WO2016061711A1 - 一种应用145个snp鉴定五指山小型猪近交系的方法 - Google Patents

一种应用145个snp鉴定五指山小型猪近交系的方法 Download PDF

Info

Publication number
WO2016061711A1
WO2016061711A1 PCT/CN2014/000937 CN2014000937W WO2016061711A1 WO 2016061711 A1 WO2016061711 A1 WO 2016061711A1 CN 2014000937 W CN2014000937 W CN 2014000937W WO 2016061711 A1 WO2016061711 A1 WO 2016061711A1
Authority
WO
WIPO (PCT)
Prior art keywords
genotype
snp locus
snp
locus
pig
Prior art date
Application number
PCT/CN2014/000937
Other languages
English (en)
French (fr)
Inventor
冯书堂
牟玉莲
韩建林
李奎
高倩
Original Assignee
北京盖兰德生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京盖兰德生物科技有限公司 filed Critical 北京盖兰德生物科技有限公司
Priority to PCT/CN2014/000937 priority Critical patent/WO2016061711A1/zh
Priority to US15/521,262 priority patent/US10364472B2/en
Publication of WO2016061711A1 publication Critical patent/WO2016061711A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the invention relates to a method for identifying Wuzhishan miniature pig inbred lines by using 145 SNPs.
  • Inbreeding pigs are very difficult to cultivate due to various differences in interspecific physiology. It has been confirmed by the investigation (2013.11) that no successful reports have been reported internationally. However, pigs and rodents have greater similarities with humans, and they will play an irreplaceable and unique role in solving problems such as solving difficult human diseases, conquering life sciences and medicine, and pharmacy problems. Inbred pigs are rare and valuable international genetic resources for large animals.
  • the invention provides a method for assisting in identifying whether a pig to be tested is a Wuzhishan miniature pig inbred, comprising the following steps:
  • the pig to be tested is the candidate Wuzhishan miniature pig inbred:
  • the pig to be tested is a candidate non-Wuzhishan minipig inbred.
  • the pig to be tested may be Wuzhishan miniature pig inbred or Hainan Wuzhishan pig.
  • the Wuzhishan minipig inbred line may belong to F 20 F 22 is Renyi Shi behalf of.
  • the Wuzhishan minipig inbred line may belong to subsequent generations F 20 F 20 generation or generations.
  • a specific chip can be used to detect a genotype based on 145 SNP sites in a pig to be tested; the specific chip is a single-stranded DNA molecule represented by Sequence 1 to Sequence 145 in which a sequence listing is immobilized at different points, respectively. Nucleic acid chip.
  • the present invention also protects a nucleic acid chip in which single-stranded DNA molecules represented by Sequence 1 to Sequence 145 of the Sequence Listing are immobilized at different points.
  • the invention also protects the application of the nucleic acid chip as follows: (a) or (b): (a) assisting in identifying whether the pig to be tested is a Wuzhishan mini-pig inbred; (b) assisting in identifying whether the group of pigs to be tested is Wuzhishan Small pig inbred populations.
  • the pig to be tested may be Wuzhishan miniature pig inbred or Hainan Wuzhishan pig.
  • the Wuzhishan minipig inbred line may belong to F 20 F 22 is Renyi Shi behalf of.
  • the Wuzhishan minipig inbred line may belong to subsequent generations F 20 F 20 generation or generations.
  • the invention also provides a method for assisting in identifying whether a population of pigs to be tested is a Wuzhishan miniature pig inbred population, comprising the following steps:
  • the samples to be tested are randomly sampled from the group of pigs to be tested, and then the genotypes based on 145 SNP sites are tested for each sample to be tested. If all the samples to be tested satisfy the following criteria (1) to (145), the test is to be tested.
  • the pig population is a candidate for the Wuzhishan miniature pig inbred population:
  • the pig population to be tested is a candidate non-Wuzhishan minipig inbred population.
  • a statistically significant sample to be tested is randomly sampled from the group of pigs to be tested.
  • more than 16 samples to be tested are randomly sampled from the group of pigs to be tested.
  • the pig to be tested may be Wuzhishan miniature pig inbred or Hainan Wuzhishan pig.
  • the Wuzhishan minipig inbred line may belong to F 20 F 22 is Renyi Shi behalf of.
  • the Wuzhishan minipig inbred line may belong to subsequent generations F 20 F 20 generation or generations.
  • a specific chip can be used to detect a genotype based on 145 SNP sites in a pig to be tested; the specific chip is a single-stranded DNA molecule represented by Sequence 1 to Sequence 145 in which a sequence listing is immobilized at different points, respectively. Nucleic acid chip.
  • the following examples are provided to facilitate a better understanding of the invention but are not intended to limit the invention.
  • the experimental methods in the following examples are conventional methods unless otherwise specified.
  • the test materials used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores.
  • the inventors of the present invention found that there are 145 SNP loci in the Wuzhishan mini-pig inbred line and the non-Wuzhishan mini-pig inbred line, and according to their genotype, the Wuzhishan mini-pig inbred line and the non-wuzhishan can be identified.
  • Small pig inbreds The genotypes of 145 SNP loci in Wuzhishan mini-pig inbred lines were homozygous (genotypes described in Table 1). The 145 SNP loci of the non-Wuzhishan minipig inbred lines were heterozygous.
  • 12 are located in the first segment of chromosome 1
  • 16 are in segment 15 of chromosome 1
  • 14 are in segment 50 of chromosome 1
  • 16 are in segment 78 of chromosome 1.
  • 15 in chromosome 2 14 in chromosome 12, 13 in chromosome 19, 20 in chromosome 5, 13 in number 18.
  • 12 are in the 20th segment of chromosome 18.
  • the inventors of the present invention designed 145 probes (the binding region of the probe to the genomic DNA is adjacent to the SNP site and located upstream or downstream of the SNP site, so that the SNP can be known by the terminal extension.
  • the genotype of the locus The genotype of the locus).
  • the source sequence is shown in Table 1.
  • N represents A, T, C or G.
  • the underline in the source sequence indicates the region corresponding to the probe (containing two forms, the nucleotide sequence of the probe is the same as the underlined region, and the nucleotide sequence of the probe is inversely complementary to the underlined region).
  • the heterozygous type is TG
  • the heterozygous type is AG
  • the heterozygous type is AG
  • the heterozygous type is TC
  • the heterozygous type is AC when the source type of the SNP is [A/C].
  • Example 2 Application of 145 SNPs to identify inbred lines of Wuzhishan mini-pigs and non-Wuzhishan mini-pig inbreds
  • the genomic DNA obtained in the step 1 was hybridized with a nucleic acid chip immobilized with 145 probes (145 probes, respectively, from Sequence 1 of the Sequence Listing to the single-stranded DNA molecule shown in Sequence 145 of the Sequence Listing).
  • step 2 each point in the nucleic acid chip is extended to obtain the genotype of 145 SNP sites in the genomic DNA.
  • step 4 The genomic DNA obtained in step 1 was subjected to whole genome sequencing to obtain the genotype of 145 SNP sites in the genomic DNA.
  • the genotypes of 145 SNP sites of 48 experimental animals of the Wuzhishan minipig inbred line were homozygous (the genotypes described in Table 1 of Example 1).
  • the 145 SNP sites of 16 experimental animals of Wuzhishan pigs in Hainan were heterozygous.
  • the invention has great value for the identification of germplasm resources of Wuzhishan miniature pig inbred line.
  • the method of the invention can be applied to the breeding of Wuzhishan miniature pig inbred line, and all the pigs in the tested pigs are firstly screened, the non-Wuzhishan minipig inbred line is eliminated, and the candidate Wuzhishan minipig inbred line is found, and the combination is determined. Other methods are further confirmed.
  • the invention can also be applied to detecting whether a commercially available Wuzhishan miniature pig inbred line is counterfeit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种应用145个SNP鉴定五指山小型猪近交系的方法。本发明提供的辅助鉴定待测猪是否为五指山小型猪近交系的方法包括如下步骤:检测待测猪基于145个SNP位点的基因型;如果满足(1)至(145)的所有标准,待测猪为候选的五指山小型猪近交系;如果不满足上述(1)至(145)的所有标准,待测猪为候选的非五指山小型猪近交系。

