WO2016031781A1 - 電子機器の冷却システム - Google Patents

電子機器の冷却システム Download PDF

Info

Publication number
WO2016031781A1
WO2016031781A1 PCT/JP2015/073757 JP2015073757W WO2016031781A1 WO 2016031781 A1 WO2016031781 A1 WO 2016031781A1 JP 2015073757 W JP2015073757 W JP 2015073757W WO 2016031781 A1 WO2016031781 A1 WO 2016031781A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling system
liquid
coolant
electronic device
Prior art date
Application number
PCT/JP2015/073757
Other languages
English (en)
French (fr)
Inventor
齊藤 元章
Original Assignee
株式会社ExaScaler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/506,707 priority Critical patent/US20170273223A1/en
Application filed by 株式会社ExaScaler filed Critical 株式会社ExaScaler
Priority to EP15836815.9A priority patent/EP3188580B1/en
Priority to CN201580057552.9A priority patent/CN107079606A/zh
Publication of WO2016031781A1 publication Critical patent/WO2016031781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20781Liquid cooling without phase change within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/44Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a cooling system for electronic devices, and more particularly to efficiently cool electronic devices that require super-high performance operation and stable operation such as supercomputers and data centers and generate a large amount of heat from itself.
  • the present invention relates to a cooling system for electronic equipment.
  • the cooling system disclosed in Patent Document 1 uses a fluorocarbon coolant having a boiling point of 100 ° C. or lower because it uses heat of vaporization (latent heat) to cool electronic devices. Then, the heat of the element is taken by the heat of vaporization (latent heat) when the coolant evaporates due to the heat generated by the element mounted on the electronic device, and the element is cooled. Accordingly, the fluorocarbon-based coolant may boil locally on the surface of the high-temperature element and bubbles may form a heat insulating film, so that the high heat conduction ability inherent in the coolant is impaired. There is a problem.
  • the target to be cooled is not only CPU (Central Processing Unit) but also GPU (Graphics Processing Unit), high-speed memory, chipset, network unit, There are many bus switch units, SSDs (Solid State Drives), etc., and it is difficult to equally cool all these objects with different vaporization temperatures. It will be very low.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • high-speed memory chipset
  • network unit There are many bus switch units, SSDs (Solid State Drives), etc., and it is difficult to equally cool all these objects with different vaporization temperatures. It will be very low.
  • the cooling system disclosed in Patent Document 2 employs a sealed module configuration that accommodates one or more heat-generating electronic devices. For this reason, the entire mechanism for circulating the coolant through the individual sealed modules is complicated, and the entire electronic device cannot be easily taken out from the sealed module, resulting in poor maintenance of the electronic device. is there.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, greatly reduce the loss due to evaporation of the cooling liquid, and provide a plurality of electronic devices installed at high density in a small volume cooling tank.
  • the object is to provide a cooling system for efficient cooling.
  • the present invention includes a plurality of electronic devices accommodated in an open space of a cooling tank provided with an inlet and an outlet for a coolant, and in the coolant that circulates in the open space.
  • the cooling liquid contains a fully fluorinated product as a main component, and 10 ml of liquid is put into a 10 ml graduated cylinder (opening diameter: 11.5 mm).
  • a cooling system is provided in which the liquid weight reduction rate after 100 hours evaporating in a normal environment at room temperature of 25 ° C. is 1.5% or less.
  • the vapor pressure of the cooling liquid at room temperature of 25 ° C. may be configured to be 1.0 kPa or less.
  • the cooling liquid may have a boiling point of 150 ° C. or higher.
  • the perfluorinated product contained as the main component may be configured to be a perfluorinated product having 10 or more carbon atoms.
  • a header connected to the inlet and extending in the width direction of the cooling tank is disposed at the bottom of the cooling tank, and the coolant supplied from the inlet is supplied.
  • the header may be configured to discharge from a plurality of nozzles provided in an array.
  • the plurality of nozzles are composed of a plurality of nozzle groups provided at predetermined intervals in the longitudinal direction of the header, and each nozzle group has a discharge port.
  • the nozzles may be arranged so as to be dispersed radially.
  • each of the plurality of nozzle groups may correspond to each of the plurality of electronic devices.
  • the outlet and the inlet are connected by a flow path, and at least one pump for moving the cooling liquid in the flow path; and the cooling liquid There may be provided a heat exchanger for cooling.
  • the fully fluorinated product has high electrical insulation and high heat transfer capability, is inert, has high thermal and chemical stability, is nonflammable, and does not absorb oxygen. Since it is a compound that does not contain, it has excellent properties such as zero ozone depletion coefficient. 100 hours when such a fully fluorinated coolant as a main component is naturally evaporated in a 10 ml graduated cylinder (opening diameter 11.5 mm) in a normal environment at room temperature of 25 ° C. When the liquid weight reduction rate at the time is 1.5% or less, the cooling liquid hardly evaporates even when the cooling tank is an unsealed open space. Therefore, loss due to evaporation of the coolant can be greatly reduced.
  • the cooling tank having the “open space” in the present specification includes a cooling tank having a simple sealed structure that does not impair maintainability of the electronic device.
