WO2016055182A1 - System und verfahren zur assistenz für die positionierung einer sekundärspule an einer primärspule für eine induktive energieübertragung - Google Patents

System und verfahren zur assistenz für die positionierung einer sekundärspule an einer primärspule für eine induktive energieübertragung Download PDF

Info

Publication number
WO2016055182A1
WO2016055182A1 PCT/EP2015/067247 EP2015067247W WO2016055182A1 WO 2016055182 A1 WO2016055182 A1 WO 2016055182A1 EP 2015067247 W EP2015067247 W EP 2015067247W WO 2016055182 A1 WO2016055182 A1 WO 2016055182A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasound
primary coil
secondary coil
source
Prior art date
Application number
PCT/EP2015/067247
Other languages
English (en)
French (fr)
Inventor
Ahmet Kilic
Jan Sparbert
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2016055182A1 publication Critical patent/WO2016055182A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to a system and a method for assisting the positioning of a secondary coil on a primary coil for inductive energy transmission.
  • the inductive charging of an electrical energy storage represents an innovative
  • the electric vehicle can be positioned using sensors of a parking aid of the vehicle in a computer-aided maneuvering operation via a coil of an inductive charging station.
  • the present invention provides a
  • An assistance system for positioning a secondary coil on a primary coil for inductive power transmission comprising an ultrasonic source configured to emit an ultrasonic signal; a receiving device having at least one ultrasonic receiver adapted to receive the ultrasonic signals emitted by the ultrasonic source; and a processing device configured to receive the one or more
  • the present invention provides a method of assisting positioning a secondary coil on a primary coil for inductive power transmission.
  • the method comprises the steps of providing an ultrasound source to the primary coil and a
  • Receiving device on the secondary coil or providing a receiving device to the primary coil and an ultrasonic source to the secondary coil, wherein the receiving device at least one
  • Ultrasonic receiver comprises; the emission of an ultrasonic signal by the ultrasonic source; receiving the emitted ultrasound signal by the one or more ultrasound receivers; and determining a direction between the receiving device and the ultrasound source based on the ultrasound signals received by the one or more ultrasound receivers.
  • One idea underlying the present invention is to determine a spatial offset between the primary coil and the secondary coil of an inductive power transmission system by transmitting ultrasonic signals between the position of the primary coil and the position of the secondary coil. By evaluating the transit times of the ultrasonic signals between
  • a spatial offset between the two coils can be determined. In this way it is possible to determine the direction in which one of the two coils, preferably the secondary coil, has to be moved in order to optimally position the coil pair of primary coil and secondary coil with respect to one another.
  • Positioning the coils provides a robust, cost-effective and highly reliable coil positioning assistance system.
  • the direction determination is largely independent of external influences, such as brightness, fog and the like.
  • the assistance system according to the invention can be implemented in a particularly cost-effective manner.
  • the processing device is further configured to adjust a distance between the receiving device and the
  • This distance thus also corresponds to the distance between the primary coil and the secondary coil. If, in addition to the direction, the distance between primary coil and secondary coil is also determined, this information stands for optimal positioning of
  • the ultrasound source comprises a plurality of ultrasound transmitters which are arranged at predetermined spatial distances from one another.
  • the use of a plurality of ultrasound transmitters arranged in a defined manner further improves the determination of the relative position between primary coil and secondary coil. In this way, the secondary coil can then be approached from a predetermined preferred direction to the primary coil.
  • the ultrasound transmitters each emit an individually coded ultrasound signal.
  • the receiving device can easily determine from which ultrasound transmitter the respective ultrasound signal was transmitted. Thus, the determination of the
  • Relative position between primary coil and secondary coil can be further improved.
  • the ultrasound transmitters sequentially transmit one ultrasound signal in succession.
  • the assistance system further comprises a display device, which is adapted to that of the
  • Processing device to indicate certain direction.
  • an additionally determined distance between the ultrasonic source and the ultrasonic source is
  • Receiving device also be displayed. In this way it is very easy for a user to optimally position the secondary coil over the primary coil.
  • the assistance system further comprises a communication device which is designed to transmit and / or receive data via the direction determined by the processing device.
  • the communication is wireless.
  • the communication device may already be one existing communication device, which is present for data exchange between the primary side and secondary side of an inductive charging system. In this way, for example, a synchronization between the ultrasound source and receiving device is possible.
  • the secondary coil is in one
  • the primary coil can be arranged in a charging station for the electric vehicle.
  • the electric vehicle further comprises a
  • a control device configured to control the electric vehicle according to the determined direction toward the primary coil. If present, the controller may also use a detected distance between the primary coil and the secondary coil to control the electric vehicle.
  • Figure 1 a schematic representation of an assistance system according to an embodiment
  • FIG. 2 shows a schematic representation of an assistance system according to a further embodiment
  • FIG. 3 shows a schematic representation of an assistance system according to yet another embodiment
  • Figure 4 a schematic representation of a method, as it is based on a further embodiment. Description of embodiments
  • FIG. 1 shows a schematic illustration of an assistance system according to an embodiment.
  • a charging station 3 comprises, for example, a primary coil 1.
  • This primary coil 1 can be connected via suitable electronics to an energy source, for example a power grid (not shown here).
  • the primary coil 1 For inductive energy transmission, the primary coil 1 generates a high-frequency alternating magnetic field. Since the transmitted power increases linearly with the switching frequency, but on the other hand, the switching frequency is limited by the control electronics and the losses in the transmission path, typically results in a frequency range of 20-150 kHz.
  • a secondary coil 2 must be positioned as optimally as possible above the primary coil 1 of the charging station 3.
  • the primary coil 2 may be arranged in an electric vehicle 4.
  • the secondary coil 2 can be fixedly mounted in the underbody of the electric vehicle 4.
  • Secondary coil 2 can in turn be connected by means of suitable electronics with an electrical energy storage, such as a traction battery or the like.
  • an electrical energy storage such as a traction battery or the like.
  • the primary coil 1 For inductive energy transmission, the primary coil 1 generates a magnetic alternating field which penetrates the secondary coil 2 and induces a corresponding current there.
  • primary coil 1 and secondary coil 2 For optimum inductive energy transmission, primary coil 1 and secondary coil 2 must be optimally positioned relative to each other in order to achieve the highest possible coupling between the two coils 1 and 2, which equates to minimizing the stray field.
  • the positioning of the secondary coil 2 with respect to the primary coil 1 can be done manually or automatically.
  • the relative position of the secondary coil 2 with respect to the primary coil 1 for example by means of
  • an ultrasound source 10 with an ultrasound transmitter 11 is arranged in the immediate vicinity of the primary coil 1.
  • the ultrasonic transmitter 11 may, for example, in all
  • the ultrasound signal emitted by the ultrasound transmitter 11 may be, for example, a
  • pulsed, modulated or coded ultrasonic signals are possible.
  • a receiving device 20 is arranged with at least two ultrasonic receivers 21. Each of these
  • Ultrasonic receiver 21 receives this from the ultrasonic transmitter 11
  • Primary coil 1, with respect to the receiving device 20 and thus with respect to the secondary coil 2 are determined. From this, a direction can be determined which indicates how the secondary coil 2 has to be moved in order to be optimally positioned above the primary coil 1.
  • the determination of the direction by the processing device 30 can be repeated periodically, for example, to increase the accuracy of the target.
