 μm using a microgravure coater so that the thickness of the protective layer would be 150 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 3.
 (実施例4)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Aを保護層の厚みが275nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例4の集電体を得た。
(Example 4)
Composition A for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 μm using a microgravure coater so that the thickness of the protective layer would be 275 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 4.
 (実施例5)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Aを保護層の厚みが500nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例5の集電体を得た。
(Example 5)
The composition A for forming a protective layer was applied to a degreased 15 μm thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 500 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 5.
 (実施例6)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Gを保護層の厚みが75nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例6の集電体を得た。
(Example 6)
Composition G for protective layer formation was applied to a degreased 15 μm thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 75 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Example 6.
 (実施例7)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Gを保護層の厚みが150nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例7の集電体を得た。
(Example 7)
Composition G for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 μm using a microgravure coater so that the thickness of the protective layer would be 150 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Example 7.
 (実施例8)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Hを保護層の厚みが75nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例8の集電体を得た。
(Example 8)
The composition H for protective layer formation was coated on a degreased 15 μm thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 75 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Example 8.
 (実施例9)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Hを保護層の厚みが150nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、実施例9の集電体を得た。
(Example 9)
The composition H for protective layer formation was coated on a degreased 15 μm thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 150 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Example 9.
 (比較例1)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Iを保護層の厚みが75nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、比較例1の集電体を得た。
(Comparative example 1)
The composition I for protective layer formation was applied to a degreased 15 μm thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 75 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain the current collector of Comparative Example 1.
 (比較例2)
 脱脂処理済みの厚み15μmのアルミニウム箔に、保護層形成用組成物Iを保護層の厚みが150nmとなるようにマイクログラビアコーターを用いて塗布した。保護層形成用組成物の塗布後のアルミニウム箔を100℃で2分間乾燥した。同様の工程をアルミニウム箔の裏面でも行い、比較例2の集電体を得た。
(Comparative example 2)
The composition I for protective layer formation was applied to a degreased 15 μm thick aluminum foil using a microgravure coater so that the thickness of the protective layer would be 150 nm. The aluminum foil after application of the composition for protective layer formation was dried at 100 degreeC for 2 minutes. The same process was performed on the back surface of the aluminum foil to obtain a current collector of Comparative Example 2.
 (試験例1)
 脱脂処理済みの厚み15μmのアルミニウム箔に、マイクログラビアコーターを用いて保護層形成用組成物Dを塗布したが、アルミニウム箔の表面で保護層形成用組成物Dが顕著にはじかれ、保護層が形成できなかった。
(Test Example 1)
The composition D for forming a protective layer was applied to a degreased 15 μm thick aluminum foil using a microgravure coater, but the composition D for forming a protective layer was significantly repelled on the surface of the aluminum foil, and the protective layer was It could not be formed.
 (試験例2)
 脱脂処理済みの厚み15μmのアルミニウム箔に、マイクログラビアコーターを用いて保護層形成用組成物Eを塗布したが、アルミニウム箔の表面で保護層形成用組成物Eが顕著にはじかれ、保護層が形成できなかった。
(Test Example 2)
The composition E for protective layer formation was applied to a degreased 15 μm thick aluminum foil using a microgravure coater, but the composition E for protective layer formation was significantly repelled on the surface of the aluminum foil, and the protective layer was It could not be formed.
 (試験例3)
 脱脂処理済みの厚み15μmのアルミニウム箔に、マイクログラビアコーターを用いて保護層形成用組成物Fを塗布したが、アルミニウム箔の表面で保護層形成用組成物Fが顕著にはじかれ、保護層が形成できなかった。
(Test Example 3)
The composition F for protective layer formation was applied to a degreased aluminum foil having a thickness of 15 μm using a microgravure coater, but the composition F for protective layer formation was significantly repelled on the surface of the aluminum foil, and the protective layer It could not be formed.
 保護層形成用組成物A、G~Iは、アルミニウム箔との濡れがよく塗工性がよいことわかった。 It was found that the compositions A and G to I for forming a protective layer had good wettability with the aluminum foil and good coatability.
 <保護層の密着性試験>
 実施例1~9、比較例1及び比較例2の集電体の保護層の表面を綿棒でこすり、保護層の密着性を評価した。比較例1の集電体及び比較例2の集電体は保護層がはがれた。実施例1~9の集電体は保護層がはがれず、実施例1~9の集電体の保護層の密着性は良好であった。この結果から、保護層におけるバインダーとしては、アクリル樹脂が好適であることがわかった。
<Adhesiveness test of protective layer>
The surfaces of the protective layers of the current collectors of Examples 1 to 9 and Comparative Examples 1 and 2 were rubbed with a cotton swab, and the adhesion of the protective layers was evaluated. In the current collector of Comparative Example 1 and the current collector of Comparative Example 2, the protective layer was peeled off. The current collectors of Examples 1 to 9 did not have the protective layer peeled off, and the adhesion of the protective layers of the current collectors of Examples 1 to 9 was good. From this result, it was found that an acrylic resin is suitable as a binder in the protective layer.
 <正極の作製>
 (実施例1の正極)
 実施例1の集電体を正極用集電体として用いた実施例1の正極を次のようにして作製した。まず正極活物質としてLiNi0.5Co0.2Mn0.3と導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(PVDF)とを、それぞれ94質量部、3質量部、3質量部として混合し、この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、正極活物質層用スラリーを作製した。
<Fabrication of positive electrode>
(Positive electrode of Example 1)
The positive electrode of Example 1 using the current collector of Example 1 as a current collector for positive electrode was produced as follows. First, 94 parts by mass and 3 parts by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material, acetylene black as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder, respectively The mixture was mixed as 3 parts by mass, and the mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry for a positive electrode active material layer.
 上記実施例1の集電体に正極活物質層用スラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように試験例1の集電体に塗布した。スラリーを塗布した集電体を80℃で20分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、実施例1の集電体と実施例1の集電体上の塗布物を強固に密着接合させた。この時、正極活物質層の密度は3.2g/cmとなるようにした。ここでいう正極活物質層の密度とは、正極活物質層の質量(g)÷正極活物質層の厚み(cm)÷正極活物質層の面積(cm)とした。接合物を120℃で6時間、真空乾燥機で加熱した後、所定の形状(正極活物質層面積25mm×30mmの矩形状)に切り取り、正極活物質層の厚さが90μm程度の正極とした。これを実施例1の正極とした。 The slurry for the positive electrode active material layer was placed on the current collector of Example 1 and applied to the current collector of Test Example 1 using a doctor blade so that the slurry became a film. The slurry-coated current collector is dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the coated material on the current collector of Example 1 and the current collector of Example 1 is used by a roll press. Tightly bonded together. At this time, the density of the positive electrode active material layer was adjusted to 3.2 g / cm 3 . The density of the positive electrode active material layer referred to here is the mass (g) of the positive electrode active material layer ÷ the thickness (cm) of the positive electrode active material layer ÷ the area (cm 2 ) of the positive electrode active material layer. The joined product was heated at 120 ° C. for 6 hours in a vacuum dryer, and then cut into a predetermined shape (a rectangular shape with a positive electrode active material layer area of 25 mm × 30 mm) to obtain a positive electrode having a thickness of about 90 μm. . This was used as the positive electrode of Example 1.
 (実施例2の正極)
 実施例1の集電体に換えて実施例2の集電体を用いた以外は実施例1の正極と同様にして実施例2の正極を得た。
 (実施例3の正極)
 実施例1の集電体に換えて実施例3の集電体を用いた以外は実施例1の正極と同様にして実施例3の正極を得た。
 (実施例4の正極)
 実施例1の集電体に換えて実施例4の集電体を用いた以外は実施例1の正極と同様にして実施例4の正極を得た。
 (実施例5の正極)
 実施例1の集電体に換えて実施例5の集電体を用いた以外は実施例1の正極と同様にして実施例5の正極を得た。
 (実施例6の正極)
 実施例1の集電体に換えて実施例6の集電体を用いた以外は実施例1の正極と同様にして実施例6の正極を得た。
 (実施例7の正極)
 実施例1の集電体に換えて実施例7の集電体を用いた以外は実施例1の正極と同様にして実施例7の正極を得た。
 (実施例8の正極)
 実施例1の集電体に換えて実施例8の集電体を用いた以外は実施例1の正極と同様にして実施例8の正極を得た。
 (実施例9の正極)
 実施例1の集電体に換えて実施例9の集電体を用いた以外は実施例1の正極と同様にして実施例9の正極を得た。
 (比較例1の正極)
 試験例1の集電体に換えて保護層の形成されていないアルミニウム箔を用いた以外は実施例1の正極と同様にして比較例1の正極を得た。
 (比較例2の正極)
 実施例1の集電体に換えて比較例1の集電体を用いた以外は実施例1の正極と同様にして比較例2の正極を得た。
 (比較例3の正極)
 実施例1の集電体に換えて比較例2の集電体を用いた以外は実施例1の正極と同様にして比較例3の正極を得た。
(Positive electrode of Example 2)
A positive electrode of Example 2 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 2 was used instead of the current collector of Example 1.
