WO2016035813A1 - ガスシールドアーク溶接用フラックス入りワイヤ - Google Patents

ガスシールドアーク溶接用フラックス入りワイヤ Download PDF

Info

Publication number
WO2016035813A1
WO2016035813A1 PCT/JP2015/074933 JP2015074933W WO2016035813A1 WO 2016035813 A1 WO2016035813 A1 WO 2016035813A1 JP 2015074933 W JP2015074933 W JP 2015074933W WO 2016035813 A1 WO2016035813 A1 WO 2016035813A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
flux
content
wire
cored wire
Prior art date
Application number
PCT/JP2015/074933
Other languages
English (en)
French (fr)
Inventor
鵬 韓
浩之 川▲崎▼
良彦 北川
秀徳 名古
▲琢▼哉 高知
漆原 亘
喜臣 岡崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201580045430.8A priority Critical patent/CN106794558B/zh
Priority to US15/505,288 priority patent/US20170274482A1/en
Priority to KR1020177003749A priority patent/KR101970076B1/ko
Priority to KR1020197000345A priority patent/KR20190006074A/ko
Priority to EP15838210.1A priority patent/EP3189930B1/en
Publication of WO2016035813A1 publication Critical patent/WO2016035813A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to a flux-cored wire for gas shielded arc welding. More specifically, the present invention relates to a flux-cored wire for gas shield arc welding used for welding steel materials having a tensile strength of 490 to 670 MPa.
  • Patent Document 1 discloses a gas shield that specifies the wire composition in order to obtain a weld metal that is excellent in welding workability in all positions and that has excellent strength after welding (AW) and heat treatment (PWHT) and low-temperature toughness.
  • a flux-cored wire for arc welding has been proposed.
  • the flux-cored wire described in Patent Document 1 includes C, Si, Mn, Ni, B, Mg, V, Ti oxide, metal Ti, Al oxide, metal Al, Si oxide, and metal fluoride in specific amounts. While being contained, P and Nb are regulated to a specific amount or less, and the remainder has a composition comprising Fe of steel outer shell, iron powder, Fe content of iron alloy powder, arc stabilizer and inevitable impurities.
  • Patent Document 2 discloses that a wire and flux are used to obtain a weld metal having high cracking resistance and good low-temperature toughness, enabling high-efficiency all-position welding in welding of high-tensile steel having a yield strength of 690 MPa or more. Flux-cored wires for high-strength steel that specify these components have been proposed. Specifically, the flux-cored wire described in Patent Document 2 contains a specific amount of C, Si, Mn, Ni and Al as essential elements, and at least one of Cr, Mo, Nb and V as selective elements.
  • the total hydrogen content of the wire is 15 ppm or less.
  • Ni content in the weld metal is regulated to 1 mass% or less in the standard (NACE MR0175) of the National Association of Corrosion Engineers (NACE).
  • the flux-cored wire of Patent Document 1 described above contains 0.1 to 3.0% by mass of Ni in order to ensure excellent low temperature toughness, the Ni content of the weld metal is 1% by mass. May not be able to fully meet NACE requirements.
  • the flux-cored wire described in Patent Document 1 has not been studied for heat treatment conditions, and whether a weld metal excellent in yield strength, strength, low temperature toughness, etc. can be obtained even when heat treated under more severe conditions. It is unknown.
  • the flux-cored wire described in the cited document 2 cannot satisfy the NACE requirement because it contains 1.0 to 3.0 mass% of Ni. Further, in this flux-cored wire, the performance of the weld metal after the heat treatment has not been studied, and the strength and the strength even when heat-treated under more severe conditions, like the flux-cored wire described in the cited reference 1 described above. It is unclear whether a weld metal with excellent low-temperature toughness can be obtained.
  • the present invention provides a gas shield capable of obtaining a weld metal having good welding workability and good low-temperature toughness both in the welded state and after the heat treatment even when the Ni content is 1% by mass or less.
  • the main object is to provide a flux-cored wire for arc welding.
  • the flux-cored wire for gas shielded arc welding is a flux-cored wire in which a steel outer sheath is filled with flux, and C is 0.01 to 0.12% by mass and Si is the total mass of the wire.
  • Mn is 1.0 to 3.5 mass%
  • Ni is 0.1 mass% or more and less than 1.0 mass%
  • Mo is 0.10 to 0.30 mass% %
  • SiO 2 0.10 to 0.40 mass% Al 2 O 3 0.03 to 0 .23 mass%
  • Fe is contained 80 mass% or more.
  • V may be regulated to 0.020 mass% or less per total mass of the wire.
  • C content (mass%) per wire total mass is [C]
  • Mn content (mass%) is [Mn]
  • Si content (mass%) is [Si]
  • Cr content (% by mass) is [Cr]
  • the composition may satisfy the following formula (A).
  • the flux cored wire of this embodiment is a steel outer shell filled with flux and used for gas shielded arc welding.
  • C is 0.01 to 0.12 mass%
  • Si is 0.05 mass% or more and less than 0.30 mass%
  • Mn is 1.0 to 3 per total mass of the wire.
  • Ni is 0.1 mass% or more and less than 1.0 mass%
  • Mo is 0.10 to 0.30 mass%
  • Cr is 0.1 to 0.9 mass%
  • TiO 2 is 4.5 8.5 mass%
  • Fe content 80 mass% or more are inevitable impurities.
  • the flux-cored wire of this embodiment may contain Mg, Ti, metal fluoride, Na compound, K compound, B, B alloy, B oxide, etc. other than each component mentioned above.
  • V or ZrO 2 is contained in the flux-cored wire of this embodiment, it is preferable to regulate the content thereof.
  • the relationship between the C amount and the Mn amount and the Si amount, the Mo amount, and the Cr amount satisfy the following mathematical formula (A).
  • [C] is the C content (% by mass) per the total mass of the wire
  • [Mn] is the Mn content (% by mass) per the total mass of the wire
  • [Si] is the total mass of the wire.
  • [Mo] is the Mo content (mass%) per total mass of the wire
  • [Cr] is the Cr content (mass%).
  • content of each component mentioned above can be measured by wet chemical analysis methods, such as a volumetric method and a weight method.
  • C is a combustion-infrared absorption method
  • Ti, Si, Zr, Mn, Al, Mg, Ni, Mo, Cr and B are ICP emission spectroscopy methods
  • Na and K are atomic absorption analysis methods
  • F is Each can be measured by a neutralization titration method.
  • the outer diameter of the flux-cored wire of this embodiment is not particularly limited, but is generally 1.0 to 2.0 mm, and practically preferably 1.2 to 1.6 mm.
  • the flux filling rate can be set to any value as long as each component in the wire is within the above-mentioned range, but from the viewpoint of wire drawability and workability (feedability, etc.) during welding. Therefore, the content is preferably 10 to 30% by mass of the total mass of the wire.
  • the cross-sectional shape, the presence or absence of seams, and the internal shape of the flux-cored wire of this embodiment are not particularly limited.
  • C 0.01 to 0.12% by mass
  • C is an element necessary for securing the strength of the weld metal as welded and after SR.
  • the C content is less than 0.01% by mass, the strength of the weld metal is insufficient and the effect of stabilizing the toughness cannot be sufficiently obtained.
  • the C content exceeds 0.12% by mass, the hot cracking resistance of the weld metal is deteriorated, and the strength of the weld metal is excessively increased to deteriorate the low temperature toughness. Therefore, the C content is set to 0.01 to 0.12% by mass.
  • the C content is preferably 0.03% by mass or more from the viewpoint of improving the strength and toughness of the weld metal, and 0.10 from the viewpoint of improving the hot crack resistance and improving the low temperature toughness of the weld metal. It is preferable to set it as mass% or less.
  • C may be contained in either the flux or the steel outer shell. Examples of the C source in the flux-cored wire of this embodiment include graphite added as a flux component, C associated with Fe—Mn and Fe—Si, and C added to a steel outer sheath.
  • Si 0.05 mass% or more and less than 0.30 mass%
  • Si is also an element necessary for ensuring the strength of the weld metal as it is and after SR.
  • Si content is less than 0.05% by mass
  • the low temperature toughness of the weld metal deteriorates due to insufficient deoxidation.
  • Si content is 0.30% by mass or more, the Si amount becomes excessive, Si dissolves in the ferrite, the strength of the matrix ferrite increases, and the low temperature toughness of the weld metal, particularly the weld metal after SR decreases. To do. Therefore, Si content shall be 0.05 mass% or more and less than 0.30 mass%.
  • the Si content is preferably 0.08% by mass or more from the viewpoint of improving the deoxidation effect and improving the low temperature toughness of the weld metal, and from the viewpoint of improving the low temperature toughness of the weld metal after SR.
  • the content is preferably 0.20% by mass or less.
  • Si may be contained in either the flux or the steel outer shell. Examples of the Si source in the flux-cored wire of the present embodiment include Fe—Si and Si—Mn added as flux components, Si added to the steel outer sheath, and the like.
  • Mn 1.0 to 3.5% by mass
  • Mn is an element that forms an oxide that becomes the starting point of microstructure formation during welding and is effective in improving the strength and toughness of the weld metal.
  • Mn content is less than 1.0% by mass, the strength of the weld metal is insufficient or the toughness is deteriorated.
  • the Mn content exceeds 3.5% by mass, the toughness of the weld metal decreases due to excessive strength and excessive hardenability. Therefore, the Mn content is 1.0 to 3.5% by mass.
  • the Mn content is preferably 1.2% by mass or more from the viewpoint of improving the strength and toughness of the weld metal, and from the viewpoint of improving the toughness by adjusting the strength and hardenability of the weld metal.
  • the content is preferably 0% by mass or less.
  • Mn may be contained in either the flux or the steel outer shell. Examples of the Mn source in the flux-cored wire of this embodiment include metals Mn, Fe—Mn, and Si—Mn added as flux components, and Mn added to the steel outer sheath.
  • Ni 0.1% by mass or more and less than 1.0% by mass
  • the Ni content is set to a range lower than the conventional range in order to meet the NACE standard.
  • the Ni content is 0.10% by mass or more and less than 1.0% by mass.
  • the Ni content is less than 0.10% by mass, the effect of improving the toughness of the weld metal becomes insufficient.
  • the Ni content is 1.0% by mass or more, a weld metal satisfying the NACE standard cannot be obtained, and the hot crack resistance of the weld metal is also deteriorated.
  • the Ni content is preferably 0.30% by mass or more, more preferably 0.50% by mass or more from the viewpoint of improving the toughness of the weld metal.
  • the Ni content is preferably 0.95 mass% or less.
  • Ni may be contained in either the flux or the steel outer shell.
