WO2016067539A1 - Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery - Google Patents

Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery Download PDF

Info

Publication number
WO2016067539A1
WO2016067539A1 PCT/JP2015/005207 JP2015005207W WO2016067539A1 WO 2016067539 A1 WO2016067539 A1 WO 2016067539A1 JP 2015005207 W JP2015005207 W JP 2015005207W WO 2016067539 A1 WO2016067539 A1 WO 2016067539A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite particles
negative electrode
secondary battery
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2015/005207
Other languages
French (fr)
Japanese (ja)
Inventor
江口 邦彦
間所 靖
▲高▼木 嘉則
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to KR1020177011154A priority Critical patent/KR101957074B1/en
Priority to CN201580058234.4A priority patent/CN107078288B/en
Publication of WO2016067539A1 publication Critical patent/WO2016067539A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery negative electrode material, a lithium ion secondary battery negative electrode containing the negative electrode material, and a lithium ion secondary battery using the negative electrode.
  • a lithium ion secondary battery mainly includes a negative electrode, a positive electrode, and an electrolyte (non-aqueous electrolyte).
  • the negative electrode is generally composed of a current collector made of copper foil and a negative electrode material (active substance (working substance for the anode)) bound by a binder.
  • a carbon material is used for the negative electrode material.
  • graphite having excellent charge-discharge characteristics and high discharge capacity and potential flatness is widely used.
  • Lithium ion secondary batteries installed in recent portable electronic devices are required to have high energy density and excellent rapid chargeability and rapid discharge performance, as well as an initial discharge capacity even after repeated charge and discharge. No deterioration (cycle characteristics) is required.
  • Patent Document 1 discloses a graphitized mesocarbon microsphere composed of a Brooks-Taylor type single crystal in which basal planes of graphite are arranged in layers in a direction perpendicular to the diameter direction.
  • Patent Document 2 proposed by the applicant so far includes a composite graphite material in which a graphite granule is filled and / or coated with a carbonaceous layer having lower crystallinity than the graphite granule and containing carbon fine particles. Particles are disclosed.
  • Patent Document 3 discloses a composite graphite material in which a spherical graphite granule is epiboly coated with a graphite coating material and has a graphite surface layer with low crystallinity on the outer surface.
  • Patent Document 4 discloses a graphite composite mixed powder of a graphite composite powder and an artificial graphite powder made of a part of the graphite composite powder.
  • Patent Document 5 describes an invention in which a mixture of three types of graphite particles A, B, and C having different hardness and shape is used for the negative electrode to improve the penetration rate of the electrolytic solution.
  • the graphite particles A an artificial graphite block made of coke and binder pitch is used, and a graphite powder whose outermost shell surface is less crystalline than the inside is used.
  • Patent Document 6 describes that a mixture of graphite particles (A) and (B) having different physical properties is used as a negative electrode material.
  • graphite particles (A) obtained by firing at 1000 ° C. and further fired at 3000 ° C. are used as graphite particles (B).
  • the carbonization yield of the carbonaceous material in the graphite particles (B) fired at a higher temperature is smaller, so the amount of graphitized carbonaceous material in the graphite particles (B) is graphite. It is thought that it is less than the carbonaceous material in the particles (A).
  • the battery characteristics of the lithium secondary battery are considered to be influenced by the physical properties of the graphite particles constituting the mixture. In order to obtain it, it is desired to consider a combination of more appropriate graphite particles.
  • the graphitized material is spherical, the orientation of the basal plane of graphite can be suppressed to some extent even when the density is increased.
  • the graphitized material is dense and hard, high pressure is required to increase the density, and problems such as deformation, elongation, and breakage of the copper foil of the current collector occur. Further, the contact area with the electrolytic solution is small. Therefore, quick chargeability is particularly low. The decrease in chargeability causes the electrodeposition of lithium on the negative electrode surface during charging and causes a decrease in cycle characteristics.
  • the negative electrode material using the graphite composite mixed powder described in Patent Document 4 had insufficient discharge capacity per mass. In addition, the initial charge / discharge efficiency was low, and the rapid chargeability was insufficient.
  • the object of the present invention is to eliminate the problems of conventional negative electrode materials. That is, an object of the present invention is to provide a negative electrode material having the following characteristics and having at least one of excellent initial charge / discharge efficiency, rapid chargeability, rapid discharge characteristics, and long-term cycle characteristics. 1) Having high crystallinity and high discharge capacity per mass 2) Obtaining high active material density at low press pressure 3) While being high density, crushing, breaking and orientation of graphite can be suppressed, It must have the shape of graphite particles that do not impair the permeability and retention of the electrolyte. 4) Excellent lithium ion acceptability on the graphite surface, and it does not have a reactive surface. It can be suppressed. Moreover, it is providing the lithium ion secondary battery negative electrode using this negative electrode material, and the lithium ion secondary battery which has this negative electrode.
  • Composite graphite having a carbonaceous material (B1) inside and at least a part of the surface of the spherical graphite particles (A) that are spherically or substantially spherically shaped (A).
  • the interplanar spacing (d 002 ) of the carbon network layer is 0.3360 nm or less, (2) The tap density is 1.0 g / cm 3 or more, (3) The average particle size is 5 to 25 ⁇ m, (4) The average aspect ratio is 1.2 or more and less than 4.0, and (5) the pore volume with a pore diameter of 0.5 ⁇ m or less by a mercury porosimeter is 0.08 ml / g or less.
  • the content of the carbonaceous material (B1) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A) in the composite graphite particles (C1).
  • the content of the carbonaceous material (B2) is 5 to 30 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A) in the composite graphite particles (C2).
  • Graphite particles for negative electrode materials for lithium ion secondary batteries [3] The lithium ion secondary particle according to [1] or [2], wherein the ratio of the composite graphite particles (C1) to the composite graphite particles (C2) is 1:99 to 90:10 by mass ratio.
  • Graphite particles for secondary battery negative electrode material [4] A lithium ion secondary battery negative electrode comprising the graphite particles for a lithium ion secondary battery negative electrode material described in any one of [1] to [3] above.
  • the present invention can provide a negative electrode material having the following characteristics and having at least one of excellent initial charge / discharge efficiency, rapid chargeability, rapid discharge characteristics, and long-term cycle characteristics. 1) Having high crystallinity and high discharge capacity per mass 2) Obtaining high active material density at low press pressure 3) While being high density, crushing, breaking and orientation of graphite can be suppressed, It must have the shape of graphite particles that do not impair the permeability and retention of the electrolyte. 4) Excellent lithium ion acceptability on the graphite surface, and it does not have a reactive surface. It can be suppressed.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a button-type evaluation battery for use in a charge / discharge test in Examples.
  • FIG. 3 is a graph showing a rapid charging rate with respect to the mixing ratio (C2) / [(C1) + (C2)].
  • FIG. 4 is a graph showing the rapid discharge rate with respect to the mixing ratio (C2) / [(C1) + (C2)].
  • FIG. 5 is a graph showing cycle characteristics with respect to the mixing ratio (C2) / [(C1) + (C2)).
  • the flaky graphite particles constituting the spheroidized graphite particles (A) used in the present invention are artificial graphite or natural graphite such as flaky, plate-like or tablet-like. Natural graphite having high crystallinity is particularly preferable, and the average lattice spacing (d 002 ) is preferably less than 0.3360 nm, and particularly preferably 0.3358 nm or less. By setting it to less than 0.3360 nm, the discharge capacity per mass can be increased.
  • the above scaly graphite particles are shaped into a spherical shape or a substantially spherical shape.
  • substantially spherical refers to an ellipsoidal shape, a lump shape, etc., and means a state where there are no large dents or sharp projections on the surface.
  • the spheroidized graphite particles (A) may be obtained by aggregating, laminating, granulating, and adhering a plurality of scaly graphite particles, and a single scaly graphite particle is curved, bent, folded, and rounded. It may be.
  • a concentric or cabbage-like structure in which a flat portion (basal surface) of scaly graphite is disposed on the surface of the spheroidized graphite particles is preferable.
  • the average particle size (average particle size in terms of volume) of the spheroidized graphite particles (A) is preferably 5 to 25 ⁇ m, particularly preferably 10 to 20 ⁇ m. If it is 5 micrometers or more, the density of an active material layer can be made high and the discharge capacity per volume will improve. When it is 25 ⁇ m or less, quick chargeability and cycle characteristics are improved.
  • the average particle diameter in terms of volume means a particle diameter at which the cumulative frequency of the particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume percentage.
  • the average aspect ratio of the spheroidized graphite particles (A) is preferably 1.2 or more and less than 4.0. In the case of a shape close to a true sphere of less than 1.2, when the active material layer is pressed, the graphite particles are greatly deformed, and the graphite particles may be cracked. And if it is 4.0 or more, the diffusibility of lithium ions may decrease, and rapid discharge and cycle characteristics may deteriorate.
  • the average aspect ratio means the ratio of the major axis length of one particle to the minor axis length.
  • the long axis length means the longest diameter of the particle to be measured
  • the short axis length means a short diameter perpendicular to the long axis of the particle to be measured.
  • the average aspect ratio is a simple average value of the aspect ratio of each particle measured by observing 100 particles with a scanning electron microscope.
  • the magnification at the time of observing with a scanning electron microscope is a magnification at which the shape of the particles to be measured can be confirmed.
  • the method for producing the spheroidized graphite particles (A) can be produced by applying mechanical external force to flat or scale-like natural graphite. Specifically, it can be spheroidized by applying a high shearing force, bending by applying a rolling operation, or spheroidizing by concentric granulation. Before and after the spheronization treatment, a binder can be added to promote granulation.
  • Spheroidizers that can be spheroidized include “Counter Jet Mill”, “ACM Pulverizer” (manufactured by Hosokawa Micron Corporation), “Current Jet” (manufactured by Nissin Engineering Co., Ltd.), “SARARA” (Kawasaki) Granulators such as Heavy Industries Co., Ltd.), “GRANUREX” (Freund Sangyo Co., Ltd.), “New Gramachine” (manufactured by Seishin Corporation), “Agromaster” (manufactured by Hosokawa Micron Co., Ltd.), Kneaders such as pressure kneaders and two rolls, “Mechano Micro System” (manufactured by Nara Machinery Co., Ltd.), Extruder, Ball Mill, Planetary Mill, “Mechano Fusion System” (manufactured by Hosokawa Micron Corporation), “Nobilta” (Hosokawa Micron Co., Ltd.), “Hybridization” (
  • the inside of the particles of the spheroidized graphite particles can be densified by performing a press treatment.
  • the surface of the spheroidized graphite particles (A) is oxidized, low-crystallized, or functional groups by heat treatment in an oxidizing atmosphere, immersion in an acidic liquid, fluorination treatment, or the like. Can also be given.
  • the composite graphite particles (C1) used in the present invention have a carbonaceous material (B1) in the inside of the particles and at least a part of the particle surface of the spheroidized graphite particles (A).
  • the adhesion of the carbonaceous material (B1) can prevent the spheroidized graphite particles (A) from being crushed, enhance the lithium ion acceptability, and exhibit excellent rapid chargeability.
  • the carbonaceous material (B1) attached to the spheroidized graphite particles (A) for example, coal-based or petroleum-based heavy oil, tars, pitches, and resins such as phenol resins are finally 500 Carbides formed by heat treatment at a temperature of °C to less than 1500 °C are exemplified.
  • the adhesion amount of the carbonaceous material (B1) is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A). Most preferably, it is 5 parts by mass.
  • the spheroidized graphite particles (A) When the amount is less than 0.1 parts by mass, the spheroidized graphite particles (A) are liable to be crushed, and the initial charge / discharge efficiency and rapid discharge properties are reduced. In addition, long-term cycle characteristics may deteriorate. In the case of more than 10 parts by mass, the composite graphite particles (C1) become hard, and a high pressure is required when pressing the active material layer. For this reason, the copper foil as the current collector is broken or elongated, and the irreversible capacity of the carbonaceous material (B1) is increased, leading to a decrease in initial charge / discharge efficiency.
  • the composite graphite particles (C2) used in the present invention have the graphite material (B2) in at least a part of the inside and / or the particle surface of the spheroidized graphite particles (A).
  • the adhesion of the graphite material (B2) prevents the spheroidized graphite particles (A) from being crushed, allows the active material layer to be densified with a low pressing pressure, and has excellent initial charge / discharge efficiency and rapid discharge properties. Can be expressed.
  • Examples of the graphite material (B2) attached to the spheroidized graphite particles (A) include, for example, coal-based or petroleum-based heavy oil, tars, pitches, and resins such as phenolic resins, as described above. Is finally graphitized by heat treatment at 1500 ° C. or more and less than 3300 ° C.
  • the adhesion amount of the graphite material (B2) is preferably 5 to 30 parts by mass, particularly preferably 10 to 25 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A). When the amount is less than 5 parts by mass, the spheroidized graphite particles (A) are liable to be crushed, and the initial charge / discharge efficiency and rapid discharge properties are reduced.
  • the composite graphite particles (C2) are hardened, and a high pressure is required to press the active material layer, and the copper foil as a current collector is broken or elongated. Further, the composite graphite particles (C2) are likely to be fused with each other during the heat treatment, resulting in a crushing surface in the graphite material (B2), resulting in a decrease in initial charge / discharge efficiency. Moreover, it is preferable that [A in composite graphite particle C1 and adhesion amount of carbonaceous material B1 with respect to 100 parts by mass ⁇ A deposition amount with respect to A in composite graphite particle C2 and graphite material B2 with respect to 100 parts by mass].
  • the carbonaceous material (B1) is harder and has lower initial efficiency than the graphite material (B2), so the amount of adhesion to the spheroidized graphite particles (A) is relatively small and thin. It is preferable to coat.
  • the feature of the rapid chargeability of the composite graphite particles (C1) is derived from the interfacial reaction between the carbonaceous material (B1) coated in a film and the electrolytic solution.
  • the composite graphite particles (C1) alone cause crushing and fracture at high active material density, so combined graphite particles (C2) reinforced with a relatively large amount of graphite material (B2) are used in combination. By doing so, this problem is solved.
  • the spheroidized graphite particles (A) may be used.
  • a precursor of carbonaceous material (B1) or graphite material (B2), for example, petroleum-based or coal-based heavy oil, tars, pitches, resins such as phenol resin, etc. are liquid phase method, solid phase It can be produced by depositing or coating by any of the methods followed by heat treatment.
  • liquid phase method examples include coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, naphtha cracked fraction, ethylene bottom oil
  • Petroleum-based or coal-based tar pitches such as, thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, thermosetting resins such as phenolic resins and furan resins, saccharides, and celluloses (hereinafter also referred to as carbonaceous material precursors) ), Etc., or a solution thereof, or the like, is dispersed, mixed and impregnated into the spheroidized graphite particles (A), and then light components such as a solvent are removed if necessary, and finally a non-oxidizing or oxidizing atmosphere
  • the composite graphite particles (C2) to which the graphite material (B2) is adhered can be produced by finally performing heat treatment at 1500 ° C. or more and less than 3300 ° C. in a non-oxidizing atmosphere.
  • stirring, heating, and decompression can be performed.
  • a plurality of different carbonaceous material precursors may be used.
  • the carbonaceous material precursor may contain an oxidizing agent or a crosslinking agent.
  • the carbonaceous material precursor powder exemplified in the description of the liquid phase method and the spheroidized graphite particles (A) are mixed, or simultaneously compressed, compressed, sheared, impacted, frictioned, etc.
  • a carbonaceous material precursor powder is pressure-bonded to the surface of the spheroidized graphite particles (A) by a mechanochemical treatment that imparts the mechanical energy of.
  • the mechanochemical treatment the carbonaceous material precursor is melted or softened, and is adhered by being rubbed against the spheroidized graphite particles (A).
  • the apparatus capable of mechanochemical treatment include the various compression shearing processing apparatuses described above.
  • the carbonaceous material (B1) is finally heat-treated at 500 ° C. or more and less than 1500 ° C. in a non-oxidizing or oxidizing atmosphere to the spheroidized graphite particles (A) to which the powder of the carbonaceous material precursor is attached.
  • a method for producing the attached composite graphite particles (C1) is mentioned.
  • the composite graphite particles (C2) to which the graphite material (B2) is adhered can be produced by finally performing heat treatment at 1500 ° C. or more and less than 3300 ° C. in a non-oxidizing atmosphere.
  • the composite graphite particles (C1) and (C2) of the present invention preferably have substantially no crushed surface derived from pulverization.
  • a rotary kiln is used as part of the heat treatment process. It is desirable to adopt a method. By stirring the spheroidized graphite particles (A) in a temperature range where the carbonaceous material precursor shifts from a molten state to carbonization, the composite graphite particles (C1) and (C2) having a smooth surface and no fusion are obtained. Obtainable.
  • the composite graphite particles (C1) and (C2) after finishing the final heat treatment are in a powder form, and the whole is fused, with substantially no crushing surface derived from pulverization. It means not. Part of the carbonaceous material (B1) and the graphite material (B2) adhering to the composite graphite particles (C1) and (C2) is peeled off, and those observed as individual powders are excluded. . Although it is in powder form, it does not exclude the case where the fused material is slightly included.
  • Crushing the material fused at the time of heat treatment into a particulate form causes the degradation of the initial charge / discharge efficiency because the crushing surface derived from the pulverization is the starting point for the decomposition reaction of the electrolyte. .
  • conductive materials such as carbon fiber and carbon black, carbon or graphite fine particles, flat artificial graphite or natural graphite may be used together with the carbonaceous material precursor.
  • conductive materials such as carbon fiber and carbon black, carbon or graphite fine particles, flat artificial graphite or natural graphite may be used together with the carbonaceous material precursor.
  • composite graphite particles (C2) to which the graphite material (B2) is adhered together with the carbonaceous material precursor, Fe, Co, Ni, Al, Ti, etc. that have an effect of increasing the degree of graphitization.
  • These metals, metalloids such as Si and B, and compounds thereof may be used.
  • the composite graphite particles (C1) to which the carbonaceous material (B1) is attached or the composite graphite particles (C2) to which the graphite material (B2) is attached are the carbonaceous material (B1) or the graphite material.
  • the inside or the surface of (B2) may have a conductive material such as carbon fiber or carbon black, fine particles of other carbonaceous material or graphite material, flat artificial graphite or natural graphite.
  • a metal oxide such as silica, aluminum oxide (alumina), titanium oxide (titania) or the like may be attached or embedded (for example, in fine particles).
  • a metal or metal compound that can be an active material such as Si, Sn, Co, Ni, SiO, SnO, or lithium titanate may be attached or embedded.
  • the graphite particles for secondary battery negative electrode material of the present invention (hereinafter sometimes referred to as mixed graphite particles) is a mixture of the composite graphite particles (C1) and the composite graphite particles (C2).
  • the mixture the intensity ratio of 1360 cm -1 near the peak intensity (I 1360) and 1580 cm -1 near peak intensity of a Raman spectrum (I 1580) (I 1360 / I 1580) in the distribution, 0.01-0.08 And those having maximum points in both ranges of 0.12 to 0.30.
  • the composite graphite particles (C1) show a maximum peak in the range of intensity ratio (I 1360 / I 1580 ) 0.12 to 0.30, and the composite graphite particles (C 2) have an intensity ratio (I 1360 / I 1580). ) A maximum peak is shown in the range of 0.01 to 0.08.
  • the intensity ratio (I 1360 / I 1580 ) is measured for any 200 points of the mixture, and the corresponding points are counted at intervals of 0.004. .
  • the mass ratio of composite graphite particles (C1): composite graphite particles (C2) is generally 20 to 80:80 to 20.
  • the active material layer can be densified with a low pressing pressure, the balance between rapid chargeability and rapid discharge property is improved, and excellent cycle characteristics can be obtained.
  • the interplanar spacing (d 002 ) of the carbon network layer is 0.3360 nm or less. In particular, it is preferably 0.3358 nm or less.
  • the discharge capacity when the mixed graphite particles are used as the negative electrode material varies depending on the production conditions and evaluation conditions of the negative electrode and the evaluation battery, but is approximately 355 mAh / g or more, preferably 360 mAh / g. That's it.
  • the mixed graphite particles of the present invention have a 300 times tap density of 1.00 g / cm 3 or more. In particular, it is preferably 1.10 g / cm 3 or more.
  • the tap density becomes an index of the sphericity and surface smoothness of the graphite particles, and the mixed graphite particles do not substantially have a crushing surface derived from pulverization, thereby increasing the tap density.
  • the higher the tap density the higher the density before pressing the active material layer, the smaller the deformation of the graphite particles due to the press, and the lower the deformation and destruction of the graphite particles when the density is increased.
  • the tap density is an increased bulk density obtained after mechanically tapping a container containing a powder sample.
  • the mixed graphite particles of the present invention have an average particle size of 5 to 25 ⁇ m. 10 to 20 ⁇ m is particularly preferable. If it is 5 micrometers or more, the density of an active material layer can be made high and the discharge capacity per volume will improve. And if it is 25 micrometers or less, quick charge property and cycling characteristics will improve.
  • the mixed graphite particles of the present invention have an average aspect ratio of 1.2 or more and less than 4.0.
  • the deformation of the graphite particles becomes large, and the graphite particles are cracked or expanded due to rebound after pressing. There is. And if it is 4.0 or more, the diffusibility of lithium ions is reduced, and rapid discharge and cycle characteristics are reduced.
  • the mixed graphite particles of the present invention have a pore volume of not more than 0.08 ml / g with a pore diameter of 0.5 ⁇ m or less as measured by a mercury porosimeter. In particular, it is preferably 0.05 ml / g or less. If the pore volume is 0.08 ml / g or less, the long-term cycle characteristics are good.
  • the definition of the pore volume by the mercury porosimeter was determined to be a pore diameter of 0.5 ⁇ m or less, in order to measure the pore volume, the void between particles when filling the measurement cell with the graphite particles was excluded. Because. If the pore diameter to be measured is 0.5 ⁇ m or less, voids between the particles are not included, and only the pores of the graphite particles can be detected.
  • pore volume adjustment method is as follows.
  • the density inside the particles depends on the operating conditions of the spheroidizing device (for example, rolling time, pressure applied simultaneously with spheronization, etc.).
  • a method of controlling the degree a method of compressing the produced spheroidized graphite particles (A), a composite graphite particles (C1), a carbonaceous material (B1) as a coating material of (C2), and a graphite material
  • a method for controlling the degree of impregnation of (B2) into the spheroidized graphite particles (A) (for example, by reducing the viscosity of the precursor of the carbonaceous material (B1) or the graphite material (B2), (A) Impregnation into the interior, and in that case, a method of promoting impregnation by heating, decompression, etc.).
  • the negative electrode material for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as negative electrode material) is obtained by using the above mixed graphite particles alone or as a main material as an active material.
  • a secondary material various known conductive materials, carbonaceous particles, graphite particles, metallic particles or composite particles thereof can be mixed as long as the effects of the present invention are not impaired. It is preferable to keep the ratio at 30% or less.
  • Secondary materials include, for example, carbonaceous or graphite fibers, carbon black, conductive materials such as scaly artificial graphite and natural graphite, carbonaceous particles such as soft carbon and hard carbon, and spherical mesocarbon microsphere graphite.
  • Examples thereof include graphitized particles such as composite graphitized material having fine pores and spheroidized natural graphite.
  • These sub-materials may be a carbon material, an organic material, an inorganic material, a mixture with a metal material, a coating, or a composite. It may be one that adheres or coats an organic compound such as a surfactant or resin, or one that adheres or embeds fine particles of metal oxide such as silica, alumina, titania, etc., silicon, tin, cobalt
  • a metal or a metal compound such as nickel, copper, silicon oxide, tin oxide, or lithium titanate may be attached, embedded, combined, or encapsulated.
  • the negative electrode for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as a negative electrode) can be produced in accordance with a normal method for producing a negative electrode, but a chemically and electrochemically stable negative electrode is obtained. There is no limitation as long as it is a manufacturing method capable of satisfying the requirements.
  • a negative electrode mixture obtained by adding a binder to the negative electrode material can be used.
  • the binder those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used.
  • fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene. Butadiene rubber, carboxymethyl cellulose and the like are used. These can also be used together.
  • the binder is preferably in a proportion of 1 to 20% by mass in the total amount of the negative electrode mixture.
  • N-methylpyrrolidone, dimethylformamide, water, alcohol and the like which are ordinary solvents for producing the negative electrode, can be used.
  • the negative electrode is produced, for example, by dispersing a negative electrode mixture in a solvent to prepare a paste-like negative electrode mixture, applying the negative electrode mixture to one or both sides of a current collector, and drying. Thereby, a negative electrode in which the negative electrode mixture layer (active material layer) is uniformly and firmly bonded to the current collector is obtained. More specifically, for example, after mixing the negative electrode material particles, fluorine resin powder or styrene butadiene rubber water dispersant and solvent into a slurry, a known stirrer, mixer, kneader, kneader or the like is used. The mixture is stirred and mixed to prepare a negative electrode mixture paste.
  • the film thickness of the negative electrode mixture layer is 10 to 200 ⁇ m, preferably 30 to 100 ⁇ m.
  • the negative electrode mixture layer can also be produced by dry-mixing the particles of the negative electrode material and resin powder such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient negative electrode strength, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency may be reduced. When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
  • Density of the negative electrode mixture layer since increasing the volumetric capacity of the negative electrode, 1.70 ⁇ 1.85g / cm 3, and particularly preferably a 1.75 ⁇ 1.85g / cm 3.
  • the shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like.
  • the material for the current collector is preferably copper, stainless steel, nickel or the like.
  • the thickness of the current collector is preferably 5 to 20 ⁇ m.
  • the lithium ion secondary battery of the present invention is formed using the negative electrode.
  • the secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components conform to the elements of a general secondary battery. That is, an electrolytic solution, a negative electrode, and a positive electrode are the main battery constituent elements, and these elements are enclosed in, for example, a battery can.
  • the negative electrode and the positive electrode each act as a lithium ion carrier, and lithium ions are released from the negative electrode during charging.
  • the positive electrode used in the secondary battery of the present invention is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive material to the surface of the current collector.
  • a lithium compound is used, but it is preferable to select a material that can occlude / desorb a sufficient amount of lithium.
  • lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, other lithium compounds, chemical formula M X Mo 6 OS 8-Y (where X is 0 ⁇ X ⁇ 4, Y is 0 ⁇ Y ⁇ 1) And the like, and M is at least one kind of transition metal element), and the like can be used.
  • the vanadium oxide is V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8 or the like.
  • the lithium-containing transition metal composite oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Complex oxides may be used alone or in combination of two or more.
  • the lithium-containing transition metal compound oxide is LiM1 1-X M2 X O 2 (wherein X is a numerical value in the range of 0 ⁇ X ⁇ 1, and M1 and M2 are at least one kind of transition metal element.
  • LiM1 1-Y M2 Y O 4 wherein Y is a numerical value in the range of 0 ⁇ Y ⁇ 1, and M1 and M2 are at least one transition metal element).
  • the transition metal elements represented by M1 and M2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Mn, Cr, Ti, V, Fe , Al and the like.
  • Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2, and the like.
  • the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ⁇ 1000 ° C.
  • the lithium compound may be used alone or in combination of two or more.
  • alkali carbonates such as lithium carbonate
  • the positive electrode is formed by, for example, applying a positive electrode mixture composed of the lithium compound, the binder, and a conductive material for imparting conductivity to the positive electrode on one or both sides of the current collector to form a positive electrode mixture layer.
  • the binder the same one as that used for producing the negative electrode can be used. Carbon materials such as graphite and carbon black are used as the conductive material.
  • the positive electrode mixture (composite cathode material) may be dispersed in a solvent, and the paste-formed positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After the mixture layer is formed, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
  • the shape of the current collector is not particularly limited, but is preferably a foil shape, a mesh shape, a net shape such as expanded metal, or the like.
  • the material of the current collector is aluminum, stainless steel, nickel or the like. In the case of a foil, the thickness is preferably 10 to 40 ⁇ m.
  • the nonaqueous electrolyte (electrolytic solution) used for the secondary battery of the present invention is an electrolyte salt used for a normal nonaqueous electrolytic solution.
  • the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2.
  • LiC (CF 3 SO 2 ) 3 LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 5 and other lithium salts can be used.
  • LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
  • the electrolyte salt concentration of the electrolytic solution is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3 mol / L.
  • the non-aqueous electrolyte may be liquid, or may be a solid or gel polymer electrolyte.
  • the nonaqueous electrolyte battery is configured as a so-called lithium ion secondary battery
  • the nonaqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery or a polymer gel electrolyte battery.
  • Examples of the solvent constituting the nonaqueous electrolyte include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile , Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, La
  • a polymer compound gelled with a plasticizer non-aqueous electrolyte
  • the polymer compound constituting the matrix include ether polymer compounds such as polyethylene oxide and its cross-linked products, polymethacrylate polymer compounds, polyacrylate polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene.
  • Fluorine polymer compounds such as copolymers can be used alone or in combination. It is particularly preferable to use a fluorine-based polymer compound such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
  • the plastic solid electrolyte or polymer gel electrolyte is mixed with a plasticizer.
  • a plasticizer the above electrolyte salts and non-aqueous solvents can be used.
  • the electrolyte salt concentration in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / L, more preferably 0.5 to 2 mol / L.
  • the method for producing the polymer solid electrolyte is not particularly limited.
  • a method of mixing a polymer compound constituting a matrix, a lithium salt, and a non-aqueous solvent (plasticizer) and heating to melt the polymer compound, a polymer compound, a lithium salt, and non-water as an organic solvent for mixing Method of evaporating organic solvent for mixing after dissolving solvent (plasticizer), mixing polymerizable monomer, lithium salt and non-aqueous solvent (plasticizer), and irradiating the mixture with ultraviolet rays, electron beam, molecular beam, etc.
  • a method of polymerizing a polymerizable monomer to obtain a polymer compound is not particularly limited.
  • a method of mixing a polymer compound constituting a matrix, a lithium salt, and a non-aqueous solvent (plasticizer) and heating to melt the polymer compound, a polymer compound, a lithium salt, and non-water as an organic solvent for mixing Method of evaporating organic solvent for mixing after dis
  • the proportion of the nonaqueous solvent (plasticizer) in the polymer solid electrolyte is preferably 10 to 90% by mass, more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.
  • a separator can also be used.
  • the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned.
  • a synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
  • the secondary battery of the present invention is produced by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material. Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
  • the structure of the secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, and the like.
  • a coin type, a button type, or the like can be arbitrarily selected.
  • a structure enclosed in a laminate film can also be used.
  • buttons-type secondary batteries for evaluation having a configuration as shown in FIG. 1 were produced and evaluated.
  • the battery can be produced according to a known method based on the object of the present invention.
  • Example 1 [Preparation of spheroidized graphite particles (A)] While pulverizing and rolling the flaky natural graphite having an average particle diameter of 55 ⁇ m, it is shaped into a spherical shape with an average particle diameter of 12 ⁇ m, an average aspect ratio of 1.4, and (d 002 ) of 0. .3357 nm, specific surface area was 7.0 m ⁇ 2> / g, and pore volume with a pore diameter of 0.5 [mu] m or less by a mercury porosimeter was adjusted to 0.12 ml / g.
  • the spherical graphite particles were compressed by a mold press at a pressure of 0.5 ton / cm 2 , the average particle diameter was 12 ⁇ m, the average aspect ratio was 1.8, (d 002 ) was 0.3357 nm, the specific surface area was 6.5 m 2 / g, and the pore volume with a pore diameter of 0.5 ⁇ m or less by a mercury porosimeter was adjusted to 0.08 ml / g.
  • composite graphite particles (C1) composed of a porous material (B1) and spheroidized graphite particles (A) were obtained.
  • the obtained composite graphite particles (C1) had a high sieve yield of 99.8% by sieving with a mesh size of 53 ⁇ m, and were substantially unfused.
  • the average particle diameter is 13 ⁇ m
  • the average aspect ratio is 1.8
  • (d 002 ) is 0.3357 nm
  • the specific surface area is 3.6 m 2 / g
  • the pore diameter is 0.5 ⁇ m or less by a mercury porosimeter.
  • the pore volume was 0.06 ml / g.
  • the composite graphite particles (C1) were observed with a scanning electron microscope, they were smooth ellipsoidal coated graphite particles with scaly natural graphite attached to the surface. No particles of calcined carbon alone derived from coal tar pitch were observed, and no crushed fracture surface derived from crushing of the fused portion was observed.
  • the obtained composite graphite particles (C2) had a high sieve yield of 99.5% by sieving with a mesh size of 53 ⁇ m and were substantially unfused.
  • the average particle size is 14 ⁇ m
  • the average aspect ratio is 1.8
  • (d 002 ) is 0.3358 nm
  • the specific surface area is 0.6 m 2 / g
  • the pore diameter is 0.5 ⁇ m or less by a mercury porosimeter.
  • the pore volume was 0.04 ml / g.
  • the mixture has an average particle diameter of 14 ⁇ m, an average aspect ratio of 1.8, a (d 002 ) of 0.3358 nm, a specific surface area of 2.1 m 2 / g, and a pore volume of not more than 0.5 ⁇ m by a mercury porosimeter.
  • the mixture the intensity ratio of 1580 cm -1 near the peak intensity and 1360 cm -1 near peak intensity of a Raman spectrum (I 1360) at any 200 point (I 1580) (I 1360 / I 1580) results of measuring the distribution Is shown in FIG.
  • the intensity ratio (I 1360 / I 1580 ) showed maximum peaks in the vicinity of 0.04 and 0.172.
  • the negative electrode mixture paste was applied on a copper foil having a thickness of 16 ⁇ m to a uniform thickness, and further, water in a dispersion medium was evaporated at 90 ° C. in a vacuum to dry the paste.
  • the negative electrode mixture applied onto the copper foil was pressed with a hand press at 12 kN / cm 2 (120 MPa), and further punched into a circular shape with a diameter of 15.5 mm.
  • a working electrode having an agent layer (thickness 60 ⁇ m) was prepared.
  • the density of the negative electrode mixture layer was 1.75 g / cm 3 .
  • the working electrode was stretched and not deformed, and the current collector viewed from the cross section had no dent.
  • a lithium metal foil is pressed onto a nickel net and punched into a circular shape with a diameter of 15.5 mm, and consists of a current collector made of nickel net and a lithium metal foil (thickness 0.5 mm) in close contact with the current collector.
  • a counter electrode was produced.
  • LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte.
  • the obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness: 20 ⁇ m) to produce a separator impregnated with the electrolytic solution.
  • a button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
  • the exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions.
  • an insulating gasket 6 Inside, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode 4 made of lithium foil, a separator 5 impregnated with an electrolyte, a disk-shaped working electrode 2 made of a negative electrode mixture, and A battery in which current collectors 7b made of copper foil are laminated.
  • the evaluation battery is a battery composed of a working electrode 2 containing graphite particles that can be used as a negative electrode active material and a counter electrode 4 made of a lithium metal foil in an actual battery.
  • the evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., discharge capacity per mass, discharge capacity per volume, initial charge / discharge efficiency, rapid charge rate, rapid discharge. Rate and cycle characteristics were evaluated. The evaluation results are shown in Table 1 (shown in Table 1-1 and Table 1-2, the same shall apply hereinafter).
  • Rapid charge rate (%) (constant current charge capacity in the second cycle / discharge capacity in the first cycle) ⁇ 100
  • Rapid discharge rate (discharge capacity in the second cycle / discharge capacity in the first cycle) ⁇ 100
  • Cycle characteristics (%) (discharge capacity in the 100th cycle / discharge capacity in the first cycle) ⁇ 100
  • the evaluation battery obtained using the negative electrode material of Example 1 as the working electrode can increase the density of the active material to 1.75 g / cm 3 and has a high mass per mass. It shows discharge capacity and high initial charge / discharge efficiency. For this reason, the discharge capacity per volume can be improved significantly. Even at its high density, the rapid charge rate, rapid discharge rate, and cycle characteristics maintain excellent results.
  • Example 2 Example 5
  • the density of the negative electrode mixture layer was changed to 1.75 g by changing the pressing pressure in the same manner as in Example 1.
  • a working electrode was prepared by adjusting to / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
  • Example 1 the density of the negative electrode mixture layer was changed in the same manner as in Example 1 except that the composite graphite particles (C1) and the composite graphite particles (C2) were not mixed and each was used alone as a negative electrode material.
  • a working electrode was prepared by adjusting to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
  • Table 1 In addition to Examples 1 to 5, the relationship between the mixing ratio of the composite graphite particles (C1) and the composite graphite particles (C2) and the battery characteristics is shown in FIGS.
  • the mixed graphite particles of the present invention have a high charge rate shown in FIG. 3, a rapid discharge rate shown in FIG. 4, and a cycle characteristic shown in FIG.
  • the composite graphite particles (C1) and the composite graphite particles (C2) are not mixed and each of them is used alone as a negative electrode material, either of the characteristics of the rapid charge rate and the rapid discharge rate is insufficient. Due to the influence, the cycle characteristics are inferior.
  • Example 6 A working electrode was produced in the same manner as in Example 1 except that the density of the negative electrode mixture layer in Example 1 was changed to 1.80 g / cm 3 (Example 6), and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1. As the density of the negative electrode mixture layer increases, the battery characteristics tend to decrease, but at a density of 1.80 g / cm 3 , a sufficiently high level is maintained. On the other hand, when the density is too high, deformation of the copper foil as a current collector and deterioration of battery characteristics become remarkable.
  • Example 1 the average particle diameter, average aspect ratio, compression treatment presence / absence of the spheroidized graphite particles (A), the ratio of the carbonaceous material (B1) and the graphite material (B2), to the composite graphite particles (C1) Other than the addition of 2 parts by mass of 120 nm ⁇ 5 ⁇ m long graphitized carbon fiber together with the precursor of the graphite material (B2) when producing composite graphite particles (C2) Produced a working electrode in the same manner as in Example 1 to produce an evaluation battery.
  • the same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
  • Table 1 shows various physical properties of the mixed graphite particles.
  • the discharge capacity is low.
  • the tap density is less than 1.0 g / cm 3 or when the average aspect ratio is 4 or more, the rapid discharge rate and cycle characteristics are insufficient.
  • the average particle diameter is less than 5 ⁇ m, the initial charge / discharge efficiency is low, and when it exceeds 25 ⁇ m, the rapid charge rate and cycle characteristics are insufficient.
  • the pore volume with a pore diameter of 0.5 ⁇ m or less by a mercury porosimeter exceeds 0.08 ml / g, the cycle characteristics are relatively inferior.
  • Example 10 A working electrode was prepared in the same manner as in Example 1 except that 85 parts by mass of the mixed graphite particles of Example 9 and 15 parts by mass of the bulk mesophase graphitized material shown below were mixed as other negative electrode materials. Produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1. Table 1 shows various physical properties of the mixed graphite particles.
  • Example 11 80 parts by mass of the mixed graphite particles of Example 9, 10 parts by mass of the bulk mesophase graphitized material shown in Example 10 and 5 parts of scaly graphite coated with the carbonaceous material shown below as another negative electrode material
  • a working electrode was produced in the same manner as in Example 1 except that the parts were mixed, and an evaluation battery was produced.
  • the same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
  • Table 1 shows various physical properties of the mixed graphite particles.
  • the scaly natural graphite coated with the obtained carbonaceous material had an average particle diameter of 5 ⁇ m, an average aspect ratio of 34, (d 002 ) of 0.3357 nm, and a specific surface area of 7.0 m 2 / g.
  • the density of the negative electrode mixture layer can be increased, and the discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge Both rate and cycle characteristics were excellent.
  • the working electrode was made of a negative electrode material that does not meet the provisions of the present invention, any of discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics was insufficient. .
  • the negative electrode material of the present invention can be used as a negative electrode material for a lithium ion secondary battery that contributes effectively to downsizing and high performance of equipment to be mounted.