Description

一种应用145个SNP鉴定五指山小型猪近交系的方法 技术领域
本发明涉及一种应用145个SNP鉴定五指山小型猪近交系的方法。
背景技术
1989年-2003年期间,“五指山近交系培育、种质特性及开发利用”在农业部“七五、八五、九五”行业攻关项目,以及科技部“863”、国家自然基金委重点、重大项目有关等7个课题的资助下,研究工作取得突破性进展,即:以1公1母五指山猪(又称五指山小型猪)为系祖,连续采用“仔配母”、“全同胞”交配等综合措施,逐步克服近交繁育导致繁殖成活率极低、不足20%不良影响,组建F17近交系群体和系谱,并进行了利用分子遗传手段DNA指纹图相似系数、微卫星等多种先进的技术手段监测了该近交系品种F7-F16近交系培育研究过程,初步揭示五指山小型猪近交系的遗传规律和特点,验证了该近交系培育过程的真实性、科学性。并进行了大量的开发利用研究,显示出作为人类理想动物模型研究的无比优越型,取得一定的经济效益和较大的社会效益。其研究内容分别于1995年和2005年《五指山小型猪种质特性及开发利用研究》(农科果鉴定【95】第075号)、《五指山小型猪实验用近交系培育与分子遗传基础研究》两项成果通过农业部技术成果鉴定,其中1999年获得农业部科技进步三等奖。
小型猪近交培育初步研发成果,在国内外产生了较大的影响,如,美国、意大利、日本、西德、韩国等纷纷要求引种或合作研究,尤其美国1996年提出500万美元购买当时的50头种猪;韩国不同意引种后2000年提议出资500万元在中国合资办厂等等。其主要原因在于近交系动物是特殊动物遗传资源,它能向化学分析纯试剂和物理学上的精密仪器一样,能为生命科学研究迅速得出、灵敏、准确的科学数据,具有很高的使用价值和研究意义,所以目前国际上已培育出450多种近交系系小鼠、大鼠等。小型哺乳动物近交系做为动物模型,已广泛应用于解决人类疑难病症、攻克生命科学和医学、药学难题等研究领域。由于种间生理等多方差异,近交系猪培育十分困难,经查新证实(2013.11)至今国际上未见成功报道。但猪和鼠类相比与人类有更大的相似性,在解决人类疑难病症、攻克生命科学和医学、药学难题等研究中将发挥不可代替的、独特的作用。近交系猪是国际上珍稀的、宝贵的大型动物基因遗传资源。此前,远在上世纪六十年代美欧一些发达国家多单位、就出巨资开展了近交系猪培育研究,但未能成功、近交系数最高的仅能达到0.75。而我国通过15年培育研究,利用我国特殊的小型猪资源已获得F17、近交系数已达0.965,更可喜的是已克服、跨越近交繁殖所导致仔猪死亡的高发阶段。因此,近交系猪培育成功很有可能在我国首次实现。经过近年的进一步工作,现在已获得五指山小型猪近交系F17至F22
由于近交系猪国际尚未有培育成功报道,更无近交系建系标准和鉴定方法。因此,必须借鉴、严格遵循近交系小鼠、大鼠的培育方法进行,即同一世祖2头猪近 亲繁育20代以上并建立完整系谱,检测其遗传稳定性,建立鉴定方法,建立品系标准尤其是与现海南五指山猪种间区别,才能向世人提供科学、可信证据,才能完成前无古人后暂无来者的遗传资源创新工程、造福人类。
一旦小型猪近交系培育成功,我国将拥有自主知识产权,具有国际领先水平的创新的猪遗传种质资源,将填补该研究领域内世界研究空白,丰富大型动物近交系培育理论与实践;作为人类理想的“替难者”,是生物技术研究取得进展的重要基石和创新基础,将会大大促进我国生命科学、人类医学、药学等方面的协同发展和创新,为解决人类疑难病症、延长生命而造福人类做出不可替代地位和作用。因此,具有重要的现实意义和理论意义。
发明公开
本发明的目的是提供一种应用145个SNP鉴定五指山小型猪近交系的方法。
本发明提供了一种辅助鉴定待测猪是否为五指山小型猪近交系的方法,包括如下步骤:
检测待测猪基于145个SNP位点的基因型;
如果满足如下(1)至(145)的所有标准,待测猪为候选的五指山小型猪近交系:
Figure PCTCN2014000937-appb-000001
Figure PCTCN2014000937-appb-000002
Figure PCTCN2014000937-appb-000003
Figure PCTCN2014000937-appb-000004
如果不满足上述(1)至(145)的所有标准,待测猪为候选的非五指山小型猪近交系。
所述待测猪可为五指山小型猪近交系或海南五指山猪。
所述五指山小型猪近交系可属于F20至F22中的任一世代。
所述五指山小型猪近交系可属于F20世代或F20世代以后的世代。
所述方法中,可采用特定芯片检测待测猪基于145个SNP位点的基因型;所述特定芯片为分别在不同点固定有序列表的序列1至序列145所示的单链DNA分子的核酸芯片。
本发明还保护一种核酸芯片,分别在不同点固定有序列表的序列1至序列145所示的单链DNA分子。
本发明还保护所述核酸芯片的应用,为如下(a)或(b):(a)辅助鉴定待测猪是否为五指山小型猪近交系;(b)辅助鉴定待测猪群体是否为五指山小型猪近交系群体。
所述待测猪可为五指山小型猪近交系或海南五指山猪。
所述五指山小型猪近交系可属于F20至F22中的任一世代。
所述五指山小型猪近交系可属于F20世代或F20世代以后的世代。
本发明还提供了一种辅助鉴定待测猪群体是否为五指山小型猪近交系群体的方法,包括如下步骤:
从待测猪群体中随机抽样得到待测样本,然后检测各个待测样本基于145个SNP位点的基因型,如果所有待测样本均满足如下(1)至(145)的所有标准,待测猪群体为候选的五指山小型猪近交系群体:
Figure PCTCN2014000937-appb-000005
Figure PCTCN2014000937-appb-000006
Figure PCTCN2014000937-appb-000007
Figure PCTCN2014000937-appb-000008
如果待测样本中存在一个以上不满足上述(1)至(145)的所有标准,待测猪群体为候选的非五指山小型猪近交系群体。
所述方法中,从待测猪群体中随机抽样得到有统计学意义的待测样本。
所述方法中,从待测猪群体中随机抽样得到16头以上待测样本。
所述待测猪可为五指山小型猪近交系或海南五指山猪。
所述五指山小型猪近交系可属于F20至F22中的任一世代。
所述五指山小型猪近交系可属于F20世代或F20世代以后的世代。
所述方法中,可采用特定芯片检测待测猪基于145个SNP位点的基因型;所述特定芯片为分别在不同点固定有序列表的序列1至序列145所示的单链DNA分子的核酸芯片。
实施发明的最佳方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。五指山小型猪近交系的实验动物为48头,其中F20代16头、F21代16头、F22代16头。海南五指山猪的实验动物为16头。
五指山小型猪近交系:
李凯、冯书堂、牟玉莲,杨述林,韩建林,刘岚,员新旭,郭勇,五指山小型猪3个近交家系微卫星等位基因遗传变化,中国农业科学,2012,42(5):1751-1760。
海南五指山猪:
侯冠彧,王东劲,管松,荣光,黄显洲,五指山猪小群体遗传学检测,家畜生态学,2007,第28卷第6期:44-47。
实施例1、方法的建立
本发明的发明人在对五指山小型猪近交系和非五指山小型猪近交系进行基因组研究时发现,存在145个SNP位点,根据其基因型,可以鉴别五指山小型猪近交系和非五指山小型猪近交系。五指山小型猪近交系的145个SNP位点的基因型均为纯合型(表1中描述的基因型)。非五指山小型猪近交系的145个SNP位点均为杂合型。
145个SNP位点中,12个位于1号染色体的第1段,16个位于1号染色体的第15段、14个位于1号染色体的第50段,16个位于1号染色体的第78段,15个位于2号染色体的第2段,14个位于2号染色体的第12段,13个位于2号染色体的第19段,20个位于18号染色体的第5段,13个位于18号染色体的第14段,12个位于18号染色体的第20段。
基于145个SNP位点本发明的发明人设计了145条探针(探针与基因组DNA的结合区域与SNP位点相邻,位于SNP位点的上游或下游,因此通过末端延伸,可以获知SNP位点的基因型)。
145个SNP的名称、所处的染色体、在染色体上的位置、五指山小型猪近交系的基因型、SNP的源类型、145个探针的核苷酸序列和SNP在基因组DNA上所处的源序列见表1。
表1
Figure PCTCN2014000937-appb-000009
Figure PCTCN2014000937-appb-000010
Figure PCTCN2014000937-appb-000011
Figure PCTCN2014000937-appb-000012
Figure PCTCN2014000937-appb-000013
Figure PCTCN2014000937-appb-000014
Figure PCTCN2014000937-appb-000015
Figure PCTCN2014000937-appb-000016
Figure PCTCN2014000937-appb-000017
Figure PCTCN2014000937-appb-000018
Figure PCTCN2014000937-appb-000019
Figure PCTCN2014000937-appb-000020
Figure PCTCN2014000937-appb-000021
Figure PCTCN2014000937-appb-000022
表1中,N代表A、T、C或G。表1中,源序列中的下划线标注探针对应的区域(含有两种形式,探针与下划线区域的核苷酸序列相同,探针与下划线区域的核苷酸序列反向互补)。表1中,当SNP的源类型为[T/G]时杂合型为TG,当SNP的源类型为[A/G]时杂合型为AG,当SNP的源类型为[T/C]时杂合型为TC,当SNP的源类型为[A/C]时杂合型为AC。
实施例2、应用145个SNP鉴定五指山小型猪近交系与非五指山小型猪近交系
1、取实验动物,耳静脉取血,从血样中提取基因组DNA。
2、取步骤1得到的基因组DNA,与固定有145个探针(145个探针分别为序列表的序列1至序列表的序列145所示的单链DNA分子)的核酸芯片进行杂交。
3、完成步骤2后,将核酸芯片中的各个点进行末端延伸,从而获知基因组DNA中145个SNP位点的基因型。
4、取步骤1得到的基因组DNA,进行全基因组测序,获知基因组DNA中145个SNP位点的基因型。
结果表明,步骤3的结果和步骤4的结果完全一致。
五指山小型猪近交系的48头实验动物的145个SNP位点的基因型均为纯合型(实施例1的表1中描述的基因型)。海南五指山猪的16头实验动物的145个SNP位点均为杂合型。
工业应用
本发明对于五指山小型猪近交系的种质资源鉴定具有重大价值。本发明的方法可应用于五指山小型猪近交系的育种,对待测猪群中的所有猪先进行初步筛选,淘汰非五指山小型猪近交系,找出候选的五指山小型猪近交系,结合其它方法进一步确认。本发明还可应用于检测市购的五指山小型猪近交系是否为假冒的。