  • the Ni source in the flux-cored wire of this embodiment include metal Ni and Ni—Mg added as a flux component, Ni added to a steel outer sheath, and the like.
  • Mo 0.10 to 0.30 mass%
  • Mo has an effect of suppressing coarsening and annealing softening of grain boundary carbides and making the structure finer, and is an important element for the flux-cored wire of this embodiment.
  • the Mo content is less than 0.10% by mass, the strength of the weld metal is insufficient.
  • the Mo content exceeds 0.30 mass%, the transition temperature of brittle fracture shifts to the high temperature side, and the toughness of the weld metal deteriorates. Therefore, the Mo content is set to 0.10 to 0.30 mass%.
  • the Mo content is preferably 0.15% by mass or more from the viewpoint of improving the strength of the weld metal, and preferably 0.25% by mass or less from the viewpoint of improving the toughness of the weld metal.
  • Mo may be contained in either the flux or the steel outer shell.
  • the Mo source in the flux-cored wire of the present embodiment include metal Mo and Fe—Mo added as a flux component, Mo added to a steel outer sheath, and the like.
  • Cr 0.1 to 0.9% by mass
  • Cr has the effect of refining grain boundary carbides produced during SR.
  • the strength of the weld metal is insufficient, and the effect of refining coarse grain boundary carbides existing in the former ⁇ grain boundaries is small, resulting in welding after SR.
  • Metal toughness deteriorates.
  • the Cr content exceeds 0.9% by mass, the strength and hardenability of the weld metal become excessive, so that the low temperature toughness decreases. Therefore, the Cr content is 0.1 to 0.9% by mass.
  • the Cr content is preferably 0.2% by mass or more from the viewpoint of improving the strength of the weld metal and improving the toughness after SR.
  • Cr may be contained in either the flux or the steel outer shell.
  • the Cr source in the flux-cored wire of the present embodiment include metal Cr and Fe—Cr added as a flux component, Cr added to the steel outer sheath, and the like.
  • TiO 2 is an arc stabilizer and a main component of the slag agent.
  • TiO 2 content is less than 4.5% by mass, welding workability is deteriorated, and all-position welding becomes difficult.
  • the TiO 2 content exceeds 8.5% by mass, the amount of oxygen in the weld metal increases and the toughness decreases. Therefore, the TiO 2 content is 4.5 to 8.5% by mass.
  • the TiO 2 content is preferably 5.5 to 8.0% by mass.
  • examples of the TiO 2 source in the flux-cored wire of the present embodiment include rutile and titanium oxide added as a flux component.
  • SiO 2 has an effect of improving the bead shape.
  • the SiO 2 content is less than 0.10% by mass, the effect cannot be sufficiently obtained, and the bead shape is deteriorated.
  • the SiO 2 content exceeds 0.40% by mass, the amount of spatter generated increases. Therefore, the SiO 2 content is set to 0.10 to 0.40 mass%.
  • the SiO 2 content is preferably 0.15% by mass or more from the viewpoint of improving the bead shape, and is preferably 0.35% by mass or less from the viewpoint of suppressing sputtering.
  • examples of the SiO 2 source in the flux-cored wire of the present embodiment include silica, potash glass, and soda glass that are added as flux components.
  • Al 2 O 3 also has an effect of improving the bead shape.
  • the Al 2 O 3 content is less than 0.03% by mass, the effect is not sufficiently obtained, and the bead shape is deteriorated.
  • the Al 2 O 3 content exceeds 0.23% by mass, the amount of spatter generated increases. Therefore, the Al 2 O 3 content is set to 0.03 to 0.23 mass%.
  • the Al 2 O 3 content is preferably 0.07% by mass or more from the viewpoint of improving the bead shape, and is preferably 0.19% by mass or less from the viewpoint of suppression of sputtering.
  • As the Al 2 O 3 source in the flux-cored wire according to the present embodiment and the like alumina is added as a flux component.
  • the Fe content is preferably 82 to 93% by mass.
  • the Fe source in the flux-cored wire of this embodiment includes steel powder, iron powder added to the flux, Fe-based alloy, and the like.
  • the relationship among the C amount, Mn amount, Si amount, Mo amount, and Cr amount is also important.
  • the tensile strength and low-temperature toughness of the weld metal and the welding workability can be brought to a certain level. It has been found that the tensile strength and low temperature toughness of the weld metal and the welding workability can be further improved by satisfying the above-described mathematical formula (A) for the relationship between the Si amount, the Mo amount and the Cr amount. It was.
  • the low temperature toughness of the weld metal after SR may deteriorate. Also, hardenability is insufficient, viscosity of the molten pool is decreased, and the effect of refining coarse carbides in the former ⁇ grain boundaries is reduced, and vertical welding workability, tensile strength after SR, and low temperature toughness are deteriorated. There is.
  • V 0.020% by mass or less
  • the content is preferably regulated to 0.020% by mass or less.
  • ZrO 2 less than 0.02% by mass
  • ZrO 2 content is preferably restricted to less than 0.02 wt%, thereby improving the weldability.
  • ZrO 2 source in the flux-cored wire of this embodiment include zircon sand and zirconia.
  • Mg 0.2 to 0.7% by mass
  • Mg is a deoxidizing element and is effective in improving the toughness of the weld metal, so it can be added as necessary.
  • Mg content is less than 0.2% by mass, a sufficient deoxidation effect cannot be obtained, and an improvement in the toughness of the weld metal cannot be expected.
  • Mg is contained exceeding 0.7 mass%, the amount of spatter will increase and welding workability will fall. Therefore, when adding Mg, the content is made 0.2 to 0.7 mass%.
  • examples of the Mg source in the flux-cored wire of the present embodiment include metals Mg, Al—Mg, and Ni—Mg.
  • Ti 0.05 to 0.30% by mass
  • Ti also has an effect of improving the toughness of the weld metal, and can be added as necessary.
  • the Ti content is less than 0.05% by mass, sufficient nucleation is not achieved, and the effect of improving the toughness of the weld metal becomes insufficient.
  • Ti is contained exceeding 0.30 mass%, the solid solution Ti becomes excessive, the strength of the weld metal becomes excessive, and the toughness is also deteriorated. Therefore, when Ti is added to the flux-cored wire of this embodiment, the content is made 0.05 to 0.30 mass%. Thereby, the weld metal which was further excellent in toughness is obtained.
  • Ti may be contained in either the flux or the steel outer shell.
  • Examples of the Ti source in the flux-cored wire of this embodiment include metal Ti and Fe—Ti added as flux components, Ti added to the steel outer sheath, and the like.
  • Na compound and K compound can be added to the flux as needed.
  • the total contents of Na compound and K compound are Na converted value and K converted value, respectively, and less than 0.01% by mass, the effect of stabilizing the arc may be small and the amount of spatter generated may increase.
  • the total content of the Na compound and the K compound exceeds 0.30% by mass in terms of Na and K, respectively, the bead shape deteriorates. Therefore, when adding the Na compound and the K compound, the total content is set to 0.01 to 0.30 mass% in terms of Na and K, respectively.
  • Sodium fluoride or potassium fluoride is used as a flux material. If potassium fluoride is used, the fluorine content is “metal fluoride content” and the potassium content is “Na compound content and K compound content”. Is calculated as
  • the total content of B, B alloy and B oxide is more preferably 0.003% by mass or more in terms of B, and the high temperature crack resistance of the weld metal. From a viewpoint, it is more preferable to set it as 0.015 mass% or less in B conversion value.
  • examples of the B source in the flux-cored wire of the present embodiment include an Fe—B alloy, an Fe—Si—B alloy, and B 2 O 3 .
  • the balance in the component composition of the flux-cored wire of this embodiment is an unavoidable impurity.
  • Inevitable impurities in the flux-cored wire of this embodiment include V, S, P, Cu, Sn, Na, Co, Ca, Nb, Li, Sb, As, and the like.
  • the flux-cored wire of the present embodiment is added with alloy elements other than the elements described above, a slag forming agent, an arc stabilizer, and the like as long as the effects of the present invention are not impaired. May be.
  • O and N are also contained in the remainder of the flux cored wire of this embodiment.
  • the flux-cored wire of this embodiment specifies the wire component, a weld metal with good low-temperature toughness is obtained both in the welded state and after the heat treatment even when the Ni content is 1% by mass or less. It is done. As a result, the safety of structures used in low-temperature environments can be further improved, and especially in pipe welding for each platform and plant, welding workability is good, sour resistance and low-temperature toughness are excellent. It is possible to realize a flux-cored wire from which a weld metal can be obtained.
  • the transition temperature of the brittle fracture of the weld metal can be shifted to a low temperature side by making the relationship among the amount of C, the amount of Mn, the amount of Si, the amount of Mo and the amount of Cr satisfy formula (A). It is possible to suppress the occurrence of sputtering. As a result, both the low temperature toughness and welding workability of the weld metal can be further improved.
  • ⁇ Welding workability> The steel plate shown in Table 3 above was used as the base material, gas shield arc welding was performed under the conditions shown in Table 7 below, and the welding workability was evaluated. As a result, ⁇ indicates that the welding workability was very good, ⁇ indicates that the welding workability was good, and ⁇ indicates that the welding workability was poor.
  • Table 8 summarizes the evaluation results of the mechanical properties, welding workability, and cracking rate of each weld metal (after SR) obtained with each flux-cored wire of Examples and Comparative Examples.
  • SR weld metal
  • FIG. 1 is a diagram showing the influence of the relationship between the amount of C and Mn, the amount of Si, the amount of Mo, and the amount of Cr in the flux-cored wire on the mechanical properties of the weld metal.
  • the results of Examples 1 to 13 are shown. It is a platform. According to the definition of claim 1, the value of [Si] + [Mo] + [Cr] is 0.25 to 1.5, and the value of 10 ⁇ [C] + [Mn] is 1.1 to 4.7. Each plot satisfies this range (the area surrounded by the dotted line in the figure). As shown in FIG.
  • the flux-cored wire for gas shielded arc welding according to the present invention is suitable for welding steel materials having a tensile strength of 490 to 670 MPa, and is suitable for, for example, equipment and facilities for transporting oil and gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

