WO2016058257A1 - 一种纺织品的退浆前处理方法 - Google Patents

一种纺织品的退浆前处理方法 Download PDF

Info

Publication number
WO2016058257A1
WO2016058257A1 PCT/CN2014/093364 CN2014093364W WO2016058257A1 WO 2016058257 A1 WO2016058257 A1 WO 2016058257A1 CN 2014093364 W CN2014093364 W CN 2014093364W WO 2016058257 A1 WO2016058257 A1 WO 2016058257A1
Authority
WO
WIPO (PCT)
Prior art keywords
desizing
textiles
textile
treatment method
carbon dioxide
Prior art date
Application number
PCT/CN2014/093364
Other languages
English (en)
French (fr)
Inventor
龙家杰
刘仕琪
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410552860.6A external-priority patent/CN104452319B/zh
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2016058257A1 publication Critical patent/WO2016058257A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/02Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents
    • D06L1/06De-sizing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic

Definitions

  • the invention belongs to the technical field of textile dyeing and finishing processing, and in particular relates to a method for pre-sizing treatment of textiles by using supercritical carbon dioxide fluid.
  • the supercritical carbon dioxide fluid enzyme desizing technology has obvious characteristics of clean production such as ecological, environmental protection, energy saving and emission reduction, and is of great significance for changing the status of high pollution and high energy consumption of traditional textile pretreatment.
  • biological enzymes have broad application prospects in dyeing and finishing, because the enzyme preparation is non-toxic and harmless as a biological preparation, and its development and application conform to the requirements of green processing and sustainable development.
  • the application of desizing enzyme is relatively mature and extensive, and has been accepted by printing and dyeing workers, and is used to remove impurities such as starch slurry on fabric. Some of these enzymes have a synergistic effect when used in combination.
  • pectinase degrades the epidermal layer of the substrate, which can produce more sites of action for cellulase; and degradation of cellulase results in more epidermal layers. Pectin is exposed and interacts with pectinase.
  • the enzyme desizing of textiles in supercritical carbon dioxide fluids is relatively complicated and difficult.
  • the difficulty lies in how to make the polar polymer protein compound-enzyme enter the hydrophobic high-pressure supercritical carbon dioxide fluid medium and maintain its high activity.
  • most of the conventional slurries used on textiles are polar polymer compounds which cannot be expanded and then dissolved and removed in a hydrophobic supercritical carbon dioxide fluid before and after film formation on the surface of the textile fibers.
  • pre-slurry treatment is an important processing step in textile production.
  • Traditional textile pre-slurry treatment consumes a large amount of water, energy and chemicals, and produces a large amount of high-concentration wastewater, posing a serious threat to resource protection and the ecological environment. .
  • the technical problem to be solved by the present invention is to solve the problem that any method in the prior art can realize the pre-slurry treatment of the textile, improve the desizing efficiency of the enzyme in the supercritical carbon dioxide medium, and is energy-saving and environmentally friendly.
  • the present invention provides a pre-slurry treatment method for textiles, comprising the following steps:
  • A a suitable amount of surfactant is dissolved in a volume ratio of ethanol and water in a mixed solution;
  • the desizing working fluid forms a microemulsion in situ by using a supercritical carbon dioxide medium, and is treated under the conditions of a temperature of 30° C.-95° C., a pressure of 6 Mpa-30 Mpa, and a total desizing treatment time of 0.5 h to 24.0 h. Processing textiles for pre-slurry treatment.
  • the surfactant is sodium diisooctyl succinate (AOT).
  • the volume ratio of ethanol to water is 1:4.
  • the desizing enzyme is one of a cellulase, a pectinase, a lipase, an alpha-amylase or a composition thereof in any ratio.
  • the desizing enzyme is a composition comprising a cellulase, a pectinase, a lipase, and an alpha-amylase in a ratio of 1:1:1:1.
  • the desizing working solution further comprises a buffer system formed by using citric acid and a salt solution thereof, and the pH of the system is 4.0-10.0.
  • the total desizing treatment time includes a fluid circulation time and a static treatment time, and the time ratio of the fluid circulation and the static treatment is 1:20-10:1.
  • the invention provides a pre-slurry treatment method for textiles, wherein the desizing working fluid containing the desizing enzyme forms a micro-emulsion in situ by using a hydrophobic supercritical carbon dioxide medium, and the micro-emulsion releases the activity while the fluid penetrates the cotton product. Desizing enzyme to achieve pre-slurry treatment of green textiles.
  • the method can effectively improve the desizing efficiency of the enzyme in the supercritical carbon dioxide medium by controlling the reaction parameters, such as the reaction temperature, the pressure and the total time of the desizing treatment, and the device and the process are simple, the operation is convenient, the reaction is mild, and the high temperature is not required.
  • the following process avoids the application of a large amount of water, heat and high concentration alkali in the traditional desizing process, and has the characteristics of high efficiency, greenness and environmental protection.
  • FIG. 1 is a schematic view showing the structure of a desizing device for a textile in a supercritical carbon dioxide fluid according to a first embodiment of the present invention.
  • the invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method of the enzyme is realized by a supercritical carbon dioxide fluid desizing device with a structure as shown in FIG.
  • the desizing apparatus includes a desizing liquid storage tank 1 and a desizing kettle 2 that is sealingly connected to the desizing liquid storage tank 1 through a connection device 8.