Abstract

Provided are: a negative electrode material which has at least one of excellent initial charge/discharge efficiency, excellent high-rate charge characteristics, excellent high-rate discharge characteristics and excellent long-term cycle characteristics; a negative electrode which uses this negative electrode material; and a lithium secondary battery. Graphite particles for lithium ion secondary battery negative electrode materials, which are a mixture of composite graphite particles (C1) that comprise carbonaceous material (B1) within spheroidized graphite particles (A) having spherical or generally spherical shapes and/or on at least a part of the surfaces of the spheroidized graphite particles (A) and composite graphite particles (C2) that have a graphite material (B2) within the spheroidized graphite particles (A) having spherical or generally spherical shapes and/or on at least a part of the surfaces of the spheroidized graphite particles (A). In this connection, the mixture satisfies the following requirements (1)-(5). (1) The interplanar spacing (d002) of a carbon network surface layer is 0.3360 nm or less. (2) The tap density is 1.0 g/cm3 or more. (3) The average particle diameter is 5-25 μm. (4) The average aspect ratio is 1.2 or more but less than 4.0. (5) The pore volume of pores having a diameter of 0.5 μm or less as determined by means of a mercury porosimeter is 0.08 ml/g or less.

Description

リチウムイオン二次電池負極材料用黒鉛質粒子、リチウムイオン二次電池負極およびリチウムイオン二次電池Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
 本発明は、リチウムイオン二次電池負極材料、該負極材料を含むリチウムイオン二次電池負極および該負極を用いてなるリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery negative electrode material, a lithium ion secondary battery negative electrode containing the negative electrode material, and a lithium ion secondary battery using the negative electrode.
 近年、電子機器の小型化あるいは高性能化に伴い、電池のエネルギー密度を高める要望がますます高まっている。特に、リチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能なので、高いエネルギー密度が達成されるため注目されている。リチウムイオン二次電池は、負極、正極および電解液(非水電解質(non-aqueous electrolyte))を主たる構成要素とする。
  負極は、一般に、銅箔からなる集電材(current collector)と結合剤によって結着された負極材料(活物質( working substance for the anode))から構成される。通常、負極材料には炭素材料が使用される。このような炭素材料として、充放電特性(charge-discharge characteristics)に優れ、高い放電容量と電位平坦性とを示す黒鉛が汎用的に用いられている。
 最近の携帯用電子機器に搭載されるリチウムイオン二次電池には、高いエネルギー密度と同時に、優れた急速充電性、急速放電性が要求されるとともに、充放電を繰り返しても初期の放電容量が劣化しないこと(サイクル特性)が求められている。
In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for increasing the energy density of batteries. In particular, lithium ion secondary batteries are attracting attention because they can achieve higher voltages than other secondary batteries, and thus achieve high energy density. A lithium ion secondary battery mainly includes a negative electrode, a positive electrode, and an electrolyte (non-aqueous electrolyte).
The negative electrode is generally composed of a current collector made of copper foil and a negative electrode material (active substance (working substance for the anode)) bound by a binder. Usually, a carbon material is used for the negative electrode material. As such a carbon material, graphite having excellent charge-discharge characteristics and high discharge capacity and potential flatness is widely used.
Lithium ion secondary batteries installed in recent portable electronic devices are required to have high energy density and excellent rapid chargeability and rapid discharge performance, as well as an initial discharge capacity even after repeated charge and discharge. No deterioration (cycle characteristics) is required.
 特許文献1には、直径方向に垂直な方向に黒鉛のベーサル面(basal plane)が層状に配列したブルックス・テーラー型(Brooks-Taylor type)の単結晶からなるメソカーボン小球体の黒鉛化物が開示されている。出願人がこれまでに提案した特許文献2には、黒鉛造粒物に該黒鉛造粒物よりも結晶性が低く炭素質微粒子を含む炭素質層が充填および/または被覆されてなる複合黒鉛質粒子が開示されている。特許文献3には、球状の黒鉛造粒物が黒鉛質被覆材で被包(epiboly)され、かつ、外側表面に結晶性の低い黒鉛質表層を有する複合黒鉛質材料が開示されている。特許文献4には、黒鉛複合体粉末と、該黒鉛複合体粉末の一部構成材からなる人造黒鉛粉末との黒鉛複合体混合粉末が開示されている。 Patent Document 1 discloses a graphitized mesocarbon microsphere composed of a Brooks-Taylor type single crystal in which basal planes of graphite are arranged in layers in a direction perpendicular to the diameter direction. Has been. Patent Document 2 proposed by the applicant so far includes a composite graphite material in which a graphite granule is filled and / or coated with a carbonaceous layer having lower crystallinity than the graphite granule and containing carbon fine particles. Particles are disclosed. Patent Document 3 discloses a composite graphite material in which a spherical graphite granule is epiboly coated with a graphite coating material and has a graphite surface layer with low crystallinity on the outer surface. Patent Document 4 discloses a graphite composite mixed powder of a graphite composite powder and an artificial graphite powder made of a part of the graphite composite powder.
 特許文献5には、硬度、形状の異なる3種の黒鉛粒子A,B及びCの混合物を負極に用い電解液の浸透速度の向上を図る発明が記載されている。黒鉛粒子Aはコークスとバインダーピッチからなる人造黒鉛ブロックを用い最外殻表面が内部より低結晶性である黒鉛粉末を用いている。
 特許文献6には、異なる物性の黒鉛粒子(A),(B)の混合物を負極材料に用いることが記載されている。実施例では1000℃で焼成して得られる黒鉛粒子(A)をさらに3000℃で焼成したものが黒鉛粒子(B)として使用されている。この場合、より高温で焼成された黒鉛粒子(B)中の炭素質材料の残炭率(carbonization yield)はより小さいので、黒鉛粒子(B)中の黒鉛化された炭素質材料の量は黒鉛粒子(A)中の炭素質材料より少なくなると考えられる。
Patent Document 5 describes an invention in which a mixture of three types of graphite particles A, B, and C having different hardness and shape is used for the negative electrode to improve the penetration rate of the electrolytic solution. As the graphite particles A, an artificial graphite block made of coke and binder pitch is used, and a graphite powder whose outermost shell surface is less crystalline than the inside is used.
Patent Document 6 describes that a mixture of graphite particles (A) and (B) having different physical properties is used as a negative electrode material. In the examples, graphite particles (A) obtained by firing at 1000 ° C. and further fired at 3000 ° C. are used as graphite particles (B). In this case, the carbonization yield of the carbonaceous material in the graphite particles (B) fired at a higher temperature is smaller, so the amount of graphitized carbonaceous material in the graphite particles (B) is graphite. It is thought that it is less than the carbonaceous material in the particles (A).
 負極に異なる物性の黒鉛粒子の混合物を用いる場合には、混合物を構成する黒鉛粒子の物性によりリチウム二次電池の電池特性が左右されると考えられるので、リチウム二次電池の特性に優れる混合物を得るにはさらに適切な黒鉛粒子の組合せを検討することが望まれている。 When a mixture of graphite particles having different physical properties is used for the negative electrode, the battery characteristics of the lithium secondary battery are considered to be influenced by the physical properties of the graphite particles constituting the mixture. In order to obtain it, it is desired to consider a combination of more appropriate graphite particles.
 しかしながら、近年のエネルギー密度、急速充電性、急速放電性、サイクル特性の一層高い要求に対して、前記従来の黒鉛系負極材料では、充分な性能が得られていない。特に、高いエネルギー密度を達成するには、黒鉛系負極材料の質量当たりの放電容量を高めると同時に、活物質層の密度を高くし、体積当たりの放電容量を高く設定する必要がある。従来の負極材料ではその他の電池特性、たとえば、負極からの活物質層の剥離、集電材である銅箔の破断や延び、電解液の浸透性や保持性の不良、電解液の分解反応による電池膨れなどを生じ、これを受けて、急速充電性、急速放電性、サイクル特性などの電池特性が低下するなど種々の課題を生じる。 However, sufficient performance is not obtained with the conventional graphite-based negative electrode material in response to the recent demands for higher energy density, quick chargeability, rapid discharge performance, and cycle characteristics. In particular, in order to achieve a high energy density, it is necessary to increase the discharge capacity per mass of the graphite-based negative electrode material and at the same time increase the density of the active material layer and set the discharge capacity per volume high. Conventional negative electrode materials have other battery characteristics such as peeling of the active material layer from the negative electrode, breakage or extension of the copper foil as a current collector, poor electrolyte permeability and retention, and battery due to electrolyte decomposition reaction In response to this, various problems such as deterioration of battery characteristics such as rapid chargeability, rapid discharge characteristics, and cycle characteristics occur.
 特許文献1に記載のメソカーボン小球体の黒鉛化物を用いた負極材料は、黒鉛化物が球状であるため、高密度化しても黒鉛のベーサル面の配向をある程度抑えることができる。しかし、黒鉛化物が緻密で硬質であるため、高密度化するために高圧力を必要とし、集電材の銅箔の変形、伸び、破断といった問題が生じる。また、電解液との接触面積が小さい。そのため、急速充電性が特に低い。充電性の低下は、充電時に負極表面にリチウムの電析を生じる原因になり、サイクル特性の低下を引起す。 In the negative electrode material using the mesocarbon microsphere graphitized material described in Patent Document 1, since the graphitized material is spherical, the orientation of the basal plane of graphite can be suppressed to some extent even when the density is increased. However, since the graphitized material is dense and hard, high pressure is required to increase the density, and problems such as deformation, elongation, and breakage of the copper foil of the current collector occur. Further, the contact area with the electrolytic solution is small. Therefore, quick chargeability is particularly low. The decrease in chargeability causes the electrodeposition of lithium on the negative electrode surface during charging and causes a decrease in cycle characteristics.
 特許文献2に記載の複合黒鉛質粒子を用いた負極材料は、活物質層の密度を高くした場合に、炭素質物の被膜や球状造粒黒鉛基材の一部が壊れ、繰返し充放電時に電解液の分解反応が進行し、長期のサイクル特性が不十分であった。 In the negative electrode material using the composite graphite particles described in Patent Document 2, when the density of the active material layer is increased, a part of the carbonaceous film or the spherical granulated graphite base material is broken, and electrolysis occurs during repeated charge and discharge. The decomposition reaction of the liquid progressed and the long-term cycle characteristics were insufficient.
 特許文献3に記載の複合黒鉛質材料を用いた負極材料は、初期充放電効率に優れるものの、急速充電性が不十分であった。活物質層の密度を高くした場合の長期のサイクル特性も他の特許文献に比べると上位ではあるが、さらにもう一段の向上が必要である。 Although the negative electrode material using the composite graphite material described in Patent Document 3 is excellent in initial charge / discharge efficiency, it has insufficient quick chargeability. Although the long-term cycle characteristics when the density of the active material layer is increased are higher than those of other patent documents, further improvement is required.
 特許文献4に記載の黒鉛複合体混合粉末を用いた負極材料は、質量当たりの放電容量が不足していた。また、初期充放電効率も低いほか、急速充電性も不十分であった。 The negative electrode material using the graphite composite mixed powder described in Patent Document 4 had insufficient discharge capacity per mass. In addition, the initial charge / discharge efficiency was low, and the rapid chargeability was insufficient.
特開2000-323127号公報JP 2000-323127 A 特開2004-63321号公報JP 2004-63321 A 特開2003-173778号公報JP 2003-173778 A 特開2005-259689号公報JP 2005-259689 A 特開2007-324067号公報Japanese Patent Laid-Open No. 2007-324067 特開2008-27664号公報JP 2008-27664 A
 本発明の目的は、従来の負極材が抱える問題の解消にある。
すなわち下記のような特性を有し、優れた初期充放電効率、急速充電性、急速放電性および長期のサイクル特性の少なくとも一つを有する負極材料を提供することにある。
1)高い結晶性を有して質量当たりの放電容量が高いこと
2)低いプレス圧力で高い活物質密度が得られること
3)高い密度でありながら、黒鉛の潰れ、破壊、配向が抑えられ、電解液の浸透性や保持性を損なわない黒鉛粒子の形状を有すること
4)黒鉛表面のリチウムイオンの受入性に優れ、反応活性面を有しないことで充放電を繰り返しても電解液の分解反応を抑えることができること。
また、該負極材料を用いたリチウムイオン二次電池負極、および、該負極を有するリチウムイオン二次電池を提供することにある。
The object of the present invention is to eliminate the problems of conventional negative electrode materials.
That is, an object of the present invention is to provide a negative electrode material having the following characteristics and having at least one of excellent initial charge / discharge efficiency, rapid chargeability, rapid discharge characteristics, and long-term cycle characteristics.
1) Having high crystallinity and high discharge capacity per mass 2) Obtaining high active material density at low press pressure 3) While being high density, crushing, breaking and orientation of graphite can be suppressed, It must have the shape of graphite particles that do not impair the permeability and retention of the electrolyte. 4) Excellent lithium ion acceptability on the graphite surface, and it does not have a reactive surface. It can be suppressed.
Moreover, it is providing the lithium ion secondary battery negative electrode using this negative electrode material, and the lithium ion secondary battery which has this negative electrode.
[1]球状または略球状に賦形(putting in shape)された球状化黒鉛質粒子(A)の該粒子内部および該粒子表面の少なくとも一部に、炭素質材料(B1)を有する複合黒鉛質粒子(C1)と、前記球状化黒鉛質粒子(A)の該粒子内部および該粒子表面の少なくとも一部に、黒鉛質材料(B2)を有する複合黒鉛質粒子(C2)の混合物であって、
該混合物が、下記(1)~(5)を満足するリチウムイオン二次電池負極材料用黒鉛質粒子。
(1)炭素網面層の面間隔(d002)が0.3360nm以下、
(2)タップ密度が1.0g/cm以上、
(3)平均粒子径が5~25μm、
(4)平均アスペクト比が1.2以上、4.0未満、および
(5)水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.08ml/g以下。
[2]前記炭素質材料(B1)の含有量が、前記複合黒鉛質粒子(C1)中の前記球状化黒鉛質粒子(A)100質量部に対して0.1~10質量部であり、
 前記炭素質材料(B2)の含有量が、前記複合黒鉛質粒子(C2)中の前記球状化黒鉛質粒子(A)100質量部に対して5~30質量部である[1]に記載のリチウムイオン二次電池負極材料用黒鉛質粒子。
[3]前記複合黒鉛質粒子(C1)と前記複合黒鉛質粒子(C2)との割合が、質量比で1:99~90:10である[1]または[2]に記載のリチウムイオン二次電池負極材料用黒鉛質粒子。
[4]上記[1]~[3]のいずれか1に記載のリチウムイオン二次電池負極材料用黒鉛質粒子を含有するリチウムイオン二次電池負極。
[5]上記[4]に記載のリチウムイオン二次電池負極を有するリチウムイオン二次電池。
[1] Composite graphite having a carbonaceous material (B1) inside and at least a part of the surface of the spherical graphite particles (A) that are spherically or substantially spherically shaped (A). A mixture of particles (C1) and composite graphite particles (C2) having a graphite material (B2) inside and at least part of the surface of the spheroidized graphite particles (A),
Graphite particles for a negative electrode material for a lithium ion secondary battery, wherein the mixture satisfies the following (1) to (5).
(1) The interplanar spacing (d 002 ) of the carbon network layer is 0.3360 nm or less,
(2) The tap density is 1.0 g / cm 3 or more,
(3) The average particle size is 5 to 25 μm,
(4) The average aspect ratio is 1.2 or more and less than 4.0, and (5) the pore volume with a pore diameter of 0.5 μm or less by a mercury porosimeter is 0.08 ml / g or less.
[2] The content of the carbonaceous material (B1) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A) in the composite graphite particles (C1).
[1] The content of the carbonaceous material (B2) is 5 to 30 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A) in the composite graphite particles (C2). Graphite particles for negative electrode materials for lithium ion secondary batteries.
[3] The lithium ion secondary particle according to [1] or [2], wherein the ratio of the composite graphite particles (C1) to the composite graphite particles (C2) is 1:99 to 90:10 by mass ratio. Graphite particles for secondary battery negative electrode material.
[4] A lithium ion secondary battery negative electrode comprising the graphite particles for a lithium ion secondary battery negative electrode material described in any one of [1] to [3] above.
[5] A lithium ion secondary battery having the lithium ion secondary battery negative electrode according to [4].
 本願発明では、下記のような特性を有し、優れた初期充放電効率、急速充電性、急速放電性および長期のサイクル特性の少なくとも一つを有する負極材料を提供することができる。
1)高い結晶性を有して質量当たりの放電容量が高いこと
2)低いプレス圧力で高い活物質密度が得られること
3)高い密度でありながら、黒鉛の潰れ、破壊、配向が抑えられ、電解液の浸透性や保持性を損なわない黒鉛粒子の形状を有すること
4)黒鉛表面のリチウムイオンの受入性に優れ、反応活性面を有しないことで充放電を繰り返しても電解液の分解反応を抑えることができること。
The present invention can provide a negative electrode material having the following characteristics and having at least one of excellent initial charge / discharge efficiency, rapid chargeability, rapid discharge characteristics, and long-term cycle characteristics.
1) Having high crystallinity and high discharge capacity per mass 2) Obtaining high active material density at low press pressure 3) While being high density, crushing, breaking and orientation of graphite can be suppressed, It must have the shape of graphite particles that do not impair the permeability and retention of the electrolyte. 4) Excellent lithium ion acceptability on the graphite surface, and it does not have a reactive surface. It can be suppressed.
図1は実施例において充放電試験に用いるためのボタン型評価電池の構造を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the structure of a button-type evaluation battery for use in a charge / discharge test in Examples. 図2は実施例1の混合物のラマンスペクトルの1360cm-1周辺のピーク強度(I1360)と1580cm-1周辺のピーク強度(I1580)の強度比(I1360/I1580)分布の測定結果を示すグラフである。Intensity ratio of 2 1360 cm -1 near the peak intensity (I 1360) and 1580 cm -1 near the peak intensity of the Raman spectrum of the mixture of Example 1 (I 1580) of (I 1360 / I 1580) the measurement results of the distribution It is a graph to show. 図3は混合比(C2)/[(C1)+(C2)]に対する急速充電率を示すグラフである。FIG. 3 is a graph showing a rapid charging rate with respect to the mixing ratio (C2) / [(C1) + (C2)]. 図4は混合比(C2)/[(C1)+(C2)]に対する急速放電率を示すグラフである。FIG. 4 is a graph showing the rapid discharge rate with respect to the mixing ratio (C2) / [(C1) + (C2)]. 図5は混合比(C2)/[(C1)+(C2))に対するサイクル特性を示すグラフである。FIG. 5 is a graph showing cycle characteristics with respect to the mixing ratio (C2) / [(C1) + (C2)).
 〔球状化黒鉛質粒子(A)〕
 本発明で用いられる球状化黒鉛質粒子(A)を構成する鱗片状黒鉛質粒子は、鱗片状、板状、タブレット状などの人造黒鉛もしくは天然黒鉛である。特に結晶性の高い天然黒鉛が好ましく、平均格子面間隔(d002)が0.3360nm未満、特に0.3358nm以下であることが好ましい。0.3360nm未満とすることで、質量当たりの放電容量を高くすることができる。
 上記の鱗片状黒鉛質粒子を球状もしくは略球状に賦形する。略球状とは、楕円体状、塊状などを指し、表面に大きな凹みや鋭角的な突起の無い状態を意味する。
球状化黒鉛質粒子(A)は複数個の鱗片状黒鉛質粒子が集合、積層、造粒、接着したものでもよく、単一の鱗片状黒鉛質粒子が湾曲、折り曲げ、折り畳み、角取りされてなるものでもよい。特に、球状化黒鉛粒子の表面に鱗片状黒鉛の平面部分(ベーサル面)が配置された同心円状やキャベツ状の構造が好ましい。
 球状化黒鉛質粒子(A)の平均粒子径(体積換算の平均粒子径)は5~25μmが好ましく、特に10~20μmが好ましい。5μm以上であれば、活物質層の密度を高くすることができ、体積当たりの放電容量が向上する。25μm以下であると、急速充電性やサイクル特性が向上する。
 ここで、体積換算の平均粒子径とは、レーザー回折式粒度分布計によって測定した粒度分布の累積度数が、体積百分率で50%となる粒子径を意味する。
[Spheroidized graphite particles (A)]