  • the structure in which the top plate is detachably attached to the opening of the cooling tank via packing or the like can be said to be a simple sealed structure. And when it has such a simple sealing structure, it can be expected that the cooling liquid is more difficult to evaporate.
  • the vapor pressure of the cooling liquid at room temperature of 25 ° C. is 1.0 kPa or less, or when the boiling point of the cooling liquid is 150 ° C. or more, or complete fluorine contained as a main component
  • the fluoride is a fully fluorinated compound having 10 or more carbon atoms
  • the cooling liquid is hardly evaporated even when the cooling tank is an unsealed open space, and the loss due to the evaporation of the cooling liquid is greatly reduced.
  • the possibility of local boiling of the coolant in the cooling tank can be avoided.
  • the conventional cooling system using a fluorocarbon compound has the following problems, but these can be solved ugly.
  • a header connected to the inlet and extending in the width direction of the cooling tank is disposed at the bottom of the cooling tank, and a plurality of cooling liquids supplied from the inlet are provided in an array on the header. If the nozzle is configured to be discharged from the nozzle, the cooled coolant can be circulated throughout the cooling tank, and the effect of direct cooling by forced convection can be enhanced.
  • the plurality of nozzles are composed of a plurality of nozzle groups provided at predetermined intervals in the longitudinal direction of the header, and each nozzle group is arranged such that the discharge ports are radially distributed. If the nozzle is configured, the cooled coolant can be circulated more efficiently over the entire cooling tank, and the effect of direct cooling by forced convection can be further enhanced.
  • the cooling of each electronic device is performed when the electronic devices are accommodated in the cooling layer at a high density.
  • the performance can be made uniform.
  • the outlet and inlet of the cooling tank are connected by a flow passage, and at least one pump for moving the cooling liquid and a heat exchanger for cooling the cooling liquid are provided in the flow passage.
  • the cooling liquid discharged from the outlet of the cooling tank is cooled by a heat exchanger, and a flow passage is configured to supply the cooled cooling liquid to the inlet of the cooling tank, thereby operating continuously and stably. be able to.
  • a total of eight electronic devices (one unit) having a structure in which four processor boards mounted with a plurality of processors are arranged on one surface as the electronic device, a high density in the cooling tank.
  • An example of storage is described below. This is merely an example, and the number and type (CPU or GPU) of processors per board are arbitrary, and the number of units of the electronic device is arbitrary as long as it is two or more. It does not limit the configuration.
  • the cooling system 10 includes a cooling tank 12, and two inlets 14 are provided on the left side bottom side and the right side bottom side of the cooling tank 12. Two outlets 16 are provided on the front side and the back side of the tank 12.
  • a total of 8 units of the electronic devices 100 are accommodated in the open space of the cooling tank 12 and are configured to be directly cooled by immersing these electronic devices 100 in the coolant 13 flowing in the open space. It is important that the liquid level 18 of the cooling liquid 13 is maintained so that all the elements and components that generate heat in the electronic device 100 are immersed in the cooling liquid 13.
  • the coolant 13 used in the present invention has the property of being extremely difficult to evaporate, so that the liquid level 18 can be maintained for a long period of time.
  • the top plate 20 is supported by a hinge portion (not shown) provided at one edge of the upper opening of the cooling bath 12 so that the maintenance of the electronic device 100 can be easily performed. Thereby, the cooling tank 12 forms the open space of an unsealed structure. Various cables connected to the electronic device 100 can be pulled out from the cooling bath 12 while being held by the cable clamp 21.
  • a header 15 extending in the width direction (left-right direction) of the cooling tank is disposed at the bottom of the cooling tank 12.
  • One end of the header 15 is connected to the two inlets 14 on the left side bottom side of the cooling tank 12, and the other end of the header 15 is connected to the two inlets 14 on the right side bottom side of the cooling tank 12.
  • the header is provided with a plurality of nozzles 151 in an array. Thereby, the coolant 13 supplied from the left and right inlets 14 is configured to be discharged from the plurality of nozzles 151.
  • the nozzle 151 is composed of a plurality of nozzle groups provided at predetermined intervals in the longitudinal direction (left-right direction) of the header 15. Each nozzle group is composed of nozzles 151 arranged such that the discharge ports are radially dispersed from the surface of the header 15 having a hexagonal cross section.
  • Two outlets 16 provided on the front side and the back side of the cooling tank 12 are provided on the cooling tank 12 side so that the entire outlet 16 is covered, but the upper part forms an opening. A region partitioned by the plate 17 is provided. Therefore, the coolant 13 flows from the upper opening toward the outlet 16.
  • the coolant 13 used in the cooling system 10 has high electrical insulation and high heat transfer capability, is inert, has high thermal and chemical stability, is nonflammable, has a zero ozone depletion coefficient, etc.
  • a fully fluorinated product having the following characteristics is included as a main component.
  • the coolant 13 may be composed of a single perfluorinated product or a mixture of different perfluorinated products.
