WO2016041358A1 - 一种上行同步方法、装置和*** - Google Patents

一种上行同步方法、装置和*** Download PDF

Info

Publication number
WO2016041358A1
WO2016041358A1 PCT/CN2015/078393 CN2015078393W WO2016041358A1 WO 2016041358 A1 WO2016041358 A1 WO 2016041358A1 CN 2015078393 W CN2015078393 W CN 2015078393W WO 2016041358 A1 WO2016041358 A1 WO 2016041358A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
uplink access
access signal
resource set
communication node
Prior art date
Application number
PCT/CN2015/078393
Other languages
English (en)
French (fr)
Inventor
刘文豪
郭森宝
毕峰
郁光辉
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/511,962 priority Critical patent/US10271317B2/en
Priority to EP15842659.3A priority patent/EP3197064B1/en
Publication of WO2016041358A1 publication Critical patent/WO2016041358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code

Definitions

  • the present invention relates to a Long Term Evolution Advanced System (LTE-Advanced), and more particularly to an uplink synchronization method, apparatus and system for implementing uplink receive beam index processing.
  • LTE-Advanced Long Term Evolution Advanced System
  • the average path loss is larger than that of the LTE system, for example, using a carrier frequency of 28 GHz, using the formula:
  • R is the radius of the cell coverage
  • is the wavelength of the corresponding carrier
  • L f is the path loss value
  • the calculated average ratio of the high-frequency path loss value to the LTE path loss value is:
  • L H represents the high-frequency path loss value
  • L L represents the LTE path loss value
  • G t is the transmit antenna gain
  • G r is the receive antenna gain
  • P t is the transmit antenna power
  • P r is the receive antenna power
  • the highest demand for LTE communication is required to reach an area covering 100km. If only the average path loss (empty area) is considered according to the highest coverage, the high-frequency communication can be considered to cover an area up to 1km. If you consider the air absorption (oxygen absorption, carbon dioxide, etc.), rain attenuation, and shadow fading sensitivity of the actual high-frequency carrier, the actual supported coverage is less than 1km.
  • the high-frequency communication supports a maximum of 1km coverage
  • the same coverage area can obtain a different SINR ratio than the LTE system.
  • the former has a signal-to-noise ratio of at least 20 dB lower than the latter, in order to ensure high-frequency communication and coverage within the LTE system.
  • With an approximate SINR it is necessary to ensure the antenna gain of high frequency communication. Since the high-frequency communication has a shorter wavelength, it can ensure that more antenna elements are accommodated per unit area, and more antenna elements can provide higher antenna gain, thereby ensuring coverage of high-frequency communication.
  • More antenna elements mean that beamforming can be used to ensure high-frequency communication coverage, and narrower beams require more accurate beam alignment at the transceiver.
  • LTE design idea related to LTE
  • the second communication node that is the receiving end needs to feed back the downlink channel state information or weight.
  • the transmitting end needs feedback. Upstream channel state information or weights, so that the first communication node can use the optimal beam to transmit the downlink service, and the second communication node can also use the optimal beam to send the uplink service.
  • the first communication node cannot use the optimal beam coverage to the receiving end before obtaining the weight, so that the receiving end cannot measure the reference signal transmitted by the first communication node, or even the first
  • the communication node covers the second communication node, but the second communication node cannot reach the same coverage of the first communication node, and the content of the feedback is not known by the first communication node, and thus the selection of the beam weight and the normal communication cannot be performed.
  • the embodiment of the invention provides an uplink synchronization method, device and system, which solves the problem that the first communication node and the second communication node cannot perform normal communication.
  • An uplink synchronization method includes:
  • the first communication node configures resource set information corresponding to the N uplink receiving beam groups, where N>0, and each uplink receiving beam group includes at least one uplink receiving beam;
  • the first communication node detects an uplink access signal on a resource set corresponding to one or more receiving beams according to the resource set information
  • the first communications node After detecting the uplink access signal, the first communications node sends an uplink access response message to an uplink access signal that satisfies an uplink access condition.
  • the manner in which the first communications node configures resource set information corresponding to the N uplink receiving beam groups includes:
  • the first communication node corresponding to another carrier that has established a connection with the second communication node sends the resource set information corresponding to the uplink receiving beam group to the second communication node by using the high layer signaling, where the other carrier corresponds to the first
  • the communication node may be the same or the first communication node that is separate from the first communication node.
  • the method further includes:
  • Corresponding resource set information is pre-agreed between the first communication node and the second communication node.
  • the resource set information corresponding to the uplink receiving beam group is divided by any one of the following methods or any of multiple methods:
  • the different uplink receive beams are divided by the code domain resource set.
  • the uplink access response message includes any one or any of the following information:
  • the code domain resource set corresponding to the uplink access signal is the code domain resource set corresponding to the uplink access signal.
  • the uplink access response message further includes:
  • the uplink access signal quality indication information indicates the quality of the uplink access signal received by the first communications node.
  • the first communication node is a base station or a terminal
  • the second communication node is a base station or a terminal.
  • the embodiment of the invention further provides an uplink synchronization method, the method comprising:
  • the second communication node receives an uplink access response message fed back by the first communication node.
  • the manner in which the second communications node sends an uplink access signal by using an uplink transmit beam is:
  • the second communication node divides the uplink transmit beams into M groups, and uses different uplink transmit beam groups to send different uplink access signals, where M>0, and each uplink transmit beam group includes at least one uplink transmit beam, after grouping Each uplink transmit beam is uniquely identified by its group index and intra-group index.
  • the receiving, by the second communications node, the uplink access response message that is sent by the first communications node is:
  • the second communication node receives an uplink access response message on different uplink access resource sets, and the different uplink access resource sets are any of the following:
  • the second communication node determines, according to an uplink access response message corresponding to different uplink access resource sets, a group index and an intra-group index of an uplink transmit beam that meets an uplink access condition.
  • the second communications node divides the uplink transmit beam into multiple uplink discovery beam groups according to any one or any of the following manners:
  • Different beams correspond to different sets of time resources
  • Different beams correspond to different sets of frequency resources
  • Different beams correspond to different sets of sequence resources.
  • the second communications node divides the uplink transmit beam into multiple uplink discovery beam groups according to any one or any of the following manners:
  • the first communication node is a base station or a terminal
  • the second communication node is a base station or a terminal.
  • the embodiment of the invention further provides an uplink synchronization device, including:
  • a resource set configuration module configured to configure resource set information corresponding to the N uplink receive beam groups, where N>0, and each uplink receive beam group includes at least one uplink receive beam;
  • the uplink access signal receiving module is configured to detect, according to the resource set information, an uplink access signal on a resource set corresponding to one or more receiving beams;
  • the response message sending module is configured to send an uplink access response message to the uplink access signal that satisfies the uplink access condition after detecting the uplink access signal.
  • the resource set configuration module includes:
  • the first configuration unit is configured to send the resource set information corresponding to the uplink receiving beam group to the second communications node by using broadcast and/or high layer signaling;
  • a second configuration unit configured to send, by the high-level signaling, the resource set information corresponding to the uplink receiving beam group to the second communications node, where the first communications node corresponding to another carrier that has established a connection with the second communications node,
  • the first communication node corresponding to the other carrier may be the same one of the first communication node or another physical communication node separated from the physical location.
  • the device further includes:
  • the pre-configuration module is configured to pre-appoint corresponding resource set information with the second communication node.
  • the embodiment of the invention further provides an uplink synchronization device, the device comprising:
  • An uplink access signal sending module configured to receive N uplink receiving configurations configured by the first communications node
  • the uplink receiving beam group includes at least one uplink receiving beam;
  • the response receiving module is configured to receive an uplink access response message fed back by the first communication node.
  • the uplink access signal sending module includes:
  • the first sending unit is configured to divide the uplink transmit beam into M groups, and use different uplink transmit beam groups to send different uplink access signals, where M>0, and each uplink transmit beam group includes at least one uplink transmit beam, grouping Each uplink transmit beam is then uniquely identified by its group index and intra-group index.
  • the response receiving module includes:
  • the first receiving unit is configured to receive an uplink access response message on different uplink access resource sets, and the different uplink access resource sets are any of the following:
  • the index confirming unit is configured to determine, according to the uplink access response message corresponding to the different uplink access resource set, the group index and the intra-group index of the uplink transmit beam that meet the uplink access condition.
  • An embodiment of the present invention further provides an uplink synchronization system, including a first communication node and a second communication node;
  • the first communication node is configured to configure resource set information corresponding to the N uplink receive beam groups, where N>0, each uplink receive beam group includes at least one uplink receive beam, and the resource set information is in one or And detecting, by the resource set corresponding to the multiple receiving beams, the uplink access signal, and after detecting the uplink access signal, sending an uplink access response message to the uplink access signal that satisfies the uplink access condition;
  • the second communication node is configured to receive resource set information corresponding to the N uplink receiving beam groups configured by the first communications node, and use the resource set information to perform uplink sending in the corresponding M resource sets according to the resource set information.
  • the first communication node is a base station or a terminal
  • the second communication node is a base station or a terminal.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • An embodiment of the present invention provides an uplink synchronization method, apparatus, and system.
  • the first communication node configures resource set information corresponding to N uplink receiving beam groups, where N>0, and each uplink receiving beam group includes at least one uplink receiving. a beam, and then the first communication node detects the received uplink access signal on the resource set corresponding to the one or more receiving beams according to the resource set information, and then satisfies the uplink access after detecting the uplink access signal.
  • the conditional uplink access signal sends an uplink access response message; the second communication node receives the resource set information corresponding to the N uplink receiving beam groups configured by the first communication node, and uses the resource set information in the corresponding M resource sets according to the resource set information.
  • FIG. 1 is a schematic diagram of a principle for indicating a receive beam index by using a time domain resource set according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a principle for indicating a receive beam index by using a time domain resource set according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a principle of indicating a receive beam index by using a frequency domain resource set according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a principle of jointly indicating a beam index by using a time domain and a frequency domain resource set according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a principle of using a time domain and a frequency domain resource set joint sequence set to indicate a receive beam index according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a principle of indicating an uplink access signal quality by using an additional area indication information of an uplink access response signal according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a principle for implementing an uplink receiving beam index processing according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an uplink synchronization apparatus according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural diagram of still another uplink synchronization apparatus according to Embodiment 8 of the present invention.
  • the second communication node that is the receiving end needs to feed back the downlink channel state information or weight.
  • the transmitting end needs feedback. Upstream channel state information or weights, so that the first communication node can use the optimal beam to transmit the downlink service, and the second communication node can also use the optimal beam to send the uplink service.
  • the first communication node cannot use the optimal beam coverage to the receiving end before obtaining the weight, so that the receiving end cannot measure the reference signal sent by the first communication node, or even the first
  • the communication node covers the second communication node, but the second communication node cannot reach the same coverage of the first communication node, and the content of the feedback is not known by the first communication node, and thus the selection of the beam weight and the normal communication cannot be performed.
  • a discovery process can be applied, by which the first communication node and the second communication node can discover each other, thereby communicating with the optimal weight.
  • the discovery process can be regarded as a process of training.
  • the sender sends a set of resources corresponding to the uplink receive beams and a set of resources for transmitting the uplink access signals, so that the receiver can know the resource set information of the uplink receive beams.
  • the second communication node as the receiving end provides the uplink access given by the first communication node as the transmitting end in a beamforming manner according to its own antenna capability.
  • the set of resources of the signal sends an uplink access signal.
  • the transmitting end may send a resource set corresponding to the uplink receiving beam through a conventional 4G (such as LTE) carrier, or may transmit on the high frequency carrier.
  • 4G such as LTE
  • the first communications node may determine an optimal uplink access beam direction according to the quality of the uplink access signal received by the receiving beam.
  • the first communication node sends an uplink response message carrying an uplink access quality indication to the second communication node.
  • the ratio of the detected value of the uplink access signal to the noise or the ratio of the detected value of the uplink access signal to a certain threshold may be used to further quantize the quality of the uplink access signal to Several bits.
  • the first communication node may notify the second communication node by using a predefined or higher layer signaling or broadcast manner that the first communication node receives the uplink access signal, and adopts at least one of the following beam indication modes and related configurations.
  • the information indicates the resource set information corresponding to the uplink receiving beam group:
  • the time domain resource set of the uplink access signal is used to indicate resource set information of the uplink receiving beam group that receives the uplink access signal;
  • the frequency domain resource set of the uplink access signal is used to indicate resource set information of the uplink receiving beam group that receives the uplink access signal
  • an uplink access signal sequence resource set to indicate resource set information of an uplink receiving beam group that receives an uplink access signal
  • the first communication node may receive the uplink access signal sent by the second communication node by using at least one of the following beam identification modes:
  • the first communication node may detect the uplink access signal according to the beam identification manner in a predefined manner.
  • the first communication node may notify the second communication node of the resource set information of the uplink receiving beam group of the first communication node by means of broadcast and high layer signaling.
  • the high-level signaling may be sent through the traditional network that has established the connection, or may be sent through the broadcast channel of the high-frequency network.
  • the first communication node may divide the uplink receiving beam into N groups, where N>0, and at least one receiving beam is included in the group.
  • the first communication node may notify the uplink receiving beam group by using broadcast and high layer signaling. Correspondence of time domain resource set information of uplink access signals.
  • the first communication node When the first communication node receives the uplink access signal sent by the second communication node by using the frequency domain resource set split beam group of the uplink access signal, the first communication node may notify the uplink receive beam group and the uplink by using broadcast and high layer signaling. The correspondence between the frequency domain resource sets of the access signals.
  • the first communication node When the first communication node receives the uplink access signal sent by the second communication node by using the code domain resource set split beam group of the uplink access signal, the first communication node may notify the uplink receive beam group and the uplink by using broadcast and high layer signaling.
  • the different code domain resource sets correspond to different sequences.
  • the first communication node and the second communication node should have the same manner in a predefined manner. Corresponding relationship between the predefined time domain resource set and the uplink receive beam index.
  • the first communication node and the second communication node should have the same manner in a predefined manner. Corresponding relationship between the predefined frequency domain resource set and the uplink receive beam index.
  • the first communication node and the second communication node should have the same manner in a predefined manner. Corresponding relationship between the predefined frequency domain resource set and the uplink receive beam index.
  • the second communication node can learn, by using a predefined manner and/or receiving broadcast and or higher layer signaling, that the uplink transmit beam index is identified by using at least one of the following beam indication modes and related configuration information:
  • the uplink transmit beam index of the uplink access signal is distinguished by using a time domain resource set that sends the uplink access signal;
  • the frequency domain resource set that sends the uplink access signal is used to distinguish the uplink transmit beam index of the uplink access signal
  • the code domain resource set that sends the uplink access signal is used to distinguish the uplink transmit beam index of the uplink access signal
  • the uplink transmit beam index refers to a resource set corresponding to each uplink beam determined by the second communication node by receiving an uplink access signal resource set notified by the first communication node.
  • the second communication node may distinguish the uplink transmit beam index information by using at least one of the following uplink transmit beam indication modes:
  • the uplink access signal sequence set includes at least one uplink access signal sequence
  • the second communication node When the second communication node sends the uplink access signal, it carries the indication information of the feedback downlink beam index identification;
  • the second communication node uses one of the following to feedback the indication information of the downlink beam index identification:
  • the second communication node feeds back the indication information of the downlink beam index identification by using the time domain resource set;
  • the second communication node feeds back the indication information of the downlink beam index identification by using the frequency domain resource set;
  • the second communication node feeds back the indication information of the downlink beam index identification through the code domain resource set.
  • the second communication node can obtain the beam indication mode in a predefined manner.
  • the second communication node can obtain the beam indication mode by receiving broadcast and or higher layer signaling.
  • the second communication node uses the time domain resource set to feed back the downlink beam index