  • the desizing liquid storage tank 1 is a cylindrical kettle body, and the desiccant storage tank 1 is provided with an inverted "mountain" type tubular fluid distributor 11 which is mainly composed of three pipes which are connected to each other, and the pipe located at the center is a circulating fluid.
  • the inlet pipe 111, the bottom end of the circulating fluid inlet pipe 111 is connected to a supercritical carbon dioxide fluid treatment system (not shown) with a circulation pump; the two pipes on both sides are circulating fluid outlet pipes 112, two cycles
  • the nozzle of the fluid outlet pipe 112 is bent downward, and one end of the lower opening extends below the liquid level of the desizing working fluid 3 in the desizing liquid storage tank 1.
  • the top of the desizing kettle 2 is provided with a circulating fluid outlet 5 which is connected to a supercritical carbon dioxide fluid treatment system.
  • the desizing kettle 2 is also a cylindrical kettle body.
  • the desizing kettle 2 is equipped with an inner hollow textile winding shaft 21 on which the textile to be treated 4 is wound, and the bottom end of the textile winding shaft 21 is wound.
  • the top end of the opening is closed, and a through hole is formed in the sidewall of the shaft.
  • the bottom end of the textile winding shaft 21 adjacent to the connecting device 8 is connected to the horn-shaped fluid guiding cover 6, and the filter 7 is disposed below the fluid guiding hood 6, which can effectively filter the desizing working fluid 3 and the circulating fluid mixture. Contains precipitated impurities.
  • the filter 7 is preferably a single-layer or multi-layered plate material which is filled with 50-2000 mesh micropores.
  • the shaft body of the textile winding shaft 21 is made of Teflon or non-thermal conductive material, or its inner and outer surfaces are made of Teflon or non-thermal conductive material, which prevents the textile winding shaft from desizing due to a certain temperature.
  • the mixture of liquid and circulating fluid flows through and causes overheating damage, which prolongs the service life of the textile winding shaft.
  • the top of the desizing kettle 2 is provided with a circulating fluid outlet 5 which is connected to a supercritical carbon dioxide fluid treatment system with a circulation device.
  • the desizing liquid storage tank 1 and the desizing kettle 2 are realized by supercritical flow through the above-mentioned circulating fluid inlet pipe 111 and circulating fluid outlet 5 Connection of a carbon dioxide fluid treatment system.
  • the desizing working fluid 3 is added to the desizing liquid storage tank 1, the nozzles of the two circulating fluid outlet tubes 112 of the fluid distributor 11 are placed in the desizing working fluid 3, and the textiles to be treated 4 are loose.
  • the state is wound flat on the textile winding shaft 21, and a seamless mesh cloth is placed on the outermost layer of the wound textile, which is then placed in the desizing kettle 2, and the textile winding shaft is made.
  • the open end of the 21 is in good communication with the fluid guide 6 downward.
  • AOT sodium diisooctyl succinate
  • the cellulase, pectinase, lipase and ⁇ -amylase are uniformly mixed at a mass ratio of 1:1:1:1, and an appropriate amount of the mixed enzyme is dissolved in the above mixed solution, and stirred until the system is clarified.
  • the desizing working liquid 3 is prepared; wherein the weight of the textile 4 to be treated is 2 g, and the desizing enzyme is a combination of 0.01 g of cellulase, pectinase, lipase and ⁇ -amylase, and desizing working solution 3 also includes a buffer system formed with citric acid and its salt solution, the pH of which can be controlled in the range of 4.0-10.0.
  • the desizing working liquid 3 is placed in the desizing liquid storage tank 1, and the textile to be treated 4 wound on the textile winding shaft 21 is placed in the desizing kettle 2, the desizing liquid storage tank 1 and the desizing kettle 2
  • the sealing connection forms a desizing device to ensure that the open end of the textile winding shaft 21 is kept at a distance of 45 cm from the liquid level of the desizing working fluid 3, so as to prevent the desizing liquid and the textile from occurring due to the agitation of the fluid distributor and the entrainment of the fluid.
  • the desizing working fluid 3 forms a microemulsion in situ by using supercritical carbon dioxide medium, and the temperature is 30° C.-95° C., the pressure is 6 Mpa-30 Mpa, and the total desizing time is 0.5 h.
  • the treated textile 4 was subjected to pre-slurry treatment under conditions of 24.0 h.
  • the desizing device is connected to the supercritical carbon dioxide fluid treatment system with the circulation pump via the circulating fluid inlet pipe 111 and the circulating fluid outlet 5, or the desizing device is placed in the supercritical carbon dioxide fluid treatment device with the circulation pump.
  • press the reservation Desizing process and parameters reaction temperature is 30 ° C, pressure is 13Mpa, and desizing treatment time is 1h, the time ratio of fluid circulation and static treatment is 1:10 to treat the textile 4 for desizing
  • the external connection is started.
  • the circulating pump in the supercritical carbon dioxide fluid treatment system allows the circulating fluid to be sufficiently contacted with the desalting working fluid 3 through the tubular fluid distributor 11 in the desizing liquid storage tank 1 to form a microemulsion under the action of the surfactant.
  • the pulp enzyme is transferred into the hydrophobic fluid and further into the textile winding shaft 21, and acts through the through holes to the textile to be treated 4 wound on the textile winding shaft 21 to complete the desizing treatment.
  • the pre-slurry treatment method improves the reactivity of the desizing enzyme on the pulp and impurities on the fiber, improves the desizing efficiency of the textile slurry, and effectively realizes the desizing of the textile slurry in the supercritical carbon dioxide fluid medium. deal with.
  • the connecting device 8 is opened, and the textile after the enzyme desizing treatment is taken out.