(Positive electrode of Example 3)
A positive electrode of Example 3 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 3 was changed to the current collector of Example 1.
(Positive electrode of Example 4)
A positive electrode of Example 4 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 4 was used instead of the current collector of Example 1.
(Positive electrode of Example 5)
A positive electrode of Example 5 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 5 was used instead of the current collector of Example 1.
(Positive electrode of Example 6)
A positive electrode of Example 6 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 6 was used instead of the current collector of Example 1.
(Positive electrode of Example 7)
A positive electrode of Example 7 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 7 was changed to the current collector of Example 1.
(Positive electrode of Example 8)
A positive electrode of Example 8 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 8 was used instead of the current collector of Example 1.
(Positive electrode of Example 9)
A positive electrode of Example 9 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Example 9 was changed to the current collector of Example 1.
(Positive electrode of Comparative Example 1)
A positive electrode of Comparative Example 1 was obtained in the same manner as the positive electrode of Example 1, except that the current collector of Test Example 1 was changed to an aluminum foil having no protective layer formed thereon.
(Positive electrode of Comparative Example 2)
A positive electrode of Comparative Example 2 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Comparative Example 1 was used instead of the current collector of Example 1.
(Positive electrode of Comparative Example 3)
A positive electrode of Comparative Example 3 was obtained in the same manner as the positive electrode of Example 1 except that the current collector of Comparative Example 2 was used instead of the current collector of Example 1.
 <電極抵抗増加率の測定>
 実施例1~9及び比較例1~3の正極の電極抵抗増加率を測定した。
<Measurement of electrode resistance increase rate>
The electrode resistance increase rates of the positive electrodes of Examples 1 to 9 and Comparative Examples 1 to 3 were measured.
 株式会社井元製作所製電極抵抗測定器IM-0240型(測定電極:φ16mm、電極荷重:5kg)を用いて各正極の厚み方向の電極抵抗率を測定した。電極抵抗増加率は以下の式によって求めた。
電極抵抗増加率=((各正極の電極抵抗率-比較例1の正極の電極抵抗率)/比較例1の正極の電極抵抗率))×100
結果を表1に記す。
The electrode resistivity of each positive electrode in the thickness direction was measured using an electrode resistance measuring instrument IM-02240 type (measurement electrode: φ 16 mm, electrode load: 5 kg) manufactured by Imoto Machinery Co., Ltd. The electrode resistance increase rate was determined by the following equation.
Electrode resistance increase rate = (((electrode resistivity of each positive electrode-electrode resistivity of positive electrode of Comparative Example 1) / electrode resistivity of positive electrode of Comparative Example 1)) × 100
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 保護層のバインダーにPTFEを用いた比較例2及び比較例3の正極では、各々同じ厚みの保護層を有する実施例1、3、6~9の正極に比べて、電極抵抗増加率が高いことがわかった。 The positive electrode of Comparative Example 2 and Comparative Example 3 using PTFE as a binder for the protective layer has a higher rate of increase in electrode resistance as compared with the positive electrodes of Examples 1, 3 and 6 to 9 each having the same thickness of the protective layer. I understand.
 実施例1、2、4、5の正極及び比較例1の正極の電極抵抗増加率及び保護層の厚みを用いて、保護層の厚みと電極抵抗増加率との関係を示すグラフを図2に示す。 FIG. 2 is a graph showing the relationship between the thickness of the protective layer and the rate of increase in electrode resistance, using the electrode resistance increase rates of the positive electrodes of Examples 1, 2, 4 and 5 and the positive electrode of Comparative Example 1 and the thickness of the protective layer. Show.
 図2に示すように、保護層の厚みが275nmより小さいと電極抵抗増加率は小さくなることがわかった。特に保護層の厚みが100nm未満であると電極抵抗増加率は100%未満となってより好ましいことがわかった。 As shown in FIG. 2, it was found that when the thickness of the protective layer is smaller than 275 nm, the electrode resistance increase rate decreases. In particular, when the thickness of the protective layer is less than 100 nm, the electrode resistance increase rate is less than 100%, which is more preferable.
 <ラミネート型リチウムイオン二次電池作製>
 (実施例1のラミネート型リチウムイオン二次電池)
 実施例1の正極を用いた実施例1のラミネート型リチウムイオン二次電池を次のようにして作製した。
<Production of laminate type lithium ion secondary battery>
(Laminated lithium ion secondary battery of Example 1)
A laminate type lithium ion secondary battery of Example 1 using the positive electrode of Example 1 was produced as follows.
 負極活物質として、平均粒子径D50が4μmのSiO及び平均粒子径D50が20μmの天然黒鉛を準備した。バインダー樹脂としてポリアミドイミド樹脂を準備した。導電助剤としてアセチレンブラックを準備した。 As an anode active material, the average particle diameter D 50 of SiO 2 and an average particle diameter D 50 of 4μm was prepared 20μm natural graphite. A polyamideimide resin was prepared as a binder resin. Acetylene black was prepared as a conduction aid.
 上記負極活物質、導電助剤及びバインダー樹脂を、SiO:黒鉛:導電助剤:バインダー樹脂=32:50:8:10の質量比で混合した。上記混合物に、溶媒としてNMPを適量入れて調整して、負極活物質層用スラリーとした。 The said negative electrode active material, the conductive support agent, and the binder resin were mixed in a mass ratio of SiO: graphite: conductive support: binder resin = 32: 50: 8: 10. An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer.
 このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように片面塗布した。スラリーを塗布した集電体を100℃、10分で乾燥後、NMPを揮発させ除去した後、ロ-ルプレス機により、プレスして接合物を得た。この時、負極活物質層の密度は1.6g/cmとなるようにした。ここでいう負極活物質層の密度とは、負極活物質層の質量(g)÷負極活物質層の厚み(cm)÷負極活物質層の面積(cm)とした。接合物を200℃で2時間、真空乾燥機で加熱した後、所定の形状(負極活物質層面積25mm×30mmの矩形状)に切り取り、負極活物質層の厚さが50μmの負極とした。 This slurry was coated on one side of a copper foil having a thickness of 20 μm, which is a current collector for a negative electrode, using a doctor blade to form a film. The current collector coated with the slurry was dried at 100 ° C. for 10 minutes, and then the NMP was volatilized and removed, followed by pressing with a roll press to obtain a bonded product. At this time, the density of the negative electrode active material layer was made to be 1.6 g / cm 3 . The density of the negative electrode active material layer referred to here is the mass (g) of the negative electrode active material layer ÷ the thickness (cm) of the negative electrode active material layer ÷ the area (cm 2 ) of the negative electrode active material layer. The joined product was heated at 200 ° C. for 2 hours in a vacuum dryer, and then cut into a predetermined shape (a rectangular shape with a negative electrode active material layer area of 25 mm × 30 mm) to make a negative electrode with a thickness of 50 μm.
 上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27mm×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)をEC:EMC:DMC=3:3:4(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。 A laminated lithium ion secondary battery was manufactured using the above positive electrode and negative electrode. Specifically, a rectangular sheet (27 mm × 32 mm, 25 μm thickness) made of polypropylene resin as a separator is sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. As an electrolytic solution, LiPF 6 was added to a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) were mixed in EC: EMC: DMC = 3: 3: 4 (volume ratio). A solution dissolved to be mol / l was used. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. The positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate-type lithium ion secondary battery of Example 1 was produced.
(実施例2のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例2の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例2のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 2)
A laminated lithium ion secondary battery of Example 2 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 2 was used instead of the positive electrode of Example 1.
 (実施例3のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例3の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例3のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 3)
A laminated lithium ion secondary battery of Example 3 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 3 was used instead of the positive electrode of Example 1.