  • the second communication node obtains the correspondence between the time domain resource set and the downlink beam index by using the receiving broadcast and the high layer signaling.
  • the second communication node uses the frequency domain resource set to feed back the downlink beam index
  • the second communication node obtains the correspondence between the frequency domain resource set and the downlink beam index by using the receiving broadcast and the high layer signaling.
  • the second communication node uses the uplink access signal sequence to feed back the downlink beam index
  • the correspondence between the uplink access signal sequence set and the downlink beam index is obtained by using the receiving broadcast and the high layer signaling.
  • the second communication node and the first communication node should have a consistent correspondence between the predefined time domain resource set and the downlink beam index in a predefined manner.
  • the second communication node and the first communication node should have a consistent correspondence between the predefined frequency domain resource set and the downlink beam index in a predefined manner.
  • the second communication node and the first communication node should have a consistent correspondence between the predefined sequence set and the downlink beam index in a predefined manner.
  • the second communication node may distinguish the uplink transmit beam group index by using at least one of the following beam indication modes:
  • Different uplink transmit beam group indexes are distinguished by using the above two or more combinations.
  • the concept of the beam means that the beam can reduce the leakage of the signal power of the first communication node in the useless direction, ensure the directional characteristic of the signal power, and enhance the coverage of the first communication node.
  • the downlink beam index is used to enable the first communication node to find a corresponding beam, and the actual feedback may be related information of the index, for example, a time domain resource set index, a frequency domain resource set index, a downlink signal sequence index, and the like. Or a value equivalent to these indexes. Any index that can be associated with or equivalent to the downlink beam index described in the embodiments of the present invention is within the scope of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the base station uses the N uplink receive beams to receive the uplink access signal, and the receive beam can cover the area that the base station requires to cover.
  • the base station and the terminal pre-define N time domain resource sets respectively corresponding to N uplink receive beam indexes.
  • the base station notifies the correspondence between the N time domain resource sets and the N uplink receiving beam groups by broadcast and or higher layer signaling.
  • the base station notifies the terminal by broadcasting, or the other base station that has established the connection with the terminal under the same coverage, notifies the terminal through high layer signaling.
  • the terminal needs to first receive the broadcast and or higher layer signaling to obtain the corresponding relationship.
  • the terminal After obtaining the corresponding relationship between the N time domain resource sets and the N uplink receive beam indexes, the terminal sends the uplink access signal to different uplink receive beam groups in a beamforming manner in the corresponding time domain resource set.
  • the base station receives the uplink access signal on different uplink receiving beam groups according to the agreed time to identify the receiving condition of different uplink receiving beams of the base station.
  • the time domain resource set may include a set of multiple time units.
  • the time unit can be a microframe, a subframe, a field, a radio frame, a basic time unit, and the like.
  • the base station After receiving the uplink access signal sent by the terminal, the base station sends an uplink access response message to the terminal in a beamforming manner, and the uplink access response message carries the uplink access identification information.
  • the uplink access quality indication message sent by the base station may further carry an uplink access quality indication message.
  • the terminal After receiving the response message, the terminal identifies an uplink transmit beam that satisfies the uplink transmission.
  • the base station utilizes 8 uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal pre-define 8 resource sets respectively corresponding to 8 uplink receiving beam groups, or the base station notifies the correspondence between the 8 time domain resource sets and the 8 uplink receiving beam groups of the terminal through broadcast and high layer signaling.
  • the time domain resource set may include an occupied time unit index and/or duration.
  • the duration can be expressed in terms of the number of time units included.
  • the duration may also be the number of time domain repetitions of the uplink access signal.
  • Uplink receive beam group index Time domain information for transmitting uplink access signals
  • Time domain resource set 7 0 1 Time domain resource set 1 ... ... 7 Time domain resource set 7
  • the terminal identifies the resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast message, and the terminal sends the uplink access signal in the time domain resource set corresponding to the different uplink receiving beam group.
  • the terminal can basically cover the uplink transmission area that the terminal needs to cover by using four uplink transmit beams.
  • the terminal sends multiple uplink access signals in the same uplink receive beam time resource set in a time-division manner to cover different uplink receive transmit beams.
  • the uplink beam relationship is as shown in Table 2:
  • the terminal distinguishes the uplink transmit beam according to the time domain resource set of the uplink transmission.
  • the base station detects the uplink access signal by using the received beam component as eight time domain resource sets.
  • the terminal sends an uplink access signal on different uplink transmit beams in a time resource set corresponding to each uplink receive beam.
  • the base station After receiving the uplink access signal of the terminal on different uplink receiving beam groups, the base station sends an uplink access response message according to the received uplink access signal.
  • the terminal After receiving the response message, the terminal identifies an uplink transmit beam that satisfies the uplink transmission.
  • the base station utilizes 16 uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal pre-define 16 time domain resource sets respectively corresponding to 16 uplink receiving beam groups, or the base station notifies the terminal 16 time domain resource sets and 16 uplink receiving beam groups respectively through broadcast and high layer signaling.
  • Table 3 The relationship is shown in Table 3.
  • the base station may notify the terminal by using the broadcast and or higher layer signaling carrier of the base station, or notify the terminal by high layer signaling by another base station that has established a connection with the terminal under the same coverage.
  • the time domain resource set may include an occupied time unit index and/or duration.
  • the duration can be expressed in terms of the number of time units included.
  • the duration may also be the number of time domain repetitions of the uplink access signal.
  • the terminal identifies the time domain resource set information of the uplink transmit beam by detecting the downlink signal receiving base station broadcast and or the high layer signaling, and the terminal sends the corresponding time domain resource set to the different uplink receive beam group.
  • Uplink access signal
  • the terminal can basically cover the uplink transmission area that the terminal needs to cover by using four uplink transmit beams.
  • the terminal sends multiple uplink access signals in the same uplink receive beam time resource set in a time-division manner to cover different uplink transmit receive beams.
  • the uplink beam relationship is as shown in Table 4:
  • the base station divides the receiving beam into 16 time domain resource sets to detect the uplink access signal, and the terminal sends 4 uplink access signals on the time continuous set corresponding to each receiving beam, and the base station receives the uplink receiving corresponding to the time resource set. After receiving the uplink access signal sent by the terminal, the beam group sends an uplink access response message according to the received uplink access signal.
  • the terminal After receiving the response message, the terminal identifies an uplink transmit beam that satisfies the uplink transmission.
  • the beam of the 4 uplink access signals sent by the terminal may be time-divisionally transmitted or may be in time.
  • the upper part overlaps.
  • the base station utilizes 16 uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal pre-define 16 time domain resource sets respectively corresponding to 16 uplink receiving beam groups, or the base station notifies the terminal 16 time domain resource sets and 16 uplink receiving beam groups respectively through broadcast and high layer signaling.
  • Table 3 The relationship is shown in Table 3.
  • the base station may notify the terminal through broadcast and or higher layer signaling through the carrier of the base station, or notify the terminal through high layer signaling by another base station that has established a connection with the terminal under the same coverage.
  • the time domain resource set may include an occupied time unit index and/or duration.
  • the duration can be expressed in terms of the number of time units included.
  • the duration may also be the number of time domain repetitions of the uplink access signal.
  • the terminal identifies the time domain resource set of the uplink transmit beam by detecting the downlink signal receiving base station broadcast and or the high layer signaling, and the terminal sends the uplink access signal in the time domain resource set corresponding to the different uplink receive beam group.
  • the terminal can basically cover the uplink transmission area that the terminal needs to cover by using four uplink transmit beams.
  • the terminal transmits multiple uplink access signals in the same uplink receive beam time resource set in a time-division manner to cover different uplink receive transmit beams.
  • the uplink beam relationship is as shown in Table 4:
  • the base station detects the uplink access signal by using the uplink receive beam component as 16 time domain resource sets, and the terminal sends 4 uplink access signals on the time continuous set corresponding to each uplink receive beam, and the base station receives in different receiving directions. After receiving the uplink access signal, the terminal sends an uplink access response message according to the received uplink access signal.
  • the beams of the four uplink access signals sent by the terminal may be time-divisionally transmitted or partially overlapped in time.
  • the terminal receives the response messages of the uplink access signals sent by the uplink transmit beam index 0 and the uplink beam index 2, which are respectively recorded as RAR_txBeam0 and RAR_txBeam2, and the PQI fields of RAR_txBeam0 and RAR_txBeam2 are [0 0] and [1 0], respectively.
  • the terminal selects a beam with an uplink transmit beam index of 2 from the multiple uplink access responses as the optimal uplink transmit beam.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the base station uses the N uplink receiving beam groups to receive the uplink access signal, and the N uplink receiving beam groups can substantially cover the area that the base station needs to cover.
  • the base station and the terminal pre-define N frequency domain resource sets respectively corresponding to N uplink receiving beam indexes.
  • the base station informs the terminal of the correspondence between the N frequency domain resource sets and the N uplink receiving beam groups by using broadcast and high layer signaling.
  • the terminal needs to first receive the broadcast and or higher layer signaling to obtain the corresponding relationship.
  • the terminal After obtaining the correspondence between the N frequency domain resource sets and the N uplink receiving beam indexes, the terminal sends the uplink access signal to different uplink receiving beam groups in a beamforming manner in the corresponding frequency domain resource set. For example, as shown in Figure 3.
  • the base station and the terminal identify different uplinks only through the frequency domain resource set.
  • the frequency domain resource set includes a starting frequency domain resource location for transmitting an uplink access signal and/or a frequency domain bandwidth occupied by an uplink access signal.
  • the base station After receiving the uplink access signal sent by the terminal, the base station sends an uplink access response message to the terminal in a beamforming manner, and the uplink access response message carries the uplink access identification information.
  • the uplink access quality indication message sent by the base station may further carry an uplink access quality indication message.
  • the terminal After receiving the response message, the terminal identifies an uplink transmit beam that satisfies the uplink transmission.
  • the base station uses eight uplink receiving beam groups to receive the uplink access signal sent by the terminal, and the eight uplink receiving beams can substantially cover the area that the base station needs to cover.
  • the base station and the terminal pre-define eight frequency domain resource sets respectively corresponding to eight uplink receiving beam groups, or the base station notifies the terminal of the correspondence between the eight frequency domain resource sets and the eight downlink beam groups through broadcast and high layer signaling. , as shown in Table 6.
  • the terminal identifies the resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects the frequency domain resource set corresponding to the different uplink receiving beam to send the uplink access signal.
  • the base station detects the uplink access signal in multiple frequency domain resource sets, when the base station is in the frequency domain resource set 6 After detecting the uplink access signal, the base station sends an uplink access response message corresponding to the frequency domain resource set 6 to identify an optimal uplink receiving beam.
  • the terminal can confirm the optimal uplink transmit beam according to the uplink transmit beam corresponding to the uplink access response message.
  • the base station utilizes 10 uplink receiving beam groups to receive the uplink access signal sent by the terminal, and the 10 uplink receiving beam groups can substantially cover the area that the base station needs to cover.
  • the base station and the terminal predefine 10 frequency domain resource sets respectively corresponding to 10 uplink receiving beam groups, or the base station notifies the correspondence between the 10 frequency domain resource sets and the 10 downlink beam groups of the terminal through broadcast and high layer signaling. , as shown in Table 7.
  • the terminal identifies the frequency domain resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects the frequency domain bandwidth corresponding to the different uplink receiving beam group to send the uplink access signal.
  • the base station detects the uplink access signal in multiple frequency domain resource sets. After the base station detects the uplink access signal in the frequency domain bandwidth 6, the base station sends the uplink access response message corresponding to the frequency domain bandwidth 6 to identify the optimal. Upstream receive beam.
  • the terminal can confirm the optimal uplink transmit beam according to the uplink transmit beam corresponding to the uplink access response message.
  • the base station utilizes 16 uplink receiving beam groups to receive the uplink access signal sent by the terminal, and the 16 uplink receiving beam groups can substantially cover the area that the base station needs to cover.
  • the base station and the terminal pre-define 16 frequency domain resource sets respectively corresponding to 16 uplink receiving beam groups, or the base station notifies the correspondence between the 16 frequency domain resource sets and the 16 downlink beam groups of the terminal through broadcast and high layer signaling. , as shown in Table 8.
  • the terminal identifies the frequency domain resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects the frequency domain bandwidth corresponding to the different uplink receiving beam group to send the uplink access signal.
  • the base station detects the uplink access signal in multiple frequency domain resource sets. After the base station detects the uplink access signal in the frequency domain bandwidth 6, the base station sends the uplink access response message corresponding to the frequency domain bandwidth 6 to identify the optimal. Upstream receive beam.
  • the terminal can confirm the optimal uplink transmit beam according to the uplink transmit beam corresponding to the uplink access response message.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the base station uses the N uplink receiving beam groups to receive the uplink access signal, and the N uplink receiving beam groups can substantially cover the area that the base station needs to cover.
  • the base station and the terminal pre-define N sets of uplink access signal sequences respectively corresponding to N uplink receiving beam groups.
  • the base station notifies the terminal of the correspondence between the N sets of uplink access signal sequences and the N uplink receive beam groups by using broadcast and or higher layer signaling, where the set of uplink access signal sequences includes at least one uplink access signal sequence.
  • the base station may send broadcast and or higher layer signaling to the terminal, or may send high layer signaling to the terminal through other base stations that have established a connection with the terminal.
  • the terminal After obtaining the correspondence between the N uplink access sequence sets and the N uplink receive beam groups, the terminal sends the uplink access signals of the corresponding sequence set to different uplink receive beam groups in a beamforming manner. For example, as shown in Figure 5.
  • the base station and the terminal identify different uplink receive beam groups through the sequence set.
  • the sequence set includes at least one sequence for uplink access signals.
  • the base station After receiving the uplink access signal sent by the terminal, the base station sends an uplink access response message to the terminal in a beamforming manner, and the uplink access response message carries the uplink access identification information.
  • the uplink access quality indication message sent by the base station may further carry an uplink access quality indication message.
  • the terminal After receiving the response message, the terminal identifies an uplink transmit beam that satisfies the uplink transmission.
  • the base station uses the eight uplink receiving beam groups to receive the uplink access signal, and the base station uses the eight uplink receiving beam groups to substantially cover the receiving area that the base station needs to cover.
  • the base station and the terminal pre-define 8 sets of uplink access signal sequences respectively corresponding to 8 uplink receiving beam groups, or the base station notifies the terminal 8 uplink access signal sequence sets and 8 uplink access beam groups through broadcast and high layer signaling. The correspondence between them is shown in Table 9.
  • the terminal identifies the sequence set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beams to send the uplink access signal.
  • the base station receives an uplink access sequence corresponding to the uplink receiving beam group on the uplink receiving beam group, and when the base station detects that the sequence used by the uplink access signal is a sequence in the uplink access signal sequence set 6, the base station sends a corresponding uplink access signal.
  • the uplink access response message of sequence set 6 identifies an uplink receive beam that satisfies the uplink transmission.
  • the uplink receiving beam may be adopted by the base station to receive uplink data transmitted by the terminal at a later time.
  • the terminal confirms that the uplink transmit beam that satisfies the uplink transmission is received according to the received uplink access response message of the corresponding uplink transmit beam.
  • the base station uses 10 uplink receiving beam groups to receive uplink access signals, and the base station uses 10 uplink receiving beam groups to substantially cover the receiving area that the base station needs to cover.
  • the base station and the terminal predefine 10 uplink access signal sequence sets corresponding to 10 uplink receiving beam groups, or the base station notifies the terminal 10 uplink access signal sequence sets and 10 uplink access beam groups through broadcast and high layer signaling respectively. The correspondence between them is shown in Table 10.
  • the terminal identifies the uplink access signal sequence resource set information by detecting the downlink signal receiving base station broadcast and the high layer signaling. At this time, the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beam groups to send the uplink access signal.
  • the base station receives the uplink access signal in the uplink receiving beam group, and the base station detects that the sequence used by the uplink access signal is a sequence in the uplink access signal sequence set 6, and the base station sends the uplink access response corresponding to the uplink access signal sequence set 6.
  • the message identifies an uplink receive beam that satisfies the uplink transmission.
  • the uplink receiving beam may be adopted by the base station to receive uplink data transmitted by the terminal at a later time.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • the base station uses 32 uplink receiving beam groups to receive uplink access signals, and the base station uses 32 uplink receiving beam groups to substantially cover the receiving area that the base station needs to cover.
  • Base stations and terminals are predefined
  • the 32 uplink access signal sequence sets correspond to 32 uplink receiving beam groups, or the base station informs the terminal of the correspondence between the 32 uplink access signal sequence sets and the 10 uplink access beam groups through broadcast and high layer signaling. As shown in Table 11.
  • the legacy node that has established a connection here is an LTE node, and the base station that is being accessed is a millimeter wave node.
