WO2020108606A1 - 资源分配方法及装置 - Google Patents

资源分配方法及装置 Download PDF

Info

Publication number
WO2020108606A1
WO2020108606A1 PCT/CN2019/121920 CN2019121920W WO2020108606A1 WO 2020108606 A1 WO2020108606 A1 WO 2020108606A1 CN 2019121920 W CN2019121920 W CN 2019121920W WO 2020108606 A1 WO2020108606 A1 WO 2020108606A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
terminals
base station
terminal
time domain
Prior art date
Application number
PCT/CN2019/121920
Other languages
English (en)
French (fr)
Inventor
张芳
徐凯
王成毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020108606A1 publication Critical patent/WO2020108606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a resource allocation method and device.
  • the traditional frequency band of the fourth-generation mobile communication is mainly concentrated below 3 GHz, and as the number of terminals increases sharply, the spectrum is very crowded.
  • the available spectrum resources in high frequency bands (such as millimeter wave bands) are very abundant, which can effectively alleviate the problem of spectrum crowding in low frequency bands and support the fifth generation mobile communication technology (5fifth-generation, 5G) in capacity and The huge demand on the transmission rate.
  • 5G fifth generation mobile communication technology
  • the path loss and penetration loss of the high frequency channel are relatively large.
  • the base station and/or terminal receive and/or Or the transmitting side needs to perform beamforming (Beamforming) operation, that is, through multi-antenna phase technology, the beam is directionally transmitted/directionally received to increase the coverage distance of the high-band signal.
  • Beamforming beamforming
  • the base station uses beamforming to schedule the uplink transmission of the terminal, the same time domain resource of the base station cannot be scheduled by different beams. Therefore, after the base station allocates the time domain resource corresponding to the target beam to a terminal, The terminal will still use the beam to communicate with the base station in the subsequent uplink transmission process. Therefore, the beam corresponding to the time domain resource can only schedule the uplink transmission of one terminal, so that it has the same beam requirements as the terminal ( That is, the terminal that can only be scheduled through the beam cannot be scheduled and can only wait in line. Therefore, when there are a large number of terminals, the uplink transmission scheduling period of the terminal is increased, which affects the user experience.
  • the present application provides a resource allocation method and device, which can avoid the problem of increased uplink transmission scheduling period and low resource utilization to a certain extent.
  • an embodiment of the present application provides a resource allocation method applied to a base station.
  • the method may include: the base station sends indication information to n terminals, and the indication information is used to indicate the uplink transmission time domain of each of the n terminals Resources, the uplink time domain resource of each terminal includes the first time domain resource, and n is a positive integer greater than or equal to 2; on the first time domain resource, uplink transmission is received from n terminals through the first beam.
  • the base station can instruct n terminals to simultaneously send uplink transmissions on beams corresponding to the same time-domain resource, and receive multiple terminals, that is, uplink transmissions of n terminals, through the same beam. Therefore, the resource utilization rate is effectively improved, and the transmission cycle of the uplink transmission is shortened, and the system overhead is reduced.
  • the uplink transmission includes a scheduling request SR signal.
  • the base station can receive the SR signals of n terminals on the beam corresponding to the same time domain resource.
  • the uplink transmission includes sounding reference signal SRS.
  • the base station can receive the SRS signals of n terminals on the beam corresponding to the same time domain resource.
  • the first time-domain resource belongs to M time-domain resources in the uplink transmission scanning period; the uplink transmission scanning period is when the base station receives the uplink transmission from n terminals to the next time it receives n terminals The length of time between upstream transmissions.
  • the base station can instruct the terminal to send uplink transmission on the beam corresponding to the first time-domain resource in each uplink transmission scanning period, thereby effectively shortening the terminal uplink transmission sending period and improving the user experience.
  • the step of determining the uplink transmission scanning period includes: acquiring the uplink transmission transmission period of P terminals accessing the base station, where n terminals belong to P terminals; based on the uplink transmission transmission period, determining the uplink The transmission scanning period, the uplink transmission scanning period is equal to the uplink transmission sending period of N terminals of P terminals, where N is an integer greater than or equal to a threshold value and less than or equal to P.
  • the base station can configure the corresponding uplink transmission scan period according to the uplink transmission transmission period of most of the P terminals, thereby effectively improving the reliability and stability of uplink transmission reception and further improving resource utilization .
  • each of the n terminals performs frequency division multiplexing on frequency domain resources corresponding to time domain resources.
  • each of the n terminals performs code division multiplexing on the frequency domain resource corresponding to the time domain resource.
  • code division multiplexing is performed on the uplink transmission resources sent by n terminals, thereby improving the resource utilization rate and the efficiency of uplink transmission processing.
  • the first aspect mainly introduces the solutions provided by the embodiments of the present application from the perspective of interaction between various network elements.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software, and the specific hardware-side solution is as described in the second aspect.
  • an embodiment of the present application provides a base station, including: a sending unit and a control unit.
  • the sending unit may be used to send indication information to n terminals.
  • the indication information is used to indicate the uplink transmission time domain resource of each terminal of the n terminals.
  • the uplink transmission time domain resource of each terminal includes the first time domain resource.
  • n is a positive integer greater than or equal to 2.
  • the receiving unit may be used to receive uplink transmission from n terminals through the first beam on the first time domain resource.
  • the uplink transmission includes a scheduling request SR signal.
  • the uplink transmission includes sounding reference signal SRS.
  • the first time-domain resource belongs to M time-domain resources in the uplink transmission scanning period; the uplink transmission scanning period is when the base station receives the uplink transmission from n terminals to the next time it receives n terminals The length of time between upstream transmissions.
  • the base station further includes a determination unit configured to confirm the uplink transmission scanning period, wherein the determination unit is specifically configured to: obtain an uplink transmission transmission period of P terminals accessing the base station, wherein n terminals belong to P terminals; based on the uplink transmission sending period, the uplink transmission scanning period is determined, and the uplink transmission scanning period is equal to the uplink transmission sending period of N terminals of P terminals, where N is greater than or equal to the threshold value and less than or equal to Integer of P.
  • each of the n terminals performs frequency division multiplexing on frequency domain resources corresponding to time domain resources.
  • each of the n terminals performs code division multiplexing on the frequency domain resource corresponding to the time domain resource.
  • an embodiment of the present application provides an apparatus, which may be a base station or a chip of the base station.
  • the device has the function of implementing the method of the first aspect described above. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes a processing unit and a communication unit. Optionally, the device may also include a storage unit.
  • the processing unit may complete the reception or transmission of information through the communication unit, and the processing unit may process the information, so that the apparatus implements the method of the second aspect described above.
  • the processing unit when the device is a base station, the processing unit may be, for example, a processor, and the communication unit may be, for example, a transceiver, and the transceiver includes a radio frequency circuit, optionally, the storage unit may be, for example, Memory.
  • the base station includes a storage unit, the storage unit is used to store computer execution instructions, the processing unit is connected to the storage unit, and the processing unit executes the computer execution instructions stored by the storage unit, so that the base station executes the method of the first aspect .
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit may execute computer execution instructions stored in the storage unit, so that the chip in the access network device executes the method of the first aspect.
  • the storage unit is a storage unit within the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip within the base station, such as a read-only memory (read-only memory, ROM) ) Or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the method of the first aspect executes the integrated circuit of the program.
  • an embodiment of the present application provides a computer storage medium that stores a program for implementing the method of the first aspect described above.
  • the base station is caused to perform the method of the first aspect described above.
  • an embodiment of the present application provides a computer program product.
  • the program product includes a program, and when the program is executed, the method of the first aspect described above is executed.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a resource allocation exemplarily shown
  • FIG. 4 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an uplink transmission sending process provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a base station provided by an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than describing a specific order of objects.
  • first target object and the second target object are used to distinguish different target objects, rather than describing a specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or explanations. Any embodiments or design solutions described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • Figure 1 is a schematic diagram of resource allocation in a prior art embodiment.