The flaky graphite particles constituting the spheroidized graphite particles (A) used in the present invention are artificial graphite or natural graphite such as flaky, plate-like or tablet-like. Natural graphite having high crystallinity is particularly preferable, and the average lattice spacing (d 002 ) is preferably less than 0.3360 nm, and particularly preferably 0.3358 nm or less. By setting it to less than 0.3360 nm, the discharge capacity per mass can be increased.
The above scaly graphite particles are shaped into a spherical shape or a substantially spherical shape. “Substantially spherical” refers to an ellipsoidal shape, a lump shape, etc., and means a state where there are no large dents or sharp projections on the surface.
The spheroidized graphite particles (A) may be obtained by aggregating, laminating, granulating, and adhering a plurality of scaly graphite particles, and a single scaly graphite particle is curved, bent, folded, and rounded. It may be. In particular, a concentric or cabbage-like structure in which a flat portion (basal surface) of scaly graphite is disposed on the surface of the spheroidized graphite particles is preferable.
The average particle size (average particle size in terms of volume) of the spheroidized graphite particles (A) is preferably 5 to 25 μm, particularly preferably 10 to 20 μm. If it is 5 micrometers or more, the density of an active material layer can be made high and the discharge capacity per volume will improve. When it is 25 μm or less, quick chargeability and cycle characteristics are improved.
Here, the average particle diameter in terms of volume means a particle diameter at which the cumulative frequency of the particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume percentage.
 球状化黒鉛質粒子(A)の平均アスペクト比は1.2以上、4.0未満であることが好ましい。1.2未満の真球状に近い形状の場合は、活物質層をプレスした場合に黒鉛粒子の変形が大きくなり、黒鉛粒子に割れを生じることがある。そして4.0以上であると、リチウムイオンの拡散性が低下し急速放電性やサイクル特性が低下することがある。 The average aspect ratio of the spheroidized graphite particles (A) is preferably 1.2 or more and less than 4.0. In the case of a shape close to a true sphere of less than 1.2, when the active material layer is pressed, the graphite particles are greatly deformed, and the graphite particles may be cracked. And if it is 4.0 or more, the diffusibility of lithium ions may decrease, and rapid discharge and cycle characteristics may deteriorate.
 平均アスペクト比とは、1粒子の長軸長の短軸長に対する比を意味する。ここで、長軸長は測定対象の粒子の最も長い径を意味し、短軸長は測定対象の粒子の長軸に直交する短い径を意味する。また、平均アスペクト比は、走査型電子顕微鏡によって100個の粒子を観察して測定した各粒子のアスペクト比の単純平均値である。ここで、走査型電子顕微鏡で観察する際の倍率は、測定対象粒子の形状を確認できる倍率とする。 The average aspect ratio means the ratio of the major axis length of one particle to the minor axis length. Here, the long axis length means the longest diameter of the particle to be measured, and the short axis length means a short diameter perpendicular to the long axis of the particle to be measured. The average aspect ratio is a simple average value of the aspect ratio of each particle measured by observing 100 particles with a scanning electron microscope. Here, the magnification at the time of observing with a scanning electron microscope is a magnification at which the shape of the particles to be measured can be confirmed.
 球状化黒鉛質粒子(A)の製造方法について特に制限されない。例えば、扁平状、鱗片状の天然黒鉛に機械的外力を加えることにより製造することができる。具体的には、高い剪断力を付与したり、転動操作を加えることにより湾曲させて球状化したり、同心円状に造粒して球状化することができる。球状化処理の前後において、結着剤を配合して造粒を促進することもできる。球状化処理が可能な装置としては、「カウンタジェットミル」「ACMパルベライザ」(ホソカワミクロン(株)製)、「カレントジェット」(日清エンジニアリング(株)製)等の粉砕機、「SARARA」(川崎重工(株)製)、「GRANUREX」(フロイント産業(株)製)、「ニューグラマシン」((株)セイシン企業製)、「アグロマスター」(ホソカワミクロン(株)製)などの造粒機、加圧ニーダー、二本ロール等の混練機、「メカノマイクロシステム」((株)奈良機械製作所製)、押出機、ボールミル、遊星ミル、「メカノフュージョンシステム」(ホソカワミクロン(株)製)、「ノビルタ」(ホソカワミクロン(株)製)、「ハイブリダイゼーション」((株)奈良機械製作所製)、回転ボールミル等の圧縮剪断式加工装置などを挙げることができる。 There is no particular limitation on the method for producing the spheroidized graphite particles (A). For example, it can be produced by applying mechanical external force to flat or scale-like natural graphite. Specifically, it can be spheroidized by applying a high shearing force, bending by applying a rolling operation, or spheroidizing by concentric granulation. Before and after the spheronization treatment, a binder can be added to promote granulation. Spheroidizers that can be spheroidized include “Counter Jet Mill”, “ACM Pulverizer” (manufactured by Hosokawa Micron Corporation), “Current Jet” (manufactured by Nissin Engineering Co., Ltd.), “SARARA” (Kawasaki) Granulators such as Heavy Industries Co., Ltd.), “GRANUREX” (Freund Sangyo Co., Ltd.), “New Gramachine” (manufactured by Seishin Corporation), “Agromaster” (manufactured by Hosokawa Micron Co., Ltd.), Kneaders such as pressure kneaders and two rolls, “Mechano Micro System” (manufactured by Nara Machinery Co., Ltd.), Extruder, Ball Mill, Planetary Mill, “Mechano Fusion System” (manufactured by Hosokawa Micron Corporation), “Nobilta” (Hosokawa Micron Co., Ltd.), "Hybridization" (Nara Machinery Co., Ltd.), Compressive shear such as rotating ball mill And processing device can be cited.
 球状化処理を行った後に、プレス処理を施し、球状化黒鉛質粒子の粒子内部を緻密化することもできる。
 また、球状化処理を行った後に、酸化性雰囲気下での熱処理、酸性液体への浸漬、フッ素化処理などによって、球状化黒鉛質粒子(A)の表面を酸化、低結晶化、または官能基を付与することもできる。
After performing the spheroidizing treatment, the inside of the particles of the spheroidized graphite particles can be densified by performing a press treatment.
In addition, after the spheroidizing treatment, the surface of the spheroidized graphite particles (A) is oxidized, low-crystallized, or functional groups by heat treatment in an oxidizing atmosphere, immersion in an acidic liquid, fluorination treatment, or the like. Can also be given.
〔複合黒鉛質粒子(C1)〕
 本発明で用いられる複合黒鉛質粒子(C1)は、前記球状化黒鉛質粒子(A)の、粒子内部および粒子表面の少なくとも一部に、炭素質材料(B1)を有するものである。炭素質材料(B1)の付着により、球状化黒鉛質粒子(A)の潰れを防止するとともに、リチウムイオンの受入性を高め、優れた急速充電性を発現することができる。
 球状化黒鉛質粒子(A)に付着した炭素質材料(B1)としては、例えば、石炭系または石油系の重質油、タール類、ピッチ類や、フェノール樹脂等の樹脂類を最終的に500℃以上1500℃未満で加熱処理してなる炭化物が挙げられる。炭素質材料(B1)の付着量は、球状化黒鉛質粒子(A)100質量部に対し、0.1~10質量部が好ましく、0.5~8質量部がより好ましく、0.5~5質量部であることが最も好ましい。0.1質量部未満の場合には、球状化黒鉛質粒子(A)が潰れやすく、初期充放電効率や急速放電性が低下する。また、長期のサイクル特性が低下することがある。10質量部超の場合は複合黒鉛質粒子(C1)が硬質化し、活物質層をプレスする際に高い圧力を要す。このため集電体である銅箔の破断や延びを生じるほか、炭素質材料(B1)の不可逆容量(irreversible capacity)が大きくなり、初期充放電効率の低下を招く。
[Composite graphite particles (C1)]
The composite graphite particles (C1) used in the present invention have a carbonaceous material (B1) in the inside of the particles and at least a part of the particle surface of the spheroidized graphite particles (A). The adhesion of the carbonaceous material (B1) can prevent the spheroidized graphite particles (A) from being crushed, enhance the lithium ion acceptability, and exhibit excellent rapid chargeability.
As the carbonaceous material (B1) attached to the spheroidized graphite particles (A), for example, coal-based or petroleum-based heavy oil, tars, pitches, and resins such as phenol resins are finally 500 Carbides formed by heat treatment at a temperature of ℃ to less than 1500 ℃ are exemplified. The adhesion amount of the carbonaceous material (B1) is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A). Most preferably, it is 5 parts by mass. When the amount is less than 0.1 parts by mass, the spheroidized graphite particles (A) are liable to be crushed, and the initial charge / discharge efficiency and rapid discharge properties are reduced. In addition, long-term cycle characteristics may deteriorate. In the case of more than 10 parts by mass, the composite graphite particles (C1) become hard, and a high pressure is required when pressing the active material layer. For this reason, the copper foil as the current collector is broken or elongated, and the irreversible capacity of the carbonaceous material (B1) is increased, leading to a decrease in initial charge / discharge efficiency.
〔複合黒鉛質粒子(C2)〕
 本発明で用いられる複合黒鉛質粒子(C2)は、前記球状化黒鉛質粒子(A)の、粒子内部および/または粒子表面の少なくとも一部に、黒鉛質材料(B2)を有するものである。黒鉛質材料(B2)の付着により、球状化黒鉛質粒子(A)の潰れを防止するとともに、低いプレス圧力で活物質層を高密度化でき、かつ、優れた初期充放電効率や急速放電性を発現することができる。
 球状化黒鉛質粒子(A)に付着した黒鉛質材料(B2)としては、例えば、前記と同様に、石炭系または石油系の重質油、タール類、ピッチ類や、フェノール樹脂等の樹脂類を最終的に1500℃以上3300℃未満で加熱処理してなる黒鉛化物が挙げられる。黒鉛質材料(B2)の付着量は、球状化黒鉛質粒子(A)100質量部に対し、5~30質量部が好ましく、特に10~25質量部であることが好ましい。5質量部未満の場合は、球状化黒鉛質粒子(A)が潰れやすく、初期充放電効率や急速放電性が低下する。また長期のサイクル特性が低下することがある。そして30質量部超の場合は複合黒鉛質粒子(C2)が硬質化し、活物質層をプレスする際に高い圧力を要し、集電体である銅箔の破断や延びを生じる。さらに複合黒鉛質粒子(C2)同士が加熱処理時に融着しやすくなり、黒鉛質材料(B2)に破砕面を生じ、初期充放電効率の低下を招く。
 また、[複合黒鉛粒子C1中のA、100質量部に対する炭素質材料B1の付着量<複合黒鉛粒子C2中のA、100質量部に対する黒鉛質材料B2の付着量]、であるのが好ましい。この理由は、高い活物質密度における複合黒鉛質粒子C1およびC2の潰れや破壊を最小限に抑え、特に、複合黒鉛質粒子C1が有する急速充電性と、複合黒鉛質粒子C2が有する優れた初期充放電効率、急速放電性を兼ね備えることができるからである。
すなわち、炭素質材料(B1)は黒鉛質材料(B2)に比べて、硬質であり、かつ初期効率が劣るため、相対的に球状化黒鉛質粒子(A)への付着量を少なくし、薄く被覆することが好ましい。複合黒鉛質粒子(C1)が有する急速充電性の特長は、膜状に被覆された炭素質材料(B1)と電解液との界面反応に由来する。しかし、複合黒鉛質粒子(C1)単独では、高い活物質密度において潰れや破壊を生じるため、相対的に付着量の多い黒鉛質材料(B2)によって補強された複合黒鉛質粒子(C2)を併用することによって、この問題を解消するものである。 
[Composite graphite particles (C2)]
The composite graphite particles (C2) used in the present invention have the graphite material (B2) in at least a part of the inside and / or the particle surface of the spheroidized graphite particles (A). The adhesion of the graphite material (B2) prevents the spheroidized graphite particles (A) from being crushed, allows the active material layer to be densified with a low pressing pressure, and has excellent initial charge / discharge efficiency and rapid discharge properties. Can be expressed.
Examples of the graphite material (B2) attached to the spheroidized graphite particles (A) include, for example, coal-based or petroleum-based heavy oil, tars, pitches, and resins such as phenolic resins, as described above. Is finally graphitized by heat treatment at 1500 ° C. or more and less than 3300 ° C. The adhesion amount of the graphite material (B2) is preferably 5 to 30 parts by mass, particularly preferably 10 to 25 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A). When the amount is less than 5 parts by mass, the spheroidized graphite particles (A) are liable to be crushed, and the initial charge / discharge efficiency and rapid discharge properties are reduced. In addition, long-term cycle characteristics may deteriorate. If it exceeds 30 parts by mass, the composite graphite particles (C2) are hardened, and a high pressure is required to press the active material layer, and the copper foil as a current collector is broken or elongated. Further, the composite graphite particles (C2) are likely to be fused with each other during the heat treatment, resulting in a crushing surface in the graphite material (B2), resulting in a decrease in initial charge / discharge efficiency.
Moreover, it is preferable that [A in composite graphite particle C1 and adhesion amount of carbonaceous material B1 with respect to 100 parts by mass <A deposition amount with respect to A in composite graphite particle C2 and graphite material B2 with respect to 100 parts by mass]. This is because the collapse and destruction of the composite graphite particles C1 and C2 at a high active material density are minimized, in particular, the rapid chargeability of the composite graphite particles C1 and the excellent initial property of the composite graphite particles C2. It is because it can have charge / discharge efficiency and rapid discharge characteristics.
That is, the carbonaceous material (B1) is harder and has lower initial efficiency than the graphite material (B2), so the amount of adhesion to the spheroidized graphite particles (A) is relatively small and thin. It is preferable to coat. The feature of the rapid chargeability of the composite graphite particles (C1) is derived from the interfacial reaction between the carbonaceous material (B1) coated in a film and the electrolytic solution. However, the composite graphite particles (C1) alone cause crushing and fracture at high active material density, so combined graphite particles (C2) reinforced with a relatively large amount of graphite material (B2) are used in combination. By doing so, this problem is solved.
 球状化黒鉛質粒子(A)の粒子内部および/または粒子表面の少なくとも一部に、炭素質材料(B1)または黒鉛質材料(B2)を付着させる方法としては、球状化黒鉛質粒子(A)に炭素質材料(B1)または黒鉛質材料(B2)の前駆体、例えば、石油系または石炭系の重質油、タール類、ピッチ類や、フェノール樹脂等の樹脂類を液相法、固相法のいずれかにより付着または被覆した後、熱処理することによって製造することができる。 As a method of attaching the carbonaceous material (B1) or the graphite material (B2) to the inside of the spheroidized graphite particles (A) and / or at least a part of the particle surface, the spheroidized graphite particles (A) may be used. In addition, a precursor of carbonaceous material (B1) or graphite material (B2), for example, petroleum-based or coal-based heavy oil, tars, pitches, resins such as phenol resin, etc. are liquid phase method, solid phase It can be produced by depositing or coating by any of the methods followed by heat treatment.
 液相法の具体例としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ナフサ分解留分、エチレンボトム油等の石油系または石炭系のタールピッチ類、ポリビニルアルコール、ポリアクリル酸等の熱可塑性樹脂、フェノール樹脂、フラン樹脂等の熱硬化性樹脂、糖類、セルロース類(以下、炭素質材料前駆体とも記す)等の溶融物またはこれらの溶液を球状化黒鉛質粒子(A)に散布、混合、含浸したのち、必要に応じて溶媒等の軽質分を除去し、最終的に非酸化性もしくは酸化性雰囲気下、500℃以上1500℃未満で熱処理することによって、炭素質材料(B1)が付着した複合黒鉛質粒子(C1)を製造する方法が挙げられる。同様に、最終的に非酸化性雰囲気下、1500℃以上3300℃未満で熱処理することによって、黒鉛質材料(B2)が付着した複合黒鉛質粒子(C2)を製造することができる。
 なお、炭素質材料前駆体またはこれらの溶液を球状化黒鉛質粒子(A)に接触させる際には、撹拌、加熱、減圧を施すことができる。炭素質材料前駆体は種類の異なるものを複数用いてもよい。また、炭素質材料前駆体は酸化剤や架橋剤を含むものであってもよい。
Specific examples of the liquid phase method include coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, naphtha cracked fraction, ethylene bottom oil Petroleum-based or coal-based tar pitches such as, thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, thermosetting resins such as phenolic resins and furan resins, saccharides, and celluloses (hereinafter also referred to as carbonaceous material precursors) ), Etc., or a solution thereof, or the like, is dispersed, mixed and impregnated into the spheroidized graphite particles (A), and then light components such as a solvent are removed if necessary, and finally a non-oxidizing or oxidizing atmosphere A method for producing composite graphite particles (C1) to which the carbonaceous material (B1) is adhered by performing a heat treatment at 500 ° C. or more and less than 1500 ° C. And the like. Similarly, the composite graphite particles (C2) to which the graphite material (B2) is adhered can be produced by finally performing heat treatment at 1500 ° C. or more and less than 3300 ° C. in a non-oxidizing atmosphere.
In addition, when the carbonaceous material precursor or the solution thereof is brought into contact with the spheroidized graphite particles (A), stirring, heating, and decompression can be performed. A plurality of different carbonaceous material precursors may be used. The carbonaceous material precursor may contain an oxidizing agent or a crosslinking agent.
 固相法の具体例としては、液相法の説明で例示した炭素質材料前駆体の粉末と球状化黒鉛質粒子(A)を混合する、または、混合と同時に圧縮、せん断、衝突、摩擦等の機械的エネルギーを付与するメカノケミカル処理によって、球状化黒鉛質粒子(A)の表面に炭素質材料前駆体の粉末を圧着する方法が挙げられる。メカノケミカル処理によって、炭素質材料前駆体が溶融または軟化し、球状化黒鉛質粒子(A)に擦り付けられることにより付着する。メカノケミカル処理可能な装置としては、前記した各種圧縮せん断式加工装置を挙げることができる。炭素質材料前駆体の粉末が付着した球状化黒鉛質粒子(A)を最終的に非酸化性もしくは酸化性雰囲気下、500℃以上1500℃未満で熱処理することによって、炭素質材料(B1)が付着した複合黒鉛質粒子(C1)を製造する方法が挙げられる。同様に、最終的に非酸化性雰囲気下、1500℃以上3300℃未満で熱処理することによって、黒鉛質材料(B2)が付着した複合黒鉛質粒子(C2)を製造することができる。 As a specific example of the solid phase method, the carbonaceous material precursor powder exemplified in the description of the liquid phase method and the spheroidized graphite particles (A) are mixed, or simultaneously compressed, compressed, sheared, impacted, frictioned, etc. There is a method in which a carbonaceous material precursor powder is pressure-bonded to the surface of the spheroidized graphite particles (A) by a mechanochemical treatment that imparts the mechanical energy of. By the mechanochemical treatment, the carbonaceous material precursor is melted or softened, and is adhered by being rubbed against the spheroidized graphite particles (A). Examples of the apparatus capable of mechanochemical treatment include the various compression shearing processing apparatuses described above. The carbonaceous material (B1) is finally heat-treated at 500 ° C. or more and less than 1500 ° C. in a non-oxidizing or oxidizing atmosphere to the spheroidized graphite particles (A) to which the powder of the carbonaceous material precursor is attached. A method for producing the attached composite graphite particles (C1) is mentioned. Similarly, the composite graphite particles (C2) to which the graphite material (B2) is adhered can be produced by finally performing heat treatment at 1500 ° C. or more and less than 3300 ° C. in a non-oxidizing atmosphere.
 また、熱処理は段階的に行ってもよい。本発明の複合黒鉛質粒子(C1)および(C2)は粉砕に由来する破砕面を実質的に有しないことが好ましいが、熱処理過程での融着を防ぐ手段として、熱処理工程の一部にロータリーキルン方式を採用することが望ましい。炭素質材料前駆体が溶融状態から炭化に移行する温度域で、球状化黒鉛質粒子(A)を撹拌させることで表面が平滑で融着のない複合黒鉛質粒子(C1)および(C2)を得ることができる。
 なお、粉砕に由来する破砕面を実質的に有しないとは、最終的な熱処理を終えたあとの複合黒鉛質粒子(C1)および(C2)が粉末状を呈しており、全体が融着したものではないという意味である。複合黒鉛質粒子(C1)および(C2)に付着している炭素質材料(B1)および黒鉛質材料(B2)の一部が剥がれ落ち、それぞれ単独の粉末として観察されるものは対象外である。粉末状とはいえ、融着したものが僅かに含まれるケースまでを排除するものではない。
 熱処理時に融着したものを粉砕して粒子状にすること(特許文献4に相当)は、粉砕に由来する破砕面が電解液の分解反応の起点となるため、初期充放電効率の低下を招く。
Moreover, you may perform heat processing in steps. The composite graphite particles (C1) and (C2) of the present invention preferably have substantially no crushed surface derived from pulverization. However, as a means for preventing fusion during the heat treatment process, a rotary kiln is used as part of the heat treatment process. It is desirable to adopt a method. By stirring the spheroidized graphite particles (A) in a temperature range where the carbonaceous material precursor shifts from a molten state to carbonization, the composite graphite particles (C1) and (C2) having a smooth surface and no fusion are obtained. Obtainable.