  • the secondary coil 2 is arranged, for example, in an electric vehicle 4 which already has ultrasonic receivers, as are used, for example, in conventional driver assistance systems, then these already existing ultrasonic receivers can be used as ultrasonic receivers 21 of the receiving device 20.
  • Ultrasonic receiver 21 used, so this can the accuracy for the determination of the direction between the receiving device 20 and
  • Ultrasonic source 10 can be increased.
  • the use allows a plurality of ultrasonic receiver 21 and in particular the use of
  • Ultrasonic receivers 21 with a narrower directional characteristic Ultrasonic receivers 21 with a narrower directional characteristic.
  • the processing device 30 can be used to automatically control, for example, the electric vehicle 4 in the direction of the charging station 3 with the primary coil 1.
  • the electric vehicle 4 may include a suitable control device 5, which is designed to control the corresponding components of the electric vehicle 4 in order to drive at a suitable angle in the direction of the charging station 3, thereby optimally positioning the secondary coil 2 over the primary coil 1 ,
  • processing device 30 can also be evaluated by evaluating the received ultrasonic signals in addition to the direction between primary coil 1 and
  • the assistance system may also have a display device 40.
  • the display device 40 may be a screen that is in one
  • Display device 40 of the assistance system can then be displayed to a user the direction in which the electric vehicle 4 must be moved in order to position the secondary coil 2 optimally over the primary coil 1. If known, moreover, the distance between the primary coil 1 and the secondary coil 2 can be displayed on the display device 40.
  • FIG. 2 shows a further embodiment of an assistance system for
  • the ultrasonic source 10 comprises a plurality of ultrasonic transmitters 11.
  • the ultrasonic transmitter 11 are preferably arranged at known, predetermined distances from each other.
  • the ultrasound source 10 preferably comprises at least three ultrasound transmitters 11
  • Processing device 30 determines to each in this case
  • Ultrasonic switch 11 of the ultrasonic source 10 a direction. In this way it is possible to also determine the orientation of the electric vehicle 4 with respect to the charging station 3. Thus, the charging station 3 by the
  • Electric vehicle 4 are also driven from a predetermined direction out.
  • Ultrasonic source 10 are arranged, not exactly known in the receivers. It is already sufficient to depict a basic pattern which has a standardized orientation to the charging station 3.
  • a basic structure may be an equilateral triangle, the tip of which is oriented in the direction of an approach side of the charging station, and its axis of symmetry
  • the different ultrasonic transmitters 11 can all simultaneously emit an ultrasonic signal. Preferably, however, the ultrasonic transmitters 11 can also sequentially emit an ultrasonic signal in succession. Furthermore, the emitted ultrasonic signals of all the ultrasonic transmitters 11 can be identical. Alternatively, it is possible to individually encode the ultrasound signals emitted by the individual ultrasound transmitters 11, so that the
  • received ultrasonic signals can be individually assigned to one of the ultrasonic transmitter 11.
  • the ultrasound source 10 comprises a plurality of ultrasound transmitters 11, in particular more than three
  • Ultrasonic transmitter 11 so a trilateration based on the received from a single ultrasonic receiver 21 ultrasonic signals is possible.
  • the ultrasound signals received by the ultrasound receiver 21 can be assigned to the individual ultrasound transmitters 11.
  • the individual ultrasound transmitters 11 it is also possible for the individual ultrasound transmitters 11 to emit an ultrasound signal at a later time, wherein the pattern in which the individual ultrasound transmitters 11 of the ultrasound source 10 emit their respective signals is known on the receiving side, so that thereby also assigning the received ultrasound signals to one of the Ultrasonic transmitter 11 can take place.
  • ultrasound source 10 and receiving device 20 to synchronize in order to associate the received ultrasound signals with the individual ones
  • Ultrasonic transmitters 11 to perform. For example, this synchronization can be described below
  • FIG. 3 shows a further embodiment of an assistance system for
  • the embodiment according to FIG. 3 differs from the embodiment in FIG. 2 in that the ultrasound source 10 with the ultrasound transmitters 11 is arranged in the immediate vicinity of the secondary coil 2.
  • Driver assistance system for example, a parking aid of a vehicle 4 are used.
  • the receiving device 20 with the ultrasonic receivers 21 is arranged in this embodiment in the immediate vicinity of the primary coil 1.
  • Primary coil 1 and secondary coil 2 are determined.
  • the evaluation of the received ultrasonic signals is in this case preferably by a Processing device 30, which is arranged in the charging station 3.
  • the data thus determined ie in particular the direction and / or distance between the primary coil 1 and the secondary coil 2, can be transmitted via a
  • Primary coil 1 and secondary coil 2 data for billing or the cost of charging or other parameters are transmitted. Is already a conventional communication device between charging station 3 and
  • this communication device can also be used to transmit information about the distance or the direction between the primary coil 1 and secondary coil 2. Even if the communication device 50, 51 here only in connection with the
  • Receiving device 10 and an ultrasonic array are used. Such an ultrasonic array allows direct directional measurement. Thus, the reliability of the determination of direction and / or distance can be further increased.
  • two ultrasonic transmitters 11 on the transmitter side are already sufficient to be able to carry out a trilateration for determining the direction.
  • the ultrasonic transmitter 11 and the ultrasonic receiver 21 can be synchronized with each other via the communication device 50, 51. This way, in addition
  • Processing device 30 analyze the movement of the electric vehicle 40 and integrate with the processing process.
  • the movement of the vehicle 40 may, for example, by an existing in the vehicle 4
  • Navigation system to be determined.
  • other components or devices in the vehicle 40 that detect or estimate the movement of the vehicle 4 over the ground are also possible.
  • FIG. 4 shows a schematic representation of a flowchart on which a method for assisting the positioning of a secondary coil on a primary coil for an inductive energy transmission is based.
  • a first step S1 either an ultrasound source 10 is provided at a primary coil 1 and a receiver 20 at a secondary coil 2.
  • the ultrasound source 10 comprises at least two ultrasound receivers 11
  • Ultrasonic source 10 emitted an ultrasonic signal.
  • the ultrasound source 10 may include one or more ultrasound transmitters 11. Unless the
  • Ultrasonic source 10 comprises a plurality of ultrasonic transmitter 11, the
  • Ultrasonic transmitter 11 either simultaneously or sequentially emit an ultrasonic signal.
  • the emitted ultrasonic signal can be pulsed or modulated or coded in any other way.
  • step S3 the transmitted ultrasonic signal is transmitted through the
  • step S4 Receive ultrasonic receiver 21. Subsequently, in step S4, a direction between receiving device 20 and ultrasound source 10 is determined. Optionally, in addition, a distance between the receiving device 20 and ultrasound source 10 can be determined.
  • the particular direction and possibly also the distance between the receiving device 20 and ultrasound source 10 can on a
  • Display device 40 are displayed. Additionally or alternatively, based on the particular direction and optionally the particular distance between the receiving device 20 and ultrasound source 10, an electric vehicle 4 with a secondary coil 2 can be navigated towards a charging station 3 with the primary coil 1 to optimally position the secondary coil 2 over the primary coil 1 ,
  • the present invention relates to an assistance system for optimum positioning of primary coil and secondary coil of an inductive energy transfer.
  • ultrasonic signals are exchanged between the primary coil and the secondary coil.
  • the ultrasonic signals are received by a plurality of ultrasonic receivers and evaluated based on the transit time differences of the received ultrasonic signals, a relative position between the primary coil and the secondary coil.
  • the relative position can be displayed to a user, or used for automatic positioning of the secondary coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die vorliegende Erfindung schafft ein Assistenzsystem zur optimalen Positionierung von Primärspule und Sekundärspule einer induktiven Energieübertragung. Hierzu werden zwischen Primärspule und Sekundärspule Ultraschallsignale ausgetauscht. Die Ultraschallsignale werden von mehreren Ultraschallempfängern empfangen und basierend auf den Laufzeitunterschieden der empfangenen Ultraschallsignale eine relative Position zwischen Primärspule und Sekundärspule ausgewertet. Die relative Position kann einem Benutzer angezeigt werden, oder für eine automatische Positionierung der Sekundärspule genutzt werden.