 (実施例4のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例4の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例4のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 4)
A laminated lithium ion secondary battery of Example 4 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 4 was used instead of the positive electrode of Example 1.
 (実施例5のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例5の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例5のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 5)
A laminated lithium ion secondary battery of Example 5 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 5 was used instead of the positive electrode of Example 1.
 (実施例6のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例6の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例6のラミネート型リチウムイオン二次電池を作製した。
(Laminated Lithium Ion Secondary Battery of Example 6)
A laminated lithium ion secondary battery of Example 6 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 6 was used instead of the positive electrode of Example 1.
 (実施例7のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例7の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例7のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 7)
A laminated lithium ion secondary battery of Example 7 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 7 was used instead of the positive electrode of Example 1.
 (実施例8のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例8の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例8のラミネート型リチウムイオン二次電池を作製した。
(Laminated Lithium Ion Secondary Battery of Example 8)
A laminated lithium ion secondary battery of Example 8 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 8 was used instead of the positive electrode of Example 1.
 (実施例9のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに実施例9の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例9のラミネート型リチウムイオン二次電池を作製した。
(Laminated Lithium Ion Secondary Battery of Example 9)
A laminated lithium ion secondary battery of Example 9 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Example 9 was used instead of the positive electrode of Example 1.
 (比較例1のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに比較例1の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして比較例1のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 1)
A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Comparative Example 1 was used instead of the positive electrode of Example 1.
 (比較例2のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに比較例2の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして比較例2のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 2)
A laminated lithium ion secondary battery of Comparative Example 2 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Comparative Example 2 was used instead of the positive electrode of Example 1.
 (比較例3のラミネート型リチウムイオン二次電池)
 実施例1の正極の代わりに比較例3の正極を用いた以外は実施例1のラミネート型リチウムイオン二次電池と同様にして比較例3のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 3)
A laminated lithium ion secondary battery of Comparative Example 3 was produced in the same manner as the laminated lithium ion secondary battery of Example 1 except that the positive electrode of Comparative Example 3 was used instead of the positive electrode of Example 1.
 <負極のAl量測定>
 実施例1、2、4、5及び比較例1のラミネート型リチウムイオン二次電池について充放電サイクル試験後の負極のAl量を測定した。負極のAl量は以下のようにして測定した。充放電サイクル試験後の各ラミネート型リチウムイオン二次電池を解体し、各負極を分離した。分離した負極をジメチルカーボネート(略称DMC)で洗浄し、誘導結合プラズマ分析計(略称ICP)で負極のAl量を測定した。
<Measurement of Al content of negative electrode>
The amount of Al of the negative electrode after the charge and discharge cycle test was measured for the laminated lithium ion secondary batteries of Examples 1, 2, 4, 5 and Comparative Example 1. The Al content of the negative electrode was measured as follows. Each laminate type lithium ion secondary battery after the charge and discharge cycle test was disassembled to separate each negative electrode. The separated negative electrode was washed with dimethyl carbonate (abbreviated DMC), and the amount of Al in the negative electrode was measured with an inductively coupled plasma analyzer (abbreviated ICP).
 充放電サイクル試験は、充電の際は、25℃において1Cレート、電圧4.5VまでCC充電(定電流充電)をした。放電の際は3.0Vまで、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、50サイクルまでサイクル試験を行った。 In the charge and discharge cycle test, at the time of charge, CC charge (constant current charge) was performed to a voltage of 4.5 V at a rate of 1 C at 25 ° C. At the time of discharge, CC discharge (constant current discharge) was performed at a 1 C rate up to 3.0V. This charge and discharge was made into 1 cycle, and the cycle test was done to 50 cycles.
 負極のAl量の測定結果を表2に示す。Al溶出率(%)は以下の式を用いて算出した。
 Al溶出率(%)=(各電池のAl溶出量/比較例1の電池のAl溶出量)×100
The measurement results of the Al content of the negative electrode are shown in Table 2. The Al dissolution rate (%) was calculated using the following equation.
Al elution rate (%) = (Al elution amount of each battery / Al elution amount of the battery of Comparative Example 1) × 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果からわかるように、保護層の形成されていない集電体を用いた比較例1のラミネート型リチウムイオン二次電池では集電体の金属であるAlが溶出し負極の表面に析出したことがわかった。それに対して保護層が形成された本発明の集電体を用いたラミネート型リチウムイオン二次電池ではAlの溶出が顕著に抑制されたことがわかった。また保護層の厚みが100nm未満であっても保護層の効果は顕著であることが確認できた。 As can be seen from the results in Table 2, in the laminate type lithium ion secondary battery of Comparative Example 1 using the current collector without the protective layer, Al, which is the metal of the current collector, is eluted and deposited on the surface of the negative electrode. It turned out that it did. On the other hand, it was found that in the laminate type lithium ion secondary battery using the current collector of the present invention in which the protective layer was formed, the elution of Al was significantly suppressed. It was also confirmed that the effect of the protective layer was remarkable even if the thickness of the protective layer was less than 100 nm.
 (実施例10~15、比較例4~5)
 <正極用集電体への反応抑制層の形成>
 正極用集電体として厚み15μmのアルミニウム箔を準備した。アルミニウム箔は100℃大気中にて12時間加熱を実施し、表面の油脂類を低減させた。
(Examples 10 to 15, Comparative Examples 4 to 5)
<Formation of reaction suppression layer to current collector for positive electrode>
A 15 μm thick aluminum foil was prepared as a positive electrode current collector. The aluminum foil was heated at 100 ° C. in the atmosphere for 12 hours to reduce surface oils and fats.
 導電性粒子として、平均粒径D50が30nmのアンチモンドープ酸化錫(以下ATOと称す)を準備した。このATOは、SnO/Sb=90/10(質量比)のものであり、ATO中のアンチモンのドープ量は7.5質量%であった。 As the conductive particles, the average particle diameter D 50 was prepared 30nm of antimony-doped tin oxide (hereinafter referred to as ATO). The ATO was SnO 2 / Sb 2 O 5 = 90/10 (mass ratio), and the doping amount of antimony in the ATO was 7.5 mass%.
 反応抑制層用バインダーとして、ポリアクリル酸(以下PAAと称す)、ポリテトラフルオロエチレン(以下PTFEと称す)、平均分子量が2万のポリエチレングリコール(以下PEGと称す)を準備した。また粘度調整溶媒としてイオン交換水を準備した。 As binders for the reaction suppression layer, polyacrylic acid (hereinafter referred to as PAA), polytetrafluoroethylene (hereinafter referred to as PTFE), and polyethylene glycol having an average molecular weight of 20,000 (hereinafter referred to as PEG) were prepared. Moreover, ion exchange water was prepared as a viscosity adjustment solvent.
 (集電体A)
 ATO:PAAの質量比が90:10となるように、ATOとPAAとイオン交換水とを混合して反応抑制層用スラリーを作成した。上記反応抑制層用スラリーをアルミニウム箔にのせ、マイクログラビアコーターを用いて塗布した。塗布はアルミニウム箔の両面に実施し、反応抑制層用スラリーの塗布後のアルミニウム箔を200℃で乾燥し、これを集電体Aとした。集電体Aは、正極用集電体としてのアルミニウム箔とこのアルミニウム箔の表面の両面に配置された反応抑制層とからなる。集電体Aの反応抑制層の厚みは片面100nmであった。
(Current collector A)
ATO, PAA, and ion-exchanged water were mixed so that the mass ratio of ATO: PAA was 90:10, to prepare a slurry for a reaction suppression layer. The slurry for the reaction suppression layer was placed on an aluminum foil and applied using a microgravure coater. The application was carried out on both sides of the aluminum foil, and the aluminum foil after application of the slurry for reaction suppression layer was dried at 200 ° C., and this was taken as a current collector A. The current collector A is composed of an aluminum foil as a current collector for the positive electrode and a reaction suppression layer disposed on both sides of the surface of the aluminum foil. The thickness of the reaction suppression layer of the current collector A was 100 nm on one side.
 (集電体B)
 ATO:PTFEの質量比が90:10となるように反応抑制層用スラリーを作製した以外は集電体Aと同様にして集電体Bを作製した。
(Current collector B)
A current collector B was produced in the same manner as the current collector A except that a slurry for the reaction suppression layer was produced such that the mass ratio of ATO: PTFE was 90:10.