  • the cooling liquid 13 has a liquid weight reduction rate after 100 hours when 10 ml of liquid is put into a 10 ml graduated cylinder (opening diameter 11.5 mm) and naturally evaporated in a normal environment at a room temperature of 25 ° C. It is important that the coolant is 1.5% or less.
  • FC-40 refers to 3M Fluorinert (trademark of 3M) FC-40.
  • FC-43 Fluorinert FC-43 manufactured by 3M
  • FC-3283 Fluorinert FC-3283 manufactured by 3M
  • FC-770 Fluorinert FC- manufactured by 3M. 770 each indicates a fluorine-based inert liquid made of a fully fluorinated product (perfluorocarbon compound). As is clear from the slope of the weight loss rate of FC-40, it can be seen that it is much less likely to evaporate than tap water. Furthermore, it can be seen that FC-43 is much less likely to evaporate than FC-40.
  • FIG. 4 shows the weight loss rate after 100 hours, the weight loss rate after 1000 hours, the vapor pressure, the boiling point, and the number of main component carbons for FC-43, FC-40, FC-3283, and FC-770. And a table comparing molecular weights.
  • the cooling liquid 13 is formed on the surface of the processor 110 in the cooling tank 12, for example. It has been found that the local boiling of can be effectively avoided. Therefore, there is a great advantage that the high heat transfer capability of the fully fluorinated material is not impaired by the boiling of the coolant 13.
  • the vapor pressure of the cooling liquid 13 at a room temperature of 25 ° C. is 1.0 kPa or less, or when the boiling point of the cooling liquid is 150 ° C. or more, or the fully fluorinated product contained as the main component has 10 or more carbon atoms
  • the cooling liquid 13 is difficult to evaporate, and loss due to evaporation of the cooling liquid 13 can be greatly reduced.
  • the cooling liquid 13 supplied from the inlet 14 is configured to be discharged from a plurality of nozzles 151 provided in an array on the header 15, it is cooled by being cooled by a heat exchanger as will be described later.
  • the liquid 13 can be circulated throughout the cooling tank 12. Thereby, the effect of the direct cooling by the forced convection of a cooling liquid with respect to the electronic device 100 can be heightened.
  • each nozzle group provided at a predetermined interval in the longitudinal direction of the header 15 is composed of the nozzles 151 arranged so that the discharge ports are radially distributed, so that the cooled coolant 13 is cooled. It can distribute
  • FIG. in particular, as shown in FIGS. 1 and 2, since each of the plurality of nozzle groups corresponds to each of the plurality of electronic devices 100, the electronic devices 100 are accommodated in the cooling layer 12 with high density. In addition, the cooling performance of each electronic device 100 can be made uniform.
  • FIG. 5 an example in which the cooling liquid discharged from the outlet of the cooling tank is cooled by a heat exchanger and a flow path for supplying the cooled cooling liquid to the inlet of the cooling tank will be described.
  • the outlet 16 and the inlet 14 of the cooling tank 12 are connected by a flow passage 30, and a pump 40 that moves the coolant 13 and a heat exchanger 90 that cools the coolant 13 are provided in the flow passage 30. It has been.
  • a flow rate adjustment valve 50 and a flow meter 70 for adjusting the flow rate of the coolant 13 flowing through the flow passage 30 are also provided in the flow passage 30.
  • the pump 40 preferably has a performance of moving a liquid having a relatively large kinematic viscosity (a kinematic viscosity at room temperature of 25 ° C. exceeds 3 cSt). This is because FC-43 has a kinematic viscosity of about 2.5 to 2.8 cSt, and FC-40 has a kinematic viscosity of about 1.8 to 2.2 cSt.
  • the flow rate adjustment valve 50 may be manually operated, or may be provided with an adjustment mechanism that keeps the flow rate constant based on the measurement value of the flow meter 70.
  • the heat exchanger 90 may be various circulating heat exchangers (radiators or chillers) or coolers.
  • a first temperature sensor for liquid is provided in the cooling tank 12 or in the flow passage 30 and the temperature higher than a preset temperature is the first temperature sensor. If detected by the above, a mechanism (not shown) that stops the operation of the electronic device 100 or shuts off the power supply to the electronic device 100 may be provided. By additionally providing such a fail-safe mechanism, it is possible to prevent an abnormal temperature rise exceeding the set temperature from occurring in the coolant 13 and prevent damage to electronic equipment and generation of harmful compounds from fluorocarbons. it can.
  • the electronic device 100 immersed in the cooling bath 12 or the peripheral portion of the electronic device 100 immersed in the cooling bath 12 is provided in the cooling system 10.
  • 2 temperature sensors (not shown) are provided, and the operation of the electronic device 100 is stopped or power is supplied to the electronic device 100 when a temperature higher than a preset temperature is detected by the first temperature sensor.
  • a mechanism (not shown) for shutting off.
  • the electronic device 100 shows a processor, but the processor may include either or both of a CPU and a GPU, and a high-speed memory, a chipset, a network unit, a PCI Express bus, A bus switch unit, SSD, and power unit may be included.
  • the electronic device 100 may be an electronic device such as a server including a blade server, a storage device such as a router, and an SSD.
  • the present invention can be widely applied to a cooling system that efficiently cools a plurality of electronic devices installed at a high density in a cooling tank having a small volume.
  • Cooling system Cooling tank 13 Coolant 14 Inlet 15 Header 151 Nozzle 16 Outlet 17 Liquid guide plate 18 Liquid level 20 Top plate 21 Cable clamp 30 Flow path 40 Pump 50 Flow control valve 70 Flowmeter 90 Heat exchanger 100 Electronic device 110 Processor (with heatsink) 120 processor board