  • the base station receives the uplink access signal in the uplink receiving beam group, and the base station detects that the sequence used by the uplink access signal is a sequence in the uplink access signal sequence set 6, and the base station sends the uplink access response corresponding to the uplink access signal sequence set 6.
  • the message identifies an uplink receive beam that satisfies the uplink transmission.
  • the uplink receiving beam may be adopted by the base station to receive uplink data transmitted by the terminal at a later time.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the base station uses the N uplink receiving beam groups to receive the uplink access signal, and the N uplink receiving beam groups can substantially cover the area that the base station needs to cover.
  • the base station notifies the correspondence between the N sequence time domain resource sets and the N uplink receive beam groups of the terminal by using broadcast and high layer signaling.
  • the base station divides the uplink receiving beam into nG groups, nG>1, and the group includes at least one receiving beam, and the group receives the same time, the group receives the time division, and the group receives the predefined uplink access signal sequence set.
  • the terminal transmits the uplink access signal by adjusting the uplink access signal sequence and the uplink access signal transmission time to cover different uplink receive beam and transmit beam combinations.
  • the terminal needs to first receive the system message to obtain the corresponding relationship.
  • the terminal sends an uplink access signal by using an uplink access signal corresponding to the N sequence time domain resource sets to ensure that each uplink receiving beam of the base station can receive the uplink access signal.
  • the base station and the terminal identify different uplink receive beam indexes by using the uplink access signal time domain sequence set.
  • Each of the uplink access signal sequence time domain resource sets includes at least one uplink access signal sequence and one time domain resource set.
  • the uplink access signal sequence time domain resource set 0 includes: an uplink access signal sequence set 0 and an uplink access signal transmission time domain resource set 0.
  • the uplink access signal sequence time domain resource set 1 includes: an uplink access signal sequence set 1 and an uplink access signal transmission time domain resource set 1.
  • the uplink access signal sequence time domain resource set 0 includes: an uplink access signal sequence set 0 and an uplink access signal transmission time domain resource set 0.
  • the uplink access signal sequence time domain resource set 1 includes: an uplink access signal sequence set 0 and an uplink access signal transmission time domain resource set 1.
  • the uplink access signal sequence time domain resource set 0 includes: an uplink access signal sequence set 0 and an uplink access signal transmission time domain resource set 0.
  • the uplink access signal sequence time domain resource set 1 includes: an uplink access signal sequence set 1 and an uplink access signal transmission time domain resource set 0, and the like.
  • the base station utilizes eight uplink receiving beam groups to receive the uplink access signal sent by the terminal, and the base station uses the eight uplink receiving beam groups to substantially cover the area that the base station needs to cover.
  • the base station and the terminal predefine eight uplink access signal sequences, and the time domain resource sets respectively correspond to eight uplink receiving beam groups.
  • the index, or the base station notifies the terminal of the correspondence between the time domain resource sets of the eight uplink access signal sequences and the eight uplink beam groups through broadcast and high layer signaling, as shown in Table 12.
  • the terminal identifies the time domain resource set information of the uplink access signal sequence by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences of the sequence time domain set corresponding to different uplink receiving beam groups to send the uplink access. signal.
  • the base station receives the uplink access signal in the uplink receiving beam group, and the base station detects that the sequence used by the uplink access signal is a sequence in the time domain sequence set 6 of the uplink access signal, and the base station sends the uplink corresponding to the time series set 6 of the uplink access signal.
  • the access response message identifies an uplink receive beam that satisfies the uplink transmission.
  • the uplink receiving beam may be adopted by the base station to receive uplink data transmitted by the terminal at a later time.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • the base station utilizes 10 uplink receiving beam groups to receive the uplink access signal sent by the terminal, and the base station uses 10 uplink receiving beams to substantially cover the area that the base station needs to cover.
  • the base station and the terminal predefine 10 uplink access signal sequences, and the time domain resource sets respectively correspond to 10 uplink receiving waves.
  • the bundle group, or the base station, through the system message notifies the terminal of the correspondence between the time domain resource sets of the 10 uplink access signal sequences and the 10 uplink receiving beam groups, as shown in Table 13.
  • the terminal identifies the uplink access signal sequence time domain resource set information by detecting the downlink signal receiving base station broadcast and or the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beam groups to send the uplink access signal. .
  • the base station receives the uplink access signal in the uplink receiving beam group, and the base station detects that the sequence used by the uplink access signal is a sequence in the time domain sequence set 6 of the uplink access signal, and the base station sends the uplink corresponding to the time series set 6 of the uplink access signal.
  • the access response message identifies an uplink receive beam that satisfies the uplink transmission.
  • the uplink receiving beam may be adopted by the base station to receive uplink data transmitted by the terminal at a later time.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • the uplink access signal is received by the multiple uplink access channels sent by the same terminal, the uplink beam corresponding to the uplink uplink access signal is selected according to the uplink access signal quality field.
  • the line is optimally transmitted.
  • the terminal receives the response messages of the uplink access signals sent by the uplink transmit beam index 0 and the uplink beam index 2, which are respectively recorded as RAR_txBeam0 and RAR_txBeam2, and the PQI fields of RAR_txBeam0 and RAR_txBeam2 are [0 0] and [1 0], respectively.
  • the terminal selects a beam with an uplink transmit beam index of 2 from the multiple uplink access responses as the optimal uplink transmit beam.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the base station uses the N uplink receiving beam groups to receive the uplink access signal, and the base station uses the N uplink receiving beam groups to substantially cover the area that the base station needs to cover.
  • the base station and the terminal predefine the frequency domain resource set of the X uplink access signal sequence sets and the Y uplink access signals.
  • the base station notifies the correspondence between the N sequence frequency domain resource sets of the terminal and the N uplink receiving beam groups by using broadcast and high layer signaling.
  • the base station notifies the terminal by broadcasting, or the other base station that has established the connection with the terminal under the same coverage, notifies the terminal through high layer signaling.
  • the terminal needs to first receive the broadcast and or higher layer signaling to obtain the correspondence.
  • the base station and the terminal identify different uplink receive beam indexes by using a frequency domain sequence set of uplink access signals.
  • the terminal uses the uplink access signal corresponding to the N sequence frequency domain resource sets to transmit the uplink access signal in a beamforming manner to ensure that each uplink receiving beam group of the base station is covered.
  • the uplink access signal sequence frequency domain resource set includes at least one uplink access signal sequence and one frequency domain resource set.
  • the uplink access signal sequence frequency domain resource set set 0 includes: an uplink access signal sequence set 0 and an uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: an uplink access signal sequence set 1 and an uplink access signal transmission frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set set 0 includes: an uplink access signal sequence set 0 and an uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: an uplink access signal sequence set 0 and an uplink access signal transmission frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set set 0 includes: an uplink access signal sequence set 0 and an uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: an uplink access signal sequence set 1 and an uplink access signal transmission frequency domain resource set 0, and the like.
  • the base station uses eight uplink receiving beam groups to receive uplink access signals, and the base station uses eight uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal predefine eight uplink access signal sequences, and the frequency domain resource sets respectively correspond to eight uplink receiving beam groups.
  • the base station notifies the terminal of the correspondence between the frequency domain resource set of the eight uplink access signal sequences and the eight uplink receiving beam groups by using broadcast and high layer signaling, as shown in Table 15.
  • the terminal identifies the uplink access signal sequence frequency domain resource set information by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beam groups to send the uplink access signal. .
  • the corresponding relationship between the uplink receiving beam group and the frequency domain resource set of the uplink access signal sequence may be notified by the base station through broadcast and high layer signaling, or may be notified to the terminal by higher layer signaling by other base stations that have established connection with the local terminal.
  • the base station receives, by the terminal, one or several uplink access signals in the frequency domain resource set 6 of the uplink access signal sequence.
  • the base station detects the sequence frequency domain resource set of the uplink access signal on the uplink receiving beam group 6. After detecting the uplink access signal, the base station sends an uplink access response message to the terminal.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • the base station uses eight uplink receiving beam groups to receive uplink access signals, and the base station uses eight uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal predefine the correspondence between the frequency domain resource set of the eight uplink access signal sequences and the eight uplink receive beam groups.
  • the base station notifies the terminal of the correspondence between the frequency domain resource set of the uplink access signal sequence and the 10 uplink receiving beam groups by using broadcast and high layer signaling, as shown in Table 16.
  • Uplink access signal sequence frequency domain resource set 0 Uplink access signal sequence frequency domain resource set 1 Uplink access signal sequence frequency domain resource set 1 2 Uplink access signal sequence frequency domain resource set 2 3 Uplink access signal sequence frequency domain resource set 3 4 Uplink access signal sequence frequency domain resource set 4 5 Uplink access signal sequence frequency domain resource set 5 6 Uplink access signal sequence frequency domain resource set 6 7 Uplink access signal sequence frequency domain resource set 7 8 Uplink access signal sequence frequency domain resource set 8 9 Uplink access signal sequence frequency domain resource set 9
  • the terminal identifies the sequence frequency domain resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to the different uplink receiving beam groups to send the uplink access signal.
  • the corresponding relationship between the uplink receiving beam group and the frequency domain resource set of the uplink access signal sequence may be notified by the base station through broadcast and high layer signaling, or may be notified to the terminal by higher layer signaling by other base stations that have established connection with the local terminal.
  • the base station receives, by the terminal, one or several uplink access signals in the frequency domain resource set 6 of the uplink access signal sequence. After detecting the uplink access signal, the base station sends an uplink access response message to the terminal.
  • PQI uplink access signal quality indication information
  • the uplink access response messages sent by the terminal to receive the uplink beam index 0 and the uplink beam index 2 are respectively recorded as RAR_txBeam0 and RAR_txBeam2, and the PQI fields of RAR_txBeam0 and RAR_txBeam2 are [0 0] and [1 0], respectively.
  • the terminal selects a beam with an uplink beam index of 0 as the optimal uplink transmit beam.
  • the base station uses the N uplink receiving beam groups to receive the uplink access signal, and the N uplink receiving beam groups can substantially cover the area that the base station needs to cover.
  • the base station informs the terminal of the correspondence between the N sequence time domain frequency domain resource sets and the N uplink receiving beam groups by using broadcast and high layer signaling.
  • the corresponding relationship may be notified to the terminal by the base station by using broadcast and high layer signaling, or by another base station that has established a connection with the same terminal under the same coverage, to notify the terminal by using high layer signaling.
  • the terminal needs to first receive the broadcast and or higher layer signaling to obtain the corresponding relationship.
  • the base station and the terminal identify different uplink receiving beam groups by using the time domain frequency domain set of the uplink access signal.
  • the terminal sends the uplink access signal to each uplink receiving beam group of the base station in a beamforming manner by using the uplink access signal corresponding to the N time domain frequency domain resource sets.
  • Each of the uplink access signal sequence frequency domain resource sets includes at least one time domain resource set and one frequency domain resource set. For example, as shown in FIG. 4, where BFn is an uplink receive beam index.
  • the uplink access signal sequence configured by the base station to the terminal is not limited herein, and the base station and the terminal identify different uplink receiving beam groups by using the time domain and frequency domain resource sets of the uplink access signal.
  • the uplink access signal time domain and the frequency domain joint location 0 include: an uplink access signal transmission time domain resource set 0 and an uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set 1 includes: an uplink access signal transmission time domain resource set 1 and the uplink access signal transmits the frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set 0 includes: an uplink access signal transmission time domain resource set 0 and an uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set 1 includes: an uplink access signal transmission time domain resource set 0 and an uplink access signal transmission frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set 0 includes: an uplink access signal transmission time domain resource set 0 and an uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set 1 includes: an uplink access signal transmission time domain resource set 1 and an uplink access signal transmission frequency domain resource set 0, and the like.
  • the base station uses eight uplink receiving beam groups to receive uplink access signals, and the base station uses eight uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal predefine 8 uplink access signals, and the time domain and the frequency domain joint position respectively correspond to 8 uplink receiving beam groups, or the base station notifies the terminal 8 uplink access signals in the time domain and the frequency domain through broadcast and high layer signaling.
  • the correspondence between the resource set and the eight uplink receive beam groups is shown in Table 18.
  • the terminal identifies the time domain and the frequency domain resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beam groups to send the uplink connection. Into the signal.
  • the corresponding relationship between the uplink receiving beam group and the time domain frequency domain resource set of the uplink access signal may be notified by the local base station through broadcast and high layer signaling, or may be notified to the terminal by higher layer signaling by other base stations that have established connection with the local terminal.
  • the base station receives one or several of the intra-frequency domain resource sets 6 to transmit an uplink access signal when the terminal selects the uplink access signal.
  • the base station detects the time domain frequency domain resource set of the uplink access signal on the uplink receiving beam group 6. After detecting the uplink access signal, the base station sends an uplink access response message to the terminal.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • the base station utilizes 10 uplink beam groups to receive uplink access signals, and the base station uses 10 uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal predefine 10 uplink access signals, and the time domain and the frequency domain resource set respectively correspond to 10 uplink receiving beam indexes, or the base station notifies the terminal 10 uplink access signal time domain and frequency domain resource sets by using a system message respectively.
  • the correspondence between the 10 uplink receive beam indices is as shown in Table 19.
  • the terminal identifies the time domain and the frequency domain resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beam groups to send the uplink connection. Into the signal.
  • the corresponding relationship between the uplink receiving beam group and the time domain frequency domain resource set of the uplink access signal may be notified by the local base station through broadcast and high layer signaling, or may be notified to the terminal by higher layer signaling by other base stations that have established connection with the local terminal.
  • the terminal groups the uplink transmit beams according to their own beam capabilities, and the different uplink transmit beams are distinguished by time division between groups, and different uplink transmit beams are distinguished by code division in the group.
  • the terminal determines a group index of the uplink transmit beam according to the time division, determines an intra-group index of the uplink transmit beam according to the code score, and determines a unique uplink transmit beam index according to the group index and the intra-group index terminal. After transmitting the uplink access signal from the group index idxG and the intra-group index idxInG, the terminal receives an uplink access response message corresponding to idxG and idxInG.
  • the base station receives one or several uplink access signals in the domain frequency domain resource set 6 when the terminal selects the uplink access signal.
  • the base station detects the uplink access signal of the time domain frequency domain resource set on the uplink receiving beam group 6. After detecting the uplink access signal, the base station sends an uplink access response message to the terminal.
  • the response message includes uplink access signal identification information and uplink access signal quality indication information (PQI).
  • the uplink access signal identification information includes a time resource set corresponding to the uplink access signal and a frequency domain resource set of the uplink access signal.
  • the time resource set corresponding to the uplink access signal includes at least one of the following:
  • n is the time unit of time for transmitting and responding to uplink access, n>0;
  • the time of the uplink access and the timing of the uplink access response satisfying a certain delay for example, the transmission time of the uplink access signal is tTx, and the base station sends a corresponding uplink access response message at tTx+n ⁇ tTx+n+tWindow, where n is the timing of transmitting and responding to the uplink access, tWindow is the time window for responding to the uplink access, tWindow>0, and the base station can respond to the uplink access signal within this time window;
  • the duration of the uplink access meets a certain timing relationship with the uplink access response.
  • the uplink access signal is transmitted at tTx and the duration is tDura, and the base station responds to the uplink access signal at time tTx+n+k*tDura.
  • n is the timing of transmitting and responding to the uplink access
  • k is the time offset granularity based on the duration of the access sequence, k>0;
  • the frequency domain resource set corresponding to the uplink access signal includes at least one of the following:
  • the transmission frequency domain resource of the uplink access signal is fReLow ⁇ fReHigh
  • the corresponding uplink connection is sent in the frequency domain of fReLow- ⁇ 1 ⁇ fReHigh+ ⁇ 2.
  • fReLow is the lowest index of the frequency domain in which the uplink access signal is located
  • fReHigh is the highest index of the frequency domain in which the uplink access signal is located.
  • ⁇ 1 and ⁇ 2 are frequency domain offset units for transmitting and responding to uplink access, ⁇ 1>0, ⁇ 2>0;
  • the frequency domain resource of the uplink access signal is fReLow ⁇ fReHigh
  • the uplink access response is hopped in the system bandwidth, for example, the frequency of the first half response.
  • the domain position is fMin+fReLow+ ⁇ 1 ⁇ fMin+fReLow+lenAll/2+ ⁇ 1
  • the frequency domain position of the latter half response is fMax-fRe-+lenAll/2- ⁇ 2 ⁇ fMax-fRe– ⁇ 2, where lenAll is the uplink access signal Occupied bandwidth;
  • the value of the priority column in Table 20 is higher. Highly indicating the higher the quality of the uplink access signal.
  • the terminal receives the response messages of the uplink access sent by the index 0 and the uplink transmit beam group index 2 and the intra-group index 2 in the uplink transmit beam group index 0 group, respectively, which are respectively recorded as RAR_txBeam0 and RAR_txBeam2, and RAR_txBeam0 and RAR_txBeam2 respectively according to the PQI field [0]
  • the scrambling code descrambling corresponding to 0] and [1 0] is correctly demodulated.