 (集電体C)
 ATO:PEGの質量比が90:10となるように反応抑制層用スラリーを作製した以外は集電体Aと同様にして集電体Cを作製した。
(Current collector C)
A current collector C was produced in the same manner as the current collector A except that a slurry for the reaction suppression layer was produced such that the mass ratio of ATO: PEG was 90:10.
 (集電体D)
 反応抑制層を形成せず、アルミニウム箔そのものを集電体Dとした。
(Current collector D)
An aluminum foil itself was used as a current collector D without forming a reaction suppression layer.
 (集電体E)
 マスキングして塗工幅を狭くしたアルミニウム箔に反応抑制層用スラリーをマイクログラビアコーターを用いて塗布した以外は集電体Aと同様にして集電体Eを作製した。集電体Eのマスキングされた箇所には反応抑制層が配置されていない。集電体Eを用いれば、正極タブ部の表面に反応抑制層が形成されていない正極を作製できる。
(Current collector E)
A current collector E was produced in the same manner as the current collector A except that a slurry for a reaction suppression layer was applied to an aluminum foil which was masked to narrow the coating width using a microgravure coater. The reaction suppression layer is not disposed at the masked portion of the current collector E. By using the current collector E, it is possible to produce a positive electrode in which the reaction suppression layer is not formed on the surface of the positive electrode tab portion.
 <ラミネート型リチウムイオン二次電池作製>
 (実施例10)
 実施例10のラミネート型リチウムイオン二次電池を次のようにして作製した。
<Production of laminate type lithium ion secondary battery>
(Example 10)
A laminate type lithium ion secondary battery of Example 10 was produced as follows.
 (正極Aの作成)
 正極活物質として平均粒子径D50が6μmのLiNi0.5Co0.2Mn0.3と導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(以下PVDFと称す)とを、それぞれ94質量部、3質量部、3質量部の割合で混合し、この混合物を適量のN-メチル-2-ピロリドン(以下NMPと称す)に分散させて、正極活物質層用スラリーを作製した。
(Creation of positive electrode A)
As a positive electrode active material, LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter D 50 of 6 μm, acetylene black as a conductive additive, and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder These were mixed in proportions of 94 parts by mass, 3 parts by mass, and 3 parts by mass, respectively, and this mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to prepare a slurry for positive electrode active material layer did.
 集電体Aの表面にコンマコーターを用いて、正極活物質層用スラリーを膜状に塗布した。塗工は両面に実施し、正極活物質層用スラリーが塗布された集電体Aを100℃で5分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、プレスして接合物を得た。この時、正極活物質層の密度は3.2g/cmとなるようにした。ここでいう正極活物質層の密度とは、正極活物質層の質量(g)÷正極活物質層の厚み(cm)÷正極活物質層の面積(cm)とした。接合物を120℃で6時間、真空乾燥機で加熱した後、所定の形状(正極活物質層面積40mm×80mmの矩形状)に切り取り、正極活物質層の厚さが片面90μm程度の正極Aとした。 The slurry for the positive electrode active material layer was applied in the form of a film on the surface of the current collector A using a comma coater. The coating is carried out on both sides, and the current collector A coated with the slurry for positive electrode active material layer is dried at 100 ° C. for 5 minutes to volatilize and remove NMP, and then pressed by a roll press to bond I got a thing. At this time, the density of the positive electrode active material layer was adjusted to 3.2 g / cm 3 . The density of the positive electrode active material layer referred to here is the mass (g) of the positive electrode active material layer ÷ the thickness (cm) of the positive electrode active material layer ÷ the area (cm 2 ) of the positive electrode active material layer. After heating the joined product at 120 ° C. for 6 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a positive electrode active material layer area of 40 mm × 80 mm), and a positive electrode A having a thickness of about 90 μm on one side And
 (負極Aの作製)
 負極活物質として、平均粒子径D50が4μmのSiO及び平均粒子径D50が20μmの天然黒鉛を準備した。バインダー樹脂としてポリアミドイミド樹脂を準備した。導電助剤としてアセチレンブラックを準備した。
(Fabrication of negative electrode A)
As an anode active material, the average particle diameter D 50 of SiO 2 and an average particle diameter D 50 of 4μm was prepared 20μm natural graphite. A polyamideimide resin was prepared as a binder resin. Acetylene black was prepared as a conduction aid.
 上記負極活物質、導電助剤及びバインダー樹脂を、SiO:黒鉛:導電助剤:バインダー樹脂=32:50:8:10の質量比で混合した。上記混合物に、溶媒としてNMPを適量入れて調整して、負極活物質層用スラリーとした。負極活物質を100質量%とした場合、炭素系材料は61質量%であった。 The said negative electrode active material, the conductive support agent, and the binder resin were mixed in a mass ratio of SiO: graphite: conductive support: binder resin = 32: 50: 8: 10. An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer. When the negative electrode active material was 100% by mass, the carbon-based material was 61% by mass.
 負極用集電体として20μmの銅箔を準備し、銅箔にコンマコーターを用いて、上記負極活物質層用スラリーを膜状に塗布した。塗工は両面に実施し、負極活物質層用スラリーが塗布された銅箔を80℃で5分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、プレスして接合物を得た。この時、負極活物質層の密度は1.6g/cmとなるようにした。ここでいう負極活物質層の密度とは、負極活物質層の質量(g)÷負極活物質層の厚み(cm)÷負極活物質層の面積(cm)とした。接合物を200℃で2時間、真空乾燥機で加熱した後、所定の形状(負極活物質層面積44mm×84mmの矩形状)に切り取り、負極活物質層の厚さが片面50μmの負極Aとした。 A copper foil of 20 μm was prepared as a current collector for a negative electrode, and the slurry for the negative electrode active material layer was applied in a film shape using a comma coater on the copper foil. The coating is carried out on both sides, and the copper foil coated with the slurry for the negative electrode active material layer is dried at 80 ° C. for 5 minutes to volatilize and remove NMP, and then pressed with a roll press to obtain a bonded product. Obtained. At this time, the density of the negative electrode active material layer was made to be 1.6 g / cm 3 . The density of the negative electrode active material layer referred to here is the mass (g) of the negative electrode active material layer ÷ the thickness (cm) of the negative electrode active material layer ÷ the area (cm 2 ) of the negative electrode active material layer. After heating the joined product at 200 ° C. for 2 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a negative electrode active material layer area of 44 mm × 84 mm), and a negative electrode A with a thickness of 50 μm on one side did.
 上記の正極A30枚および負極A31枚を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、各正極Aおよび各負極Aの間に、セパレータとしてポリエチレン樹脂からなる矩形状シート(48mm×88mm、厚さ25μm)を挟装して30組積層して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)をEC:EMC:DMC=3:3:4(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブ部を備え、このタブ部の一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例10のラミネート型リチウムイオン二次電池を作製した。実施例10のラミネート型リチウムイオン二次電池の正極タブ部の表面には反応抑制層が形成されている。 A laminated type lithium ion secondary battery was manufactured using the above 30 positive electrodes A and 31 negative electrodes A. Specifically, a rectangular sheet (48 mm × 88 mm, 25 μm thickness) made of polyethylene resin as a separator is sandwiched between each positive electrode A and each negative electrode A, and 30 pairs of them are laminated to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. A solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed as EC: EMC: DMC = 3: 3: 4 (volume ratio) as an electrolytic solution was used with 1 mol / l of LiPF 6 A solution dissolved to give l was used. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. The positive electrode and the negative electrode are provided with tab portions that can be electrically connected to the outside, and a part of the tab portions extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate-type lithium ion secondary battery of Example 10 was produced. A reaction suppression layer is formed on the surface of the positive electrode tab portion of the laminate type lithium ion secondary battery of Example 10.
 (実施例11)
 実施例10における集電体Aの代わりに集電体Bを用いた以外は実施例10と同様にして実施例11のラミネート型リチウムイオン二次電池を作製した。
(Example 11)
A laminated lithium ion secondary battery of Example 11 was produced in the same manner as in Example 10 except that the current collector B was used instead of the current collector A in Example 10.
 (実施例12)
 実施例10における集電体Aの代わりに集電体Cを用いた以外は実施例10と同様にして実施例12のラミネート型リチウムイオン二次電池を作製した。
(Example 12)
A laminated lithium ion secondary battery of Example 12 was produced in the same manner as in Example 10 except that a current collector C was used instead of the current collector A in Example 10.
