WO2016052744A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2016052744A1
WO2016052744A1 PCT/JP2015/078107 JP2015078107W WO2016052744A1 WO 2016052744 A1 WO2016052744 A1 WO 2016052744A1 JP 2015078107 W JP2015078107 W JP 2015078107W WO 2016052744 A1 WO2016052744 A1 WO 2016052744A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
speed
vehicle
determined
radar
Prior art date
Application number
PCT/JP2015/078107
Other languages
English (en)
French (fr)
Inventor
耕司 清水
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/515,795 priority Critical patent/US10451724B2/en
Publication of WO2016052744A1 publication Critical patent/WO2016052744A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to a radar device that detects an object that reflects a radar wave by transmitting and receiving the radar wave.
  • an on-vehicle radar device that detects an object around a vehicle by irradiating a radar wave (such as a millimeter wave) as a transmission wave at predetermined intervals around the vehicle and receiving the reflected wave.
  • a radar wave such as a millimeter wave
  • a monopulse, phased array, MUSIC, digital beam is used as an azimuth detection method for detecting the azimuth of a target reflecting a radio wave from a phase difference between received signals received using a plurality of antenna elements.
  • Methods such as forming (DBF) are known.
  • the path difference ⁇ L of radio waves traveling back and forth between targets differs depending on the combination of antenna elements (hereinafter also referred to as “channels”). Based on the generated phase difference ⁇ [rad], the direction ⁇ of the target reflecting the radio wave is obtained.
  • phase wrapping occurs.
  • azimuth area the azimuth angle region
  • the azimuth of the target can be detected correctly.
  • the azimuth area Am outside the azimuth area A0 that is, in the azimuth area Am corresponding to a range where the phase difference ⁇ is (2m ⁇ 1) ⁇ to (2m + 1) ⁇ [rad] (an integer of m ⁇ 0)
  • the orientation of the target is erroneously detected as being within the orientation area A0 (see FIG. 13B).
  • crossing moving objects such as pedestrians (crossing pedestrians) crossing the road on the road (traveling route) in front of the vehicle, or if there are stopped objects on the road, etc.
  • the present invention is a radar that can determine whether the object is a crossing moving object that crosses the traveling path ahead of the vehicle, a stationary object on the traveling path, or a return ghost of the stationary object.
  • a radar apparatus is mounted on a vehicle, has a predetermined detection limit angle ( ⁇ ⁇ c) with respect to the front of the vehicle, and reflects a reflected wave of a radar wave transmitted toward the outside of the vehicle.
  • a radar apparatus that detects information on a target that has reflected the radar wave by receiving the signal, and based on information on the target that has reflected the radar wave, a relative velocity (Vr) between the target and the host vehicle.
  • a host vehicle speed acquisition unit that calculates the speed (Vn) of the host vehicle, a ratio ( ⁇ Vr / Vn) between the relative speed (Vr) and the host vehicle speed (Vn), A determination unit that compares a cosine (cos ⁇ c) of the detection limit angle ( ⁇ ⁇ c) or a determination value ( ⁇ ) in which a correction value including a measurement error is added to the cosine (cos ⁇ c), and the determination unit includes: When the ratio ( ⁇ Vr / Vn) exceeds the judgment value ( ⁇ ) If it is determined, it is determined that the target is a stationary object or a substance of a crossing moving object that crosses the traveling route ahead of the host vehicle, and the ratio ( ⁇ Vr / Vn) is equal to or less than a determination value ( ⁇ ). If it is determined that the target is a stop ghost or a folded ghost of the crossing moving object, the target is determined to be.
  • the ratio ( ⁇ Vr / Vn) between the relative speed (Vr) and the speed of the own vehicle (own vehicle speed: Vn) and the cosine of the detection limit angle ( ⁇ ⁇ c) (a determination value ( ⁇ ) in which a correction value including a measurement error is added to cos ⁇ c) or cosine (cos ⁇ c) is compared.
  • the object is a crossing moving object (such as a crossing pedestrian) or a stationary object, and otherwise it is determined. If it is, it is determined that the ghost is a folded moving object or a stopped object.
  • the correction value may be set as appropriate by experiment or the like, taking measurement error and the like into consideration.
  • the relative velocity (Vr) is a relative velocity due to the Doppler effect (Doppler frequency).
  • Doppler frequency the Doppler effect
  • the detection limit angle ( ⁇ ⁇ c) is a limit angle (for example, ⁇ 22 degrees) at which a target can be recognized by the radar device.
  • ⁇ ⁇ c a limit angle (for example, ⁇ 22 degrees) at which a target can be recognized by the radar device.
  • An angle in a range of - ⁇ c on the left side and + ⁇ c on the right side with respect to the front of the vehicle (traveling direction: Y direction) (the same applies hereinafter).
  • the radar apparatus of this invention is mounted in a vehicle, and detects the information regarding the target which reflected the said radar wave by receiving the reflected wave of the radar wave transmitted toward the exterior of the said vehicle.
  • a radar apparatus which obtains an azimuth angle ( ⁇ est) of a basic main target, based on a host vehicle speed acquisition unit that calculates a speed (Vn) of the host vehicle and information on a target that reflects the radar wave.
  • the estimated vertical speed calculation unit to be obtained is compared with the main estimated vertical speed (Vy_est) of the main target and the speed (Vn) of the host vehicle, and the main estimated vertical speed (Vy_est) of the main target and the host vehicle are compared.
  • a first determination unit that determines the main target as an entity, a first estimated vertical speed (Vy_grt1) of the first target, and the vehicle's own vehicle
  • the first estimated longitudinal speed (Vy_grt1) of the first target is substantially the same as the speed (Vn) of the host vehicle, or the second target 2
  • the estimated vertical speed (Vy_grt2) is compared with the speed (Vn) of the host vehicle, and the second estimated vertical speed (Vy_grt2) of the second target and the speed (Vn) of the host vehicle are substantially the same.
  • the second determination unit which determines the target determined to be the same as the ghost of the stationary object , Characterized by comprising a.
  • the main estimated vertical speed (Vy_est) of the main target is compared with the speed of the own vehicle (own vehicle speed: Vn), and the main estimated vertical speed (Vy_est) of the main target and the own vehicle speed (Vn) are obtained. If they are substantially the same, the main target is determined to be an entity.
  • the first estimated vertical speed (Vy_grt1) of the first target is compared with the own vehicle speed (Vn), and the first estimated vertical speed (Vy_grt1) of the first target and the own vehicle speed (Vn) are substantially equal.
  • the second estimated vertical speed (Vy_grt2) of the second target and the own vehicle speed (Vn) are compared, and the second estimated longitudinal speed (Vy_grt2) of the second target and the own vehicle speed (Vn) are substantially the same, the target determined to be the same is determined to be a return object ghost.
  • the principle by which the above-described determination can discriminate the substance of the stationary object and its folded ghost will be described in detail later.
  • the “substantially” mentioned above is a range including some measurement errors and the like, and may be set as appropriate by experiments or the like. For example, if the difference is within ⁇ 5%, it can be determined that they are substantially the same.
  • the left turn angle ( ⁇ grt1) and the right turn angle ( ⁇ grt2) are as follows.
  • ⁇ est an angle (an angle with respect to the front-rear direction of the vehicle) when folding occurs on the left side or the right side with respect to the main target.
  • the vertical speed is a speed in the front-rear direction (traveling direction) of the host vehicle.
  • FIG. 1 is a block diagram illustrating a cruise control system in which a radar device according to a first embodiment is used. It is a flowchart which shows the target information generation process implemented with the radar apparatus of 1st Embodiment. It is a flowchart which shows the return ghost determination process of 1st Embodiment. It is a functional block diagram of the signal processing part in the radar apparatus of 1st Embodiment.
  • the cruise control system 1 is a system mounted on a vehicle, and includes a radar device 2, an inter-vehicle control electronic control device (hereinafter referred to as an inter-vehicle control ECU) 3, an engine electronic control device (hereinafter referred to as an inter-vehicle control ECU). 4) and a brake electronic control unit (hereinafter referred to as brake ECU) 5.
  • the ECUs 3, 4, and 5 are connected to each other via the in-vehicle LAN 6 so as to be able to input and output data.
  • the radar apparatus 2 is configured as a so-called “millimeter wave radar” of the FMCW system, and transmits / receives a frequency-modulated millimeter wave radar wave so that an object such as a preceding vehicle or a roadside object is transmitted. Based on these recognition results, target information relating to a preceding vehicle traveling in front of the host vehicle is created and transmitted to the inter-vehicle distance control ECU 3.
  • the target information includes at least the relative speed with the preceding vehicle and the position (distance, azimuth) of the preceding vehicle.
  • the brake ECU 5 transmits to the inter-vehicle control ECU 3 the brake pedal state determined based on the information from the M / C pressure sensor (not shown) in addition to the detection information (steering angle and yaw rate) from the steering sensor and yaw rate sensor (not shown).
  • the target acceleration and the brake request are received from the inter-vehicle control ECU 3, and the brake actuator that opens and closes the pressure increase control valve / pressure reduction valve provided in the brake hydraulic circuit is driven according to the received information and the determined brake state.
  • the brake force is configured to be controlled.
  • the engine ECU 4 transmits detection information (vehicle speed, engine control state, accelerator operation state) from a vehicle speed sensor, a throttle opening sensor, and an accelerator pedal opening sensor (not shown) to the inter-vehicle control ECU 3, and from the inter-vehicle control ECU 3 It is configured to receive an acceleration, a fuel cut request, etc., and output a drive command to a throttle actuator or the like that adjusts the throttle opening of the internal combustion engine in accordance with the operating state specified from the received information. .
  • the inter-vehicle control ECU 3 receives a vehicle speed and an engine control state from the engine ECU 4, and a steering angle, a yaw rate, a brake control state, and the like from the brake ECU 5. Further, the inter-vehicle control ECU 3 controls to adjust the inter-vehicle distance to the preceding vehicle to an appropriate distance on the basis of setting values by a cruise control switch, a target inter-vehicle setting switch, etc. (not shown) and target information received from the radar device 2. As a command, a target acceleration, a fuel cut request, and the like are transmitted to the engine ECU 4, and a target acceleration, a brake request, and the like are transmitted to the brake ECU 5.
  • the radar apparatus 2 includes an oscillator 21 that generates a high-frequency signal in the millimeter wave band that is modulated so as to have an upstream section in which the frequency increases linearly and a downstream section in which the frequency decreases linearly.
  • An amplifier 22 that amplifies the high-frequency signal generated by the signal generator, a distributor 23 that distributes the output of the amplifier 22 to the transmission signal Ss and the local signal L, a transmission antenna 24 that radiates a radar wave corresponding to the transmission signal Ss, And a receiving antenna unit 31 including n receiving antennas for receiving radar waves.
  • the radar apparatus 2 sequentially selects any one of the antennas constituting the reception antenna unit 31, and receives the reception signal Sr from the selected antenna to the subsequent stage, and the reception signal supplied from the reception switch 32.
  • An amplifier 33 that amplifies Sr
  • a mixer 34 that generates the beat signal BT by mixing the reception signal Sr and the local signal L amplified by the amplifier 33, and an unnecessary signal component from the beat signal BT generated by the mixer 34.
  • a filter 35 to be removed and an A / D converter 36 for sampling the output of the filter 35 and converting it into digital data are provided.
  • the radar device 2 controls the start or stop of the oscillator 21 and the sampling of the beat signal BT via the A / D converter 36, and also performs signal processing using the sampling data and communication with the inter-vehicle control ECU 3.
  • a signal processing unit 37 that performs processing for transmitting and receiving information (vehicle speed information) necessary for signal processing and information (target information and the like) obtained as a result of the signal processing.
  • each antenna constituting the receiving antenna unit 31 is set so that the beam width thereof includes the entire beam width of the transmitting antenna 24.
  • Each antenna is assigned to CH1 to CHn.
  • the signal processing unit 37 is configured around a known microcomputer, and further, an arithmetic processing unit for executing a fast Fourier transform (FFT) process or the like on the data taken in via the A / D converter 36.
  • FFT fast Fourier transform
  • DSP digital signal processor
  • the basic operation of the radar apparatus 2 will be described.
  • the oscillator 21 when the oscillator 21 is started in accordance with a command from the signal processing unit 37, the oscillator 21 first generates a high-frequency signal, and the amplifier 22 amplifies the high-frequency signal. . Further, the distributor 23 generates the transmission signal Ss and the local signal L by distributing the power of the high-frequency signal. Of these, the transmission signal Ss is transmitted as a radar wave via the transmission antenna 24.
  • the mixer 34 generates a beat signal BT by mixing the received signal Sr with the local signal L from the distributor 23.
  • the beat signal BT is sampled by the A / D converter 36 after being taken out of the unnecessary signal components by the filter 35 and taken into the signal processing unit 37.
  • the reception switch 32 is switched so that all the channels CH1 to CHn are selected a predetermined number of times (for example, 512 times) during one modulation period of the radar wave, and the A / D converter 36 is Sampling is performed in synchronization with this switching timing. In other words, sampling data is accumulated for each channel CH1 to CHn and for each up / down section of the radar wave during one modulation period of the radar wave.
  • the signal processing unit 37 of the radar apparatus 2 performs FFT processing on the sampling data accumulated during one modulation period for each channel CH1 to CHn and for each upstream / downstream section of the radar wave.
  • target information generation processing for detecting the preceding vehicle and generating target information is executed. Since signal analysis processing is a well-known technique, description thereof is omitted here.
  • Target information generation process Next, the procedure of target information generation processing executed by the signal processing unit 37 will be described.
  • the target information generation process is started each time an FFT process result based on sampling data for one modulation period is calculated in the signal analysis process.
  • the signal processing unit 37 first activates the oscillator 21 and starts transmission of radar waves in step S100.
  • the beat signal BT output from the A / D converter 36 is sampled and taken in until one cycle consisting of an upstream section in which the frequency gradually increases and a downstream section in which the frequency gradually decreases has elapsed.
  • the frequency peaks fbu1 to fbu1 to m existing on the power spectrum for the upstream section are detected, and the frequency peaks fbd1 to m existing on the power spectrum for the downstream section are detected.
  • Each of the detected frequency peaks fbu and fbd means that there may be a recognized target candidate (hereinafter referred to as a target candidate).
  • the target in the first embodiment represents a point at which a radar wave is reflected on an object (such as a crossing moving object or a stationary object).
  • an average spectrum obtained by arithmetically averaging the power spectrum obtained for each reception channel CH in all reception channels is derived. Then, in the average spectrum, the frequency corresponding to the peak point of the frequency whose intensity exceeds a preset threshold value (that is, the intensity in the average spectrum becomes maximum) is detected as the frequency peaks fbu and fbd.
  • the peak azimuth (hereinafter referred to as the peak azimuth) to be calculated is calculated using, for example, a well-known MUSIC or digital beam forming (DBF) technique.
  • pair matching is performed by combining the frequency peak fbu and the frequency peak fbd based on the same target. Specifically, for the combination of the frequency peak fbu in the upstream section and the frequency peak fbd in the downstream section, it is determined whether the difference in peak intensity and the angle difference in peak azimuth are within a preset allowable range. . As a result of the determination, if both the peak intensity difference and the peak azimuth angle difference are within the allowable range, the corresponding pair of frequency peaks is registered as a peak pair.
  • the distance from the radar apparatus 2 to the target candidate and the relative speed between the target candidate and the own vehicle are calculated for the registered peak pair by a known method in the FMCW radar apparatus.
  • the vertical position and the horizontal position are calculated based on the distance calculated in S170 and the peak azimuth calculated in S160.
  • the vertical position is a position along the traveling direction of the host vehicle from the host vehicle
  • the horizontal position is a position along the vehicle width direction of the host vehicle from the host vehicle.
  • the current cycle pair for each peak pair registered in the current measurement cycle (hereinafter referred to as the current cycle pair), the current cycle pair is referred to as a pair registered in the previous measurement cycle (hereinafter referred to as the previous cycle pair).
  • a history tracking (tracking) process for determining whether the same target is represented (whether there is a history connection) is executed.
  • the predicted position and predicted speed of the current cycle pair corresponding to the previous cycle pair are calculated, and the predicted position and predicted speed, the detected position obtained from the current cycle pair, and If the difference from the detected speed is smaller than the preset upper limit (upper position difference and upper speed difference) (position difference and speed difference), it is determined that there is a history connection, and multiple measurement cycles (for example, A peak pair determined to have a history connection over 5 cycles) is recognized as a target.
  • the preset upper limit upper position difference and upper speed difference
  • a (return ghost determination process), which will be described in detail later, is performed to determine whether the recognized target is an entity such as a crossing moving object or a stop object or a stop object return ghost. .
  • the target determined as the entity is determined as a target to be recognized when the vehicle is controlled, and the target data (target information) is output to, for example, the inter-vehicle control EUC3. This process ends.
  • the target relative speed Vr and the vehicle speed Vn obtained in step 170 are acquired.
  • the relative velocity Vr is a relative velocity based on the Doppler frequency observed by the radar apparatus, and can be calculated by the following equation (6).
  • Vx is a speed component of a crossing pedestrian, that is, a speed component in a direction perpendicular to the traveling direction (Y direction) of the host vehicle (X direction: lateral direction), and Vn Is the own vehicle speed (speed in the Y direction), and ⁇ is the angle (azimuth angle) of the crossing pedestrian with respect to the traveling direction of the own vehicle.
  • the lateral velocity component Vx is 0. Therefore, normally, a relative of crossing pedestrians approaching the vehicle (for example, by crossing in the right direction in FIG. 6).
  • the speed Vr is larger than the relative speed Vr of the stationary object.
  • the speed of the host vehicle (host vehicle speed: Vn) is obtained from the inter-vehicle control ECU 3.
  • Vn The speed of the host vehicle
  • cos ⁇ c can be adopted when the detection limit angle of the radar apparatus is ⁇ ⁇ c.
  • the minus ( ⁇ ) in the equation (2) indicates that the direction is opposite to the traveling direction of the vehicle (the same applies to other equations below). If it is determined in S320 that “ ⁇ Vr / Vn” is greater than ⁇ , the process proceeds to S330, and it is temporarily determined that the target to be determined is a crossing pedestrian or a stop object. .
  • a process of subtracting a point of a folding counter used for determining whether or not it is a folding ghost (for example, 1 is subtracted) is performed, and this process is temporarily terminated.
  • the process proceeds to S340, and it is temporarily determined that the target to be determined is a crossing pedestrian or a turnback ghost. To do.
  • a process of adding a point of a return counter used for determining whether or not it is a return ghost (for example, adding 1) is performed, and the process once proceeds to this process.
  • This process is sequentially performed on a plurality of detected targets to be determined. That is, the target to be determined is sequentially counted by the target counter, and when all the targets are counted, the first determination is completed.
  • the detection of the target by the radar apparatus 2 is repeatedly performed every predetermined time as described above, the determination for all the one time targets (those recognized as the same target) is performed. Is executed a plurality of times (for example, three times), it is finally determined whether the target to be determined is an entity (of a stationary object) or a folded ghost.
  • the value of the folding counter is increased or decreased by each determination. That is, the greater the number of times it is determined that the ghost is, the greater the value of the wrap counter. Therefore, a predetermined determination value is set (by an experiment or the like in advance), and when the value of the return counter becomes larger than the determination value for the target to be determined, it can be determined as a return ghost.
  • the greater the number of times determined to be an entity the smaller the value of the folding counter. Therefore, when the value of the folding counter becomes smaller than a predetermined determination value, it can be determined as an entity. Therefore, only a target determined to be an entity (a crossing pedestrian or a stopped object) may be determined as an entity and the target information may be output.
  • the folded object ghost of the stationary object seems as if the pedestrian is crossing, and therefore, according to the determination described above, the crossing pedestrian and the substance of the stationary object, the folded object ghost of the stationary object, Need to be distinguished.
  • the determination value ( ⁇ ) obtained by adding a correction value including a measurement error to the cosine (cos ⁇ c) is compared.
  • the object is a crossing moving object (such as a crossing pedestrian) or a stationary object, and otherwise it is determined. If it is, it is determined that the ghost is a folded moving object or a stopped object.
  • targets other than crossing moving objects such as pedestrians
  • stopping objects can be distinguished by various known processes.
  • the relative speed between the preceding vehicle and the own vehicle is usually approximately 0 or slightly.
  • the speed of the crossing moving object or the stopping object itself is substantially zero in the traveling direction of the own vehicle, the relative speed between the crossing moving object or the stopping object and the own vehicle is substantially the own vehicle speed.
  • FIG. 5B shows functional blocks representing the function of the signal processing unit 37 in the first embodiment, realized by a processor, software, or a combination thereof.
  • the signal processing unit 37 includes a relative speed calculation unit 501, a host vehicle speed acquisition unit 502, and a determination unit 503.
  • the relative speed calculation unit 501 and the own vehicle speed acquisition unit 502 execute the process of step S310.
  • the determination unit 503 executes the processes of steps S320 to S340.
  • the second embodiment Next, the second embodiment will be described, but the description of the same contents as in the first embodiment will be omitted.
  • the second embodiment is different from the first embodiment in the content of the (folded ghost determination process), and therefore the different content will be described.
  • whether a stationary object is an entity or a folded ghost is determined.
  • the vehicle speed (Vn) is acquired from the inter-vehicle control ECU 3.
  • an angle (estimated angle: radar output azimuth) ⁇ est which is an azimuth angle of the target (an angle with respect to the traveling direction of the vehicle) is calculated.
  • the orientation of the target obtained in S150 (specifically, the orientation of the target to be determined this time) is acquired.
  • the right and left folding angles ⁇ grt1 and ⁇ grt2 are calculated by the following formulas (1) and (2) for the target to be determined this time.
  • ⁇ grt1 is the folding angle of the left temporary target ( ⁇ L)
  • ⁇ grt2 is the right temporary target with respect to the target (B0) to be determined.
  • ⁇ grt1 asin (sin ( ⁇ est) ⁇ / d) (1)
  • ⁇ grt2 asin (sin ( ⁇ est) + ⁇ / d) (2) (Where ⁇ : wavelength [m], d: antenna element spacing [m])
  • the estimated vertical speed Vy_est of the target (main target: B0) at the angle ⁇ est the estimated vertical speed Vy_grt1 of the target (first target: BL) at the (left turn) angle ⁇ grt1, and (right side).
  • the estimated vertical velocity Vy_grt2 of the target (second target BR) at the angle ⁇ grt2 is calculated by the following equations (3), (4), and (5).
  • a minus ( ⁇ ) indicates that the direction is opposite to the traveling direction of the vehicle.
  • Vy_est ⁇ Vr / cos ⁇ est (3)
  • Vy_grt1 ⁇ Vr / cos ⁇ grt1 (4)
  • Vy_grt2 ⁇ Vr / cos ⁇ grt2 (5) (However, Vr: Relative velocity by Doppler [m / s])
  • the estimated vertical speed Vy_grt1 of the left first target (BL) substantially coincides with the host vehicle speed Vn (within a predetermined error ⁇ T), or the right second target ( It is determined whether or not the estimated vertical speed Vy_grt2 of BR) substantially matches the own vehicle speed Vn (within a predetermined error ⁇ T). If an affirmative determination is made here, the process proceeds to S480, whereas if a negative determination is made, the present process is temporarily terminated.
  • the estimated vertical speed Vy_grt1 of the left first target (BL) or the estimated vertical speed Vy_grt2 of the right second target (BR) substantially matches the host vehicle speed Vn. It is temporarily determined that the two targets (BL or BR) are folded ghosts. Then, a process of adding the points of the return counter (for example, adding 1) is performed, and this process is temporarily terminated.
  • this processing is sequentially performed on a plurality of detected targets to be determined. That is, the target to be determined is sequentially counted by the target counter, and when all the targets are counted, the first determination is completed.
  • the detection of the target by the radar apparatus 2 is repeatedly performed every predetermined time as described above, the determination for all the one time targets (those recognized as the same target) is performed. Is executed a plurality of times (for example, three times), it is finally determined whether the target to be determined is an entity (of a stationary object) or a folded ghost.
  • the value of the folding counter is increased or decreased by each determination.
  • the greater the number of times that an entity is determined the smaller the value of the return counter. Therefore, when the value of the turn-back counter becomes smaller than a predetermined determination value, it can be determined as an entity.
  • the radar apparatus 2 when the substance of the stationary object is at each of positions A, B, and C, the radar apparatus 2 outputs the same position A. That is, it is not possible to know at which position A, B, or C the substance is present only from the output position of the radar device 2. That is, the target incident angle ( ⁇ real) that is the actual incident angle of the stationary object and the radar output azimuth ( ⁇ est) that is the azimuth angle of the target by the radar apparatus 2 have a relationship as shown in FIG.
  • the radar output azimuth is displayed as 10 degrees (+10 deg), +10 degrees ( ⁇ est), ⁇ 35.5 degrees ( ⁇ grt1), and +68.1 degrees ( ⁇ grt2) are listed as actual candidates. . Therefore, the true orientation of the entity is unknown only from the radar output orientation. Therefore, the entity of the stationary object and its return ghost are discriminated as follows.
  • the observed relative velocity Vr relative velocity Vr at the position of ⁇ real
  • Vr relative velocity Vr at the position of ⁇ real
  • Vr ⁇ Vn ⁇ cos ⁇ 35.5 °
  • Vr relative velocity Vr at the position of ⁇ real
  • Vr ⁇ Vn ⁇ cos + 68.1 °
  • FIG. 9B shows functional blocks representing the function of the signal processing unit 37 in the second embodiment, realized by a processor, software, or a combination thereof.
  • the signal processing unit 37 includes a host vehicle speed acquisition unit 901, an azimuth angle calculation unit 902, a turning angle calculation unit 903, an estimated vertical speed calculation unit 904, a first determination unit 905, and a second determination unit 906.
  • the own vehicle speed acquisition unit 901 executes the process of step S410.
  • the azimuth angle calculation unit 902 executes the process of step S420.
  • the folding angle calculation unit 903 executes the process of step S430.
  • the estimated vertical speed calculation unit 904 executes the process of step S440.
  • the first determination unit 905 executes the processes of steps S450 to S460.
  • the second determination unit 906 executes the processes of steps S470 to S480.
  • the function of one component may be distributed to a plurality of components, or the function of a plurality of components may be integrated into one component.
  • at least a part of the configuration of the embodiment may be replaced with a known configuration having a similar function.
  • at least a part of the configuration of the embodiment may be added to or replaced with the configuration of the other embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

 レーダ装置(2)において、判定部(503、S320~340)は、相対速度(Vr)と自車速(Vn)との比(-Vr/Vn)と、検知限界角度(±θc)の余弦(cosθc)又は余弦(cosθc)に測定誤差を含む補正値を加味した判定値(α)とを比較し、前記比(-Vr/Vn)が判定値(α)を上回ると判定された場合には、(横断歩行者等の)横断移動物又は停止物の実体と判定し、そうでないと判定された場合には、横断移動物又は停止物の折り返しゴーストと判定する。これにより、横断移動物又は停止物の実体と、それらの折り返しゴーストとを判別できるので、例えば折り返しゴーストを実体と誤判定して、例えば不適切なブレーキ制御を実施することを防止できる。

Description

レーダ装置 関連出願の相互参照
 本出願は、2014年10月3日に出願された日本出願番号2014-204993号に基づくもので、ここにその記載内容を援用する。
 本発明は、レーダ波を送受信することにより、レーダ波を反射した物体を検出するレーダ装置に関する。
 従来、車両周囲の所定角度に渡り、一定期間ごとにレーダ波(ミリ波など)を送信波として照射し、その反射波を受信することによって、車両周囲の物体を検出する車載用のレーダ装置が知られている。
 この種のレーダ装置では、複数のアンテナ素子を用いて受信した各受信信号間の位相差から、電波を反射した物標の方位を検出する方位検出方法として、モノパルス、フェーズドアレイ、MUSIC、デジタルビームフォーミング(DBF)等の方法が知られている。
 これらの方位検出方法では、アンテナ素子の組み合わせ(以下「チャンネル」ともいう。)によって、物標との間を往復する電波の経路差ΔLが異なることにより、各チャンネルで受信される受信信号間に生じる位相差Δθ[rad]に基づいて、電波を反射した物標の方位αを求めている。
 しかし、この場合には、位相の周期性から、図13(a)に示すように、Δθ=θo(|θo|<π)と、Δθ=θo±2nπ(n=1,2,...)とを区別できない(いわゆる位相折返しが発生する)。
 このため、位相差Δθが-π~+π[rad]となる範囲に対応する方位角度領域(以下「方位エリア」という。)A0に物標が存在すれば、その物標の方位を正しく検出できるが、方位エリアA0外、即ち、位相差Δθが(2m-1)π~(2m+1)π[rad](m≠0の整数)となる範囲に対応する方位エリアAmに物標が存在すると、その物標の方位を、方位エリアA0内にあるものとして誤検出してしまう(図13(b)参照)。
 つまり、いわゆる折り返し(グレーティング)ゴーストを実際の物標として誤検出してしまう。
特許第4082442号公報
 そのため、例えば車両前方の道路(走行経路)上に、道路を横断する歩行者(横断歩行者)などの横断移動物がある場合や、道路上に停止した停止物などがある場合には、横断移動物又は停止物か、或いは停止物の折り返しゴーストかの判別が難しいという問題があった。
 そのため、折り返しゴーストを横断移動物や停止物と判断した場合には、例えば不要なブレーキ制御を行ってしまうという問題があった。
 本発明は、このような問題点を鑑み、その目的は、車両前方の走行経路上を横断する横断移動物又は走行経路上の停止物か、停止物の折り返しゴーストかを判定することができるレーダ装置を提供することにある。
 (1)本発明のレーダ装置は、車両に搭載され、該車両の前方に対して所定の検知限界角度(±θc)を有し、前記車両の外部に向けて送信したレーダ波の反射波を受信することによって、前記レーダ波を反射した物標に関する情報を検出するレーダ装置であって、前記レーダ波を反射した物標の情報に基づいて、前記物標と自車両との相対速度(Vr)を求める相対速度算出部と、前記自車両の速度(Vn)を求める自車速取得部と、前記相対速度(Vr)と自車両の速度(Vn)との比(-Vr/Vn)と、前記検知限界角度(±θc)の余弦(cosθc)又は該余弦(cosθc)に測定誤差を含む補正値を加味した判定値(α)とを比較する判定部と、を備え、前記判定部によって、前記比(-Vr/Vn)が判定値(α)を上回ると判定された場合には、前記物標が停止物又は自車両の前方の走行経路を横断する横断移動物の実体であると判断し、前記比(-Vr/Vn)が判定値(α)以下であると判定された場合には、前記物標が前記停止物又は前記横断移動物の折り返しゴーストであると判断することを特徴とする。
 本発明では、例えば図1に例示するように、相対速度(Vr)と自車両の速度(自車速:Vn)との比(-Vr/Vn)と、検知限界角度(±θc)の余弦(cosθc)又は余弦(cosθc)に測定誤差を含む補正値を加味した判定値(α)とを比較する。
 そして、前記比(-Vr/Vn)が判定値(α)を上回ると判定された場合には、(横断歩行者等の)横断移動物又は停止物の実体と判定し、そうでないと判定された場合には、横断移動物又は停止物の折り返しゴーストと判定している。
 これにより、横断移動物又は停止物の実体と、停止物の折り返しゴーストとを判別できるので、例えば折り返しゴーストを実体と誤判定して、不適切なブレーキ制御を実施することがないという効果を奏する。
 ここで、上述した判定によって、横断移動物又は停止物の実体と、停止物の折り返しゴーストとを判別できる原理については、後に詳述する。
 なお、前記補正値については、測定誤差等を加味して、実験等によって適宜設定すればよい。
 また、本発明において、相対速度(Vr)とは、ドップラー効果(ドップラー周波数)による相対速度である。ここで、速度の向きについて、車両の進行方向を正(+)とすると、車両に対して所定速度で近づいてくる場合は、負(-)で表現する(以下同様)。
 更に、検知限界角度(±θc)とは、レーダ装置によって物標を認識できる限界角度(例えば±22度)であり、例えば図2に示す様に、道路の上方から見た場合(平面視で)、車両前方(進行方向:Y方向)に対して、左側に-θc、右側に+θcの範囲の角度である(以下同様)。
 (2)また、本発明のレーダ装置は、車両に搭載され、前記車両の外部に向けて送信したレーダ波の反射波を受信することによって、前記レーダ波を反射した物標に関する情報を検出するレーダ装置であって、前記自車両の速度(Vn)を求める自車速取得部と、前記レーダ波を反射した物標の情報に基づいて、基本となる主物標の方位角(θest)を求める方位角算出部と、前記主物標に対する左側折り返し角度(θgrt1)と右側折り返し角度(θgrt2)を求める折り返し角度算出部と、前記主物標の主推定縦速度(Vy_est)と、前記左側折り返し角度(θgrt1)を有する第1物標の第1推定縦速度(Vy_grt1)と、前記右側折り返し角度(θgrt2)を有する第2物標の第2推定縦速度(Vy_grt2)と、を求める推定縦速度算出部と、前記主物標の主推定縦速度(Vy_est)と前記自車両の速度(Vn)とを比較し、前記主物標の主推定縦速度(Vy_est)と前記自車両の速度(Vn)とが実質的に同一の場合には、前記主物標を実体と判定する第1判定部と、前記第1物標の第1推定縦速度(Vy_grt1)と前記自車両の速度(Vn)とを比較し、前記第1物標の第1推定縦速度(Vy_grt1)と前記自車両の速度(Vn)とが実質的に同一の場合、又は、前記第2物標の第2推定縦速度(Vy_grt2)と前記自車両の速度(Vn)とを比較し、前記第2物標の第2推定縦速度(Vy_grt2)と前記自車両の速度(Vn)とが実質的に同一の場合、当該同一と判定された物標を停止物の折り返しゴーストと判定する第2判定部と、を備えたことを特徴とする。
 本発明では、主物標の主推定縦速度(Vy_est)と自車両の速度(自車速:Vn)とを比較し、主物標の主推定縦速度(Vy_est)と自車速(Vn)とが実質的に同一の場合には、主物標を実体と判定する。
 また、第1物標の第1推定縦速度(Vy_grt1)と自車速(Vn)とを比較し、第1物標の第1推定縦速度(Vy_grt1)と自車速(Vn)とが実質的に同一の場合、又は、第2物標の第2推定縦速度(Vy_grt2)と自車速(Vn)とを比較し、第2物標の第2推定縦速度(Vy_grt2)と自車速(Vn)とが実質的に同一の場合には、当該同一と判定された物標を停止物の折り返しゴーストと判定する。
 これによって、停止物の実体とその折り返しゴーストを区別することができる。
 これにより、停止物の実体とその折り返しゴーストとを判別できるので、例えば折り返しゴーストを実体と誤判定して、不適切なブレーキ制御を実施することがないという効果を奏する。
 ここで、上述した判定によって、停止物の実体とその折り返しゴーストとを判別できる原理については、後に詳述する。
 なお、前記「実質的に」とは、多少の測定誤差等を含んだ範囲であり、実験等によって適宜設定すればよい。例えば±5%の範囲の違いであれば、実質的に同一であると判断することができる。
 また、左側折り返し角度(θgrt1)と右側折り返し角度(θgrt2)とは、前記図2に示す様に、道路の上方から見た場合(平面視で)、ある基本となる主物標の方位角(θest:車両の前後方向に対する角度)を考えた場合に、主物標に対して左側又は右側に折り返しが発生した場合の角度(車両の前後方向に対する角度)である。
 更に、縦速度とは、自車両の前後方向(進行方向)における速度である。
 本発明の上述およびその他の目的、特徴、および利点は、好ましい実施形態に関する以下の詳細な説明を添付の図面と共に読めば、容易に明らかになり、十分に理解できるであろう。
本発明において、横断移動物又は停止物の実体と停止物の折り返しゴーストとを区別する手法を例示した説明図である。 道路の上方より見て、レーダ装置の検知限界角度を示す説明図である。 第1実施形態のレーダ装置が用いられるクルーズ制御システムを示すブロック図である。 第1実施形態のレーダ装置にて実施されるターゲット情報生成処理を示すフローチャートである。 第1実施形態の折り返しゴースト判定処理を示すフローチャートである。 第1実施形態のレーダ装置における信号処理部の機能ブロック図である。 横断歩行者の移動状態と車両の走行状態との関係を示す説明図である。 (a)横断歩行者の実体の場合、(b)停止物の実体の場合、(c)停止物の折り返しゴーストの場合における判定の原理を示す説明図である。 停止物の折り返しゴーストの場合の問題を示す説明図である。 第2実施形態の折り返しゴースト判定処理を示すフローチャートである。 第2実施形態のレーダ装置における信号処理部の機能ブロック図である。 実体の位置とレーダ装置の出力との関係を示す説明図である。 ターゲット入射角度(θreal)とレーダ出力方位(θest)との関係を示すグラフである。 (a)θest=θrealの場合、(b)θgrt1=θrealの場合、(c)θgrt2=θrealの場合における判定の原理を示す説明図である。 従来技術の説明図である。
 以下、本発明の実施形態を、添付図面を参照しながら、より詳細に説明する。しかし、本発明は、多くの異なる形態で実施されてもよく、本明細書で説明される実施形態に限定されると解釈されるべきではない。むしろ、これらの実施形態は、この発明の開示を徹底的でかつ完全にし、本発明の範囲を当業者に完全に伝えるために、提供される。尚、類似の符号は、図面全体にわたって類似の構成要素を示す。
 (第1実施形態)
 (システムの全体構成)
 まず、本第1実施形態のレーダ装置が用いられる車両制御システムの全体構成について説明する。なお、ここでは、オートクルーズ制御を行うシステムを例に挙げて説明するが、本発明は、それに限定されるものではない。
 図3に示すように、クルーズ制御システム1は、車両に搭載されたシステムであり、レーダ装置2と、車間制御電子制御装置(以下、車間制御ECUという)3と、エンジン電子制御装置(以下、エンジンECUという)4と、ブレーキ電子制御装置(以下、ブレーキECUという)5とを備えている。なおECU3、4、5は、車内LAN6を介して互いにデータ入出力可能に接続されている。
 これらのうち、レーダ装置2は、FMCW方式のいわゆる「ミリ波レーダ」として構成されたものであり、周波数変調されたミリ波帯のレーダ波を送受信することにより、先行車両や路側物などの物体を認識し、これらの認識結果に基づいて、自車両の前方を走行する先行車両に関するターゲット情報を作成して、車間制御ECU3に送信する。なお、ターゲット情報には、少なくとも先行車両との相対速度、および先行車両の位置(距離、方位)が含まれている。
 またブレーキECU5は、図示しないステアリングセンサ、ヨーレートセンサからの検出情報(操舵角、ヨーレート)に加え、図示しないM/C圧センサからの情報に基づいて判断したブレーキペダル状態を車間制御ECU3に送信するとともに、車間制御ECU3から目標加速度およびブレーキ要求などを受信し、これら受信した情報や判断したブレーキ状態に従って、ブレーキ油圧回路に備えられた増圧制御弁・減圧制御弁を開閉するブレーキアクチュエータを駆動することでブレーキ力を制御するように構成されている。
 またエンジンECU4は、図示しない車速センサ、スロットル開度センサ、アクセルペダル開度センサからの検出情報(車速、エンジン制御状態、アクセル操作状態)を車間制御ECU3に送信するとともに、車間制御ECU3からは目標加速度、フューエルカット要求などを受信し、これら受信した情報から特定される運転状態に応じて、内燃機関のスロットル開度を調整するスロットルアクチュエータなどに対して駆動命令を出力するように構成されている。
 また車間制御ECU3は、エンジンECU4から車速やエンジン制御状態、ブレーキECU5から操舵角、ヨーレート、ブレーキ制御状態などを受信する。また車間制御ECU3は、図示しないクルーズコントロールスイッチ、目標車間設定スイッチなどによる設定値、およびレーダ装置2から受信したターゲット情報に基づいて、先行車両との車間距離を適切な距離に調節するための制御指令として、エンジンECU4に対しては、目標加速度、フューエルカット要求などを送信し、ブレーキECU5に対しては、目標加速度、ブレーキ要求などを送信する。
 (レーダ装置の構成)
 次に、レーダ装置2の構成について説明する。
 レーダ装置2は、時間に対して周波数が直線的に増加する上り区間および周波数が直線的に減少する下り区間を有するように変調されたミリ波帯の高周波信号を生成する発振器21と、発振器21が生成する高周波信号を増幅する増幅器22と、増幅器22の出力を送信信号Ssとローカル信号Lとに電力分配する分配器23と、送信信号Ssに応じたレーダ波を放射する送信アンテナ24と、レーダ波を受信するn個の受信アンテナからなる受信アンテナ部31とを備えている。
 またレーダ装置2は、受信アンテナ部31を構成するアンテナのいずれかを順次選択し、選択されたアンテナからの受信信号Srを後段に供給する受信スイッチ32と、受信スイッチ32から供給される受信信号Srを増幅する増幅器33と、増幅器33にて増幅された受信信号Srおよびローカル信号Lを混合してビート信号BTを生成するミキサ34と、ミキサ34が生成したビート信号BTから不要な信号成分を除去するフィルタ35と、フィルタ35の出力をサンプリングしデジタルデータに変換するA/D変換器36とを備えている。
 更に、レーダ装置2は、発振器21の起動または停止やA/D変換器36を介したビート信号BTのサンプリングを制御するとともに、そのサンプリングデータを用いた信号処理や、車間制御ECU3との通信を行い、信号処理に必要な情報(車速情報)、およびその信号処理の結果として得られる情報(ターゲット情報など)を送受信する処理などを行う信号処理部37を備えている。
 このうち、受信アンテナ部31を構成する各アンテナは、そのビーム幅がいずれも送信アンテナ24のビーム幅全体を含むように設定されている。そして、各アンテナがそれぞれCH1~CHnに割り当てられている。
 また、信号処理部37は、周知のマイクロコンピュータを中心に構成され、更に、A/D変換器36を介して取り込んだデータについて、高速フーリエ変換(FFT)処理などを実行するための演算処理装置(例えばDSP)を備えている。
 (レーダ装置の基本動作)
 次に、レーダ装置2の基本動作について説明する。
 このように構成された本第1実施形態のレーダ装置2では、信号処理部37からの指令に従って発振器21が起動すると、まず発振器21が高周波信号を生成し、この高周波信号を増幅器22が増幅する。さらに分配器23が、この高周波信号を電力分配することにより、送信信号Ssおよびローカル信号Lを生成する。これらのうち送信信号Ssが、送信アンテナ24を介してレーダ波として送出される。
 そして、送信アンテナ24から送出され、物体に反射して戻ってきた反射波は、受信アンテナ部31を構成する全ての受信アンテナにて受信され、受信スイッチ32によって選択されている受信チャンネルCHi(i=1~n)の受信信号Srのみが増幅器33で増幅された後に、ミキサ34に供給される。
 すると、ミキサ34は、この受信信号Srに、分配器23からのローカル信号Lを混合することによりビート信号BTを生成する。このビート信号BTは、フィルタ35にて不要な信号成分が除去された後、A/D変換器36にてサンプリングされ、信号処理部37に取り込まれる。
 なお、受信スイッチ32は、レーダ波の一変調周期の間に、すべてのチャンネルCH1~CHnが所定の回(例えば512回)ずつ選択されるよう切り替えられ、また、A/D変換器36は、この切り替えのタイミングに同期してサンプリングを行う。つまり、レーダ波の一変調周期の間に、チャンネルCH1~CHn毎かつレーダ波の上り/下り区間毎にサンプリングデータが蓄積されることになる。
 そして、レーダ装置2の信号処理部37では、一変調周期が経過する毎に、その間に蓄積されたサンプリングデータを、各チャンネルCH1~CHn毎かつレーダ波の上り/下り各区間毎にFFT処理を施す信号解析処理、信号解析処理での解析結果に従って、先行車両を検出してターゲット情報を生成するターゲット情報生成処理などを実行する。
 なお、信号解析処理は周知の技術であることから、ここでの説明は省略する。
 (ターゲット情報生成処理)
 次に、信号処理部37が実行するターゲット情報生成処理の手順について説明する。
 図4に示すように、ターゲット情報生成処理は、信号解析処理において一変調周期分のサンプリングデータに基づくFFT処理結果が算出される毎に起動する。
 本処理が起動すると、信号処理部37は、まず、ステップS100にて、発振器21を起動してレーダ波の送信を開始する。
 次に、S110にて、周波数が漸増する上り区間および周波数が漸減する下り区間からなる一周期が経過するまで、A/D変換器36から出力されるビート信号BTをサンプリングして取り込む。
 そして、上り区間および下り区間からなる一周期が経過すると、S120にて、発振器21を停止してレーダ波の送信を停止する。
 次に、S130にて、前記S120の処理で取り込んだサンプリングデータについて、周波数解析処理(ここではFFT処理)を実行して、受信チャンネルCH1~CHn毎かつ上り/下り区間毎にビート信号BTのパワースペクトルを求める。このパワースペクトルは、ビート信号BTに含まれる周波数と、各周波数における強度とを表したものである。
 そして、S140にて、上り区間について、パワースペクトル上に存在する各周波数ピークfbu1~mを検出するとともに、下り区間について、パワースペクトル上に存在する各周波数ピークfbd1~mを検出する。なお、検出された周波数ピークfbu,fbdの各々は、認識した物標の候補(以下、物標候補という)が存在する可能性があることを意味する。また、本第1実施形態における物標とは、物体(横断移動物や停止物等)において、レーダ波を反射したポイントを表すものである。
 具体的には、受信チャンネルCH毎に求められたパワースペクトルを、全ての受信チャンネルで相加平均した平均スペクトルを導出する。そして、その平均スペクトルの中で、強度が予め設定された設定閾値を超える周波数のピーク点に対応する(すなわち、平均スペクトルにおける強度が極大となる)周波数を、周波数ピークfbu,fbdとして検出する。
 さらに、S150にて、周波数ピークfbu,fbdの各々について、複数チャンネルCH1~CHnから取得した同一ピーク周波数の信号成分間の位相差情報などに基づいて、そのピーク周波数で特定される物標が存在する方位(以下、ピーク方位という)を、例えば周知のMUSIC又はデジタルビームフォーミング(DBF)の手法を用いて算出する。
 そして、S160にて、同一物標に基づく周波数ピークfbuと周波数ピークfbdとを組み合わせるペアマッチングを実行する。具体的には、上り区間の周波数ピークfbuと下り区間の周波数ピークfbdとの組合せについて、ピーク強度の差、およびピーク方位の角度差が予め設定された許容範囲内であるか否かを判定する。その判定の結果、ピーク強度の差およびピーク方位の角度差がともに、許容範囲内であれば、対応する周波数ピークの組をピークペアとして登録する。
 その後、S170にて、登録されたピークペアについて、FMCW方式のレーダ装置における周知の手法により、レーダ装置2から物標候補までの距離、物標候補と自車両との相対速度を算出する。
 そして、S180にて、登録されたピークペアについて、前記S170で算出された距離と、前記S160で算出されたピーク方位とに基づいて、縦位置と横位置を算出する。なお、縦位置は、自車両を起点として自車両の進行方向に沿った位置であり、横位置は、自車両を起点として自車両の車幅方向に沿った位置である。これにより、登録されたピークペアについて、縦位置と横位置と相対速度が特定される。
 さらに、S190にて、今回の測定サイクルで登録されたピークペア(以下、今サイクルペアという)毎に、これら今サイクルペアが、前回の測定サイクルで登録されたペア(以下、前サイクルペアという)と同一の物標を表すものであるか(履歴接続があるか)を判定する履歴追尾(トラッキング)処理を実行する。
 具体的には、前サイクルペアの情報に基づいて、前サイクルペアに対応する今サイクルペアの予測位置および予測速度を算出し、その予測位置および予測速度と、今サイクルペアから求めた検出位置および検出速度との差分が(位置差分および速度差分)が予め設定された上限値(上限位置差および上限速度差)より小さい場合には、履歴接続があるものと判断し、複数の測定サイクル(例えば5サイクル)に渡って履歴接続があると判断されたピークペアを物標であると認識する。
 その後、S200にて、後に詳述する(折り返しゴースト判定処理)を実施して、認識した物標が、例えば横断移動物や停止物などの実体か、又は、停止物の折り返しゴーストかを判定する。
 続くS210では、実体として判定された物標を、車両を制御する際に認識すべき物標として確定し、その物標のデータ(ターゲット情報)を、例えば車間制御EUC3に対して出力し、一旦本処理を終了する。
 (折り返しゴースト判定処理)
 次に、前記S200にて実施される折り返しゴースト判定処理について説明する。
 図5Aに示すように、S300では、判定を行う物標を計数するために、物標カウンタに1を加算する。
 続くS310では、前記ステップ170で得られた物標の相対速度Vrと自車速Vnと取得する。
 なお、前記相対速度Vrとは、レーダ装置が観測するドップラー周波数による相対速度であり、下記式(6)によって、算出することができる。
   Vr=Vx・sinθ+Vn・cosθ  ・・・(6)
 ここで、図6に示すように、Vxは横断歩行者の速度成分、即ち、自車両の進行方向(Y方向)に対して垂直の方向(X方向:横方向)の速度成分であり、Vnは自車速(Y方向の速度)であり、θは横断歩行者の自車両の進行方向に対する角度(方位角)である。
 なお、物標が停止物である場合には、横方向の速度成分Vxは0となるので、通常は、(例えば図6では右方向に横断することによって)自車に近づく横断歩行者の相対速度Vrは、停止物の相対速度Vrより大きな値となる。
 なお、自車両の速度(自車速:Vn)は、車間制御ECU3から得られる。
 続く320では、下記式(7)に基づいて、横断歩行者又は停止物の実体か、又は、停止物の折り返しゴーストであるかの判定を行う。つまり、「-Vr/Vn」が判定値αより大であるか否かの判定を行う。
   -Vr/Vn>α   ・・・(7)
 ここで、αとしては、レーダ装置の検知限界角度を±θcとした場合、cosθcを採用できるが、現実的には、相対速度Vrの観測誤差を考慮して、若干の補正を行った値を採用することが望ましい。具体的には、cosθc+誤差ΔG(例えばθc=22度とした場合、cosθc=0.927であるが、誤差を加味して例えば0.9)の値を、αとして採用することができる。
 なお、前記式(2)でマイナス(-)は、車両の進行方向に対して逆向きであることを示している(以下他の式でも同様)。
 そして、このS320で、「-Vr/Vn」がαより大であると判定された場合には、S330に進み、判定対象の物標が横断歩行者又は停止物の実体であると仮に判定する。
 また、折り返しゴーストであるか否かの判定に用いる折り返しカウンタのポイントを減算する(例えば1減算する)処理を行い、一旦本処理を終了する。
 一方、前記S320にて、「-Vr/Vn」がα以下であると判定された場合には、S340に進み、判定対象の物標が横断歩行者又は停止物の折り返しゴーストであると仮に判定する。
 また、折り返しゴーストであるか否かの判定に用いる折り返しカウンタのポイントを加算する(例えば1加算する)処理を行い、一旦本処理に進む。
 なお、本処理は、検知された複数の判定対象の物標に対して順次行われる。つまり、物標カウンタによって判定対象の物標が順次カウントされ、全ての物標がカウントされると1回目の判定が終了する。
 また、レーダ装置2による物標の検出は、上述したように所定時間毎に繰り返して実施されるので、前記1回の全ての物標(但し、同一物標と認識されているもの)に対する判定が複数回(例えば3回)実施された後に、判定対象の物標が(停止物の)実体であるか折り返しゴーストであるかを最終的に確定する。
 具体的には、前記折り返しカウンタの値は、各回の判定によって増減する。
 つまり、折り返しゴーストと判定された回数が多いほど、折り返しカウンタの値は大きくなる。従って、(実験等によって予め)所定の判定値を設定しておき、判定対象の物標について、折り返しカウンタの値が、判定値より大きくなった場合に、折り返しゴーストと確定することができる。
 同様に、実体と判定された回数が多いほど、折り返しカウンタの値は小さくなるので、折り返しカウンタの値が、所定の判定値より小さくなった場合に、実体と確定することができる。
 よって、(横断歩行者又は停止物の)実体と判定された物標のみを、実体と確定して、そのターゲット情報を出力するようにすればよい。
 (折り返しゴースト判定処理の原理)
 次に、上述したS320の判定によって、横断歩行者と停止物の実体と、停止物の折り返しゴーストとを判定できる原理について説明する。
 停止物及び自車に近づく横断歩行者の実体の場合、判定閾値α=cosθcとした場合、-Vr/Vn>cosθcが成立する。
 具体的には、図7(a)に示すように、横断歩行者(実体)の場合には、「Vr=Vx・sinθ+Vn・cosθ」であり、横方向のVx成分があるので、「-Vr/Vn>cosθc」が成立する。
 また、図7(b)に示すように、停止物(実体)の場合には、「Vr=Vn・cosθ、(但し-θc<θ<θc)」であり、横方向の成分Vxがなく、しかも、方位角θはレーダ装置2の検知限界角度±θcの範囲内であるので、「-Vr/Vn>cosθc」が成立する。
 一方、停止物の折り返しゴーストの場合には、図7(c)に示すように、「Vr=Vn・cosθ、(但し、|θ|>|θc|)」であり、停止物の実際の方位角θ(絶対値)は検知限界角度θc(絶対値)より大であるので、「-Vr/Vn<cosθc」が成立する。
 ここでは、「-Vr/Vn=cosθc」の場合は、停止物の折り返しゴーストとみなす(以下同様)が、横断歩行者や停止物の実体と見なしてもよい。
 なお、図8に示すように、停止物の折り返しゴーストは、あたかも歩行者が横断しているように見えるので、上述した判定によって、横断歩行者と停止物の実体と、停止物の折り返しゴーストとを区別する必要がある。
 (レーダ装置2の効果)
 次に、本第1実施形態のレーダ装置2の効果について説明する。本第1実施形態では、前記図5Aに例示するように、相対速度(Vr)と自車速(Vn)との比(-Vr/Vn)と、検知限界角度(±θc)の余弦(cosθc)又は余弦(cosθc)に測定誤差を含む補正値を加味した判定値(α)とを比較する。
 そして、前記比(-Vr/Vn)が判定値(α)を上回ると判定された場合には、(横断歩行者等の)横断移動物又は停止物の実体と判定し、そうでないと判定された場合には、横断移動物又は停止物の折り返しゴーストと判定している。
 これにより、横断移動物又は停止物の実体と、停止物の折り返しゴーストとを判別できるので、例えば折り返しゴーストを実体と誤判定して、不適切なブレーキ制御を実施することがないという効果を奏する。
 なお、(歩行者等の)横断移動物や停止物以外の他の物標については、周知の各種の処理によって区別することができる。例えば先行車の物標の場合は、自車速とほぼ同様な速度で同方向に走行しているので、通常は、先行車と自車両との相対速度は、ほぼ0か僅かである。一方、横断移動物や停止物自身は、自車両の進行方向における速度はほぼ0であるので、横断移動物や停止物と自車両との相対速度は、ほぼ自車速となる。
 従って、このような相対速度の違いから、先行車と横断移動物や停止物とを容易に判別することができる。
 図5Bは、プロセッサ、ソフトウェア、またはこれらの組み合わせによって実現される、第1実施形態における信号処理部37の機能を表す機能ブロックを示している。信号処理部37は、相対速度算出部501、自車速取得部502、及び判定部503を有する。相対速度算出部501と自車速取得部502は、ステップS310の処理を実行する。判定部503は、ステップS320~S340の処理を実行する。
 (第2実施形態)
 次に、本第2実施形態について説明するが、前記第1実施形態と同様な内容の説明は省略する。
 本第2実施形態は、(折り返しゴースト判定処理)の内容が、前記第1実施形態と異なるので、異なる内容について説明する。
 なお、本第2実施形態は、停止物について、実体か折り返しゴーストかを判定するものである。
 a)まず、本第2実施形態の折り返しゴースト判定処理の手順について説明する。
 図9Aに示すように、S400では、物標カウンタに1を加算する。
 続くS410では、車間制御ECU3から、自車速(Vn)を取得する。
 続くS420では、物標の方位角(車両の進行方向に対する角度)である角度(推定角度:レーダ出力方位)θestを算出する。具体的には、前記S150で求めた物標の方位(詳しくは今回判定を行う物標の方位)を取得する。
 続くS430では、今回の判定対象の物標に対して、下記式(1)、(2)によって、その左右折り返し角度θgrt1、θgrt2を算出する。
 なお、平面視(上方から見た状態)で、判定対象の物標(B0)に対して、θgrt1が左側の仮の物標(θL)の折り返し角度であり、θgrt2が右側の仮の物標(BR)折り返し角度である。
  θgrt1=asin(sin(θest)-λ/d)・・(1)
  θgrt2=asin(sin(θest)+λ/d)・・(2)
  (但し、λ:波長[m]、d:アンテナ素子間隔[m])
 続くS440では、角度θestの物標(主物標:B0)の推定縦速度Vy_estと、(左側の折り返し)角度θgrt1の物標(第1物標:BL)の推定縦速度Vy_grt1と、(右側の折り返し)角度θgrt2の物標(第2物標BR)の推定縦速度Vy_grt2とを、下記式(3)、(4)、(5)により算出する。
 なお、各式でマイナス(-)は、車両の進行方向に対して逆向きであることを示している。
   Vy_est =-Vr/cosθest   ・・・(3)
   Vy_grt1=-Vr/cosθgrt1  ・・・(4)
   Vy_grt2=-Vr/cosθgrt2  ・・・(5)
    (但し、Vr:ドップラーによる相対速度[m/s])
 続くS450では、主物標(B0)の推定縦速度Vy_estが、自車速Vnとほぼ一致するか否かを判定する。つまり、所定の誤差ΔTの範囲内で一致するか否かを判定する。ここで肯定判断されるとS460に進み、一方否定判断されるとS470に進む。
 S460では、主物標(B0)の推定縦速度Vy_estが、自車速Vnとほぼ一致するので、その物標(B0)を実体であると仮に判断する。そして、折り返しゴーストであるか否かの判定に用いる折り返しカウンタのポイントを減算する(例えば1減算する)処理を行い、S470に進む。
 一方、S470では、左側の第1物標(BL)の推定縦速度Vy_grt1が、自車速Vnと(所定の誤差ΔTの範囲で)ほぼ一致するか否か、又は、右側の第2物標(BR)の推定縦速度Vy_grt2が、自車速Vnと(所定の誤差ΔTの範囲で)ほぼ一致するか否かを判定する。
 ここで肯定判断されるとS480に進み、一方否定判断されると一旦本処理を終了する。
 S480では、左側の第1物標(BL)の推定縦速度Vy_grt1、又は、右側の第2物標(BR)の推定縦速度Vy_grt2が、自車速Vnとほぼ一致するので、その第1又は第2物標(BL又はBR)を折り返しゴーストであると仮に判断する。そして、折り返しカウンタのポイントを加算する(例えば1加算する)処理を行い、一旦本処理を終了する。
 なお、本処理は、検知された複数の判定対象の物標に対して順次行われる。つまり、物標カウンタによって判定対象の物標が順次カウントされ、全ての物標がカウントされると1回目の判定が終了する。
 また、レーダ装置2による物標の検出は、上述したように所定時間毎に繰り返して実施されるので、前記1回の全ての物標(但し、同一物標と認識されているもの)に対する判定が複数回(例えば3回)実施された後に、判定対象の物標が(停止物の)実体であるか折り返しゴーストであるかを最終的に確定する。
 具体的には、前記折り返しカウンタの値は、各回の判定によって増減する。つまり、折り返しゴーストと判定された回数が多いほど、折り返しカウンタの値は大きくなる。従って、(実験等によって予め)所定の判定値を設定しておき、判定対象の物標について、折り返しカウンタの値が、判定値より大きくなった場合に、折り返しゴーストと確定することができる。
 同様に、実体と判定された回数が多いほど、折り返しカウンタの値は小さくなる。従って、折り返しカウンタの値が、所定の判定値より小さくなった場合に、実体と確定することができる。
 よって、実体と判定された物標のみを、実体と確定して、そのターゲット情報を出力するようにすればよい。
 なお、S320及びS450で否定判断された場合には、実体又は折り返しゴーストと仮に判定することなく、他の物標の判定等の処理を継続する。
 b)次に、本第2実施形態の折り返しゴースト判定処理によって、停止物の実体とその折り返しゴーストとを判別できる原理について説明する。
 図10に示すように、停止物の実体がA、B、Cの各位置にいた場合、レーダ装置2は、同じAの位置を出力する。つまり、レーダ装置2の出力された位置だけでは、A、B、Cのどの位置に実体があるか分からない。すなわち、実際の停止物の入射角度であるターゲット入射角度(θreal)と、レーダ装置2による物標の方位角であるレーダ出力方位(θest)とには、図11に示すような関係がある。よって、例えばレーダ出力方位が10度(+10deg)と表示された場合には、実体の候補として、+10度(θest)、-35.5度(θgrt1)、+68.1度(θgrt2)が挙げられる。従って、レーダ出力方位だけからでは、実体の本当の方位が不明である。そこで、以下のようにして、停止物の実体とその折り返しゴーストとを判別する。
 まず、観測される停止物のドップラー相対速度Vrは、以下の式(8)となる。従って、下記式(9)の関係が成り立つ。
   Vr=-Vncosθreal   ・・・(8)
   (但し、Vnは自車速)
   -Vr/cosθreal=Vn  ・・・(9)
 ここで、レーダ装置2の検知エリアが、検知限界角度である例えば±22度を超える物標は折り返すため、θrealは、理論的には、前記S420、430で示される、θest、θgrt1、θgrt2のいずれかと一致する。
 詳しくは、図12(a)に示すように、例えば実体がA(θreal=+10度)の位置にいた場合は、レーダ装置2は、A(θest=+10度)の位置(方位角)を出力する。
 この場合、観測される相対速度Vr(θrealの位置における相対速度Vr)は、「Vr=-Vn・cos10°」となる。従って、θest=θrealが成立し、Aの位置にて出力された物標は実体であると判定できる。
 また、図12(b)に示すように、例えば実体がB(θreal=-35.5度)の位置にいた場合は、レーダ装置2は、A(θest=+10度)の位置(方位角)を出力する。
 この場合、観測される相対速度Vr(θrealの位置における相対速度Vr)は、「Vr=-Vn・cos-35.5°」となる。また、前記式(1)より、「θgrt1=asin(sin(θest)-λ/d)=-35.5°」である。従って、「θgrt1=θreal」が成立し、Aの位置にて出力された物標は、実際の位置が-35.5度の折り返しゴーストであることが分かる。
 更に、図12(c)に示すように、例えば実体がC(θreal=+68.1度)の位置にいた場合は、レーダ装置2は、A(θest=+10度)の位置(方位角)を出力する。
 この場合、観測される相対速度Vr(θrealの位置における相対速度Vr)は、「Vr=-Vn・cos+68.1°」となる。また、前記式(2)より、「θgrt2=asin(sin(θest)+λ/d)=-68.1°」である。従って、「θgrt2=θreal」が成立し、Aの位置にて出力された物標は、実際の位置が+68.1度の折り返しゴーストであることが分かる。
 なお、自車両が停止している場合には、相対速度Vrはゼロであるので、実体なのか折り返しゴーストなのかは判別できない。
 従って、前記S450の判定のように、「-Vr/cosθest=Vn」が成立すれば実体であると判断できる。
 一方、前記S470の判定のように、「-Vr/cosθgrt1=Vn」又は「-Vr/cosθgrt2=Vn」が成立すれば折り返しゴーストであると判断できる。
 つまり、推定角度θestで観測した物標の実際の入射角は、θgrt1もしくはθgrt2であると判別できるからである。
 従って、上述したS450、S470判定によって、停止物の実体かその折り返しゴーストであるかを判定することができる。
 以上詳述したように、本第2実施形態では、上述した処理によって、停止物の実体かその折り返しゴーストであるかを、容易に且つ精度良く判定することができる。
 図9Bは、プロセッサ、ソフトウェア、またはこれらの組み合わせによって実現される、第2実施形態における信号処理部37の機能を表す機能ブロックを示している。信号処理部37は、自車速取得部901、方位角算出部902、折り返し角度算出部903、推定縦速度算出部904、第1判定部905、及び第2判定部906を有する。自車速取得部901は、ステップS410の処理を実行する。方位角算出部902は、ステップS420の処理を実行する。折り返し角度算出部903は、ステップS430の処理を実行する。推定縦速度算出部904は、ステップS440の処理を実行する。第1判定部905は、ステップS450~S460の処理を実行する。第2判定部906は、ステップS470~S480の処理を実行する。
 尚、本発明は前記実施形態などになんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
 (1)例えば前記各実施形態において、例えば1つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。更に、実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。
 (2)なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。

Claims (8)

  1.  車両に搭載され、該車両の前方に対して所定の検知限界角度(±θc)を有し、前記車両の外部に向けて送信したレーダ波の反射波を受信することによって、前記レーダ波を反射した物標に関する情報を検出するレーダ装置(2)であって、
     前記レーダ波を反射した物標の情報に基づいて、前記物標と自車両との相対速度(Vr)を求める相対速度算出部(501、S310)と、
     前記自車両の速度(Vn)を求める自車速取得部(502、S310)と、
     前記相対速度(Vr)と自車両の速度(Vn)との比(-Vr/Vn)と、前記検知限界角度(±θc)の余弦(cosθc)又は該余弦(cosθc)に測定誤差を含む補正値を加味した判定値(α)とを比較し、前記比(-Vr/Vn)が判定値(α)を上回ると判定された場合には、前記物標が停止物又は自車両の前方の走行経路を横断する横断移動物の実体であると判断し、前記比(-Vr/Vn)が判定値(α)以下であると判定された場合には、前記物標が前記停止物又は前記横断移動物の折り返しゴーストであると判断する判定部(503、S320~340)とを備える、
    ことを特徴とするレーダ装置(2)。
  2.  前記判定部(503、S320~340)による判定を複数回実施し、所定回数前記物標が前記実体であると判定された場合には、前記物標が前記実体であると確定することを特徴とする請求項1に記載のレーダ装置(2)。
  3.  前記判定部(503、S320~340)による判定を複数回実施し、所定回数前記物標が前記実体の折り返しゴーストであると判定された場合には、前記物標が前記実体の折り返しゴーストであると確定することを特徴とする請求項1又は2に記載のレーダ装置(2)。
  4.  車両に搭載され、前記車両の外部に向けて送信したレーダ波の反射波を受信することによって、前記レーダ波を反射した物標に関する情報を検出するレーダ装置(2)であって、
     自車両の速度(Vn)を求める自車速取得部(901、S410)と、
     前記レーダ波を反射した物標の情報に基づいて、基本となる主物標の方位角(θest)を求める方位角算出部(902、S420)と、
     前記主物標に対する左側折り返し角度(θgrt1)と右側折り返し角度(θgrt2)を求める折り返し角度算出部(903、S430)と、
     前記主物標の主推定縦速度(Vy_est)と、前記左側折り返し角度(θgrt1)を有する第1物標の第1推定縦速度(Vy_grt1)と、前記右側折り返し角度(θgrt2)を有する第2物標の第2推定縦速度(Vy_grt2)と、を求める推定縦速度算出部(904、S440)と、
     前記主物標の主推定縦速度(Vy_est)と前記自車両の速度(Vn)とを比較し、前記主物標の主推定縦速度(Vy_est)と前記自車両の速度(Vn)とが実質的に同一の場合には、前記主物標を実体と判定する第1判定部(905、S450~460)と、
     前記第1物標の第1推定縦速度(Vy_grt1)と前記自車両の速度(Vn)とを比較し、前記第1物標の第1推定縦速度(Vy_grt1)と前記自車両の速度(Vn)とが実質的に同一の場合、又は、前記第2物標の第2推定縦速度(Vy_grt2)と前記自車両の速度(Vn)とを比較し、前記第2物標の第2推定縦速度(Vy_grt2)と前記自車両の速度(Vn)とが実質的に同一の場合、当該同一と判定された物標を停止物の折り返しゴーストと判定する第2判定部(906、S470~480)と、
     を備えたことを特徴とするレーダ装置(2)。
  5.  前記左側折り返し角度(θgrt1)と前記右側折り返し角度(θgrt2)とを、下記式(1)、(2)
     θgrt1=asin(sin(θest)-λ/d)・・(1)
     θgrt2=asin(sin(θest)+λ/d)・・(2)
     (但し、λ:波長[m]、d:アンテナ素子間隔[m])
    によって算出することを特徴とする請求項4に記載のレーダ装置(2)。
  6.  前記レーダ波を反射した物標の情報に基づいて、前記物標と自車両との相対速度(Vr)を求めるとともに、
     前記主推定縦速度(Vy_est)と前記第1推定縦速度(Vy_grt1)と前記第2推定縦速度(Vy_grt2)とを、下記式(3)、(4)、(5)
     Vy_est =-Vr/cosθest  ・・・(3)
     Vy_grt1=-Vr/cosθgrt1 ・・・(4)
     Vy_grt2=-Vr/cosθgrt2 ・・・(5)
    によって算出することを特徴とする請求項4又は5に記載のレーダ装置(2)。
  7.  前記第1判定部(905、S450~460)による判定を複数回実施し、所定回数前記物標が前記実体であると判定された場合には、前記物標が前記実体であると確定することを特徴とする請求項4~6のいずれか1項に記載のレーダ装置(2)。
  8.  前記第2判定部(906、S470~480)による判定を複数回実施し、所定回数前記物標が前記実体の折り返しゴーストであると判定された場合には、前記物標が前記実体の折り返しゴーストであると確定することを特徴とする請求項4~7のいずれか1項に記載のレーダ装置(2)。
PCT/JP2015/078107 2014-10-03 2015-10-02 レーダ装置 WO2016052744A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/515,795 US10451724B2 (en) 2014-10-03 2015-10-02 Radar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204993A JP6303964B2 (ja) 2014-10-03 2014-10-03 レーダ装置
JP2014-204993 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016052744A1 true WO2016052744A1 (ja) 2016-04-07

Family

ID=55630764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078107 WO2016052744A1 (ja) 2014-10-03 2015-10-02 レーダ装置

Country Status (3)

Country Link
US (1) US10451724B2 (ja)
JP (1) JP6303964B2 (ja)
WO (1) WO2016052744A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207476A (ja) * 2016-05-16 2017-11-24 日本電産エレシス株式会社 レーダシステム
WO2022030446A1 (ja) * 2020-08-06 2022-02-10 株式会社デンソー 軸ずれ推定装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500838B2 (ja) * 2016-05-18 2019-04-17 株式会社デンソー 速度検出装置
JP6725437B2 (ja) * 2017-02-22 2020-07-15 株式会社Soken レーダ装置
DE102017204496A1 (de) 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren und Radarvorrichtung zum Ermitteln von radialer relativer Beschleunigung mindestens eines Zieles
JP6494712B2 (ja) * 2017-09-05 2019-04-03 三菱電機株式会社 レーダ装置
KR102463718B1 (ko) * 2017-12-14 2022-11-07 현대자동차주식회사 차량의 위조된 위치정보를 탐지하는 시스템 및 방법
JP6845166B2 (ja) * 2018-01-18 2021-03-17 株式会社Soken 車両レーダシステム
DE102018200752A1 (de) 2018-01-18 2019-07-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung einer Winkelposition eines Objekts, und Fahrerassistenzsystem
KR20190117933A (ko) * 2018-04-09 2019-10-17 주식회사 만도 비선형 어레이 레이더 및 그 방법
JP7025285B2 (ja) * 2018-06-05 2022-02-24 株式会社Soken 位置検出装置
CN109300333A (zh) * 2018-08-27 2019-02-01 东软集团股份有限公司 一种车辆行驶风险预警方法、装置、存储介质及电子设备
KR102612335B1 (ko) * 2018-10-08 2023-12-12 주식회사 에이치엘클레무브 타깃 탐지 장치 및 방법과, 차량 제어 장치 및 방법
DE102018009434A1 (de) * 2018-11-30 2020-06-04 Zf Active Safety Gmbh Steuerungssystem und -Verfahren für ein Kraftfahrzeug zur Verarbeitung von mehrfach reflektierten Signalen
CN110832341B (zh) * 2018-12-27 2024-06-11 深圳市卓驭科技有限公司 车速计算方法、***、设备及存储介质
US11353578B2 (en) * 2019-02-28 2022-06-07 Zoox, Inc. Recognizing radar reflections using position information
KR20200113915A (ko) * 2019-03-27 2020-10-07 주식회사 만도 차량 제어 장치 및 방법
JP7197447B2 (ja) * 2019-09-05 2022-12-27 株式会社Soken 折返判定装置
JP7372193B2 (ja) * 2020-03-31 2023-10-31 株式会社Soken レーダ装置
KR102332509B1 (ko) * 2020-05-22 2021-11-29 현대모비스 주식회사 후방 교차 충돌 경고 방법 및 장치
US12000957B2 (en) * 2021-06-24 2024-06-04 Intel Corporation Range doppler consistency check for radar ghost target detection
CN116359865B (zh) * 2023-06-02 2023-08-04 上海几何伙伴智能驾驶有限公司 毫米波雷达水平安装角估计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228749A (ja) * 2001-02-02 2002-08-14 Hitachi Ltd 車載用ミリ波レーダ装置
WO2009019881A1 (ja) * 2007-08-08 2009-02-12 Fujitsu Ten Limited レーダ装置、及び方位角検出方法
JP2010002389A (ja) * 2008-06-23 2010-01-07 Fujitsu Ten Ltd 信号処理装置、レーダ装置、及び、信号処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4244608C2 (de) * 1992-12-31 1997-03-06 Volkswagen Ag Mittels eines Computers durchgeführtes Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und vor ihm befindlichen Hindernissen
DE19922411A1 (de) * 1999-04-07 2000-10-12 Volkswagen Ag Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
JP4156307B2 (ja) * 2002-09-09 2008-09-24 株式会社デンソー レーダ装置、プログラム
DE102004047087A1 (de) * 2004-09-29 2006-03-30 Robert Bosch Gmbh Verfahren zur Objektverifaktion in Radarsystemen für Kraftfahrzeuge
DE102006028465A1 (de) * 2006-06-21 2007-12-27 Valeo Schalter Und Sensoren Gmbh Kraftfahrzeug-Radarsystem und Verfahren zur Bestimmung von Geschwindigkeiten und Entfernungen von Objekten relativ zu dem einen Radarsystem
JP4082442B2 (ja) 2007-07-24 2008-04-30 株式会社デンソー 方位検出装置
JP5195672B2 (ja) * 2009-05-29 2013-05-08 トヨタ自動車株式会社 車両制御装置、車両および車両制御方法
DE102010030289A1 (de) * 2010-06-21 2011-12-22 Robert Bosch Gmbh Radarsensor und Verfahren zum Betreiben eines Radarsensors
JP6092596B2 (ja) * 2012-11-28 2017-03-08 富士通テン株式会社 レーダ装置、および、信号処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228749A (ja) * 2001-02-02 2002-08-14 Hitachi Ltd 車載用ミリ波レーダ装置
WO2009019881A1 (ja) * 2007-08-08 2009-02-12 Fujitsu Ten Limited レーダ装置、及び方位角検出方法
JP2010002389A (ja) * 2008-06-23 2010-01-07 Fujitsu Ten Ltd 信号処理装置、レーダ装置、及び、信号処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207476A (ja) * 2016-05-16 2017-11-24 日本電産エレシス株式会社 レーダシステム
WO2022030446A1 (ja) * 2020-08-06 2022-02-10 株式会社デンソー 軸ずれ推定装置
JP7481196B2 (ja) 2020-08-06 2024-05-10 株式会社Soken 軸ずれ推定装置

Also Published As

Publication number Publication date
JP6303964B2 (ja) 2018-04-04
US20170307749A1 (en) 2017-10-26
JP2016075524A (ja) 2016-05-12
US10451724B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6303964B2 (ja) レーダ装置
US9618608B2 (en) Target detection apparatus and vehicle control system
JP4905512B2 (ja) 物標情報推定装置
JP4093109B2 (ja) 車両用レーダ装置
US8427361B2 (en) Radar apparatus for use in vehicle
JP5972402B2 (ja) レーダ装置
JP4561507B2 (ja) 道路形状認識装置
JP3938686B2 (ja) レーダ装置、信号処理方法及びプログラム
JP4736777B2 (ja) 車両用道路形状認識装置
JP4715871B2 (ja) 方位検出装置、レーダ装置
JP2009041981A (ja) 物体検出装置および方法、ならびに物体検出装置を備えた車両
WO2015159924A1 (ja) 低位物標を検出する物標検出装置及びその物標検出方法
WO2017209292A1 (ja) 物標検出装置
JP4079739B2 (ja) 車載用レーダ装置
JP2017227468A (ja) レーダ装置および上下軸ずれ検知方法
JP2009109417A (ja) レーダシステムとレーダ搭載移動体装置
JPWO2005066656A1 (ja) 車載レーダ装置およびその信号処理方法
CN104483667A (zh) 一种车载雷达装置
JP3703756B2 (ja) レーダ装置
JP5065611B2 (ja) レーダ装置
JP4910955B2 (ja) 車両用レーダ装置
JP2003185744A (ja) レーダ装置
JP3966181B2 (ja) レーダ装置,プログラム
JP2006058135A (ja) 移動物体検出装置及び移動物体検出方法
JP2007232747A (ja) 車載用レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515795

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846117

Country of ref document: EP

Kind code of ref document: A1