  • the mixed solution remaining in the desizing liquid storage tank 1 can be recovered or replenished after the additional components are added.
  • the weight loss rate and the gross effect value of the textile after desizing treatment are tested.
  • the weight loss rate and the gross effect value test method are as follows:
  • Weight loss rate test After the desizing is completed, the cloth sample is taken out, washed with water for 2-3 times, and then the textile is placed in an electric blast drying oven at a temperature of 105 ° C for 120 min, and the sample is sealed with a sealed bag. Balance in the dryer for more than 24 hours and weigh the weight. The textile before desizing is treated in the same way, and the weight loss rate of the textile is obtained by comparing the weight of the textile before and after the desizing treatment.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 50 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textile subjected to desizing treatment were as follows: the weight loss rate was 6.0%, and the gross effect value was 7.0 cm.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of the present embodiment is 60 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 4.2%, and the gross effect value was 6.1 cm.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 80 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 1.6%, and the gross effect value was 3.2 cm.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 90 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 0.4%, and the gross effect value was 1.2 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 7 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 5.2%, and the gross effect value was 6.4 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 10 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 5.6%, and the gross effect value was 6.7 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1 h.
  • weight loss rate was 6.8%
  • hair effect value was 7.5 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 16 Mpa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 6.0%, and the gross effect value was 7.2 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 19 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 5.3%, and the gross effect value was 6.0 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of the present embodiment is 40 ° C
  • pressure is 22 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 4.8%, and the gross effect value was 5.8 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 0.5 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 5.4%, and the gross effect value was 4.2 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 6.0%, and the gross effect value was 6.8 cm.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 1.5 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 8.4%, and the gross effect value was 7.6 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 2 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 8.5%, and the gross effect value was 7.7 cm.
  • the present invention provides a pre-slurry treatment method for textiles, and the pre-de-sizing treatment method is basically the same as that in the first embodiment, and will not be described herein.
  • reaction temperature of this embodiment is 40 ° C
  • pressure is 13 MPa
  • total time of desizing treatment is 3 h.
  • the weight loss rate and the gross effect value of the textiles subjected to desizing treatment in this example were as follows: the weight loss rate was 8.6%, and the gross effect value was 7.9 cm.
  • Example 1 to Example 5 and Table 1 It can be seen from Example 1 to Example 5 and Table 1 that when the treatment temperature is low, the enzyme is not easily deactivated, the activity is high, and the desizing effect is good. When the temperature is about 40 ° C, the textile The weight loss rate and the gross effect value of the product reached the maximum value, and the desizing effect was the best. After the temperature continued to increase, the desizing effect gradually deteriorated.
  • the temperature required for this pre-dewatering treatment method is much lower than that of conventional desizing, which can greatly reduce the use of thermal energy, reduce costs and achieve energy saving and emission reduction.
  • Example 6 to Example 11 and Table 2 It can be seen from Example 6 to Example 11 and Table 2 that the desizing method has a better desizing effect under different system pressures, and 13 Mpa is a lower pressure, which is compared in actual production. Easy to reach, therefore, has a good industrial application prospects.
  • the volume ratio of the mixed solution of ethanol and water in the desizing working solution of the present invention can be controlled in the range of 1:2 to 1:5.
  • the time ratio of the supercritical carbon dioxide fluid circulation and the static treatment is in the range of 1:20-10:1, and the desizing treatment effect of the textile can be further optimized.
  • the pre-slurry treatment method of the textile provided by the invention has simple operation process and low production cost of the production equipment, and the enzyme desizing avoids the high concentration and large amount of alkali in the desizing process of the prior art reaction system, especially high corrosivity.
  • the use of strong oxidizing caustic soda not only reduces waste of resources, reduces production costs, but also simplifies requirements for production equipment, process operation and control, and production safety, and at the same time, achieves anhydrous desizing ,
  • carbon dioxide is non-flammable and non-irritating, safe and ecologically non-toxic, and can be reused, replacing water as a medium for desizing process, achieving energy saving and emission reduction, and greatly reducing production costs, with high actuality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本发明公开了一种纺织品的退浆前处理方法,属于纺织染整加工技术领域,为解决传统退浆工艺耗水量高及废水排放量大等问题而设计。该方法包括以下步骤:A、将表面活性剂溶于乙醇和水混合溶液中;B、将退浆酶添加到混合溶液中,并搅拌至体系澄清,制得退浆工作液;C、将退浆工作液置于超临界二氧化碳流体处理***中;D、退浆工作液利用超临界二氧化碳介质形成微乳液,在温度为30℃-95℃,压力为6Mpa-30Mpa,退浆处理总时间为0.5h-24.0h条件下对纺织品进行退浆前处理。本发明工艺简单,实现了对纺织品的退浆前处理,通过控制反应参数如温度,压力和处理时间,提高了酶在超临界二氧化碳介质中的退浆效率,节能又环保。

