WO2016041519A1 - 承载装置以及半导体加工设备 - Google Patents

承载装置以及半导体加工设备 Download PDF

Info

Publication number
WO2016041519A1
WO2016041519A1 PCT/CN2015/089916 CN2015089916W WO2016041519A1 WO 2016041519 A1 WO2016041519 A1 WO 2016041519A1 CN 2015089916 W CN2015089916 W CN 2015089916W WO 2016041519 A1 WO2016041519 A1 WO 2016041519A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchange
ring
edge
ring body
Prior art date
Application number
PCT/CN2015/089916
Other languages
English (en)
French (fr)
Inventor
郑友山
彭宇霖
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Priority to SG11201702039YA priority Critical patent/SG11201702039YA/en
Priority to JP2017515147A priority patent/JP2017533582A/ja
Priority to KR1020177008421A priority patent/KR20170048469A/ko
Publication of WO2016041519A1 publication Critical patent/WO2016041519A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring

Definitions

  • the present invention relates to the field of semiconductor device manufacturing, and in particular to a carrier device and a semiconductor processing device.
  • a carrier device is often used to carry and heat a workpiece to be processed such as a wafer, while providing a DC bias to the workpiece to be processed and controlling the temperature of the surface of the workpiece to be processed.
  • FIG. 1 is a schematic structural view of a typical carrier device carrying a wafer.
  • the carrying device includes an electrostatic chuck 11, an edge assembly, and a mounting fixture 16.
  • the electrostatic chuck 11 is fixed to the upper surface of the wafer 12 by electrostatic adsorption, and a temperature control device is disposed in the electrostatic chuck 11 for controlling the temperature of the wafer 12.
  • the edge assembly is disposed around the outer peripheral wall of the electrostatic chuck 11, and includes a focus ring 13, a base ring 14 and an insulating ring 15 which are sequentially stacked from top to bottom, wherein the insulating ring 15 is fixed to the mounting fixture 16 for The electrostatic chuck 11 is supported, and the insulating ring 15 is made of an insulating material for electrically insulating the electrostatic chuck 11 from the mounting fixture 16.
  • the focus ring 13 is for confining the plasma in an annular region surrounded by the focus ring 13; the base ring 14 is for supporting the focus ring 13 and protecting the outer peripheral wall of the electrostatic chuck 11 from plasma etching.
  • the above-mentioned carrier device inevitably has the following problems in practical applications:
  • the central temperature control unit is disposed in a central area inside the electrostatic chuck 11, and has a certain distance from the edge of the electrostatic chuck, and since the diameter of the wafer 12 is larger than the diameter of the upper surface of the electrostatic chuck, when the wafer 12 and the static electricity When the chuck 11 is coaxially disposed, the edge of the wafer 12 may exceed the edge of the electrostatic chuck 11, which makes it difficult for the temperature control device to control the temperature at the edge of the wafer, resulting in uneven temperature in the edge region and the central region of the wafer. It can be seen that for some processes (such as 32-22 nanometer technology process), relying solely on an electrostatic chuck to control the temperature of the wafer cannot meet the temperature uniformity requirements of the edge region and the central region of the wafer.
  • the present invention aims to at least solve one of the technical problems existing in the prior art, and proposes a carrying device and a semiconductor processing device which can adjust the temperature of an edge region of a workpiece to be processed, thereby being able to be between the edge region of the wafer and the central region The temperature difference is compensated, which in turn improves process uniformity.
  • a carrying device comprising an electrostatic chuck, a central temperature control unit and an edge assembly, wherein the central temperature control unit is disposed in the electrostatic chuck for adjusting the electrostatic card a central region temperature of the workpiece to be processed carried by the disk; the edge assembly is disposed around the outer peripheral wall of the electrostatic chuck, and includes a focus ring, a base ring and an insulating ring which are sequentially stacked from top to bottom;
  • the apparatus also includes an edge temperature control unit disposed within the edge assembly for adjusting the temperature of the edge region of the workpiece being processed by heat exchange.
  • the edge temperature control unit comprises at least one heat exchange channel disposed in the edge assembly and circumferentially disposed along the circumferential direction of the electrostatic chuck, the heat exchange channel for accommodating a flowing heat exchange medium .
  • the edge temperature control unit comprises a heat exchange channel disposed in the base ring or disposed in the focus ring and having an inflow port communicating with a medium source providing a heat exchange medium And the outlet port; or the edge temperature control unit includes two heat exchange channels that are in communication with each other, and the two heat exchange channels are respectively disposed in the base ring and in the focus ring, and are disposed a heat exchange passage in the base ring having an inflow port and an outflow port in communication with a medium source providing a heat exchange medium;
  • the edge assembly further has two drainage channels, one of which is connected between the inflow port of the heat exchange channel and the output line of the medium source and connects the two, and the other drainage channel is connected Between the outflow port of the heat exchange channel and the input line of the medium source, and the two are connected.
  • each of the columnar extensions penetrating the insulating ring in a thickness direction of the insulating ring, and the draining channel is configured to penetrate the columnar extending portion along the axis of the columnar extending portion and exchange heat with the portion The channel through which the channels are connected.
  • a temperature measuring through hole penetrating the insulating ring in a thickness direction thereof is disposed in the insulating ring;
  • the carrying device further includes an edge temperature detecting unit configured to detect a temperature of the base ring through the temperature measuring through hole and use the temperature as an edge region temperature of the workpiece to be processed.
  • the edge temperature control unit includes a heat exchange channel and is disposed in the focus ring, an inflow port and an outflow corresponding to the heat exchange channel on a lower surface of the focus ring
  • the edge temperature control unit includes a heat exchange channel and is disposed in the focus ring, an inflow port and an outflow corresponding to the heat exchange channel on a lower surface of the focus ring
  • a first temperature measuring through hole penetrating the base ring in a thickness direction thereof is disposed in the base ring, and a second temperature measuring through hole penetrating the insulating ring in a thickness direction thereof is disposed in the insulating ring And the first temperature measuring through hole is coaxial with the second temperature measuring through hole;
  • the carrying device further includes an edge temperature detecting unit, configured to detect a temperature of the focus ring through the first temperature measuring through hole and the second temperature measuring through hole, and use the temperature The edge region temperature of the workpiece to be processed.
  • the base ring is composed of an upper ring body and a lower ring body that abut each other; and/or a heat exchange channel is disposed in the focus ring
  • the focus ring is composed of an upper ring body and a lower ring body that are butted against each other;
  • An annular groove is formed on a lower surface of the upper ring body, and an upper surface of the lower ring body closes the annular groove when the upper ring body abuts the lower ring body,
  • the annular groove forms a closed passage serving as a heat exchange passage;
  • An annular groove is formed on an upper surface of the lower ring body, and when the upper ring body abuts the lower ring body, a lower surface of the upper ring body faces the annular groove to close the
  • the annular groove forms a closed passage serving as a heat exchange passage
  • An annular groove is formed on the lower surface of the upper ring body and the upper surface of the lower ring body.
  • the two annular grooves are jointly formed to serve as a closed passage of the heat exchange passage.
  • the upper ring body and the lower ring body are separately sintered once and then sintered together, thereby achieving the docking of the upper ring body and the lower ring body and obtaining the heat exchange channel; or
  • the upper ring body and the lower ring body are butted together and the heat exchange passage is obtained by performing one sintering of the upper ring body and the lower ring body.
  • the carrying device further includes a central temperature detecting unit and a control unit, wherein
  • the central temperature detecting unit is configured to detect a temperature of the electrostatic chuck, use it as a central region temperature of the workpiece to be processed, and send the temperature to the control unit;
  • the control unit is configured to receive an edge region temperature of the workpiece to be processed sent by the edge temperature detecting unit, and a central region temperature of the workpiece to be processed sent by the center temperature detecting unit, And calculating a difference between the edge region temperature and the temperature of the central region, and sending a control signal to the central temperature control unit and/or the edge temperature control unit according to the difference, the central temperature control unit and/ Or the edge temperature control unit pairs the edge according to the control signal
  • the zone temperature and/or the central zone temperature are compensated.
  • the edge temperature detecting unit comprises a contact temperature sensor or a non-contact temperature sensor.
  • a radial distance between an inner side wall of the heat exchange channel and an outer peripheral wall of the electrostatic chuck is less than or equal to 3 mm.
  • the inflow port and the outflow port of the heat exchange channel are symmetrically disposed along a radial direction of the heat exchange channel.
  • the present invention also provides a semiconductor processing apparatus including a reaction chamber and a carrying device disposed in the reaction chamber, the carrying device for carrying the workpiece to be processed, and adjusting the For the temperature of the workpiece, the carrier device employs the above-described carrier device provided by the present invention.
  • the carrying device provided by the present invention is provided with an edge temperature control unit in the edge assembly thereof, and the edge temperature control unit can adjust the temperature of the edge region of the workpiece to be processed carried by the bearing device by heat exchange, and therefore, the present invention provides
  • the carrying device can compensate for the defect that the central temperature control unit disposed in the electrostatic chuck can not adjust the temperature of the edge region of the workpiece to be processed, thereby compensating for the temperature difference between the edge region and the central region of the workpiece to be processed, and improving the workpiece to be processed. Temperature uniformity in the edge region and the center region, thereby improving process uniformity.
  • the structure of the edge assembly can be improved by a simple manufacturing method without any improvement on the electrostatic chuck, that is, in the present invention, it is possible to improve the process uniformity by a simple manufacturing method.
  • Sexual carrying device is provided with an edge temperature control unit in the edge assembly thereof, and the edge temperature control unit can adjust the temperature of the edge region of the workpiece to be processed carried by the bearing device by heat exchange, and
  • the semiconductor processing apparatus provided by the present invention can adjust the temperature of the edge region of the workpiece to be processed by using the above-mentioned respective carrying devices provided by the present invention, so that the temperature between the edge region and the central region of the workpiece can be processed. The difference is compensated, which in turn improves process uniformity.
  • FIG. 1 is a schematic structural view of a typical carrier device carrying a wafer
  • 2A is a cross-sectional view of the carrying device carrying the workpiece to be processed, taken along a plane of the axis thereof, according to the first embodiment of the present invention
  • Figure 2B is an enlarged view of the area I in Figure 2A;
  • Figure 2C is a cross-sectional view of the insulating ring of Figure 2A taken along line A-A;
  • 2D is a partial cross-sectional view of the carrying device carrying the workpiece according to the first embodiment of the present invention, taken along a plane in which the axis of the workpiece and the axis of the temperature measuring through hole are co-located;
  • 3A is a partial cross-sectional view showing a carrier device carrying a workpiece according to a second embodiment of the present invention, taken along a plane in which the axis of the axis and the columnar extension are co-located;
  • 3B is a cross-sectional view showing a cross-sectional view of a carrying device carrying a workpiece according to a second embodiment of the present invention, taken along a plane in which the axis of the workpiece and the axis of the first temperature measuring through hole are co-located;