Note that the composite graphite particles (C1) and (C2) after finishing the final heat treatment are in a powder form, and the whole is fused, with substantially no crushing surface derived from pulverization. It means not. Part of the carbonaceous material (B1) and the graphite material (B2) adhering to the composite graphite particles (C1) and (C2) is peeled off, and those observed as individual powders are excluded. . Although it is in powder form, it does not exclude the case where the fused material is slightly included.
Crushing the material fused at the time of heat treatment into a particulate form (corresponding to Patent Document 4) causes the degradation of the initial charge / discharge efficiency because the crushing surface derived from the pulverization is the starting point for the decomposition reaction of the electrolyte. .
 なお、前記の炭素質材料前駆体とともに、炭素繊維、カーボンブラック等の導電材や、炭素質または黒鉛質の微粒子、扁平状の人造黒鉛または天然黒鉛を用いてもよい。さらに、黒鉛質材料(B2)が付着した複合黒鉛質粒子(C2)を製造する場合には、炭素質材料前駆体とともに、黒鉛化度を高める作用のあるFe、Co、Ni、Al、Tiなどの金属類、Si、Bなどの半金属類、およびこれらの化合物を用いてもよい。 In addition, conductive materials such as carbon fiber and carbon black, carbon or graphite fine particles, flat artificial graphite or natural graphite may be used together with the carbonaceous material precursor. Further, in the case of producing composite graphite particles (C2) to which the graphite material (B2) is adhered, together with the carbonaceous material precursor, Fe, Co, Ni, Al, Ti, etc. that have an effect of increasing the degree of graphitization. These metals, metalloids such as Si and B, and compounds thereof may be used.
 本発明において、炭素質材料(B1)が付着した複合黒鉛質粒子(C1)または黒鉛質材料(B2)が付着した複合黒鉛質粒子(C2)は、その炭素質材料(B1)または黒鉛質材料(B2)の内部または表面に、炭素繊維やカーボンブラック等の導電材や他の炭素質材料または黒鉛質材料の微粒子、扁平状の人造黒鉛または天然黒鉛を有するものであってもよい。また、シリカ、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)等の金属酸化物を(例えば微粒子で)付着または埋設したものであってもよい。さらに、Si、Sn、Co、Ni、SiO、SnO、チタン酸リチウムなどの活物質となりえる金属または金属化合物を付着または埋設したものであってもよい。 In the present invention, the composite graphite particles (C1) to which the carbonaceous material (B1) is attached or the composite graphite particles (C2) to which the graphite material (B2) is attached are the carbonaceous material (B1) or the graphite material. The inside or the surface of (B2) may have a conductive material such as carbon fiber or carbon black, fine particles of other carbonaceous material or graphite material, flat artificial graphite or natural graphite. Further, a metal oxide such as silica, aluminum oxide (alumina), titanium oxide (titania) or the like may be attached or embedded (for example, in fine particles). Further, a metal or metal compound that can be an active material such as Si, Sn, Co, Ni, SiO, SnO, or lithium titanate may be attached or embedded.
 〔二次電池負極材料用黒鉛質粒子〕
 本発明の二次電池負極材料用黒鉛質粒子(以下、混合黒鉛質粒子ということがある)とは、前記の複合黒鉛質粒子(C1)および複合黒鉛質粒子(C2)の混合物である。該混合物は、ラマンスペクトルの1360cm-1周辺のピーク強度(I1360)と1580cm-1周辺のピーク強度(I1580)の強度比(I1360/I1580)分布において、0.01~0.08および0.12~0.30の両範囲に極大点を有するものであることが好ましい。複合黒鉛質粒子(C1)は、強度比(I1360/I1580)0.12~0.30の範囲に極大ピークを示し、複合黒鉛質粒子(C2)は、強度比(I1360/I1580)0.01~0.08の範囲に極大ピークを示す。
 なお、強度比(I1360/I1580)分布を求めるには、混合物の任意の200点について、強度比(I1360/I1580)を測定し、0.004間隔で該当点数をカウントすればよい。
 上記の2山の極大ピークを示す配合比としては、複合黒鉛質粒子(C1):複合黒鉛質粒子(C2)の質量比が概ね20~80:80~20である。特に、30~70:70~30が好ましい。20~80:80~20の質量比の範囲であれば、活物質層を低いプレス圧で高密度化でき、急速充電性や急速放電性のバランスが良くなり、優れたサイクル特性が得られる。
[Graphite particles for secondary battery negative electrode materials]
The graphite particles for secondary battery negative electrode material of the present invention (hereinafter sometimes referred to as mixed graphite particles) is a mixture of the composite graphite particles (C1) and the composite graphite particles (C2). The mixture, the intensity ratio of 1360 cm -1 near the peak intensity (I 1360) and 1580 cm -1 near peak intensity of a Raman spectrum (I 1580) (I 1360 / I 1580) in the distribution, 0.01-0.08 And those having maximum points in both ranges of 0.12 to 0.30. The composite graphite particles (C1) show a maximum peak in the range of intensity ratio (I 1360 / I 1580 ) 0.12 to 0.30, and the composite graphite particles (C 2) have an intensity ratio (I 1360 / I 1580). ) A maximum peak is shown in the range of 0.01 to 0.08.
In order to obtain the intensity ratio (I 1360 / I 1580 ) distribution, the intensity ratio (I 1360 / I 1580 ) is measured for any 200 points of the mixture, and the corresponding points are counted at intervals of 0.004. .
As a blending ratio showing the two peaks, the mass ratio of composite graphite particles (C1): composite graphite particles (C2) is generally 20 to 80:80 to 20. In particular, 30 to 70:70 to 30 is preferable. When the mass ratio is in the range of 20 to 80:80 to 20, the active material layer can be densified with a low pressing pressure, the balance between rapid chargeability and rapid discharge property is improved, and excellent cycle characteristics can be obtained.
 本発明の混合黒鉛質粒子は炭素網面層の面間隔(d002)が0.3360nm以下である。特に0.3358nm以下であることが好ましい。これらの結晶性を示すことで、混合黒鉛質粒子を負極材料とした場合の放電容量は、負極や評価電池の作製条件や評価条件によって変化するものの、およそ355mAh/g以上、好ましくは360mAh/g以上となる。 In the mixed graphite particles of the present invention, the interplanar spacing (d 002 ) of the carbon network layer is 0.3360 nm or less. In particular, it is preferably 0.3358 nm or less. By showing these crystallinity, the discharge capacity when the mixed graphite particles are used as the negative electrode material varies depending on the production conditions and evaluation conditions of the negative electrode and the evaluation battery, but is approximately 355 mAh / g or more, preferably 360 mAh / g. That's it.
 本発明の混合黒鉛質粒子は300回タップ密度が1.00g/cm以上である。特に1.10g/cm以上であることが好ましい。タップ密度は黒鉛質粒子の球形度や表面平滑度の指標となり、混合黒鉛質粒子が粉砕に由来する破砕面を実質的に有さないことでタップ密度が高くなる。タップ密度が高いほど、活物質層をプレスする前の密度が高く、プレスによる黒鉛質粒子の変形が小さくなり、高密度化した場合の黒鉛質粒子の変形や破壊を抑えることができる。ここで、タップ密度は,粉体試料を入れた容器を機械的にタップした後に得られる,増大したかさ密度である。  The mixed graphite particles of the present invention have a 300 times tap density of 1.00 g / cm 3 or more. In particular, it is preferably 1.10 g / cm 3 or more. The tap density becomes an index of the sphericity and surface smoothness of the graphite particles, and the mixed graphite particles do not substantially have a crushing surface derived from pulverization, thereby increasing the tap density. The higher the tap density, the higher the density before pressing the active material layer, the smaller the deformation of the graphite particles due to the press, and the lower the deformation and destruction of the graphite particles when the density is increased. Here, the tap density is an increased bulk density obtained after mechanically tapping a container containing a powder sample.
 本発明の混合黒鉛質粒子は平均粒子径が5~25μmである。特に10~20μmが好ましい。5μm以上であれば、活物質層の密度を高くすることができ、体積当たりの放電容量が向上する。そして25μm以下であると、急速充電性やサイクル特性が向上する。 The mixed graphite particles of the present invention have an average particle size of 5 to 25 μm. 10 to 20 μm is particularly preferable. If it is 5 micrometers or more, the density of an active material layer can be made high and the discharge capacity per volume will improve. And if it is 25 micrometers or less, quick charge property and cycling characteristics will improve.
 本発明の混合黒鉛質粒子は平均アスペクト比が1.2以上、4.0未満である。1.2未満の真球状に近い形状の場合は、活物質層をプレスした場合に黒鉛質粒子の変形が大きくなり、黒鉛質粒子に割れを生じたり、プレス後のリバウンドによる膨張が大きくなることがある。そして4.0以上であると、リチウムイオンの拡散性が低下し急速放電性やサイクル特性が低下する。 The mixed graphite particles of the present invention have an average aspect ratio of 1.2 or more and less than 4.0. In the case of a nearly spherical shape less than 1.2, when the active material layer is pressed, the deformation of the graphite particles becomes large, and the graphite particles are cracked or expanded due to rebound after pressing. There is. And if it is 4.0 or more, the diffusibility of lithium ions is reduced, and rapid discharge and cycle characteristics are reduced.
 本発明の混合黒鉛質粒子は水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.08ml/g以下である。特に0.05ml/g以下であることが好ましい。細孔容積が0.08ml/g以下であれば、長期間のサイクル特性が良好となる。細孔容積が0.08ml/gを超えた場合にサイクル特性が低下する理由は定かではないが、細孔容積が過大の場合は、黒鉛質粒子内部において電解液の分解反応が進行する、あるいは、黒鉛質粒子を構成する球状化黒鉛化粒子(A)の球状構造が繰返し充放電の過程で壊れやすくなるものと考えられる。 The mixed graphite particles of the present invention have a pore volume of not more than 0.08 ml / g with a pore diameter of 0.5 μm or less as measured by a mercury porosimeter. In particular, it is preferably 0.05 ml / g or less. If the pore volume is 0.08 ml / g or less, the long-term cycle characteristics are good. The reason why the cycle characteristics decrease when the pore volume exceeds 0.08 ml / g is not clear, but when the pore volume is excessive, the decomposition reaction of the electrolyte proceeds inside the graphite particles, or It is considered that the spherical structure of the spheroidized graphitized particles (A) constituting the graphite particles is likely to break during repeated charge / discharge processes.
 なお、水銀ポロシメータによる細孔容積の規定を細孔径0.5μm以下と定めたのは、細孔容積を測定するために測定用セルに黒鉛質粒子を充填する際の粒子間の空隙を除外するためである。測定対象の細孔径が0.5μm以下あれば、粒子間の空隙は含まれず、黒鉛質粒子が有する細孔のみを検出することができる。 In addition, the definition of the pore volume by the mercury porosimeter was determined to be a pore diameter of 0.5 μm or less, in order to measure the pore volume, the void between particles when filling the measurement cell with the graphite particles was excluded. Because. If the pore diameter to be measured is 0.5 μm or less, voids between the particles are not included, and only the pores of the graphite particles can be detected.
 細孔容積の調整方法を例示すると、球状化黒鉛質粒子(A)を製造する際に球状化装置の運転条件(例えば 転動時間、球状化と同時の圧力付加条件等)によって粒子内部の緻密度を制御する方法、製造された球状化黒鉛質粒子(A)に圧縮処理を施す方法、複合黒鉛質粒子(C1)、(C2)の被覆材である炭素質材料(B1)、黒鉛質材料(B2)の球状化黒鉛質粒子(A)内部への含浸度を制御する方法(例えば炭素質材料(B1)や黒鉛質材料(B2)の前駆体の粘度を低くし、球状化黒鉛質粒子(A)内部に含浸させる、さらにその際に加熱、減圧などによって含浸を助長させる方法等)が挙げられる。 An example of the pore volume adjustment method is as follows. When producing the spheroidized graphite particles (A), the density inside the particles depends on the operating conditions of the spheroidizing device (for example, rolling time, pressure applied simultaneously with spheronization, etc.). A method of controlling the degree, a method of compressing the produced spheroidized graphite particles (A), a composite graphite particles (C1), a carbonaceous material (B1) as a coating material of (C2), and a graphite material A method for controlling the degree of impregnation of (B2) into the spheroidized graphite particles (A) (for example, by reducing the viscosity of the precursor of the carbonaceous material (B1) or the graphite material (B2), (A) Impregnation into the interior, and in that case, a method of promoting impregnation by heating, decompression, etc.).
 〔リチウムイオン二次電池用負極材料〕
 本発明のリチウムイオン二次電池用負極材料(以下、単に負極材料とも記す)は、上記の混合黒鉛質粒子を活物質として単独もしくは主材として用いたものである。副材として、本発明の効果を損なわない限り、公知の各種導電材、炭素質粒子、黒鉛質粒子、金属質粒子またはこれらの複合粒子を混合することができるが、副材の混合比は質量比で30%以下に留めることが好ましい。
[Anode material for lithium ion secondary batteries]
The negative electrode material for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as negative electrode material) is obtained by using the above mixed graphite particles alone or as a main material as an active material. As a secondary material, various known conductive materials, carbonaceous particles, graphite particles, metallic particles or composite particles thereof can be mixed as long as the effects of the present invention are not impaired. It is preferable to keep the ratio at 30% or less.
 副材としては、例えば、炭素質または黒鉛質の繊維、カーボンブラック、鱗片状の人造黒鉛や天然黒鉛などの導電材、ソフトカーボンやハードカーボンなどの炭素質粒子、球状のメソカーボン小球体の黒鉛化物、または、メソカーボン小球体の粉砕物の黒鉛化物、コークスやバルクメソフェーズの黒鉛化物、バルクメソフェーズピッチを粉砕、酸化、炭化、黒鉛化してなる塊状黒鉛化物、複数の扁平状の黒鉛質粒子から構成される細孔を有する複合黒鉛化物、球状化した天然黒鉛などの黒鉛質粒子が挙げられる。
 また、これら副材は、炭素材料、有機材料、無機材料、金属材料との混合物、被覆物、複合物であってもよい。界面活性剤、樹脂などの有機化合物を付着または被覆したものであってもよく、シリカ、アルミナ、チタニアなどの金属酸化物の微粒子を付着または埋設したものであってもよく、ケイ素、錫、コバルト、ニッケル、銅、酸化ケイ素、酸化錫、チタン酸リチウムなどの金属または金属化合物を、付着、埋設、複合、内包したものであってもよい。
Secondary materials include, for example, carbonaceous or graphite fibers, carbon black, conductive materials such as scaly artificial graphite and natural graphite, carbonaceous particles such as soft carbon and hard carbon, and spherical mesocarbon microsphere graphite. Graphite of pulverized product of mesocarbon spherules, graphitized product of coke or bulk mesophase, bulk graphitized product obtained by pulverizing, oxidizing, carbonizing, and graphitizing bulk mesophase pitch, or a plurality of flat graphite particles Examples thereof include graphitized particles such as composite graphitized material having fine pores and spheroidized natural graphite.
These sub-materials may be a carbon material, an organic material, an inorganic material, a mixture with a metal material, a coating, or a composite. It may be one that adheres or coats an organic compound such as a surfactant or resin, or one that adheres or embeds fine particles of metal oxide such as silica, alumina, titania, etc., silicon, tin, cobalt In addition, a metal or a metal compound such as nickel, copper, silicon oxide, tin oxide, or lithium titanate may be attached, embedded, combined, or encapsulated.
 〔リチウムイオン二次電池用負極〕
 本発明のリチウムイオン二次電池用負極(以下、単に負極とも記す)の作製は、通常の負極の作製方法に準じて行うことができるが、化学的、電気化学的に安定な負極を得ることができる作製方法であれば何ら制限されない。
 負極の作製には、前記負極材料に結合剤を加えた負極合剤(composite anode material)を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いることが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム、さらにはカルボキシメチルセルロース等が用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中1~20質量%の割合であることが好ましい。
 負極の作製には、負極作製用の通常の溶媒であるN-メチルピロリドン、ジメチルホルムアミド、水、アルコール等を用いることができる。
 負極は、例えば、負極合剤を溶媒に分散させ、ペースト状の負極合剤を調製した後、該負極合剤を集電体の片面または両面に塗布し、乾燥して作製される。これにより、負極合剤層(活物質層)が均一かつ強固に集電体に接着した負極が得られる。
 より具体的には、例えば、前記負極材料の粒子、フッ素系樹脂粉末またはスチレンブタジエンゴムの水分散剤と溶媒を混合してスラリーとした後、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。これを集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着する。負極合剤層の膜厚は10~200μm、好ましくは30~100μmである。
 また、負極合剤層は、前記負極材料の粒子と、ポリエチレン、ポリビニルアルコール等の樹脂粉末とを乾式混合し、金型内でホットプレス成形して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、放電容量や急速充放電効率が低下することがある。
 負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。
 負極合剤層の密度は、負極の体積容量を高めることから、1.70~1.85g/cm3、特に1.75~1.85g/cm3であることが好ましい。
 負極に用いる集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状物等が好ましい。集電体の材質としては、銅、ステンレス、ニッケル等が好ましい。集電体の厚みは、箔状の場合、好ましくは5~20μmである。
[Anode for lithium ion secondary battery]
The negative electrode for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as a negative electrode) can be produced in accordance with a normal method for producing a negative electrode, but a chemically and electrochemically stable negative electrode is obtained. There is no limitation as long as it is a manufacturing method capable of satisfying the requirements.
For the production of the negative electrode, a negative electrode mixture obtained by adding a binder to the negative electrode material can be used. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene. Butadiene rubber, carboxymethyl cellulose and the like are used. These can also be used together. Usually, the binder is preferably in a proportion of 1 to 20% by mass in the total amount of the negative electrode mixture.
For the production of the negative electrode, N-methylpyrrolidone, dimethylformamide, water, alcohol and the like, which are ordinary solvents for producing the negative electrode, can be used.
The negative electrode is produced, for example, by dispersing a negative electrode mixture in a solvent to prepare a paste-like negative electrode mixture, applying the negative electrode mixture to one or both sides of a current collector, and drying. Thereby, a negative electrode in which the negative electrode mixture layer (active material layer) is uniformly and firmly bonded to the current collector is obtained.
More specifically, for example, after mixing the negative electrode material particles, fluorine resin powder or styrene butadiene rubber water dispersant and solvent into a slurry, a known stirrer, mixer, kneader, kneader or the like is used. The mixture is stirred and mixed to prepare a negative electrode mixture paste. When this is applied to the current collector and dried, the negative electrode mixture layer adheres uniformly and firmly to the current collector. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.
The negative electrode mixture layer can also be produced by dry-mixing the particles of the negative electrode material and resin powder such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient negative electrode strength, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency may be reduced.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
Density of the negative electrode mixture layer, since increasing the volumetric capacity of the negative electrode, 1.70 ~ 1.85g / cm 3, and particularly preferably a 1.75 ~ 1.85g / cm 3.
The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. In the case of a foil, the thickness of the current collector is preferably 5 to 20 μm.
 〔リチウムイオン二次電池〕
 本発明のリチウムイオン二次電池は、前記負極を用いて形成される。
 本発明の二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については、一般的な二次電池の要素に準じる。すなわち、電解液、負極および正極を主たる電池構成要素とし、これら要素が、例えば電池缶内に封入されている。そして負極および正極はそれぞれリチウムイオンの担持体として作用し、充電時には負極からリチウムイオンが離脱する。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention is formed using the negative electrode.
The secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components conform to the elements of a general secondary battery. That is, an electrolytic solution, a negative electrode, and a positive electrode are the main battery constituent elements, and these elements are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier, and lithium ions are released from the negative electrode during charging.