Description

一种纺织品的退浆前处理方法
本申请要求了申请日为2014年10月17日,申请号为201410552860.6,发明名称为“一种纺织品的退浆前处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于纺织染整加工技术领域,尤其涉及一种利用超临界二氧化碳流体对纺织品进行退浆前处理的方法。
背景技术
超临界二氧化碳流体酶退浆技术,具有显著的生态、环保和节能减排等清洁化生产的特点,对改变传统纺织前处理加工的高污染、高能耗等现状具有重要意义。目前,生物酶在染整加工中具有广阔的应用前景,因为酶制剂作为一种生物制剂,无毒无害,它的开发应用顺应了绿色加工和可持续发展的要求。其中退浆酶的应用较为成熟和广泛,已经越来越被印染工作者所接受,并应用于去除织物上的淀粉浆等杂质。其中某些酶联合使用时存在协同作用,例如,果胶酶降解底物的表皮层,可为纤维素酶产生更多作用位点;而纤维素酶的降解作用会使更多表皮层中的果胶质暴露,并与果胶酶作用。
然而,超临界二氧化碳流体中纺织品的酶退浆,却相对要复杂和困难得多。其难点在于如何使极性高分子的蛋白质化合物-酶,进入疏水性的高压超临界二氧化碳流体介质中,并能保持其较高活性。其次,如何给高压超临界二氧化碳介质中的酶提供适合其进行酶催化反应的化学环境和条件。此外,纺织品上使用的大多数常规浆料都是极性高分子化合物,在纺织品纤维表面成膜前后,都无法在疏水性的超临界二氧化碳流体中进行膨胀并进而溶解去除。因此,长期以来,超临界二氧化碳流体作为染色介质得到了较多研究和应用,但在纺织品的退 浆前处理中,尤其是超临界二氧化碳流体中酶退浆的研究和应用,从现有文献看尚无人涉足。然而,退浆前处理是纺织品生产的重要加工工序,传统的纺织品退浆前处理则需消耗大量的水、能量和化学品,并产生大量高浓度废水,对资源保护和生态环境造成了严重威胁。
因此,研发超临界二氧化碳流体介质中纺织品、尤其对天然纺织品进行高效退浆加工的方法,对推行纺织品无水化退浆前处理等染整加工技术,彻底实现纺织印染企业的清洁生产,具有非常重要的意义和广阔的市场前景。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是解决现有技术中没有任何一种方法可以实现对纺织品的退浆前处理,提高酶在超临界二氧化碳介质中的退浆效率,节能又环保的问题。
(二)技术方案
为了解决上述技术问题,本发明提供了一种纺织品的退浆前处理方法,包括以下步骤:
A、将适量表面活性剂溶于一定体积比的乙醇和水的混合溶液中;
B、将适量退浆酶添加到所述混合溶液中,并搅拌至体系澄清,制得退浆工作液;
C、将所述退浆工作液置于退浆装置的退浆液储存釜内,并将所述退浆装置置于超临界二氧化碳流体处理***中;
D、所述退浆工作液利用超临界二氧化碳介质原位形成微乳液,并在温度为30℃-95℃,压力为6Mpa-30Mpa,退浆处理总时间为0.5h-24.0h的条件下对待处理纺织品进行退浆前处理。
进一步的,在所述步骤A中,所述表面活性剂为丁二酸二异辛酯磺酸钠(AOT)。
进一步的,在所述步骤A中,乙醇和水的体积比为1∶4。
进一步的,在所述步骤B中,所述退浆酶为纤维素酶、果胶酶、脂肪酶、α-淀粉酶中的一种或其任意比的组合物。
更进一步的,所述退浆酶为纤维素酶、果胶酶、脂肪酶和α-淀粉酶以1∶1∶1∶1比例组成的组合物。
进一步的,在所述步骤B中,所述退浆工作液还包括以柠檬酸及其盐溶液形成的缓冲体系,其体系pH值为4.0-10.0。
进一步的,在所述步骤D中,所述退浆处理总时间包括流体循环时间和静止处理时间,且流体循环和静止处理的时间比为1∶20-10∶1。
(三)有益效果
本发明提供了一种纺织品的退浆前处理方法,含有退浆酶的退浆工作液利用疏水性超临界二氧化碳介质原位形成微乳液,微乳液随流体穿透棉制品的同时,释放出活性退浆酶,从而实现对生坯纺织品的退浆前处理。
本方法通过控制反应参数,如反应温度,压力及退浆处理总时间等,能够有效提高酶在超临界二氧化碳介质中的退浆效率,且设备及工艺简单,操作方便,反应温和,无需在高温下进行,避免了传统退浆工艺中大量水,热和高浓度碱的应用,并具有高效、绿色、环保等特点。
附图说明
图1是本发明实施例一的纺织品在超临界二氧化碳流体中的退浆装置的结构示意图。
图中:1、退浆液储存釜;11、流体分布器;111、循环流体入口管;112、循环流体出口管;2、退浆釜;21、纺织品卷绕轴;3、退浆工作液;4、待处理纺织品;5、循环流体出口;6、流体导流罩;7、过滤器;8、连接装置。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例一
本发明提供了一种纺织品的退浆前处理方法,该酶退浆前处理方法采用如图1所示结构的超临界二氧化碳流体退浆装置来实现。该退浆装置包括退浆液储存釜1和通过连接装置8与退浆液储存釜1密封连接的退浆釜2。
退浆液储存釜1为圆筒形釜体,退浆液储存釜1内安装有倒置“山”型的管状流体分布器11,其主要由相互连通的三个管道组成,位于中心的管道为循环流体入口管111,循环流体入口管111的底端与带循环泵的超临界二氧化碳流体处理***(图中未示出)相连接;位于两侧的两个管道为循环流体出口管112,两个循环流体出口管112的管口弯向下方,且下方的开口一端均伸入退浆液储存釜1内的退浆工作液3的液面以下。退浆釜2的顶部设置有循环流体出口5,循环流体出口5与超临界二氧化碳流体处理***相连接。