  • 4A is a partial cross-sectional view showing a carrier device carrying a workpiece according to a third embodiment of the present invention, taken along a plane in which the axes of the axis and the columnar extension are co-located;
  • 4B is a cross-sectional view, partly in section, of the carrier device carrying the workpiece according to the third embodiment of the present invention, taken along a plane in which the axis of the workpiece and the axis of the through hole are co-located.
  • the carrying device 100 includes an electrostatic chuck 101, a central temperature control unit, an edge assembly 102, an edge temperature control unit, and a mounting fixture 27.
  • the electrostatic chuck 101 is used to carry the workpiece 22 to be processed by electrostatic adsorption.
  • the central temperature control unit includes a cooling water passage 21 provided in the electrostatic chuck 101, and the temperature of the central portion of the workpiece 22 to be processed is adjusted by introducing a coolant into the cooling water passage 21.
  • the central temperature control unit is disposed in a central area inside the electrostatic chuck 101, and has a certain distance from the edge of the electrostatic chuck 101, and the diameter of the workpiece 22 to be processed is larger than the upper surface of the electrostatic chuck 101.
  • the edge of the workpiece 22 to be processed may exceed the edge of the electrostatic chuck 101, making it difficult for the central temperature control unit to temperature the edge region of the workpiece 22 to be processed. control. Therefore, the central area of the workpiece 22 to be processed refers to the temperature-adjustable area that the central temperature control unit can achieve.
  • the central temperature control unit may also adopt other temperature control devices as long as the temperature of the central region of the workpiece 22 to be processed can be adjusted to achieve specific process requirements.
  • the central temperature control unit may be a temperature control device such as the above-mentioned cooling water channel or cooling air pipe, so that the workpiece to be processed reaches a predetermined cooling temperature; when the workpiece to be processed needs to be heated, the center temperature control The unit may be a temperature control device such as an armored heating tube to bring the workpiece to a predetermined heating temperature.
  • the edge assembly 102 is disposed around the outer peripheral wall of the electrostatic chuck 101, and includes a focus ring 23, a base ring 24, and an insulating ring 25 which are sequentially stacked from top to bottom.
  • the focus ring 23 is made of quartz material and its ring wall has a stepped shape in the axial direction, and the upper step surface of the step is usually slightly higher than the upper surface of the workpiece 22 to be processed on the workpiece 22
  • the perimeter forms a boundary to confine the plasma within the area enclosed by the boundary.
  • the base ring 24 is made of an insulating material such as ceramics for supporting the focus ring 23 and protecting the outer peripheral wall of the electrostatic chuck 101 from plasma etching. Insulation
  • the ring 25 is fixed to the mounting fixture 27 for supporting the electrostatic chuck 101, and the insulating ring 25 is made of an insulating material such as Al2O3 ceramic for electrically insulating the electrostatic chuck 101 from the mounting fixture 27.
  • the edge of the workpiece 22 being machined exceeds the edge of the electrostatic chuck 101, while the edge assembly 102 is disposed around the electrostatic chuck 101, and the edge region of the workpiece 22 being machined is carried by the edge assembly 102.
  • An edge temperature control unit is disposed in the edge assembly 102 for adjusting the temperature of the edge region of the workpiece 22 by heat exchange, that is, heat generated by the edge temperature control unit is transmitted to the edge region of the workpiece 22 through the edge assembly 102; Alternatively, the edge temperature control unit absorbs heat from the edge region of the workpiece 22 being processed via the edge assembly 102.
  • the shape and size of the inner peripheral wall of the focus ring 23 and the base ring 24 are adapted to the shape and size of the outer peripheral wall of the electrostatic chuck 101, so that the edge assembly 102 can be Better contact with the workpiece 22 to be processed, thereby achieving rapid heat transfer.
  • the edge temperature control unit includes a heat exchange passage 241 disposed in the base ring 24 and circumferentially disposed along the circumferential direction of the electrostatic chuck 101, the heat exchange passage 241 for accommodating the flowing heat exchange medium to adjust the The edge region temperature of the workpiece 22 is machined.
  • the heat exchange medium may be a heat exchange gas or a heat exchange liquid or the like.
  • the heat exchange passage 241 has an inflow port and an outflow port that communicate with the medium source 103 that supplies the heat exchange medium
  • the edge assembly further has two drain passages 243, one of which is connected to the heat exchange passage Between the inlet port of 241 and the output line of the medium source 103, and the other, the other drainage channel 243 is connected between the outlet port of the heat exchange passage 241 and the input line of the medium source 103 and The communication is such that the heat exchange passage 241, the medium source 103, and the two drainage passages 243 in the edge assembly together constitute a heat exchange medium circulation system.
  • both the inflow port and the outflow port of the heat exchange channel are referenced to the heat exchange channel, and the inflow port is an inlet into the heat exchange medium to the heat exchange channel, and the outflow port is a heat exchange channel.
  • the outlet of the heat exchange medium flows out;
  • the input pipeline and the output pipeline of the medium source are all referenced to the medium source, and the input pipeline is a pipeline that flows into the heat exchange medium to the medium source, and the output pipeline flows out from the medium source.
  • the piping of the heat exchange medium The heat exchange medium flows into the heat exchange passage 241 from the inlet of the heat exchange passage 241, flows along the heat exchange passage 241, and finally flows out of the heat exchange passage 241 from the outlet of the heat exchange passage 241.
  • the inflow port and the outflow port of the heat exchange passage 241 are symmetrically disposed along the radial direction of the heat exchange passage 241 such that the heat exchange medium flowing into the heat exchange passage 241 is divided into two branches and two branches are respectively
  • the flow path through the heat exchange passage 241 and reaching the outlet port is the same, so that the flow rates of the two branches are substantially the same, and can be collected at the outlet port and simultaneously discharged, so that heat exchange can be performed uniformly.
  • two columnar extensions 242 are formed on the lower surface of the base ring 24 corresponding to the inflow port and the outflow port of the heat exchange passage 241, and each of the columnar extensions 242 is along the thickness of the insulation ring 25.
  • the direction extends through the insulating ring 25 and extends below the insulating ring 25, sealingly connected to the input and output lines of the media source 103 for providing a heat exchange medium, respectively.
  • the drain passage 243 is configured to penetrate the cylindrical extension 242 and the passage communicating with the heat exchange passage 242 along the axis of the cylindrical extension 242 such that one of the drainage passages 243 is connected to the inlet and the medium of the heat exchange passage 241.
  • the output lines of the source 103 are connected between each other, and the other ends of the other drainage channels 243 are connected between the outlet of the heat exchange passage 241 and the input line of the medium source 103 and communicate with each other.
  • a seal member 26 may be disposed between the outer peripheral wall of each of the columnar extensions 242 and the through hole of the insulating ring 25 through which the columnar extension 242 passes to seal the gap therebetween.
  • the heat exchange passages 241 can be communicated with the input and output lines of the medium source 103, so that the circulating flow of the heat exchange medium can be achieved.
  • the drainage channel 243 can be made without a seam between the base ring 24 and the insulating ring 25, so that the gap between the base ring 24 and the insulating ring 25 need not be sealed, thereby simplifying the bearing.
  • the structure of the device 100 In practical applications, the columnar extension 242 and the base ring 24 may be integrally formed, or they may be separately fabricated and then fixedly joined by bonding, sintering, or the like.
  • the edge temperature control unit By adjusting the temperature of the edge region of the workpiece 22 by the edge temperature control unit, it is possible to compensate for the defect that the central temperature control unit disposed in the electrostatic chuck 101 cannot adjust the temperature of the edge region of the workpiece 22 to be processed.
  • the temperature difference between the edge region and the central region of the workpiece 22 is compensated, so that process uniformity can be improved.
  • the carrying device provided by the embodiment of the present invention only improves the structure of the edge component 102, and does not need to perform any improvement on the electrostatic chuck 101, and in the manufacturing process, the above-mentioned integral molding and the like can be adopted.
  • the cylindrical extension 242 and the base ring 24 are formed in a manner, and thus, process uniformity can be improved by simple equipment improvement.
  • the radial distance D between the inner side wall of the heat exchange passage 241 and the outer peripheral wall of the electrostatic chuck 101 is not more than 3 mm to at least increase the edge area of the heat exchange passage 241 and the workpiece 22 to be processed.
  • the heat transfer speed between the two ensures the controllability of the temperature regulation.
  • 2C is a cross-sectional view of the insulating ring of FIG. 2A taken along line A-A.
  • a temperature measuring through hole 251 penetrating the insulating ring 25 in the thickness direction thereof is provided in the insulating ring 25 as a detecting hole for detecting the temperature of the base ring 24.
  • 2D is a partial cross-sectional view of the carrying device carrying the workpiece in the embodiment, taken along a plane in which the axis of the workpiece and the axis of the temperature measuring through hole are common. Please refer to FIG. 2C and FIG. 2D together.
  • the 100 further includes an edge temperature detecting unit 104 for detecting the temperature of the base ring 24 through the temperature measuring through hole 251 and using the temperature as the edge region temperature of the workpiece 22 to be processed.
  • the edge temperature detecting unit 104 adopts a non-contact temperature sensor, such as an infrared temperature sensor, which is specifically installed by inserting the infrared temperature sensor into the temperature measuring through hole 251 and making the probe and the base ring 24 The lower surface is oppositely set.
  • the edge temperature detecting unit 104 can also adopt a contact type temperature sensor, such as a patch type temperature sensor. When the chip type temperature sensor is mounted, the probe is passed through the temperature measuring through hole 251 and the base ring 24 The surface can be in contact. As shown in FIG.
  • a seal 28 is disposed between the edge temperature detecting unit 104 and the temperature measuring through hole, so that the probe of the edge temperature detecting unit 104 can be placed. In a confined space, it is protected from the temperature outside the temperature measurement through hole.
  • the carrying device 100 further comprises a central temperature detecting unit and a control unit.
  • the central temperature detecting unit is configured to detect the temperature of the electrostatic chuck 101 and use it as the central region temperature of the workpiece 22 to be processed and sent to the control unit; meanwhile, the edge temperature detecting unit 104 detects the temperature of the base ring 24, and This temperature is used as the edge region temperature of the workpiece 22 to be processed and sent to the control unit.
  • the control unit is configured to receive the edge region temperature of the workpiece 22 to be processed sent by the edge temperature detecting unit, and the central region temperature of the workpiece 22 to be processed sent by the center temperature detecting unit, and calculate the edge region temperature and center a difference in the regional temperature, and according to the difference, sending a control signal to the central temperature control unit and/or the edge temperature control unit 104, the central temperature control unit and/or the edge temperature control unit 104 according to the control signal to the edge region temperature and/or Or the central region temperature is compensated so that the temperature of the edge region of the workpiece 22 to be processed and the temperature of the central region tend to be uniform, thereby improving process uniformity.
  • the carrier device 100 provided by the embodiment of the present invention can accurately control the temperature of the workpiece 22 to be processed.