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 冷却液の蒸発による損失を低減するとともに、小さい体積の冷却槽内に高密度に設置された複数の電子機器を効率よく冷却する、冷却システムを提供する。冷却システム10は、冷却液13の入口14と出口16が設けられた冷却槽12の開放空間内に、複数の電子機器100を収容し、開放空間内を流通する冷却液13中に、複数の電子機器100を浸漬して直接冷却するよう構成されている。冷却液13は、完全フッ素化物を主成分として含み、10mlのメスシリンダー(開口部直径11.5mm)に10mlの液を入れて室温25℃の通常環境下において自然蒸発させたときの100時間経過時の液体重量減少率が1.5%以下となるよう構成されている。また、冷却液13は、冷却液の室温25℃における蒸気圧が1.0kPa以下である、及び/又は冷却液の沸点が150℃以上であるように構成することができる。

Description

電子機器の冷却システム
 本発明は電子機器の冷却システムに係り、特に、スーパーコンピュータやデータセンター等の超高性能動作や安定動作が要求され、かつそれ自体からの発熱量が大きな電子機器を、効率的に冷却するための電子機器の冷却システムに関するものである。
 近年のスーパーコンピュータの性能の限界を決定する最大の課題の一つは消費電力であり、スーパーコンピュータの省電力性に関する研究の重要性は、既に広く認識されている。すなわち、消費電力当たりの速度性能(Flops/W)が、スーパーコンピュータを評価する一つの指標となっている。また、データセンターにおいては、データセンター全体の消費電力の45%程度を冷却に費やしているとされ、冷却効率の向上による消費電力の削減の要請が大きくなっている。
 スーパーコンピュータやデータセンターの冷却には、従来から空冷式と液冷式が用いられている。液冷式は、空気より格段に熱伝達性能の優れる液体を用いるため、一般的に冷却効率がよいとされている。例えば、東京工業大学が構築した「TSUBAME-KFC」では、合成油を用いた液浸冷却システムにより、4.50GFlops/Wを達成し、2013年11月、及び2014年6月発表の「Supercomputer Green500 List」において1位を獲得している。しかし、冷却液に粘性の高い合成油を用いているため、油浸ラックから取り出した電子機器から、そこに付着した油を完全に除去することが困難であり、電子機器のメンテナンス(具体的には、例えば調整、点検、修理、交換、増設。以下同様)が極めて困難であるという問題がある。更には、使用する合成油が、冷却系を構成するパッキン等を短期間に腐食させて漏えいするなどし、運用に支障を来す問題の発生も報告されている。
 他方、上記のような問題を生ずる合成油ではなく、フッ化炭素系冷却液を用いる液浸冷却システムが提案されている。具体的には、フッ化炭素系の冷却液(3M社の商品名「Novec(3M社の商標。以下同様)7100」、「Novec7200」、「Novec7300」で知られる、ハイドロフルオロエーテル(HFE)化合物)を用いる例である(例えば、特許文献1、特許文献2)。
特開2013-187251号公報 特表2012-527109号公報
 特許文献1が開示する冷却システムは、電子機器の冷却に気化熱(潜熱)を使用するため、沸点が100℃以下のフッ化炭素系冷却液を用いている。そして、電子機器に搭載された素子の発熱で冷却液が蒸発するときの気化熱(潜熱)により素子の熱を奪い取り、当該素子を冷却している。従って、高温の素子表面で、局所的にフッ化炭素系冷却液が沸騰して気泡が断熱膜を形成することがあるため、冷却液が本来有している高い熱伝導能力が損なわれてしまうという問題がある。また、最近のスーパーコンピュータやデータセンター等で使用される電子機器には、冷却すべき対象がCPU(Cetnral Processing Unit)以外にも、GPU(Graphics Processing Unit)、高速メモリ、チップセット、ネットワークユニット、バススイッチユニット、SSD(Solid State Drive)等、多数存在しており、気化する温度が異なるこれらの対象物全てを等しく冷却することは困難であり、表面の冷媒が気化しない対象物では冷却効率が極めて低くなってしまう。
 加えて、沸点が100℃以下のフッ化炭素系冷却液は簡単に蒸発してしまうため、冷却システム内の冷却液を頻繁に補充しなければならない。ここで、一般にフッ化炭素系冷却液は非常に高価であることから、蒸発分の冷却液を補充するためのメンテナンス費用が莫大となり、補充のための手間暇が煩雑となるという問題がある。
 また、特許文献2が開示する冷却システムは、1つまたはそれ以上の発熱する電子機器を収容する密封型モジュールの構成を採用している。このため、個々の密封型モジュールに冷却液を流通させるための機構全体が複雑となり、また、密封型モジュールから電子機器全体を簡単に取り出すことができないため、電子機器のメンテナンス性に劣るという問題がある。
 従って、本発明の目的は、上記した従来技術の問題点を解決し、冷却液の蒸発による損失を大幅に低減するとともに、小さい体積の冷却槽内に高密度に設置された複数の電子機器を効率よく冷却する、冷却システムを提供することにある。
 上記した課題を解決するために、本発明は、冷却液の入口と出口が設けられた冷却槽の開放空間内に、複数の電子機器を収容し、前記開放空間内を流通する前記冷却液中に、前記複数の電子機器を浸漬して直接冷却する、冷却システムにおいて、前記冷却液が完全フッ素化物を主成分として含み、10mlのメスシリンダー(開口部直径11.5mm)に10mlの液を入れて室温25℃の通常環境下において自然蒸発させたときの100時間経過時の液体重量減少率が1.5%以下である、冷却システムを提供する。
 本発明に係る冷却システムの好ましい実施の形態において、前記冷却液の室温25℃における蒸気圧が1.0kPa以下であるように構成してよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記冷却液の沸点が150℃以上であるよう構成してよい。
 さらに、本発明に係る冷却システムの好ましい実施の形態において、前記主成分として含まれる前記完全フッ素化物が、炭素数10以上の完全フッ素化物であるよう構成してよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記入口に連結され、前記冷却槽の幅方向に延びるヘッダを、前記冷却槽の底部に配置し、前記入口から供給される冷却液を、前記ヘッダにアレイ状に設けられた複数のノズルから吐き出すように構成されていてよい。
 さらに、本発明に係る冷却システムの好ましい実施の形態において、前記複数のノズルが、前記ヘッダの長手方向に所定間隔をおいて設けられた複数のノズル群からなり、各ノズル群は、吐出口が放射状に分散するように配置されたノズルで構成されていてよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記複数のノズル群の各々が、前記複数の電子機器の各々に対応していてよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記出口と前記入口が流通路により連結されており、前記流通路中に、前記冷却液を移動させる少なくとも1つのポンプと、前記冷却液を冷やす熱交換器が設けられていてよい。