 (実施例13)
 実施例10における集電体Aの代わりに集電体Eを用いた以外は実施例10と同様にして実施例13のラミネート型リチウムイオン二次電池を作製した。実施例13のラミネート型リチウムイオン二次電池の正極タブ部の表面には反応抑制層は形成されていない。
(Example 13)
A laminated lithium ion secondary battery of Example 13 was produced in the same manner as in Example 10 except that a current collector E was used instead of the current collector A in Example 10. A reaction suppression layer is not formed on the surface of the positive electrode tab portion of the laminate type lithium ion secondary battery of Example 13.
 (比較例4)
 実施例10における集電体Aの代わりに集電体Dを用い、負極活物質、導電助剤及びバインダー樹脂を、黒鉛:導電助剤:バインダー樹脂=82:8:10の質量比で混合した以外は実施例10と同様にして比較例4のラミネート型リチウムイオン二次電池を作製した。比較例4のラミネート型リチウムイオン二次電池の負極活物質は黒鉛のみである。
(Comparative example 4)
The current collector D was used instead of the current collector A in Example 10, and the negative electrode active material, the conductive auxiliary agent, and the binder resin were mixed at a mass ratio of graphite: conductive auxiliary agent: binder resin = 82: 8: 10. A laminate-type lithium ion secondary battery of Comparative Example 4 was produced in the same manner as in Example 10 except for the exception of the above. The negative electrode active material of the laminate type lithium ion secondary battery of Comparative Example 4 is only graphite.
 (比較例5)
 実施例10における集電体Aの代わりに集電体Dを用いた以外は実施例10と同様にして比較例5のラミネート型リチウムイオン二次電池を作製した。比較例5のラミネート型リチウムイオン二次電池の負極活物質はSiO及び黒鉛である。
(Comparative example 5)
A laminate-type lithium ion secondary battery of Comparative Example 5 was produced in the same manner as in Example 10 except that a current collector D was used instead of the current collector A in Example 10. The negative electrode active material of the laminate type lithium ion secondary battery of Comparative Example 5 is SiO and graphite.
 <釘刺し試験>
 実施例10~13及び比較例4~5のラミネート型リチウムイオン二次電池について、釘刺し試験による安全性の評価をおこなった。詳しくは、各電池を電流値3.0Aで4.5Vに達するまで定電流(CC)充電した。その後、4.5V±0.02V以内に電圧を維持するようにひきつづき充電を続け、全充電時間が5時間になったら充電を停止した。なお、各ラミネート型リチウムイオン二次電池の容量は6Ahであった。
<Tail test>
The laminated lithium ion secondary batteries of Examples 10 to 13 and Comparative Examples 4 to 5 were evaluated for safety by a nail penetration test. Specifically, each battery was charged at a constant current (CC) until it reached 4.5 V at a current value of 3.0 A. Thereafter, charging was continued so as to maintain the voltage within 4.5 V ± 0.02 V, and charging was stopped when the total charging time reached 5 hours. The capacity of each laminate type lithium ion secondary battery was 6 Ah.
 上記の充電処理をおこなった各ラミネート型リチウムイオン二次電池を、径20mmの孔を有する拘束板上に配置した。上部に釘が取り付けられたプレス機に拘束板を配置した。釘が拘束板上のラミネート型リチウムイオン二次電池を貫通して、釘の先端部が拘束板の孔内部に位置するまで、釘を上部から下部に20mm/秒の速度で移動させた。ラミネート型リチウムイオン二次電池には、表面温度を測定可能な温度測定装置を取り付けた。釘はステンレススチール(JIS G 4051で規定するS45C)製、直径φ8mmかつ釘の先端角度60°であった。釘刺し試験は、室温かつ大気中でラミネート型リチウムイオン二次電池の表面温度を測定しつつ行った。この釘刺し試験によって、ラミネート型リチウムイオン二次電池の正極と負極とが短絡した。 Each of the laminated lithium ion secondary batteries subjected to the above-mentioned charge treatment was placed on a restraint plate having a hole of 20 mm in diameter. The restraint plate was placed on a press machine with nails attached to the top. The nail was moved from the top to the bottom at a speed of 20 mm / sec until the nail penetrated the laminated lithium ion secondary battery on the restraint plate and the tip of the nail was located inside the hole of the restraint plate. The laminated lithium ion secondary battery was attached with a temperature measurement device capable of measuring the surface temperature. The nail was made of stainless steel (S45C specified by JIS G 4051), and had a diameter of 8 mm and a tip angle of 60 ° of the nail. The nail penetration test was carried out while measuring the surface temperature of the laminated lithium ion secondary battery at room temperature and in the air. By this nail penetration test, the positive electrode and the negative electrode of the laminate type lithium ion secondary battery were shorted.
 内部短絡時のラミネート型リチウムイオン二次電池の表面温度を測定し、電池の様子を観察した。釘貫通後の各電池の表面温度は、いずれも一旦上昇した後に、徐々に低下した。表3には、観測された表面温度のうち、最高温度を記載した。 The surface temperature of the laminated lithium ion secondary battery at the time of internal short circuit was measured, and the appearance of the battery was observed. The surface temperature of each battery after penetration of the nail gradually decreased after rising once. Table 3 shows the highest temperature among the observed surface temperatures.
 表3及び図6に実施例10~12及び比較例4~5のラミネート型リチウムイオン二次電池の釘刺し試験結果を示す。図6において表面温度が低下しにくく、継続して発熱した場合を×、発煙した場合を▲で示した。なお比較例4及び比較例5のラミネート型リチウムイオン二次電池は、n=3で試験を行い、実施例10~12のラミネート型リチウムイオン二次電池は、n=1で試験を行った。実施例10~12のラミネート型リチウムイオン二次電池はいずれも正極タブ部の表面には反応抑制層が形成されていた。 Table 3 and FIG. 6 show the nail penetration test results of the laminated lithium ion secondary batteries of Examples 10 to 12 and Comparative Examples 4 to 5. In FIG. 6, the surface temperature is hard to lower, and the case where heat generation is continued is indicated by x, and the case where smoke is generated is indicated by ▲. The laminate type lithium ion secondary batteries of Comparative Example 4 and Comparative Example 5 were tested at n = 3, and the laminate type lithium ion secondary batteries of Examples 10 to 12 were tested at n = 1. In each of the laminate type lithium ion secondary batteries of Examples 10 to 12, a reaction suppression layer was formed on the surface of the positive electrode tab portion.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3及び図6より、比較例4及び比較例5の結果を比べると、負極活物質に黒鉛のみを用いた比較例4では釘刺し試験時に発熱が継続しないのに比べて、負極活物質にSiO及び黒鉛を用いた比較例5では釘刺し試験時に継続して発熱することが観察された。ここで実施例10~12においても負極活物質にSiO及び黒鉛を用いているが、釘刺し試験時に発熱が継続しなかった。このことから反応抑制層が形成されることによって、高電圧駆動下であっても、内部短絡したラミネート型リチウムイオン二次電池の継続する発熱が抑制されることがわかった。 According to Table 3 and FIG. 6, when the results of Comparative Example 4 and Comparative Example 5 are compared, in Comparative Example 4 in which only graphite is used as the negative electrode active material, heat generation does not continue in the nail penetration test. In Comparative Example 5 using SiO and graphite, it was observed that heat was continuously generated during the nail penetration test. Here, although SiO and graphite are used as the negative electrode active material in Examples 10 to 12, heat generation did not continue at the time of the nail penetration test. From this, it was found that the continuous heat generation of the internally shorted laminate type lithium ion secondary battery is suppressed by forming the reaction suppression layer even under high voltage drive.
 表4に実施例10のラミネート型リチウムイオン二次電池、実施例13のラミネート型リチウムイオン二次電池及び比較例4のラミネート型リチウムイオン二次電池の釘刺し試験結果を示す。表4では実施例10及び実施例13の試験はn=5で行い、比較例4の試験はn=3でおこなった。表4に試験セルの個数のうちの継続する発熱が起こったセルの個数を示す。 Table 4 shows the nail penetration test results of the laminate type lithium ion secondary battery of Example 10, the laminate type lithium ion secondary battery of Example 13, and the laminate type lithium ion secondary battery of Comparative Example 4. In Table 4, the test of Example 10 and Example 13 was performed by n = 5, and the test of Comparative Example 4 was performed by n = 3. Table 4 shows the number of cells in which continuous heat generation has occurred among the number of test cells.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、実施例10のラミネート型リチウムイオン二次電池では試験セル5個のうち全てにおいて継続する発熱が抑制されたことがわかった。反応抑制層は正極タブ部にも形成されている方がより安全性が高いことがわかった。 From the results of Table 4, it was found that the continuous heat generation was suppressed in all of the five test cells in the laminate type lithium ion secondary battery of Example 10. It was found that the safety is higher if the reaction suppression layer is also formed on the positive electrode tab portion.