 鋼製外皮内にフラックスが充填されたフラックス入りワイヤを、ワイヤ全質量あたり、質量%で、Cを0.01~0.12%、Siを0.05%以上0.30%未満、Mnを1.0~3.5%、Niを0.1%以上1.0%未満、Moを0.10~0.30%、Crを0.1~0.9%、TiOを4.5~8.5%、SiOを0.10~0.40%、Alを0.03~0.23%、Feを80%以上含有する組成にする。

Description

ガスシールドアーク溶接用フラックス入りワイヤ
 本発明は、ガスシールドアーク溶接用フラックス入りワイヤに関する。より詳しくは、引張強さが490~670MPa級の鋼材の溶接に使用されるガスシールドアーク溶接用フラックス入りワイヤに関する。
 従来、引張強さが490~670MPa級の鋼材をガスシールドアーク溶接する際に使用されるフラックス入りワイヤについて、溶接作業性の向上や溶接金属の機械特性向上などを目的として、種々の検討がなされている(例えば、特許文献1,2参照。)。
 特許文献1には、全姿勢での溶接作業性を良好にし、溶接のまま(AW)及び熱処理(PWHT)後の強度並びに低温靭性に優れた溶接金属を得るため、ワイヤ組成を特定したガスシールドアーク溶接用フラックス入りワイヤが提案されている。この特許文献1に記載のフラックス入りワイヤは、C、Si、Mn、Ni、B、Mg、V、Ti酸化物及び金属Ti、Al酸化物及び金属Al、Si酸化物並びに金属弗化物を特定量含有すると共に、P及びNbが特定量以下に規制され、残部が鋼製外皮のFe、鉄粉、鉄合金粉のFe分、アーク安定剤及び不可避不純物からなる組成を有する。
 また、特許文献2には、耐力が690MPa以上の高張力鋼の溶接において、高能率な全姿勢溶接を可能とし、耐割れ性に優れ、低温靭性が良好な溶接金属を得るため、ワイヤ及びフラックスの成分を特定した高張力鋼用フラックス入りワイヤが提案されている。具体的には、特許文献2に記載のフラックス入りワイヤは、必須元素としてC、Si、Mn、Ni及びAlを特定量含有すると共に、選択元素としてCr、Mo、Nb及びVのうち少なくとも1種を特定量含有し、かつ、フラックスに、TiO、SiO、ZrO、Al及び弗素化合物を特定量含有し、残部が、Fe、アーク安定剤及び不可避不純物からなる組成を有する。更に、このフラックス入りワイヤでは、ワイヤの全水素量を15ppm以下にしている。
日本国特開2012-121051号公報 日本国特開2010-274304号公報
 石油・ガスの開発や油・ガスの輸送では、硫化物応力腐食割れ(Sulfide Stress Corrosion Cracking:SSCC)や水素脆性というサワー腐食が問題となる。この問題に対応するため、米国防蝕技術協会(National Association of Corrosion Engineers:NACE)の規格(NACE MR0175)では、溶接金属中のNi量が1質量%以下に規制されている。
 しかしながら、前述した特許文献1のフラックス入りワイヤは、優れた低温靭性を確保するために、Niを0.1~3.0質量%添加しているため、溶接金属のNi含有量が1質量%を超えてしまう場合があり、NACEの要求に十分に対応することができない。また、特許文献1に記載のフラックス入りワイヤは、熱処理条件についての検討がなされておらず、より厳しい条件で熱処理した場合でも、耐力、強度及び低温靱性などに優れた溶接金属が得られるかは不明である。
 また、引用文献2に記載のフラックス入りワイヤも、Niを1.0~3.0質量%含有しているため、NACEの要求に対応することができない。また、このフラックス入りワイヤでは、熱処理後の溶接金属の性能についての検討がなされておらず、前述した引用文献1に記載のフラックス入りワイヤと同様に、より厳しい条件で熱処理した場合でも、強度及び低温靱性などに優れた溶接金属が得られるかが不明である。
 そこで、本発明は、溶接作業性が良好で、かつ、Ni含有量が1質量%以下であっても、溶接のまま及び熱処理後のいずれにおいても低温靭性が良好な溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを主目的とする。
 本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、ワイヤ全質量あたり、Cを0.01~0.12質量%、Siを0.05質量%以上0.30質量%未満、Mnを1.0~3.5質量%、Niを0.1質量%以上1.0質量%未満、Moを0.10~0.30質量%、Crを0.1~0.9質量%、TiOを4.5~8.5質量%、SiOを0.10~0.40質量%、Alを0.03~0.23質量%、Feを80質量%以上含有する。 
 このフラックス入りワイヤは、Vを、ワイヤ全質量あたり0.020質量%以下に規制してもよい。 
 また、ワイヤ全質量あたりのC含有量(質量%)を[C]、Mn含有量(質量%)を[Mn]、Si含有量(質量%)を[Si]、Mo含有量(質量%)を[Mo]、Cr含有量(質量%)を[Cr]としたとき、下記数式(A)を満たす組成とすることもできる。
Figure JPOXMLDOC01-appb-M000002
 本発明のガスシールドアーク溶接用フラックス入りワイヤは、Mgを、ワイヤ全質量あたり0.2~0.7質量%含有していてもよい。 
 更に、Tiを、ワイヤ全質量あたり0.05~0.30質量%含有していてもよい。
 更に、金属フッ化物を、ワイヤ全質量あたり、F換算値で0.05~0.30質量%含有していてもよい。 
 更に、Na化合物若しくはK化合物又はその両方を、ワイヤ全質量あたり、Na換算値及びK換算値の合計で0.01~0.30質量%含有していてもよい。 
 更に、B、B合金及びB酸化物のうち少なくとも1種を、ワイヤ全質量あたり、B換算値の合計で0.001~0.020質量%含有していてもよい。
 一方、このフラックス入りワイヤは、ZrOを、ワイヤ全質量あたり、0.02質量%未満に規制することもできる。
 本発明によれば、溶接作業性が良好で、かつ、Ni含有量が1質量%以下であっても、溶接のまま及び熱処理後のいずれにおいても低温靭性が良好な溶接金属が得られる。
C量及びMn量と、Si量、Mo量及びCr量との関係が、溶接金属の機械特性に及ぼす影響を示す図である。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 本実施形態のフラックス入りワイヤは、鋼製外皮にフラックスを充填したものであり、ガスシールドアーク溶接に用いられる。そして、本実施形態のフラックス入りワイヤは、ワイヤ全質量あたり、Cを0.01~0.12質量%、Siを0.05質量%以上0.30質量%未満、Mnを1.0~3.5質量%、Niを0.1質量%以上1.0質量%未満、Moを0.10~0.30質量%、Crを0.1~0.9質量%、TiOを4.5~8.5質量%、SiOを0.10~0.40質量%、Alを0.03~0.23質量%、Fe含有量が80質量%以上を含有する。なお、本実施形態のフラックス入りワイヤにおける上記以外の成分、即ち、残部は、不可避的不純物である。 
 また、本実施形態のフラックス入りワイヤは、前述した各成分以外に、Mg、Ti、金属フッ化物、Na化合物、K化合物、B、B合金及びB酸化物などを含有していてもよい。一方、本実施形態のフラックス入りワイヤにVやZrOが含有される場合は、これらの含有量を規制することが好ましい。