退浆釜2也同样为圆筒形釜体,退浆釜2内安装有内部中空的纺织品卷绕轴21,纺织品卷绕轴21上卷绕有待处理纺织品4,纺织品卷绕轴21的底端开口顶端封闭,且其轴侧壁上开设有通孔。靠近连接装置8的纺织品卷绕轴21的底端与喇叭形流体导流罩6相连接,流体导流罩6的下方设置有过滤器7,能够有效过滤退浆工作液3和循环流体混合液中含有的沉淀杂质。在本实施例中,过滤器7优选为布满50-2000目微孔的单层或多层板状材料。
纺织品卷绕轴21的轴身采用特氟龙或非导热性材料制作而成,或其内外表面采用特氟龙或非导热性材料制成,防止了纺织品卷绕轴因一定温度的退浆工作液和循环流体混合液流过而产生过热损坏的现象,延长了纺织品卷绕轴的使用寿命。
退浆釜2的顶部设置有循环流体出口5,循环流体出口5与带循环装置的超临界二氧化碳流体处理***相连接。退浆液储存釜1和退浆釜2通过上述的循环流体入口管111和循环流体出口5实现与超临界 二氧化碳流体处理***的连接。
加工时,将退浆工作液3添加到退浆液储存釜1中,流体分布器11的两个循环流体出口管112的管口置于退浆工作液3中,待处理纺织品4则呈松式状态平整地卷绕在纺织品卷绕轴21上,并在卷绕纺织品的最外层套上一层无缝网状包布,然后将其置于退浆釜2中,且使纺织品卷绕轴21的开口端向下与流体导流罩6进行良好连通。
本实施例提供的一种纺织品的退浆前处理方法,包括以下步骤:
A、将0.6g表面活性剂丁二酸二异辛酯磺酸钠(AOT)、溶于体积比为1∶4的10mL乙醇和40mL水的混合溶液中。
B、将纤维素酶、果胶酶、脂肪酶和α-淀粉酶以1∶1∶1∶1的质量比均匀混合,并取适量混合酶溶解于上述混合溶液中,并搅拌至体系澄清,制得退浆工作液3;其中,待处理纺织品4的重量为2g,退浆酶为各0.01g的纤维素酶、果胶酶、脂肪酶和α-淀粉酶的组合物,退浆工作液3还包括以柠檬酸及其盐溶液形成的缓冲体系,其体系pH值可控制在4.0-10.0的范围内。
C、将退浆工作液3置于退浆液储存釜1内,将卷绕在纺织品卷绕轴21上的待处理纺织品4置于退浆釜2内,退浆液储存釜1和退浆釜2密封连接形成退浆装置,保证纺织品卷绕轴21的开口一端与退浆工作液3液面保持45cm的距离,以防止因流体分布器的搅拌和流体的夹带作用使退浆工作液与纺织品发生直接接触,并将退浆装置置于带循环装置的超临界二氧化碳流体装置中。
D、密闭***后启动循环装置,退浆工作液3利用超临界二氧化碳介质原位形成微乳液,并在温度为30℃-95℃,压力为6Mpa-30Mpa,退浆处理总时间为0.5h-24.0h的条件下对待处理纺织品4进行退浆前处理。
具体的,将退浆装置经循环流体入口管111和循环流体出口5与带循环泵的超临界二氧化碳流体处理***相连通,或将退浆装置置于带循环泵的超临界二氧化碳流体处理装置中,密闭***后再按预定的 退浆工艺流程及参数(反应温度为30℃,压力为13Mpa,且退浆处理时间为1h,采用流体循环和静止处理的时间比为1∶10对待处理纺织品4进行退浆处理),启动外接超临界二氧化碳流体处理***中的循环泵,使循环流体通过退浆液储存釜1内的管状流体分布器11与退浆工作液3混合充分接触,并在表面活性剂的作用下形成微乳液,退浆酶被转移进入疏水性流体中,并进而流进纺织品卷绕轴21内,通过通孔与卷绕在纺织品卷绕轴21上的待处理纺织品4发生作用,完成退浆处理。
该退浆前处理方法提高了退浆酶对纤维上浆料及杂质的反应活性,改善了纺织品浆料的退浆效率,有效实现了在超临界二氧化碳流体介质中对纺织品浆料的退浆前处理。
退浆完成后,流体停止循环,并对超临界二氧化碳流体处理***进行泄压,利用外接分离回收***对退浆工作液3及循环流体进行分离与回收。泄压结束后开启连接装置8,并取出经酶退浆处理后的纺织品。退浆液储存釜1内残留的混合溶液可进行回收,或经补加组分后进行续用。
对退浆处理后的纺织品的失重率及毛效值进行测试,其中失重率及毛效值测试方法如下:
失重率测试:退浆完成后取出布样,用水清洗2-3次后,将纺织品置于电热鼓风干燥箱中在温度为105℃的条件下烘培120min,用密封袋密封试样,在干燥器中平衡24h以上,秤量其重量。退浆前的纺织品以相同的方式处理,通过对比退浆处理前后纺织品的重量,得到纺织品的失重率。
毛效值测试:参照纺织行业标准FZ/T 01071-2008纺织品毛细效应试验方法进行测定,取退浆处理后的织物,在ZBW04019型毛效测试仪上测试15min。
经测试得到结果,经退浆处理的纺织品失重率为5.8%,毛效值为6.0cm。
实施例二:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为50℃,压力为13Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为6.0%,毛效值为7.0cm。
实施例三:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为60℃,压力为13Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为4.2%,毛效值为6.1cm。
实施例四:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为80℃,压力为13Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为1.6%,毛效值为3.2cm。
实施例五:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为90℃,压力为13Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为0.4%,毛效值为1.2cm。