 本発明に係る冷却システムによれば、完全フッ素化物は、高い電気絶縁性と、高い熱伝達能力を有し、不活性で熱的・化学的に安定性が高く、不燃性で、かつ酸素を含まない化合物であるためオゾン破壊係数がゼロである等の優れた特性を有している。そのような完全フッ素化物を主成分として含む冷却液が、10mlのメスシリンダー(開口部直径11.5mm)に10mlの液を入れて室温25℃の通常環境下において自然蒸発させたときの100時間経過時の液体重量減少率が1.5%以下であると、冷却槽が非密閉の開放空間である場合でも冷却液が蒸発しにくい。従って、冷却液の蒸発による損失を大幅に低減することができる。また、冷却槽内で局所的な冷却液の沸騰が生じるおそれを回避することができるので、完全フッ素化物の高い熱伝達能力が、冷却液の沸騰によって損なわれることがない。従って、小さい体積の冷却槽内に高密度に設置された複数の電子機器を効率よく冷却することができる。なお、本明細書における「開放空間」を有する冷却槽には、電子機器の保守性を損なわない程度の簡素な密閉構造を有する冷却槽も含まれるものである。例えば、冷却槽の開口部に、パッキン等を介して天板を着脱可能に取り付ける構造は、簡素な密閉構造といえる。そして、かかる簡素な密閉構造を有する場合には、冷却液がより一層蒸発しにくいという効果を期待できる。
 本発明の好ましい実施の形態において、冷却液の室温25℃における蒸気圧が1.0kPa以下であるとき、又は、冷却液の沸点が150℃以上であるとき、又は、主成分として含まれる完全フッ素化物が、炭素数10以上の完全フッ素化物であるときは、同様にして、冷却槽が非密閉の開放空間である場合でも冷却液が蒸発しにくく、冷却液の蒸発による損失を大幅に低減することができるとともに、冷却槽内で冷却液の局所的な沸騰が生じるおそれを回避することができる。従来のフッ化炭素化合物を使用した冷却システムにおいては、次のような問題点があったが、それらを悉く解決することができる。
(1)フッ化炭素化合物が沸騰した際に、周囲に存在する微量の水素や酸素を取り込んで極めて有害なフッ化水素などのフッ素化合物を生成する危険性がある。
(2)不活性液体中であっても、極めて高速で動作する電子部品の中には、局所では高温に達し、フッ化炭素化合物の沸騰が生じる可能性がある。
(3)冷却系が問題を生じて冷却機能が失われたり、低下したりした際に、設計限界以上に液温が高くなってフッ化炭素化合物の沸騰が生じる可能性がある。
(4)冷却槽の中で電子部品やシャーシの部品が脱落したり、開放系である冷却槽に外からの異物が混入したりした場合に、冷却槽内の局所の液体循環が停滞して局所的に高温になってフッ化炭素化合物の沸騰が生じる可能性がある。
 本発明の好ましい実施の形態において、入口に連結され、冷却槽の幅方向に延びるヘッダを、冷却槽の底部に配置し、入口から供給される冷却液を、ヘッダにアレイ状に設けられた複数のノズルから吐き出すように構成されていると、冷えた冷却液を冷却槽の全体に亘って流通させることができ、強制対流による直接冷却の効果を高めることができる。
 本発明の好ましい実施の形態において、複数のノズルが、ヘッダの長手方向に所定間隔をおいて設けられた複数のノズル群からなり、各ノズル群は、吐出口が放射状に分散するように配置されたノズルで構成されていると、冷えた冷却液を冷却槽の全体に亘ってより一層効率よく流通させることができ、強制対流による直接冷却の効果をより一層高めることができる。
 本発明の好ましい実施の形態において、複数のノズル群の各々が、複数の電子機器の各々に対応していると、冷却層内に高密度に電子機器を収容したときの、各電子機器の冷却性能を均一にすることができる。
 本発明の好ましい実施の形態において、冷却槽の出口と入口が流通路により連結されており、流通路中に、冷却液を移動させる少なくとも1つのポンプと、冷却液を冷やす熱交換器が設けられている場合、冷却槽の出口から排出された冷却液を熱交換器で冷やし、冷えた冷却液を冷却槽の入口に供給するような流通路を構成して、連続的かつ安定的に運転することができる。
 上記した本発明の目的及び利点並びに他の目的及び利点は、以下の実施の形態の説明を通じてより明確に理解される。もっとも、以下に記述する実施の形態は例示であって、本発明はこれに限定されるものではない。
本発明を適用した冷却システムの縦断面図である。 本発明を適用した冷却システムの横断面図である。 種々の冷却液について重量減少率を測定した結果を示すグラフである。 完全フッ素化物の特性値の比較表である。 冷却槽の出口と入口とを連結する流通路中に、駆動系と冷却系を設けた冷却システムの模式図である。
 以下、本発明に係る冷却システムの好ましい実施の形態を、図面に基づいて詳細に説明する。本実施形態の説明では、電子機器として、複数個のプロセッサを搭載したプロセッサボードを、一の面に4枚配置した構造の電子機器(1ユニット)を、合計8ユニット、冷却槽内に高密度に収納する例を述べる。なお、これは例示であって、ボード当たりのプロセッサの数や種類(CPUかGPU)は任意であり、また、電子機器のユニット数は2つ以上であれば任意であり、本発明における電子機器の構成を限定するものではない。
 図1及び図2を参照して、冷却システム10は、冷却槽12を有し、冷却槽12の左側面底部側と右側面底部側には、2つずつ入口14が設けられており、冷却槽12の正面側と裏面側には、2つずつ出口16が設けられている。冷却槽12の開放空間内には、合計8ユニットの電子機器100が収容され、開放空間内を流通する冷却液13中に、これら電子機器100を浸漬して直接冷却するよう構成されている。冷却液13の液面18は、電子機器100のうちの発熱する素子や部品が全て冷却液13中に浸漬されるように保たれることが重要である。後述するように、本発明によれば、本発明において用いる冷却液13は、極めて蒸発しにくい性質を有するので、液面18は長期間に亘って保たれる。なお、天板20は、電子機器100のメンテナンスを容易に行えるよう、冷却槽12の上部開口の一方縁部に設けられた図示しないヒンジ部により、開閉自在に支持されている。これにより、冷却槽12は、非密封構造の開放空間を形成している。また、電子機器100に接続された種々のケーブルは、ケーブルクランプ21により把持された状態で、冷却槽12から引き出すことができる。
 冷却槽12の底部には、冷却槽の幅方向(左右方向)に延びるヘッダ15が配置されている。ヘッダ15の一端は、冷却槽12の左側面底部側の2つの入口14に連結され、ヘッダ15の他端は、冷却槽12の右側面底部側の2つの入口14に連結されている。そしてヘッダには、複数のノズル151がアレイ状に設けられている。これにより、左右の入口14から供給される冷却液13が、これら複数のノズル151から吐き出されるように構成されている
 ノズル151は、ヘッダ15の長手方向(左右方向)に所定間隔をおいて設けられた複数のノズル群からなる。各ノズル群は、断面六角形状のヘッダ15の表面から吐出口が放射状に分散するように配置されたノズル151で構成されている。
 冷却槽12の正面側と裏面側に2つずつ設けられている出口16の、冷却槽12側には、出口16全体を覆うように、但し、上方は開口部を形成するように、導液板17によって仕切られた領域が設けられている。従って、冷却液13は、上方の開口部から出口16に向けて流れることになる。