Description

Beschreibung
Titel
System und Verfahren zur Assistenz für die Positionierung einer Sekundärspule an einer Primärspule für eine induktive Energieübertragung
Die vorliegende Erfindung betrifft ein System sowie ein Verfahren zur Assistenz für die Positionierung einer Sekundärspule an einer Primärspule für induktive Energieübertragung. Das induktive Laden eines elektrischen Energiespeichers stellt eine innovative
Alternative zu dem konduktiven Laden dar, bei dem der Energiespeicher über eine galvanische Verbindung mit einer Energiequelle verbunden werden muss. Beim induktiven Laden wird eine Primärspule mittels einer geeigneten Elektronik mit einem Stromnetz verbunden. Ferner wird eine Sekundärspule in die unmittelbare Nähe der Primärspule gebracht und über eine geeignete Elektronik mit dem aufzuladenden Energiespeicher verbunden. Zur Energieübertragung erzeugt die Primärspule ein hochfrequentes magnetisches Wechselfeld, das die Sekundärspule durchdringt und dort einen entsprechenden Strom induziert. Die Europäische Patentanmeldung EP 2 454 119 A2 offenbart eine elektronische
Positionshilfe für ein Elektrofahrzeug im Nahbereich von induktiven
Ladestationen. Dabei kann das Elektrofahrzeug unter Verwendung von Sensoren einer Einparkhilfe des Fahrzeugs in einem rechnergestützten Rangierbetrieb über eine Spule einer induktiven Ladestation positioniert werden.
Für einen möglichst hohen Wirkungsgrad bei der induktiven Energieübertragung und um die bei der Energieübertragung entstehenden Verluste zu reduzieren, müssen Primär- und Sekundärspulen optimal zueinander positioniert werden. Es besteht daher ein Bedarf nach einem System und einem Verfahren zur Assistenz bei der Positionierung der Spulen für eine induktive
Energieübertragung.
Offenbarung der Erfindung
Gemäß einem ersten Aspekt schafft die vorliegende Erfindung ein
Assistenzsystem zur Positionierung einer Sekundärspule an einer Primärspule für eine induktive Energieübertragung, mit einer Ultraschallquelle, die dazu ausgelegt ist, ein Ultraschallsignal auszusenden; einer Empfangsvorrichtung mit mindestens einem Ultraschallempfänger, der dazu ausgelegt ist, die von der Ultraschallquelle ausgesendeten Ultraschallsignale zu empfangen; und einer Verarbeitungsvorrichtung, die dazu ausgelegt ist, die von dem oder den
Ultraschallempfängern empfangenen Ultraschallsignale auszuwerten und eine Richtung zwischen der Empfangsvorrichtung und der Ultraschallquelle zu bestimmen, wobei entweder die Ultraschallquelle an der Primärspule angeordnet ist und die Empfangsvorrichtung an der Sekundärspule angeordnet ist, oder die Empfangsvorrichtung an der Primärspule angeordnet ist und die Ultraschallquelle an der Sekundärspule angeordnet ist.
Gemäß einem weiteren Aspekt schafft die vorliegende Erfindung ein Verfahren zur Assistenz zur Positionierung einer Sekundärspule an einer Primärspule für eine induktive Energieübertragung. Das Verfahren umfasst die Schritte des Bereitstellens einer Ultraschallquelle an der Primärspule und einer
Empfangsvorrichtung an der Sekundärspule, oder des Bereitstellens einer Empfangsvorrichtung an der Primärspule und einer Ultraschallquelle an der Sekundärspule, wobei die Empfangsvorrichtung mindestens einen
Ultraschallempfänger umfasst; des Aussendens eines Ultraschallsignals durch die Ultraschallquelle; des Empfangens des ausgesendeten Ultraschallsignals durch den oder die Ultraschallempfänger; und des Bestimmens einer Richtung zwischen der Empfangsvorrichtung und der Ultraschallquelle basierend auf den von dem oder den Ultraschallempfängern empfangenen Ultraschallsignalen.
Vorteile der Erfindung Eine Idee, die der vorliegenden Erfindung zugrunde liegt, besteht darin, einen räumlichen Versatz zwischen Primärspule und Sekundärspule eines induktiven Energieübertragungssystems zu bestimmen, indem Ultraschallsignale zwischen der Position der Primärspule und der Position der Sekundärspule übertragen werden. Durch die Auswertung der Laufzeiten der Ultraschallsignale zwischen
Primärspule und Sekundärspule kann ein räumlicher Versatz zwischen den beiden Spulen bestimmt werden. Auf diese Weise ist es möglich, die Richtung zu ermitteln, in der eine der beiden Spulen, vorzugsweise die Sekundärspule, bewegt werden muss, um das Spulenpaar aus Primärspule und Sekundärspule optimal zueinander zu positionieren.
Durch die Verwendung von Ultraschallsignalen für die Assistenz bei der
Positionierung der Spulen wird ein robustes, kostengünstiges und sehr zuverlässiges Assistenzsystem für die Positionierung der Spulen ermöglicht. Dabei ist die Richtungsbestimmung weitestgehend unabhängig von externen Einflüssen, wie zum Beispiel Helligkeit, Nebel und ähnlichem.
Im Falle von Elektrofahrzeugen können zum Aussenden oder zum Empfangen der Ultraschallsignale bereits vorhandene Aktoren bzw. Sensoren verwendet werden, die aufgrund von weiteren Fahrassistenzsystemen vorhanden sind. Beispielsweise können zum Aussenden oder Empfangen der Ultraschallsignale die entsprechenden Komponenten eines Parkassistenzsystems verwendet werden. Hierdurch kann das erfindungsgemäße Assistenzsystem besonders kostengünstig implementiert werden.
Gemäß einer Ausführungsform ist die Verarbeitungsvorrichtung ferner dazu ausgelegt, einen Abstand zwischen der Empfangsvorrichtung und der
Ultraschallquelle zu bestimmen. Dieser Abstand entspricht somit auch dem Abstand zwischen Primärspule und Sekundärspule. Wird neben der Richtung auch zusätzlich der Abstand zwischen Primärspule und Sekundärspule ermittelt, so stehen diese Informationen für eine optimale Positionierung von
Sekundärspule in Bezug auf die Primärspule ebenfalls zur Verfügung. Diese Informationen können für eine automatische oder auch manuelle Positionierung der Spule verwendet werden. Gemäß einer weiteren Ausführungsform umfasst die Ultraschallquelle eine Mehrzahl von Ultraschallsendern, die in vorbestimmten räumlichen Abständen zueinander angeordnet sind. Durch den Einsatz mehrerer definiert angeordneter Ultraschallsender wird die Bestimmung der Relativposition zwischen Primärspule und Sekundärspule weiter verbessert. Hierdurch dann die Sekundärspule von eine vorgegebenen Vorzugsrichtung heraus an die Primärspule angenähert werden.
Gemäß einer Ausführungsform senden die Ultraschallsender jeweils ein individuell kodiertes Ultraschallsignal aus. Durch diese individuelle Kodierung der Ultraschallsignale der einzelnen Ultraschallsender kann die Empfangsvorrichtung auf einfache Weise ermitteln, von welchem Ultraschallsender das jeweilige Ultraschallsignal ausgesendet wurde. Somit kann die Bestimmung der