 [正極]
 本発明の二次電池に使用される正極は、例えば正極材料と結合剤および導電材よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)としては、リチウム化合物が用いられるが、充分な量のリチウムを吸蔵/脱離し得るものを選択するのが好ましい。例えば、リチウ含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物、その他のリチウム化合物、化学式MMoOS8-Y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは少なくとも一種の遷移金属元素である)で表されるシュブレル相化合物、活性炭、活性炭素繊維等を用いることができる。前記バナジウム酸化物はV、V13、V、V等である。
[Positive electrode]
The positive electrode used in the secondary battery of the present invention is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive material to the surface of the current collector. As the positive electrode material (positive electrode active material), a lithium compound is used, but it is preferable to select a material that can occlude / desorb a sufficient amount of lithium. For example, lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, other lithium compounds, chemical formula M X Mo 6 OS 8-Y (where X is 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1) And the like, and M is at least one kind of transition metal element), and the like can be used. The vanadium oxide is V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8 or the like.
 前記リチウム含有遷移金属合酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独でも、2種類以上組合せて用いてもよい。リチウム含有遷移金属合酸化物は、具体的には、LiM11-XM2(式中Xは0≦X≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)またはLiM11-YM2(式中Yは0≦Y≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)で示される。
 M1、M2で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Sn等であり、好ましいのはCo、Mn、Cr、Ti、V、Fe、Al等である。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9 Co0.1、LiNi0.5Co0.5等である。
 リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600~1000℃の温度で焼成することにより得ることができる。
The lithium-containing transition metal composite oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Complex oxides may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal compound oxide is LiM1 1-X M2 X O 2 (wherein X is a numerical value in the range of 0 ≦ X ≦ 1, and M1 and M2 are at least one kind of transition metal element. Or LiM1 1-Y M2 Y O 4 (wherein Y is a numerical value in the range of 0 ≦ Y ≦ 1, and M1 and M2 are at least one transition metal element).
The transition metal elements represented by M1 and M2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Mn, Cr, Ti, V, Fe , Al and the like. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2, and the like.
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.
 正極活物質は、前記リチウム化合物を単独で使用しても2種類以上併用してもよい。また、正極中に炭酸リチウム等のアルカリ炭酸塩を添加することができる。
 正極は、例えば、前記リチウム化合物、結合剤、および正極に導電性を付与するための導電材よりなる正極合剤を、集電体の片面または両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電材としては、黒鉛、カーボンブラック等の炭素材料が使用される。
As the positive electrode active material, the lithium compound may be used alone or in combination of two or more. Moreover, alkali carbonates, such as lithium carbonate, can be added in a positive electrode.
The positive electrode is formed by, for example, applying a positive electrode mixture composed of the lithium compound, the binder, and a conductive material for imparting conductivity to the positive electrode on one or both sides of the current collector to form a positive electrode mixture layer. Produced. As the binder, the same one as that used for producing the negative electrode can be used. Carbon materials such as graphite and carbon black are used as the conductive material.
  正極も負極と同様に、正極合剤(composite cathode material)を溶媒に分散させ、ペースト状にした正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
 集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状等のものが好ましい。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは、箔状の場合、10~40μmが好適である。
Similarly to the negative electrode, the positive electrode mixture (composite cathode material) may be dispersed in a solvent, and the paste-formed positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After the mixture layer is formed, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
The shape of the current collector is not particularly limited, but is preferably a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material of the current collector is aluminum, stainless steel, nickel or the like. In the case of a foil, the thickness is preferably 10 to 40 μm.
 [非水電解質]
 本発明の二次電池に用いる非水電解質(電解液)は、通常の非水電解液に使用される電解質塩である。電解質塩としては、例えば、LiPF、LiBF、LiAsF、LiClO、LiB(C、LiCl、LiBr、LiCFSO、LiCH3SO、LiN(CFSO、LiC(CFSO、LiN(CF3CHOSO、LiN(CF3CFOSO、LiN(HCFCFCHOSO、LiN[(CFCHOSO、LiB[C(CF、LiAlCl、LiSiF等のリチウム塩を用いることができる。特にLiPF、LiBFが酸化安定性の点から好ましい。
 電解液の電解質塩濃度は0.1~5mol/Lが好ましく、0.5~3mol/Lがより好ましい。
[Nonaqueous electrolyte]
The nonaqueous electrolyte (electrolytic solution) used for the secondary battery of the present invention is an electrolyte salt used for a normal nonaqueous electrolytic solution. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2. , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 5 and other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
The electrolyte salt concentration of the electrolytic solution is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3 mol / L.
 非水電解質は液状としてもよく、固体、ゲル状等の高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、それぞれ高分子固体電解質電池、高分子ゲル電解質電池等の高分子電解質電池として構成される。
 非水電解質液を構成する溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテル等のエーテル、スルホラン、メチルスルホラン等のチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリル等のニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、ジメチルサルファイト等の非プロトン性有機溶媒等を用いることができる。
The non-aqueous electrolyte may be liquid, or may be a solid or gel polymer electrolyte. In the former case, the nonaqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the nonaqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery or a polymer gel electrolyte battery.
Examples of the solvent constituting the nonaqueous electrolyte include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile , Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, La tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite, and the like.
 前記高分子電解質を用いる場合には、可塑剤(非水電解液)でゲル化された高分子化合物をマトリックスとして使用することが好ましい。マトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体等のエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体等のフッ素系高分子化合物等を単独または混合して用いることができる。ポリビニリデンフルオライドやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物を用いることが特に好ましい。 When using the polymer electrolyte, it is preferable to use a polymer compound gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer compound constituting the matrix include ether polymer compounds such as polyethylene oxide and its cross-linked products, polymethacrylate polymer compounds, polyacrylate polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. Fluorine polymer compounds such as copolymers can be used alone or in combination. It is particularly preferable to use a fluorine-based polymer compound such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
 前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合される。可塑剤として前記の電解質塩や非水溶媒を使用することができる。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1~5mol/Lが好ましく、0.5~2mol/Lがより好ましい。 The plastic solid electrolyte or polymer gel electrolyte is mixed with a plasticizer. As the plasticizer, the above electrolyte salts and non-aqueous solvents can be used. In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / L, more preferably 0.5 to 2 mol / L.
 前記高分子固体電解質の作製方法は特に限定されない。例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、混合用有機溶媒に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線、分子線等を照射して、重合性モノマーを重合させ、高分子化合物を得る方法などを挙げることができる。
 高分子固体電解質中の非水溶媒(可塑剤)の割合は10~90質量%が好ましく、30~80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、製膜しにくくなる。
The method for producing the polymer solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a non-aqueous solvent (plasticizer) and heating to melt the polymer compound, a polymer compound, a lithium salt, and non-water as an organic solvent for mixing Method of evaporating organic solvent for mixing after dissolving solvent (plasticizer), mixing polymerizable monomer, lithium salt and non-aqueous solvent (plasticizer), and irradiating the mixture with ultraviolet rays, electron beam, molecular beam, etc. And a method of polymerizing a polymerizable monomer to obtain a polymer compound.
The proportion of the nonaqueous solvent (plasticizer) in the polymer solid electrolyte is preferably 10 to 90% by mass, more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.
 本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
 セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
 本発明の二次電池は、前記負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順に積層し、電池の外装材内に収容することで作製される。
 さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
The secondary battery of the present invention is produced by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material.
Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
 本発明の二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量等に応じて、円筒型、角型、コイン型、ボタン型等の中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。
 高分子電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
The structure of the secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, and the like. A coin type, a button type, or the like can be arbitrarily selected. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging.
In the case of a polymer electrolyte battery, a structure enclosed in a laminate film can also be used.
 以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例および比較例においては、図1に示すような構成の評価用のボタン型二次電池を作製して評価した。該電池は、本発明の目的に基づき、公知の方法に準拠して作製することができる。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, button-type secondary batteries for evaluation having a configuration as shown in FIG. 1 were produced and evaluated. The battery can be produced according to a known method based on the object of the present invention.
(実施例1)
〔球状化黒鉛質粒子(A)の調製〕
 平均粒子径55μmの鱗片状天然黒鉛を粉砕しつつ、転動させながら折り畳み加工を施して、球状に賦形し、平均粒子径が12μm、平均アスペクト比が1.4、(d002)が0.3357nm、比表面積が7.0m2/g、水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.12ml/gに調整した。
 この球状の黒鉛質粒子を金型プレスによって、0.5ton/cmの圧力で圧縮処理し、平均粒子径が12μm、平均アスペクト比が1.8、(d002)が0.3357nm、比表面積が6.5m/g、水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.08ml/gに調整した。
(Example 1)
[Preparation of spheroidized graphite particles (A)]
While pulverizing and rolling the flaky natural graphite having an average particle diameter of 55 μm, it is shaped into a spherical shape with an average particle diameter of 12 μm, an average aspect ratio of 1.4, and (d 002 ) of 0. .3357 nm, specific surface area was 7.0 m <2> / g, and pore volume with a pore diameter of 0.5 [mu] m or less by a mercury porosimeter was adjusted to 0.12 ml / g.
The spherical graphite particles were compressed by a mold press at a pressure of 0.5 ton / cm 2 , the average particle diameter was 12 μm, the average aspect ratio was 1.8, (d 002 ) was 0.3357 nm, the specific surface area Was 6.5 m 2 / g, and the pore volume with a pore diameter of 0.5 μm or less by a mercury porosimeter was adjusted to 0.08 ml / g.
〔複合黒鉛質粒子(C1)の調製〕
 上記球状化黒鉛質粒子(A)100質量部、炭素質材料(B1)の前駆体として、軟化点80℃、残炭率50%のコールタールピッチの粉砕品(平均粒子径4μm)8質量部、平均粒子径5μmの鱗片状天然黒鉛2質量部を混合し、ロータリーキルンで窒素雰囲気下、500℃で1時間一次焼成を行ったのち、窒素雰囲気下、1100℃で3時間焼成処理を行い、炭素質材料(B1)と球状化黒鉛質粒子(A)からなる複合黒鉛質粒子(C1)を得た。
 得られた複合黒鉛質粒子(C1)は、目開き53μmの篩処理による篩歩留まりが99.8%と高く、実質的に未融着であった。篩下を回収し分析すると、平均粒子径が13μm、平均アスペクト比が1.8、(d002)が0.3357nm、比表面積が3.6m/g、水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.06ml/gであった。
 走査型電子顕微鏡にて複合黒鉛質粒子(C1)を観察したところ、表面に鱗片状天然黒鉛が付着しているものの平滑な楕円体状の被覆黒鉛質粒子であった。コールタールピッチに由来する焼成炭素単独の粒子は観察されず、また、融着部の解砕に由来する粉砕破断面も観察されなかった。
[Preparation of Composite Graphite Particles (C1)]
100 parts by mass of the above spheroidized graphite particles (A) and a precursor of the carbonaceous material (B1), 8 parts by mass of a pulverized product of coal tar pitch having a softening point of 80 ° C. and a residual carbon ratio of 50% (average particle diameter of 4 μm) Then, 2 parts by mass of flaky natural graphite having an average particle size of 5 μm was mixed, and after a primary firing at 500 ° C. for 1 hour in a nitrogen atmosphere in a rotary kiln, a firing treatment was performed at 1100 ° C. for 3 hours in a nitrogen atmosphere, and carbon Composite graphite particles (C1) composed of a porous material (B1) and spheroidized graphite particles (A) were obtained.
The obtained composite graphite particles (C1) had a high sieve yield of 99.8% by sieving with a mesh size of 53 μm, and were substantially unfused. When the sieve is collected and analyzed, the average particle diameter is 13 μm, the average aspect ratio is 1.8, (d 002 ) is 0.3357 nm, the specific surface area is 3.6 m 2 / g, and the pore diameter is 0.5 μm or less by a mercury porosimeter. The pore volume was 0.06 ml / g.
When the composite graphite particles (C1) were observed with a scanning electron microscope, they were smooth ellipsoidal coated graphite particles with scaly natural graphite attached to the surface. No particles of calcined carbon alone derived from coal tar pitch were observed, and no crushed fracture surface derived from crushing of the fused portion was observed.
〔複合黒鉛質粒子(C2)の調製〕
 上記球状化黒鉛質粒子(A)100質量部、黒鉛質材料(B2)の前駆体として、軟化点270℃、残炭率80%のコールタールピッチ熱処理品の粉砕品(平均粒子径5μm)25質量部を混合し、ロータリーキルンで窒素雰囲気下、500℃で1時間一次焼成を行ったのち、非酸化性雰囲気にて2800℃で5時間黒鉛化処理を行い、黒鉛質材料(B2)と球状化黒鉛質粒子(A)からなる複合黒鉛質粒子(C2)を得た。
[Preparation of Composite Graphite Particles (C2)]
100 parts by mass of the above spheroidized graphite particles (A) and a precursor of the graphite material (B2), a pulverized product (average particle size 5 μm) of a coal tar pitch heat treated product having a softening point of 270 ° C. and a residual carbon ratio of 80% 25 After mixing parts by mass and performing primary firing at 500 ° C for 1 hour in a nitrogen atmosphere in a rotary kiln, graphitization treatment is performed at 2800 ° C for 5 hours in a non-oxidizing atmosphere to spheroidize with the graphite material (B2) Composite graphite particles (C2) made of graphite particles (A) were obtained.
 得られた複合黒鉛質粒子(C2)は、目開き53μmの篩処理による篩歩留まりが99.5%と高く、実質的に未融着であった。篩下を回収し分析すると、平均粒子径が14μm、平均アスペクト比が1.8、(d002)が0.3358nm、比表面積が0.6m/g、水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.04ml/gであった。
 走査型電子顕微鏡にて複合黒鉛質粒子(C2)を観察したところ、表面の平滑な楕円体状の被覆黒鉛質粒子であった。コールタールピッチ熱処理品に由来する黒鉛化物単独の粒子は観察されず、また、融着部の解砕に由来する粉砕破断面も観察されなかった。
The obtained composite graphite particles (C2) had a high sieve yield of 99.5% by sieving with a mesh size of 53 μm and were substantially unfused. When the sieve is collected and analyzed, the average particle size is 14 μm, the average aspect ratio is 1.8, (d 002 ) is 0.3358 nm, the specific surface area is 0.6 m 2 / g, and the pore diameter is 0.5 μm or less by a mercury porosimeter. The pore volume was 0.04 ml / g.
When the composite graphite particles (C2) were observed with a scanning electron microscope, they were coated ellipsoidal graphite particles with a smooth surface. No particles of the graphitized material alone derived from the coal tar pitch heat-treated product were observed, and no crushed fracture surface derived from crushing of the fused portion was observed.
〔混合黒鉛質粒子の調製〕
 前記の複合黒鉛質粒子(C1)50質量部と複合黒鉛質粒子(C2)50質量部を混合した。該混合物は、平均粒子径が14μm、平均アスペクト比が1.8、(d002)が0.3358nm、比表面積が2.1m/g、水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.05ml/g、300回のタップ密度が1.21gcmであった。
該混合物について、任意の200点におけるラマンスペクトルの1360cm-1周辺のピーク強度(I1360)と1580cm-1周辺のピーク強度(I1580)の強度比(I1360/I1580)分布を測定した結果を図2に示す。強度比(I1360/I1580)が0.04および0.172近傍に極大ピークを示した。
[Preparation of mixed graphite particles]
50 parts by mass of the composite graphite particles (C1) and 50 parts by mass of the composite graphite particles (C2) were mixed. The mixture has an average particle diameter of 14 μm, an average aspect ratio of 1.8, a (d 002 ) of 0.3358 nm, a specific surface area of 2.1 m 2 / g, and a pore volume of not more than 0.5 μm by a mercury porosimeter. Was 0.05 ml / g and the tap density of 300 times was 1.21 gcm 3 .
The mixture, the intensity ratio of 1580 cm -1 near the peak intensity and 1360 cm -1 near peak intensity of a Raman spectrum (I 1360) at any 200 point (I 1580) (I 1360 / I 1580) results of measuring the distribution Is shown in FIG. The intensity ratio (I 1360 / I 1580 ) showed maximum peaks in the vicinity of 0.04 and 0.172.
[負極合剤の調製]
 前記負極材料98質量部、結合剤カルボキシメチルセルロース1質量部およびスチレンブタジエンゴム1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
[Preparation of negative electrode mixture]
98 parts by mass of the negative electrode material, 1 part by mass of the binder carboxymethyl cellulose and 1 part by mass of styrene butadiene rubber were put in water and stirred to prepare a negative electrode mixture paste.
[作用電極の作製]
 前記負極合剤ペーストを、厚さ16μmの銅箔上に均一な厚さで塗布し、さらに真空中90℃で分散媒の水を蒸発させて乾燥した。次に、この銅箔上に塗布された負極合剤をハンドプレスによって12kN/cm(120MPa)で加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔に密着した負極合剤層(厚み60μm)を有する作用電極を作製した。負極合剤層の密度は1.75g/cmであった。作用電極には伸び、変形がなく、断面から見た集電体に凹みがなかった。
[Production of working electrode]
The negative electrode mixture paste was applied on a copper foil having a thickness of 16 μm to a uniform thickness, and further, water in a dispersion medium was evaporated at 90 ° C. in a vacuum to dry the paste. Next, the negative electrode mixture applied onto the copper foil was pressed with a hand press at 12 kN / cm 2 (120 MPa), and further punched into a circular shape with a diameter of 15.5 mm. A working electrode having an agent layer (thickness 60 μm) was prepared. The density of the negative electrode mixture layer was 1.75 g / cm 3 . The working electrode was stretched and not deformed, and the current collector viewed from the cross section had no dent.