实施例六:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为7Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为5.2%,毛效值为6.4cm。
实施例七:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为10Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为5.6%,毛效值为6.7cm。
实施例八:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为13Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为6.8%,毛效值为7.5cm。
实施例九:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为16Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为6.0%,毛效值为7.2cm。
实施例十:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为19Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为5.3%,毛效值为6.0cm。
实施例十一:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为22Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为4.8%,毛效值为5.8cm。
实施例十二:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为13Mpa,退浆处理总时间为0.5h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为5.4%,毛效值为4.2cm。
实施例十三:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为13Mpa,退浆处理总时间为1h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为6.0%,毛效值为6.8cm。
实施例十四:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为13Mpa,退浆处理总时间为1.5h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为8.4%,毛效值为7.6cm。
实施例十五:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为13Mpa,退浆处理总时间为2h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为8.5%,毛效值为7.7cm。
实施例十六:
本发明提供了一种纺织品的退浆前处理方法,其酶退浆前处理方法与实施例一所述的退浆前处理方法基本相同,在此不再赘述。
区别之处在于:本实施例的反应温度为40℃,压力为13Mpa,退浆处理总时间为3h。
本实施例经退浆处理的纺织品的失重率及毛效值测试结果为:失重率为8.6%,毛效值为7.9cm。
表1纺织品的失重率及毛效值与处理温度的关系表
Figure PCTCN2014093364-appb-000001
通过实施例一至实施例五和表1可以看出,处理温度较低时,酶不易发生失活,活性较高,退浆效果好,当温度在40℃左右时,纺织 品的失重率和毛效值达到最大值,退浆效果最好,后随着温度的继续增加,退浆效果逐渐变差。此退浆前处理方法所需的温度较之于常规退浆低很多,可以极大的减少热能的使用,降低了成本并实现节能减排。
由实施例六至实施例十一和表2可以看出,在不同的***压力下,此退浆方法都具有较好的退浆效果,而13Mpa为一个较低的压力,在实际生产中比较容易达到,因此,具有较好的工业应用前景。
表2纺织品的失重率及毛效值与***压力的关系表
Figure PCTCN2014093364-appb-000002
由实施例十二至实施例十六和表3可以看出,处理时间越长,退浆效果越明显。实际生产中,由于成本的原因,不可能长时间的堆放处理,所以在保证产品质量的前提下,选定合适的处理时间是十分重要的。
表3纺织品的失重率及毛效值与处理时间的关系表
Figure PCTCN2014093364-appb-000003
本发明退浆工作液中乙醇和水混合溶液的体积比可控制在1∶2-1∶5的范围。另外,超临界二氧化碳流体循环和静止处理的时间比在1∶20-10∶1的范围,可对纺织品的退浆处理效果做进一步优化。
本发明提供的纺织品的退浆前处理方法,操作工艺简便,生产设备的制造成本低,酶退浆避免了现有技术反应体系在退浆过程中高浓度、大量碱的加入,尤其是高腐蚀性、强氧化性烧碱的使用,由此不仅减少了浪费资源,降低了生产成本,而且对生产设备、工艺操作和控制以及生产安全等方面都简化了要求,与此同时,实现了无水退浆, 退浆过程中由于二氧化碳不可燃无刺激性,安全生态无毒,可重复使用,代替了水作为退浆过程的介质,实现了节能减排,并且极大地降低了生产成本,具有较高的实际应用价值、创新性与环保性。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (7)