 冷却システム10に用いる冷却液13は、高い電気絶縁性と、高い熱伝達能力を有し、不活性で熱的・化学的に安定性が高く、不燃性で、オゾン破壊係数がゼロである等の特性を有する完全フッ素化物を主成分として含む。冷却液13は、単体の完全フッ素化物で構成されていてもよいし、異なる完全フッ素化物の混合物であってもよい。ただし、冷却液13は、10mlのメスシリンダー(開口部直径11.5mm)に10mlの液を入れて室温25℃の通常環境下において自然蒸発させたときの100時間経過時の液体重量減少率が1.5%以下の冷却液であることが重要である。
 図3には、4種類の完全フッ素化物と、水道水について、10mlのメスシリンダー(開口部直径11.5mm)に10mlの液を入れて室温25℃の通常環境下において自然蒸発させたときの、液体重量減少率と時間との関係を示している。
 FC-40とは、3M社製のフロリナート(3M社の商標)FC-40を指している。同様に、FC-43とは、3M社製のフロリナートFC-43を、FC-3283とは、3M社製のフロリナートFC-3283を、そして、FC-770とは、3M社製のフロリナートFC-770をそれぞれ指しており、いずれも、完全フッ素化物(パーフルオロカーボン化合物)からなるフッ素系不活性液体である。FC-40の重量減少率の傾きから明らかなとおり、水道水に比べて格段に蒸発しにくいことがわかる。さらに、FC-43は、FC-40よりもさらに格段に蒸発しにくいことがわかる。
 図4は、FC-43、FC-40、FC-3283、及びFC-770について、100時間経過時の重量減少率と、1000時間経過時の重量減少率、蒸気圧、沸点、主成分炭素数、及び分子量を比較した表である。
 実験によって、100時間経過時の液体重量減少率が1.5%以下であると、冷却槽が非密閉の開放空間である場合でも、冷却液が蒸発しにくいことが明らかになった。メンテナンス性を損なわないようにするためには、本実施形態に示すように、冷却槽12を密閉しない構造とすることが重要であるが、FC-43又はFC-40を冷却液に用いることにより、冷却液13の蒸発による損失を大幅に低減することができることがわかった。
 加えて、100時間経過時の液体重量減少率が1.5%以下であるFC-43又はFC-40を冷却液に用いることにより、冷却槽12内の例えばプロセッサ110の表面で、冷却液13の局所的な沸騰が発生するのを、有効に回避できることがわかった。よって、完全フッ素化物の高い熱伝達能力が、冷却液13の沸騰によって損なわれることがないという、大きな利点がある。
 冷却液13の室温25℃における蒸気圧が1.0kPa以下であるとき、又は、冷却液の沸点が150℃以上であるとき、又は、主成分として含まれる完全フッ素化物が、炭素数10以上の完全フッ素化物であるときは、同様にして、冷却槽が非密閉の開放空間である場合でも冷却液13が蒸発しにくく、冷却液13の蒸発による損失を大幅に低減することができる。また、冷却槽12内の例えばプロセッサ110の表面で、冷却液の局所的な沸騰が生じるおそれを回避することができる。
 次に、本発明の一実施態様に示す冷却システム10において、ヘッダ15を設けたことによる利点について、図1及び図2を参照して説明する。
 入口14から供給される冷却液13を、ヘッダ15にアレイ状に設けられた複数のノズル151から吐き出すように構成されているので、(後述するように熱交換器によって冷却されて)冷えた冷却液13を、冷却槽12の全体に亘って流通させることができる。これにより、電子機器100に対する、冷却液の強制対流による直接冷却の効果を高めることができる。
 加えて、ヘッダ15の長手方向に所定間隔をおいて設けられた各ノズル群が、吐出口が放射状に分散するように配置されたノズル151で構成されているので、冷えた冷却液13を冷却槽12の全体に亘ってより一層効率よく流通させることができる。特に、図1及び図2に示すように、複数のノズル群の各々が、複数の電子機器100の各々に対応しているので、冷却層12内に高密度に電子機器100を収容していても、各電子機器100の冷却性能を均一にすることができる。
 最後に、図5を参照して、冷却槽の出口から排出された冷却液を、熱交換器で冷やし、冷えた冷却液を冷却槽の入口に供給する流通路を構成する例について説明する。図示のとおり、冷却槽12の出口16と入口14が流通路30により連結されており、流通路30中に、冷却液13を移動させるポンプ40と、冷却液13を冷やす熱交換器90が設けられている。なお、流通路30を流れる冷却液13の流量を調整するための流量調整バルブ50と流量計70も、流通路30中に設けられている。
 ポンプ40は、動粘度が比較的大きい(室温25℃における動粘度が3cStを超える)液体を移動させる性能を備えていることが好ましい。FC-43の動粘度は2.5~2.8cSt程度であり、FC-40の動粘度は1.8~2.2cSt程度だからである。流量調整バルブ50は、手動で動作させるものでよく、また、流量計70の計測値に基づき流量を一定に保つような調整機構を備えたものでもよい。加えて、熱交換器90は、循環式の各種の熱交換器(ラジエータ又はチラー)や冷却器でよい。
 本実施形態の冷却システム10において、冷却槽12内、又は流通路30に、液体用の第1の温度センサー(図示せず)を設けるとともに、予め設定された以上の温度が第1の温度センサーにより検知された場合に、電子機器100の運用を中止させ、又は電子機器100への電源供給を遮断する機構(図示せず)を、さらに有していてよい。かかるフェールセーフ機構を付加的に設けることにより、冷却液13に設定温度を超える異常な温度上昇が起こらないようにし、電子機器の破損とフッ化炭素からの有害な化合物の発生を防止することができる。
 また、フェールセーフの機構の他の構成として、本実施形態の冷却システム10において、冷却槽12内に浸漬された電子機器100内、又は冷却槽12内に浸漬された電子機器100周辺部に第2の温度センサー(図示せず)を設けるとともに、予め設定された以上の温度が第1の温度センサーにより検知された場合に、電子機器100の運用を中止させ、又は電子機器100への電源供給を遮断する機構(図示せず)を、さらに有していてよい。
 本発明において、電子機器100は、プロセッサを図示しているが、プロセッサはCPU又はGPUのいずれか又は両方を含んでよく、また、図示しない高速メモリ、チップセット、ネットワークユニット、PCI Expressバスや、バススイッチユニット、SSD、パワーユニットを含んでよい。また、電子機器100は、ブレードサーバを含むサーバ、ルータ、SSD等の記憶装置等の電子機器であってもよい。
 本発明は、小さい体積の冷却槽内に高密度に設置された複数の電子機器を効率よく冷却する、冷却システムに広く適用することができる。
 10  冷却システム
 12  冷却槽
 13  冷却液
 14  入口
 15  ヘッダ
 151  ノズル
 16  出口
 17  導液板
 18  液面
 20  天板
 21  ケーブルクランプ
 30  流通路
 40  ポンプ
 50  流量調整バルブ
 70  流量計
 90  熱交換器
 100  電子機器
 110  プロセッサ(放熱器付)
 120  プロセッサボード
 