[対極の作製]
 リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔(厚さ0.5mm)からなる対極を作製した。
[Production of counter electrode]
A lithium metal foil is pressed onto a nickel net and punched into a circular shape with a diameter of 15.5 mm, and consists of a current collector made of nickel net and a lithium metal foil (thickness 0.5 mm) in close contact with the current collector. A counter electrode was produced.
[電解液・セパレータ]
 エチレンカーボネート33vol%-メチルエチルカーボネート67vol%の混合溶媒に、LiPF6を1mol/Lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚さ20μm)に含浸させ、電解液が含浸されたセパレータを作製した。
[Electrolyte / Separator]
LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness: 20 μm) to produce a separator impregnated with the electrolytic solution.
[評価電池の作製]
 評価電池として図1に示すボタン型二次電池を作製した。
 外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極4、電解液が含浸したセパレータ5、負極合剤からなる円盤状の作用電極2および銅箔からなる集電体7bが積層された電池である。
 評価電池は、電解液が含浸したセパレータ5を、集電体7bに密着した作用電極2と、集電材7aに密着した対極4との間に挟んで積層した後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
 評価電池は、実電池において、負極活物質として使用可能な黒鉛質物粒子を含有する作用電極2と、リチウム金属箔とからなる対極4とから構成される電池である。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. Inside, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode 4 made of lithium foil, a separator 5 impregnated with an electrolyte, a disk-shaped working electrode 2 made of a negative electrode mixture, and A battery in which current collectors 7b made of copper foil are laminated.
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the working electrode 2 was attached to the exterior cup 1. The counter electrode 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and an insulating gasket 6 is interposed between the outer cup 1 and the outer can 3, It was made by sealing and sealing.
The evaluation battery is a battery composed of a working electrode 2 containing graphite particles that can be used as a negative electrode active material and a counter electrode 4 made of a lithium metal foil in an actual battery.
 前記のように作製された評価電池について、25℃の温度下で下記のような充放電試験を行い、質量当たりの放電容量、体積当たりの放電容量、初期充放電効率、急速充電率、急速放電率およびサイクル特性を評価した。評価結果を表1(表1-1及び表1-2を示す。以下同じ。)に示す。 The evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., discharge capacity per mass, discharge capacity per volume, initial charge / discharge efficiency, rapid charge rate, rapid discharge. Rate and cycle characteristics were evaluated. The evaluation results are shown in Table 1 (shown in Table 1-1 and Table 1-2, the same shall apply hereinafter).
[質量当たりの放電容量、体積当たりの放電容量]
 回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から質量当たりの充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から質量当たりの放電容量を求めた。これを第1サイクルとした。第1サイクルにおける充電容量と放電容量から、次式により初期充放電効率を計算した。
  初期充放電効率(%)=(放電容量/充電容量)×100
 なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とした。
[Discharge capacity per mass, discharge capacity per volume]
After 0.9 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity per mass was determined from the energization amount during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity per mass was determined from the amount of electricity supplied during this period. This was the first cycle. From the charge capacity and discharge capacity in the first cycle, the initial charge / discharge efficiency was calculated by the following equation.
Initial charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching from the negative electrode material was discharged.
[急速充電率]
 第1サイクルに引続き、第2サイクルにて急速充電を行なった。
 回路電圧が0mVに達するまで、電流値を第1サイクルの8倍の7.2mAとして、定電流充電を行い、定電流充電容量を求め、次式から急速充電率を計算した。
  急速充電率(%)=(第2サイクルにおける定電流充電容量/第1サイクルにおける放電容量)×100
[Quick charge rate]
Following the first cycle, rapid charging was performed in the second cycle.
Until the circuit voltage reached 0 mV, the current value was set to 7.2 mA, eight times the first cycle, constant current charging was performed, the constant current charging capacity was obtained, and the rapid charging rate was calculated from the following equation.
Rapid charge rate (%) = (constant current charge capacity in the second cycle / discharge capacity in the first cycle) × 100
[急速放電率]
 別の評価電池を用い、第1サイクルに引続き、第2サイクルにて急速放電を行なった。前記同様に、第1サイクルを行った後、第1サイクルと同様に充電し、次いで、電流値を第1サイクルの20倍の18mAとして、回路電圧が1.5Vに達するまで、定電流放電を行った。この間の通電量から質量当たりの放電容量を求め、次式により急速放電率を計算した。
  急速放電率(%)=(第2サイクルにおける放電容量/第1サイクルにおける放電容量)×100
[Rapid discharge rate]
Using another evaluation battery, rapid discharge was performed in the second cycle following the first cycle. As described above, after performing the first cycle, charging is performed in the same manner as in the first cycle, and then the constant current discharge is performed until the circuit voltage reaches 1.5 V with the current value set to 18 mA, which is 20 times the first cycle. went. The discharge capacity per mass was calculated | required from the amount of electricity supply in the meantime, and the rapid discharge rate was computed by following Formula.
Rapid discharge rate (%) = (discharge capacity in the second cycle / discharge capacity in the first cycle) × 100
〔サイクル特性〕
 質量当たりの放電容量、初期充放電効率、急速充電率、急速放電率を評価した評価電池とは別の評価電池を以下のように作製した。
 図1のボタン電池の4対極として、リチウム箔に代えて、コバルト酸リチウムとカーボンブラックの混合物を、ポリフッ化ビニリデンを結合剤としてアルミ箔上に塗装した正極を用いた。負極の充電容量の95%に相当する放電容量を発現するように正極活物質量を調整した。
 回路電圧が4.2Vに達するまで7.2mAの定電流充電を行った後、定電圧充電に切替え、電流値が120μAになるまで充電を続けた後、10分間休止した。次に7.2mAの電流値で、回路電圧が3Vに達するまで定電流放電を行った。100回充放電を繰り返し、得られた放電容量から次式を用いてサイクル特性を計算した。
 サイクル特性(%)=(第100サイクルにおける放電容量/第1サイクルにおける放電容量)×100
[Cycle characteristics]
An evaluation battery different from the evaluation battery evaluated for discharge capacity per mass, initial charge / discharge efficiency, rapid charge rate, and rapid discharge rate was fabricated as follows.
As the four counter electrodes of the button battery of FIG. 1, a positive electrode obtained by coating a mixture of lithium cobaltate and carbon black on aluminum foil using polyvinylidene fluoride as a binder instead of lithium foil was used. The amount of the positive electrode active material was adjusted so as to develop a discharge capacity corresponding to 95% of the charge capacity of the negative electrode.
After constant current charging at 7.2 mA until the circuit voltage reached 4.2 V, switching to constant voltage charging was continued until the current value reached 120 μA, and then rested for 10 minutes. Next, constant current discharge was performed at a current value of 7.2 mA until the circuit voltage reached 3V. The charge / discharge was repeated 100 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following formula.
Cycle characteristics (%) = (discharge capacity in the 100th cycle / discharge capacity in the first cycle) × 100
 表1に示すように、作用電極に実施例1の負極材料を用いて得られた評価電池は、活物質の密度を1.75g/cmと高くすることができ、かつ、高い質量当たりの放電容量および高い初期充放電効率を示す。このため、体積当たりの放電容量を大幅に向上させることができる。その高い密度においても、急速充電率、急速放電率およびサイクル特性は優れた結果を維持している。 As shown in Table 1, the evaluation battery obtained using the negative electrode material of Example 1 as the working electrode can increase the density of the active material to 1.75 g / cm 3 and has a high mass per mass. It shows discharge capacity and high initial charge / discharge efficiency. For this reason, the discharge capacity per volume can be improved significantly. Even at its high density, the rapid charge rate, rapid discharge rate, and cycle characteristics maintain excellent results.
(実施例2~5)
 実施例1において、複合黒鉛質粒子(C1)と複合黒鉛質粒子(C2)の混合比を変えた以外は実施例1と同様にしてプレス圧力を変えて負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Examples 2 to 5)
In Example 1, except that the mixing ratio of the composite graphite particles (C1) and the composite graphite particles (C2) was changed, the density of the negative electrode mixture layer was changed to 1.75 g by changing the pressing pressure in the same manner as in Example 1. A working electrode was prepared by adjusting to / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
(比較例1および2)
 実施例1において、複合黒鉛質粒子(C1)と複合黒鉛質粒子(C2)を混合せず、それぞれを単独で負極材料とした以外は、実施例1と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。また、実施例1~5とともに、複合黒鉛質粒子(C1)と複合黒鉛質粒子(C2)の混合比率と電池特性の関係を、図3~5に示す。
(Comparative Examples 1 and 2)
In Example 1, the density of the negative electrode mixture layer was changed in the same manner as in Example 1 except that the composite graphite particles (C1) and the composite graphite particles (C2) were not mixed and each was used alone as a negative electrode material. A working electrode was prepared by adjusting to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1. In addition to Examples 1 to 5, the relationship between the mixing ratio of the composite graphite particles (C1) and the composite graphite particles (C2) and the battery characteristics is shown in FIGS.
 本発明の混合黒鉛質粒子は、図3に示す急速充電率、図4に示す急速放電率および図5に示すサイクル特性を高水準で兼ね備えている。一方、複合黒鉛質粒子(C1)と複合黒鉛質粒子(C2)を混合せず、それぞれを単独で負極材料とした場合には、急速充電率および急速放電率のいずれかの特性が不足し、その影響もあってサイクル特性が劣っている。 The mixed graphite particles of the present invention have a high charge rate shown in FIG. 3, a rapid discharge rate shown in FIG. 4, and a cycle characteristic shown in FIG. On the other hand, when the composite graphite particles (C1) and the composite graphite particles (C2) are not mixed and each of them is used alone as a negative electrode material, either of the characteristics of the rapid charge rate and the rapid discharge rate is insufficient. Due to the influence, the cycle characteristics are inferior.
(実施例6)
 実施例1において、負極合剤層の密度を1.80g/cm(実施例6)と変えた以外は、実施例1と同様にして作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
 負極合剤層の密度を高くするほど、各電池特性は低下する傾向にあるが、密度1.80g/cmでは充分に高い水準を維持している。一方、密度を高くしすぎると、集電体である銅箔の変形や電池特性の低下が顕著になる。
(Example 6)
A working electrode was produced in the same manner as in Example 1 except that the density of the negative electrode mixture layer in Example 1 was changed to 1.80 g / cm 3 (Example 6), and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As the density of the negative electrode mixture layer increases, the battery characteristics tend to decrease, but at a density of 1.80 g / cm 3 , a sufficiently high level is maintained. On the other hand, when the density is too high, deformation of the copper foil as a current collector and deterioration of battery characteristics become remarkable.
(実施例7~9,比較例3~7)
 実施例1において、球状化黒鉛質粒子(A)の平均粒子径、平均アスペクト比、圧縮処理有無、炭素質材料(B1)および黒鉛質材料(B2)の比率、複合黒鉛質粒子(C1)への鱗片状天然黒鉛の配合有無、複合黒鉛質粒子(C2)を製造する際に黒鉛質材料(B2)の前駆体とともに120nmφ5μm長の黒鉛化炭素繊維を2質量部加えたなどの操作をした以外は、実施例1と同様にして作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。混合黒鉛質粒子の諸物性を表1に示す。
(Examples 7 to 9, Comparative Examples 3 to 7)
In Example 1, the average particle diameter, average aspect ratio, compression treatment presence / absence of the spheroidized graphite particles (A), the ratio of the carbonaceous material (B1) and the graphite material (B2), to the composite graphite particles (C1) Other than the addition of 2 parts by mass of 120 nmφ5 μm long graphitized carbon fiber together with the precursor of the graphite material (B2) when producing composite graphite particles (C2) Produced a working electrode in the same manner as in Example 1 to produce an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1. Table 1 shows various physical properties of the mixed graphite particles.
 混合黒鉛質粒子の要件である炭素網面層の面間隔(d002)が0.3360nm超の場合には放電容量が低い。タップ密度が1.0g/cm未満の場合や、平均アスペクト比が4以上の場合には、急速放電率やサイクル特性が不足する。平均粒子径が5μm未満の場合には初期充放電効率が低く、25μm超の場合には急速充電率やサイクル特性が不足する。水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.08ml/gを超える場合には、サイクル特性が相対的に劣る。 When the interplanar spacing (d 002 ) of the carbon network layer, which is a requirement for the mixed graphite particles, exceeds 0.3360 nm, the discharge capacity is low. When the tap density is less than 1.0 g / cm 3 or when the average aspect ratio is 4 or more, the rapid discharge rate and cycle characteristics are insufficient. When the average particle diameter is less than 5 μm, the initial charge / discharge efficiency is low, and when it exceeds 25 μm, the rapid charge rate and cycle characteristics are insufficient. When the pore volume with a pore diameter of 0.5 μm or less by a mercury porosimeter exceeds 0.08 ml / g, the cycle characteristics are relatively inferior.
(実施例10)
 実施例9の混合黒鉛質粒子85質量部に、他の負極材料として、以下に示すバルクメソフェーズ黒鉛化物を15質量部混合した他は実施例1と同様にして作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。混合黒鉛質粒子の諸物性を表1に示す。
(Example 10)
A working electrode was prepared in the same manner as in Example 1 except that 85 parts by mass of the mixed graphite particles of Example 9 and 15 parts by mass of the bulk mesophase graphitized material shown below were mixed as other negative electrode materials. Produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1. Table 1 shows various physical properties of the mixed graphite particles.
〔バルクメソフェーズ黒鉛化物の調整〕
 コールタールピッチを不活性雰囲気中で12時間かけて400℃に昇温し熱処理したのち、不活性雰囲気中で常温まで自然冷却した。得られたバルクメソフェーズを粉砕し、平均アスペクト比1.6、平均粒子径10μmの塊状に賦形した。次いで、空気中280℃で15分熱処理して酸化させ、不融化処理を行ったのち、非酸化性雰囲気中で900℃で6時間、3000℃で5時間かけて黒鉛化処理を行い、バルクメソフェーズ黒鉛化物を調製した。
 得られたバルクメソフェーズ黒鉛化物の粒子形状は、粉砕時の形状を維持していた。(d002)は0.3362nm、比表面積は1.2m/gであった。
[Adjustment of bulk mesophase graphitized material]
The coal tar pitch was heated to 400 ° C. in an inert atmosphere over 12 hours and heat-treated, and then naturally cooled to room temperature in an inert atmosphere. The obtained bulk mesophase was pulverized and shaped into a lump with an average aspect ratio of 1.6 and an average particle diameter of 10 μm. Next, after heat treatment in air at 280 ° C. for 15 minutes for oxidation and infusibilization treatment, graphitization treatment was carried out in a non-oxidizing atmosphere at 900 ° C. for 6 hours and 3000 ° C. for 5 hours, and bulk mesophase Graphitized material was prepared.
The particle shape of the obtained bulk mesophase graphitized product maintained the shape at the time of pulverization. (D 002 ) was 0.3362 nm, and the specific surface area was 1.2 m 2 / g.
(実施例11)
 実施例9の混合黒鉛質粒子80質量部に、他の負極材料として、実施例10に示したバルクメソフェーズ黒鉛化物を10質量部、および以下に示す炭素質材料を被覆した鱗片状黒鉛を5質量部混合した他は実施例1と同様にして作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。混合黒鉛質粒子の諸物性を表1に示す。
(Example 11)
80 parts by mass of the mixed graphite particles of Example 9, 10 parts by mass of the bulk mesophase graphitized material shown in Example 10 and 5 parts of scaly graphite coated with the carbonaceous material shown below as another negative electrode material A working electrode was produced in the same manner as in Example 1 except that the parts were mixed, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1. Table 1 shows various physical properties of the mixed graphite particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔炭素質材料を被覆した鱗片状黒鉛の調製〕
 平均粒子径5μmの鱗片状天然黒鉛100質量部、に炭素質材料の前駆体として、軟化点80℃、残炭率50%のコールタールピッチの粉砕品(平均粒子径3μm)3質量部を混合し、ロータリーキルンで窒素雰囲気下、500℃で1時間一次焼成を行ったのち、窒素雰囲気下、1100℃で3時間焼成処理を行い、炭素質材料によって被覆された鱗片状天然黒鉛を得た。
 得られた炭素質材料によって被覆された鱗片状天然黒鉛は、平均粒子径が5μm、平均アスペクト比が34、(d002)が0.3357nm、比表面積が7.0m/gであった。
[Preparation of scale-like graphite coated with carbonaceous material]
100 parts by mass of flaky natural graphite having an average particle diameter of 5 μm and 3 parts by mass of a coal tar pitch pulverized product (average particle diameter of 3 μm) having a softening point of 80 ° C. and a residual carbon ratio of 50% are mixed as a carbonaceous material precursor. Then, after performing primary firing in a rotary kiln at 500 ° C. for 1 hour in a nitrogen atmosphere, firing treatment was performed at 1100 ° C. for 3 hours in a nitrogen atmosphere to obtain scaly natural graphite coated with a carbonaceous material.
The scaly natural graphite coated with the obtained carbonaceous material had an average particle diameter of 5 μm, an average aspect ratio of 34, (d 002 ) of 0.3357 nm, and a specific surface area of 7.0 m 2 / g.
 表1に示すように、本発明の混合黒鉛質粒子が有する高い放電容量を損なわない範囲で、他の負極材料を混合して用いても、本発明の特徴である優れた初期充放電効率、急速充電率、急速放電率およびサイクル特性が得られた。 As shown in Table 1, excellent initial charge / discharge efficiency, which is a feature of the present invention, can be used even if other negative electrode materials are mixed and used within a range that does not impair the high discharge capacity of the mixed graphite particles of the present invention. Fast charge rate, fast discharge rate and cycle characteristics were obtained.
 以上のように、本発明の規定する負極材料によって作用電極を作製した実施例の場合、負極合剤層の密度を高くすることができ、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のいずれもが優れていた。一方、本発明の規定を外れる負極材料によって作用電極を作製した比較例の場合、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のうちのいずれかが不十分であった。 As described above, in the example in which the working electrode was produced from the negative electrode material defined by the present invention, the density of the negative electrode mixture layer can be increased, and the discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge Both rate and cycle characteristics were excellent. On the other hand, in the case of the comparative example in which the working electrode was made of a negative electrode material that does not meet the provisions of the present invention, any of discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics was insufficient. .
 本発明の負極材料は、搭載する機器の小型化および高性能化に有効に寄与するリチウム
イオン二次電池の負極材料に用いることができる。
The negative electrode material of the present invention can be used as a negative electrode material for a lithium ion secondary battery that contributes effectively to downsizing and high performance of equipment to be mounted.
 1 外装カップ
 2 作用電極
 3 外装缶
 4 対極
 5 セパレータ
 6 絶縁ガスケット
 7a、7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Separator 6 Insulating gasket 7a, 7b Current collector