Claims (12)

  1. 一种辅助鉴定待测猪是否为五指山小型猪近交系的方法,包括如下步骤:
    检测待测猪基于145个SNP位点的基因型;
    如果满足如下(1)至(145)的所有标准,待测猪为候选的五指山小型猪近交系:
    (1)M1GA0025062   SNP位点的基因型为GG;
    (2)DRGA0017627   SNP位点的基因型为GG;
    (3)H3GA0056137   SNP位点的基因型为CC;
    (4)MARC0039661   SNP位点的基因型为AA;
    (5)ASGA0085025   SNP位点的基因型为TT;
    (6)ASGA0098570   SNP位点的基因型为GG;
    (7)MARC0063358   SNP位点的基因型为AA;
    (8)ASGA0085437   SNP位点的基因型为GG;
    (9)MARC0096709   SNP位点的基因型为CC;
    (10)H3GA0052387  SNP位点的基因型为GG;
    (11)ASGA0000264  SNP位点的基因型为TT;
    (12)ALGA0000195  SNP位点的基因型为TT;
    (13)H3GA0001444  SNP位点的基因型为AA;
    (14)ASGA0002293  SNP位点的基因型为CC;
    (15)INRA0001752  SNP位点的基因型为GG;
    (16)H3GA0001445  SNP位点的基因型为GG;
    (17)ALGA0002595  SNP位点的基因型为TT;
    (18)ALGA0002600  SNP位点的基因型为GG;
    (19)DRGA0000563  SNP位点的基因型为CC;
    (20)DRGA0000565  SNP位点的基因型为CC;
    (21)INRA0001761  SNP位点的基因型为AA;
    (22)MARC0104045  SNP位点的基因型为CC;
    (23)ALGA0002601  SNP位点的基因型为CC;
    (24)DRGA0000569  SNP位点的基因型为AA;
    (25)ALGA0002608  SNP位点的基因型为TT;
    (26)DRGA0000568  SNP位点的基因型为CC;
    (27)ALGA0002604  SNP位点的基因型为GG;
    (28)MARC0048118  SNP位点的基因型为TT;
    (29)ASGA0004229  SNP位点的基因型为CC;
    (30)MARC0007088  SNP位点的基因型为CC;
    (31)MARC0000061  SNP位点的基因型为GG;
    (32)MARC0094747  SNP位点的基因型为AA;
    (33)MARC0007969  SNP位点的基因型为AA;
    (34)ASGA0106092  SNP位点的基因型为CC;
    (35)ALGA0119806  SNP位点的基因型为GG;
    (36)INRA0003745  SNP位点的基因型为AA;
    (37)INRA0003746  SNP位点的基因型为TT;
    (38)ALGA0005490  SNP位点的基因型为CC;
    (39)H3GA0002538  SNP位点的基因型为CC;
    (40)INRA0003749  SNP位点的基因型为CC;
    (41)H3GA0002539  SNP位点的基因型为GG;
    (42)M1GA0001099  SNP位点的基因型为CC;
    (43)MARC0111831  SNP位点的基因型为AA;
    (44)ASGA0005566  SNP位点的基因型为CC;
    (45)ALGA0007578  SNP位点的基因型为CC;
    (46)ASGA0005568  SNP位点的基因型为CC;
    (47)INRA0005765  SNP位点的基因型为AA;
    (48)MARC0095347  SNP位点的基因型为CC;
    (49)MARC0039015  SNP位点的基因型为CC;
    (50)DRGA0001892  SNP位点的基因型为GG;
    (51)ALGA0007580  SNP位点的基因型为GG;
    (52)ALGA0007583  SNP位点的基因型为TT;
    (53)MARC0095915  SNP位点的基因型为CC;
    (54)ASGA0005571  SNP位点的基因型为AA;
    (55)MARC0014134  SNP位点的基因型为AA;
    (56)MARC0024233  SNP位点的基因型为AA;
    (57)H3GA0003548  SNP位点的基因型为GG;
    (58)ALGA0007591  SNP位点的基因型为CC;
    (59)MARC0000195  SNP位点的基因型为CC;
    (60)ALGA0038697  SNP位点的基因型为CC;
    (61)H3GA0020000  SNP位点的基因型为CC;
    (62)ALGA0038703  SNP位点的基因型为CC;
    (63)H3GA0020002  SNP位点的基因型为GG;
    (64)DRGA0007138  SNP位点的基因型为CC;
    (65)ASGA0031284  SNP位点的基因型为CC;
    (66)ASGA0031285  SNP位点的基因型为AA;
    (67)MARC0025042  SNP位点的基因型为GG;
    (68)H3GA0020006  SNP位点的基因型为TT;
    (69)ALGA0038729  SNP位点的基因型为CC;
    (70)ALGA0038731  SNP位点的基因型为GG;
    (71)ASGA0031321  SNP位点的基因型为GG;
    (72)ASGA0031322  SNP位点的基因型为GG;
    (73)ALGA0038747  SNP位点的基因型为AA;
    (74)ASGA0033095  SNP位点的基因型为TT;
    (75)ALGA0040854  SNP位点的基因型为GG;
    (76)ALGA0040856  SNP位点的基因型为AA;
    (77)ALGA0040857  SNP位点的基因型为GG;
    (78)ASGA0033096  SNP位点的基因型为GG;
    (79)INRA0025180  SNP位点的基因型为AA;
    (80)ALGA0040859  SNP位点的基因型为CC;