  • the terminal selects the beam of index 0 in the group of the uplink beam group index 0 as the optimal uplink transmitting beam.
  • the base station uses the N uplink receiving beam groups to receive the uplink access signal, and the base station uses the N uplink receiving beams to substantially cover the area that the base station needs to cover.
  • the base station notifies the correspondence between the N sequence, the time domain, and the frequency domain resource set of the terminal and the N uplink receiving beam groups by using broadcast and high layer signaling.
  • the corresponding relationship may be notified to the terminal by the base station by using broadcast and high layer signaling, or by another base station that has established a connection with the same terminal under the same coverage, to notify the terminal by using high layer signaling.
  • the terminal needs to first receive the broadcast and or higher layer signaling to obtain the Correspondence relationship.
  • the base station and the terminal cover different uplink receiving beam groups of the base station by using a sequence of uplink access signals and a time domain and a frequency domain set.
  • the terminal sends the uplink access signal to each uplink receiving beam group of the base station in a beamforming manner by using the uplink access signal corresponding to the N time domain frequency domain resource sets.
  • each of the uplink access signal sequence and the time domain frequency domain resource set includes at least one sequence set, one time domain resource set, and one frequency domain resource set.
  • the uplink access signal sequence and the time domain and frequency domain resource set set 0 include: uplink access.
  • the signal uses a sequence in the uplink access signal set 0, and the uplink access signal transmits the time domain resource set 0 and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 1, the uplink access signal transmits the time domain resource set 1 and the uplink access signal transmits the frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the sequence of the uplink access signal set 0, the uplink access signal sends the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 0, the uplink access signal transmits the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the sequence of the uplink access signal set 0, the uplink access signal sends the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 0, the uplink access signal transmits the time domain resource set 1 and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the sequence of the uplink access signal set 0, the uplink access signal sends the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 0, the uplink access signal transmits the time domain resource set 1 and the uplink access signal transmits the frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the uplink connection The sequence of the incoming signal set 0, the uplink access signal transmission time domain resource set 0 and the uplink access signal transmission frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 1, the uplink access signal transmits the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the sequence of the uplink access signal set 0, the uplink access signal sends the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 1, the uplink access signal transmits the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 1.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the sequence of the uplink access signal set 0, the uplink access signal sends the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 1, the uplink access signal transmits the time domain resource set 1 and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 0 includes: the uplink access signal uses the sequence of the uplink access signal set 0, the uplink access signal sends the time domain resource set 0, and the uplink access signal transmits the frequency domain resource set 0.
  • the uplink access signal sequence frequency domain resource set set 1 includes: the uplink access signal uses a sequence in the uplink access signal set 1, the uplink access signal transmits the time domain resource set 1 and the uplink access signal transmits the frequency domain resource set 1, Wait.
  • the base station uses 8 uplink receive beam groups to receive uplink access signals, and the base station uses 8
  • the uplink receiving beam group can substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal pre-define 8 uplink access signal sequences, time domain and frequency domain resource sets respectively corresponding to 8 uplink receiving beam groups.
  • the base station notifies the terminal of the correspondence between the eight uplink access signal sequences and the time domain and frequency domain resource sets and the eight uplink receiving beam groups by using a system message, as shown in Table 21.
  • the terminal identifies the uplink access signal sequence, the time domain and the frequency domain resource set information by detecting the downlink signal receiving base station broadcast and or the high layer signaling, and the terminal selects the sequence, time domain and frequency domain resource set corresponding to different uplink receiving beam groups.
  • Terminal based on its own wave
  • the beam capability groups the uplink transmit beams, and the different uplink transmit beams are distinguished by code division in the group, and different uplink transmit beams are distinguished by time division between groups.
  • the correspondence between the uplink receiving beam group and the uplink access signal sequence, the time domain, and the frequency domain resource set may be notified by the base station through broadcast and or higher layer signaling, or may be performed by other base stations that have established connections with the local terminal. Notify the terminal.
  • the base station receives the uplink access signal sent by the terminal to select one of the uplink access signal sequence, the time domain and the frequency domain resource set 6, or one of the uplink access signal sequence, the time domain and the frequency domain resource set.
  • the base station detects the sequence, the time domain, and the frequency domain resource set of the uplink access signal on the uplink receiving beam group, and the base station sends the uplink access response message to the terminal after detecting the uplink access signal.
  • the terminal confirms that the uplink transmit beam of the uplink transmission is satisfied according to the uplink transmit beam corresponding to the received uplink access response message of the corresponding uplink transmit beam.
  • the base station uses eight uplink receiving beam groups to receive uplink access signals, and the base station uses eight uplink receiving beam groups to substantially cover the uplink receiving area that the base station needs to cover.
  • the base station and the terminal predefine uplink access signal sequence, time domain and frequency domain resource set corresponding to 8 downlink transmit beam groups.
  • the base station and the terminal pre-define 8 uplink access signal sequences, time domain and frequency domain resource sets respectively corresponding to 8 uplink receiving beam groups.
  • the base station notifies the terminal of the correspondence between the eight uplink access signal sequences and the time domain and frequency domain joint location sets and the eight uplink receive beam indexes by using a system message, as shown in Table 22.
  • Uplink receive beam set Sequence, time domain, and frequency domain joint resource sets 0 Sequence, time domain, and frequency domain joint resource set 0 1 Sequence, time domain and frequency domain joint resource set 1 2 Sequence, time domain and frequency domain joint resource set 2 3 Sequence, time domain and frequency domain joint resource set 3 4 Sequence, time domain and frequency domain joint resource set 4 5 Sequence, time domain and frequency domain joint resource set 5
  • the terminal identifies the time domain and the frequency domain resource set information of the uplink access signal by detecting the downlink signal receiving base station broadcast and the high layer signaling, and the terminal selects one or more sequences in the sequence set corresponding to different uplink receiving beam groups to send the uplink connection.
  • the terminal groups the uplink transmit beams according to their own beam capabilities, and the different uplink transmit beams are distinguished by code division in the group, and different uplink transmit beams are distinguished by time division between groups.
  • the corresponding relationship between the uplink receiving beam group and the time domain frequency domain resource set of the uplink access signal may be notified by the local base station through broadcast and high layer signaling, or may be notified to the terminal by higher layer signaling by other base stations that have established connection with the local terminal.
  • the base station receives one or several of the intra-frequency domain resource sets 6 to transmit an uplink access signal when the terminal selects the uplink access signal.
  • the base station detects an uplink access signal of the time domain frequency domain resource set on the uplink receiving beam group 6. After detecting the uplink access signal, the base station sends an uplink access response message to the terminal.
  • the scrambling code is as shown in Table 23. The higher the value of the priority column in Table 23, the higher the quality of the uplink access signal.
  • the terminal receives the response messages of the uplink access sent by the index 0 and the uplink transmit beam group index 2 and the intra-group index 2 in the uplink transmit beam group index 0 group, respectively, which are respectively recorded as RAR_txBeam0 and RAR_txBeam2, and RAR_txBeam0 and RAR_txBeam2 respectively according to the PQI field [0] 0] and [1 0]
  • the corresponding scrambling code descrambling is correctly demodulated.
  • the terminal selects the beam of index 0 in the group of the uplink beam group index 0 as the optimal uplink transmitting beam.
  • Base station 1 receives the access signal by using eight receiving beam groups, and the base station 1 can basically cover the receiving area that the base station needs to cover by using the eight receiving beam groups.
  • Base station 1 and base station 2 predefine uplink access signal sequences, time domain and frequency domain resource sets corresponding to 8 receive beam groups.
  • Base station 1 and base station 2 pre-define 8 access signal sequences, time domain and frequency domain resource sets respectively corresponding to 8 receiving beam groups.
  • the base station 1 and the base station 2 learn the correspondence between the eight uplink access signal sequences, the time domain and the frequency domain joint set, and the eight uplink receive beam groups through the backhaul signaling interaction, as shown in Table 24.
  • the base station 2 selects one or more sequences of sequence, time domain and frequency domain sets corresponding to different uplink receiving beam groups to transmit access signals.
  • the base station 2 groups the access transmit beams according to their own beam capabilities, and different access transmit beams are distinguished by frequency division in the group, and different access transmit beams are distinguished by time division between groups.
  • the base station 1 detects the access signals of the sequence, the time domain and the frequency domain resource set on the receiving beam group 6, and the base station 1 transmits an access response message to the base station 2 after detecting the uplink access signal.
  • PQI access signal quality indication information
  • the base station 2 receives the response messages of the accesses of the index 0 and the transmit beam group index 2 and the intra-group index 2 in the corresponding transmit beam group index 0 group, which are respectively recorded as RAR_txBeam0 and RAR_txBeam2, RAR_txBeam0 and RAR_txBeam2, and the base station 1 demodulates the PQI field from The beam with the index 0 in the 0 group of the uplink beam group index is selected as the optimal uplink transmitting beam.
  • Terminal 1 receives the access signal by using four receiving beam groups, and the terminal 1 can substantially cover the receiving area that the terminal 1 needs to cover by using the four receiving beam groups.
  • Terminal 1 and terminal 2 predefine four access signal sequences, time domain and frequency domain resource sets respectively corresponding to four receiving beam groups.
  • the high-level signaling is used to notify the terminal 2 of the correspondence between the access signal sequence of the terminal 1 and the time domain, the frequency domain resource set, and the eight receiving beam groups, as shown in Table 26.
  • the terminal 1 detects the access signal sequence, the time domain and the frequency domain resource set information of the terminal 2 by detecting the downlink signal receiving high-level signaling, and the terminal 1 selects one of the sequence, the time domain and the frequency domain resource set corresponding to different receiving beam groups. Multiple uplink access signals are sent.
  • the terminal 1 groups the transmit beams according to their own beam capabilities, and the different uplink transmit beams are distinguished by code division in the group, and different uplink transmit beams are distinguished by frequency division between groups.
  • the correspondence between the receiving beam group and the access signal sequence, the time domain and the frequency domain resource set may also be agreed in advance between the terminals.
  • the terminal 2 receives the terminal 1 to select one of the access signal sequence, the time domain and the frequency domain resource set 6 or Several access signals.
  • the terminal 2 detects a sequence, a time domain and a frequency domain resource set of the uplink access signal on the receiving beam group, and the terminal 2 sends an access response message to the terminal 1 after detecting the access signal.
  • the terminal 1 confirms that the transmitted transmit beam is satisfied according to the received access response message of the corresponding transmit beam.
  • the combination of the foregoing embodiments may generate some combination schemes in a certain combination manner, and may use the time domain of the uplink access signal, the frequency domain resource set, and the adopted sequence to identify the information of the receive beam, and the uplink access signal Information bits or implicit bits indicate quality indications for uplink access. Combinations using various aspects of the embodiments of the present invention are within the scope of the present invention.
  • the uplink access signal in the embodiment of the present invention may be a random access signal in the LTE system, and the sequence is a random access signal Preamble sequence or a newly designed uplink access signal or an uplink access sequence, as long as it can
  • the signals and sequences of the uplink access function and/or the uplink synchronization function are all within the scope of the present invention.
  • the terminal there are many ways for the terminal to detect the optimal sequence, which are all implementation methods of detection, for example, using a sequence correlation manner, and selecting a sequence index with the highest correlation value for feedback. Different criteria may select different sequence indices, and there is no limiting relationship for the present invention. Regardless of the detection method, only one or several optimal values are required, and the index values can be correspondingly included in the scope of the protection idea of the present invention.
  • the operation of implementing the downlink beam index processing in the embodiment of the present invention may be as shown in FIG. 7, that is,
  • the base station uses the following at least one beam indication mode and related configuration information to cover the uplink receiving beam group when transmitting the uplink access signal by using a predetermined manner and/or broadcast and or higher layer signaling:
  • the uplink access signal response message carries the indication bit information to indicate the quality of the uplink access signal
  • the indication bit carried in the uplink access signal response message may be in an explicit or implicit manner in the presence and response message;
  • the uplink receiving beam group receives the uplink access signal uplink receiving beam group by using beamforming.
  • An embodiment of the present invention provides an uplink synchronization apparatus, and the structure thereof is as shown in FIG.
  • the resource set configuration module 801 is configured to configure resource set information corresponding to the N uplink receive beam groups, where N>0, and each uplink receive beam group includes at least one uplink receive beam;
  • the uplink access signal receiving module 802 is configured to detect, according to the resource set information, a receiving uplink access signal on a resource set corresponding to one or more receiving beams;
  • the response message sending module 803 is configured to send an uplink access response message to the uplink access signal that satisfies the uplink access condition after detecting the uplink access signal.
  • the resource set configuration module 801 includes:
  • the first configuration unit 8011 is configured to send the resource set information corresponding to the uplink receiving beam group to the second communications node by using broadcast and/or high layer signaling;
  • the second configuration unit 8012 the first communication node that is configured to correspond to another carrier that has established a connection with the second communication node sends the resource set information corresponding to the uplink receiving beam group to the second communication node by using the high layer signaling.
  • the first communication node corresponding to the other carrier may be the same as the first communication node or another first communication node separated from the physical location.
  • the device further includes:
  • the pre-configuration module 804 is configured to pre-appoint corresponding resource set information with the second communication node.
  • the uplink synchronization device shown in FIG. 8 can be integrated into a base station or a terminal, and the corresponding function is completed by the base station or the terminal.
  • the embodiment of the invention further provides an uplink synchronization device, which has the structure shown in FIG. 9 and includes:
  • the uplink access signal sending module 901 is configured to receive the resource set information corresponding to the N uplink receiving beam groups configured by the first communications node, and use the uplink transmit beam to send the uplink access in the corresponding M resource sets according to the resource set information.
  • the response receiving module 902 is configured to receive an uplink access response message fed back by the first communication node.
  • the uplink access signal sending module 901 includes:
  • the first sending unit 9011 is configured to divide the uplink transmit beams into M groups, and use different uplink transmit beam groups to send different uplink access signals, where M>0, and each uplink transmit beam group includes at least one uplink transmit beam. After the grouping, each uplink transmit beam is uniquely confirmed by the group index and the intra-group index.
  • the response receiving module 902 includes:
  • the first receiving unit 9021 is configured to receive an uplink access response message on different uplink access resource sets, and the different uplink access resource sets are any of the following:
  • the index confirming unit 9022 is configured to determine, according to the uplink access response message corresponding to the different uplink access resource set, the group index and the intra-group index of the uplink transmit beam that meet the uplink access condition.
  • the uplink synchronization device shown in FIG. 9 can be integrated into a base station or a terminal, and the base station or the terminal completes the corresponding function.
  • An embodiment of the present invention further provides an uplink synchronization system, including a first communication node and a second communication node; the first communication node is a base station or a terminal, and the uplink synchronization device shown in FIG. 8 is integrated; The two communication nodes are base stations or terminals, and the uplink synchronization device as shown in FIG. 9 above is integrated.
  • the first communication node is configured to configure a resource set corresponding to the N uplink receive beam groups Information, where N>0, each uplink receiving beam group includes at least one uplink receiving beam, and detecting, according to the resource set information, a receiving uplink access signal on a resource set corresponding to one or more receiving beams, where the detected uplink access signal is detected After the uplink access signal is described, the uplink access response message is sent to the uplink access signal that satisfies the uplink access condition;
  • the second communication node is configured to receive resource set information corresponding to the N uplink receive beam groups configured by the first communication node, and use the uplink transmit beam to send the uplink access signal in the corresponding M resource sets according to the resource set information.
  • the terminal is based on different time domain resource sets and/or frequency domain resource sets by pre-defining or receiving broadcast and high-level signaling. Different and/or uplink access signal sequences are different to cover the uplink receive beam group.
  • the base station selects a time domain resource set and/or a frequency domain resource set and/or a sequence used by the uplink access signal to obtain an uplink access signal sent by the terminal, and sends an uplink access response message after successfully receiving the uplink access signal. .
  • the uplink access response message may carry the uplink access signal quality indicator bit and the uplink access quality. In this way, the terminal can obtain the uplink transmit beam or the optimal uplink transmit beam that satisfies the uplink transmission, and the base station can select the uplink receive beam or the optimal uplink link. The beam is received to ensure reliable transmission of subsequent information.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the foregoing technical solution implements configuration confirmation of the uplink access beam by the communication parties, and implements normal communication between the first communication node and the second communication node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行同步方法、装置和***。涉及LTE-Advanced***;解决了第一通信节点与第二通信节点无法进行正常通信的问题。该方法包括:第一通信节点配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束;所述第一通信节点按照所述资源集信息在一个或多个接收波束对应的资源集上检测上行接入信号;所述第一通信节点在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息。上述技术方案适用于LTE-Advanced***,实现了通信双方对上行接入波束的配置确认。