 更に、本実施形態のフラックス入りワイヤは、C量及びMn量と、Si量、Mo量及びCr量との関係が、下記数式(A)を満たすことが好ましい。なお、下記数式(A)における[C]はワイヤ全質量あたりのC含有量(質量%)、[Mn]はワイヤ全質量あたりのMn含有量(質量%)、[Si]はワイヤ全質量あたりのSi含有量(質量%)、[Mo]はワイヤ全質量あたりのMo含有量(質量%)、[Cr]はCr含有量(質量%)である。
Figure JPOXMLDOC01-appb-M000003
 なお、前述した各成分の含有量は、容量法や重量法などの湿式化学分析法により測定することができる。例えば、Cは燃焼-赤外線吸収法で、Ti、Si、Zr、Mn、Al、Mg、Ni、Mo、Cr及びBはICP発光分光分析方法で、Na及びKは原子吸光分析方法で、Fは中和滴定法で、それぞれ測定することができる。
 本実施形態のフラックス入りワイヤの外径は、特に限定されるものではないが、一般には1.0~2.0mmであり、実用上は1.2~1.6mmが好ましい。また、フラックス充填率は、ワイヤ中の各成分が前述した範囲内であれば、任意の値に設定することができるが、ワイヤの伸線性及び溶接時の作業性(送給性など)の観点から、ワイヤ全質量の10~30質量%とすることが好ましい。更に、本実施形態のフラックス入りワイヤは、断面形状、シームの有無及び内部形状も、特に限定されない。
 次に、本実施形態のフラックス入りワイヤに含有される各成分の数値限定理由について説明する。なお、以下に示す各成分の含有量は、特に断りのない限り、ワイヤ全質量あたりの値である。また、数値限定理由に記載した効果などは、特に断りのない限り、溶接のままの溶接金属及び応力除去焼なまし(Stress Relieving:SR)後の溶接金属の両方に共通の効果などである。 
[C:0.01~0.12質量%] 
 Cは、溶接のまま及びSR後における溶接金属の強度を確保するために必要な元素である。ただし、C含有量が0.01質量%未満の場合、溶接金属の強度が不足すると共に、靭性の安定化効果が十分に得られない。一方、C含有量が0.12質量%を超えると、溶接金属の耐高温割れ性が劣化すると共に、溶接金属の強度が過度に上昇して低温靭性も劣化する。よって、C含有量は0.01~0.12質量%とする。
 C含有量は、溶接金属の強度向上及び靭性向上の観点から、0.03質量%以上とすることが好ましく、また、溶接金属の耐高温割れ性向上及び低温靭性向上の観点から、0.10質量%以下とすることが好ましい。なお、Cはフラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるC源としては、フラックス成分として添加されるグラファイト、及びFe-MnやFe-Siに付随するC、鋼製外皮に添加されるCなどが挙げられる。
[Si:0.05質量%以上0.30質量%未満]
 Siも、溶接のまま及びSR後における溶接金属の強度を確保するために必要な元素である。ただし、Si含有量が0.05質量%未満の場合、脱酸不足により、溶接金属の低温靭性が劣化する。Si含有量が0.30質量%以上の場合、Si量が過多となり、Siがフェライトに固溶し、マトリクッスフェライトの強度が高くなり、溶接金属、特にSR後の溶接金属の低温靭性が低下する。よって、Si含有量は、0.05質量%以上0.30質量%未満とする。
 Si含有量は、脱酸効果を高めて溶接金属の低温靭性を向上させる観点から、0.08質量%以上であることが好ましく、また、SR後の溶接金属の低温靭性を向上させる観点から、0.20質量%以下とすることが好ましい。なお、Siはフラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるSi源としては、フラックス成分として添加されるFe-Si及びSi-Mnや、鋼製外皮に添加されるSiなどが挙げられる。
[Mn:1.0~3.5質量%]
 Mnは、溶接時に微細組織生成の起点となる酸化物を形成し、溶接金属の強度向上及び靭性向上に有効な元素である。ただし、Mn含有量が1.0質量%未満の場合、溶接金属の強度が不足したり、靭性が劣化したりする。一方、Mn含有量が3.5質量%を超えると、強度過多及び焼入れ性過多により溶接金属の靭性が低下する。よって、Mn含有量は1.0~3.5質量%とする。 
 Mn含有量は、溶接金属の強度向上及び靭性向上の観点から、1.2質量%以上とすることが好ましく、また、溶接金属の強度及び焼入れ性を調整し靭性を向上させる観点から、3.0質量%以下とすることが好ましい。なお、Mnはフラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるMn源としては、フラックス成分として添加される金属Mn、Fe-Mn及びSi-Mnや、鋼製外皮に添加されるMnなどが挙げられる。
[Ni:0.1質量%以上1.0質量%未満]
 従来のフラックス入りワイヤでは、低温靭性を完全に確保できる量のNiを溶接金属に添加するため、ワイヤ全質量あたりのNi量を1質量%以上にしていた。しかしながら、溶接金属にNiが多量に含まれていると、HS環境中において硫化物応力腐食割れ(SSCC)の感受性が高まる。そこで、本実施形態のフラックス入りワイヤでは、NACE規格に合致させるため、Ni含有量を従来よりも低い範囲にした。
 具体的には、Ni含有量は、0.10質量%以上1.0質量%未満とする。Ni含有量が0.10質量%未満の場合、溶接金属の靭性を向上させる効果が不十分となる。一方、Ni含有量が1.0質量%以上の場合、NACE規格を満たす溶接金属が得られず、また、溶接金属の耐高温割れ性能も劣化する。Ni含有量は、溶接金属の靭性向上の観点から0.30質量%以上とすることが好ましく、より好ましくは0.50質量%以上である。また、NACE規格を満たしつつ耐高温割れ性能を更に向上させるには、Ni含有量を0.95質量%以下にすることが好ましい。 
 なお、Niはフラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるNi源としては、フラックス成分として添加される金属Ni及びNi-Mgや、鋼製外皮に添加されるNiなどが挙げられる。
[Mo:0.10~0.30質量%]
 Moは、粒界炭化物の粗大化及び焼鈍軟化を抑制し、組織を微細化する効果があり、本実施形態のフラックス入りワイヤにとって重要な元素である。ただし、Mo含有量が0.10質量%未満の場合、溶接金属の強度が不足する。一方、Mo含有量が0.30質量%を超えると、脆性破壊の遷移温度が高温側へ移行し、溶接金属の靭性が劣化する。よって、Mo含有量は、0.10~0.30質量%とする。
 Mo含有量は、溶接金属の強度向上の観点から0.15質量%以上であることが好ましく、また、溶接金属の靭性向上の観点から0.25質量%以下であることが好ましい。なお、Moは、フラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるMo源としては、フラックス成分として添加される金属Mo及びFe-Moや、鋼製外皮に添加されるMoなどが挙げられる。
[Cr:0.1~0.9質量%]
 Crは、SR時に生成する粒界炭化物を微細化する作用を有する。ただし、Cr含有量が0.1質量%未満の場合、溶接金属の強度が不足すると共に、旧γ粒界に存在する粗大な粒界炭化物を微細化する作用が小さく、結果としてSR後の溶接金属の靭性が劣化する。一方、Cr含有量が0.9質量%を超えると、溶接金属の強度及び焼き入れ性が過多になるため、低温靭性が低下する。よって、Cr含有量は0.1~0.9質量%とする。Cr含有量は、溶接金属の強度向上及びSR後の靭性向上の観点から0.2質量%以上であることが好ましい。