  1. 一种纺织品的退浆前处理方法,其特征在于:包括以下步骤:
    A、将适量表面活性剂溶于一定体积比的乙醇和水的混合溶液中;
    B、将适量退浆酶添加到所述混合溶液中,并搅拌至体系澄清,制得退浆工作液;
    C、将所述退浆工作液置于退浆装置的退浆液储存釜内,并将所述退浆装置置于超临界二氧化碳流体处理***中;
    D、所述退浆工作液利用超临界二氧化碳介质原位形成微乳液,并在温度为30℃-95℃,压力为6Mpa-30Mpa,退浆处理总时间为0.5h-24.0h的条件下对待处理纺织品进行退浆前处理。
  2. 根据权利要求1所述的纺织品的退浆前处理方法,其特征在于:在所述步骤A中,所述表面活性剂为丁二酸二异辛酯磺酸钠(AOT)。
  3. 根据权利要求1所述的纺织品的退浆前处理方法,其特征在于:在所述步骤A中,乙醇和水的体积比为1∶4。
  4. 根据权利要求1所述的纺织品的退浆前处理方法,其特征在于:在所述步骤B中,所述退浆酶为纤维素酶、果胶酶、脂肪酶、α-淀粉酶中的一种或其任意比的组合物。
  5. 根据权利要求4所述的纺织品的退浆前处理方法,其特征在于:所述退浆酶为纤维素酶、果胶酶、脂肪酶和α-淀粉酶以1∶1∶1∶1比例组成的组合物。
  6. 根据权利要求1所述的纺织品的退浆前处理方法,其特征在于:在所述步骤B中,所述退浆工作液还包括以柠檬酸及其盐溶液形成的缓冲体系,其体系pH值为4.0-10.0。
  7. 根据权利要求1所述的纺织品的退浆前处理方法,其特征在于:在所述步骤D中,所述退浆处理总时间包括流体循环时间和静止处理时间,且流体循环和静止处理的时间比为1∶20-10∶1。
PCT/CN2014/093364 2014-10-17 2014-12-09 一种纺织品的退浆前处理方法 WO2016058257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410552860.6A CN104452319B (zh) 2014-10-17 一种纺织品的退浆前处理方法
CN201410552860.6 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016058257A1 true WO2016058257A1 (zh) 2016-04-21