Claims (5)

  1.  球状または略球状に賦形された球状化黒鉛質粒子(A)の該粒子内部および該粒子表面の少なくとも一部に、炭素質材料(B1)を有する複合黒鉛質粒子(C1)と、前記球状化黒鉛質粒子(A)の該粒子内部および該粒子表面の少なくとも一部に、黒鉛質材料(B2)を有する複合黒鉛質粒子(C2)の混合物であって、
     該混合物が、下記(1)~(5)を満足するリチウムイオン二次電池負極材料用黒鉛質粒子。
     (1)炭素網面層の面間隔(d002)が0.3360nm以下、
     (2)タップ密度が1.0g/cm以上、
     (3)平均粒子径が5~25μm、
     (4)平均アスペクト比が1.2以上、4.0未満、および
     (5)水銀ポロシメータによる細孔径0.5μm以下の細孔容積が0.08ml/g以下。
    Composite graphite particles (C1) having a carbonaceous material (B1) inside the particles and at least a part of the particle surfaces of the spheroidized graphite particles (A) formed into a spherical shape or a substantially spherical shape, and the spherical shape. A mixture of composite graphite particles (C2) having a graphite material (B2) inside and at least part of the surface of the graphitized graphite particles (A),
    Graphite particles for a negative electrode material for a lithium ion secondary battery, wherein the mixture satisfies the following (1) to (5).
    (1) The interplanar spacing (d 002 ) of the carbon network layer is 0.3360 nm or less,
    (2) The tap density is 1.0 g / cm 3 or more,
    (3) The average particle size is 5 to 25 μm,
    (4) The average aspect ratio is 1.2 or more and less than 4.0, and (5) The pore volume with a pore diameter of 0.5 μm or less by a mercury porosimeter is 0.08 ml / g or less.
  2.  前記炭素質材料(B1)の含有量が、前記複合黒鉛質粒子(C1)中の前記球状化黒鉛質粒子(A)100質量部に対して0.1~10質量部であり、
     前記炭素質材料(B2)の含有量が、前記複合黒鉛質粒子(C2)中の前記球状化黒鉛質粒子(A)100質量部に対して5~30質量部である請求項1に記載のリチウムイオン二次電池負極材料用黒鉛質粒子。
    The content of the carbonaceous material (B1) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A) in the composite graphite particles (C1).
    The content of the carbonaceous material (B2) is 5 to 30 parts by mass with respect to 100 parts by mass of the spheroidized graphite particles (A) in the composite graphite particles (C2). Graphite particles for negative electrode materials for lithium ion secondary batteries.
  3.  前記複合黒鉛質粒子(C1)と前記複合黒鉛質粒子(C2)との割合が、質量比で1:99~90:10である請求項1または2に記載のリチウムイオン二次電池負極材料用黒鉛質粒子。 The lithium ion secondary battery negative electrode material according to claim 1 or 2, wherein a ratio of the composite graphite particles (C1) and the composite graphite particles (C2) is 1:99 to 90:10 by mass ratio. Graphite particles.
  4.  請求項1~3のいずれか1項に記載のリチウムイオン二次電池負極材料用黒鉛質粒子を含有するリチウムイオン二次電池負極。 A lithium ion secondary battery negative electrode comprising the graphite particles for a lithium ion secondary battery negative electrode material according to any one of claims 1 to 3.
  5.  請求項4に記載のリチウムイオン二次電池負極を有するリチウムイオン二次電池。 A lithium ion secondary battery having the negative electrode of the lithium ion secondary battery according to claim 4.
PCT/JP2015/005207 2014-10-28 2015-10-15 Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery WO2016067539A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177011154A KR101957074B1 (en) 2014-10-28 2015-10-15 Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery
CN201580058234.4A CN107078288B (en) 2014-10-28 2015-10-15 Graphite particle for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-219093 2014-10-28
JP2014219093A JP6240586B2 (en) 2014-10-28 2014-10-28 Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2016067539A1 true WO2016067539A1 (en) 2016-05-06

Family

ID=55856908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005207 WO2016067539A1 (en) 2014-10-28 2015-10-15 Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery

Country Status (5)

Country Link
JP (1) JP6240586B2 (en)
KR (1) KR101957074B1 (en)
CN (1) CN107078288B (en)
TW (1) TWI569501B (en)
WO (1) WO2016067539A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683871B1 (en) 2017-10-27 2021-12-01 LG Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
CN114242966A (en) * 2021-11-12 2022-03-25 惠州锂威新能源科技有限公司 Negative electrode composite material, preparation method thereof, negative electrode plate and secondary battery
EP3869586A4 (en) * 2018-10-17 2022-07-13 Murata Manufacturing Co., Ltd. Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114765253A (en) * 2021-01-14 2022-07-19 泰星能源解决方案有限公司 Graphite-based negative electrode active material
CN114804095A (en) * 2022-04-27 2022-07-29 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micro powder waste material, and preparation method and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127275B2 (en) * 2016-11-22 2022-08-30 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6858691B2 (en) * 2016-11-28 2021-04-14 Jfeケミカル株式会社 Method for manufacturing carbonaceous-coated graphite particles for negative electrode materials of lithium-ion secondary batteries
JP2019019048A (en) * 2017-07-13 2019-02-07 Jfeケミカル株式会社 Manufacturing method of carbonaceous coated graphite particle, carbonaceous coated graphite particle, anode for lithium ion secondary battery, and lithium ion secondary battery
CN108711623A (en) * 2018-05-30 2018-10-26 欣旺达电子股份有限公司 Lithium ion battery, negative plate, composite graphite negative electrode material and preparation method thereof
US20210218025A1 (en) * 2018-06-15 2021-07-15 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
JP7251069B2 (en) * 2018-08-02 2023-04-04 トヨタ自動車株式会社 All-solid-state battery and manufacturing method thereof
CN113226986B (en) * 2018-12-19 2023-11-17 浦项控股股份有限公司 Preparation method of lithium secondary battery negative electrode active material
JP7293901B2 (en) 2019-06-20 2023-06-20 株式会社豊田中央研究所 Granule, water-repellent layer and method for producing the same
CN112996749A (en) * 2019-09-17 2021-06-18 杰富意化学株式会社 Method for producing graphite material
CN115279694A (en) * 2021-03-01 2022-11-01 杰富意化学株式会社 Method for producing carbonaceous coated graphite material
CN115472829A (en) * 2021-06-10 2022-12-13 国家能源投资集团有限责任公司 Negative electrode material, preparation method and application thereof, negative electrode plate and application thereof
EP4212479A1 (en) * 2021-08-17 2023-07-19 JFE Chemical Corporation Coated spheroidized graphite, negative electrode for lithium ion secondary batteries and lithium ion secondary battery
WO2023181705A1 (en) * 2022-03-24 2023-09-28 三菱ケミカル株式会社 Carbon material composition, method for producing carbon material composition, negative electrode, and secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111272A (en) * 2002-09-19 2004-04-08 Sharp Corp Lithium polymer battery and its manufacturing method
JP2008027664A (en) * 2006-07-19 2008-02-07 Nippon Carbon Co Ltd Negative electrode for lithium ion secondary battery, and negative electrode active material
WO2010113783A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Mixed carbon material and negative electrode for nonaqueous secondary battery
JP2010251314A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014067625A (en) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JP2014186956A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3236002B2 (en) 1990-11-22 2001-12-04 大阪瓦斯株式会社 Lithium secondary battery
KR100597065B1 (en) * 2001-01-25 2006-07-06 히다치 가세고교 가부시끼가이샤 Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP4666876B2 (en) 2001-09-26 2011-04-06 Jfeケミカル株式会社 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4040381B2 (en) 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2004056703A1 (en) * 2002-12-19 2004-07-08 Jfe Chemical Corporation Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this
JP5081375B2 (en) 2004-02-12 2012-11-28 三菱化学株式会社 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
CN105186038B (en) * 2005-10-20 2017-07-28 三菱化学株式会社 Lithium secondary battery and the nonaqueous electrolytic solution wherein used
CN113394458A (en) * 2005-10-20 2021-09-14 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolyte used therein
JP4989114B2 (en) 2006-06-02 2012-08-01 日本カーボン株式会社 Negative electrode and negative electrode active material for lithium secondary battery
WO2008084675A1 (en) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
CN102362381B (en) * 2009-03-27 2015-06-03 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2012077653A1 (en) * 2010-12-08 2012-06-14 日本コークス工業株式会社 Negative electrode material for lithium ion secondary batteries, and method for producing same
KR101942599B1 (en) * 2011-03-29 2019-01-25 미쯔비시 케미컬 주식회사 Negative electrode carbon material for non-aqueous secondary battery, negative electrode, and non-aqueous secondary battery
JP5266428B1 (en) * 2011-10-21 2013-08-21 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
KR101739295B1 (en) * 2012-11-26 2017-05-24 삼성에스디아이 주식회사 Composite anode active material, anode and lithium battery containing the same, and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111272A (en) * 2002-09-19 2004-04-08 Sharp Corp Lithium polymer battery and its manufacturing method
JP2008027664A (en) * 2006-07-19 2008-02-07 Nippon Carbon Co Ltd Negative electrode for lithium ion secondary battery, and negative electrode active material
JP2010251314A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2010113783A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Mixed carbon material and negative electrode for nonaqueous secondary battery
JP2014067625A (en) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JP2014186956A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683871B1 (en) 2017-10-27 2021-12-01 LG Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
EP3869586A4 (en) * 2018-10-17 2022-07-13 Murata Manufacturing Co., Ltd. Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114765253A (en) * 2021-01-14 2022-07-19 泰星能源解决方案有限公司 Graphite-based negative electrode active material
CN114765253B (en) * 2021-01-14 2024-02-20 泰星能源解决方案有限公司 Graphite-based negative electrode active material
CN114242966A (en) * 2021-11-12 2022-03-25 惠州锂威新能源科技有限公司 Negative electrode composite material, preparation method thereof, negative electrode plate and secondary battery
CN114242966B (en) * 2021-11-12 2023-06-13 惠州锂威新能源科技有限公司 Negative electrode composite material, preparation method thereof, negative electrode sheet and secondary battery
CN114804095A (en) * 2022-04-27 2022-07-29 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micro powder waste material, and preparation method and application thereof
CN114804095B (en) * 2022-04-27 2023-12-12 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micropowder waste, and preparation method and application thereof

Also Published As

Publication number Publication date
KR101957074B1 (en) 2019-03-11
JP2016085906A (en) 2016-05-19
TWI569501B (en) 2017-02-01
JP6240586B2 (en) 2017-11-29
CN107078288A (en) 2017-08-18
KR20170057427A (en) 2017-05-24
CN107078288B (en) 2020-01-17
TW201616708A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
JP6240586B2 (en) Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP6040022B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6087648B2 (en) Composite graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5322804B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016225287A (en) Carbonaceous substance-coated graphite particle for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP5953249B2 (en) Composite graphite particles and their use in lithium ion secondary batteries
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2016194355A1 (en) Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2019160791A (en) Method for manufacturing carbon-coated graphite particles for lithium ion secondary battery negative electrode material, carbon-coated graphite particles for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177011154

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855455

Country of ref document: EP

Kind code of ref document: A1