 なお、Crは、フラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるCr源としては、フラックス成分として添加される金属Cr及びFe-Crや、鋼製外皮に添加されるCrなどが挙げられる。
[TiO:4.5~8.5質量%]
 TiOは、アーク安定剤であると共に、スラグ剤の主成分である。ただし、TiO含有量が4.5質量%未満の場合、溶接作業性が劣化し、全姿勢溶接が困難になる。一方、TiO含有量が8.5質量%を超えると、溶接金属中の酸素量が増加して靭性が低下する。よって、TiO含有量は4.5~8.5質量%とする。溶接金属の靭性向上の観点から、TiO含有量は5.5~8.0質量%であることが好ましい。なお、本実施形態のフラックス入りワイヤにおけるTiO源としては、フラックス成分として添加されるルチル及び酸化チタンなどが挙げられる。
[SiO:0.10~0.40質量%]
 SiOは、ビード形状を良好にする効果がある。ただし、SiO含有量が0.10質量%未満の場合、その効果が十分に得られず、ビード形状が劣化する。一方、SiO含有量が0.40質量%を超えると、スパッタ発生量が増大する。よって、SiO含有量は0.10~0.40質量%とする。SiO含有量は、ビード形状向上の観点から0.15質量%以上とすることが好ましく、また、スパッタ抑制の観点から0.35質量%以下とすることが好ましい。なお、本実施形態のフラックス入りワイヤにおけるSiO源としては、フラックス成分として添加されるシリカ、カリガラス及びソーダガラスなどが挙げられる。
[Al:0.03~0.23質量%]
 Alも、ビード形状を良好にする効果がある。ただし、Al含有量が0.03質量%未満の場合、その効果が十分に得られず、ビード形状が劣化する。一方、Al含有量が0.23質量%を超えると、スパッタ発生量が増大する。よって、Al含有量は0.03~0.23質量%とする。Al含有量は、ビード形状向上の観点から0.07質量%以上とすることが好ましく、また、スパッタ抑制の観点から0.19質量%以下とすることが好ましい。なお、本実施形態のフラックス入りワイヤにおけるAl源としては、フラックス成分として添加されるアルミナなどが挙げられる。
[Fe:80質量%以上]
 例えば全姿勢溶接用フラックス入りワイヤの場合、Fe含有量が80質量%未満の場合、スラグ発生量が過多となり、ビード形状が劣化する。ビード形状向上の観点から、Fe含有量は、82~93質量%とすることが好ましい。なお、本実施形態のフラックス入りワイヤにおけるFe源は、鋼製外皮の他、フラックスに添加される鉄粉及びFe系合金などが挙げられる。
[(10×C+Mn)/(Si+Mo+Cr):1.6~5.6]
 本実施形態のフラックス入りワイヤにおいては、前述した各成分の含有量に加えて、C量、Mn量、Si量、Mo量及びCr量の関係も重要となる。ワイヤ組成を前述した範囲にすることで、溶接金属の引張強度及び低温靭性と、溶接作業性とを、ある程度のレベルにすることはできるが、本発明者は、更に、C量、Mn量、Si量、Mo量及びCr量の関係が、前述した数式(A)を満たすようにすることで、溶接金属の引張強度及び低温靭性と、溶接作業性とを、更に向上させることができることを見出した。
 (10×[C]+[Mn])/([Si]+[Mo]+[Cr])を1.6~5.6の範囲にすることにより、焼き入れ性を向上させて、溶接金属の引張強度を高めることができる。また、P及びSなどの不可避的不純物に起因する焼戻し脆化、MoCなどの微細炭化物の析出硬化及びAC1変態温度の低下を抑制することができるため、SR後の溶接金属の低温靭性が向上する。更に、旧γ粒界に粗大な炭化物が生成することを抑制すると共に、旧γ粒界に粗大な炭化物が生成した場合でも、それを微細化することができるため、SR後の溶接金属の引張強度と低温靭性を共に向上させることができる。加えて、溶融プールの粘度低下を防止することができるため、立向溶接作業性も向上する。
 なお、(10×[C]+[Mn])/([Si]+[Mo]+[Cr])が1.6未満の場合、焼入れ性が不足して、溶接金属の引張強度が低下することがある。また、P及びSなどの不可避的不純物に起因する焼戻し脆化や、MoCなどの微細炭化物の析出硬化が促進されて、SR後の溶接金属の低温靭性が劣化することもある。一方、(10×[C]+[Mn])/([Si]+[Mo]+[Cr])が5.6を超えると、AC1変態温度の低下や、旧γ粒界に粗大な炭化物の生成が促進されることにより、SR後の溶接金属の低温靭性が劣化することがある。また、焼入れ性不足、溶融池の粘度低下、及び旧γ粒界にある粗大な炭化物を微細化する効果が低下して、立向溶接作業性、SR後の引張強度及び低温靭性が劣化することがある。 
[V:0.020質量%以下] 
 Vは、SR後の溶接金属の低温靭性に影響するため、その含有量を0.020質量%以下に規制することが好ましい。これにより、SR後の溶接金属の低温靭性を向上させることができる。
[ZrO:0.02質量%未満]
 ワイヤがZrOを過剰に含有すると、立向溶接作業性が劣化することがある。このため、ZrO含有量は0.02質量%未満に規制することが好ましく、これにより溶接作業性を向上させることができる。本実施形態のフラックス入りワイヤにおけるZrO源としては、ジルコンサンドやジルコニアなどが挙げられる。
[Mg:0.2~0.7質量%]
 Mgは、脱酸元素であり、溶接金属の靭性向上に効果があるため、必要に応じて添加することができる。ただし、Mg含有量が0.2質量%未満では、十分な脱酸効果が得られず、溶接金属の靭性向上は期待できない。また、0.7質量%を超えてMgを含有すると、スパッタ量が増加し、溶接作業性が低下する。よって、Mgを添加する場合は、その含有量が0.2~0.7質量%になるようにする。なお、本実施形態のフラックス入りワイヤにおけるMg源としては、金属Mg、Al-Mg及びNi-Mgなどが挙げられる。
[Ti:0.05~0.30質量%]
 Tiも、溶接金属の靭性向上の効果があり、必要に応じて添加することができる。ただし、Ti含有量が0.05質量%未満の場合、充分な核生成がされず、溶接金属の靭性向上の効果が不十分となる。一方、0.30質量%を超えてTiを含有させると、固溶Tiが過多となり、溶接金属の強度が過多となり、靭性も劣化する。よって、本実施形態のフラックス入りワイヤにTiを添加する場合は、その含有量が0.05~0.30質量%になるようにする。これにより、更に靭性に優れた溶接金属が得られる。
 なお、Tiは、フラックス及び鋼製外皮のいずれに含有されていてもよい。本実施形態のフラックス入りワイヤにおけるTi源としては、フラックス成分として添加される金属Ti及びFe-Tiや、鋼製外皮に添加されるTiなどが挙げられる。
[金属フッ化物(F換算値):0.05~0.30質量%]
 金属フッ化物は、溶接時にアークの安定化に寄与する効果があるため、必要に応じて添加することができる。ただし、金属フッ化物の含有量がF換算値で0.05質量%未満の場合、アークの安定化効果が小さく、スパッタ発生量が多くなることがある。一方、金属フッ素化合物の含有量がF換算値で0.30質量%を超えると、ビード形状が劣化する。よって、金属フッ化物を添加する場合は、その含有量がF換算値で0.05~0.30質量%になるようにする。