 (実施例14)
 実施例14のラミネート型リチウムイオン二次電池を次のようにして作製した。
(Example 14)
A laminate type lithium ion secondary battery of Example 14 was produced as follows.
 (正極Bの作成)
 正極活物質として平均粒子径D50が6μmのLiNi0.5Co0.2Mn0.3(以下、NCMと称す)と、正極活物質として表面をカーボンコートした平均粒径D50が1.5μmのLiFePO(以下、LFPと称す)と、導電助剤としてアセチレンブラックと、結着剤としてPVDFとを、それぞれ67質量部、27質量部、3質量部、3質量部の割合で混合し、この混合物を適量のNMPに分散させて、正極活物質層用スラリーを作製した。
(Creation of positive electrode B)
Average as the positive electrode active material particle diameter D 50 LiNi is 6μm 0.5 Co 0.2 Mn 0.3 O 2 ( hereinafter, referred to as NCM) and that the average particle size D 50 whose surface is a carbon-coated as a cathode active material 67 parts by mass, 27 parts by mass, 3 parts by mass, and 3 parts by mass of 1.5 μm of LiFePO 4 (hereinafter referred to as LFP), acetylene black as a conductive additive, and PVDF as a binder The mixture was mixed and dispersed in an appropriate amount of NMP to prepare a slurry for a positive electrode active material layer.
 集電体Aの表面にコンマコーターを用いて、正極活物質層用スラリーを膜状に塗布した。塗工は両面に実施し、正極活物質層用スラリーが塗布された集電体Aを100℃で5分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、プレスして接合物を得た。この時、正極活物質層の密度は3.2g/cmとなるようにした。接合物を120℃で6時間、真空乾燥機で加熱した後、所定の形状(正極活物質層面積40mm×80mmの矩形状)に切り取り、正極活物質層の厚さが片面90μm程度の正極Bとした。 The slurry for the positive electrode active material layer was applied in the form of a film on the surface of the current collector A using a comma coater. The coating is carried out on both sides, and the current collector A coated with the slurry for positive electrode active material layer is dried at 100 ° C. for 5 minutes to volatilize and remove NMP, and then pressed by a roll press to bond I got a thing. At this time, the density of the positive electrode active material layer was adjusted to 3.2 g / cm 3 . After heating the joined product at 120 ° C. for 6 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a positive electrode active material layer area of 40 mm × 80 mm), and a positive electrode B having a thickness of about 90 μm on one side And
 (負極Bの作製)
 (シリコン材料の作製) 
 炭素で被覆されたシリコン材料を以下のように作製した。
(Fabrication of negative electrode B)
(Preparation of silicon material)
A carbon coated silicon material was made as follows.
 濃度46質量%のHF水溶液7mlと、濃度36質量%のHCl水溶液56mlとの混合溶液を氷浴中で0℃とし、アルゴンガス気流中にてそこへ3.3gのCaSiを加えて撹拌した。発泡が完了したのを確認した後に混合溶液を室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに10分間撹拌した。このとき黄色粉末が浮遊した。 A mixed solution of 7 ml of a 46% by weight aqueous solution of HF and 56 ml of a 36% by weight aqueous solution of HCl was brought to 0 ° C. in an ice bath, and 3.3 g of CaSi 2 was added thereto in an argon gas stream and stirred. . After confirming that the foaming was completed, the mixed solution was warmed to room temperature and stirred at room temperature for another 2 hours, and then 20 ml of distilled water was added and the mixture was further stirred for 10 minutes. At this time, yellow powder floated.
 得られた混合溶液を濾過し、得られた残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄した。洗浄後の残渣を真空乾燥して2.5gの層状ポリシランを得た。 The obtained mixed solution was filtered, and the obtained residue was washed with 10 ml of distilled water and then with 10 ml of ethanol. The washed residue was vacuum dried to obtain 2.5 g of layered polysilane.
 この層状ポリシランを1g秤量し、Oを1体積%以下の量で含むアルゴンガス中にて500℃で1時間保持する熱処理を行い、シリコン材料を得た。 1 g of this layered polysilane was weighed, and heat treatment was performed by holding it at 500 ° C. for 1 hour in an argon gas containing 1% by volume or less of O 2 to obtain a silicon material.
 得られたシリコン材料をロータリーキルン型の反応器に入れ、プロパンガス通気下にて850℃、滞留時間5分間の条件で熱CVDによる炭素化工程を行い、炭素で被覆されたシリコン材料を得た。ロータリーキルン型の反応器では、回転式でシリコン材料を循環させながら加熱するため、炭素の被覆ムラがおこりにくい。反応器の回転速度は1rpmとした。この炭素で被覆されたシリコン材料の平均粒径D50は5μmであった。 The obtained silicon material was placed in a rotary kiln type reactor, and a carbonization step by thermal CVD was performed under a propane gas flow at 850 ° C. and a residence time of 5 minutes to obtain a carbon-coated silicon material. In a rotary kiln type reactor, since heating is performed while circulating a silicon material in a rotary manner, carbon coating unevenness hardly occurs. The rotational speed of the reactor was 1 rpm. The average particle diameter D 50 of the silicon material coated with this carbon was 5 [mu] m.
 負極活物質として、上記炭素で被覆されたシリコン材料と平均粒子径D50が20μmの天然黒鉛を準備した。バインダー樹脂としてポリアミドイミド樹脂を準備した。導電助剤としてアセチレンブラックを準備した。 As the negative electrode active material, a silicon material coated with the above carbon and natural graphite having an average particle diameter D 50 of 20 μm were prepared. A polyamideimide resin was prepared as a binder resin. Acetylene black was prepared as a conduction aid.
 上記負極活物質、導電助剤及びバインダー樹脂を、炭素で被覆されたシリコン材料:黒鉛:導電助剤:バインダー樹脂=50:30:10:10の質量比で混合した。上記混合物に、溶媒としてNMPを適量入れて調整して、負極活物質層用スラリーとした。負極活物質を100質量%とした場合、炭素系材料は38質量%であった。 The said negative electrode active material, the conductive support agent, and the binder resin were mixed in a mass ratio of carbon material-coated silicon material: graphite: conductive support agent: binder resin = 50: 30: 10: 10. An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer. When the negative electrode active material was 100% by mass, the carbon-based material was 38% by mass.
 負極用集電体として20μmの銅箔を準備し、銅箔にコンマコーターを用いて、上記負極活物質層用スラリーを膜状に塗布した。塗工は両面に実施し、負極活物質層用スラリーが塗布された銅箔を80℃で5分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、プレスして接合物を得た。この時、負極活物質層の密度は1.2g/cmとなるようにした。接合物を200℃で2時間、真空乾燥機で加熱した後、所定の形状(負極活物質層面積44mm×84mmの矩形状)に切り取り、負極活物質層の厚さが片面50μmの負極Bとした。 A copper foil of 20 μm was prepared as a current collector for a negative electrode, and the slurry for the negative electrode active material layer was applied in a film shape using a comma coater on the copper foil. The coating is carried out on both sides, and the copper foil coated with the slurry for the negative electrode active material layer is dried at 80 ° C. for 5 minutes to volatilize and remove NMP, and then pressed with a roll press to obtain a bonded product. Obtained. At this time, the density of the negative electrode active material layer was adjusted to 1.2 g / cm 3 . After heating the joined product at 200 ° C. for 2 hours with a vacuum dryer, it is cut into a predetermined shape (a rectangular shape with a negative electrode active material layer area of 44 mm × 84 mm), and a negative electrode B with a thickness of 50 μm on one side did.
 上記の正極B30枚および負極B31枚を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、各正極Bおよび各負極Bの間に、セパレータとしてポリエチレン樹脂からなる矩形状シート(48mm×88mm、厚さ25μm)を挟装して30組積層して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)をEC:EMC:DMC=3:3:4(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブ部を備え、このタブ部の一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例14のラミネート型リチウムイオン二次電池を作製した。 A laminated lithium ion secondary battery was manufactured using the above 30 positive electrodes B and 31 negative electrodes B. Specifically, a rectangular sheet (48 mm × 88 mm, 25 μm thickness) made of polyethylene resin as a separator is sandwiched between each positive electrode B and each negative electrode B, and 30 pairs of them are laminated to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. A solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed as EC: EMC: DMC = 3: 3: 4 (volume ratio) as an electrolytic solution was used with 1 mol / l of LiPF 6 A solution dissolved to give l was used. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. The positive electrode and the negative electrode are provided with tab portions that can be electrically connected to the outside, and a part of the tab portions extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate-type lithium ion secondary battery of Example 14 was produced.