  • the base ring 24 is preferably composed of an upper ring body and a lower ring body that abut each other, and an annular groove is formed on the lower surface of the upper ring body, and the annular groove is formed when the upper ring body and the lower ring body are butted
  • the upper ring body is closed by the upper surface thereof so that the annular groove forms a closed passage serving as the heat exchange passage 241.
  • annular groove is formed on the upper surface of the lower ring body, and the annular groove is closed by the lower surface of the upper ring body when the upper ring body abuts the lower ring body, thereby forming the annular groove Used as a closed passage for the heat exchange passage 241.
  • annular groove is formed on the lower surface of the upper ring body and the upper surface of the lower ring body. When the upper ring body and the lower ring body are butted, the two annular grooves are collectively formed to serve as the heat exchange passage 241. Closed passage.
  • the base ring 24 adopts an upper and lower split structure, and the annular groove forming the heat exchange passage 241 may be disposed on the upper surface and/or the lower surface of the two split bodies, so that the internal structure of the base ring 24 can be facilitated. That is, the heat exchange passage 241 and its inflow port and outflow port are processed.
  • the base ring 24 can be fabricated in the following two ways: the first method is: first sintering the upper ring body and the lower ring body, respectively, and then performing secondary sintering together, and passing through the upper ring body and the lower ring body. of The heat exchange channel 241 is obtained by docking.
  • the purpose of the secondary sintering is to reduce the processing difficulty of the heat exchange passage 241; the second way is: only the upper ring body and the lower ring body are sintered once, and the heat is obtained by the docking of the upper ring body and the lower ring body.
  • the heat exchange passage 241 is communicated with the input line/output line of the medium source 103 by the two columnar extensions 242 in which the passage 243 is provided.
  • the present invention is not limited thereto. In practical applications, two columnar extensions may be omitted, and only two drainage channels are provided on the base ring 24 and the insulating ring 25, and the upper ends of the two drainage channels are provided.
  • the heat exchange passage 241 is connected, and the lower ends of the two drainage passages are respectively connected to the input line or the output line of the medium source 103 to connect the heat exchange passage 241 with the input line/output line of the medium source 103.
  • the input and output lines of the medium source 103 should be directly sealed to the drainage channel; and a sealing process between the base ring and the insulating ring is required to ensure that the heat exchange medium does not The gap between them leaks out.
  • FIG. 3A is a partial cross-sectional view of a carrier device carrying a workpiece to be processed, taken along a plane in which its axis is provided, according to a second embodiment of the present invention; FIG. 3A is the same as FIG. 2B correspond.
  • the carrier device 200 provided in this embodiment is different from the first embodiment described above in that the heat exchange channel 231 is disposed in the focus ring 23 .
  • Other structures and functions of the carrying device 200 are the same as those of the carrying device 100 in the first embodiment described above, and are not described herein again. Only the specific implementation of the heat exchange channel 231 provided in the focus ring 23 will be described in detail below.
  • two columnar extensions 232 are formed on the lower surface of the focus ring 23 corresponding to the inflow port and the outflow port of the heat exchange passage 231, and each of the columnar extensions 232 extends through the base in the thickness direction of the base ring 24.
  • the ring 24 and the insulating ring 25 extend below the insulating ring 25.
  • the above-described drainage passage 233 is configured as a passage that penetrates the columnar extension 232 along the axis of the columnar extension 232 and communicates with the heat exchange passage 231.
  • One of the columnar extensions 232 is sealingly connected to the input line of the medium source 103 for providing a heat exchange medium, and the inlet port of the heat exchange channel 231 is connected to the output line of the medium source 103 by means of the drainage channel 233 therein. Pass; another column extension 232 The output line of the medium source 103 is sealingly connected, and the outlet port of the heat exchange passage 231 communicates with the input line of the medium source 103 by means of the drainage passage 233 therein.
  • a seal member 26 may be disposed between the outer peripheral wall of each of the columnar extending portions 232 and the through hole of the insulating ring 25 through which the columnar extending portion 232 passes to seal the gap therebetween.
  • the heat exchange passage 231 is disposed in the focus ring 23 so as to be closer to the edge of the workpiece 22 to be processed, so that the heat transfer speed can be further increased, so that the temperature of the central region of the wafer and the temperature of the edge region can be made faster. balance.
  • two columnar extensions can be omitted, and through holes are formed in the focus ring 23, the base ring 24, and the insulating ring 25, so that the focus ring 23 is provided.
  • the base ring 24 and the through hole on the insulating ring 25 communicate with each other and directly serve as a drainage channel, and the input and output lines of the medium source 103 are directly sealed and docked with the lower end of the drainage channel, and at the same time, the focus ring 23 and the base.
  • a sealing process is performed between the rings 24 and between the base ring 24 and the insulating ring 25 to ensure that the heat exchange medium does not leak out of the gap between the focus ring 23 and the base ring 24 or between the base ring 24 and the insulating ring 25.
  • a first temperature measuring through hole 244 penetrating the base ring 24 in the thickness direction thereof is disposed in the base ring 24, and is disposed in the thickness direction of the insulating ring 25.
  • the first temperature measuring through hole 251 of the insulating ring 25 is penetrated, and the first temperature measuring through hole 244 and the second temperature measuring through hole 251 are coaxial as a detecting hole for detecting the temperature of the focus ring 23.
  • the carrier device 200 further includes an edge temperature detecting unit 104 for detecting the temperature of the focus ring 23 through the first temperature measuring through hole 244 and the second temperature measuring through hole 251, and the temperature is detected.
  • the edge region temperature used as the workpiece 22 to be processed is sent to the control unit.
  • a seal 28 is disposed between the edge temperature detecting unit 104 and the second temperature measuring through hole 251 to improve the accuracy of the temperature detection by the edge temperature detecting unit 104.
  • FIG. 4A is a carrying device for carrying a workpiece to be processed according to a third embodiment of the present invention.
  • a partial view of a cross-sectional view taken along the plane of the axis; from the position shown in the partial view, FIG. 4A corresponds to the aforementioned FIG. 2B.
  • the carrier device 200 provided in this embodiment is different from the first embodiment in that the edge temperature control unit includes two heat exchange channels (231, 241) that communicate with each other, that is, a focus ring.
  • a heat exchange passage 231 is disposed in the base 23, and a heat exchange passage 241 is disposed in the base ring 24.
  • the heat exchange passage 241 provided in the base ring 24 has an inflow port and an outflow port which communicate with the medium source 103 which supplies the heat exchange medium, and the same in the edge member 102
  • Two drainage channels 243 are provided, and one of the drainage channels 243 is connected between the inflow port of the heat exchange channel 241 and the output line of the medium source 103 and connects the two, and the other drainage channel 243 is connected to the heat exchange.
  • the outlet port of the passage 241 and the input line of the medium source 103 are connected and communicated therebetween, so that the two heat exchange channels (231, 241), the medium source, and the two drainage channels 243 in the edge assembly are combined.
  • Heat exchange medium circulation system
  • the specific manner of forming the two drainage channels 243 in the edge assembly is the same as that of the first embodiment.
  • the other structures and functions of the carrier device 200 are the same as those of the carrier device 100 in the first embodiment, and details are not described herein. Only the specific communication manners of the two heat exchange channels (231, 241) provided in the edge assembly 102 will be described below.
  • the two heat exchange channels (231, 241) may communicate through the two communication holes 234, wherein the position of one of the communication holes 234 may correspond to the position of the inlet port of the heat exchange channel 241, and the position of the other communication hole 234 may be The position of the outflow port of the heat exchange passage 241 corresponds to each other, so that after the heat exchange medium flows into the heat exchange passage 241 in the base ring 24, the heat exchange passage 231 in the focus ring 23 can be quickly entered, so that the heat exchange passage 231 can be quickly pressed.
  • the temperature of the edge region of the workpiece 22 is adjusted.
  • the radial distance D between the inner side wall of each heat exchange passage (231, 241) and the outer peripheral wall of the electrostatic chuck 101 is not more than 3 mm to at least increase the heat transfer speed between the heat exchange passage and the edge portion of the workpiece 22 to be processed. .
  • a temperature measuring through hole 251 penetrating the insulating ring 25 in the thickness direction thereof is provided in the insulating ring 25 as a detecting hole for detecting the temperature of the base ring 24.
  • the carrier device 100 further includes an edge temperature detecting unit 104 for detecting the temperature of the base ring 24 through the temperature measuring through hole 251, and the edge temperature detecting unit 104 and the temperature measuring through hole 251 A seal 28 is provided between them.
  • the temperature of the base ring 24 can be taken as the temperature of the edge region of the workpiece 22 to be processed, and the edge temperature detecting unit 104 can transmit the temperature detected thereto to the control unit.
  • the edge temperature detecting unit 104 can transmit the temperature detected thereto to the control unit.
  • a heat exchange channel 241 is provided in the base ring 24, and the so-called “one” does not only mean one in the numerical sense, but may represent One set, as long as the set of heat exchange channels are disposed in the base ring, can be regarded as "providing a heat exchange channel 241 in the base ring 24"; similarly, a heat exchange channel 231 is disposed in the focus ring 23, It can also be indicated that a set of heat exchange channels are provided within the focus ring 23.
  • the workpiece to be processed is adjusted by providing a heat exchange passage in the edge assembly 102 and by introducing a heat exchange medium into the heat exchange passage. 22 edge area temperature.
  • the edge temperature control unit may also employ any other temperature control device to perform heat exchange with the edge assembly 102 to indirectly adjust the temperature of the edge region of the workpiece 22 to be processed.
  • the carrier device provided by the above embodiments of the present invention has an edge temperature control unit disposed in the edge assembly thereof, and the edge temperature control unit can adjust the temperature of the edge region of the workpiece to be processed by heat exchange.
  • the carrying device provided by the invention can make up for being disposed in the electrostatic chuck
  • the temperature control unit cannot adjust the temperature of the edge region of the workpiece to be compensated, so that the temperature difference between the edge region and the center region of the workpiece can be compensated to improve the temperature uniformity of the edge region and the central region of the workpiece to be processed. Improve process uniformity.
  • the structure of the edge component can be improved by a simple manufacturing method without any improvement on the electrostatic chuck, that is, the invention can be improved by a simple manufacturing method.
  • a process uniformity bearing device is provided by the above embodiments of the present invention.
  • the present invention also provides a semiconductor processing apparatus including a reaction chamber and a carrier disposed in the reaction chamber, the carrier device for carrying the workpiece to be processed, and adjusting the temperature of the workpiece to be processed.
  • the carrying device can adopt the carrying device provided by the above various embodiments of the present invention.
  • the semiconductor processing apparatus provided by the embodiment of the present invention can adopt the carrying device provided by the above various embodiments of the present invention to adjust the temperature of the edge region of the workpiece to be processed, so that the temperature difference between the edge region of the wafer and the central region can be Compensation is performed to improve process uniformity.