  • Figure 1 :
  • FIG. 1 it is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a base station and terminals 1-10 (respectively: terminal 1, terminal 2, terminal 3, terminal 4, terminal 5, terminal 6, terminal 7, terminal 8, terminal 9, terminal 10, of which terminal 2- 9 is not shown in the figure).
  • the terminals 1-10 may be devices such as computers, smart phones, telephones, cable TV set-top boxes, and digital subscriber line routers. It should be noted that in actual applications, the number of base stations and terminals may be one or more, and the number of base stations and terminals of the communication system shown in FIG. 2 is only an example of suitability, and this application does not limit this.
  • the above communication system can be used to support fifth-generation mobile communication technologies, such as New Radio (NR) access technology.
  • NR New Radio
  • the application scenario can also be used for communication systems that support multiple wireless technologies, such as LTE technology and NR technology.
  • this application scenario can also be applied to future-oriented communication technologies.
  • the base station in FIG. 1 can be used to support terminal access, for example, it can be next generation base station (nNB), transmission and reception point (TRP), relay in 5G mobile communication technology communication system Node (relay), access point (access point, AP), etc.
  • nNB next generation base station
  • TRP transmission and reception point
  • relay in 5G mobile communication technology communication system Node
  • access point access point, AP
  • the terminal in FIG. 1 may be a device that provides voice or data connectivity to users, for example, it may also be called a mobile station, subscriber unit, station, and terminal equipment. TE) etc.
  • the UE may be a cellular phone (cellular), a personal digital assistant (PDA), a wireless modem (modem), a handheld device (handheld), a laptop (laptop) computer, a cordless phone (cordless phone), wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can be terminals in the embodiments of the present application, for example, intelligent transportation Terminals in automobiles and home appliances in smart homes, power meter reading instruments in smart grids, voltage monitoring instruments, environmental monitoring instruments, video monitoring instruments in smart security networks, cash registers, etc.
  • the terminal may communicate with the base station. Communication between multiple terminals is also possible.
  • the terminal can be statically fixed or mobile.
  • FIG. 2 is a schematic structural diagram of a base station.
  • Figure 2 is a schematic structural diagram of a base station.
  • the base station 100 includes at least one processor 101, at least one memory 102, at least one transceiver 103, at least one network interface 104, and one or more antennas 105.
  • the processor 101, the memory 102, the transceiver 103 and the network interface 104 are connected, for example, through a bus.
  • the antenna 105 is connected to the transceiver 103.
  • the network interface 104 is used to connect the base station to other communication devices through a communication link. In the embodiment of the present application, the connection may include various interfaces, transmission lines or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: general-purpose central processing unit (Central Processing Unit, CPU), digital signal processor (Digital Signal Processor, DSP), microprocessor, Application-specific integrated circuits (Application-Specific Integrated Circuit (ASIC)), microcontroller (Microcontroller Unit, MCU), field programmable gate array (Field Programmable Gate Array, FPGA), or integrated circuits for implementing logic operations .
  • the processor 101 may be a single-CPU processor or a multi-CPU processor. At least one processor 101 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, and random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions can also be electrically erasable programmable read-only memory (Electrically, programmable-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may also be a compact disc-read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc-read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 102 may exist independently and be connected to the processor 101.
  • the memory 102 may also be integrated with the processor 101, for example, integrated in a chip.
  • the memory 102 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 101.
  • Various executed computer program codes can also be regarded as the driver of the processor 101.
  • the processor 101 is used to execute computer program code stored in the memory 102, so as to implement the technical solution in the embodiments of the present application.
  • the transceiver 103 may be used to support the reception or transmission of radio frequency signals between the base station and the terminal, and the transceiver 103 may be connected to the antenna 105.
  • the transceiver 103 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 105 can receive radio frequency signals, and the receiver Rx of the transceiver 103 is used to receive the radio frequency signals from the antenna, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 101, so that the processor 101 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 103 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 101, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a Or multiple antennas 105 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one-level or multi-level down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the sequence is adjustable.
  • the transmitter Tx can selectively perform one-level or multi-level up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The sequence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the frequency band used is mainly concentrated below 3GHz, and due to the sharp increase in the number of terminals, the spectrum is very crowded, which seriously affects the user experience.
  • the base station and/or terminal in order to achieve long-distance coverage and space/time-frequency signal interference isolation, the base station and/or terminal during transmission and reception It is necessary to adopt beamforming operation, that is, directional transmission/reception of beams through multi-antenna phase technology to increase the coverage distance of high-band signals.
  • the base station and/or the terminal side usually adopt a relatively small number of radio frequency channels (Radio Frequency Chain, RF chain), for example: 2, 4, or 8.
  • RF chain Radio Frequency Chain
  • the base station it is assumed that the base station has one RF chain.
  • the coverage area of the cell formed by the RF beam in the base station is periodically circularly scanned. Send or receive signals.
  • the base station will allocate dedicated time domain resources to the terminal, and then In the process, the signal corresponding to the terminal is transmitted and/or received through the beam corresponding to the dedicated time domain resource.
  • the base station based on the reciprocity of the uplink and downlink channels of the system, and the reciprocity of the base station and the transceiver side of the terminal.
  • the same beams as the downlink signals are usually used.
  • the base station can also use the first beam to receive the uplink transmission of the terminal.
  • the base station receives different beams from the terminal.
  • the base station side has only a small number of RF chains (for example: 2)
  • the base station side cannot receive uplink transmissions from other users when it receives uplink reference signals/control signals from the terminal. Since the uplink transmissions are all user-level configurations and require the terminal to periodically send to the base station, when the number of users in the cell is large, the period for the terminal to send uplink transmissions will become longer.
  • the base station side (the base station is not shown in the figure) has two radio frequency channels (Radio Frequency Chain, RF chain), and the number of activated users in the cell (that is, users who successfully access the cell) are terminal 1, respectively.
  • terminal 1, terminal 2, terminal 3, and terminal 4 transmit at times T1, T2, T3, and T4, respectively.
  • the period for terminal 1 to send the SR request cannot be uploaded again until at least T5, which results in the extension of the terminal 1 SR signal upload period, and when the number of users accessing the cell is large, the uplink transmission upload period of each terminal will be more obvious It was extended and seriously affected the user experience.
  • the base station in order to ensure coverage, that is, to ensure that each terminal accessing the cell can perform uplink/downlink mutual transmission with the base station through the beam, the base station also needs to adopt a scanning mechanism, that is, through the scanning mechanism, After determining the beam for mutual transmission between the terminal and the base station, the base station may instruct the terminal to send uplink transmission on the time domain resource corresponding to the beam. Obviously, this scanning mechanism increases system overhead and causes a burden on the base station side.
  • an embodiment of the present application proposes a resource allocation method to effectively weaken the impact of the number of terminals on the transmission cycle of the uplink transmission And reduce system overhead, thereby improving system performance and user experience.
  • FIG. 4 is a schematic flowchart of a resource allocation method in an embodiment of this application.
  • FIG. 4 :
  • Step 101 The base station acquires the uplink transmission sending period of P terminals accessing the base station.
  • the base station may configure the uplink transmission sending period for the terminal based on the state information of the terminal.
  • the status information of the terminal includes, but is not limited to: moving speed and/or delay information.
  • the base station may also configure the uplink transmission sending period for the terminal according to the base station's own status information, such as: the number of access users and/or the load status of the base station.
  • the terminal when the base station confirms that the mobile speed of the terminal exceeds the threshold (which can be set according to actual needs) based on the reference signal sent by the terminal, the terminal can be determined to be a high-speed mobile terminal, and the base station can configure a smaller Uplink transmission cycle, for example: 5ms. And, if the current load of the base station exceeds the threshold (which can be set according to actual needs), the base station can configure a larger uplink transmission sending period for the terminal, for example: 15 ms.
  • the specific settings can be set according to actual needs, and this application does not limit this.
  • the uplink transmission in the embodiment of the present application may be: an SR signal or an SRS signal.
  • the base station acquires the uplink transmission sending period of each of the P terminals that have been configured.
  • P is 10
  • the transmission period of the SR signal configured for the terminal 1-7 by the base station based on the state information of the terminal 1-10 and/or the state information of the base station itself is 10 ms
  • the transmission cycle of the SR signal configured for the terminal 8 is 15 ms
  • the transmission cycle of the SR signal configured for the terminals 9-10 is 5 ms.
  • Step 102 the base station determines an uplink transmission scanning period based on the uplink transmission sending period of P terminals.
  • the base station may determine the uplink transmission scanning period based on the uplink transmission transmission period of N terminals among the P terminals.
  • N may be an integer greater than or equal to a preset threshold and less than or equal to P.
  • the preset threshold may be 70%. That is, if P is 10, N is an integer greater than or equal to 7.
  • the purpose is to make the uplink transmission scanning period set by the base station satisfy the uplink transmission sending period of most of the P terminals accessing the base station.
  • the uplink transmission transmission period of the terminal 1-7 is 10 ms
  • the uplink transmission transmission period of the terminal 8 is 15 ms
  • the uplink transmission transmission period of the terminal 9-10 is 5 ms.
  • the base station may also determine according to the average value of the uplink transmission signal periods of P terminals, or based on the average value of the uplink transmission signal periods of N terminals of P terminals
  • the uplink transmission scanning period is not limited in this application.
  • the uplink transmission scanning period is the period to which the base station scans the cell through at least one RF chain on the base station side and completely covers the cell. For example: if the uplink transmission scanning period is 10ms, the base station side has 2 RF chains, and the base station side scans the cell through the 2 RF chains, and the full coverage cell requires 6 beams (that is, the base station needs 6 beam pairs for different To scan the entire area of the cell), and the base station scans the cell once every 10 ms through the above 6 beams to receive the uplink transmission from the terminal accessing the cell.
  • Step 103 The base station sends instruction information to N terminals.
  • the base station after determining the uplink transmission scanning period, the base station sends indication information to N terminals to instruct the N terminals to send the base station on M time-domain resources in each uplink transmission scanning period. Send upstream transmission.
  • the base station determines that the uplink scanning period is the uplink transmission sending period that satisfies the terminals 1-8, that is, after 10 ms, the N terminals are determined to be the terminals 1-8. Subsequently, the base station sends instruction information to each of the terminals 1-8 to instruct the terminal 1-8 to perform a beam corresponding to each of the M time-domain resources in each of the M time-domain resources in each uplink transmission scan period.
  • the SR/SRS signal is sent, and the frequency domain information carried in the indication information sent by the base station to the terminals 1-8 is different, thereby implementing frequency division multiplexing or code division multiplexing.
  • the indication information may be radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the indication information sent by the base station to the terminal may also carry frequency domain information.
  • the frequency domain information is used to instruct the terminal to send uplink transmission on the frequency domain specified in the indication information.
  • the base station instructs terminal 1 to send uplink transmission on frequency domain resource A corresponding to time T1, terminal 2 to send uplink transmission on frequency domain resource B corresponding to time T1, and so on.
  • the specific frequency domain resource method is not limited to the above allocation method, which is not limited in this application. Therefore, the base station can perform frequency division multiplexing on the uplink resources of multiple terminals received by the beam of the same time domain resource.
  • the indication information sent by the base station to the terminal may also carry code domain information.
  • the code domain information is used to instruct the terminal to send uplink transmission on the code domain specified in the indication information.
  • the base station instructs terminal 1 to send uplink transmission on code domain resource A corresponding to time T1, terminal 2 to send uplink transmission on code domain resource B corresponding to time T1, and so on.
  • the specific code domain resource method is not limited to the above allocation method, which is not limited in this application. Thereby, the base station can perform code division multiplexing on the uplink resources of multiple terminals received by the beam of the same time domain resource.
  • Step 104 N terminals send uplink transmissions to the base station on the receive beams corresponding to the M time-domain resources in each uplink transmission scanning period.
  • N terminals send uplink transmissions on M time-domain resources in each uplink transmission scanning period according to the indication of the indication information.
  • Figure 5 shows a schematic diagram of the upstream transmission process.
  • FIG. 5 still taking the 6 beams formed by 2 RF chains in each uplink transmission scanning period above as an example, referring to FIG. 5, in the first uplink transmission scanning period (10ms), time domain resource T1 , The receiving beams corresponding to time T2 and time T3 scan the cell at the scanning angle in the figure, and terminals 1-8 can know that there are 3 time domain resources in each 10ms uplink transmission scanning period based on the indication information indication Corresponding receive beam. Subsequently, the terminals 1-8 may send SR/SRS signals on each of the three time-domain resources within 10 ms, that is, on the receive beams corresponding to time T1, T2, and T3.
  • each terminal may, according to the frequency division multiplexing information or code division multiplexing information carried in the indication information, in the resources corresponding to the M receiving beams Specify the location and send the respective uplink transmission to realize frequency division multiplexing or code division multiplexing on the base station side.
  • Step 105 The base station receives uplink transmissions sent by n terminals through the first receive beam in the first time domain resource.
  • the base station may receive the uplink transmission sent by the n terminals through the first receiving beam.
  • n is an integer greater than or equal to 1 and less than or equal to N.
  • the base station can receive terminal 3 and terminal 4 through the receive beams corresponding to time T2.
  • Terminal 1-8 sends SR signals on the receive beam corresponding to time T3, and terminal 5-8 successfully tracks the receive beam corresponding to time T3, then the base station can receive SR signal.
  • the terminal in the second uplink transmission scan period, the terminal can also receive the SR signals sent by terminal 1 and terminal 2 through the receive beam corresponding to time T4 (the receive beam is the same as the receive beam corresponding to time T1), and so on .
  • the first time-domain resource and the first receiving beam corresponding to the first time-domain resource in the embodiment of the present application may be any time and corresponding receiving beam in FIG. 1.
  • the base station may separately configure corresponding time-domain resources for the L terminals, and receive the beams corresponding to the individually configured time-domain resources to receive Uplink transmissions sent by L terminals.
  • the uplink transmission period of the terminal 9-10 is 5 ms, which is a delay-sensitive terminal. Therefore, the base station can configure the corresponding time domain resource for the terminal 9-10 every 5 ms and pass the corresponding time domain resource
  • the receiving beam receives the SR signal sent by the terminal 9-10.
  • the base station and the above-mentioned delay sensitive terminal select uplink/downlink transmission or reception beams
  • the synchronization signal block (Synchronization Signal Block (SSB) information or channel state information (SBS) information of the terminal sending downlink signals according to the received transmission beam can be used Channel State (Information, CSI) selects the transmit beam corresponding to the optimal downlink signal quality and reports it to the base station, then the transmit beam can also be used as the receive beam for the uplink transmission of the delay-sensitive terminal.
  • the base station can use RRC signaling Or DCI signaling to inform the terminal to send uplink transmission on the receive beam.
  • the terminal may periodically send SRS signals to the base station through multiple transmission beams, and the base station may select on the reception beam that receives the SRS signal.
  • the receiving beam with the best signal quality is maintained, that is, the base station may notify the terminal to send uplink transmission on the receiving beam through RRC signaling or DCI signaling.
  • the base station may maintain the beam every cycle, that is, use the determined beam and L terminals communicate.
  • the receiving beam used by the base station in the embodiment of the present application to receive the uplink downlink signal sent by each of the L terminals may be the same, may be different, or may be partially the same.
  • the base station may instruct N terminals to send uplink transmissions on each time-domain resource in each uplink transmission scanning period, and may send to n received terminals.
  • the uplink transmission of the system is frequency-division multiplexed or code-division multiplexed, which effectively improves the resource utilization rate, shortens the transmission cycle of the uplink transmission, and reduces the system overhead.
  • the base station side may also introduce a scanning mechanism. Specifically, the base station side may obtain the reception beam corresponding to the terminal's uplink transmission by measuring the downlink signal of the terminal (according to the uplink/downlink reciprocity, the base station sends the downlink signal to the terminal and the receiver's uplink transmission is received) The receive beam is the same beam).
  • this type of terminal (the receiving beam corresponding to the uplink transmission of the known terminal of the base station side) is a terminal with a known receiving beam, and the base station may send the second indication information to such a terminal, where the second indication information may carry There are information on the uplink transmission scanning period, frequency domain information, and time domain information, where the time domain information is the time domain information corresponding to the known receive beam. That is to say, the base station is known to receive the uplink transmission of the terminal through the first receive beam corresponding to the first time domain resource, then the base station may instruct the terminal to correspond to the first An uplink transmission is sent on a receiving beam until the base station detects that the uplink transmission sent by the terminal cannot be received through the first receiving beam through the scanning mechanism.
  • the second indication information may be downlink control signaling (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the scanning mechanism can be triggered periodically, and the period can be set by itself.
  • the scanning mechanism may be combined with the above embodiments.
  • the base station may instruct all terminals to send uplink transmissions on the receive beam corresponding to each time-domain resource.
  • the base station may instruct the terminal with the known receiving beam to send uplink transmission only on the known receiving beam, thereby reducing the burden on the base station and the terminal side and effectively improving the resource utilization rate.
  • the device 300 includes a processing unit 301 and a communication unit 302.
  • the device further includes a storage unit 303.
  • the processing unit 301, the communication unit 302, and the storage unit 303 are connected through a communication bus.
  • the communication unit 302 may be a device with a transceiver function, and is used to communicate with other network devices or communication networks.
  • the storage unit 303 may include one or more memories, and the memory may be one or more devices or devices in a circuit for storing programs or data.
  • the storage unit 303 may exist independently, and is connected to the processing unit 301 through a communication bus.
  • the storage unit may also be integrated with the processing unit 301.
  • the apparatus 300 may be used in network equipment, circuits, hardware components, or chips.
  • the device 300 may be the base station in the embodiment of the present application.
  • the schematic diagram of the base station can be shown in FIG. 2.
  • the communication unit 302 of the device 300 may include an antenna and a transceiver of the base station, such as the antenna 105 and the transceiver 103 in FIG. 2.
  • the communication unit 302 may also include a network interface of the base station, such as the network interface 104 in FIG. 2.
  • the device 300 may be a chip in the base station in the embodiment of the present application.
  • the communication unit 302 may be an input or output interface, a pin or a circuit, or the like.
  • the storage unit may store computer execution instructions of the method on the base station side, so that the processing unit 301 executes the method on the base station side in the foregoing embodiment.
  • the storage unit 303 may be a register, a cache, or RAM.
  • the storage unit 303 may be integrated with the processing unit 301; the storage unit 303 may be a ROM or other type of static storage device that can store static information and instructions.
  • the storage unit 303 may be The processing unit 301 is independent.
  • the transceiver may be integrated on the device 300, for example, the communication unit 302 integrates the transceiver 103 and the network interface 104.
  • the processing unit 301 can be used to send instructions or data to the terminal through the communication unit 302.
  • the base station 400 includes a sending unit 401 and a receiving unit 402, and the sending unit 401 is connected to the receiving unit 402.
  • the sending unit 401 may be used to send indication information to n terminals.
  • the indication information is used to indicate the uplink transmission time domain resource of each terminal of the n terminals.
  • the uplink transmission time domain resource of each terminal includes the first time domain resource, n Is a positive integer greater than or equal to 2; for example, the base station is supported to perform the relevant content in step 103 in the foregoing method embodiment.
  • the receiving unit 402 may be used to receive uplink transmissions from n terminals through the first beam on the first time domain resource.
  • the supporting base station executes step 105 in the above method embodiment.
  • the sending unit 401 may also be used to send second indication information to n terminals.
  • the second indication information is used to instruct n terminals to send uplink transmissions on the first time-domain resource in each uplink transmission scanning period.
  • the base station 400 may further include a determination unit, where the determination unit is used to determine an uplink transmission scanning period.
  • the support base station performs step 102 in the above method embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the methods described in the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media may include computer storage media and communication media, and may also include any media that can transfer a computer program from one place to another.
  • a storage medium may be any available medium that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or use instructions or data structures
  • the required program code is stored in the form of and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable , Twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of medium.
  • magnetic disks and optical disks include compact disks (CDs), laser disks, optical disks, digital versatile disks (DVDs), floppy disks, and blu-ray disks, where magnetic disks generally reproduce data magnetically, while optical disks reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the embodiments of the present application also provide a computer program product.
  • the methods described in the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the above method embodiments are generated.
  • the above-mentioned computer may be a general-purpose computer, a dedicated computer, a computer network, a network device, user equipment, or other programmable devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种资源分配方法及装置,涉及通信领域,该方法包括:基站向n个终端发送指示信息,指示信息用于指示n个终端中的每个终端的上行传输时域资源,每个终端的上行传输时域资源包括第一时域资源,n为大于等于2的正整数;在第一时域资源上通过第一波束从n个终端接收上行传输。从而有效提升了资源利用率,并且缩短了上行传输的发送周期,以及,降低***开销。

Description

资源分配方法及装置
本申请要求于2018年11月30日提交中国专利局、申请号为201811458569.7、申请名称为“资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种资源分配方法及装置。
背景技术
目前,***移动通信的传统频段主要集中在3GHz以下,并且,随着终端数量急剧增加,造成该段频谱十分拥挤。相比较而言,高频段(如毫米波频段)的可利用频谱资源则十分丰富,可以有效地缓解低频频段谱拥挤的问题,支撑第五代移动通信技术(5fifth-generation,5G)在容量和传输速率上的巨大需求。
但是,相较于低频段而言,高频段信道的路径损耗和穿透损耗等均相对较大,为了实现远距离覆盖和空间/时频信号干扰隔离,通常基站和/或终端的接收和/或发送侧都需要进行波束成形(Beamforming)操作,即通过多天线相位技术,将波束定向发射/定向接收,以增加高频段信号的覆盖距离。
已有技术中,基站利用波束成型操作对终端的上行传输进行调度时,基站的同一个时域资源,无法被不同波束调度,因此,基站将目标波束对应的时域资源分配给一个终端后,该终端在后续的上行传输发送过程中,仍然会利用该波束与基站进行通信,因此,造成时域资源对应的波束仅能对一个终端的上行传输进行调度,使与该终端具有相同波束需求(即只能通过该波束调度的终端)无法被调度,只能排队等候,因此,在终端数量较多的情况下,导致终端的上行传输调度周期增大,影响用户体验。
发明内容
本申请提供一种资源分配方法及装置,能够在一定程度上避免上行传输调度周期增大以及资源利用率低的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种资源分配方法,应用于基站,方法可以包括:基站向n个终端发送指示信息,指示信息用于指示n个终端中的每个终端的上行传输时域资源,每个终端的上行传输时域资源包括第一时域资源,n为大于等于2的正整数;在第一时域资源上通过第一波束从n个终端接收上行传输。
通过上述方式,实现了基站可指示n个终端在在同一个时域资源对应的波束上同时发送上行传输,并通过同一个波束,接收多个终端,即,n个终端的上行传输。从而有效提升了资源利用率,并且缩短了上行传输的发送周期,以及,降低***开销。
在一种可选的方式中,上行传输包括调度请求SR信号。
通过上述方式,实现了基站可在同一个时域资源对应的波束上接收到n个终端的SR信号。
在一种可选的方式中,上行传输包括探测参考信号SRS。
通过上述方式,实现了基站可在同一个时域资源对应的波束上接收到n个终端的SRS信号。
在一种可选的方式中,第一时域资源属于上行传输扫描周期内的M个时域资源;上行传输扫描周期为基站接收到n个终端的上行传输至下一次接收到n个终端的上行传输之间的时长。
通过上述方式,实现了基站可指示终端在每个上行传输扫描周期内的第一时域资源对应的波束上发送上行传输,从而有效缩短了终端上行传输发送的周期,提升用户体验。
在一种可选的方式中,确定上行传输扫描周期的步骤,包括:获取接入基站的P个终端的上行传输发送周期,其中n个终端属于P个终端;基于上行传输发送周期,确定上行传输扫描周期,上行传输扫描周期与P个终端中的N个终端的上行传输发送周期相等,其中,N为大于等于阈值且小于等于P的整数。
通过上述方式,实现了基站可根据P个终端中的大多数终端的上行传输发送周期,配置对应的上行传输扫描周期,从而有效提升上行传输接收的可靠性和稳定性,并进一步提升资源利用率。
在一种可选的方式中,其中,n个终端中的每个终端在时域资源对应的频域资源上进行频分复用。
通过上述方式,实现了对n个终端发送的上行传输资源进行频分复用,从而提升资源利用率,以及上行传输处理效率。
在一种可选的方式中,其中,n个终端中的每个终端在时域资源对应的频域资源上进行码分复用。
通过上述方式,实现了对n个终端发送的上行传输资源进行码分复用,从而提升资源利用率,以及上行传输处理效率。
第一方面主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现,具体的硬件侧方案如第二方面所述。
第二方面,本申请实施例提供了一种基站,包括:发送单元和控制单元。其中,发送单元可用于向n个终端发送指示信息,指示信息用于指示n个终端中的每个终端的上行 传输时域资源,每个终端的上行传输时域资源包括第一时域资源,n为大于等于2的正整数。接收单元可用于在第一时域资源上通过第一波束从n个终端接收上行传输。
在一种可选的方式中,上行传输包括调度请求SR信号。
在一种可选的方式中,上行传输包括探测参考信号SRS。
在一种可选的方式中,第一时域资源属于上行传输扫描周期内的M个时域资源;上行传输扫描周期为基站接收到n个终端的上行传输至下一次接收到n个终端的上行传输之间的时长。
在一种可选的方式中,基站还包括确定单元,确定单元用于确认所述上行传输扫描周期,其中,确定单元具体用于:获取接入基站的P个终端的上行传输发送周期,其中n个终端属于P个终端;基于上行传输发送周期,确定上行传输扫描周期,上行传输扫描周期与P个终端中的N个终端的上行传输发送周期相等,其中,N为大于等于阈值且小于等于P的整数。
在一种可选的方式中,其中,n个终端中的每个终端在时域资源对应的频域资源上进行频分复用。
在一种可选的方式中,其中,n个终端中的每个终端在时域资源对应的频域资源上进行码分复用。
第三方面,本申请实施例提供了一种装置,该装置可以是基站,也可以是基站的芯片。该装置具有实现上述第一方面的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该装置包括处理单元和通信单元,可选的,该装置还可以包括存储单元。该处理单元可以通过该通信单元完成信息的接收或者发送,该处理单元可以对信息进行处理,使得该装置实现上述第二方面的方法。