[Na化合物(Na換算値)、K化合物(K換算値):合計で0.01~0.30質量%]
 Na化合物及びK化合物は、アーク安定剤として、必要に応じて、1種又は2種以上をフラックスに添加することができる。ただし、Na化合物及びK化合物の総含有量が、それぞれNa換算値及びK換算値で、0.01質量%未満の場合、アークの安定化効果が小さく、スパッタ発生量が多くなることがある。一方、Na化合物及びK化合物の総含有量が、それぞれNa換算値及びK換算値で、0.30質量%を超えると、ビード形状が劣化する。よって、Na化合物及びK化合物を添加する場合は、その総含有量が、それぞれNa換算値及びK換算値で0.01~0.30質量%になるようにする。
 尚、フラックス材料としてフッ化ナトリウムやフッ化カリウムなどが使用されているが、フッ化カリウムであれば、フッ素分は「金属フッ化物量」に、カリウム分は「Na化合物量及びK化合物量」として計算される。
[B、B合金(B換算値)、B酸化物(B換算値):少なくとも1種を合計で0.001~0.020質量%]
 B、B合金及びB酸化物は、溶接金属の靭性向上に効果があるため、必要に応じて、1種又は2種以上を添加することができる。ただし、これらの総含有量がB換算値で、0.001質量%未満の場合、溶接金属の靭性向上効果が小さく、また、0.020質量%を超えると、溶接金属の耐高温割れ性が低下する。よって、本実施形態のフラックス入りワイヤにB、B合金及びB酸化物を添加する場合は、総含有量がB換算値で0.001~0.020質量%になるようにする。これにより、更に靭性に優れた溶接金属が得られる。
 B、B合金及びB酸化物の総含有量は、溶接金属の靭性向上の観点から、B換算値で0.003質量%以上とすることがより好ましく、また、溶接金属の耐高温割れ性の観点から、B換算値で0.015質量%以下とすることがより好ましい。なお、本実施形態のフラックス入りワイヤにおけるB源としては、Fe-B合金、Fe-Si-B合金及びBなどが挙げられる。
[残部]
 本実施形態のフラックス入りワイヤの成分組成における残部は、不可避的不純物である。本実施形態のフラックス入りワイヤにおける不可避的不純物としては、V、S、P、Cu、Sn、Na、Co、Ca、Nb、Li、Sb及びAsなどが挙げられる。また、本実施形態のフラックス入りワイヤには、前述した各成分の他に、本発明の効果が阻害されない範囲で、前述した元素以外の合金元素、スラグ形成剤及びアーク安定剤などが添加されていてもよい。なお、前述した各元素が酸化物や窒化物として添加された場合は、本実施形態のフラックス入りワイヤの残部には、OやNも含まれる。
 本実施形態のフラックス入りワイヤは、ワイヤ成分を特定しているため、Ni含有量が1質量%以下であっても、溶接のまま及び熱処理後のいずれにおいても低温靭性が良好な溶接金属が得られる。これにより、低温環境下で使用される構造物の安全性をより一層高めることができ、特に、各プラットフォームやプラント向のパイプ溶接において、溶接作業性が良好で、耐サワー特性及び低温靭性が優れた溶接金属が得られるフラックス入りワイヤを実現することができる。
 更に、C量、Mn量、Si量、Mo量及びCr量の関係が、数式(A)を満たすようにすることで、溶接金属の脆性破壊の遷移温度を低温側へ移行させることができると共に、スパッタの発生を抑制することが可能となる。その結果、溶接金属の低温靭性及び溶接作業性の両方を更に向上させることができる。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、軟鋼からなる鋼製外皮に、フラックスを13~20質量%充填し、下記表1及び表2に示す組成の実施例及び比較例の各フラックス入りワイヤを作製した。その際、ワイヤ径は1.2mmとした。なお、下記表1に示すワイヤNo.1~13は本発明の範囲内の実施例であり、下記表2に示すワイヤNo.14~28は本発明の範囲から外れる比較例である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 次に、実施例及び比較例の各フラックス入りワイヤを使用して、以下に示す性能確認試験を実施した。
<全溶着金属溶接>
 母材に下記表3に示す鋼板を用いて、下記表4に示す条件で、ガスシールドアーク溶接を行い、得られた溶接金属について、下記表5に示す方法で機械的性質を測定した。なお、下記表3に示す母材組成の残部は、Fe及び不可避的不純物である。機械的性質の評価は、620℃、8時間のSR後の0.2%耐力が500MPa以上、引張強さが600MPa以上で、かつ-40℃の吸収エネルギーが70J以上のものを合格とした。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<耐高温割れ性>
 母材に上記表3に示す鋼板を使用し、下記表6に示す条件でガスシールドアーク溶接にてC形治具拘束突合せ溶接割れ試験(JIS Z 3155)を行い、得られた溶接金属の割れ率を求めた。割れ率は、破断したビードのビード長に対する割れ(クレータ割れを含む)長さの比率(質量%)とし、耐高温割れ性の評価は、割れ率が10質量%以下のものを合格とした。
Figure JPOXMLDOC01-appb-T000009
<溶接作業性>
 母材に上記表3に示す鋼板を使用し、下記表7に示す条件でガスシールドアーク溶接を行い、溶接作業性を評価した。その結果、溶接作業性が非常に良好であったものを◎、溶接作業性が良好であったものを○、不良であったものを×とした。
Figure JPOXMLDOC01-appb-T000010
 実施例及び比較例の各フラックス入りワイヤにより得た各溶接金属(SR後)の機械的性質、溶接作業性及び割れ率の評価結果を、下記表8にまとめて示す。なお、機械的性質は、溶接のままの溶接金属についても評価を行ったが、実施例のフラックス入りワイヤを用いたものは、全て目標値を満足するものであった。
Figure JPOXMLDOC01-appb-T000011
 図1は、フラックス入りワイヤにおけるC量及びMn量と、Si量、Mo量及びCr量との関係が、溶接金属の機械特性に及ぼす影響を示す図であり、実施例1~13の結果をプラットしたものである。請求項1の規定から[Si]+[Mo]+[Cr]の値は0.25~1.5であり、10×[C]+[Mn]の値は1.1~4.7の範囲となり、それぞれのプロットはこの範囲(同図の点線で囲まれた領域)を満足している。図1に示すように、C、Mn、Si、Mo及びCrの各元素の含有量の関係、即ち(10×[C]+[Mn])/([Si]+[Mo]+[Cr])が1.6~5.6の範囲のものは、範囲外のものよりも、溶接作業性が良好で、溶接金属の靭性及び強度も優れていた。
 以上の結果から、本発明によれば、溶接作業性が良好で、かつ、Ni含有量が1質量%以下であっても、溶接のまま及び熱処理後のいずれにおいても低温靭性が良好な溶接金属が得られるフラックス入りワイヤを実現できることが確認された。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年9月3日出願の日本特許出願(特願2014-178915)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のガスシールドアーク溶接用フラックス入りワイヤは、引張強さが490~670MPa級の鋼材の溶接に適しており、例えば石油やガスの輸送の機器や設備に好適である。