 (実施例15)
 上記負極活物質、導電助剤及びバインダー樹脂を、炭素で被覆されたシリコン材料:黒鉛:導電助剤:バインダー樹脂=70:15:5:10の質量比で混合した。上記混合物に、溶媒としてNMPを適量入れて調整して、負極活物質層用スラリーとした。負極活物質を100質量%とした場合、炭素系材料は18質量%であった。
これ以外は負極Bと同様にして負極Cを作成した。この時負極Cの負極活物質層の厚さは50μm程度であった。また負極Cの負極活物質層の密度は1.2g/cmであった。この負極Cを負極Bに代えて用いた以外は実施例14と同様にして実施例15のラミネート型リチウムイオン二次電池を作製した。
(Example 15)
The said negative electrode active material, the conductive support agent, and the binder resin were mixed in a mass ratio of carbon material-coated silicon material: graphite: conductive support agent: binder resin = 70: 15: 5: 10. An appropriate amount of NMP as a solvent was added to the mixture to prepare a slurry for a negative electrode active material layer. When the negative electrode active material was 100% by mass, the carbon-based material was 18% by mass.
A negative electrode C was produced in the same manner as the negative electrode B except for this. At this time, the thickness of the negative electrode active material layer of the negative electrode C was about 50 μm. The density of the negative electrode active material layer of the negative electrode C was 1.2 g / cm 3 . A laminated lithium ion secondary battery of Example 15 was produced in the same manner as in Example 14 except that this negative electrode C was used instead of the negative electrode B.
 <釘刺し試験>
 実施例14及び15のラミネート型リチウムイオン二次電池について、釘刺し試験による安全性の評価を上記と同様に行なった。なお、実施例14及び実施例15のラミネート型リチウムイオン二次電池の容量は7Ahであった。
<Tail test>
For the laminated lithium ion secondary batteries of Examples 14 and 15, the safety evaluation by the nail penetration test was performed in the same manner as described above. The capacity of each of the laminated lithium ion secondary batteries of Example 14 and Example 15 was 7 Ah.
 表5に実施例14及び15のラミネート型リチウムイオン二次電池の釘刺し試験結果を示す。 Table 5 shows the nail penetration test results of the laminated lithium ion secondary batteries of Examples 14 and 15.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例14において、負極活物質を100質量%とした場合、炭素系材料は38質量%であり、実施例15において、負極活物質を100質量%とした場合、炭素系材料は18質量%であった。 In Example 14, when the negative electrode active material is 100% by mass, the carbon-based material is 38% by mass, and in Example 15, when the negative electrode active material is 100% by mass, the carbon-based material is 18% by mass. there were.
 表5から、負極活物質としてシリコン材料を用いても反応抑制層が形成されることによって、高電圧駆動下であっても、内部短絡したラミネート型リチウムイオン二次電池の継続する発熱が抑制されることがわかった。 From Table 5, even when using a silicon material as the negative electrode active material, the reaction suppression layer is formed, whereby continuous heat generation of the internally shorted laminate type lithium ion secondary battery is suppressed even under high voltage drive. It turned out that
 1:集電体本体、2:保護層、3:正極用集電体、4:反応抑制層、5:正極活物質層、6:正極、7:正極タブ部、8:保護層又は反応抑制層、9:活物質層、10:ローラー、11:塗工部、110:ダイコート装置、12:検知部、120:抵抗測定器、13:制御部、14:塗工装置。
 
1: Current collector body, 2: Protective layer, 3: Positive electrode current collector, 4: Reaction suppression layer, 5: Positive electrode active material layer, 6: Positive electrode, 7: Positive electrode tab portion, 8: Protective layer or reaction suppression Layers 9: active material layer 10: roller 11: coating unit 110: die coating device 12: detection unit 120: resistance measuring device 13: control unit 14: coating device.

Claims (15)

  1.  集電体本体と、
     該集電体本体の表面に配置された保護層とからなり、
     該保護層は、アンチモンドープ酸化錫とアクリル樹脂とを含むことを特徴とするリチウムイオン二次電池用集電体。
    Current collector body,
    And a protective layer disposed on the surface of the current collector body,
    A collector for a lithium ion secondary battery, wherein the protective layer contains antimony-doped tin oxide and an acrylic resin.
  2.  前記アクリル樹脂は、重量平均分子量が3000以上10000以下のポリ(メタ)アクリル酸からなる請求項1に記載のリチウムイオン二次電池用集電体。 The current collector for a lithium ion secondary battery according to claim 1, wherein the acrylic resin comprises poly (meth) acrylic acid having a weight average molecular weight of 3,000 or more and 10,000 or less.
  3.  前記アクリル樹脂は、アクリル系エマルションを加熱乾燥させたものである請求項1に記載のリチウムイオン二次電池用集電体。 The current collector for a lithium ion secondary battery according to claim 1, wherein the acrylic resin is obtained by heating and drying an acrylic emulsion.
  4.  前記保護層の厚みは50nm以上100nm未満である請求項1~3のいずれか一項に記載のリチウムイオン二次電池用集電体。 The current collector for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the thickness of the protective layer is 50 nm or more and less than 100 nm.
  5.  前記保護層における前記アンチモンドープ酸化錫と前記アクリル樹脂との配合比は、固形分の質量比でアンチモンドープ酸化錫:アクリル樹脂=80:20~99.9:0.1である請求項1~4のいずれか一項に記載のリチウムイオン二次電池用集電体。 The compounding ratio of the antimony-doped tin oxide to the acrylic resin in the protective layer is antimony-doped tin oxide: acrylic resin = 80: 20 to 99.9: 0.1 in mass ratio of solid content. The collector for lithium ion secondary batteries as described in any one of 4.
  6.  前記集電体本体はアルミニウム製である請求項1~5のいずれか一項に記載のリチウムイオン二次電池用集電体。 The current collector for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the current collector body is made of aluminum.
  7.  請求項1~6のいずれか一項に記載のリチウムイオン二次電池用集電体の製造方法であって、
     攪拌下のアンチモンドープ酸化錫を含む水分散体に水系バインダー含有水を添加することによって、保護層形成用組成物を調製する保護層形成用組成物調製工程と、
     集電体本体に前記保護層形成用組成物を塗布し、加熱乾燥して前記集電体本体の表面に保護層を形成する保護層形成工程と、
     を有し、
     前記水系バインダー含有水は、ポリ(メタ)アクリル酸水溶液又はアクリル系エマルションであることを特徴とするリチウムイオン二次電池用集電体の製造方法。
    A method of manufacturing a current collector for a lithium ion secondary battery according to any one of claims 1 to 6,
    A step of preparing a composition for forming a protective layer, wherein a composition for forming a protective layer is prepared by adding an aqueous binder-containing water to an aqueous dispersion containing antimony-doped tin oxide under stirring;
    A protective layer forming step of applying the composition for forming a protective layer on a current collector body, heating and drying to form a protective layer on the surface of the current collector body;
    Have
    The method for producing a current collector for a lithium ion secondary battery, wherein the aqueous binder-containing water is a poly (meth) acrylic acid aqueous solution or an acrylic emulsion.