Abstract

一种承载装置以及半导体加工设备,所述承载装置包括静电卡盘(101)、中心温控单元、边缘温控单元和边缘组件(102),其中,中心温控单元设置在静电卡盘(101)内,用以调节所述静电卡盘(100)所承载的被加工工件(22)的中心区域温度;边缘组件环绕所述静电卡盘(101)的外周壁而设置,且包括由上而下依次叠置的聚焦环(23)、基环(24)和绝缘环(25);边缘温控单元设置在边缘组件内,用以通过热交换的方式调节所述被加工工件(22)边缘区域的温度。该承载装置,其可以调节被加工工件(22)边缘区域的温度,从而可以对被加工工件(22)的边缘区域和中心区域之间的温度差异进行补偿,进而可以提高工艺均匀性。

Description

承载装置以及半导体加工设备 技术领域
本发明涉及半导体设备制造领域,具体地,涉及一种承载装置以及半导体加工设备。
背景技术
在制造集成电路和微机电***(Microelectromechanical Systems,MEMS)的工艺过程中,特别是在实施等离子刻蚀(Plasma Etch)、物理气相沉积(Physical Vapor Deposition,PVD)、化学气相沉积(Chemical Vapor Deposition,CVD)等的工艺过程中,常使用承载装置来承载及加热晶片等被加工工件,同时为被加工工件提供直流偏压并且控制被加工工件表面的温度。
图1为承载有晶片的典型承载装置的结构示意图。如图1所示,承载装置包括静电卡盘11、边缘组件和安装固定件16。其中,静电卡盘11采用静电吸附的方式将晶片12固定于其上表面,并且在静电卡盘11内设置有温控装置,用以控制晶片12的温度。边缘组件环绕静电卡盘11的外周壁而设置,且包括由上而下依次叠置的聚焦环13、基环14和绝缘环15,其中,绝缘环15固定在安装固定件16上,用于支撑静电卡盘11,并且绝缘环15采用绝缘材料制作,用以实现静电卡盘11与安装固定件16的电绝缘。聚焦环13用于将等离子体限制在该聚焦环13围成的环形区域内;基环14用于支撑聚焦环13,并保护静电卡盘11的外周壁不被等离子体刻蚀。
上述承载装置在实际应用中不可避免地存在以下问题:
进入32-22纳米技术时代以后,高K栅介质和金属栅电极MOS器件被引入集成电路生产工艺,晶片间的晶体管栅极长度的均匀性(3σ)由45nm节点时的3nm减小到32nm节点的1.56nm,这意味着对工艺均匀性的要求 大大提高。然而,中心温控单元设置在静电卡盘11内部的中心区域,与静电卡盘的边缘之间存在一定距离,且因晶片12的直径大于静电卡盘的上表面的直径,当晶片12与静电卡盘11同轴设置时,晶片12的边缘会超出静电卡盘11的边缘,导致温控装置难以对晶片的边缘处的温度进行控制,从而造成晶片的边缘区域和中心区域的温度不均匀,由此可见,对于某些工艺(例如32-22纳米技术工艺)而言,单纯依靠静电卡盘来控制晶片温度,无法满足晶片边缘区域和中心区域的温度均匀性要求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种承载装置以及半导体加工设备,其可以调节被加工工件的边缘区域温度,从而可以对晶片边缘区域和中心区域之间的温度差异进行补偿,进而可以提高工艺均匀性。
为实现本发明的目的而提供一种承载装置,包括静电卡盘、中心温控单元和边缘组件,其中,所述中心温控单元设置在所述静电卡盘内,用以调节所述静电卡盘所承载的被加工工件的中心区域温度;所述边缘组件环绕所述静电卡盘的外周壁而设置,且包括由上而下依次叠置的聚焦环、基环和绝缘环;所述承载装置还包括边缘温控单元,所述边缘温控单元设置在所述边缘组件内,用以通过热交换的方式调节所述被加工工件边缘区域的温度。
优选的,所述边缘温控单元包括设置在所述边缘组件内、且沿所述静电卡盘的周向环绕设置的至少一个热交换通道,所述热交换通道用以容纳流动的热交换媒介。
优选的,所述边缘温控单元包括一个热交换通道,该热交换通道设置在所述基环内或者设置在所述聚焦环内,且具有与提供热交换媒介的媒介源相连通的入流口和出流口;或者,所述边缘温控单元包括相互连通的两个热交换通道,该两个热交换通道分别设置在所述基环内和所述聚焦环内,且设置 在所述基环内的热交换通道具有与提供热交换媒介的媒介源相连通的入流口和出流口;并且
所述边缘组件还具有两个引流通道,其中一个引流通道连接在所述热交换通道的入流口和所述媒介源的输出管路之间并使二者相连通,另一个引流通道连接在所述热交换通道的出流口和所述媒介源的输入管路之间并使二者相连通。
优选的,在所述基环内设置有所述热交换通道的情况下,在所述基环的下表面上对应于所述热交换通道的入流口和出流口而形成有两个柱状延伸部,每个柱状延伸部均沿所述绝缘环的厚度方向贯穿所述绝缘环,并且所述引流通道被构造为沿所述柱状延伸部的轴线贯通该柱状延伸部、且与所述热交换通道相连通的通道。
优选的,在所述绝缘环内设置有沿其厚度方向贯穿该绝缘环的测温通孔;并且
所述承载装置还包括边缘温度检测单元,所述边缘温度检测单元用于通过所述测温通孔检测所述基环的温度,并将该温度用作所述被加工工件的边缘区域温度。
优选的,在所述边缘温控单元包括一个热交换通道且其设置在所述聚焦环内的情况下,在所述聚焦环的下表面上对应于所述热交换通道的入流口和出流口而形成有两个柱状延伸部,每个柱状延伸部均沿所述基环的厚度方向贯穿所述基环和绝缘环,并且所述引流通道被构造为沿所述柱状延伸部的轴线贯通该柱状延伸部、且与所述热交换通道相连通的通道。
优选的,在所述基环内设置有沿其厚度方向贯穿该基环的第一测温通孔,在所述绝缘环内设置有沿其厚度方向贯穿该绝缘环的第二测温通孔,且第一测温通孔与第二测温通孔同轴;并且
所述承载装置还包括边缘温度检测单元,所述边缘温度检测单元用于通过所述第一测温通孔和第二测温通孔检测所述聚焦环的温度,并将该温度用 作所述被加工工件的边缘区域温度。
优选的,在所述基环内设置有热交换通道的情况下,所述基环由相互对接的上部环体和下部环体构成;和/或,在所述聚焦环内设置有热交换通道的情况下,所述聚焦环由相互对接的上部环体和下部环体构成;
在所述上部环体的下表面上形成有环形凹槽,在所述上部环体与下部环体对接时,所述下部环体的上表面对所述环形凹槽进行封闭,而使所述环形凹槽形成用作热交换通道的封闭通道;或者,
在所述下部环体的上表面上形成有环形凹槽,在所述上部环体与下部环体对接时,所述上部环体的下表面对所述环形凹槽进行封闭,而使所述环形凹槽形成用作热交换通道的封闭通道;或者,
在所述上部环体的下表面上和所述下部环体的上表面对应地均形成有环形凹槽,在所述上部环体与下部环体对接时,两个环形凹槽共同形成用作所述热交换通道的封闭通道。
优选的,通过对所述上部环体和下部环体先分别进行一次烧结,再一起进行二次烧结,而实现上部环体和下部环体的对接并获得所述热交换通道;或者,
通过对所述上部环体和下部环体进行一次烧结,而实现上部环体和下部环体的对接并获得所述热交换通道。
优选的,所述承载装置还包括中心温度检测单元和控制单元,其中,
所述中心温度检测单元用于检测所述静电卡盘的温度,将其用作所述被加工工件的中心区域温度,并发送至所述控制单元;
所述控制单元用于接收由所述边缘温度检测单元发送而来的所述被加工工件的边缘区域温度,和由所述中心温度检测单元发送而来的所述被加工工件的中心区域温度,并计算所述边缘区域温度与所述中心区域温度的差值,且根据该差值向所述中心温控单元和/或所述边缘温控单元发送控制信号,所述中心温控单元和/或所述边缘温控单元根据所述控制信号对所述边缘 区域温度和/或所述中心区域温度进行补偿。
优选的,所述边缘温度检测单元包括接触式温度传感器或非接触式温度传感器。
优选的,所述热交换通道的内侧侧壁与所述静电卡盘的外周壁的径向间距小于等于3mm。
优选的,所述热交换通道的入流口和出流口沿热交换通道的径向对称设置。
作为另一个技术方案,本发明还提供一种半导体加工设备,其包括反应腔室和设置在该反应腔室内的承载装置,所述承载装置用于承载所述被加工工件,以及调节所述被加工工件的温度,所述承载装置采用了本发明提供的上述承载装置。
本发明具有以下有益效果:
本发明提供的承载装置,在其边缘组件内设置有边缘温控单元,该边缘温控单元可以通过热交换来调节该承载装置所承载的被加工工件边缘区域的温度,因此,本发明提供的承载装置可以弥补设置在静电卡盘内的中心温控单元无法调节被加工工件的边缘区域温度的缺陷,从而可以对被加工工件边缘区域和中心区域之间的温度差异进行补偿,提高被加工工件边缘区域和中心区域的温度均匀性,进而提高工艺均匀性。另外,在本发明中,可以通过简单的制作方式对边缘组件的结构进行改进,而无需对静电卡盘进行任何改进,也就是说,本发明中通过简单的制作方法就可以获得能够提高工艺均匀性的承载装置。
类似地,本发明提供的半导体加工设备,其可以采用本发明提供的上述各承载装置,来对被加工工件的边缘区域温度进行调节,从而可以对被加工工件边缘区域和中心区域之间的温度差异进行补偿,进而可以提高工艺均匀性。
附图说明
图1为承载有晶片的典型的承载装置的结构示意图;