Relativposition zwischen Primärspule und Sekundärspule weiter verbessert werden.
Gemäß einer weiteren Ausführungsform senden die Ultraschallsender sequentiell nacheinander jeweils ein Ultraschallsignal aus. Durch das sequentielle
Aussenden der Ultraschallsignale ist eine eindeutige Zuordnung der
empfangenen Ultraschallsignale zu dem jeweils aussendenden Ultraschallsender möglich.
Gemäß einer weiteren Ausführungsform umfasst das Assistenzsystem ferner eine Anzeigevorrichtung, die dazu ausgelegt ist, die von der
Verarbeitungsvorrichtung bestimmte Richtung anzuzeigen. Gegebenenfalls kann ein zusätzlich ermittelter Abstand zwischen Ultraschallquelle und
Empfangsvorrichtung ebenfalls angezeigt werden. Auf diese Weise ist es einem Benutzer sehr einfach möglich, die Sekundärspule optimal über der Primärspule zu positionieren.
Gemäß einer weiteren Ausführungsform umfasst das Assistenzsystem ferner eine Kommunikationsvorrichtung, die dazu ausgelegt ist, Daten über die von der Verarbeitungsvorrichtung bestimmte Richtung auszusenden und/oder zu empfangen. Vorzugsweise erfolgt die Kommunikation kabellos. Bei der
Kommunikationsvorrichtung kann es sich insbesondere um eine bereits vorhandene Kommunikationsvorrichtung handeln, die zum Datenaustausch zwischen Primärseite und Sekundärseite eines induktiven Ladesystems vorhanden ist. Auf diese Weise ist beispielsweise eine Synchronisation zwischen Ultraschallquelle und Empfangsvorrichtung möglich.
Gemäß einer weiteren Ausführungsform ist die Sekundärspule in einem
Elektrofahrzeug angeordnet. Ferner kann die Primärspule in einer Ladestation für das Elektrofahrzeug angeordnet sein.
Gemäß einer Ausführungsform umfasst das Elektrofahrzeug ferner eine
Steuervorrichtung, die dazu ausgelegt ist, das Elektrofahrzeug entsprechend der bestimmten Richtung in Richtung der Primärspule zu steuern. Sofern vorhanden, kann die Steuervorrichtung ferner auch eine ermittelte Entfernung zwischen Primärspule und Sekundärspule verwenden, um das Elektrofahrzeug zu steuern.
Weitere Ausführungsformen und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung unter Bezug auf die beigefügten Zeichnungen.
Kurze Beschreibung der Zeichnungen Dabei zeigen:
Figur 1: eine schematische Darstellung eines Assistenzsystems gemäß einer Ausführungsform;
Figur 2: eine schematische Darstellung eines Assistenzsystems gemäß einer weiteren Ausführungsform;
Figur 3: eine schematische Darstellung eines Assistenzsystems gemäß noch einer weiteren Ausführungsform; und
Figur 4: eine schematische Darstellung eines Verfahrens, wie es einer weiteren Ausführungsform zugrunde liegt. Beschreibung von Ausführungsformen
Figur 1 zeigt eine schematische Darstellung eines Assistenzsystems gemäß einer Ausführungsform. Eine Ladestation 3 umfasst hierzu beispielsweise eine Primärspule 1. Diese Primärspule 1 kann über eine geeignete Elektronik mit einer Energiequelle, beispielsweise einem Stromnetz verbunden sein (hier nicht dargestellt). Für die induktive Energieübertragung erzeugt die Primärspule 1 ein hochfrequentes magnetisches Wechselfeld. Da die übertragene Leistung linear mit der Schaltfrequenz steigt, aber andererseits die Schaltfrequenz durch die Ansteuerelektronik und die Verluste im Übertragungspfad begrenzt ist, ergibt sich typischerweise ein Frequenzbereich von 20-150 kHz. Zur Energieübertragung muss ferner eine Sekundärspule 2 möglichst optimal über der Primärspule 1 der Ladestation 3 positioniert werden. Beispielsweise kann die Primärspule 2 in einem Elektrofahrzeug 4 angeordnet sein. Die Sekundärspule 2 kann zum Beispiel fest im Unterboden des Elektrofahrzeugs 4 montiert werden. Die
Sekundärspule 2 kann ihrerseits mittels geeigneter Elektronik mit einem elektrischen Energiespeicher, wie zum Beispiel einer Traktionsbatterie oder ähnlichem verbunden sein. Zur induktiven Energieübertragung erzeugt die Primärspule 1 ein magnetisches Wechselfeld, das die Sekundärspule 2 durchdringt und dort einen entsprechenden Strom induziert. Für eine optimale induktive Energieübertragung müssen hierzu Primärspule 1 und Sekundärspule 2 optimal zueinander positioniert werden, um eine möglichst hohe Kopplung zwischen den beiden Spulen 1 und 2 zu erreichen, was einer Minimierung des Streufelds gleichkommt.
Die Positionierung der Sekundärspule 2 in Bezug auf die Primärspule 1 kann dabei manuell oder automatisch erfolgen. Dabei kann die relative Position der Sekundärspule 2 in Bezug auf die Primärspule 1 beispielsweise mittels
Ultraschallsignalen bestimmt werden.
In der in Figur 1 dargestellten Ausführungsform ist in unmittelbarer Nähe der Primärspule 1 eine Ultraschallquelle 10 mit einem Ultraschallsender 11 angeordnet. Der Ultraschallsender 11 kann beispielsweise in alle
Raumrichtungen gleichförmig ein Ultraschallsignal aussenden. Ist außerdem bekannt, dass sich die Sekundärspule 2 nur aus bestimmten Raumrichtungen an die Ladestation 3 mit der Primärspule 1 annähern kann, so kann die
Abstrahlcharakteristik des Ultraschallsenders 11 auch auf diese Raumrichtungen hin eingegrenzt oder optimiert werden. Bei dem durch den Ultraschallsender 11 ausgesendeten Ultraschallsignal kann es sich beispielsweise um ein
gleichförmiges Ultraschallsignal mit einer vorbestimmten Frequenz handeln.
Darüber hinaus sind auch gepulste, modulierte oder kodierte Ultraschallsignale möglich. Auch das Aussenden von periodischen Ultraschallsignalen mit einer vorbestimmten Signallänge und/oder Pause zwischen den einzelnen
Ultraschallsignalen ist möglich.
In räumlicher Nähe der Sekundärspule 2 ist eine Empfangsvorrichtung 20 mit mindestens zwei Ultraschallempfängern 21 angeordnet. Jeder dieser
Ultraschallempfänger 21 empfängt das von dem Ultraschallsender 11
ausgesendete Ultraschallsignal und leitet es an eine Verarbeitungsvorrichtung 30 weiter. Durch die Wegeunterschiede zwischen der Ultraschallsender 11 und den
Ultraschallempfängern 21 kommt es zu Laufzeitunterschieden in den
empfangenen Ultraschallsignalen. Aus diesen Laufzeitunterschieden kann mittels der Trilateration der relative Ort der Ultraschallquelle 10, und somit der
Primärspule 1, in Bezug auf die Empfangsvorrichtung 20 und somit in Bezug auf die Sekundärspule 2 ermittelt werden. Hieraus kann eine Richtung bestimmt werden, die angibt wie die Sekundärspule 2 bewegt werden muss, um optimal über der Primärspule 1 positioniert zu werden. Die Ermittlung der Richtung durch die Verarbeitungsvorrichtung 30 kann dabei beispielsweise periodisch wiederholt werden, um die Zielgenauigkeit zu erhöhen.