Claims (10)

  1.  冷却液の入口と出口が設けられた冷却槽の開放空間内に、複数の電子機器を収容し、前記開放空間内を流通する前記冷却液中に、前記複数の電子機器を浸漬して直接冷却する、冷却システムにおいて、前記冷却液が完全フッ素化物を主成分として含み、10mlのメスシリンダー(開口部直径11.5mm)に10mlの液を入れて室温25℃の通常環境下において自然蒸発させたときの100時間経過時の液体重量減少率が1.5%以下である、冷却システム。
  2.  前記冷却液の室温25℃における蒸気圧が1.0kPa以下である、請求項1に記載の冷却システム。
  3.  前記冷却液の沸点が150℃以上である、請求項1又は2に記載の冷却システム。
  4.  前記主成分として含まれる前記完全フッ素化物が、炭素数10以上の完全フッ素化物である、請求項1から3のいずれかに記載の冷却システム。
  5.  前記入口に連結され、前記冷却槽の幅方向に延びるヘッダを、前記冷却槽の底部に配置し、前記入口から供給される冷却液を、前記ヘッダにアレイ状に設けられた複数のノズルから吐き出すように構成されている、請求項1から4のいずれかに記載の冷却システム。
  6.  前記複数のノズルが、前記ヘッダの長手方向に所定間隔をおいて設けられた複数のノズル群からなり、各ノズル群は、吐出口が放射状に分散するように配置されたノズルで構成されている、請求項5に記載の冷却システム。
  7.  前記複数のノズル群の各々が、前記複数の電子機器の各々に対応している、請求項6に記載の冷却システム。
  8.  前記出口と前記入口が流通路により連結されており、前記流通路中に、前記冷却液を移動させる少なくとも1つのポンプと、前記冷却液を冷やす熱交換器が設けられている、請求項1から7のいずれかに記載の冷却システム。
  9.  前記冷却槽内、又は前記流通路に液体用の第1の温度センサーを設けるとともに、予め設定された以上の温度が前記第1の温度センサーにより検知された場合に、前記電子機器の運用を中止させ、又は前記電子機器への電源供給を遮断する機構をさらに有している、請求項1から8のいずれかに記載の冷却システム。
  10.  前記冷却槽内に浸漬された電子機器内、又は前記冷却槽内に浸漬された電子機器周辺部に第2の温度センサーを設けるとともに、予め設定された以上の温度が前記第2の温度センサーにより検知された場合に、前記電子機器の運用を中止させ、又は前記電子機器への電源供給を遮断する機構をさらに有している、請求項1から8のいずれかに記載の冷却システム。
PCT/JP2015/073757 2014-08-25 2015-08-24 電子機器の冷却システム WO2016031781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/506,707 US20170273223A1 (en) 2014-08-25 2015-08-04 Cooling system for electronic equipment
EP15836815.9A EP3188580B1 (en) 2014-08-25 2015-08-24 System for cooling electronic equipment
CN201580057552.9A CN107079606A (zh) 2014-08-25 2015-08-24 电子设备的冷却***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170616A JP5853072B1 (ja) 2014-08-25 2014-08-25 電子機器の冷却システム
JP2014-170616 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031781A1 true WO2016031781A1 (ja) 2016-03-03

Family

ID=55269118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073757 WO2016031781A1 (ja) 2014-08-25 2015-08-24 電子機器の冷却システム

Country Status (5)