    (81)H3GA0021216  SNP位点的基因型为CC;
    (82)ASGA0033098  SNP位点的基因型为CC;
    (83)H3GA0021221  SNP位点的基因型为CC;
    (84)MARC0014540  SNP位点的基因型为CC;
    (85)ASGA0033103  SNP位点的基因型为CC;
    (86)DIAS0000557  SNP位点的基因型为AA;
    (87)ASGA0033116  SNP位点的基因型为AA;
    (88)ASGA0036835  SNP位点的基因型为CC;
    (89)MARC0031932  SNP位点的基因型为CC;
    (90)ASGA0036838  SNP位点的基因型为CC;
    (91)H3GA0023523  SNP位点的基因型为GG;
    (92)ALGA0045460  SNP位点的基因型为TT;
    (93)MARC0005927  SNP位点的基因型为GG;
    (94)MARC0005928  SNP位点的基因型为AA;
    (95)ASGA0036842  SNP位点的基因型为CC;
    (96)ASGA0036846  SNP位点的基因型为CC;
    (97)MARC0098637  SNP位点的基因型为TT;
    (98)M1GA0011035  SNP位点的基因型为TT;
    (99)DRGA0008230  SNP位点的基因型为GG;
    (100)ASGA0036855 SNP位点的基因型为CC;
    (101)ALGA0097277 SNP位点的基因型为GG;
    (102)MARC0080197 SNP位点的基因型为CC;
    (103)H3GA0050489 SNP位点的基因型为TT;
    (104)ALGA0097281 SNP位点的基因型为TT;
    (105)H3GA0050490 SNP位点的基因型为CC;
    (106)ALGA0097282 SNP位点的基因型为TT;
    (107)ASGA0079089 SNP位点的基因型为CC;
    (108)INRA0055354 SNP位点的基因型为GG;
    (109)ASGA0079091 SNP位点的基因型为TT;
    (110)ASGA0079090 SNP位点的基因型为CC;
    (111)H3GA0050491 SNP位点的基因型为AA;
    (112)MARC0056017 SNP位点的基因型为TT;
    (113)MARC0055759 SNP位点的基因型为AA;
    (114)H3GA0050495 SNP位点的基因型为GG;
    (115)ALGA0097291 SNP位点的基因型为GG;
    (116)ALGA0097290 SNP位点的基因型为GG;
    (117)CASI0006683 SNP位点的基因型为GG;
    (118)ASGA0079098 SNP位点的基因型为CC;
    (119)ALGA0097297 SNP位点的基因型为GG;
    (120)H3GA0054426 SNP位点的基因型为TT;
    (121)ALGA0098112 SNP位点的基因型为GG;
    (122)MARC0089391 SNP位点的基因型为GG;
    (123)ASGA0089892 SNP位点的基因型为AA;
    (124)ASGA0097792 SNP位点的基因型为CC;
    (125)MARC0046857 SNP位点的基因型为GG;
    (126)MARC0077194 SNP位点的基因型为AA;
    (127)ALGA0108769 SNP位点的基因型为CC;
    (128)H3GA0050799 SNP位点的基因型为CC;
    (129)ALGA0098120 SNP位点的基因型为CC;
    (130)ALGA0098123 SNP位点的基因型为GG;
    (131)ALGA0098128 SNP位点的基因型为GG;
    (132)ASGA0079719 SNP位点的基因型为CC;
    (133)ASGA0079728 SNP位点的基因型为GG;
    (134)ASGA0080429 SNP位点的基因型为CC;
    (135)MARC0052755 SNP位点的基因型为GG;
    (136)ALGA0098918 SNP位点的基因型为GG;
    (137)ASGA0080432 SNP位点的基因型为GG;
    (138)ALGA0098922 SNP位点的基因型为CC;
    (139)INRA0056206 SNP位点的基因型为GG;
    (140)INRA0056207 SNP位点的基因型为CC;
    (141)ASGA0080435 SNP位点的基因型为CC;
    (142)MARC0068495 SNP位点的基因型为GG;
    (143)ASGA0080436 SNP位点的基因型为CC;
    (144)MARC0003370 SNP位点的基因型为CC;
    (145)ASGA0085659 SNP位点的基因型为CC;
    如果不满足上述(1)至(145)的所有标准,待测猪为候选的非五指山小型猪近交系。
  2. 如权利要求1所述的方法,其特征在于:所述待测猪为五指山小型猪近交系或海南五指山猪。
  3. 如权利要求1或2所述的方法,其特征在于:所述五指山小型猪近交系属于F20至F22中的任一世代。
  4. 如权利要求1或2所述的方法,其特征在于:所述五指山小型猪近交系属于F20世代或F20世代以后的世代。
  5. 如权利要求1至4中任一所述的方法,其特征在于:所述方法中,采用特定芯片检测待测猪基于145个SNP位点的基因型;所述特定芯片为分别在不同点固定有序列表的序列1至序列145所示的单链DNA分子的核酸芯片。
  6. 一种核酸芯片,分别在不同点固定有序列表的序列1至序列145所示的单链DNA分子。
  7. 权利要求6所述核酸芯片的应用,为如下(a)或(b):
    (a)辅助鉴定待测猪是否为五指山小型猪近交系;
    (b)辅助鉴定待测猪群体是否为五指山小型猪近交系群体。
  8. 一种辅助鉴定待测猪群体是否为五指山小型猪近交系群体的方法,包括如下步骤:
    从待测猪群体中随机抽样得到待测样本,然后检测各个待测样本基于145个SNP位点的基因型,如果所有待测样本均满足如下(1)至(145)的所有标准,待测猪群体为候选的五指山小型猪近交系群体:
    (1)M1GA0025062   SNP位点的基因型为GG;