  8.  アルミニウム製の正極用集電体と、
     前記正極用集電体の表面に配置され、前記正極用集電体と正極活物質との反応を抑制する反応抑制層と、
     前記反応抑制層の表面に配置され、前記正極活物質を有する正極活物質層と、を有する正極と、
     負極活物質を有する負極と、
     を有し、
     前記反応抑制層は、導電性粒子と、反応抑制層用バインダーとを有し、
     前記正極活物質は、金属酸化物を含み、
     前記導電性粒子は、酸化インジウム、酸化亜鉛、過酸化亜鉛、酸化錫(II)、酸化錫(IV)、酸化錫(VI)、窒化ゲルマニウム、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化タンタル、窒化ニオブ、窒化バナジウム、窒化タングステン、元素Xドープ酸化インジウム(元素XはZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種である)、元素Yドープ酸化錫(IV)(元素YはF、W、Ta、Sb、P及びBから選ばれる少なくとも一種である)並びに元素Zドープ酸化亜鉛(元素ZはGa、Al及びBから選ばれる少なくとも一種である)から選ばれる少なくとも1つであることを特徴とする非水電解質二次電池。
    An aluminum positive electrode current collector,
    A reaction suppression layer disposed on the surface of the positive electrode current collector, for suppressing the reaction between the positive electrode current collector and the positive electrode active material;
    A positive electrode active material layer disposed on the surface of the reaction suppression layer and having the positive electrode active material;
    A negative electrode having a negative electrode active material,
    Have
    The reaction suppression layer has conductive particles and a binder for reaction suppression layer,
    The positive electrode active material contains a metal oxide,
    The conductive particles may be indium oxide, zinc oxide, zinc peroxide, tin (II) oxide, tin (IV) oxide, tin (VI) oxide, germanium nitride, titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, nitrided Niobium, vanadium nitride, tungsten nitride, element X-doped indium oxide (element X is at least one selected from Zn, Mo, W, Ti, Zr, Sn and H), element Y-doped tin (IV) oxide (element Y Is at least one selected from F, W, Ta, Sb, P and B) and element Z-doped zinc oxide (element Z is at least one selected from Ga, Al and B) Nonaqueous electrolyte secondary battery characterized by having.
  9.  前記負極活物質はSi系活物質を含む請求項8に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 8, wherein the negative electrode active material contains a Si-based active material.
  10. 前記Si系活物質はSiOx(0.5≦x≦1.6)で表される珪素化合物である請求項9に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 9, wherein the Si-based active material is a silicon compound represented by SiO x (0.5 ≦ x ≦ 1.6).
  11. 前記Si系活物質は板状シリコン体が厚さ方向に積層された構造を有するシリコン材料である請求項9に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 9, wherein the Si-based active material is a silicon material having a structure in which plate-like silicon bodies are stacked in a thickness direction.
  12.  前記負極は、負極用集電体と、前記負極用集電体の表面に配置され前記負極活物質を含む負極活物質層と、を有し、前記負極活物質層において、前記負極活物質層を100質量%とした場合に、前記Si系活物質が30質量%以上50質量%以下である請求項9~11のいずれか一項に記載の非水電解質二次電池。 The negative electrode includes a current collector for the negative electrode, and a negative electrode active material layer disposed on the surface of the current collector for the negative electrode and containing the negative electrode active material, and in the negative electrode active material layer, the negative electrode active material layer The nonaqueous electrolyte secondary battery according to any one of claims 9 to 11, wherein the amount of the Si-based active material is 30% by mass or more and 50% by mass or less, where 100% by mass is 100% by mass.
  13.  前記導電性粒子は、Sb(アンチモン)のドープ割合が0質量%より多く20質量%以下であるアンチモンドープ酸化錫(IV)である請求項8~12のいずれか一項に記載の非水電解質二次電池。 The non-aqueous electrolyte according to any one of claims 8 to 12, wherein the conductive particles are antimony-doped tin oxide (IV) having a doping ratio of Sb (antimony) of more than 0% by mass and 20% by mass or less. Secondary battery.
  14.  前記正極は、正極タブ部を有し、
     前記正極タブ部は、前記正極用集電体と、前記正極用集電体の一部に配置された前記反応抑制層とを有する請求項8~13のいずれか一項に記載の非水電解質二次電池。
    The positive electrode has a positive electrode tab portion,
    The non-aqueous electrolyte according to any one of claims 8 to 13, wherein the positive electrode tab portion has the current collector for the positive electrode and the reaction suppression layer disposed on a part of the current collector for the positive electrode. Secondary battery.
  15.  前記反応抑制層の厚みは、10nm~1000nmである請求項8~14のいずれか一項に記載の非水電解質二次電池。

     
    The non-aqueous electrolyte secondary battery according to any one of claims 8 to 14, wherein the thickness of the reaction suppression layer is 10 nm to 1000 nm.

PCT/JP2015/005521 2014-11-06 2015-11-04 Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell WO2016072090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557455A JPWO2016072090A1 (en) 2014-11-06 2015-11-04 Current collector for lithium ion secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-226424 2014-11-06
JP2014226424 2014-11-06
JP2014-264076 2014-12-26
JP2014264076 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016072090A1 true WO2016072090A1 (en) 2016-05-12

Family

ID=55908830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005521 WO2016072090A1 (en) 2014-11-06 2015-11-04 Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell

Country Status (2)

Country Link
JP (1) JPWO2016072090A1 (en)
WO (1) WO2016072090A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026259A (en) * 2016-08-10 2018-02-15 株式会社豊田自動織機 Negative electrode and lithium ion secondary battery
WO2021153670A1 (en) * 2020-01-31 2021-08-05 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery and production method therefor, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN114420904A (en) * 2021-12-29 2022-04-29 无锡晶石新型能源股份有限公司 Production method of modified lithium manganate material
WO2023130888A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack and electric device thereof
WO2023130887A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack and electric device thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof
JP2002203562A (en) * 2000-12-28 2002-07-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2012124133A (en) * 2010-12-10 2012-06-28 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery and power storage component
WO2013018687A1 (en) * 2011-07-29 2013-02-07 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2013030411A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
JP2013225502A (en) * 2012-03-23 2013-10-31 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2014080608A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160656A (en) * 1986-01-08 1987-07-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for nonaqueous electrolyte battery
JP2000294230A (en) * 1999-04-09 2000-10-20 Hitachi Powdered Metals Co Ltd Slurry for forming negative electrode coating film for lithium ion secondary battery and lithium ion secondary battery
JPWO2013154176A1 (en) * 2012-04-13 2015-12-17 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof
JP2002203562A (en) * 2000-12-28 2002-07-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2012124133A (en) * 2010-12-10 2012-06-28 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery and power storage component
WO2013018687A1 (en) * 2011-07-29 2013-02-07 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2013030411A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
JP2013225502A (en) * 2012-03-23 2013-10-31 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2014080608A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026259A (en) * 2016-08-10 2018-02-15 株式会社豊田自動織機 Negative electrode and lithium ion secondary battery
WO2021153670A1 (en) * 2020-01-31 2021-08-05 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery and production method therefor, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN114982017A (en) * 2020-01-31 2022-08-30 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery, method for producing same, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
CN114420904A (en) * 2021-12-29 2022-04-29 无锡晶石新型能源股份有限公司 Production method of modified lithium manganate material
WO2023130888A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack and electric device thereof
WO2023130887A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack and electric device thereof

Also Published As

Publication number Publication date
JPWO2016072090A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6094840B2 (en) Lithium ion secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6566275B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016072090A1 (en) Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell
JP6638286B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN111357141B (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode, method for producing same, positive electrode for electrochemical element, and electrochemical element
JP2008251527A (en) Nonaqueous electrolyte secondary battery
JP6720488B2 (en) Method for producing a composition containing a plurality of positive electrode active materials, a conductive auxiliary agent, a binder and a solvent
WO2017013827A1 (en) Lithium ion secondary battery
JP5861896B2 (en) A composition comprising a first positive electrode active material, a second positive electrode active material, a dispersant and a solvent
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017033871A (en) Negative electrode and lithium ion secondary battery, and manufacturing method of the same
WO2015025466A1 (en) Lithium ion secondary battery having positive electrode that comprises thermal runaway suppressing layer on positive electrode active material layer
JP6120087B2 (en) Method for forming protective layer on current collector body, current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110800140A (en) Materials for lithium-ion electrochemical cells and methods of making and using the same
JP6863351B2 (en) Non-aqueous electrolyte secondary battery
JP6136849B2 (en) Positive electrode containing surface-modified active material and high-resistance metal compound
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6187824B2 (en) Method for producing composition comprising first positive electrode active material, second positive electrode active material, conductive additive, binder and solvent
JP6202191B2 (en) A positive electrode active material layer having a first positive electrode active material and a second positive electrode active material, and a method for producing a positive electrode comprising the positive electrode active material layer
CN116636029A (en) Electrode binder composition for rechargeable battery and electrode mixture comprising the same
JP6263968B2 (en) Current collector manufacturing method
WO2021060108A1 (en) Negative electrode material for secondary batteries, negative electrode for secondary batteries, and secondary battery
JP6048312B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857498

Country of ref document: EP

Kind code of ref document: A1