Family

ID=52899025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093364 WO2016058257A1 (zh) 2014-10-17 2014-12-09 一种纺织品的退浆前处理方法

Country Status (1)

Country Link
WO (1) WO2016058257A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106400511A (zh) * 2016-08-31 2017-02-15 安徽东锦服饰有限公司 一种纺织面料低温前酶法处理工艺
CN110835818A (zh) * 2019-11-18 2020-02-25 浙江工业大学之江学院 一种超临界无水染整的上浆脱浆方法及所用高压装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033033A1 (en) * 1996-03-08 1997-09-12 Battelle Memorial Institute Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent
DE4004111C2 (de) * 1989-02-15 1999-08-19 Deutsches Textilforschzentrum Verfahren zur Vorbehandlung von textilen Flächengebilden oder Garnen
CN1955346A (zh) * 2005-10-24 2007-05-02 中国农业科学院麻类研究所 一种超临界co2介质中酶法提取苎麻纤维的方法
TW201247963A (en) * 2011-03-31 2012-12-01 Nitto Boseki Co Ltd Method for cleaning woven glass fiber fabric
CN104372598A (zh) * 2014-10-17 2015-02-25 苏州大学 一种采用组合酶的超临界二氧化碳流体退浆方法
CN104389153A (zh) * 2014-10-17 2015-03-04 苏州大学 一种超临界二氧化碳流体中棉的酶退浆方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004111C2 (de) * 1989-02-15 1999-08-19 Deutsches Textilforschzentrum Verfahren zur Vorbehandlung von textilen Flächengebilden oder Garnen
WO1997033033A1 (en) * 1996-03-08 1997-09-12 Battelle Memorial Institute Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent
CN1955346A (zh) * 2005-10-24 2007-05-02 中国农业科学院麻类研究所 一种超临界co2介质中酶法提取苎麻纤维的方法
TW201247963A (en) * 2011-03-31 2012-12-01 Nitto Boseki Co Ltd Method for cleaning woven glass fiber fabric
CN104372598A (zh) * 2014-10-17 2015-02-25 苏州大学 一种采用组合酶的超临界二氧化碳流体退浆方法
CN104389153A (zh) * 2014-10-17 2015-03-04 苏州大学 一种超临界二氧化碳流体中棉的酶退浆方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG, YUANDE ET AL.: "Preliminary study on ramie retting in supercritical-CO2 with enzymes", JOURNAL OF TEXTILE RESEARCH, vol. 27, no. 8, 15 August 2006 (2006-08-15), ISSN: 0253-9721 *
PENG, YUANDE: "Factors influencing retting of ramie with enzymes in SC-CO2", JOURNAL OF TEXTILE RESEARCH, vol. 28, no. 5, 15 May 2007 (2007-05-15), ISSN: 0253-9721 *
YANG, XI ET AL.: "Supercritical CO2 enzymatic degrading of ramie gelatin and testing degradation products", JOURNAL OF TEXTILE RESEARCH, vol. 30, no. 5, 15 May 2009 (2009-05-15), ISSN: 0253-9721 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106400511A (zh) * 2016-08-31 2017-02-15 安徽东锦服饰有限公司 一种纺织面料低温前酶法处理工艺
CN110835818A (zh) * 2019-11-18 2020-02-25 浙江工业大学之江学院 一种超临界无水染整的上浆脱浆方法及所用高压装置

Also Published As

Publication number Publication date
CN104452319A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016058252A1 (zh) 一种超临界二氧化碳流体中棉的酶退浆方法
CN104328648A (zh) 一种在超临界二氧化碳介质中的退浆处理方法
CN104372598A (zh) 一种采用组合酶的超临界二氧化碳流体退浆方法
CN106521989B (zh) 一种活性染料的非水溶剂冷轧堆染色方法
CN104313891A (zh) 一种以超临界二氧化碳为介质的淀粉浆退浆方法
WO2017147942A1 (zh) 一种纺织品活性染料染浴及染色方法
CN102899929A (zh) 一种活性染料无盐染色的加工方法
US9920473B2 (en) Method for colour-fixing processing of textile and device therefor
CN103255609A (zh) 一种棉型织物前处理的方法
WO2016058257A1 (zh) 一种纺织品的退浆前处理方法
CN106758212A (zh) 一种改性无纺布及其制备和使用方法
CN109577037A (zh) 一种棉织物的无水染色工艺
WO2022012373A1 (zh) 活性水制备装置及天然纤维染整处理装置和方法
CN103184684A (zh) 一种坯布退浆、漂白用生产方法
CN105568591B (zh) 一种超临界二氧化碳流体中棉的双氧水退浆前处理法
CN202625970U (zh) 牛仔布丝光废碱液的净化回收装置
WO2015032020A1 (zh) 纺织品的一种相转移催化固色加工方法
CN103215820B (zh) 一种利用酶解产生葡萄糖进行染色的方法
CN109403067A (zh) 以废弃食用油作为染色溶剂的染色方法
CN106996034A (zh) 一种基于超临界二氧化碳与碱性生物酶的棉退浆方法
CN108252105A (zh) 一种玻璃纤维织物的表面处理方法
CN106958161B (zh) 一种纸浆高温二氧化氯漂白段余热回收方法
CN103451884B (zh) 一种对纺织品进行固色加工的方法及其装置
CN109355950A (zh) 一种羊毛织物染色前处理方法
TWI717894B (zh) 染色用助劑及其製造方法與所應用之染色製程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904057

Country of ref document: EP

Kind code of ref document: A1