    (2)DRGA0017627   SNP位点的基因型为GG;
    (3)H3GA0056137   SNP位点的基因型为CC;
    (4)MARC0039661   SNP位点的基因型为AA;
    (5)ASGA0085025   SNP位点的基因型为TT;
    (6)ASGA0098570   SNP位点的基因型为GG;
    (7)MARC0063358   SNP位点的基因型为AA;
    (8)ASGA0085437   SNP位点的基因型为GG;
    (9)MARC0096709   SNP位点的基因型为CC;
    (10)H3GA0052387  SNP位点的基因型为GG;
    (11)ASGA0000264  SNP位点的基因型为TT;
    (12)ALGA0000195  SNP位点的基因型为TT;
    (13)H3GA0001444  SNP位点的基因型为AA;
    (14)ASGA0002293  SNP位点的基因型为CC;
    (15)INRA0001752  SNP位点的基因型为GG;
    (16)H3GA0001445  SNP位点的基因型为GG;
    (17)ALGA0002595  SNP位点的基因型为TT;
    (18)ALGA0002600  SNP位点的基因型为GG;
    (19)DRGA0000563  SNP位点的基因型为CC;
    (20)DRGA0000565  SNP位点的基因型为CC;
    (21)INRA0001761  SNP位点的基因型为AA;
    (22)MARC0104045  SNP位点的基因型为CC;
    (23)ALGA0002601  SNP位点的基因型为CC;
    (24)DRGA0000569  SNP位点的基因型为AA;
    (25)ALGA0002608  SNP位点的基因型为TT;
    (26)DRGA0000568  SNP位点的基因型为CC;
    (27)ALGA0002604  SNP位点的基因型为GG;
    (28)MARC0048118  SNP位点的基因型为TT;
    (29)ASGA0004229  SNP位点的基因型为CC;
    (30)MARC0007088  SNP位点的基因型为CC;
    (31)MARC0000061  SNP位点的基因型为GG;
    (32)MARC0094747  SNP位点的基因型为AA;
    (33)MARC0007969  SNP位点的基因型为AA;
    (34)ASGA0106092  SNP位点的基因型为CC;
    (35)ALGA0119806  SNP位点的基因型为GG;
    (36)INRA0003745  SNP位点的基因型为AA;
    (37)INRA0003746  SNP位点的基因型为TT;
    (38)ALGA0005490  SNP位点的基因型为CC;
    (39)H3GA0002538  SNP位点的基因型为CC;
    (40)INRA0003749  SNP位点的基因型为CC;
    (41)H3GA0002539  SNP位点的基因型为GG;
    (42)M1GA0001099  SNP位点的基因型为CC;
    (43)MARC0111831  SNP位点的基因型为AA;
    (44)ASGA0005566  SNP位点的基因型为CC;
    (45)ALGA0007578  SNP位点的基因型为CC;
    (46)ASGA0005568  SNP位点的基因型为CC;
    (47)INRA0005765  SNP位点的基因型为AA;
    (48)MARC0095347  SNP位点的基因型为CC;
    (49)MARC0039015  SNP位点的基因型为CC;
    (50)DRGA0001892  SNP位点的基因型为GG;
    (51)ALGA0007580  SNP位点的基因型为GG;
    (52)ALGA0007583  SNP位点的基因型为TT;
    (53)MARC0095915  SNP位点的基因型为CC;
    (54)ASGA0005571  SNP位点的基因型为AA;
    (55)MARC0014134  SNP位点的基因型为AA;
    (56)MARC0024233  SNP位点的基因型为AA;
    (57)H3GA0003548  SNP位点的基因型为GG;
    (58)ALGA0007591  SNP位点的基因型为CC;
    (59)MARC0000195  SNP位点的基因型为CC;
    (60)ALGA0038697  SNP位点的基因型为CC;
    (61)H3GA0020000  SNP位点的基因型为CC;
    (62)ALGA0038703  SNP位点的基因型为CC;
    (63)H3GA0020002  SNP位点的基因型为GG;
    (64)DRGA0007138  SNP位点的基因型为CC;
    (65)ASGA0031284  SNP位点的基因型为CC;
    (66)ASGA0031285  SNP位点的基因型为AA;
    (67)MARC0025042  SNP位点的基因型为GG;
    (68)H3GA0020006  SNP位点的基因型为TT;
    (69)ALGA0038729  SNP位点的基因型为CC;
    (70)ALGA0038731  SNP位点的基因型为GG;
    (71)ASGA0031321  SNP位点的基因型为GG;
    (72)ASGA0031322  SNP位点的基因型为GG;
    (73)ALGA0038747  SNP位点的基因型为AA;
    (74)ASGA0033095  SNP位点的基因型为TT;
    (75)ALGA0040854  SNP位点的基因型为GG;
    (76)ALGA0040856  SNP位点的基因型为AA;
    (77)ALGA0040857  SNP位点的基因型为GG;
    (78)ASGA0033096  SNP位点的基因型为GG;
    (79)INRA0025180  SNP位点的基因型为AA;
    (80)ALGA0040859  SNP位点的基因型为CC;
    (81)H3GA0021216  SNP位点的基因型为CC;
    (82)ASGA0033098  SNP位点的基因型为CC;
    (83)H3GA0021221  SNP位点的基因型为CC;
    (84)MARC0014540  SNP位点的基因型为CC;
    (85)ASGA0033103  SNP位点的基因型为CC;