Claims (5)

  1.  鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、
     ワイヤ全質量あたり、
     Cを0.01~0.12質量%、
     Siを0.05質量%以上0.30質量%未満、
     Mnを1.0~3.5質量%、
     Niを0.1質量%以上1.0質量%未満、
     Moを0.10~0.30質量%、
     Crを0.1~0.9質量%、
     TiOを4.5~8.5質量%、
     SiOを0.10~0.40質量%、
     Alを0.03~0.23質量%、
     Feを80質量%以上
    含有するガスシールドアーク溶接用フラックス入りワイヤ。
  2.  Vが、ワイヤ全質量あたり、0.020質量%以下に規制された請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  3.  ワイヤ全質量あたりのC含有量(質量%)を[C]、Mn含有量(質量%)を[Mn]、Si含有量(質量%)を[Si]、Mo含有量(質量%)を[Mo]、Cr含有量(質量%)を[Cr]としたとき、下記数式(A)を満たす請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
    Figure JPOXMLDOC01-appb-M000001
  4.  更に、下記(a)~(e)の少なくとも1つを含有する請求項1~3のいずれか1項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
    (a)Mgを、ワイヤ全質量あたり0.2~0.7質量%
    (b)Tiを、ワイヤ全質量あたり0.05~0.30質量%
    (c)金属フッ化物を、ワイヤ全質量あたり、F換算値で0.05~0.30質量%
    (d)Na化合物若しくはK化合物又はその両方を、ワイヤ全質量あたり、Na換算値及びK換算値の合計で0.01~0.30質量%
    (e)B、B合金及びB酸化物のうち少なくとも1種を、ワイヤ全質量あたり、B換算値の合計で0.001~0.020質量%
  5.  ZrOが、ワイヤ全質量あたり、0.02質量%未満に規制された請求項1~3のいずれか1項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
PCT/JP2015/074933 2014-09-03 2015-09-02 ガスシールドアーク溶接用フラックス入りワイヤ WO2016035813A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580045430.8A CN106794558B (zh) 2014-09-03 2015-09-02 气体保护电弧焊用药芯焊丝
US15/505,288 US20170274482A1 (en) 2014-09-03 2015-09-02 Flux-cored wire for gas-shielded arc welding
KR1020177003749A KR101970076B1 (ko) 2014-09-03 2015-09-02 가스 실드 아크 용접용 플럭스 코어드 와이어
KR1020197000345A KR20190006074A (ko) 2014-09-03 2015-09-02 가스 실드 아크 용접용 플럭스 코어드 와이어
EP15838210.1A EP3189930B1 (en) 2014-09-03 2015-09-02 Flux cored wire for gas-shielded arc welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-178915 2014-09-03
JP2014178915A JP6322093B2 (ja) 2014-09-03 2014-09-03 ガスシールドアーク溶接用フラックス入りワイヤ