作为一种可选的设计,当该装置为基站时,该处理单元例如可以是处理器,该通信单元例如可以是收发器,该收发器包括射频电路,可选地,该存储单元例如可以是存储器。当基站包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该基站执行上述第一方面的方法。
在另一种可能的设计中,当该装置为基站的芯片时,该处理单元例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该接入网设备内的芯片执行上述第一方面的方法。可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该基站内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静 态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面的方法的程序执行的集成电路。
第四方面,本申请实施例提供了一种计算机存储介质,存储有用于实现上述第一方面方法的程序。当所述程序在基站中运行时,使得所述基站执行上述第一方面的方法。
第五方面,本申请实施例提供了一种计算机程序产品,该程序产品包括程序,当该程序被运行时,使得上述第一方面的方法被执行。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信***示意图;
图2是本申请一个实施例提供的基站的结构示意图;
图3是示例性示出的一种资源分配示意图;
图4是本申请一个实施例提供的一种资源分配方法的流程示意图;
图5是本申请一个实施例提供的上行传输发送流程示意图;
图6是本申请实施例提供的一种装置的示意性框图;
图7是本申请实施例提供的一种基站的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个***是指两个或两个以上的***。
为更好地理解本申请实施例中的技术方案,下面对已有技术实施例进行简要描述。如图1所示为已有技术实施例中的资源分配示意图,在图1中:
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的通信***进行说明。参见图1,为本申请实施例提供的一种通信***示意图。该通信***中包括基站、终端1-10(分别为:终端1、终端2、终端3、终端4、终端5、终端6、终端7、终端8、终端9、终端10,其中,终端2-9在图中未示出)。在本申请实施例具体实施的过程中,终端1-10可以为电脑、智能手机、电话机、有线电视机顶盒、数字用户线路路由器等设备。需要说明的是,在实际应用中,基站和终端的数量均可以为一个或多个,图2所示通信***的基站与终端数量仅为适宜性举例,本申请对此不做限定。
上述通信***可以用于支持第五代移动通信技术,例如新无线(New Radio,NR)接入技术。或者,该应用场景还可以用于支持多种无线技术的通信***,例如支持LTE技术和NR技术。另外,该应用场景也可以适用于面向未来的通信技术。
以及,图1中的基站可用于支持终端接入,例如,可以是5G移动通信技术通信***中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
图1中的终端可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。UE可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着无线通信技术的发展,可以接入通信***、可以与通信***的网络侧进行通信,或者通过通信***与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,终端可以与基站进行通信。多个终端之间也可以进行通信。终端可以是静态固定的,也可以是移动的。
图2是一种基站的结构示意图。在图2中:
基站100包括至少一个处理器101、至少一个存储器102、至少一个收发器103、至少一个网络接口104和一个或多个天线105。处理器101、存储器102、收发器103和网络接口104相连,例如通过总线相连。天线105与收发器103相连。网络接口104用于使得基站通过通信链路,与其它通信设备相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器101,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field  Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器101可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器102,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器102可以是独立存在,与处理器101相连。可选的,存储器102也可以和处理器101集成在一起,例如集成在一个芯片之内。其中,存储器102能够存储执行本申请实施例的技术方案的程序代码,并由处理器101来控制执行,被执行的各类计算机程序代码也可被视为是处理器101的驱动程序。例如,处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器103可以用于支持基站与终端之间射频信号的接收或者发送,收发器103可以与天线105相连。收发器103包括发射机Tx和接收机Rx。具体地,一个或多个天线105可以接收射频信号,该收发器103的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器101,以便处理器101对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器103中的发射机Tx还用于从处理器101接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线105发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
为更好的理解本申请实施例中的技术方案,下面结合图1对已有技术中的实施例进行简单介绍:
目前,在***移动通信技术(4fifth-generation,4G)中,使用的频段主要集中在3GHz以下,而由于终端数量的剧增,造成该段频谱十分拥挤,严重影响了用户使用体验。
为解决上述问题,已有技术中利用高频段以缓解低频段频谱的拥挤问题。
在已有技术中,由于高频段信号的路径损耗和穿透损耗等较大,因此,为达到远距离覆盖和空间/时频信号的干扰隔离的目的,基站和/或终端在发送和接收时需要采用波束成形操作,即通过多天线相位技术,将波束定向发射/定向接收,以增加高频段信号 的覆盖距离。
在具体实现过程中,考虑到成本及设备复杂度问题,基站和/或终端侧通常采用较少数量的射频通道(Radio Frequency chain,RF chain),例如:2个、4个或8个。具体的,在已有技术中,以基站为例,假设基站具有1个RF chain,基站在发送或接收信号的过程中,通过RF chain形成的波束对小区的覆盖范围以周期性环形扫射的方式进行发送或接收信号。其中,在基站通过波束进行扫射的过程中,小区中的终端若能成功跟踪该波束,并且通过该波束驻留在小区中,则,基站将会为该终端分配专有时域资源,并在后续过程中,通过专有时域资源对应的波束发送和/或接收对应于该终端的信号。
在已有技术中,基于***上下行信道的互易性,以及基站和终端收发侧的互易性。对于上行传输和信道的接收波束,通常采用和下行信号使用相同的波束。例如:基站通过第一波束向终端发送下行信号,则,基站还可利用该第一波束接收终端的上行传输。
而由于不同用户所处地理位置和信道的差异,导致基站对终端的接收波束不同。然而,当基站侧只具有少量RF chain(例如:2个)时,基站侧在接收终端的上行参考信号/控制信号时,则无法接收来自其它用户的上行传输。而由于上行传输均为用户级配置,并且需要终端周期性的向基站发送,因此,当小区内用户数较多时,将会导致终端发送上行传输的周期变长。下面以具体事例进行详细说明:
参照图1,假设基站侧(基站在图中未示出)具有2个射频通道(Radio Frequency chain,RF chain),小区内激活用户数(即成功接入该小区的用户)分别为终端1、终端2、终端3和终端4。由于每个RF Chain在同一个时刻只能形成1个波束方向,如果两用户终端1和终端4波束方向不一致,则不能同时调度这两个用户,即使频谱资源足够多。这样,终端1和终端4的SR请求需要在不同的时间资源上发送。参照图1,终端1、终端2、终端3和终端4分别在T1,T2,T3和T4时刻上发送。终端1发送SR请求的周期至少到等到T5时刻才能再次上传,导致终端1的SR信号上传周期延长,而当接入小区的用户数较多时,每个终端的上行传输上传周期将更为明显的被延长,严重影响用户使用体验。
此外,在已有技术中,为保证覆盖,即,保证接入小区的每个终端都可通过波束与基站进行上/下行互传,因此,基站还需要采用扫描机制,即,通过扫描机制,确定终端与基站之间进行互传的波束后,基站可指示终端在该波束对应的时域资源上发送上行传输。显然,该扫描机制增加了***开销,造成基站侧负担。
综上所述,针对已有技术中存在的上行传输发送周期长、并且开销大的问题,本申请实施例提出了一种资源分配方法,以有效弱化终端数较多对上行传输发送周期的影响,并且降低***开销,从而提升***性能以及用户使用体验。
结合上述如图1所示的通信***示意图,下面介绍本申请的具体实施方案:
如图4所示为本申请实施例中的资源分配方法的流程示意图,在图4中:
步骤101,基站获取接入基站的P个终端的上行传输发送周期。
具体的,在本申请的实施例中,终端接入基站后,基站可基于终端的状态信息,为终端配置上行传输发送周期。在本申请的实施例中,终端的状态信息包括但不限于:移动速度和/或时延信息等。在一个实施例中,基站还可以根据基站自身的状态信息,例如:接入用户数量和/或基站负载状态等,为终端配置上行传输发送周期。举例说明:当基站基于终端发送的参考信号,确认终端的移动速度超过阈值(可根据实际需求进行 设置)时,则可确定该终端为高速移动终端,则,基站可为该终端配置较小的上行传输发送周期,例如:5ms。以及,若基站当前的负载超过阈值(可根据实际需求进行设置),则,基站可为终端配置较大的上行传输发送周期,例如:15ms。具体设置可根据实际需求进行设置,本申请对此不做限定。
可选的,本申请实施例中的上行传输可以为:SR信号或者是SRS信号等。
随后,基站获取已配置好的P个终端中的每个终端的上行传输发送周期。结合图1,在下面的实施例中,以P为10,以及,以基站基于终端1-10的状态信息和/或基站自身的状态信息,为终端1-7配置的SR信号的发送周期为10ms,为终端8配置的SR信号的发送周期为15ms,为终端9-10配置的SR信号的发送周期为5ms为例进行详细说明。
步骤102,基站基于P个终端的上行传输发送周期,确定上行传输扫描周期。
具体的,在本申请的实施例中,基站在获取到P个终端的上行传输发送周期后,可基于P个终端中的N个终端的上行传输发送周期,确定上行传输扫描周期。在本申请的实施例中,N可以为大于等于预设阈值且小于等于P的整数。可选的,预设阈值可以为70%。即,如果P为10,则N为大于等于7的整数。其目的为,使基站设置的上行传输扫描周期满足接入基站的P个终端中的大多数终端的上行传输发送周期。结合图1,举例说明:终端1-7的上行传输发送周期为10ms,终端8的上行传输发送周期为15ms,终端9-10的上行传输发送周期为5ms。将终端1-10的上行传输发送周期从大到小排列,可知,70%以上的终端的上行传输发送周期等于或大于10ms。因此,满足终端1-10中的70%的终端的上行传输发送周期,即可确定上行传输扫描周期为10ms,在本实施例中,N=8(即发送周期大于等于10ms的终端1-8)。
可选的,在一个实施例中,基站还可以根据P个终端的上行发送信号周期的平均值,或者是,根据P个终端中的N个终端的上行发送信号周期的平均值等方式,确定上行传输扫描周期,本申请对此不做限定。
以及,需要说明的是,上行传输扫描周期即为基站通过基站侧的至少一个RF chain对小区进行扫描,并且完全覆盖小区的情况下所属的周期。举例说明:若上行传输扫描周期为10ms,基站侧具有2个RF chain,且基站侧通过2个RF chain对小区进行扫描,并且全覆盖小区需要6个波束(即,基站需要6个波束对不同的区域进行扫描,从而实现对小区的整个区域的扫描),以及,基站每10ms通过上述6个波束对小区进行一次扫描,以接收接入小区内的终端的上行传输。
步骤103,基站向N个终端发送指示信息。
具体的,在本申请的实施例中,基站在确定上行传输扫描周期后,向N个终端发送指示信息,以指示N个终端在每个上行传输扫描周期内的M个时域资源上向基站发送上行传输。
结合图1,举例说明:基站确定上行扫描周期为满足终端1-8的上行传输发送周期,即10ms后,确定N个终端即为终端1-8。随后,基站向终端1-8中的每个终端发送指示信息,以指示终端1-8在每个上行传输扫描周期内的M个时域资源中的每个时域资源对应的波束上均会发送SR/SRS信号,并且,基站向终端1-8发送的指示信息中携带的频域信息不相同,从而实现频分复用或码分复用。
可选的,指示信息可以为无线资源控制(Radio Resource Control,RRC)信令。
可选地,在一个实施例中,基站向终端发送的指示信息中还可以携带有频域信息。该频域信息用于指示终端在指示信息中指定的频域上发送上行传输。举例说明:基站指示终端1在T1时刻对应的频域资源A上发送上行传输,指示终端2在T1时刻对应的频域资源B上发送上行传输,并以此类推。具体频域资源方式不限于上述分配方式,本申请对此不作限定。从而实现了基站可对同一时域资源的波束接收到的多个终端的上行资源进行频分复用。
可选地,在一个实施例中,基站向终端发送的指示信息中还可以携带***域信息。该码域信息用于指示终端在指示信息中指定的码域上发送上行传输。举例说明:基站指示终端1在T1时刻对应的码域资源A上发送上行传输,指示终端2在T1时刻对应的码域资源B上发送上行传输,并以此类推。具体码域资源方式不限于上述分配方式,本申请对此不作限定。从而实现了基站可对同一时域资源的波束接收到的多个终端的上行资源进行码分复用。
步骤104,N个终端在每个上行传输扫描周期内的M个时域资源对应的接收波束上向基站发送上行传输。
具体的,在本申请的实施例中,N个终端依据指示信息的指示,在每个上行传输扫描周期内的M个时域资源上都发送上行传输。如图5所示为上行传输发送流程示意图。在图5中:仍以上文中的每个上行传输扫描周期内的2个RF chain形成的6个波束为例,参照图5,在第一上行传输扫描周期内(10ms),时域资源T1时刻、T2时刻以及T3时刻对应的接收波束分别以图中的扫描角度对小区进行扫描,终端1-8基于指示信息的指示,可获知每个10ms的上行传输扫描周期内,存在3个时域资源对应的接收波束。随后,终端1-8可在10ms内的3个时域资源上的每个时域资源,即T1、T2、和T3时刻对应的接收波束上,均发送SR/SRS信号。
可选的,N个终端在发送上行传输时,如步骤103所述,每个终端可依据指示信息中携带的频分复用信息或码分复用信息,在M个接收波束对应的资源的指定位置,发送各自的上行传输,从而实现基站侧的频分复用或码分复用。
步骤105,基站在第一时域资源通过第一接收波束接收n个终端发送的上行传输。
具体的,在本申请的实施例中,N个终端发送的上行传输中,基站可通过第一接收波束接收到n个终端发送的上行传输。其中,n为大于等于1且小于等于N的整数。结合图1,举例说明:在终端1-8在T1时刻对应的接收波束上均发送SR信号的情况下,终端1和终端2成功跟踪到T1时刻对应的接收波束,则,基站可通过T1时刻对应的接收波束接收到终端1和终端2的SR信号。终端1-8在T2时刻对应的接收波束上均发送SR信号,终端3和终端4成功跟踪到T2时刻对应的接收波束,则,基站可通过T2时刻对应的接收波束接收到终端3和终端4发送的SR信号。终端1-8在T3时刻对应的接收波束上均发送SR信号,终端5-8成功跟踪到T3时刻对应的接收波束,则,基站可通过T3时刻对应的接收波束接收到终端5-8发送的SR信号。并且,在第二个上行传输扫描周期内,终端同样可通过T4时刻对应的接收波束(该接收波束与T1时刻对应的接收波束相同)接收终端1和终端2发送的SR信号,并且以此类推。需要说明的是,本申请实施例中的第一时域资源以及第一时域资源对应的第一接收波束可以为图1中的任一时刻以及对应的接收波束。
对于除N个终端以外的L个终端,此类终端可能为时延敏感终端,基站可为L个终端 单独配置对应的时域资源,并通过单独配置的时域资源对应的接收波束,以接收L个终端发送的上行传输。结合图1,举例说明:终端9-10的上行发送周期为5ms,为时延敏感终端,因此,基站可每隔5ms为终端9-10配置对应的时域资源,并通过时域资源对应的接收波束接收终端9-10发送的SR信号。
可选的,基站与上述时延敏感终端选择上/下行发送或接收波束时,可以采用终端根据接收到的发送波束发送下行信号的同步信号块(Synchronization Signal Block,SSB)信息或者信道状态信息(Channel State Information,CSI)选择最优下行信号质量对应的发送波束,并上报给基站,则,该发送波束亦可作为接收时延敏感终端的上行传输的接收波束,随后,基站可通过RRC信令或DCI信令,通知终端在该接收波束上发送上行传输。
可选的,基站与上述时延敏感终端选择上/下行发送或接收波束时,可以采用终端可通过多个发送波束周期性向基站发送SRS信号,基站可在接收到SRS信号的接收波束上,选择信号质量最优的接收波束进行维护,即,基站可通过RRC信令或DCI信令,通知终端在该接收波束上发送上行传输。具体接收波束选择细节,可参照已有技术实施例,本申请不再赘述。
可选的,对于所述L个终端,基站在确认对应于L个终端的发送波束或接收波束后,可在每个周期都维护该波束,即,在每个周期均使用已确定的波束与L个终端进行通信。
需要说明的是,本申请实施例中的基站用于接收L个终端中的每个终端发送的上行下信号的接收波束可以相同,可以不同,也可以部分相同。
具体时域资源的配置方法,可参照已有技术实施例,本申请不再赘述。
综上所述,本申请实施例中的技术方案,基站可指示N个终端在每个上行传输扫描周期内的每个时域资源上均发送上行传输,并且可对n个接收到的终端发送的上行传输进行频分复用或码分复用,从而有效提升了资源利用率,并且缩短了上行传输的发送周期,以及,降低***开销。
此外,在本申请的实施例中,基站侧还可引入扫描机制。具体的,基站侧可通过对终端的下行信号进行测量等方式,获取终端的上行传输对应的接收波束(根据上/下行互易性,基站向终端发送下行信号的发送波束与接收终端的上行传输的接收波束为同一波束)。即,该类终端(基站侧已知终端的上行传输对应的接收波束)为接收波束已知的终端,基站可向此类终端发送的第二指示信息中,其中,第二指示信息中可携带有上行传输扫描周期的信息和频域信息,以及时域信息,其中,时域信息即为上述已知接收波束对应的时域信息。也就是说,基站已知可通过第一时域资源对应的第一接收波束接收到终端的上行传输,则,基站可指示终端在每个上行传输扫描周期内的第一时域资源对应的第一接收波束上发送上行传输,直至基站通过扫描机制检测到无法通过第一接收波束再接收终端发送的上行传输。
可选的,第二指示信息可以为下行控制信令(Downlink Control Information,DCI)。
可选的,扫描机制可周期性触发,周期可自行设置。
可选的,扫描机制可与上文中的实施例进行结合,例如:在扫描机制未启动时,基站可指示所有终端在每个时域资源对应的接收波束上发送上行传输,在扫描机制启动后, 基站可指示已知接收波束的终端仅在已知接收波束上发送上行传输,从而减轻基站与终端侧的负担,有效提升资源利用率。
下面介绍本申请实施例提供的一种装置。如图6所示:
该装置300包括处理单元301和通信单元302。可选的,该装置还包括存储单元303。处理单元301、通信单元302和存储单元303通过通信总线相连。
通信单元302可以是具有收发功能的装置,用于与其他网络设备或者通信网络进行通信。
存储单元303可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。
存储单元303可以独立存在,通过通信总线与处理单元301相连。存储单元也可以与处理单元301集成在一起。
装置300可以用于网络设备、电路、硬件组件或者芯片中。
装置300可以是本申请实施例中的基站。基站的示意图可以如图2所示。可选的,装置300的通信单元302可以包括基站的天线和收发机,例如图2中的天线105和收发机103。通信单元302还可以包括基站的网络接口,例如图2中的网络接口104。
装置300可以是本申请实施例中的基站中的芯片。通信单元302可以是输入或者输出接口、管脚或者电路等。可选的,存储单元可以存储基站侧的方法的计算机执行指令,以使处理单元301执行上述实施例中基站侧的方法。存储单元303可以是寄存器、缓存或者RAM等,存储单元303可以和处理单元301集成在一起;存储单元303可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元303可以与处理单元301相独立。可选的,随着无线通信技术的发展,收发机可以被集成在装置300上,例如通信单元302集成了收发机103,网络接口104。
当装置300是本申请实施例中的基站或者基站中的芯片时,可以实现上述实施例中基站执行的方法。处理单元301可以用于通过通信单元302向终端发送指令或数据。
下面介绍本申请实施例提供的一种基站400。如图7所示:
基站400包括发送单元401和接收单元402,发送单元401与接收单元402相连。
发送单元401可用于向n个终端发送指示信息,指示信息用于指示n个终端中的每个终端的上行传输时域资源,每个终端的上行传输时域资源包括第一时域资源,n为大于等于2的正整数;例如,支持基站执行上述方法实施例中的步骤103中的相关内容。
接收单元402可用于在第一时域资源上通过第一波束从n个终端接收上行传输。例如,支持基站执行上述方法实施例中的步骤105。
可选的,发送单元401还可以用于向n个终端发送第二指示信息,第二指示信息用于指示n个终端在每个上行传输扫描周期内的第一时域资源上发送上行传输。
可选的,基站400还可以包括确定单元,所述确定单元用于确定上行传输扫描周期。例如,支持基站执行上述方法实施例中的步骤102。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全 部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何可用介质。
作为一种可选的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或可用于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (15)

  1. 一种资源分配方法,其特征在于,所述方法包括:
    向n个终端发送指示信息,所述指示信息用于指示所述n个终端中的每个终端的上行传输时域资源,所述每个终端的所述上行传输时域资源包括第一时域资源,n为大于等于2的正整数;
    在所述第一时域资源上通过第一波束从所述n个终端接收上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述上行传输包括调度请求SR信号。
  3. 根据权利要求1所述的方法,其特征在于,所述上行传输包括探测参考信号SRS。
  4. 根据权利要求1所述的方法,其特征在于,其中,
    所述第一时域资源属于上行传输扫描周期内的M个时域资源;所述上行传输扫描周期为所述基站接收到所述n个终端的上行传输至下一次接收到所述n个终端的上行传输之间的时长。
  5. 根据权利要求4所述的方法,其特征在于,确定所述上行传输扫描周期的步骤,包括:
    获取接入所述基站的P个终端的上行传输发送周期,其中所述n个终端属于所述P个终端;
    基于所述上行传输发送周期,确定所述上行传输扫描周期,所述上行传输扫描周期与所述P个终端中的N个终端的上行传输发送周期相等,其中,N为大于等于阈值且小于等于P的整数。
  6. 根据权利要求1所述的方法,其特征在于,其中,
    所述n个终端中的每个终端在所述时域资源对应的频域资源上进行频分复用。
  7. 根据权利要求1所述的方法,其特征在于,其中,
    所述n个终端中的每个终端在所述时域资源对应的频域资源上进行码分复用。
  8. 一种通信装置,其特征在于,包括:
    发送单元,用于向n个终端发送指示信息,所述指示信息用于指示所述n个终端中的每个终端的上行传输时域资源,所述每个终端的所述上行传输时域资源包括第一时域资源,n为大于等于2的正整数;
    接收单元,用于在所述第一时域资源上通过第一波束从所述n个终端接收上行传输。
  9. 根据权利要求8所述的通信装置,其特征在于,所述上行传输包括调度请求SR信号。
  10. 根据权利要求8所述的通信装置,其特征在于,所述上行传输包括探测参考信号SRS。
  11. 根据权利要求8所述的通信装置,其特征在于,其中,
    所述第一时域资源属于上行传输扫描周期内的M个时域资源;所述上行传输扫描周期为所述基站接收到所述n个终端的上行传输至下一次接收到所述n个终端的上行传输之间的时长。
  12. 根据权利要求11所述的通信装置,其特征在于,所述基站还包括确定单元,所述确定单元用于确认所述上行传输扫描周期,
    其中,所述确定单元具体用于:
    获取接入所述基站的P个终端的上行传输发送周期,其中所述n个终端属于所述P个终端;
    基于所述上行传输发送周期,确定所述上行传输扫描周期,所述上行传输扫描周期与所述P个终端中的N个终端的上行传输发送周期相等,其中,N为大于等于阈值且小于等于P的整数。
  13. 根据权利要求8所述的通信装置,其特征在于,其中,
    所述n个终端中的每个终端在所述时域资源对应的频域资源上进行频分复用。
  14. 根据权利要求8所述的通信装置,其特征在于,其中,
    所述n个终端中的每个终端在所述时域资源对应的频域资源上进行码分复用。
  15. 一种计算机存储介质,存储有程序,其特征在于,所述程序用于实现如权利要求1至7任一项所述的方法。
PCT/CN2019/121920 2018-11-30 2019-11-29 资源分配方法及装置 WO2020108606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811458569.7A CN111263444B (zh) 2018-11-30 2018-11-30 资源分配方法及装置
CN201811458569.7 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020108606A1 true WO2020108606A1 (zh) 2020-06-04

Family

ID=70854689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121920 WO2020108606A1 (zh) 2018-11-30 2019-11-29 资源分配方法及装置

Country Status (2)

Country Link
CN (1) CN111263444B (zh)
WO (1) WO2020108606A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016041358A1 (zh) * 2014-09-17 2016-03-24 中兴通讯股份有限公司 一种上行同步方法、装置和***
CN107135021A (zh) * 2016-02-29 2017-09-05 中兴通讯股份有限公司 一种上行波束跟踪方法及相应的终端和基站
CN107645783A (zh) * 2016-07-22 2018-01-30 华为技术有限公司 一种上行参考信号的传输方法和装置
CN107645352A (zh) * 2016-07-22 2018-01-30 华为技术有限公司 一种上行参考信号的传输方法和装置
CN107733505A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种波束赋形训练方法、终端和基站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609648B2 (en) * 2014-06-16 2017-03-28 Qualcomm Incorporated Beamform scheduling based on the directionality of UEs
US20160192400A1 (en) * 2014-12-30 2016-06-30 Electronics And Telecommunications Research Institute Method for transmitting and receiving random access channel signal in wireless communication system
US10560167B2 (en) * 2015-07-30 2020-02-11 Lg Electronics Inc. Method for transmitting and receiving signal using beam sharing between user equipments
CN106559886A (zh) * 2015-09-28 2017-04-05 华为技术有限公司 无线通信***中传输控制信息的方法、基站和用户设备
CN107872253B (zh) * 2016-09-27 2021-06-08 华为技术有限公司 波束跟踪方法、设备及***
EP3549388A4 (en) * 2016-12-05 2019-12-18 Telefonaktiebolaget LM Ericsson (PUBL) ACCESS TO A WIRELESS COMMUNICATION NETWORK WITH REDUCED SIGNALING OVERHEAD
CN108810920B (zh) * 2017-04-28 2021-01-15 ***通信有限公司研究院 一种测量参数的配置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016041358A1 (zh) * 2014-09-17 2016-03-24 中兴通讯股份有限公司 一种上行同步方法、装置和***
CN107135021A (zh) * 2016-02-29 2017-09-05 中兴通讯股份有限公司 一种上行波束跟踪方法及相应的终端和基站
CN107645783A (zh) * 2016-07-22 2018-01-30 华为技术有限公司 一种上行参考信号的传输方法和装置
CN107645352A (zh) * 2016-07-22 2018-01-30 华为技术有限公司 一种上行参考信号的传输方法和装置
CN107733505A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种波束赋形训练方法、终端和基站

Also Published As

Publication number Publication date
CN111263444A (zh) 2020-06-09
CN111263444B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
CN111867094B (zh) 数据接收和发送方法及装置
US20200374156A1 (en) Method and device for srs transmission
CN117014020B (zh) 通信方法及装置
CN108809370B (zh) 用于使用无线网络中的多个频带进行通信的***
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
CN110268773A (zh) 上行数据传输方法及相关设备
KR102394225B1 (ko) 무선 통신 시스템에서 대역폭을 결정하기 위한 장치 및 방법
WO2020001454A1 (zh) 波束赋形训练的方法和装置
US20220116990A1 (en) Apparatus, system, and method of suspending a wireless communication
WO2019238007A1 (zh) 检测波束的方法和装置
KR20180136837A (ko) 랜덤억세스 및 핸드오버 수행 방식
US11882583B2 (en) FBE data transmission method, apparatus, and storage medium
WO2020108606A1 (zh) 资源分配方法及装置
WO2021233323A1 (zh) 上行信号传输方法、装置、通信节点及存储介质
WO2022027681A1 (zh) 无线通信方法和设备
CN111757351B (zh) 数据接收和发送方法及装置
US20240250744A1 (en) Passive beamforming for wi-fi
WO2024031435A1 (zh) 信息指示方法、转发器和网络设备
WO2023030060A1 (zh) 一种通信方法和设备
WO2021223599A1 (zh) 一种上行数据传输方法及装置
CN111491377B (zh) 资源分配方法、终端及基站
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888420

Country of ref document: EP

Kind code of ref document: A1