    (86)DIAS0000557  SNP位点的基因型为AA;
    (87)ASGA0033116  SNP位点的基因型为AA;
    (88)ASGA0036835  SNP位点的基因型为CC;
    (89)MARC0031932  SNP位点的基因型为CC;
    (90)ASGA0036838  SNP位点的基因型为CC;
    (91)H3GA0023523  SNP位点的基因型为GG;
    (92)ALGA0045460  SNP位点的基因型为TT;
    (93)MARC0005927  SNP位点的基因型为GG;
    (94)MARC0005928  SNP位点的基因型为AA;
    (95)ASGA0036842  SNP位点的基因型为CC;
    (96)ASGA0036846  SNP位点的基因型为CC;
    (97)MARC0098637  SNP位点的基因型为TT;
    (98)M1GA0011035  SNP位点的基因型为TT;
    (99)DRGA0008230  SNP位点的基因型为GG;
    (100)ASGA0036855 SNP位点的基因型为CC;
    (101)ALGA0097277 SNP位点的基因型为GG;
    (102)MARC0080197 SNP位点的基因型为CC;
    (103)H3GA0050489 SNP位点的基因型为TT;
    (104)ALGA0097281 SNP位点的基因型为TT;
    (105)H3GA0050490 SNP位点的基因型为CC;
    (106)ALGA0097282 SNP位点的基因型为TT;
    (107)ASGA0079089 SNP位点的基因型为CC;
    (108)INRA0055354 SNP位点的基因型为GG;
    (109)ASGA0079091 SNP位点的基因型为TT;
    (110)ASGA0079090 SNP位点的基因型为CC;
    (111)H3GA0050491 SNP位点的基因型为AA;
    (112)MARC0056017 SNP位点的基因型为TT;
    (113)MARC0055759 SNP位点的基因型为AA;
    (114)H3GA0050495 SNP位点的基因型为GG;
    (115)ALGA0097291 SNP位点的基因型为GG;
    (116)ALGA0097290 SNP位点的基因型为GG;
    (117)CASI0006683 SNP位点的基因型为GG;
    (118)ASGA0079098 SNP位点的基因型为CC;
    (119)ALGA0097297 SNP位点的基因型为GG;
    (120)H3GA0054426 SNP位点的基因型为TT;
    (121)ALGA0098112 SNP位点的基因型为GG;
    (122)MARC0089391 SNP位点的基因型为GG;
    (123)ASGA0089892 SNP位点的基因型为AA;
    (124)ASGA0097792 SNP位点的基因型为CC;
    (125)MARC0046857 SNP位点的基因型为GG;
    (126)MARC0077194 SNP位点的基因型为AA;
    (127)ALGA0108769 SNP位点的基因型为CC;
    (128)H3GA0050799 SNP位点的基因型为CC;
    (129)ALGA0098120 SNP位点的基因型为CC;
    (130)ALGA0098123 SNP位点的基因型为GG;
    (131)ALGA0098128 SNP位点的基因型为GG;
    (132)ASGA0079719 SNP位点的基因型为CC;
    (133)ASGA0079728 SNP位点的基因型为GG;
    (134)ASGA0080429 SNP位点的基因型为CC;
    (135)MARC0052755 SNP位点的基因型为GG;
    (136)ALGA0098918 SNP位点的基因型为GG;
    (137)ASGA0080432 SNP位点的基因型为GG;
    (138)ALGA0098922 SNP位点的基因型为CC;
    (139)INRA0056206 SNP位点的基因型为GG;
    (140)INRA0056207 SNP位点的基因型为CC;
    (141)ASGA0080435 SNP位点的基因型为CC;
    (142)MARC0068495 SNP位点的基因型为GG;
    (143)ASGA0080436 SNP位点的基因型为CC;
    (144)MARC0003370 SNP位点的基因型为CC;
    (145)ASGA0085659 SNP位点的基因型为CC;
    如果待测样本中存在一个以上不满足上述(1)至(145)的所有标准,待测猪群体为候选的非五指山小型猪近交系群体。
  9. 如权利要求8所述的方法,其特征在于:所述待测猪为五指山小型猪近交系或海南五指山猪。
  10. 如权利要求8或9所述的方法,其特征在于:所述五指山小型猪近交系属于F20至F22中的任一世代。
  11. 如权利要求8或9所述的方法,其特征在于:所述五指山小型猪近交系属于F20世代或F20世代以后的世代。
  12. 如权利要求8至11中任一所述的方法,其特征在于:所述方法中,采用特定芯片检测各个待测样本基于145个SNP位点的基因型;所述特定芯片为分别在不同点固定有序列表的序列1至序列145所示的单链DNA分子的核酸芯片。
PCT/CN2014/000937 2014-10-21 2014-10-21 一种应用145个snp鉴定五指山小型猪近交系的方法 WO2016061711A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/000937 WO2016061711A1 (zh) 2014-10-21 2014-10-21 一种应用145个snp鉴定五指山小型猪近交系的方法
US15/521,262 US10364472B2 (en) 2014-10-21 2014-10-21 Method for identifying wuzhishan miniature pig inbred line by using 145 SNPs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000937 WO2016061711A1 (zh) 2014-10-21 2014-10-21 一种应用145个snp鉴定五指山小型猪近交系的方法