Description

一种上行同步方法、装置和*** 技术领域
本文涉及通信领域的长期演进高级***(Long term evolution advanced system,LTE-Advanced),尤其涉及一种实现上行接收波束索引处理的上行同步方法、装置和***。
背景技术
在毫米波通信***中由于使用了高的载波频率进行数据传输,其平均路损会比LTE***的大,例如采用28GHz的载频进行传输,利用公式:
Figure PCTCN2015078393-appb-000001
其中,R为小区覆盖的半径,λ为对应载波的波长,Lf为路损值。
计算得出高频路损值与LTE路损值的平均比例信息为:
Figure PCTCN2015078393-appb-000002
LH表示高频路损值,LL表示LTE路损值
在高频通信中为了保证覆盖,即接收侧满足最小SINR要求,需要提高发送和接收机增益。
Figure PCTCN2015078393-appb-000003
其中,Gt为发送天线增益,Gr为接收天线增益,Pt为发射天线功率,Pr为接收天线功率。
LTE通信需求最高要求达到覆盖100km的区域,如果按照最高覆盖,仅仅考虑平均路损(空旷区域),那么高频通信最高可以考虑覆盖达到1km的区域。如果考虑实际高频载波的空气吸收(氧气吸收,二氧化碳等)、雨衰以及阴影衰落敏感等特点,实际可以支持的覆盖要小于1km。
如果高频通信支持最大1km覆盖,与LTE***相比,相同的覆盖区域可以获得的SINR比不同,前者比后者存在至少20dB的信噪比下降,为了保证高频通信与LTE***覆盖范围内具有近似的SINR,需要保证高频通信的天线增益。由于高频通信具有更短的波长,从而可以保证单位面积上容纳更多的天线元素,更多的天线元素可以提供更高的天线增益,从而保证高频通信的覆盖性能。
更多的天线元素意味着可以采用波束赋型的方式来保证高频通信的覆盖,更窄的波束要求收发端进行更精确的波束对准。由LTE相关的设计思想可知,要想得到好的波束赋型效果需要准确获得信道的状态信息,从而从信道的状态信息中获得波束赋型的权值。而获得较好的波束赋型权值,对于作为发送端的第一通信节点来说,作为接收端的第二通信节点需要反馈下行的信道状态信息或者权值,对于接收端来说,发送端需要反馈上行的信道状态信息或者权值,从而保证第一通信节点可以采用最优的波束发送下行业务,第二通信节点也可以采用的最优的波束发送上行业务。这时就会存在这样一个问题:第一通信节点在获得权值前,无法利用最优的波束覆盖到接收端,从而接收端无法对第一通信节点发送的参考信号进行测量,或者即使第一通信节点覆盖到第二通信节点,但是第二通信节点无法达到第一通信节点的同样的覆盖,反馈的内容第一通信节点无法获知,从而也不能进行波束权值的选择和正常通信。
发明内容
本发明实施例提供了一种上行同步方法、装置和***,解决了第一通信节点与第二通信节点无法进行正常通信的问题。
一种上行同步方法,包括:
第一通信节点配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束;
所述第一通信节点按照所述资源集信息在一个或多个接收波束对应的资源集上检测上行接入信号;
所述第一通信节点在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息。
可选的,所述第一通信节点配置N个上行接收波束组对应的资源集信息的方式包括以下任一方式:
所述第一通信节点通过广播和/或高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息;
同第二通信节点已经建立连接的另一个载波对应的所述第一通信节点通过高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息,其中另一个载波对应的第一通信节点可能和本第一通信节点是同一个或者是物理位置分开的另一个第一通信节点。
可选的,该方法还包括:
所述第一通信节点和所述第二通信节点之间预先约定对应的资源集信息。
可选的,所述上行接收波束组对应的资源集信息通过以下任一方式或任意多个方式划分:
利用频域资源集划分不同上行接收波束;
利用时域资源集划分不同上行接收波束;
利用码域资源集划分不同上行接收波束。
可选的,所述上行接入响应消息包括以下信息的任一种或任意多种:
上行接入信号对应的频域资源集;
上行接入信号对应的时域资源集;
上行接入信号对应的码域资源集。
可选的,所述上行接入响应消息还包括:
上行接入信号质量指示信息,指示所述第一通信节点接收到的上行接入信号质量。
可选的,所述第一通信节点为基站或终端,所述第二通信节点为基站或终端。
本发明实施例还提供了一种上行同步方法,该方法包括:
第二通信节点接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束;
所述第二通信节点接收第一通信节点反馈的上行接入响应消息。
可选的,所述第二通信节点采用上行发射波束发送上行接入信号的方式为:
所述第二通信节点将上行发射波束分为M组,采用不同的上行发射波束组发送不同的上行接入信号,其中M>0,每个上行发射波束组包含至少一个上行发射波束,分组后每个上行发射波束通过所在组索引及组内索引唯一确认。
可选的,所述第二通信节点接收第一通信节点反馈的上行接入响应消息为:
所述第二通信节点在不同上行接入资源集上接收上行接入响应消息,不同上行接入资源集为以下任一:
不同的时间资源集,
不同的频率资源集,
不同的波束资源集;
所述第二通信节点根据对应不同上行接入资源集的上行接入响应消息确定满足上行接入条件的上行发射波束所在组索引及组内索引。
可选的,所述第二通信节点依据以下任一或任意多个方式将上行发射波束划分为多个上行发现波束组:
不同波束对应不同的时间资源集;
不同波束对应不同的频率资源集;
不同波束对应不同的序列资源集。
可选的,所述第二通信节点依据以下任一或任意多个方式将上行发射波束划分为多个上行发现波束组:
不同组对应不同的时间资源集;
不同组对应不同的频率资源集;
不同组对应不同的序列资源集。
可选的,所述第一通信节点为基站或终端,所述第二通信节点为基站或终端。
本发明实施例还提供了一种上行同步装置,包括:
资源集配置模块,设置为配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束;
上行接入信号接收模块,设置为按照所述资源集信息在一个或多个接收波束对应的资源集上检测上行接入信号;
响应消息发送模块,设置为在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息。
可选的,所述资源集配置模块包括:
第一配置单元,设置为通过广播和/或高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息;
第二配置单元,设置为同第二通信节点已经建立连接的另一个载波对应的所述第一通信节点通过高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息,其中另一个载波对应的第一通信节点可能和本第一通信节点是同一个或者是物理位置分开的另一个第一通信节点。
可选的,该装置还包括:
预配置模块,设置为与所述第二通信节点预先约定对应的资源集信息。
本发明实施例还提供了一种上行同步装置,该装置包括:
上行接入信号发送模块,设置为接收第一通信节点配置的N个上行接收 波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束;
响应接收模块,设置为接收第一通信节点反馈的上行接入响应消息。
可选的,所述上行接入信号发送模块包括:
第一发送单元,设置为将上行发射波束分为M组,采用不同的上行发射波束组发送不同的上行接入信号,其中M>0,每个上行发射波束组包含至少一个上行发射波束,分组后每个上行发射波束通过所在组索引及组内索引唯一确认。
可选的,所述响应接收模块包括:
第一接收单元,设置为在不同上行接入资源集上接收上行接入响应消息,不同上行接入资源集为以下任一:
不同的时间资源集,
不同的频率资源集,
不同的波束资源集;
索引确认单元,设置为根据对应不同上行接入资源集的上行接入响应消息确定满足上行接入条件的上行发射波束所在组索引及组内索引。
本发明实施例还提供了一种上行同步***,包括第一通信节点和第二通信节点;
所述第一通信节点,设置为配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束,按照所述资源集信息在一个或多个接收波束对应的资源集上检测接收上行接入信号,在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息;
所述第二通信节点,设置为接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发 射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束,接收第一通信节点反馈的上行接入响应消息。
可选的,所述第一通信节点为基站或终端,所述第二通信节点为基站或终端。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供了一种上行同步方法、装置和***,第一通信节点配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束,然后所述第一通信节点按照所述资源集信息在一个或多个接收波束对应的资源集上检测接收上行接入信号,再在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息;第二通信节点接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,第二通信节点接收第一通信节点反馈的上行接入响应消息。上述技术方案实现了通信双方对上行接入波束的配置确认,解决了第一通信节点与第二通信节点无法进行正常通信的问题。
附图概述
图1为本发明实施例的利用时域资源集指示接收波束索引的原理示意图;
图2为本发明实施例的利用时域资源集指示接收波束索引的原理示意图;
图3为本发明实施例的利用频域资源集指示接收波束索引的原理示意图;
图4为本发明实施例的利用时域和频域资源集联合指示波束索引的原理示意图;
图5为本发明实施例的利用时域、频域资源集联合序列集合指示接收波束索引的原理示意图;
图6为本发明实施例的利用上行接入响应信号的附加区域指示信息指示上行接入信号质量的原理示意图;
图7为本发明实施例的实现上行接收波束索引处理的原理示意图;
图8为本发明的实施例八提供的一种上行同步装置的结构示意图;
图9为本发明的实施例八提供的又一种上行同步装置的结构示意图。
本发明的较佳实施方式
为获得较好的波束赋型权值,对于作为发送端的第一通信节点来说,作为接收端的第二通信节点需要反馈下行的信道状态信息或者权值,对于接收端来说,发送端需要反馈上行的信道状态信息或者权值,从而保证第一通信节点可以采用最优的波束发送下行业务,第二通信节点也可以采用的最优的波束发送上行业务。这时就会存在这样一个问题:第一通信节点在获得权值前,无法利用最优的波束覆盖到接收端,从而接收端无法对第一通信节点发送的参考信号进行测量,或者即使第一通信节点覆盖到第二通信节点,但是第二通信节点无法达到第一通信节点的同样的覆盖,反馈的内容第一通信节点无法获知,从而也不能进行波束权值的选择和正常通信。
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在实际应用中,可以应用发现过程,通过这个发现过程使得第一通信节点和第二通信节点得以发现对方,从而利用最优的权值进行通信。
可以将发现过程看做是训练的过程,发送端预先发送若干个上行接收波束对应的资源集以及用于发送上行接入信号的资源集,使得接收端可以了解这些上行接收波束的资源集信息,进而作为接收端的第二通信节点根据自身的天线能力以波束赋形的方式在作为发送端的第一通信节点给定的上行接入 信号的资源集发送上行接入信号。发送端可以通过传统的4G(如LTE)载波发送上行接收波束对应的资源集,也可以在高频载波上发送。当第二通信节点以波束赋形的方式发送所述上行接入信号后,第一通信节点可以根据所述接收波束接收到的上行接入信号质量确定最优的上行接入波束方向。第一通信节点将携带上行接入质量指示的上行应答消息发送给第二通信节点。
上行接入信号质量定义方法较多,例如可以采用上行接入信号的检测值同噪声的比值,或者上行接入信号的检测值同某个门限的比值等,进一步将上行接入信号质量量化为若干个比特。
在第一通信节点侧,第一通信节点可以通过预定义或高层信令或广播的方式通知第二通信节点第一通信节点接收上行接入信号时采用以下至少一种波束指示方式及相关的配置信息来指示上行接收波束组对应的资源集信息:
采用上行接入信号的时域资源集来指示接收上行接入信号的上行接收波束组的资源集信息;
采用上行接入信号的频域资源集来指示接收上行接入信号的上行接收波束组的资源集信息;
采用上行接入信号序列资源集来指示接收上行接入信号的上行接收波束组的资源集信息;
通过预定义的方式,第一通信节点可以通过以下波束识别方式中至少之一来接收第二通信节点发送的上行接入信号:
检测预定义时域资源集的上行接入信号;
检测预定义频域资源集的上行接入信号;
按照预定义上行接入信号序列集合,检测上行接入信号采用的码序列;
第一通信节点可以采用预定义的方式按照所述的波束识别方式检测上行接入信号。
第一通信节点可以采用广播和或高层信令的方式通知第二通信节点第一通信节点的上行接收波束组的资源集信息。
第二通信节点若同时处于传统网络和高频网络覆盖,可以通过已经建立连接的传统网络发送高层信令,也可以通过高频网络的广播信道发送。
第一通信节点可以将上行接收波束划分为N组,其中N>0,组内至少包括一个接收波束。
当第一通信节点利用上行接入信号的时域资源集来分波束组接收第二通信节点发送的上行接入信号时,第一通信节点可以通过广播和或高层信令通知上行接收波束组与上行接入信号的时域资源集信息的对应关系。
当第一通信节点利用上行接入信号的频域资源集分波束组接收第二通信节点发送的上行接入信号时,第一通信节点可以通过广播和或高层信令通知上行接收波束组与上行接入信号的频域资源集的对应关系。
当第一通信节点利用上行接入信号的码域资源集分波束组接收第二通信节点发送的上行接入信号时,第一通信节点可以通过广播和或高层信令通知上行接收波束组与上行接入信号的码域资源集信息的对应关系。其中不同码域资源集对应不同序列。
当第一通信节点利用上行接入信号的时域资源集分波束组接收第二通信节点发送的上行接入信号时,通过预定义的方式,第一通信节点和第二通信节点应该有一致的预定义时域资源集与上行接收波束索引的对应关系。
当第一通信节点利用上行接入信号的频域资源集分波束组接收第二通信节点发送的上行接入信号时,通过预定义的方式,第一通信节点和第二通信节点应该有一致的预定义频域资源集与上行接收波束索引的对应关系。
当第一通信节点利用上行接入信号的码域资源集来分波束接收第二通信节点发送的上行接入信号时,通过预定义的方式,第一通信节点和第二通信节点应该有一致的预定义频域资源集与上行接收波束索引的对应关系。
在第二通信节点侧,第二通信节点可以通过预定义的方式和/或接收广播和或高层信令获知采用以下至少一种波束指示方式及相关的配置信息来识别上行发射波束索引:
采用发送上行接入信号的时域资源集来区别上行接入信号的上行发射波束索引;
采用发送上行接入信号的频域资源集来区别上行接入信号的上行发射波束索引;
采用发送上行接入信号的码域资源集来区别上行接入信号的上行发射波束索引;
所述上行发射波束索引是指第二通信节点通过接收第一通信节点通知的上行接入信号资源集所确定的每个上行波束对应的资源集集。
通过预定义的方式,第二通信节点可以通过以下上行发射波束指示方式中至少之一来区分上行发射波束索引信息:
在预定义的时域资源集上发送上行接入信号,区分上行发射波束索引信息;
在预定义的频域资源集上发送上行接入信号,区分上行发射波束索引信息;
在预定义的上行接入信号序列集合中选择一个或者多个序列发送上行接入信号,区分上行发射波束索引信息。其中,一个上行接入信号序列集合至少包括一个上行接入信号序列;
第二通信节点发送上行接入信号时,携带反馈下行波束索引识别的指示信息;
第二通信节点采用以下之一反馈下行波束索引识别的指示信息:
第二通信节点通过时域资源集反馈下行波束索引识别的指示信息;
第二通信节点通过频域资源集反馈下行波束索引识别的指示信息;
第二通信节点通过码域资源集反馈下行波束索引识别的指示信息。
第二通信节点可以采用预定义的方式获得波束指示方式。
第二通信节点可以通过接收广播和或高层信令获得波束指示方式。
当第二通信节点利用时域资源集来反馈下行波束索引时,采用接收广播和或高层信令的方式第二通信节点获得时域资源集与下行波束索引的对应关系。
当第二通信节点利用频域资源集来反馈下行波束索引时,采用接收广播和或高层信令的方式第二通信节点获得频域资源集与下行波束索引的对应关系。
当第二通信节点利用上行接入信号序列来反馈下行波束索引时,采用接收广播和或高层信令的方式获得上行接入信号序列集合与下行波束索引的对应关系。
当第二通信节点利用时域资源集来反馈下行波束索引时,采用预定义的方式,第二通信节点和第一通信节点应该有一致的预定义时域资源集与下行波束索引的对应关系。
当第二通信节点利用频域资源集来反馈下行波束索引时,采用预定义的方式,第二通信节点和第一通信节点应该有一致的预定义频域资源集与下行波束索引的对应关系。
当第二通信节点利用上行接入信号序列来反馈下行波束索引时,采用预定义的方式,第二通信节点和第一通信节点应该有一致的预定义序列集合与下行波束索引的对应关系。
当第二通信节点以分组的波束赋形的方式发送上行接入信号时,第二通信节点可以通过以下波束指示方式中至少之一区分上行发射波束组索引:
利用上行接入信号的时域资源集区分不同的上行发射波束组索引;
利用上行接入信号的频域资源集区分不同的上行发射波束组索引;
利用上行接入信号序列集合区分不同的上行发射波束组索引;
利用上述两种及两种以上的组合区分不同的上行发射波束组索引。
为了更好地理解本发明,下面结合附图和具体实施例对本发明作进一步地描述。
在实际***应用中波束的概念指的是波束可以减少第一通信节点的信号功率在无用方向上的泄露,保证信号功率的方向特性,增强第一通信节点的覆盖范围。
所述下行波束索引用于使第一通信节点可以查找到对应的波束,实际反馈的可以是所述索引的相关信息,例如:时域资源集索引、频域资源集索引,下行信号序列索引等或与这些索引等价的值。但凡能表达与本发明实施例中所述下行波束索引相关或者等价的索引均在本发明的保护范围之内。
实施例一:
如图2所示,假设基站利用N个上行接收波束接收上行接入信号,接收波束可以覆盖基站要求覆盖的区域。
基站和终端预定义了N个时域资源集分别对应N个上行接收波束索引。
或者,基站通过广播和或高层信令通知N个时域资源集分别与N个上行接收波束组的对应关系。本基站通过广播通知终端,或者由同一覆盖下的已经同终端建立连接的另一个基站通过高层信令通知终端。
如果,终端通过广播和或高层信令获得N个时域资源集分别与N个上行接收波束组的对应关系,那么终端需要首先接收所述广播和或高层信令,获得所述对应关系。
终端获得N个时域资源集分别与N个上行接收波束索引的对应关系后,通过在对应时域资源集以波束赋形的方式向不同的上行接收波束组发送上行接入信号。基站根据约定的时间在不同上行接收波束组上接收上行接入信号识别基站不同上行接收波束的接收情况。例如图1所示。其中时域资源集可以包括多个时间单元的集合。时间单元可以为微帧,子帧,半帧,无线帧,基本时间单元等。
基站接收到终端发送的上行接入信号后通过波束赋形方式向终端发送上行接入响应消息,上行接入响应消息中携带上行接入的识别信息。基站发送的上行接入响应消息中还可以携带上行接入质量指示消息。
终端接收到应答消息后识别满足上行传输的上行发射波束。
子实施例1:
假设基站利用了8个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了8个资源集分别对应8个上行接收波束组,或者基站通过广播和或高层信令通知终端8个时域资源集分别和8个上行接收波束组之间的对应关系,如表1所示。其中时域资源集可以包括占用的时间单元索引和/或持续时间。其中持续时间可以以包含的时间单元个数来体现。其中持续时间也可以为上行接入信号的时域重复次数。
表1
上行接收波束组索引 发送上行接入信号的时域资
  源集
0 时域资源集0
1 时域资源集1
7 时域资源集7
假设终端通过检测下行信号接收基站广播消息识别上行接入信号的资源集信息,这时终端在不同上行接收波束组对应的时域资源集发送上行接入信号。
假设终端利用4个上行发射波束可以基本覆盖终端需要覆盖的上行发射区域。终端以时分的方式在同一个上行接收波束时间资源集发送多次上行接入信号以覆盖不同的上行接收发射波束,上行波束关系如表2所示:
表2
Figure PCTCN2015078393-appb-000004
Figure PCTCN2015078393-appb-000005
表2中终端根据上行发射的时域资源集区分上行发射波束。基站将接收波束组分为8个时域资源集检测所述上行接入信号。
终端在每个上行接收波束对应的时间资源集在不同上行发射波束上发送上行接入信号。
基站在不同上行接收波束组上接收终端的上行接入信号后根据接收到的上行接入信号发送上行接入响应消息。
终端接收到应答消息后识别满足上行传输的上行发射波束。
子实施例2:
假设基站利用了16个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了16个时域资源集分别对应16个上行接收波束组,或者基站通过广播和或高层信令通知终端16个时域资源集分别和16个上行接收波束组之间的对应关系,如表3所示。
基站可以通过本基站的广播和或高层信令载波通知终端,或者由同一覆盖下的已经同终端建立连接的另一个基站通过高层信令通知终端。
其中时域资源集可以包括占用的时间单元索引和/或持续时间。其中持续时间可以以包含的时间单元个数来体现。其中持续时间也可以为上行接入信号的时域重复次数。
表3
Figure PCTCN2015078393-appb-000006
终端通过检测下行信号接收基站广播和或高层信令识别上行发射波束的时域资源集信息,这时终端在对应的时域资源集向不同上行接收波束组发送 上行接入信号。
假设终端利用4个上行发射波束可以基本覆盖终端需要覆盖的上行发射区域。终端以时分的方式在同一个上行接收波束时间资源集发送多次上行接入信号以覆盖不同的上行发射接收波束,上行波束关系如表4所示:
表4
Figure PCTCN2015078393-appb-000007
基站将接收波束分为16个时域资源集检测所述上行接入信号,终端在每个接收波束对应的时间持续集上发送4次上行接入信号,基站在时间资源集所对应的上行接收波束组接收终端发送的上行接入信号后根据接收到的上行接入信号发送上行接入响应消息。
终端接收到应答消息后识别满足上行传输的上行发射波束。
其中终端发送的4次上行接入信号的波束可以是时分发送也可以在时间 上部分重叠。
子实施例3
假设基站利用了16个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了16个时域资源集分别对应16个上行接收波束组,或者基站通过广播和或高层信令通知终端16个时域资源集分别和16个上行接收波束组之间的对应关系,如表3所示。
基站可以通过本基站的载波通过广播和或高层信令通知终端,或者由同一覆盖下的已经同终端建立连接的另一个基站通过高层信令通知终端。
其中时域资源集可以包括占用的时间单元索引和/或持续时间。其中持续时间可以以包含的时间单元个数来体现。其中持续时间也可以为上行接入信号的时域重复次数。
终端通过检测下行信号接收基站广播和或高层信令识别上行发射波束的时域资源集,终端在不同上行接收波束组对应的时域资源集发送上行接入信号。
假设终端利用4个上行发射波束可以基本覆盖终端需要覆盖的上行发射区域。终端以时分的方式在同一个上行接收波束时间资源集发送多次上行接入信号以覆盖不同的上行接收发射波束,上行波束关系如表4所示:
表4
Figure PCTCN2015078393-appb-000008
基站将上行接收波束组分为16个时域资源集检测所述上行接入信号,终端在每个上行接收波束对应的时间持续集上发送4次上行接入信号,基站在不同接收方向上接收终端发送的上行接入信号后根据接收到的上行接入信号发送上行接入响应消息。
其中终端发送的4次上行接入信号的波束可以是时分发送也可以在时间上部分重叠。
应答消息包括上行接入信号质量指示信息(PQI),其中指示比特个数nPQI=2,指示的质量状况按表5由低向高排列如下
表5
[b1 b0] 优先级
0 0 0
0 1 1
1 0 2
11 3
终端接收到上行发射波束索引0和上行波束索引2发送的上行接入信号的应答消息,分别记为RAR_txBeam0和RAR_txBeam2,RAR_txBeam0和RAR_txBeam2的PQI字段分别为[0 0]和[1 0]。终端从多个上行接入响应中选取上行发射波束索引为2的波束作为最优的上行发射波束。
实施例二:
假设基站利用N个上行接收波束组接收上行接入信号,利用N个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了N个频域资源集分别对应N个上行接收波束索引。
或者,基站通过广播和或高层信令通知终端N个频域资源集分别与N个上行接收波束组的对应关系。
如果,终端通过广播和或高层信令获得N个时域资源集分别与N个上行接收波束组的对应关系,那么终端需要首先接收所述广播和或高层信令,获得所述对应关系。
终端获得N个频域资源集分别与N个上行接收波束索引的对应关系后,通过在对应频域资源集以波束赋形的方式向不同的上行接收波束组发送上行接入信号。例如图3所示。基站和终端仅仅通过频域资源集来识别不同上行 接收波束组。其中所述频域资源集包括发送上行接入信号的起始频域资源位置和/或上行接入信号占用的频域带宽。
基站接收到终端发送的上行接入信号后通过波束赋形方式向终端发送上行接入响应消息,上行接入响应消息中携带上行接入的识别信息。基站发送的上行接入响应消息中还可以携带上行接入质量指示消息。
终端接收到应答消息后识别满足上行传输的上行发射波束。
子实施例1:
基站利用了8个上行接收波束组接收终端发送的上行接入信号,8个上行接收波束可以基本覆盖基站需要覆盖的区域。基站和终端预定义了8个频域资源集分别对应8个上行接收波束组,或者基站通过广播和或高层信令通知终端8个频域资源集分别和8个下行波束组之间的对应关系,如表6所示。
表6
Figure PCTCN2015078393-appb-000009
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号的资源集信息,这时终端选择不同上行接收波束对应的频域资源集发送上行接入信号。
基站在多个频域资源集检测所述上行接入信号,当基站在频域资源集6 处检测到所述上行接入信号后,基站发送对应频域资源集6的上行接入响应消息识别最优上行接收波束。
终端根据上行接入响应消息对应的上行发射波束即可确认最优上行发射波束。
子实施例2:
假设基站利用了10个上行接收波束组接收终端发送的上行接入信号,10个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了10个频域资源集分别对应10个上行接收波束组,或者基站通过广播和或高层信令通知终端10个频域资源集分别和10个下行波束组之间的对应关系,如表7所示。
表7
Figure PCTCN2015078393-appb-000010
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号的频域资源集信息,这时终端选择不同上行接收波束组对应的频域带宽发送上行接入信号。
基站在多个频域资源集检测所述上行接入信号,当基站在频域带宽6处检测到所述上行接入信号后,基站发送对应频域带宽6的上行接入响应消息识别最优上行接收波束。
终端根据上行接入响应消息对应的上行发射波束即可确认最优上行发射波束。
子实施例3
假设基站利用了16个上行接收波束组接收终端发送的上行接入信号,16个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了16个频域资源集分别对应16个上行接收波束组,或者基站通过广播和或高层信令通知终端16个频域资源集分别和16个下行波束组之间的对应关系,如表8所示。
表8
Figure PCTCN2015078393-appb-000011
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号的频域资源集信息,这时终端选择不同上行接收波束组对应的频域带宽发送上行接入信号。
基站在多个频域资源集检测所述上行接入信号,当基站在频域带宽6处检测到所述上行接入信号后,基站发送对应频域带宽6的上行接入响应消息识别最优上行接收波束。
终端根据上行接入响应消息对应的上行发射波束即可确认最优上行发射波束。
实施例三:
假设基站利用N个上行接收波束组接收上行接入信号,利用N个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了N个上行接入信号序列集合分别对应N个上行接收波束组。
或者,基站通过广播和或高层信令通知终端N个上行接入信号序列集合分别与N个上行接收波束组的对应关系,其中,一个上行接入信号序列集合至少包括一个上行接入信号序列。可以通过本基站向终端发送广播和或高层信令,也可以通过已经与本终端建立连接的其他基站向终端发送高层信令。
终端获得N个上行接入序列集合与N个上行接收波束组的对应关系后,以波束赋形的方式向不同的上行接收波束组发送对应序列集合的上行接入信号。例如图5所示。基站和终端通过序列集合来识别不同上行接收波束组。其中所述序列集合包括至少一个用于上行接入信号的序列。
基站接收到终端发送的上行接入信号后通过波束赋形方式向终端发送上行接入响应消息,上行接入响应消息中携带上行接入的识别信息。基站发送的上行接入响应消息中还可以携带上行接入质量指示消息。
终端接收到应答消息后识别满足上行传输的上行发射波束。
子实施例1:
基站利用8个上行接收波束组接收上行接入信号,基站利用8个上行接收波束组可以基本覆盖基站需要覆盖的接收区域。基站和终端预定义了8个上行接入信号序列集合分别对应8个上行接收波束组,或者基站通过广播和或高层信令通知终端8个上行接入信号序列集合和8个上行接入波束组之间的对应关系,如表9所示。
表9
Figure PCTCN2015078393-appb-000012
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号的序列集合信息,这时终端选择不同上行接收波束对应的序列集合中的一个或多个序列发送上行接入信号。
基站在上行接收波束组上接收对应上行接收波束组的上行接入序列,当基站检测到所述上行接入信号所用序列为上行接入信号序列集合6中的序列,基站发送对应上行接入信号序列集合6的上行接入响应消息识别满足上行传输的上行接收波束。基站在之后的时间接收所述终端传输的上行数据可以采用所述上行接收波束。
终端根据接收到的对应上行发射波束的上行接入响应消息确认满足上行传输的上行发射波束。
子实施例2:
基站利用了10个上行接收波束组接收上行接入信号,基站利用10个上行接收波束组可以基本覆盖基站需要覆盖的接收区域。基站和终端预定义了10个上行接入信号序列集合对应10个上行接收波束组,或者基站通过广播和或高层信令通知终端10个上行接入信号序列集合分别和10个上行接入波束组之间的对应关系,如表10所示。
表10
Figure PCTCN2015078393-appb-000013
假设终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号序列资源集信息,这时终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。
基站在上行接收波束组接收上行接入信号,基站检测到所述上行接入信号所用序列为上行接入信号序列集合6中的序列,基站发送对应上行接入信号序列集合6的上行接入响应消息识别满足上行传输的上行接收波束。基站在之后的时间接收所述终端传输的上行数据可以采用所述上行接收波束。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
子实施例3:
基站利用了32个上行接收波束组接收上行接入信号,基站利用32个上行接收波束组可以基本覆盖基站需要覆盖的接收区域。基站和终端预定义了 32个上行接入信号序列集合对应32个上行接收波束组,或者基站通过广播和或高层信令通知终端32个上行接入信号序列集合分别和10个上行接入波束组之间的对应关系,如表11所示。
表11
Figure PCTCN2015078393-appb-000014
假设终端在接入基站建立连接之前已经与同一覆盖下的传统节点建立连接,传统节点通过高层信令的方式通知终端上行接收波束组的上行接入信号资源配置。此处已经建立连接的传统节点为LTE节点,正在接入的基站为毫米波节点。
基站在上行接收波束组接收上行接入信号,基站检测到所述上行接入信号所用序列为上行接入信号序列集合6中的序列,基站发送对应上行接入信号序列集合6的上行接入响应消息识别满足上行传输的上行接收波束。基站在之后的时间接收所述终端传输的上行数据可以采用所述上行接收波束。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
实施例四:
假设基站利用N个上行接收波束组接收上行接入信号,利用N个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了X个上行接入信号序列集合和Y个上行接入波束的时域资源集组成X*Y=N个序列时域资源集对应N个上行接收波束组。其中X≥1,Y≥1。
或者,基站通过广播和或高层信令通知终端N个序列时域资源集与N个上行接收波束组的对应关系。
基站将上行接收波束分为nG个组,nG>1,组内至少包括一个接收波束,组内同时接收,组间时分接收,组内接收所述预定义的上行接入信号序列集合。终端通过调整上行接入信号序列和上行接入信号发送时间组合发送上行接入信号以覆盖不同的上行接收波束和发射波束组合。
如果,终端通过***消息获得N个序列时域资源集合分别与N个下行波束索引的对应关系,那么终端需要首先接收所述***消息,获得所述对应关系。终端利用对应N个序列时域资源集的上行接入信号发送上行接入信号保证基站的每个上行接收波束都能收到上行接入信号。基站和终端通过上行接入信号时域序列集合来识别不同上行接收波束索引。其中每个上行接入信号序列时域资源集合中包括至少一个上行接入信号序列和一个时域资源集。
例如:上行接入信号序列时域资源集合0中包括:上行接入信号序列集合0和上行接入信号发送时域资源集0。
上行接入信号序列时域资源集合1中包括:上行接入信号序列集合1和上行接入信号发送时域资源集1。
或者
上行接入信号序列时域资源集合0中包括:上行接入信号序列集合0和上行接入信号发送时域资源集0。
上行接入信号序列时域资源集合1中包括:上行接入信号序列集合0和上行接入信号发送时域资源集1。
或者
上行接入信号序列时域资源集合0中包括:上行接入信号序列集合0和上行接入信号发送时域资源集0。
上行接入信号序列时域资源集合1中包括:上行接入信号序列集合1和上行接入信号发送时域资源集0,等。
子实施例1:
假设基站利用了8个上行接收波束组接收终端发送的上行接入信号,基站利用8个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了8个上行接入信号序列时域资源集合分别对应8个上行接收波束组 索引,或者基站通过广播和或高层信令通知终端8个上行接入信号序列时域资源集合分别和8个上行波束组之间的对应关系,如表12所示。
表12
Figure PCTCN2015078393-appb-000015
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号序列时域资源集信息,这时终端选择不同上行接收波束组对应的序列时域集的一个或多个序列发送上行接入信号。
基站在上行接收波束组接收上行接入信号,基站检测到所述上行接入信号所用序列为上行接入信号时域序列集合6中的序列,基站发送对应上行接入信号时间序列集合6的上行接入响应消息识别满足上行传输的上行接收波束。基站在之后的时间接收所述终端传输的上行数据可以采用所述上行接收波束。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
子实施例2:
假设基站利用了10个上行接收波束组接收终端发送的上行接入信号,基站利用10个上行接收波束可以基本覆盖基站需要覆盖的区域。基站和终端预定义了10个上行接入信号序列时域资源集合分别对应10个上行接收波 束组,或者基站通过***消息通知终端10个上行接入信号序列时域资源集合分别和10个上行接收波束组之间的对应关系,如表13所示。
表13
Figure PCTCN2015078393-appb-000016
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号序列时域资源集信息,这时终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。
基站在上行接收波束组接收上行接入信号,基站检测到所述上行接入信号所用序列为上行接入信号时域序列集合6中的序列,基站发送对应上行接入信号时间序列集合6的上行接入响应消息识别满足上行传输的上行接收波束。基站在之后的时间接收所述终端传输的上行数据可以采用所述上行接收波束。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
若同一终端发送的多个上行接入信道接收到上行接入响应信号,根据上行接入信号质量字段选取质量优的上行接入响应信号对应的上行波束作为上 行最优发射波束。应答消息包括上行接入信号质量指示信息(PQI),其中指示比特个数nPQI=2,指示的质量状况按表14由低向高排列如下:
表14
[b1 b0] 优先级
0 0 0
0 1 1
1 0 2
11 3
终端接收到上行发射波束索引0和上行波束索引2发送的上行接入信号的应答消息,分别记为RAR_txBeam0和RAR_txBeam2,RAR_txBeam0和RAR_txBeam2的PQI字段分别为[0 0]和[1 0]。终端从多个上行接入响应中选取上行发射波束索引为2的波束作为最优的上行发射波束。
实施例五:
假设基站利用N个上行接收波束组接收上行接入信号,基站利用N个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了X个上行接入信号序列集合和Y个上行接入信号的频域资源集组成X*Y=N个序列频域资源集集合分别对应N个上行接收波束组,其中X≥1,Y≥1。
或者,基站通过广播和或高层信令通知终端N个序列频域资源集分别与N个上行接收波束组的对应关系。本基站通过广播通知终端,或者由同一覆盖下的已经同终端建立连接的另一个基站通过高层信令通知终端。
如果,终端通过广播和或高层信令获得N个序列频域资源集与N个上行接收波束组的对应关系,那么终端需要首先接收所述广播和或高层信令,获得所述对应关系。基站和终端通过上行接入信号频域序列集合来识别不同上行接收波束索引。终端利用对应N个序列频域资源集的上行接入信号以波束赋形的方式发送上行接入信号保证覆盖基站的每个上行接收波束组。其中每 个上行接入信号序列频域资源集合中包括至少一个上行接入信号序列和一个频域资源集。
例如:上行接入信号序列频域资源集集合0中包括:上行接入信号序列集合0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号序列集合1和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号序列集合0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号序列集合0和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号序列集合0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号序列集合1和上行接入信号发送频域资源集0,等。
子实施例1:
假设基站利用了8个上行接收波束组接收上行接入信号,基站利用8个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了8个上行接入信号序列频域资源集分别对应8个上行接收波束组,
或者基站通过广播和或高层信令通知终端8个上行接入信号序列频域资源集分别和8个上行接收波束组之间的对应关系,如表15所示。
表15
Figure PCTCN2015078393-appb-000017
Figure PCTCN2015078393-appb-000018
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号序列频域资源集信息,这时终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。
上行接收波束组同上行接入信号序列频域资源集的对应关系可以由本基站通过广播和或高层信令通知终端,也可以由同本终端已建立连接的其它基站通过高层信令通知终端。
基站接收到终端选择上行接入信号序列频域资源集6中一个或者几个上行接入信号。
基站在上行接收波束组6上检测所述上行接入信号的序列频域资源集,基站检测到所述上行接入信号后基站向终端发送上行接入响应消息。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
子实施例2:
假设基站利用了8个上行接收波束组接收上行接入信号,基站利用8个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了8个上行接入信号序列频域资源集与8个上行接收波束组的对应关系,
或者基站通过广播和或高层信令通知终端10个上行接入信号序列频域资源集和10个上行接收波束组之间的对应关系,如表16所示。
表16
上行接收波 发送上行接入信号的上行接入信号序列频域资源集
束组  
0 上行接入信号序列频域资源集0
1 上行接入信号序列频域资源集1
2 上行接入信号序列频域资源集2
3 上行接入信号序列频域资源集3
4 上行接入信号序列频域资源集4
5 上行接入信号序列频域资源集5
6 上行接入信号序列频域资源集6
7 上行接入信号序列频域资源集7
8 上行接入信号序列频域资源集8
9 上行接入信号序列频域资源集9
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号的序列频域资源集信息,终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。
上行接收波束组同上行接入信号序列频域资源集的对应关系可以由本基站通过广播和或高层信令通知终端,也可以由同本终端已建立连接的其它基站通过高层信令通知终端。
基站接收到终端选择上行接入信号序列频域资源集6中一个或者几个上行接入信号。检测到所述上行接入信号后基站向终端发送上行接入响应消息。响应消息中包括上行接入信号质量指示信息(PQI),其中指示比特个数nPQI=2,指示的质量状况按表5由高向低排列如表17所示。
表17
[b1 b0] 优先级
0 0 3
0 1 2
1 0 1
11 0
终端接收到上行波束索引0和上行波束索引2发送的上行接入响应消息分别记为RAR_txBeam0和RAR_txBeam2,RAR_txBeam0和RAR_txBeam2的PQI字段分别为[0 0]和[1 0]。终端从中选取上行波束索引为0的波束作为最优的上行发射波束。
实施例六:
假设基站利用N个上行接收波束组接收上行接入信号,利用N个上行接收波束组可以基本覆盖基站需要覆盖的区域。基站和终端预定义了X个上行接入信号时域资源集和Y个上行接入信号的频域资源集组成X*Y=N个时域和频域联合位置分别对应N个上行接收波束组。
或者,基站通过广播和或高层信令通知终端N个序列时域频域资源集分别与N个上行接收波束组的对应关系。所述对应关系可由本基站通过广播和或高层信令通知终端,或者由同一覆盖下的已经同终端建立连接的另一个基站通过高层信令通知终端。
如果,终端通过广播和或高层信令获得N个时域频域资源集与N个上行接收波束组的对应关系,那么终端需要首先接收所述广播和或高层信令,获得所述对应关系。基站和终端通过上行接入信号时域频域集合来识别不同上行接收波束组。终端利用对应N个时域频域资源集的上行接入信号以波束赋形的方式发送上行接入信号覆盖基站的每个上行接收波束组。其中每个上行接入信号序列频域资源集合中包括至少一个时域资源集和一个频域资源集。例如图4所示,其中,BFn为上行接收波束索引。这里不限制基站配置给终端的上行接入信号序列,基站和终端通过上行接入信号的时域和频域资源集来识别不同上行接收波束组。
例如:上行接入信号时域和频域联合位置0中包括:上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集1中包括:上行接入信号发送时域资源集 1和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集0中包括:上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集1中包括:上行接入信号发送时域资源集0和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集0中包括:上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集1中包括:上行接入信号发送时域资源集1和上行接入信号发送频域资源集0,等。
子实施例1:
假设基站利用了8个上行接收波束组接收上行接入信号,基站利用8个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了8个上行接入信号时域和频域联合位置分别对应8个上行接收波束组,或者基站通过广播和或高层信令通知终端8个上行接入信号时域和频域资源集和8个上行接收波束组之间的对应关系,如表18所示。
表18
Figure PCTCN2015078393-appb-000019
Figure PCTCN2015078393-appb-000020
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号时域和频域资源集信息,这时终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。
上行接收波束组同上行接入信号时域频域资源集的对应关系可以由本基站通过广播和或高层信令通知终端,也可以由同本终端已建立连接的其它基站通过高层信令通知终端。
基站接收到终端选择上行接入信号时域频域资源集6中一个或者几个发送上行接入信号。
基站在上行接收波束组6上检测所述上行接入信号的时域频域资源集,基站检测到所述上行接入信号后基站向终端发送上行接入响应消息。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
子实施例2:
假设基站利用了10个上行波束组接收上行接入信号,基站利用10个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了10个上行接入信号时域和频域资源集分别对应10个上行接收波束索引,或者基站通过***消息通知终端10个上行接入信号时域和频域资源集分别和10个上行接收波束索引之间的对应关系,如表19所示。
表19
Figure PCTCN2015078393-appb-000021
Figure PCTCN2015078393-appb-000022
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号时域和频域资源集信息,这时终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。
上行接收波束组同上行接入信号时域频域资源集的对应关系可以由本基站通过广播和或高层信令通知终端,也可以由同本终端已建立连接的其它基站通过高层信令通知终端。
终端根据自身的波束能力对上行发射波束进行分组,组间通过时分的方式区分不同的上行发射波束,组内通过码分的方式区别不同的上行发射波束。终端根据时分确定上行发射波束的组索引,根据码分确定上行发射波束的组内索引,根据组索引和组内索引终端可以确定唯一的上行发射波束索引。终端从组索引idxG和组内索引idxInG发射上行接入信号之后会接收对应idxG和idxInG的上行接入响应消息。
基站接收到终端选择上行接入信号时域频域资源集6中一个或者几个上行接入信号。
基站在上行接收波束组6上检测到所述时域频域资源集的上行接入信号,基站检测到所述上行接入信号后基站向终端发送上行接入响应消息。
如图6所示,响应消息包括上行接入信号识别信息和上行接入信号质量指示信息(PQI)。上行接入信号识别信息包括对应上行接入信号的时间资源集和上行接入信号的频域资源集。对应上行接入信号的时间资源集包括以下至少之一:
上行接入的时间与上行接入响应的定时关系,例如上行接入信号的发送 时间为tTx则在tTx+n发送对应的上行接入响应消息。其中n为发送和响应上行接入的定时时间单位,n>0;
上行接入的时间与上行接入响应满足一定时延的定时关系,例如上行接入信号的发送时间为tTx,基站在tTx+n~tTx+n+tWindow发送对应的上行接入响应消息,其中n为发送和响应上行接入的定时时间,tWindow是响应上行接入的时间窗,tWindow>0,基站在这个时间窗之内都可以响应上行接入信号;
上行接入的持续时间与上行接入响应满足一定的定时关系,例如上行接入信号的发送时间为tTx、持续时间为tDura,基站在时间tTx+n+k*tDura响应上行接入信号,其中n为发送和响应上行接入的定时时间,k为基于接入序列持续时间的时间偏移粒度,k>0;
对应上行接入信号的频域资源集包括以下至少之一:
上行接入信号的频域位置与上行接入响应频域位置对应关系,例如上行接入信号的发送频域资源为fReLow~fReHigh则在fReLow-Δ1~fReHigh+Δ2频域范围发送对应的上行接入响应消息。其中,fReLow为上行接入信号所在频域的最低索引,fReHigh为上行接入信号所在频域的最高索引。Δ1和Δ2为发送和响应上行接入的频域偏移单位,Δ1>0,Δ2>0;
上行接入信号的频域位置与上行接入响应频域位置对应关系,例如上行接入信号的发送频域资源为fReLow~fReHigh则上行接入响应在***带宽跳频传输,例如前半响应的频域位置在fMin+fReLow+Δ1~fMin+fReLow+lenAll/2+Δ1,后半响应的频域位置在fMax-fRe-+lenAll/2-Δ2~fMax-fRe–Δ2其中lenAll为上行接入信号占用的带宽;
或者根据上行接入信号的时间和频域资源确定一个隐含的接收扰码seqRX=a*tTx+b*fReLow,其中a>0,b>0。
上行接入信号质量指示信息比特隐含于上行接入响应的数据比特,其中指示比特个数nPQI=2,指示的质量状况及对应的扰码如表20,表20中优先级列的数值越高标明上行接入信号质量越高。
表20
[b1 b0] 优先级 扰码
0 0 3 [0 0 0 0 …]
0 1 2 [1 0 1 0 …]
1 0 1 [0 1 0 1 …]
1 1 0 [1 1 1 1 …]
终端接收到上行发射波束组索引0组内索引0和上行发射波束组索引2和组内索引2发送的上行接入的响应消息,分别记为RAR_txBeam0和RAR_txBeam2,RAR_txBeam0和RAR_txBeam2分别按照PQI字段[0 0]和[1 0]对应的扰码解扰正确解调。终端从中选取上行波束组索引0组内索引0的波束作为最优的上行发射波束。
实施例七:
假设基站利用N个上行接收波束组接收上行接入信号,基站利用N个上行接收波束可以基本覆盖基站需要覆盖的区域。基站和终端预定义了X个上行接入信号时域资源集和Y个上行接入信号的频域资源集以及S个上行接入信号序列集合组成X*Y*S=N个序列、时域和频域资源集分别对应N个上行接收波束组。
或者,基站通过广播和或高层信令通知终端N个序列、时域、频域资源集分别与N个上行接收波束组的对应关系。所述对应关系可由本基站通过广播和或高层信令通知终端,或者由同一覆盖下的已经同终端建立连接的另一个基站通过高层信令通知终端。
如果,终端通过广播和或高层信令获得N个序列、时域和频域资源集与N个上行接收波束组的对应关系,那么终端需要首先接收所述广播和或高层信令,获得所述对应关系。基站和终端通过上行接入信号的序列以及时域和频域集合来覆盖基站不同的上行接收波束组。终端利用对应N个时域频域资源集的上行接入信号以波束赋形的方式发送上行接入信号覆盖基站的每个上行接收波束组。例如图5所示,其中每个上行接入信号序列以及时域频域资源集合中包括至少一个序列集合、一个时域资源集和一个频域资源集。
例如:上行接入信号序列和时域、频域资源集集合0中包括:上行接入 信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合1中序列,上行接入信号发送时域资源集1和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集1和上行接入信号发送频域资源集0。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集1和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接 入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合1中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合1中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集1。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合1中序列,上行接入信号发送时域资源集1和上行接入信号发送频域资源集0。
或者
上行接入信号序列频域资源集集合0中包括:上行接入信号使用上行接入信号集合0中序列,上行接入信号发送时域资源集0和上行接入信号发送频域资源集0。
上行接入信号序列频域资源集集合1中包括:上行接入信号使用上行接入信号集合1中序列,上行接入信号发送时域资源集1和上行接入信号发送频域资源集1,等。
子实施例1:
假设基站利用了8个上行接收波束组接收上行接入信号,基站利用8个 上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了8个上行接入信号序列、时域和频域资源集分别对应8个上行接收波束组,
或者基站通过***消息通知终端8个上行接入信号序列和时域、频域资源集分别和8个上行接收波束组之间的对应关系,如表21所示。
表21
Figure PCTCN2015078393-appb-000023
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号序列、时域和频域资源集信息,这时终端选择不同上行接收波束组对应的序列、时域和频域资源集的一个或多个发送上行接入信号。终端根据自身的波 束能力对上行发射波束进行分组,组内通过码分的方式区别不同的上行发射波束,组间通过时分的方式区分不同的上行发射波束。
上行接收波束组同上行接入信号序列、时域和频域资源集的对应关系可以由本基站通过广播和或高层信令通知终端,也可以由同本终端已建立连接的其它基站通过高层信令通知终端。
基站接收到终端选择上行接入信号序列、时域和频域资源集6中一个或者几个上行接入信号序列、时域和频域资源集的组合发送的上行接入信号。
基站在上行接收波束组上检测所述上行接入信号的序列、时域和频域资源集,基站检测到所述上行接入信号后向终端发送上行接入响应消息。
终端根据接收到的对应上行发射波束的上行接入响应消息对应的上行发射波束确认满足上行传输的上行发射波束。
子实施例2:
假设基站利用8个上行接收波束组接收上行接入信号,基站利用8个上行接收波束组可以基本覆盖基站需要覆盖的上行接收区域。基站和终端预定义了对应于8个下行发射波束组的上行接入信号序列、时域和频域资源集。基站和终端预定义了8个上行接入信号序列、时域和频域资源集分别对应8个上行接收波束组,
或者基站通过***消息通知终端8个上行接入信号序列和时域、频域联合位置集合分别和8个上行接收波束索引之间的对应关系,如表22所示。
表22
上行接收波束组 序列、时域和频域联合资源集
0 序列、时域和频域联合资源集0
1 序列、时域和频域联合资源集1
2 序列、时域和频域联合资源集2
3 序列、时域和频域联合资源集3
4 序列、时域和频域联合资源集4
5 序列、时域和频域联合资源集5
6 序列、时域和频域联合资源集6
7 序列、时域和频域联合资源集7
终端通过检测下行信号接收基站广播和或高层信令识别上行接入信号时域和频域资源集信息,这时终端选择不同上行接收波束组对应的序列集合中的一个或多个序列发送上行接入信号。终端根据自身的波束能力对上行发射波束进行分组,组内通过码分的方式区别不同的上行发射波束,组间通过时分的方式区分不同的上行发射波束。
上行接收波束组同上行接入信号时域频域资源集的对应关系可以由本基站通过广播和或高层信令通知终端,也可以由同本终端已建立连接的其它基站通过高层信令通知终端。
基站接收到终端选择上行接入信号时域频域资源集6中一个或者几个发送上行接入信号。
基站在上行接收波束组6上检测所述时域频域资源集的上行接入信号,基站检测到所述上行接入信号后基站向终端发送上行接入响应消息。
响应消息中包括上行接入信号质量指示信息(PQI),上行接入信号质量指示信息比特隐含于上行接入响应的数据比特,其中指示比特个数nPQI=2,指示的质量状况及对应的扰码如表23,表23中优先级列的数值越高标明上行接入信号质量越高。
表23
[b1 b0] 优先级 扰码
0 0 3 [0 0 0 0 …]
0 1 2 [1 0 1 0 …]
1 0 1 [0 1 0 1 …]
1 1 0 [1 1 1 1 …]
终端接收到上行发射波束组索引0组内索引0和上行发射波束组索引2和组内索引2发送的上行接入的响应消息,分别记为RAR_txBeam0和RAR_txBeam2,RAR_txBeam0和RAR_txBeam2分别按照PQI字段[0 0]和[1 0] 对应的扰码解扰正确解调。终端从中选取上行波束组索引0组内索引0的波束作为最优的上行发射波束。
子实施例3:
假设基站1利用8个接收波束组接收接入信号,基站1利用8个接收波束组可以基本覆盖基站需要覆盖的接收区域。基站1和基站2预定义了对应于8个接收波束组的上行接入信号序列、时域和频域资源集。基站1和基站2预定义了8个接入信号序列、时域和频域资源集分别对应8个接收波束组,
或者基站1和基站2通过回程信令交互获知所述8个上行接入信号序列、时域和频域联合集合分别和8个上行接收波束组之间的对应关系,如表24所示。
表24
Figure PCTCN2015078393-appb-000024
Figure PCTCN2015078393-appb-000025
基站2选择不同上行接收波束组对应的序列、时域和频域集的一个或多个序列发送接入信号。基站2根据自身的波束能力对接入发射波束进行分组,组内通过频分的方式区别不同的接入发射波束,组间通过时分的方式区分不同的接入发射波束。
基站1在接收波束组6上检测所述序列、时域和频域资源集的接入信号,基站1检测到所述上行接入信号后基站1向基站2发送接入响应消息。
响应消息中包括接入信号质量指示信息(PQI),附加在接入信号识别字段之后,其中指示比特个数nPQI=2,指示的质量状况及对应的扰码如表25,表25中优先级列的数值越高标明上行接入信号质量越高。
表25
[b1 b0] 优先级
0 0 3
0 1 2
1 0 1
1 1 0
基站2接收到对应发射波束组索引0组内索引0和发射波束组索引2和组内索引2的接入的响应消息,分别记为RAR_txBeam0和RAR_txBeam2,RAR_txBeam0和RAR_txBeam2,基站1解调PQI字段从中选取上行波束组索引0组内索引0的波束作为最优的上行发射波束。
子实施例4:
假设终端1利用4个接收波束组接收接入信号,终端1利用4个接收波束组可以基本覆盖终端1需要覆盖的接收区域。终端1和终端2预定义了4个接入信号序列、时域和频域资源集分别对应4个接收波束组,
或者通过高层信令通知终端2关于终端1的接入信号序列和时域、频域资源集和8个接收波束组之间的对应关系,如表26所示。
表26
Figure PCTCN2015078393-appb-000026
终端1通过检测下行信号接收基站高层信令识别终端2的接入信号序列、时域和频域资源集信息,终端1选择不同接收波束组对应的序列、时域和频域资源集的一个或多个发送上行接入信号。终端1根据自身的波束能力对发射波束进行分组,组内通过码分的方式区别不同的上行发射波束,组间通过频分的方式区分不同的上行发射波束。
接收波束组同接入信号序列、时域和频域资源集的对应关系也可以在终端之间事先约定好。
终端2接收到终端1选择接入信号序列、时域和频域资源集6中一个或 者几个接入信号。
终端2在接收波束组上检测所述上行接入信号的序列、时域和频域资源集,终端2检测到所述接入信号后向终端1发送接入响应消息。
终端1根据接收到的对应发射波束的接入响应消息确认满足传输的发射波束。
以上各个实施例的方案之间可以以某种组合方式产生一些组合方案,可以利用上行接入信号的时域、频域资源集以及采用的序列来识别接收波束的信息,上行接入信号后面的信息比特或者隐含比特指示上行接入的质量指示。采用本发明的实施例中各个方案的组合方案均在本发明的保护范围之内。
本发明的实施例中所述的上行接入信号可以为LTE***中的随机接入信号,序列为随机接入信号Preamble序列或者新设计的上行接入信号或者上行接入序列,只要可以起到上行接入功能和/或上行同步功能的信号和序列均在本发明的保护范围之内。
本发明的实施例中所述终端检测最优序列的方式有很多,均为检测的实现方式,例如采用序列相关的方式,选择相关值最高的序列索引进行反馈。不同的准则可能选择出的序列索引不同,对于本发明并不存在限制关系。无论采用何种检测方式,只要求得最优一个或者几个最优值,并且可以对应出索引值,均在本发明的保护思想范围之内。
结合以上描述可见,本发明的实施例中实现下行波束索引处理的操作可以如图7所示,即:
基站通过预定的方式和/或广播和或高层信令通知在发送上行接入信号时采用以下至少一种波束指示方式及相关的配置信息以覆盖上行接收波束组:
采用上行接入信号的时域资源集来指示上行接收波束组;
采用上行接入信号的频域资源集来指示上行接收波束组;
采用上行接入信号序列来指示上行接收波束组;
上行接入信号应答消息携带指示比特信息来指示上行接入信号质量;
上行接入信号应答消息携带的指示比特可以是显式或隐式方式存在与应答消息中;
所述上行接收波束组为利用波束赋形的方式接收上行接入信号上行接收波束组。
实施例八:
本发明实施例提供了一种上行同步装置,其结构如图8所示,包括:
资源集配置模块801,设置为配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束;
上行接入信号接收模块802,设置为按照所述资源集信息在一个或多个接收波束对应的资源集上检测接收上行接入信号;
响应消息发送模块803,设置为在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息。
可选的,所述资源集配置模块801包括:
第一配置单元8011,设置为通过广播和/或高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息;
第二配置单元8012,设置为同第二通信节点已经建立连接的另一个载波对应的所述第一通信节点通过高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息,其中另一个载波对应的第一通信节点可能和本第一通信节点是同一个或者是物理位置分开的另一个第一通信节点。
可选的,该装置还包括:
预配置模块804,设置为与所述第二通信节点预先约定对应的资源集信息。
如图8所示的上行同步装置可集成于基站或终端中,由基站或终端完成相应功能。
本发明实施例还提供了一种上行同步装置,其结构如图9所示,包括:
上行接入信号发送模块901,设置为接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束;
响应接收模块902,设置为接收第一通信节点反馈的上行接入响应消息。
可选的,所述上行接入信号发送模块901包括:
第一发送单元9011,设置为将上行发射波束分为M组,采用不同的上行发射波束组发送不同的上行接入信号,其中M>0,每个上行发射波束组包含至少一个上行发射波束,分组后每个上行发射波束通过所在组索引及组内索引唯一确认。
可选的,所述响应接收模块902包括:
第一接收单元9021,设置为在不同上行接入资源集上接收上行接入响应消息,不同上行接入资源集为以下任一:
不同的时间资源集,
不同的频率资源集,
不同的波束资源集;
索引确认单元9022,设置为根据对应不同上行接入资源集的上行接入响应消息确定满足上行接入条件的上行发射波束所在组索引及组内索引。
如图9所示的上行同步装置可集成于基站或终端中,由基站或终端完成相应功能。
本发明实施例还提供了一种上行同步***,包括第一通信节点和第二通信节点;所述第一通信节点为基站或终端,集成有如上述图8所示的上行同步装置;所述第二通信节点为基站或终端,集成有如上述图9所示的上行同步装置。
所述第一通信节点,设置为配置N个上行接收波束组对应的资源集信 息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束,按照所述资源集信息在一个或多个接收波束对应的资源集上检测接收上行接入信号,在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息;
所述第二通信节点,设置为接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束,接收第一通信节点反馈的上行接入响应消息。
本发明的实施例提供了一种上行同步装置和***,能够与本发明的实施例所提供的上行同步方法相结合,第一通信节点配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束,然后所述第一通信节点按照所述资源集信息在一个或多个接收波束对应的资源集上检测接收上行接入信号,再在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息;第二通信节点接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,第二通信节点接收第一通信节点反馈的上行接入响应消息。实现了通信双方对上行接入波束的配置确认,解决了第一通信节点与第二通信节点无法进行正常通信的问题。
综上所述可见,无论是方法、装置还是***,本发明的实施例中,终端通过预定义或者接收广播和或高层信令的方式基于时域资源集的不同和/或频域资源集的不同和/或上行接入信号序列的不同来覆盖上行接收波束组。基站选取确定上行接入信号所在时域资源集和/或频域资源集和/或使用的序列来获得终端发送的上行接入信号,并在成功接收上行接入信号后发送上行接入应答消息。上行接入应答消息中可以携带上行接入信号质量指示比特,上行接入质量。通过这种方式,终端可以获得所述满足上行传输的上行发射波束或最优上行发射波束,基站可以选择满足上行接收的波束或最优上行接 收波束从而保证了后续信息的可靠传输。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
上述技术方案实现了通信双方对上行接入波束的配置确认,以及实现了第一通信节点与第二通信节点之间进行正常通信。