图2A为本发明第一实施例提供的承载有被加工工件的承载装置由其轴线所在平面剖切得到的剖视图;
图2B为图2A中I区域的放大图;
图2C为图2A中绝缘环沿A-A线的剖视图;
图2D为本发明第一实施例提供的承载有被加工工件的承载装置由其轴线和测温通孔的轴线共同所在的平面剖切得到的剖视图的局部视图;
图3A为本发明第二实施例提供的承载有被加工工件的承载装置由其轴线和柱状延伸部的轴线共同所在的平面剖切得到的剖视图的局部视图;
图3B为本发明第二实施例提供的承载有被加工工件的承载装置由其轴线和第一测温通孔的轴线共同所在的平面剖切得到的剖视图的局部视图;
图4A为本发明的第三实施例提供的承载有被加工工件的承载装置由其轴线和柱状延伸部的轴线共同所在的平面剖切得到的剖视图的局部视图;以及
图4B为本发明的第三实施例提供的承载有被加工工件的承载装置由其轴线和通孔的轴线共同所在的平面剖切得到的剖视图的局部视图。
其中,附图标记如下:
承载装置100、静电卡盘101、边缘组件102、安装固定件27、被加工工件22、冷却水道21、聚焦环23、基环24、绝缘环25、热交换通道241、媒介源103、柱状延伸部242、密封件26、通道243、通孔251、边缘检测单元104、热交换通道231、承载装置200、柱状延伸部232、第一通孔244、第二通孔251、密封件28
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对 本发明提供的承载装置以及半导体加工设备进行详细描述。
图2A为本发明第一实施例提供的承载有被加工工件的承载装置由其轴线所在平面剖切得到的剖视图。图2B为图2A中I区域的放大图。请一并参阅图2A和图2B,承载装置100包括静电卡盘101、中心温控单元、边缘组件102、边缘温控单元和安装固定件27。其中,静电卡盘101用于采用静电吸附的方式承载被加工工件22。在本实施例中,中心温控单元包括设置在静电卡盘101内的冷却水道21,通过向冷却水道21内通入冷却液,来调节被加工工件22的中心区域温度。需要说明的是,中心温控单元设置在静电卡盘101内部的中心区域,与静电卡盘101的边缘之间存在一定的距离,且因被加工工件22的直径大于静电卡盘101的上表面的直径,在被加工工件22与静电卡盘101同轴设置时,被加工工件22的边缘会超出静电卡盘101的边缘,导致中心温控单元难以对被加工工件22的边缘区域的温度进行控制。因此,上述被加工工件22的中心区域是指中心温控单元所能达到的温度调节的区域。
在实际应用中,中心温控单元也可以采用其他温控装置,只要可以对被加工工件22的中心区域温度进行调节,以达到具体的工艺需求即可。例如,需要对被加工工件进行冷却时,中心温控单元可以为上述冷却水道或者冷却气管等温控装置,以使被加工工件达到预定冷却温度;需要对被加工工件进行加热时,中心温控单元可以为铠装加热管等温控装置,以使被加工工件达到预定加热温度。
边缘组件102环绕静电卡盘101的外周壁而设置,且包括由上而下依次叠置的聚焦环23、基环24和绝缘环25。其中,聚焦环23采用石英材料制作且其环壁在沿轴向方向上的截面呈台阶状,该台阶的上台阶面通常略高于被加工工件22的上表面,以在被加工工件22的周边形成边界,从而将等离子体限制在该边界围成的区域内。基环24采用例如陶瓷等的绝缘材料制作,用于支撑聚焦环23,并保护静电卡盘101的外周壁不被等离子体刻蚀。绝缘 环25固定在安装固定件27上,用于支撑静电卡盘101,并且绝缘环25采用例如Al2O3陶瓷等的绝缘材料制作,用以实现静电卡盘101与安装固定件27的电绝缘。
如上文所述,被加工工件22的边缘超出静电卡盘101的边缘,而边缘组件102环绕静电卡盘101而设置,被加工工件22的边缘区域由边缘组件102承载。边缘温控单元设置在边缘组件102内,用以通过热交换调节被加工工件22边缘区域的温度,即,由边缘温控单元产生的热量通过边缘组件102传递至被加工工件22的边缘区域;或者,边缘温控单元经由边缘组件102将被加工工件22边缘区域的热量吸收。需要说明的是,为了保证边缘组件102的热传导作用,聚焦环23和基环24的内周壁的形状和尺寸与静电卡盘101的外周壁的形状和尺寸相适配,以使边缘组件102可以和被加工工件22更好地接触,从而实现热量的快速传递。
下面对本实施例所采用的边缘温控单元的结构进行详细描述。具体地,边缘温控单元包括设置在基环24内、且沿静电卡盘101的周向环绕设置的一个热交换通道241,该热交换通道241用于容纳流动的热交换媒介,以调节被加工工件22的边缘区域温度。热交换媒介可以为热交换气体或热交换液体等等。更具体地,热交换通道241具有与提供热交换媒介的媒介源103相连通的入流口和出流口,所述边缘组件还具有两个引流通道243,其中一个引流通道243连接在热交换通道241的入流口和媒介源103的输出管路之间并使二者相连通,另一个引流通道243连接在热交换通道241的出流口和媒介源103的输入管路之间并使二者相连通,从而使热交换通道241、媒介源103以及边缘组件内的两个引流通道243共同构成热交换媒介循环***。需要指出的是,在本发明中,热交换通道的入流口和出流口均以热交换通道为参照,入流口为向热交换通道流入热交换媒介的入口,出流口为由热交换通道流出热交换媒介的出口;媒介源的输入管路和输出管路均以媒介源为参照,输入管路为向媒介源流入热交换媒介的管路,输出管路为由媒介源流出 热交换媒介的管路。热交换媒介自热交换通道241的入流口流入热交换通道241内,并沿热交换通道241流动,最后自热交换通道241的出流口流出热交换通道241。
优选的,热交换通道241的入流口和出流口沿该热交换通道241的径向对称设置,以使得流入热交换通道241内的热交换媒介被分成两个分路且两个分路各自流经热交换通道241并到达出流口的路程相同,从而使得两个分路的流速大致相同,并能够在出流口处汇集并同时排出,进而可以均匀地进行热量交换。
在本实施例中,在基环24的下表面上对应于热交换通道241的入流口和出流口而形成有两个柱状延伸部242,每个柱状延伸部242均沿绝缘环25的厚度方向贯穿绝缘环25,并延伸至绝缘环25的下方,分别与用于提供热交换媒介的媒介源103的输入管路和输出管路密封连接。该引流通道243被构造为沿柱状延伸部242的轴线贯通该柱状延伸部242、且与热交换通道242相连通的通道,以使得其中一个引流通道243连接在热交换通道241的入流口和媒介源103的输出管路之间并使二者相连通,另一个引流通道243的两端连接在热交换通道241的出流口和媒介源103的输入管路之间并使二者相连通。此外,在每个柱状延伸部242的外周壁与绝缘环25的供该柱状延伸部242穿过的通孔之间可以设置有密封件26,用以对二者之间的间隙进行密封。
借助两个柱状延伸部242,可以将热交换通道241与媒介源103的输入管路和输出管路连通,从而可以实现热交换媒介的循环流动。此外,借助柱状延伸部242,还可以使引流通道243在基环24与绝缘环25之间没有接缝,也就无需对基环24与绝缘环25之间的缝隙进行密封,从而可以简化承载装置100的结构。在实际应用中,柱状延伸部242与基环24可以采用一体成型的方式制作,或者,二者也可以分别进行制作,然后采用粘结、烧结等方式固定连接。
通过借助边缘温控单元调节被加工工件22的边缘区域温度这一方法,可以弥补设置在静电卡盘101内的中心温控单元无法调节被加工工件22的边缘区域温度的缺陷,实现对被加工工件22边缘区域和中心区域之间的温度差异的补偿,从而可以提高工艺均匀性。另外,本发明实施例提供的承载装置仅对边缘组件102的结构进行了改进,无需对静电卡盘101进行任何改进,且在制作过程中,可以采用上文所述的一体成型等较简单的方式制作柱状延伸部242和基环24,因而,可以通过简单的设备改进来提高工艺均匀性。
优选的,如图2B所示,热交换通道241的内侧侧壁与静电卡盘101的外周壁的径向间距D不大于3mm,以至少提高热交换通道241与被加工工件22的边缘区域之间的热传递速度,保证温度调节的可控性。
图2C为图2A中绝缘环沿A-A线的剖视图。如图2C所示,在本实施例中,在绝缘环25内设置有沿其厚度方向贯穿该绝缘环25的测温通孔251,用以作为检测基环24温度的检测孔。图2D为本实施例中承载有被加工工件的承载装置由其轴线和测温通孔的轴线共同所在的平面剖切得到的剖视图的局部视图,请一并参阅图2C和图2D,承载装置100还包括边缘温度检测单元104,该边缘温度检测单元104用于通过测温通孔251检测基环24的温度,并将该温度用作被加工工件22的边缘区域温度。
在本实施例中,边缘温度检测单元104采用非接触式温度传感器,例如红外温度传感器,其具体安装方式为:将该红外温度传感器***测温通孔251内,并使其探头与基环24的下表面相对设置。在实际应用中,边缘温度检测单元104也可以采用接触式温度传感器,例如贴片式温度传感器,在安装贴片式温度传感器时,只要使其探头通过测温通孔251与基环24的下表面相接触即可。如图2D所示,为了提高边缘温度检测单元104对温度检测的准确性,在边缘温度检测单元104与测温通孔之间设置有密封件28,以使得边缘温度检测单元104的探头可以处于密闭的空间内,防止受到测温通孔外部的温度的影响。