Publications (1)

Publication Number Publication Date
WO2016061711A1 true WO2016061711A1 (zh) 2016-04-28

Family

ID=55760013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000937 WO2016061711A1 (zh) 2014-10-21 2014-10-21 一种应用145个snp鉴定五指山小型猪近交系的方法

Country Status (2)

Country Link
US (1) US10364472B2 (zh)
WO (1) WO2016061711A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860431B1 (ko) * 2017-05-10 2018-05-23 메디키네틱스 주식회사 마이크로피그 판별용 snp 마커 조성물 및 이를 이용한 마이크로피그 판별방법
WO2019113818A1 (zh) * 2017-12-13 2019-06-20 中国农业大学 猪全基因组50k snp芯片及应用
CN110041422A (zh) * 2018-01-16 2019-07-23 中国水产科学研究院珠江水产研究所 大口黑鲈生长相关的snp位点及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362985B (zh) * 2022-08-31 2023-06-20 海南省农业科学院畜牧兽医研究所 一种实验用小型白猪新品种选育方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923993A (zh) * 2014-04-16 2014-07-16 中国农业科学院北京畜牧兽医研究所 一种应用abhd5基因的snp鉴定五指山小型猪近交系的方法
CN103923994A (zh) * 2014-04-16 2014-07-16 中国农业科学院北京畜牧兽医研究所 一种应用mlana基因的snp鉴定五指山小型猪近交系的方法
CN104293963A (zh) * 2014-10-21 2015-01-21 中国农业科学院北京畜牧兽医研究所 一种应用145个snp鉴定五指山小型猪近交系的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923993A (zh) * 2014-04-16 2014-07-16 中国农业科学院北京畜牧兽医研究所 一种应用abhd5基因的snp鉴定五指山小型猪近交系的方法
CN103923994A (zh) * 2014-04-16 2014-07-16 中国农业科学院北京畜牧兽医研究所 一种应用mlana基因的snp鉴定五指山小型猪近交系的方法
CN104293963A (zh) * 2014-10-21 2015-01-21 中国农业科学院北京畜牧兽医研究所 一种应用145个snp鉴定五指山小型猪近交系的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860431B1 (ko) * 2017-05-10 2018-05-23 메디키네틱스 주식회사 마이크로피그 판별용 snp 마커 조성물 및 이를 이용한 마이크로피그 판별방법
WO2019113818A1 (zh) * 2017-12-13 2019-06-20 中国农业大学 猪全基因组50k snp芯片及应用
CN110191965A (zh) * 2017-12-13 2019-08-30 中国农业大学 猪全基因组50k snp芯片及应用
CN110191965B (zh) * 2017-12-13 2022-05-27 中国农业大学 猪全基因组50k snp芯片及应用
CN110041422A (zh) * 2018-01-16 2019-07-23 中国水产科学研究院珠江水产研究所 大口黑鲈生长相关的snp位点及其应用
CN110041422B (zh) * 2018-01-16 2022-07-19 中国水产科学研究院珠江水产研究所 大口黑鲈生长相关的snp位点及其应用

Also Published As

Publication number Publication date
US20170327903A1 (en) 2017-11-16
US10364472B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
Wang et al. A novel indel within goat casein alpha S1 gene is significantly associated with litter size
CN103757003B (zh) 猪13号染色体上与产仔数相关的snp位点及其引物
CN109371144B (zh) 一种与猪生长性状相关联的snp分子标记
WO2016061711A1 (zh) 一种应用145个snp鉴定五指山小型猪近交系的方法
CN109371143A (zh) 与猪生长性状相关联的snp分子标记
CN103757010B (zh) 猪8号染色体上一个与产仔数相关的分子标记及其引物
CN104711339B (zh) 一种鸡显性白羽基因的鉴定方法
CN104651356B (zh) 一种与二花脸母猪产仔性状相关的snp标记及其检测方法和应用
CN109355398A (zh) 一种与二花脸猪产活仔数相关的snp标记引物及其应用
CN105483259A (zh) 猪12号染色体上与窝产仔数相关的snp位点
Sharma et al. Next generation sequencing in livestock species: A review
CN104293963B (zh) 一种应用145个snp鉴定五指山小型猪近交系的方法
Zeng et al. High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines
WO2011106904A1 (zh) 辅助鉴定五指山小型猪近交系的方法及其专用引物
Ren et al. Genome-wide analysis of spatiotemporal allele-specific expression in F1 hybrids of meat-and egg-type chickens
CN103757011B (zh) 猪5号染色体上一个与产仔数相关的分子标记及其引物
CN103757008B (zh) 猪6号染色体上一个与产仔数相关的分子标记及其引物
CN104694651B (zh) 一种与二花脸母猪产仔性状相关的snp标记、检测方法及应用
CN103757005A (zh) 猪11号染色体上一个与产仔数相关的分子标记及其引物
Mei et al. Identification of lncRNAs differentially expressed during natural and induced estrus in sheep
CN103757002B (zh) 猪6号染色体上一个与产仔数相关的分子标记
CN108841971B (zh) 一种检测黄牛sh3pxd2b基因***/缺失标记的方法
Charati et al. Detection of quantitative trait loci affecting carcass traits and internal organs on chromosome 3 in an F2 intercross of Japanese quail.
Li et al. Unravelling the genomic basis and evolution of the pea aphid male wing dimorphism
Chai et al. The gap in research on polyploidization between plants and vertebrates: model systems and strategic challenges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15521262

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14904263

Country of ref document: EP

Kind code of ref document: A1