Claims (23)

  1. 一种上行同步方法,该方法包括:
    第一通信节点配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束;
    所述第一通信节点按照所述资源集信息在一个或多个接收波束对应的资源集上检测上行接入信号;
    所述第一通信节点在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息。
  2. 根据权利要求1所述的上行同步方法,其中,所述第一通信节点配置N个上行接收波束组对应的资源集信息的方式包括以下任一方式:
    所述第一通信节点通过广播和/或高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息;
    同第二通信节点已经建立连接的另一个载波对应的所述第一通信节点通过高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息,其中另一个载波对应的第一通信节点可能和本第一通信节点是同一个或者是物理位置分开的另一个第一通信节点。
  3. 根据权利要求1所述的上行同步方法,该方法还包括:
    所述第一通信节点和所述第二通信节点之间预先约定对应的资源集信息。
  4. 根据权利要求1所述的上行同步方法,其中,所述上行接收波束组对应的资源集信息通过以下任一方式或任意多个方式划分:
    利用频域资源集划分不同上行接收波束;
    利用时域资源集划分不同上行接收波束;
    利用码域资源集划分不同上行接收波束。
  5. 根据权利要求1所述的上行同步方法,其中,所述上行接入响应消 息包括以下信息的任一种或任意多种:
    上行接入信号对应的频域资源集;
    上行接入信号对应的时域资源集;
    上行接入信号对应的码域资源集。
  6. 根据权利要求1所述的上行同步方法,所述上行接入响应消息还包括:
    上行接入信号质量指示信息,指示所述第一通信节点接收到的上行接入信号质量。
  7. 根据权利要求1至6任一所述的上行同步方法,其中,所述第一通信节点为基站或终端,所述第二通信节点为基站或终端。
  8. 一种上行同步方法,该方法包括:
    第二通信节点接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束;
    所述第二通信节点接收第一通信节点反馈的上行接入响应消息。
  9. 根据权利要求8所述的上行同步方法,其中,所述第二通信节点采用上行发射波束发送上行接入信号的方式包括:
    所述第二通信节点将上行发射波束分为M组,采用不同的上行发射波束组发送不同的上行接入信号,其中M>0,每个上行发射波束组包含至少一个上行发射波束,分组后每个上行发射波束通过所在组索引及组内索引唯一确认。
  10. 根据权利要求8所述的上行同步方法,其中,所述第二通信节点接收第一通信节点反馈的上行接入响应消息包括:
    所述第二通信节点在不同上行接入资源集上接收上行接入响应消息,不同上行接入资源集为以下任一:
    不同的时间资源集,
    不同的频率资源集,
    不同的波束资源集;
    所述第二通信节点根据对应不同上行接入资源集的上行接入响应消息确定满足上行接入条件的上行发射波束所在组索引及组内索引。
  11. 根据权利要求10所述的上行同步方法,其中,所述第二通信节点依据以下任一或任意多个方式将上行发射波束划分为多个上行发现波束组:
    不同波束对应不同的时间资源集;
    不同波束对应不同的频率资源集;
    不同波束对应不同的序列资源集。
  12. 根据权利要求8所述的上行同步方法,其中,
    所述第二通信节点依据以下任一或任意多个方式将上行发射波束划分为多个上行发现波束组:
    不同组对应不同的时间资源集;
    不同组对应不同的频率资源集;
    不同组对应不同的序列资源集。
  13. 根据权利要求8至12任一所述的上行同步方法,其中,所述第一通信节点为基站或终端,所述第二通信节点为基站或终端。
  14. 一种上行同步装置,包括:
    资源集配置模块,设置为配置N个上行接收波束组对应的资源集信息,其中N>0,每个上行接收波束组中包括至少一个上行接收波束;
    上行接入信号接收模块,设置为按照所述资源集信息在一个或多个接收波束对应的资源集上检测上行接入信号;
    响应消息发送模块,设置为在检测到所述上行接入信号后向满足上行接入条件的上行接入信号发送上行接入响应消息。
  15. 根据权利要求14所述的上行同步装置,其中,所述资源集配置模块包括:
    第一配置单元,设置为通过广播和/或高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息;
    第二配置单元,设置为同第二通信节点已经建立连接的另一个载波对应的所述第一通信节点通过高层信令向第二通信节点发送所述上行接收波束组对应的资源集信息,其中另一个载波对应的第一通信节点可能和本第一通信节点是同一个或者是物理位置分开的另一个第一通信节点。
  16. 根据权利要求14所述的上行同步装置,该装置还包括:
    预配置模块,设置为与所述第二通信节点预先约定对应的资源集信息。
  17. 一种上行同步装置,该装置包括:
    上行接入信号发送模块,设置为接收第一通信节点配置的N个上行接收波束组对应的资源集信息,按照所述资源集信息在对应的M个资源集采用上行发射波束发送上行接入信号,其中M>0,N>0,1<=M<=N,每个上行接收波束组中包括至少一个上行接收波束;
    响应接收模块,设置为接收第一通信节点反馈的上行接入响应消息。
  18. 根据权利要求17所述的上行同步装置,其中,所述上行接入信号发送模块包括:
    第一发送单元,设置为将上行发射波束分为M组,采用不同的上行发射波束组发送不同的上行接入信号,其中M>0,每个上行发射波束组包含至少一个上行发射波束,分组后每个上行发射波束通过所在组索引及组内索引唯一确认。
  19. 根据权利要求17所述的上行同步装置,其中,所述响应接收模块包括:
    第一接收单元,设置为在不同上行接入资源集上接收上行接入响应消息,不同上行接入资源集为以下任一:
    不同的时间资源集,
    不同的频率资源集,
    不同的波束资源集;
    索引确认单元,设置为根据对应不同上行接入资源集的上行接入响应消息确定满足上行接入条件的上行发射波束所在组索引及组内索引。
  20. 一种上行同步***,包括第一通信节点和第二通信节点;
    所述第一通信节点包括如权利要求14~16中任一项所述的上行同步装置;
    所述第二通信节点包括如权利要求17~19中任一项所述的上行同步装置。
  21. 根据权利要求20所述的上行同步***,其中,所述第一通信节点为基站或终端,所述第二通信节点为基站或终端。
  22. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~7中任一项所述的方法。
  23. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8~13中任一项所述的方法。
PCT/CN2015/078393 2014-09-17 2015-05-06 一种上行同步方法、装置和*** WO2016041358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/511,962 US10271317B2 (en) 2014-09-17 2015-05-06 Method, device and system for uplink synchronization
EP15842659.3A EP3197064B1 (en) 2014-09-17 2015-05-06 Uplink synchronization method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410476739.XA CN105490719B (zh) 2014-09-17 2014-09-17 一种上行同步方法、装置和***
CN201410476739.X 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016041358A1 true WO2016041358A1 (zh) 2016-03-24

Family

ID=55532519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078393 WO2016041358A1 (zh) 2014-09-17 2015-05-06 一种上行同步方法、装置和***

Country Status (4)

Country Link
US (1) US10271317B2 (zh)
EP (1) EP3197064B1 (zh)
CN (1) CN105490719B (zh)
WO (1) WO2016041358A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112849A1 (zh) * 2016-12-22 2018-06-28 广东欧珀移动通信有限公司 用于非连续接收的数据传输方法和装置
EP3503444A4 (en) * 2016-07-20 2020-03-04 ZTE Corporation CONTROL CHANNEL SENDING METHOD AND APPARATUS, AND RECEIVING METHOD AND APPARATUS
WO2020108606A1 (zh) * 2018-11-30 2020-06-04 华为技术有限公司 资源分配方法及装置
RU2735414C1 (ru) * 2016-12-08 2020-11-02 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство для беспроводной связи

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162906B (zh) * 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、***和网络节点
JP6679733B2 (ja) * 2015-12-31 2020-04-15 華為技術有限公司Huawei Technologies Co.,Ltd. ワイヤレス通信の方法およびシステム、ならびにデバイス
JP6806800B2 (ja) 2016-06-03 2021-01-06 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
CN107733615B (zh) 2016-08-12 2022-09-09 中兴通讯股份有限公司 信令消息的发送、检测装置、传输***
CN107733505B (zh) * 2016-08-12 2020-02-28 电信科学技术研究院 一种波束赋形训练方法、终端和基站
CN107872264A (zh) * 2016-09-26 2018-04-03 电信科学技术研究院 一种信号传输方法及装置
CN107888238B (zh) * 2016-09-30 2020-09-01 上海朗帛通信技术有限公司 一种用于随机接入的ue、基站中的方法和装置
CN111479327A (zh) 2016-11-24 2020-07-31 上海朗帛通信技术有限公司 一种用于多天线***的ue、基站中的方法和装置
CN108282905B (zh) * 2017-01-06 2020-04-21 华为技术有限公司 一种随机接入方法及其网元
CN110419177A (zh) * 2017-02-03 2019-11-05 Idac控股公司 上行链路波束管理
CN108632840B (zh) * 2017-03-24 2022-02-08 华为技术有限公司 波束资源的配置方法、基站和终端设备
CN108111267B (zh) * 2017-05-05 2022-05-20 中兴通讯股份有限公司 信号的传输方法和***及控制信息的发送方法和装置
CN109644349B (zh) * 2017-05-10 2022-08-26 华为技术有限公司 波束管理的方法、网络设备及终端
CN109121153B (zh) * 2017-05-15 2019-09-20 华为技术有限公司 一种通信方法和装置
US20190052406A1 (en) * 2017-08-11 2019-02-14 Mediatek Inc. Transmission For Ultra-Reliable And Low-Latency Communications In Mobile Communications
WO2019048038A1 (en) * 2017-09-06 2019-03-14 Huawei Technologies Co., Ltd. CLIENT DEVICE, NETWORK ACCESS NODE, AND ASSOCIATED METHODS
WO2019061354A1 (zh) * 2017-09-29 2019-04-04 Oppo广东移动通信有限公司 无线通信方法和设备
WO2019128975A1 (en) * 2017-12-28 2019-07-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for a beam failure recovery in a wireless communication system
CN111436138A (zh) * 2019-02-14 2020-07-21 维沃移动通信有限公司 信号传输方法、设备及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003721A2 (en) * 2000-06-29 2002-01-10 Qualcomm Incorporated Method and apparatus for beam switching in a wireless communication system
CN101427595A (zh) * 2006-04-20 2009-05-06 高通股份有限公司 用sdma波束进行正交资源重用
WO2014027868A1 (ko) * 2012-08-17 2014-02-20 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
CN103733542A (zh) * 2011-08-15 2014-04-16 株式会社Ntt都科摩 无线基站、用户终端、无线通信***以及无线通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098176B (zh) * 2006-06-29 2012-04-11 中兴通讯股份有限公司 一种dtx或hsdpa模式下的智能天线实现方法及装置
KR101910852B1 (ko) * 2011-07-21 2019-01-04 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 정보를 송수신하는 방법 및 장치
KR101995798B1 (ko) * 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
CN103780357B (zh) * 2012-10-23 2017-08-11 华为技术有限公司 一种权重矩阵的反馈方法和相关装置和***
CN117335845A (zh) * 2013-01-25 2024-01-02 交互数字专利控股公司 用于确定资源的方法和无线发射/接收单元
CN103297104B (zh) * 2013-06-09 2015-10-28 清华大学 天线阵列配置方法及天线阵列

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003721A2 (en) * 2000-06-29 2002-01-10 Qualcomm Incorporated Method and apparatus for beam switching in a wireless communication system
CN101427595A (zh) * 2006-04-20 2009-05-06 高通股份有限公司 用sdma波束进行正交资源重用
CN103733542A (zh) * 2011-08-15 2014-04-16 株式会社Ntt都科摩 无线基站、用户终端、无线通信***以及无线通信方法
WO2014027868A1 (ko) * 2012-08-17 2014-02-20 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197064A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3503444A4 (en) * 2016-07-20 2020-03-04 ZTE Corporation CONTROL CHANNEL SENDING METHOD AND APPARATUS, AND RECEIVING METHOD AND APPARATUS
US10911282B2 (en) 2016-07-20 2021-02-02 Zte Corporation Control channel sending method and apparatus, and receiving method and apparatus
US11671221B2 (en) 2016-07-20 2023-06-06 Zte Corporation Control channel sending method and apparatus, and receiving method and apparatus
RU2735414C1 (ru) * 2016-12-08 2020-11-02 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство для беспроводной связи
US10959215B2 (en) 2016-12-08 2021-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for wireless communication
US11659554B2 (en) 2016-12-08 2023-05-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for wireless communication
WO2018112849A1 (zh) * 2016-12-22 2018-06-28 广东欧珀移动通信有限公司 用于非连续接收的数据传输方法和装置
US10952277B2 (en) 2016-12-22 2021-03-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and apparatus for discontinuous reception
US11375573B2 (en) 2016-12-22 2022-06-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and apparatus for discontinuous reception
WO2020108606A1 (zh) * 2018-11-30 2020-06-04 华为技术有限公司 资源分配方法及装置

Also Published As

Publication number Publication date
CN105490719B (zh) 2020-11-24
US10271317B2 (en) 2019-04-23
EP3197064A4 (en) 2017-10-04
US20170265184A1 (en) 2017-09-14
EP3197064A1 (en) 2017-07-26
EP3197064B1 (en) 2023-11-22
CN105490719A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2016041358A1 (zh) 一种上行同步方法、装置和***
JP7359808B2 (ja) セルラ時分割複信(tdd)ミリ波システムのためのサウンディング参照信号(srs)設計
US20200396036A1 (en) Systems and Methods for UE-Specific Beam Management for High Frequency Wireless Communication
CN109155656B (zh) 波束选择的方法、***和装置
CN105812035B (zh) 一种分级波束接入方法及装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
US10153889B2 (en) Method and apparatus for handling full-duplex interference
US10530548B2 (en) Unifying message to support downlink beam management over multiple groups of beam paired links (MGBPL)
CN105530685B (zh) 消息发送接收方法、发送接收装置、基站及终端
CN117998381A (zh) 用于通信波束恢复的***和方法
CN105577291B (zh) 一种用于无线通信***中的空闲信道检测方法和***
US10985829B2 (en) Beam management systems and methods
CN111436147B (zh) 传输信号的方法和装置
WO2015090034A1 (zh) 一种上下行波束混合指示的方法、基站、终端和***
US10454560B2 (en) Beam management systems and methods
CN109150272A (zh) 通信方法、终端及网络设备
CN109478925B (zh) 用于高频无线通信的ue特定波束管理的***和方法
WO2015090061A1 (zh) 一种实现下行波束索引处理的方法、装置和***
WO2019140700A1 (zh) 一种数据传输方法及装置、计算机存储介质
US20240031105A1 (en) Method and apparatus for joint and separate beam indication
CN114982190A (zh) 载波聚集的波束相关性
CN107645322A (zh) 基于波束赋形的随机接入的方法和设备
US20160183228A1 (en) Method and apparatus for transmitting physical channel
US20230299830A1 (en) Channel state information reference signal configurations for dynamic antenna port adaptation
CN118120159A (zh) 用于感测辅助通信的传输配置指示状态配置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015842659

Country of ref document: EP