Ist die Sekundärspule 2 zum Beispiel in einem Elektrofahrzeug 4 angeordnet, das bereits über Ultraschallempfänger verfügt, wie sie beispielsweise in konventionellen Fahrassistenzsystemen eingesetzt werden, so können diese bereits vorhandenen Ultraschallempfänger als Ultraschallempfänger 21 der Empfangsvorrichtung 20 eingesetzt werden.
Werden in der Empfangsvorrichtung 20 darüber hinaus mehr als zwei
Ultraschallempfänger 21 verwendet, so kann hierdurch die Genauigkeit für die Bestimmung der Richtung zwischen Empfangsvorrichtung 20 und
Ultraschallquelle 10 erhöht werden. Darüber hinaus erlaubt die Verwendung mehrerer Ultraschallempfänger 21 auch insbesondere den Einsatz von
Ultraschallempfängern 21 mit einer schmaleren Richtcharakteristik.
In der in Figur 1 dargestellten Ausführungsform mit nur einer Ultraschallquelle 10 ist es dabei nur möglich, die Primärspule 1 in der Ladestation 3 direkt anzusteuern. Da die Ultraschallquelle 10 das ausgesendete Ultraschallsignal radial symmetrisch in alle Richtungen ausstrahlt, ist darüber hinaus keine Information über eine mögliche Vorzugsrichtung möglich. Die durch die Verarbeitungsvorrichtung 30 bestimmte Richtung kann dazu verwendet werden, um beispielsweise das Elektrof ahrzeug 4 automatisch in Richtung der Ladestation 3 mit der Primärspule 1 zu steuern. Hierzu kann das Elektrofahrzeug 4 eine geeignete Steuervorrichtung 5 umfassen, die dazu ausgelegt ist, die entsprechenden Komponenten des Elektrof ah rzeugs 4 anzusteuern, um in einem geeigneten Winkel in Richtung der Ladestation 3 zu fahren und dabei die Sekundärspule 2 optimal über der Primärspule 1 zu positionieren.
Die Verarbeitungsvorrichtung 30 kann ferner auch durch Auswertung der empfangenen Ultraschallsignale neben der Richtung zwischen Primärspule 1 und
Sekundärspule 2 auch den Abstand zwischen der Ultraschallquelle 10 und der Empfangsvorrichtung 20, also dem Abstand zwischen Primärspule 1 und Sekundärspule 2 ermitteln. Zusätzlich oder alternativ zu einer automatischen Ansteuerung eines
Elektrofahrzeugs 4 in Richtung der Ladestation 3 kann das Assistenzsystem auch über eine Anzeigevorrichtung 40 verfügen. Beispielsweise kann es sich bei der Anzeigevorrichtung 40 um einen Bildschirm handeln, der in einem
Navigationssystem des Elektrofahrzeugs 4 bereits vorhanden ist. Weitere Anzeigevorrichtungen sind darüber hinaus jedoch ebenso möglich. Auf der
Anzeigevorrichtung 40 des Assistenzsystems kann einem Benutzer daraufhin die Richtung angezeigt werden, in der das Elektrofahrzeug 4 bewegt werden muss, um die Sekundärspule 2 optimal über der Primärspule 1 zu positionieren. Falls bekannt, kann darüber hinaus auch die Entfernung zwischen Primärspule 1 und Sekundärspule 2 auf der Anzeigevorrichtung 40 angezeigt werden. Figur 2 zeigt eine weitere Ausführungsform eines Assistenzsystems zur
Positionierung einer Sekundärspule 2 an einer Primärspule 1 für eine induktive Energieübertragung. Das Assistenzsystem dieser Ausführungsform entspricht dabei weitestgehend der Ausführungsform gemäß Figur 1, wobei in dieser
Ausführungsform die Ultraschallquelle 10 eine Mehrzahl von Ultraschallsendern 11 umfasst. Die Ultraschallsender 11 sind dabei vorzugsweise in bekannten, vorbestimmten Abständen zueinander angeordnet. Vorzugsweise umfasst die Ultraschallquelle 10 dabei mindestens drei Ultraschallsender 11. Die
Verarbeitungsvorrichtung 30 bestimmt in diesem Fall zu jedem
Ultraschallschalter 11 der Ultraschallquelle 10 eine Richtung. Auf diese Weise ist es möglich, auch die Ausrichtung des Elektrofahrzeugs 4 in Bezug auf die Ladestation 3 zu bestimmen. Somit kann die Ladestation 3 durch das
Elektrofahrzeug 4 auch aus einer vorbestimmten Richtung heraus angesteuert werden. Hierzu muss die Struktur, mit der die Ultraschallsender 11 der
Ultraschallquelle 10 angeordnet sind, bei den Empfängern nicht exakt bekannt sein. Es genügt bereits, ein Grundmuster abzubilden, das eine standardisierte Ausrichtung zur Ladestation 3 aufweist. Beispielsweise kann eine solche Grundstruktur ein gleichseitiges Dreieck sein, dessen Spitze in Richtung einer Anfahrtsseite der Ladestation ausgerichtet ist, und dessen Symmetrieachse des
Dreiecks durch die Mitte der Primärspule 1 entlang der Fahrtrichtung zeigt.
Die unterschiedlichen Ultraschallsender 11 können dabei alle gleichzeitig ein Ultraschallsignal aussenden. Vorzugsweise können jedoch die Ultraschallsender 11 auch sequentiell nacheinander ein Ultraschallsignal aussenden. Ferner können die ausgesendeten Ultraschallsignale aller Ultraschallsender 11 identisch sein. Alternativ ist es möglich, die von den einzelnen Ultraschallsendern 11 ausgesendeten Ultraschallsignale individuell zu kodieren, so dass die
empfangenen Ultraschallsignale individuell einem der Ultraschallsender 11 zugeordnet werden können.
Umfasst die Ultraschallquelle 10, wie zum Beispiel in Figur 2 dargestellt, eine Mehrzahl von Ultraschallsendern 11, insbesondere mehr als drei
Ultraschallsender 11, so ist auch eine Trilateration auf Basis der von einem einzigen Ultraschallempfänger 21 empfangenen Ultraschallsignale möglich. Hierzu können basierend auf einer vorbestimmten, individuellen Kodierung der durch die einzelnen Ultraschallsender 11 ausgesendeten Ultraschallsignale die von dem Ultraschallempfänger 21 empfangenen Ultraschallsignale den einzelnen Ultraschallsendern 11 zugeordnet werden. Alternativ ist es auch möglich, dass die einzelnen Ultraschallsender 11 jeweils zeitversetzt ein Ultraschallsignal aussenden, wobei das Muster, in dem die einzelnen Ultraschallsender 11 der Ultraschallquelle 10 jeweils ihre Signale aussenden empfangsseitig bekannt ist, so dass auch hierdurch eine Zuordnung der empfangenen Ultraschallsignale zu einem der Ultraschallsender 11 erfolgen kann. Ferner ist es auch möglich, dass sich Ultraschallquelle 10 und Empfangsvorrichtung 20 synchronisieren, um eine Zuordnung der empfangenen Ultraschallsignale zu den einzelnen
Ultraschallsendern 11 durchführen zu können. Beispielsweise kann diese Synchronisation durch eine weiter unten beschriebene
Kommunikationsvorrichtung erfolgen. Ist darüber hinaus empfangsseitig die relative Position der einzelnen Ultraschallsender 11 bekannt, so kann auch mit nur einem einzigen Ultraschallempfänger 21 ein Trilateration erfolgen und hieraus die Richtung bestimmt werden, in der die Sekundärspule 2 bewegt werden muss, um optimal über der Primärspule 1 positioniert zu werden. Figur 3 zeigt eine weitere Ausführungsform eines Assistenzsystems zur
Positionierung einer Sekundärspule 2 an einer Primärspule 1 für eine induktive Energieübertragung. Die Ausführungsform nach Figur 3 unterscheidet sich von der Ausführungsform in Figur 2 darin, dass die Ultraschallquelle 10 mit den Ultraschallsendern 11 in unmittelbarer Nähe der Sekundärspule 2 angeordnet ist. Beispielsweise können hierzu bereits vorhandene Ultraschallsendern eines
Fahrassistenzsystems, beispielsweise einer Einparkhilfe eines Fahrzeugs 4 verwendet werden.
Die Empfangsvorrichtung 20 mit den Ultraschallempfängern 21 ist in dieser Ausführungsform in unmittelbarer Nähe der Primärspule 1 angeordnet. Somit können, analog zu den voraufgegangenen Ausführungsbeispielen, ebenfalls durch Trilaterationen die Richtung und gegebenenfalls Entfernung zwischen Ultraschallquelle 10 und Empfangsvorrichtung 20 und somit zwischen
Primärspule 1 und Sekundärspule 2 bestimmt werden. Die Auswertung der empfangenen Ultraschallsignale erfolgt in diesem Fall vorzugsweise durch eine Verarbeitungsvorrichtung 30, die in der Ladestation 3 angeordnet ist. Die so ermittelten Daten, also insbesondere Richtung und/oder Entfernung zwischen Primärspule 1 und Sekundärspule 2 können über eine
Kommunikationsvorrichtung 50, 51 von der Ladestation 3 zu dem
Elektrofahrzeug 4 übertragen werden. Über die Kommunikationsvorrichtung 50,
51 zwischen Ladestation 3 und Elektrofahrzeug 4 können neben der ermittelten Richtung und/oder der Entfernung zwischen Primärspule 1 und Sekundärspule 2 auch weitere Informationen übertragen werden. Insbesondere können über diese Kommunikationsvorrichtung 50, 51 ein Ladezustand eines Energiespeichers in dem Elektrofahrzeug 4, Informationen über die Energieübertragung zwischen
Primärspule 1 und Sekundärspule 2, Daten zur Abrechnung oder zu den Kosten für den Ladevorgang oder weitere Parameter übertragen werden. Ist bereits eine konventionelle Kommunikationsvorrichtung zwischen Ladestation 3 und
Elektrofahrzeug 4 vorhanden, so kann diese Kommunikationsvorrichtung auch dazu genutzt werden, Informationen über den Abstand bzw. die Richtung zwischen Primärspule 1 und Sekundärspule 2 zu übertragen. Auch wenn die Kommunikationsvorrichtung 50, 51 hier nur in Zusammenhang mit dem
Ausführungsbeispiel aus Figur 3 beschrieben wurde, so ist grundsätzlich auch in allen anderen Ausführungsbeispielen eine entsprechende
Kommunikationsvorrichtung 50, 51 zum Datenaustausch zwischen Ladestation 3 und Fahrzeug 4 möglich.
Neben einfachen, konventionellen Ultraschallempfängern 11 kann als
Empfangsvorrichtung 10 auch ein Ultraschall- Array eingesetzt werden. Ein derartiges Ultraschall-Array ermöglicht eine direkte Richtungsmessung. Somit kann die Zuverlässigkeit der Bestimmung von Richtung und/oder Entfernung noch weiter gesteigert werden. Bei der Verwendung eines Ultraschall-Arrays auf der Empfangsseite sind bereits zwei Ultraschallsender 11 auf der Senderseite ausreichend, um eine Trilateration zur Richtungsbestimmung durchführen zu können.
Zur weiteren Steigerung der Zuverlässigkeit können die Ultraschallsender 11 und die Ultraschallempfänger 21 über die Kommunikationsvorrichtung 50, 51 miteinander synchronisiert werden. Auf diese Weise kann zusätzlich
sichergestellt werden, dass zur Bestimmung von Richtung und/oder Entfernung zwischen Primärspule 1 und Sekundärspule 2 jeweils die korrekten
korrespondierenden Ultraschallsender 11 und Ultraschallempfänger 21 miteinander in Kontakt stehen. Ferner kann für die Bestimmung der relativen Position zwischen Primärspule 1 und Sekundärspule 2 auch die Bewegung der Sekundärspule 2 in dem
Elektrofahrzeug 4 ausgewertet werden. Hierzu kann die
Verarbeitungsvorrichtung 30 die Bewegung des Elektrofahrzeugs 40 analysieren und mit in den Verarbeitungsprozess integrieren. Die Bewegung des Fahrzeugs 40 kann beispielsweise durch ein in dem Fahrzeug 4 vorhandenes
Navigationssystem ermittelt werden. Weitere Komponenten oder Vorrichtungen in dem Fahrzeug 40, die die Bewegung des Fahrzeugs 4 über dem Grund ermitteln oder schätzen, sind darüber hinaus ebenso möglich.
Figur 4 zeigt eine schematische Darstellung eines Ablaufdiagramms, wie es einem Verfahren zur Assistenz zur Positionierung einer Sekundärspule an einer Primärspule für eine induktive Energieübertragung zugrunde liegt.
In einem ersten Schritt Sl wird entweder eine Ultraschallquelle 10 an einer Primärspule 1 und eine Empfangsvorrichtung 20 an einer Sekundärspule 2 bereitgestellt. Alternativ kann auch eine Empfangsvorrichtung 20 an der Primärspule 1 und eine Ultraschallquelle 10 an der Sekundärspule 2
bereitgestellt werden. In beiden Fällen umfasst die Ultraschallquelle 10 mindestens zwei Ultraschallempfänger 11. In Schritt S2 wird durch die
Ultraschallquelle 10 ein Ultraschallsignal ausgesendet. Die Ultraschallquelle 10 kann einen oder mehrere Ultraschallsender 11 umfassen. Sofern die
Ultraschallquelle 10 mehrere Ultraschallsender 11 umfasst, können die
Ultraschallsender 11 entweder gleichzeitig oder nacheinander jeweils ein Ultraschallsignal aussenden. Das ausgesendete Ultraschallsignal kann dabei gepulst oder in einer beliebigen anderen Art und Weise moduliert bzw. kodiert werden.
In Schritt S3 wird das ausgesendete Ultraschallsignal durch die
Ultraschallempfänger 21 empfangen. Anschließend wird in Schritt S4 eine Richtung zwischen Empfangsvorrichtung 20 und Ultraschallquelle 10 bestimmt. Optional kann darüber hinaus auch eine Entfernung zwischen Empfangsvorrichtung 20 und Ultraschallquelle 10 bestimmt werden.
Die bestimmte Richtung und gegebenenfalls auch die Entfernung zwischen Empfangsvorrichtung 20 und Ultraschallquelle 10 können auf einer
Anzeigevorrichtung 40 angezeigt werden. Zusätzlich oder alternativ kann basierend auf der bestimmten Richtung und gegebenenfalls der bestimmten Entfernung zwischen Empfangsvorrichtung 20 und Ultraschallquelle 10 ein Elektrofahrzeug 4 mit einer Sekundärspule 2 in Richtung einer Ladestation 3 mit der Primärspule 1 navigiert werden, um die Sekundärspule 2 optimal über der Primärspule 1 zu positionieren.
Zusammenfassend betrifft die vorliegende Erfindung ein Assistenzsystem zur optimalen Positionierung von Primärspule und Sekundärspule einer induktiven Energieübertragung. Hierzu werden zwischen Primärspule und Sekundärspule Ultraschallsignale ausgetauscht. Die Ultraschallsignale werden von mehreren Ultraschallempfängern empfangen und basierend auf den Laufzeitunterschieden der empfangenen Ultraschallsignale eine relative Position zwischen Primärspule und Sekundärspule ausgewertet. Die relative Position kann einem Benutzer angezeigt werden, oder für eine automatische Positionierung der Sekundärspule genutzt werden.

Claims

Ansprüche
1. Assistenzsystem zur Positionierung einer Sekundärspule (2) an einer Primärspule (1) für eine induktive Energieübertragung, mit: einer Ultraschallquelle (10), die dazu ausgelegt ist ein Ultraschallsignal auszusenden; einer Empfangsvorrichtung (20), mit mindestens einem
Ultraschallempfänger (21), der dazu ausgelegt ist, die von der
Ultraschallquelle (10) ausgesendeten Ultraschallsignale zu umfangen; und einer Verarbeitungsvorrichtung (30), die dazu ausgelegt ist, die von dem oder den Ultraschallempfängern (21) empfangenen Ultraschallsignale auszuwerten und eine Richtung zwischen der Empfangsvorrichtung (20) und der Ultraschallquelle (10) zu bestimmen, wobei entweder die Ultraschallquelle (10) an der Primärspule (1) angeordnet ist und die Empfangsvorrichtung (20) an der Sekundärspule (2) angeordnet ist, oder die Empfangsvorrichtung (20) an der Primärspule (1) angeordnet ist und die Ultraschallquelle (10) an der Sekundärspule (2) angeordnet ist.
2. Assistenzsystem nach Anspruch 1, wobei die Verarbeitungsvorrichtung (30) ferner dazu ausgelegt ist, einen Abstand zwischen der
Empfangsvorrichtung (20) und der Ultraschallquelle (10) zu bestimmen
3. Assistenzsystem nach Anspruch 1 oder 2, wobei die Ultraschallquelle (10) eine Mehrzahl von Ultraschallsendern (11) umfasst, die in vorbestimmten räumlichen Abständen zueinander angeordnet sind. Assi Stenzsystem nach Anspruch 3, wobei die Ultraschallsender (11) jeweils ein individuell kodiertes Ultraschallsignal aussenden.
Assistenzsystem nach Anspruch 3 oder 4, wobei die Ultraschallsender (11) sequentiell nacheinander jeweils ein Ultraschallsignal aussenden.
Assistenzsystem nach einem der Ansprüche 1 bis 5, mit einer
Anzeigevorrichtung (40), die dazu ausgelegt ist, die von der
Verarbeitungsvorrichtung (30) bestimmte Richtung anzuzeigen.
Assistenzsystem nach einem der Ansprüche 1 bis 6,
ferner umfassend eine Kommunikationsvorrichtung (50, 51), die dazu ausgelegt ist, Daten über die von der Verarbeitungsvorrichtung (30) bestimmte Richtung zu übertragen.
Assistenzsystem nach einem der Ansprüche 1 bis 7, wobei die
Sekundärspule (2) in einem Elektrofahrzeug (4) angeordnet ist und die Primärspule (1) in einer Ladestation (3) für das Elektrofahrzeug (4) angeordnet ist.
Assistenzsystem nach Anspruch 8, wobei das Elektrofahrzeug (4) ferner eine Steuervorrichtung (5) umfasst, die dazu ausgelegt ist, das
Elektrofahrzeug (4) entsprechend der bestimmten Richtung in Richtung der Primärspule (1) zu steuern.
Verfahren zur Assistenz für die Positionierung einer Sekundärspule (2) an einer Primärspule (1) für eine induktive Energieübertragung, mit den Schritten:
Bereitstellen (Sl) einer Ultraschallquelle (10) an der Primärspule (1) und einer Empfangsvorrichtung (20) an der Sekundärspule (2), oder einer Empfangsvorrichtung (20) an der Primärspule (1) und einer
Ultraschallquelle (10) an der Sekundärspule (2), wobei die Ultraschallquelle (10) mindestens einen Ultraschallempfänger (11) umfasst; Aussenden (S2) eines Ultraschallsignals durch die Ultraschallquelle (10);
Empfangen (S3) des ausgesendeten Ultraschallsignals durch den oder die Ultraschallempfänger (21); und
Bestimmen (S4) einer Richtung zwischen der Empfangsvorrichtung (20) und der Ultraschallquelle (10) basierend auf den durch den oder die Ultraschallempfänger (21) empfangenen Ultraschallsignalen.
PCT/EP2015/067247 2014-10-07 2015-07-28 System und verfahren zur assistenz für die positionierung einer sekundärspule an einer primärspule für eine induktive energieübertragung WO2016055182A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014220247.7A DE102014220247A1 (de) 2014-10-07 2014-10-07 System und Verfahren zur Assistenz für die Positionierung einer Sekundärspule an einer Primärspule für eine induktive Energieübertragung
DE102014220247.7 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016055182A1 true WO2016055182A1 (de) 2016-04-14

Family

ID=53872011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067247 WO2016055182A1 (de) 2014-10-07 2015-07-28 System und verfahren zur assistenz für die positionierung einer sekundärspule an einer primärspule für eine induktive energieübertragung

Country Status (2)

Country Link
DE (1) DE102014220247A1 (de)
WO (1) WO2016055182A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270660A (zh) * 2020-07-24 2022-04-01 华为技术有限公司 充电方法和充电设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209092A1 (de) * 2017-05-31 2018-12-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Lokalisierung eines Fahrzeugs für eine induktive Energieübertragung
DE102017115327A1 (de) * 2017-07-10 2019-01-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Positionierung eines Kraftfahrzeugs oberhalb einer Bodenplatte
WO2023208367A1 (de) * 2022-04-29 2023-11-02 Siemens Aktiengesellschaft Messeinheit und ladevorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137748A1 (en) * 2003-12-22 2005-06-23 Se-Wan Kim Apparatus and method for detecting position of mobile robot
WO2010040962A1 (fr) * 2008-10-09 2010-04-15 Peugeot Citroën Automobiles SA Vehicule automobile electrique ou partiellement electrique et infrastructure de recharge associee pour le positionnement automatique du vehicule par rapport a l'infrastructure et procede associe
DE102012219986A1 (de) * 2012-10-31 2014-06-12 Siemens Aktiengesellschaft Positionsbestimmung eines Fahrzeugs relativ zu einer Zielposition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006884A2 (de) 2009-07-15 2011-01-20 Conductix-Wampfler Ag System zum induktiven laden von fahrzeugen mit elektronischer positionierungshilfe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137748A1 (en) * 2003-12-22 2005-06-23 Se-Wan Kim Apparatus and method for detecting position of mobile robot
WO2010040962A1 (fr) * 2008-10-09 2010-04-15 Peugeot Citroën Automobiles SA Vehicule automobile electrique ou partiellement electrique et infrastructure de recharge associee pour le positionnement automatique du vehicule par rapport a l'infrastructure et procede associe
DE102012219986A1 (de) * 2012-10-31 2014-06-12 Siemens Aktiengesellschaft Positionsbestimmung eines Fahrzeugs relativ zu einer Zielposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270660A (zh) * 2020-07-24 2022-04-01 华为技术有限公司 充电方法和充电设备
CN114270660B (zh) * 2020-07-24 2024-04-09 华为技术有限公司 充电方法和充电设备

Also Published As

Publication number Publication date
DE102014220247A1 (de) 2016-04-07

Similar Documents

Publication Publication Date Title
DE102014224455B4 (de) Verfahren zum berührungslosen Aufladen eines elektrisch angetriebenen Fahrzeugs
WO2017050595A1 (de) Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges
DE102012214199A1 (de) Vorrichtung und Verfahren zur Positionierung durch Triangulation
EP3350015B1 (de) Verfahren zur ermittlung einer eine relativposition eines kraftfahrzeugs zu einer stationären, anzufahrenden ladeeinrichtung beschreibenden positionsinformation und anordnung aus einem kraftfahrzeug und einer stationären, anzufahrenden ladeeinrichtung
EP3103674B1 (de) Positionsbestimmungssystem, verfahren zur positionsbestimmung und system zur induktiven energieübertragung mit positionsbestimmungssystem
WO2016055182A1 (de) System und verfahren zur assistenz für die positionierung einer sekundärspule an einer primärspule für eine induktive energieübertragung
WO2016062553A1 (de) Aufbau einer ladekommunikation zwischen ladestation und fahrzeug
DE102010063665A1 (de) Verfahren zur Positionierung eines Elektroautos relativ zu einer Ladestation
WO2016005104A1 (de) Vorrichtung und verfahren zum betreiben eines induktiven ladesystems
DE102015111259A1 (de) Ultraschall- und Infrarot-Objektdetektion für drahtloses Laden von Elektrofahrzeugen
DE102015200018A1 (de) Laden eines Energiespeichers eines Fahrzeugs
WO2015051876A1 (de) Verfahren zur positionierung eines fahrzeugs an einer induktiven ladestation
DE102018204986B3 (de) Vorrichtung zur Positionierung eines Kraftfahrzeugs auf einem Stellplatz für induktives Laden
DE102011083427A1 (de) System zur Positionsbestimmung von zueinander beweglichen Objekten
DE102012219986A1 (de) Positionsbestimmung eines Fahrzeugs relativ zu einer Zielposition
WO2018082867A1 (de) Verfahren zum leiten eines kraftfahrzeugs in eine ladeposition an einer induktiven ladestation sowie steuervorrichtung und kraftfahrzeug
WO2015039797A1 (de) Positionsbestimmungssystem für fahrzeuge mit elektrischem antrieb und induktiver ladung
EP2838753B1 (de) Elektrofahrzeug, induktive ladestation und verfahren
EP3864427B1 (de) Vorrichtung zur positionsbestimmung eines relativ zu einem fahrzeug bewegbaren gegenstandes und ein damit ausgestattetes fahrzeug
EP3046799B1 (de) Verfahren und system zum betreiben eines fahrzeugs, insbesondere eines entlang eines bodens verfahrbaren fahrzeugs
EP3684643B1 (de) Verfahren zum betrieb einer induktiven übertragungseinrichtung
WO2018010881A1 (de) Verfahren zum betrieb einer ladevorrichtung zur induktiven energieübertragung
WO2019170515A1 (de) Lade- und/oder positionsbestimmungssystem für ein auf einer parkfläche einparkendes fahrzeug
EP3326891A1 (de) Verfahren zur lokalisierung eines fahrzeugs entlang einer route in einer parkplatzumgebung
DE102016213298A1 (de) Verfahren zur Positionierung eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15750650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15750650

Country of ref document: EP

Kind code of ref document: A1