Country Link
US (1) US20170273223A1 (ja)
EP (1) EP3188580B1 (ja)
JP (1) JP5853072B1 (ja)
CN (1) CN107079606A (ja)
WO (1) WO2016031781A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080308B2 (en) 2016-09-16 2018-09-18 Fujitsu Limited Immersion cooling apparatus
US10321609B2 (en) 2016-11-28 2019-06-11 Fujitsu Limited Cooling system and method of cooling electronic device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11744041B2 (en) * 2014-06-24 2023-08-29 David Lane Smith System and method for fluid cooling of electronic devices installed in an enclosure
JP6980969B2 (ja) * 2016-04-13 2021-12-15 富士通株式会社 データセンタ及びデータセンタの制御方法
JP6523469B6 (ja) * 2016-05-16 2019-06-26 株式会社ExaScaler 液浸冷却用電子機器
EP3460624B1 (en) * 2016-05-16 2022-08-24 Exascaler Inc. Liquid immersion cooled electronic device
CN109154845A (zh) * 2016-05-16 2019-01-04 株式会社ExaScaler 液浸冷却用电子设备
US20190208664A1 (en) * 2016-05-16 2019-07-04 Exascaler Inc. Electronic device for liquid immersion cooling
EP3460627B1 (en) * 2016-05-16 2021-12-08 ExaScaler Inc. Liquid immersion cooled electronic device
JP6278071B2 (ja) 2016-07-15 2018-02-14 富士通株式会社 電子機器の液浸槽
WO2018051501A1 (ja) 2016-09-16 2018-03-22 富士通株式会社 液浸槽および液浸槽を有する装置
JP2017050548A (ja) * 2016-10-13 2017-03-09 株式会社ExaScaler 電子機器の冷却システム
JP6790855B2 (ja) 2017-01-18 2020-11-25 富士通株式会社 液浸冷却装置、液浸冷却システム及び電子装置の冷却方法
JP6237942B1 (ja) 2017-01-30 2017-11-29 富士通株式会社 液浸冷却装置
US10871807B2 (en) * 2017-07-24 2020-12-22 Green Revolution Cooling, Inc. Power distribution system with thermal cutoff for dielectric cooling systems
CN109557749B (zh) 2017-09-27 2021-11-12 精工爱普生株式会社 投影仪
CN109757060B (zh) * 2017-11-03 2020-11-24 阿里巴巴集团控股有限公司 冷却设备
RU2695089C2 (ru) * 2017-12-26 2019-07-19 Общество с ограниченной ответственностью "Научно-Технический Центр ИннТех" Система непосредственного жидкостного охлаждения электронных компонентов
TWI692291B (zh) * 2018-01-05 2020-04-21 威剛科技股份有限公司 動態隨機存取記憶體模組
CN110095929A (zh) 2018-01-29 2019-08-06 精工爱普生株式会社 投影仪
CN110095925B (zh) 2018-01-30 2022-04-08 精工爱普生株式会社 投影仪以及动作控制方法
US10834853B2 (en) 2018-03-02 2020-11-10 Micron Technology, Inc. Electronic device with a card-level thermal regulator mechanism and associated systems, devices, and methods
CN108680785B (zh) * 2018-06-21 2024-07-02 深圳绿色云图科技有限公司 一种假负载测试装置
JP2022537933A (ja) 2019-06-12 2022-08-31 ザ ルブリゾル コーポレイション 有機熱伝達システム、方法、および流体
EP3768053B1 (en) 2019-07-19 2023-08-30 Schneider Electric IT Corporation Systems and methods for liquid-volume measurement in immersion-cooled devices
CN112788914B (zh) * 2019-11-11 2022-08-12 富联精密电子(天津)有限公司 散热装置及散热***
JP2022030744A (ja) 2020-08-07 2022-02-18 ダイキン工業株式会社 液浸冷却装置
EP4152905A1 (en) * 2022-08-18 2023-03-22 Ovh Immersion-cooled electronic device and cooling monitoring system for immersion-cooled electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225899A (ja) * 1985-03-29 1986-10-07 工業技術院長 電場を利用した液体による電気機器の除熱方法
JPS6465185A (en) * 1987-09-05 1989-03-10 Itsuro Kanetani Protective fluid and system for high-temperature superconducting material
JPH04226057A (ja) * 1990-05-11 1992-08-14 Fujitsu Ltd 浸漬液冷用冷媒及びこれを用いた沸騰液冷式電子機器
JPH1168369A (ja) * 1997-06-10 1999-03-09 Toshiba Corp 冷却装置
JP2009027051A (ja) * 2007-07-23 2009-02-05 Yokogawa Electric Corp 電子機器の冷却装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302793A (en) * 1979-11-30 1981-11-24 Submergible Oil Systems, Inc. Electronic cooling
JPS5958081A (ja) * 1982-09-29 1984-04-03 Toshiba Corp 冷却用液体
AU4524389A (en) * 1988-09-28 1990-04-18 Exfluor Research Corporation Perfluoroacetal and perfluoroketal compounds and use thereof in thermal shock testing
JPH06104358A (ja) * 1992-09-04 1994-04-15 Hitachi Ltd 液体により冷却される電子装置
US5907473A (en) * 1997-04-04 1999-05-25 Raytheon Company Environmentally isolated enclosure for electronic components
US6604370B2 (en) * 2001-02-22 2003-08-12 Hewlett-Packard Development Company, L.P. Variably configured sprayjet cooling system
JP2003051689A (ja) * 2001-08-06 2003-02-21 Toshiba Corp 発熱素子用冷却装置
US7254024B2 (en) * 2004-05-11 2007-08-07 Salmon Peter C Cooling apparatus and method
WO2006084125A2 (en) * 2005-02-03 2006-08-10 The Johns Hopkins University Mri method of selective visualization with on-resonant water suppression
US7307841B2 (en) * 2005-07-28 2007-12-11 Delphi Technologies, Inc. Electronic package and method of cooling electronics
CN1718513A (zh) * 2005-08-12 2006-01-11 北京工业大学 可控温的文物展示柜
CN1822258A (zh) * 2006-03-17 2006-08-23 中国科学院电工研究所 一种喷淋式蒸发冷却变压器
US20080123297A1 (en) * 2006-05-15 2008-05-29 Isothermal Systems Research, Inc. Hybrid clamshell blade system
US7787248B2 (en) * 2006-06-26 2010-08-31 International Business Machines Corporation Multi-fluid cooling system, cooled electronics module, and methods of fabrication thereof
CN102360751A (zh) * 2011-07-28 2012-02-22 苏州鼎能电力设备有限公司 变压器油箱
US20140301037A1 (en) * 2013-04-04 2014-10-09 Green Revolution Cooling, Inc. Liquid coolant-submersible node

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225899A (ja) * 1985-03-29 1986-10-07 工業技術院長 電場を利用した液体による電気機器の除熱方法
JPS6465185A (en) * 1987-09-05 1989-03-10 Itsuro Kanetani Protective fluid and system for high-temperature superconducting material
JPH04226057A (ja) * 1990-05-11 1992-08-14 Fujitsu Ltd 浸漬液冷用冷媒及びこれを用いた沸騰液冷式電子機器
JPH1168369A (ja) * 1997-06-10 1999-03-09 Toshiba Corp 冷却装置
JP2009027051A (ja) * 2007-07-23 2009-02-05 Yokogawa Electric Corp 電子機器の冷却装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080308B2 (en) 2016-09-16 2018-09-18 Fujitsu Limited Immersion cooling apparatus
US10321609B2 (en) 2016-11-28 2019-06-11 Fujitsu Limited Cooling system and method of cooling electronic device

Also Published As

Publication number Publication date
EP3188580A4 (en) 2018-03-14
EP3188580B1 (en) 2019-09-25
CN107079606A (zh) 2017-08-18
JP5853072B1 (ja) 2016-02-09
JP2016046431A (ja) 2016-04-04
US20170273223A1 (en) 2017-09-21
EP3188580A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5853072B1 (ja) 電子機器の冷却システム
JP5956098B1 (ja) 電子機器、及び電子機器の冷却装置
JP5956097B1 (ja) 電子機器の冷却装置
US20180070477A1 (en) Electronic-device cooling system
CN107924896B (zh) 电子设备的冷却***
JP6790855B2 (ja) 液浸冷却装置、液浸冷却システム及び電子装置の冷却方法
US11516943B2 (en) Direct liquid cooling system for cooling of electronic components
US9750159B2 (en) Pump-enhanced, immersion-cooling of electronic compnent(s)
JPWO2016075838A1 (ja) 電子機器の冷却システム、及び冷却方法
US10130013B1 (en) Cooling electronic devices in a data center
US10123454B2 (en) Electronic-device cooling system
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US9464854B2 (en) Techniques for controlling vapor pressure in an immersion cooling tank
EP2430893B1 (en) Cooled electronic system
Kandasamy et al. Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance
JP2017050548A (ja) 電子機器の冷却システム
JPWO2020100816A1 (ja) 気泡放出装置を備えた電子機器
WO2024065847A1 (en) Immersion cooling systems, apparatus, and related methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15506707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836815

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836815

Country of ref document: EP