优选的,承载装置100还包括中心温度检测单元和控制单元。其中,中心温度检测单元用于检测静电卡盘101的温度,并将其用作被加工工件22的中心区域温度发送至控制单元;同时,上述边缘温度检测单元104检测基环24的温度,并将该温度用作被加工工件22的边缘区域温度发送至控制单元。控制单元用于接收由边缘温度检测单元发送而来的被加工工件22的边缘区域温度,和由中心温度检测单元发送而来的被加工工件22的中心区域温度,并计算该边缘区域温度与中心区域温度的差值,且根据该差值向中心温控单元和/或边缘温控单元104发送控制信号,中心温控单元和/或边缘温控单元104根据该控制信号对边缘区域温度和/或中心区域温度进行补偿,从而可以使被加工工件22边缘区域的温度和中心区域的温度趋于均匀,进而可以提高工艺均匀性。由此,本发明实施例提供的承载装置100可以对被加工工件22的温度进行精确控制。
下面对基环24及其内的热交换通道241的加工方式进行详细描述。具体地,基环24优选由相互对接的上部环体和下部环体构成,且在该上部环体的下表面上形成有环形凹槽,该环形凹槽在上部环体与下部环体对接时,由该下部环体的上表面对其进行封闭,从而使上述环形凹槽形成用作热交换通道241的封闭通道。或者,在下部环体的上表面上形成有环形凹槽,该环形凹槽在上部环体与下部环体对接时,由上部环体的下表面对其进行封闭,从而使该环形凹槽形成用作热交换通道241的封闭通道。或者,在上部环体的下表面上和下部环体的上表面对应地均形成有环形凹槽,在上部环体与下部环体对接时,两个环形凹槽共同形成用作热交换通道241的封闭通道。也就是说,基环24采用上下分体式结构,且形成热交换通道241的环形凹槽可以设置在两个分体的上表面和/或下表面,这样,可以便于对基环24的内部结构,即,对热交换通道241及其入流口和出流口进行加工。此外,基环24可以采用以下两种方式制作:第一种方式为:先对上部环体和下部环体分别进行一次烧结,之后再一起进行二次烧结,并通过上部环体和下部环体的 对接而获得热交换通道241。这里,二次烧结的目的是降低热交换通道241的加工难度;第二种方式为:仅对上部环体和下部环体进行一次烧结,并通过上部环体和下部环体的对接而获得热交换通道241。
需要说明的是,在本实施例中,通过其内部设置有通道243的两个柱状延伸部242而使热交换通道241与媒介源103的输入管路/输出管路相连通。但是本发明并不局限于此,在实际应用中,也可以省去两个柱状延伸部,而仅在基环24和绝缘环25上设置两个引流通道,并使两个引流通道的上端均连接热交换通道241、两个引流通道的下端各自连接媒介源103的输入管路或输出管路,以使热交换通道241与媒介源103的输入管路/输出管路相连通。在这种情况下,媒介源103的输入管路和输出管路应直接与引流通道密封对接;且还需要在基环和绝缘环之间进行密封处理,以保证热交换媒介不会自二者之间的间隙泄漏出去。
图3A为本发明第二实施例提供的承载有被加工工件的承载装置由其轴线所在平面剖切得到的剖视图的局部视图;从该局部视图所示位置来说,图3A与前述图2B相对应。请参阅图3A,本实施例提供的承载装置200与上述第一实施例相比,其区别仅在于:热交换通道231设置在聚焦环23内。承载装置200的其他结构和功能与上述第一实施例中的承载装置100相同,在此不再赘述。下面仅对设置在聚焦环23内的热交换通道231的具体实现方式进行详细描述。
具体地,在聚焦环23的下表面上对应于热交换通道231的入流口和出流口而形成有两个柱状延伸部232,每个柱状延伸部232均沿基环24的厚度方向贯穿基环24和绝缘环25,并延伸至绝缘环25的下方。上述引流通道233被构造为沿柱状延伸部232的轴线贯通该柱状延伸部232、且与热交换通道231相连通的通道。其中的一个柱状延伸部232与用于提供热交换媒介的媒介源103的输入管路密封连接,借助其内的引流通道233而使热交换通道231的入流口与媒介源103的输出管路相连通;另一个柱状延伸部232与 媒介源103的输出管路密封连接,借助其内的引流通道233而使热交换通道231的出流口与媒介源103的输入管路相连通。
此外,在每个柱状延伸部232的外周壁与绝缘环25的供该柱状延伸部232穿过的通孔之间可以设置有密封件26,用以对二者之间的间隙进行密封。将热交换通道231设置在聚焦环23中,可以使其更靠近被加工工件22的边缘,从而可以进一步提高热传递速度,进而可以更快地使得晶片中心区域的温度和边缘区域的温度趋于平衡。
在本发明第二实施例中,和第一实施例中类似地,可以省去两个柱状延伸部,而在聚焦环23、基环24和绝缘环25上均形成通孔,使聚焦环23、基环24和绝缘环25上的通孔相连通而直接用作引流通道,并使媒介源103的输入管路和输出管路直接与引流通道的下端密封对接,同时在聚焦环23和基环24之间以及基环24和绝缘环25之间进行密封处理,以保证热交换媒介不会自聚焦环23和基环24之间或基环24和绝缘环25之间的间隙泄漏出去。
请参阅图3B,在本发明的第二实施例中,在基环24内设置有沿其厚度方向贯穿该基环24的第一测温通孔244,在绝缘环25内设置沿其厚度方向贯穿该绝缘环25的第二测温通孔251,且第一测温通孔244和第二测温通孔251同轴,用以作为检测聚焦环23温度的检测孔。请参阅图3B,承载装置200还包括边缘温度检测单元104,边缘温度检测单元104用于通过第一测温通孔244和第二测温通孔251检测聚焦环23的温度,并将该温度用作被加工工件22的边缘区域温度发送至控制单元。在边缘温度检测单元104和第二测温通孔251之间设置有密封件28,以提高边缘温度检测单元104对温度检测的准确性。
此外,至于如何在聚焦环23内形成热交换通道231,可以采用与上述第一实施例中类似的方式,在此不再赘述。
图4A为本发明的第三实施例提供的承载有被加工工件的承载装置由其 轴线所在平面剖切得到的剖视图的局部视图;从该局部视图所示位置来说,图4A与前述图2B相对应。请参阅图4A,本实施例提供的承载装置200与上述第一实施例相比,其区别仅在于:边缘温控单元包括相互连通的两个热交换通道(231,241),即,聚焦环23内设置有热交换通道231,基环24内设置有热交换通道241。这种情况下,和第一实施例相同地,设置在基环内24的热交换通道241具有与提供热交换媒介的媒介源103的相连通的入流口和出流口,边缘组件102内同样设置有两个引流通道243,并且,其中一个引流通道243连接在热交换通道241的入流口和媒介源103的输出管路之间并使二者相连通,另一个引流通道243连接在热交换通道241的出流口和媒介源103的输入管路之间并使二者相连通,从而使得两个热交换通道(231,241)、媒介源以及边缘组件内的两个引流通道243共同构成热交换媒介循环***。在边缘组件内形成两个引流通道243的具体方式与上述第一实施例相同,承载装置200的其他结构和功能也与上述第一实施例中的承载装置100相同,在此不再赘述。下面仅对在边缘组件102内设置的两个热交换通道(231,241)的具体连通方式进行描述。
两个热交换通道(231,241)可以通过两个连通孔234相连通,其中一个连通孔234的位置可以与热交换通道241的入流口的位置相对应,另一个连通孔234的位置可以和热交换通道241的出流口的位置相对应,从而使得热交换媒介流入基环24内的热交换通道241后,可以快速地进入聚焦环23内的热交换通道231,进而可以快速地对被加工工件22的边缘区域的温度进行调节。当两个热交换通道(231,241)通过连通孔234相连通时,需要在聚焦环23和基环24之间进行密封处理,以保证热交换媒介不会自聚焦环23和基环24之间的间隙泄露出去。
每个热交换通道(231,241)内侧侧壁与静电卡盘101的外周壁的径向间距D不大于3mm,以至少提高热交换通道与被加工工件22的边缘区域之间的热传递速度。
另外,和第一实施例中相同地,在绝缘环25内设置有沿其厚度方向贯穿该绝缘环25的测温通孔251,用以作为检测基环24温度的检测孔。请参阅图4B,承载装置100还包括边缘温度检测单元104,该边缘温度检测单元104用于通过测温通孔251检测基环24的温度,且边缘温度检测单元104和测温通孔251之间设置有密封件28。通过热量的不断传导,被加工工件22的边缘区域的温度、聚焦环23的温度和基环24的温度可以趋于平衡。因此可以将基环24的温度作为被加工工件22的边缘区域的温度,并使得边缘温度检测单元104将其检测到的温度发送至控制单元。通过在聚焦环23内和基环24内均设置热交换通道,可以通入更多的热交换媒介来对被加工工件22的边缘的温度进行调节,从而进一步提高热传递速度。
此外,如何在基环24内形成热交换通道241,可以采用与第一实施例中相同的方式;如何在聚焦环23内设置热交换通道231,可以采用与第一实施例中类似的方式,在此不再赘述。
需要说明的是,在上述第一、第二和第三实施例中,在基环内24设置一个热交换通道241,所谓的“一个”并不仅仅表示数字意义上的一个,而是可以表示一组,只要这一组热交换通道设置在基环内,均可以看做是“在基环24内设置一个热交换通道241”;类似地,在聚焦环23内设置一个热交换通道231,也可以表示在聚焦环23内设置一组热交换通道。
需要说明的是,在上述第一、第二和第三实施例中,均是通过在边缘组件102内设置热交换通道,并通过向热交换通道内通入热交换媒介,来调节被加工工件22的边缘区域温度。但是本发明并不局限于此,在实际应用中,边缘温控单元还可以采用其他任意温控装置,来与边缘组件102进行热交换,从而间接调节被加工工件22的边缘区域温度。
综上所述,本发明上述各个实施例提供的承载装置,在其边缘组件内设置有边缘温控单元,该边缘温控单元可以通过热交换来调节被加工工件边缘区域的温度,因此,本发明提供的承载装置可以弥补设置在静电卡盘内的中 心温控单元无法调节被加工工件的边缘区域温度的缺陷,从而可以对被加工工件边缘区域和中心区域之间的温度差异进行补偿,提高被加工工件边缘区域和中心区域的温度均匀性,进而提高工艺均匀性。另外,在本发明实施例中,可以通过简单的制作方式对边缘组件的结构进行改进,而无需对静电卡盘进行任何改进,也就是说,本发明中通过简单的制作方法就可以获得能够提高工艺均匀性的承载装置。
作为另一个技术方案,本发明还提供一种半导体加工设备,其包括反应腔室和设置在该反应腔室内的承载装置,该承载装置用于承载被加工工件,以及调节被加工工件的温度。并且,该承载装置可以采用本发明上述各个实施例提供的承载装置。
本发明实施例提供的半导体加工设备,其可以采用本发明上述各个实施例提供的承载装置,来对被加工工件的边缘区域温度进行调节,从而可以对晶片边缘区域和中心区域之间的温度差异进行补偿,进而可以提高工艺均匀性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的原理和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种承载装置,包括静电卡盘、中心温控单元和边缘组件,其中,所述中心温控单元设置在所述静电卡盘内,用以调节所述静电卡盘所承载的被加工工件的中心区域温度;所述边缘组件环绕所述静电卡盘的外周壁而设置,且包括由上而下依次叠置的聚焦环、基环和绝缘环;其特征在于,所述承载装置还包括边缘温控单元,所述边缘温控单元设置在所述边缘组件内,用以通过热交换的方式调节所述被加工工件边缘区域的温度。
  2. 根据权利要求1所述的承载装置,其特征在于,所述边缘温控单元包括设置在所述边缘组件内、且沿所述静电卡盘的周向环绕设置的至少一个热交换通道,所述热交换通道用以容纳流动的热交换媒介。
  3. 根据权利要求2所述的承载装置,其特征在于,所述热交换通道设置在所述基环内或者设置在所述聚焦环内,且具有与提供热交换媒介的媒介源相连通的入流口和出流口;或者,所述边缘温控单元包括相互连通的两个热交换通道,该两个热交换通道分别设置在所述基环内和所述聚焦环内,且设置在所述基环内的热交换通道具有与提供热交换媒介的媒介源相连通的入流口和出流口;并且
    所述边缘组件还具有两个引流通道,其中一个引流通道连接在所述热交换通道的入流口和所述媒介源的输出管路之间并使二者相连通,另一个引流通道连接在所述热交换通道的出流口和所述媒介源的输入管路之间并使二者相连通。
  4. 根据权利要求3所述的承载装置,其特征在于,在所述基环内设置有所述热交换通道的情况下,在所述基环的下表面上对应于所述热交换通道的入流口和出流口而形成有两个柱状延伸部,每个柱状延伸部均沿所述绝缘 环的厚度方向贯穿所述绝缘环,并且所述引流通道被构造为沿所述柱状延伸部的轴线贯通该柱状延伸部、且与所述热交换通道相连通的通道。
  5. 根据权利要求4所述的承载装置,其特征在于,在所述绝缘环内设置有沿其厚度方向贯穿该绝缘环的测温通孔;并且
    所述承载装置还包括边缘温度检测单元,所述边缘温度检测单元用于通过所述测温通孔检测所述基环的温度,并将该温度用作所述被加工工件的边缘区域温度。
  6. 根据权利要求3所述的承载装置,其特征在于,在所述边缘温控单元包括一个热交换通道且其设置在所述聚焦环内的情况下,在所述聚焦环的下表面上对应于所述热交换通道的入流口和出流口而形成有两个柱状延伸部,每个柱状延伸部均沿所述基环的厚度方向贯穿所述基环和绝缘环,并且所述引流通道被构造为沿所述柱状延伸部的轴线贯通该柱状延伸部、且与所述热交换通道相连通的通道。
  7. 根据权利要求6所述的承载装置,其特征在于,在所述基环内设置有沿其厚度方向贯穿该基环的第一测温通孔,在所述绝缘环内设置有沿其厚度方向贯穿该绝缘环的第二测温通孔,且第一测温通孔与第二测温通孔同轴;并且
    所述承载装置还包括边缘温度检测单元,所述边缘温度检测单元用于通过所述第一测温通孔和第二测温通孔检测所述聚焦环的温度,并将该温度用作所述被加工工件的边缘区域温度。
  8. 根据权利要求3所述的承载装置,其特征在于,在所述基环内设置有热交换通道的情况下,所述基环由相互对接的上部环体和下部环体构成;和/或,在所述聚焦环内设置有热交换通道的情况下,所述聚焦环由相互对接 的上部环体和下部环体构成;
    在所述上部环体的下表面上形成有环形凹槽,在所述上部环体与下部环体对接时,所述下部环体的上表面对所述环形凹槽进行封闭,而使所述环形凹槽形成用作热交换通道的封闭通道;或者,
    在所述下部环体的上表面上形成有环形凹槽,在所述上部环体与下部环体对接时,所述上部环体的下表面对所述环形凹槽进行封闭,而使所述环形凹槽形成用作热交换通道的封闭通道;或者,
    在所述上部环体的下表面上和所述下部环体的上表面对应地均形成有环形凹槽,在所述上部环体与下部环体对接时,两个环形凹槽共同形成用作所述热交换通道的封闭通道。
  9. 根据权利要求8所述的承载装置,其特征在于,通过对所述上部环体和下部环体先分别进行一次烧结,再一起进行二次烧结,而实现上部环体和下部环体的对接并获得所述热交换通道;或者,
    通过对所述上部环体和下部环体进行一次烧结,而实现上部环体和下部环体的对接并获得所述热交换通道。
  10. 根据权利要求5或7所述的承载装置,其特征在于,所述承载装置还包括中心温度检测单元和控制单元,其中,
    所述中心温度检测单元用于检测所述静电卡盘的温度,将其用作所述被加工工件的中心区域温度;
    所述控制单元用于接收来自所述边缘温度检测单元的所述被加工工件的边缘区域温度,和来自所述中心温度检测单元的所述被加工工件的中心区域温度,并计算所述边缘区域温度与所述中心区域温度的差值,且根据该差值向所述中心温控单元和/或所述边缘温控单元发送控制信号,所述中心温控单元和/或所述边缘温控单元根据所述控制信号对所述边缘区域温度和/或所 述中心区域温度进行补偿。
  11. 根据权利要求5或7所述的承载装置,其特征在于,所述边缘温度检测单元包括接触式温度传感器或非接触式温度传感器。
  12. 根据权利要求2至11中任意一项所述的承载装置,其特征在于,所述热交换通道的内侧侧壁与所述静电卡盘的外周壁的径向间距小于等于3mm。
  13. 根据权利要求3所述的承载装置,其特征在于,所述热交换通道的入流口和出流口沿热交换通道的径向对称设置。
  14. 一种半导体加工设备,其包括反应腔室和设置在该反应腔室内的承载装置,所述承载装置用于承载所述被加工工件,以及调节所述被加工工件的温度,其特征在于,所述承载装置采用了权利要求1-13任意一项所述的承载装置。
PCT/CN2015/089916 2014-09-19 2015-09-18 承载装置以及半导体加工设备 WO2016041519A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201702039YA SG11201702039YA (en) 2014-09-19 2015-09-18 Bearing apparatus and semiconductor processing device
JP2017515147A JP2017533582A (ja) 2014-09-19 2015-09-18 支承装置および半導体処理設備
KR1020177008421A KR20170048469A (ko) 2014-09-19 2015-09-18 베어링 장치 및 반도체 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410484756.8A CN105489527B (zh) 2014-09-19 2014-09-19 承载装置以及半导体加工设备
CN201410484756.8 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016041519A1 true WO2016041519A1 (zh) 2016-03-24

Family

ID=55532573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089916 WO2016041519A1 (zh) 2014-09-19 2015-09-18 承载装置以及半导体加工设备

Country Status (6)

Country Link
JP (1) JP2017533582A (zh)
KR (1) KR20170048469A (zh)
CN (1) CN105489527B (zh)
SG (1) SG11201702039YA (zh)
TW (1) TW201613029A (zh)
WO (1) WO2016041519A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435913A (zh) * 2020-11-23 2021-03-02 北京北方华创微电子装备有限公司 半导体设备及其下电极
CN114086146A (zh) * 2021-11-18 2022-02-25 北京北方华创微电子装备有限公司 半导体工艺设备及其承载装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856188B (zh) * 2015-12-08 2020-02-14 北京北方华创微电子装备有限公司 承载装置以及半导体加工设备
CN108987323B (zh) * 2017-06-05 2020-03-31 北京北方华创微电子装备有限公司 一种承载装置及半导体加工设备
CN112786422B (zh) * 2019-11-08 2024-03-12 中微半导体设备(上海)股份有限公司 一种聚焦环、等离子体处理器及方法
CN111060223A (zh) * 2019-12-26 2020-04-24 北京北方华创微电子装备有限公司 卡盘校温装置及卡盘校温方法
CN111607785A (zh) * 2020-05-26 2020-09-01 北京北方华创微电子装备有限公司 一种加热装置及半导体加工设备
CN112658804B (zh) * 2020-12-22 2023-01-06 宁波江丰电子材料股份有限公司 一种半导体聚焦环的加工设备及方法
CN112509954B (zh) * 2021-02-04 2021-06-08 北京中硅泰克精密技术有限公司 半导体工艺设备及其承载装置
KR102451782B1 (ko) * 2021-08-27 2022-10-11 주식회사 동탄이엔지 온도 보상이 가능한 에지링 및 이를 포함하는 기판 처리 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1540738A (zh) * 2003-04-24 2004-10-27 ���������ƴ���ʽ���� 等离子体处理装置、聚焦环和基座
CN101465313A (zh) * 2007-12-18 2009-06-24 北京北方微电子基地设备工艺研究中心有限责任公司 静电卡盘工艺组件
CN101471275A (zh) * 2007-12-26 2009-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 一种被处理体的保持装置
CN102741996A (zh) * 2009-12-10 2012-10-17 东京毅力科创株式会社 静电卡盘装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474418U (zh) * 1990-11-07 1992-06-30
JP3583289B2 (ja) * 1998-05-28 2004-11-04 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
JP2000277237A (ja) * 1999-03-24 2000-10-06 Komatsu Ltd 基板温度制御プレート及びそれを備える基板温度制御装置
JP4344835B2 (ja) * 2002-10-24 2009-10-14 東京エレクトロン株式会社 枚葉式の処理装置
JP4439853B2 (ja) * 2003-07-08 2010-03-24 東京エレクトロン株式会社 プラズマ処理装置、フォーカスリング及びプラズマ処理方法
JP5183058B2 (ja) * 2006-07-20 2013-04-17 アプライド マテリアルズ インコーポレイテッド 急速温度勾配コントロールによる基板処理
JP5188696B2 (ja) * 2006-11-01 2013-04-24 株式会社日立ハイテクノロジーズ ウエハ載置用電極
JP4450106B1 (ja) * 2008-03-11 2010-04-14 東京エレクトロン株式会社 載置台構造及び処理装置
JP5217569B2 (ja) * 2008-03-31 2013-06-19 東京エレクトロン株式会社 プラズマ処理装置
JP5274918B2 (ja) * 2008-07-07 2013-08-28 東京エレクトロン株式会社 プラズマ処理装置のチャンバー内部材の温度制御方法、チャンバー内部材及び基板載置台、並びにそれを備えたプラズマ処理装置
TWI385725B (zh) * 2009-09-18 2013-02-11 Advanced Micro Fab Equip Inc A structure that reduces the deposition of polymer on the backside of the substrate
JP5195711B2 (ja) * 2009-10-13 2013-05-15 東京エレクトロン株式会社 基板冷却装置、基板冷却方法及び記憶媒体
JP5101665B2 (ja) * 2010-06-30 2012-12-19 東京エレクトロン株式会社 基板載置台、基板処理装置および基板処理システム
JP5642531B2 (ja) * 2010-12-22 2014-12-17 東京エレクトロン株式会社 基板処理装置及び基板処理方法
CN103794538B (zh) * 2012-10-31 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 静电卡盘以及等离子体加工设备
JP5696183B2 (ja) * 2013-07-19 2015-04-08 株式会社日立ハイテクノロジーズ プラズマ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1540738A (zh) * 2003-04-24 2004-10-27 ���������ƴ���ʽ���� 等离子体处理装置、聚焦环和基座
CN101465313A (zh) * 2007-12-18 2009-06-24 北京北方微电子基地设备工艺研究中心有限责任公司 静电卡盘工艺组件
CN101471275A (zh) * 2007-12-26 2009-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 一种被处理体的保持装置
CN102741996A (zh) * 2009-12-10 2012-10-17 东京毅力科创株式会社 静电卡盘装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435913A (zh) * 2020-11-23 2021-03-02 北京北方华创微电子装备有限公司 半导体设备及其下电极
CN112435913B (zh) * 2020-11-23 2024-04-12 北京北方华创微电子装备有限公司 半导体设备及其下电极
CN114086146A (zh) * 2021-11-18 2022-02-25 北京北方华创微电子装备有限公司 半导体工艺设备及其承载装置
CN114086146B (zh) * 2021-11-18 2023-09-08 北京北方华创微电子装备有限公司 半导体工艺设备及其承载装置

Also Published As

Publication number Publication date
SG11201702039YA (en) 2017-04-27
TW201613029A (en) 2016-04-01
TWI560804B (zh) 2016-12-01
KR20170048469A (ko) 2017-05-08
JP2017533582A (ja) 2017-11-09
CN105489527B (zh) 2018-11-06
CN105489527A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2016041519A1 (zh) 承载装置以及半导体加工设备
US10079165B2 (en) Electrostatic chuck with independent zone cooling and reduced crosstalk
TWI683926B (zh) 底座型基於流體的熱控制
US10121688B2 (en) Electrostatic chuck with external flow adjustments for improved temperature distribution
JP6104823B2 (ja) 薄型加熱基板支持体
US11692732B2 (en) Air cooled faraday shield and methods for using the same
TWI666714B (zh) 用於化學蝕刻介電質材料的腔室設備
US20110180233A1 (en) Apparatus for controlling temperature uniformity of a showerhead
US20150060013A1 (en) Tunable temperature controlled electrostatic chuck assembly
US9267742B2 (en) Apparatus for controlling the temperature uniformity of a substrate
TWI699241B (zh) 噴頭組件、處理腔室、以及處理基板的方法
KR20180087411A (ko) 정전 척 기구 및 반도체 처리 장치
WO2021238955A1 (zh) 一种加热装置及半导体加工设备
TW202044931A (zh) 用於高功率電漿蝕刻處理的氣體分配板組件
KR20180123588A (ko) 반도체 처리 챔버
TW202015152A (zh) 工件處理系統及其設備
US11557500B2 (en) High temperature heated support pedestal in a dual load lock configuration
JP2016178284A (ja) プラズマ処理用のデュアルゾーンヒータ
TWI670433B (zh) 用於次世代先進電漿技術的腔室主體設計架構
JP7407529B2 (ja) 基板載置台、基板処理装置及び温度制御方法
CN103811393A (zh) 用于承载晶片的静电卡盘以及等离子体加工设备
CN115036240A (zh) 一种半导体工艺腔室及半导体处理设备
TW202119463A (zh) 聚焦環、電漿處理器及方法
KR101440953B1 (ko) 히터
CN110886020A (zh) 针对处理管的管塞和处理单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177008421

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15841745

Country of ref document: EP

Kind code of ref document: A1