Publications (1)

Publication Number Publication Date
WO2016035813A1 true WO2016035813A1 (ja) 2016-03-10

Family

ID=55439873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074933 WO2016035813A1 (ja) 2014-09-03 2015-09-02 ガスシールドアーク溶接用フラックス入りワイヤ

Country Status (6)

Country Link
US (1) US20170274482A1 (ja)
EP (1) EP3189930B1 (ja)
JP (1) JP6322093B2 (ja)
KR (2) KR101970076B1 (ja)
CN (1) CN106794558B (ja)
WO (1) WO2016035813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108544132A (zh) * 2018-07-12 2018-09-18 淮北卓颂建筑工程有限公司 一种高耐磨不锈钢焊丝的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762131B2 (ja) * 2016-04-28 2020-09-30 株式会社神戸製鋼所 フラックス入りワイヤ
JP2018039025A (ja) * 2016-09-06 2018-03-15 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
KR102244428B1 (ko) * 2016-11-08 2021-04-26 닛폰세이테츠 가부시키가이샤 플럭스 코어드 와이어, 용접 조인트의 제조 방법, 및 용접 조인트
KR20190047388A (ko) * 2017-10-27 2019-05-08 현대종합금속 주식회사 내기공성 및 전착 도장성이 우수한 극 저 실리콘 용접용 와이어 및 이를 통하여 얻어지는 용착금속
CA3087438C (en) * 2018-01-16 2022-08-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux-cored wire for gas shield arc welding
EP3778111A4 (en) * 2018-03-29 2022-01-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) CORED WIRE
EP3838474A4 (en) * 2018-08-23 2021-09-29 JFE Steel Corporation SOLID WIRE FOR ARC WELDING OF GAS PROTECTED METAL
KR102112160B1 (ko) 2018-12-05 2020-05-19 현대종합금속 주식회사 이면 충격인성이 우수한 가스 쉴드 플럭스 충전 와이어
US20210053161A1 (en) * 2019-08-20 2021-02-25 Hobart Brothers Llc Higher toughness steel alloy weld deposits and flux-cored welding electrodes for producing higher toughness steel alloy weld deposits

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019595A (ja) * 2001-07-06 2003-01-21 Kobe Steel Ltd 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP2007090376A (ja) * 2005-09-28 2007-04-12 Kobe Steel Ltd ガスシールドアーク溶接用フラックス入りワイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747237B2 (ja) * 2000-05-01 2006-02-22 株式会社神戸製鋼所 耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
KR100532243B1 (ko) * 2001-12-17 2005-11-30 현대종합금속 주식회사 가스쉴드 아아크 용접용 플럭스 충전 와이어
JP4259887B2 (ja) * 2003-01-31 2009-04-30 株式会社神戸製鋼所 耐食性鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP4255453B2 (ja) * 2005-03-31 2009-04-15 株式会社神戸製鋼所 低合金鋼溶接金属及びフラックス入りワイヤ
JP5097499B2 (ja) * 2006-10-19 2012-12-12 株式会社神戸製鋼所 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP4209913B2 (ja) * 2006-12-15 2009-01-14 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP5359561B2 (ja) * 2009-05-28 2013-12-04 新日鐵住金株式会社 高張力鋼用フラックス入りワイヤ
JP5415998B2 (ja) * 2010-03-11 2014-02-12 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP5242665B2 (ja) * 2010-12-08 2013-07-24 日鐵住金溶接工業株式会社 ガスシールドアーク溶接用フラックス入りワイヤ
JP2013151001A (ja) 2012-01-25 2013-08-08 Nippon Steel & Sumikin Welding Co Ltd 耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019595A (ja) * 2001-07-06 2003-01-21 Kobe Steel Ltd 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP2007090376A (ja) * 2005-09-28 2007-04-12 Kobe Steel Ltd ガスシールドアーク溶接用フラックス入りワイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108544132A (zh) * 2018-07-12 2018-09-18 淮北卓颂建筑工程有限公司 一种高耐磨不锈钢焊丝的制备方法

Also Published As

Publication number Publication date
CN106794558A (zh) 2017-05-31
JP6322093B2 (ja) 2018-05-09
CN106794558B (zh) 2019-01-18
EP3189930B1 (en) 2020-08-26
EP3189930A1 (en) 2017-07-12
KR20170021891A (ko) 2017-02-28
KR101970076B1 (ko) 2019-04-17
JP2016052667A (ja) 2016-04-14
KR20190006074A (ko) 2019-01-16
EP3189930A4 (en) 2018-02-28
US20170274482A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6322093B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP3758040B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP5415998B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP5138242B2 (ja) 二相ステンレス鋼溶接用フラックス入りワイヤ
JP5387192B2 (ja) ガスシールド溶接用フラックス入りワイヤ
JP5097499B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP5928726B2 (ja) 被覆アーク溶接棒
JP6786472B2 (ja) 二相ステンレス鋼溶接用フラックス入りワイヤ
JP6061712B2 (ja) 低水素系被覆アーク溶接棒
WO2015159806A1 (ja) 強度、靭性および耐sr割れ性に優れた溶接金属
JP5558406B2 (ja) 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP7215911B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2018047881A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
WO2018047880A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
JP6438371B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2018047879A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
JPH08257791A (ja) 低水素系被覆アーク溶接棒
JP2017170515A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP7485594B2 (ja) フラックス入りワイヤ及びガスシールドアーク溶接方法
JPH08174267A (ja) アーク溶接用フラックス入りワイヤ
WO2022172666A1 (ja) フラックス入りワイヤ
WO2022230615A1 (ja) サブマージアーク溶接継手
JP2023081643A (ja) 被覆アーク溶接棒、溶接金属、被覆アーク溶接方法及び溶接継手の製造方法
WO2019189231A1 (ja) フラックス入りワイヤ
JP2022044430A (ja) フラックス入りワイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838210

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015838210

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838210

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177003749

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505288

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE