WO2016031257A1 - ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法 - Google Patents

ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法 Download PDF

Info

Publication number
WO2016031257A1
WO2016031257A1 PCT/JP2015/004385 JP2015004385W WO2016031257A1 WO 2016031257 A1 WO2016031257 A1 WO 2016031257A1 JP 2015004385 W JP2015004385 W JP 2015004385W WO 2016031257 A1 WO2016031257 A1 WO 2016031257A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
diamine
acid
polyamide composition
dicarboxylic acid
Prior art date
Application number
PCT/JP2015/004385
Other languages
English (en)
French (fr)
Inventor
康一 永瀬
真次 家田
祐 日戸
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015164149A external-priority patent/JP2017078093A/ja
Priority claimed from JP2015164148A external-priority patent/JP2017078092A/ja
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to JP2016544970A priority Critical patent/JPWO2016031257A1/ja
Publication of WO2016031257A1 publication Critical patent/WO2016031257A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to polyamide, a method for producing polyamide, a polyamide composition, a molded product of polyamide composition, and a method for producing the molded product.
  • Polyamides represented by polyamide 6 (hereinafter also referred to as “PA6”) and polyamide 66 (hereinafter also referred to as “PA66”) and the like are excellent in molding processability, mechanical properties, and chemical resistance. It is widely used as various parts materials for automobiles, electric and electronic, industrial materials, industrial materials, daily necessities, and household goods.
  • PA6T terephthalic acid and hexamethylenediamine
  • PA6T is composed of aliphatic polyamide such as polyamide 6 and polyamide 66 (hereinafter also referred to as PA6 and PA66, respectively), amorphous fragrance comprising isophthalic acid and hexamethylenediamine.
  • PA6T copolymers High melting point semi-aromatic polyamides (hereinafter also referred to as PA6T copolymers), etc., in which an aromatic polyamide (hereinafter also referred to as PA6I) is copolymerized and the melting point is lowered to about 220 to 340 ° C. have been proposed. .
  • Patent Document 1 discloses an aromatic polyamide (hereinafter referred to as “a mixture of hexamethylenediamine and 2-methylpentamethylenediamine”), which is composed of an aromatic dicarboxylic acid and an aliphatic diamine. , PA6T / 2MPDT). Although PA6T / 2MPDT can partially improve the problems of the conventional PA6T copolymer, the improvement level in terms of fluidity, moldability, toughness, molded product surface appearance and light resistance is insufficient. .
  • PA46 a high-melting point aliphatic polyamide
  • PA46 a high-melting point aliphatic polyamide
  • PA46 has a high water absorption rate, and also absorbs water.
  • the dimensional change and the deterioration of the mechanical properties due to the above are remarkably large, and the demand may not be satisfied in terms of the dimensional change required for automobile applications.
  • Patent Documents 2 and 3 include alicyclic polyamides composed of 1,4-cyclohexanedicarboxylic acid and hexamethylene diamine (hereinafter referred to as PA6C). And semi-alicyclic polyamides (hereinafter also referred to as PA6C copolymers) with other polyamides.
  • PA6C and PA6C copolymers disclosed in Patent Documents 2 and 3 also have problems such as high water absorption and insufficient fluidity.
  • Patent Document 4 discloses that a polyamide comprising a dicarboxylic acid unit containing 1,4-cyclohexanedicarboxylic acid and a diamine unit containing 2-methyl-1,8-octanediamine has light resistance, toughness, moldability, lightness,
  • the polyamide is disclosed to be excellent in heat resistance and the like, but this polyamide is also insufficiently improved in terms of toughness, strength and fluidity.
  • Patent Document 5 discloses a dicarboxylic acid component containing 10 to 80 mol% of 1,4-cyclohexanedicarboxylic acid having a trans isomer / cis isomer molar ratio of 50/50 to 97/3 among all carboxylic acid components.
  • a polyamide obtained by thermal polycondensation with an aliphatic diamine component is described, and a polyamide having a ratio of a trans isomer / cis isomer of a raw material monomer within a predetermined range is excellent in toughness and chemical resistance and moldability It is described that it is excellent.
  • Patent Document 6 describes a polyamide obtained by polymerizing a dicarboxylic acid containing an alicyclic dicarboxylic acid and a diamine containing a diamine having a substituent branched from the main chain.
  • Dicarboxylic acid is isomerized at a high temperature to have a certain ratio, and the cis isomer has a higher water solubility of the equivalent salt with diamine than the trans isomer, so the trans monomer / cis isomer molar ratio of the raw material monomer is It is described that it is preferable that there are many cis isomers, and that the trans isomer ratio of the whole alicyclic dicarboxylic acid in the polyamide is preferably 50 to 85 mol%.
  • Patent Document 7 describes a copolymerized polyamide using a dicarboxylic acid containing an alicyclic dicarboxylic acid and a diamine having 8 or more carbon atoms as raw materials. Similarly, a cis isomer is used as a raw material monomer. It is described that a large amount is preferable and that the trans isomer ratio in the portion derived from the alicyclic dicarboxylic acid of the copolyamide is preferably 65 to 80 mol%.
  • Patent Document 8 discloses a polyamide resin (hereinafter referred to as “dicarboxylic acid”) containing a terephthalic acid unit and a diamine containing a 1,9-nonanediamine unit and / or a 2-methyl-1,8-octanediamine unit. , "PA9T”), and a polyamide composition comprising titanium oxide, magnesium hydroxide, and a specific reinforcing agent is disclosed, and it is disclosed that this polyamide composition is excellent in heat resistance. Has been.
  • Patent Document 9 contains a semi-alicyclic polyamide blended with 70% or more of 1,4-cyclohexanedicarboxylic acid as a dicarboxylic acid unit, titanium oxide, and an inorganic filler, and their mass ratio.
  • a polyamide composition having a predetermined value is disclosed, and it is disclosed that this polyamide composition is excellent in reflow resistance, heat resistance and the like.
  • the conventional polyamide or polyamide composition disclosed in the above patent document requires further improvement in order to obtain higher level characteristics in heat discoloration resistance, extrusion processability and molding process stability.
  • JP-T 6-503590 Japanese National Patent Publication No. 11-512476 JP 2001-514695 A Japanese Patent Laid-Open No. 9-12868 International Publication No. 2002/048239 JP 2010-1111843 A International Publication No. 2012/093722 JP 2006-257314 A JP 2011-219697 A
  • the trans isomer ratio of the entire alicyclic dicarboxylic acid in the polyamide is within a predetermined range, In addition to the features of high melting point, toughness, and rigidity, it simultaneously achieves high-temperature rigidity due to high glass transition temperature, fluidity, which is usually opposite to heat resistance, and high crystallinity and low water absorption. It is described that it is possible.
  • the present invention has been made in view of the above circumstances, and provides a polyamide composition molded article excellent in hot strength and hot rigidity, a method for producing the molded article, and such a polyamide composition molded article. It is an object of the present invention to provide a possible polyamide, a method for producing the polyamide, and a polyamide composition containing the polyamide.
  • the polyamide composition molded article of the present invention is A dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, a diamine unit containing at least an aliphatic diamine, and A polyamide composition molded article containing a polyamide comprising
  • the trans isomer ratio of 1,4-cyclohexanedicarboxylic acid monomer unit in the molded product is 71 to 100 mol%.
  • the trans isomer ratio mol% may be described as a trans / cis ratio (molar ratio) or a trans / cis isomer ratio. From the description of the cis isomer ratio, the trans isomer ratio mol% can be uniquely derived. When the total of the trans isomer ratio and the cis isomer ratio is 100, when expressed as a trans / cis ratio (molar ratio), one ratio indicates one isomer ratio (mol%). For example, when the trans / cis ratio (molar ratio) is 71/29, the trans isomer ratio is 71 mol%.
  • the content of 1,4-cyclohexanedicarboxylic acid is preferably at least 50 mol% in the dicarboxylic acid unit.
  • the molded article of the polyamide composition of the present invention is obtained when the heat of fusion ⁇ Hm obtained when the temperature is raised at 20 ° C./min and the temperature is lowered at 20 ° C./min in the differential scanning calorimetry according to JIS-K7121.
  • the ratio to the crystallization enthalpy ⁇ Hc obtained is ⁇ Hm / ⁇ Hc> 1.0 It is preferable that ⁇ Hm / ⁇ Hc ⁇ 1.5. It is preferable that
  • differential scanning calorimetry there are two measurement methods for differential scanning calorimetry according to JIS-K7121, input compensation DSC and thermal flow rate DSC.
  • differential scanning calorimetry is measured by input compensation DSC.
  • the “trans isomer ratio” in the polyamide of the present invention is the sum of the respective trans isomer ratios of a plurality of types when (a) the dicarboxylic acid monomer unit includes a plurality of types of geometric isomers. means.
  • the molded article of the polyamide composition of the present invention preferably has a melting peak temperature of 300 ° C. or higher in differential scanning calorimetry.
  • the polyamide composition molded article of the present invention preferably has a heat of fusion ⁇ Hm of 40 J / g or more.
  • the trans isomer ratio mol% is more preferably 80-100.
  • the aliphatic diamine unit is preferably a saturated aliphatic diamine having 4 to 12 carbon atoms, and more preferably a saturated aliphatic diamine having 6 to 10 carbon atoms.
  • the method for producing a polyamide composition molded article of the present invention comprises molding a polyamide composition containing a polyamide containing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine.
  • the molded polyamide composition object is heat-treated at 200 ° C. or higher to produce a molded polyamide composition product.
  • the present inventors have further determined a polyamide having a specific trans isomer ratio and crystallinity ⁇ Hm1 / ⁇ Hc controlled, a polyamide composition thereof, and a polyamide composition molding. It was found that the product can solve the above problems.
  • the first polyamide of the present invention is (A) a dicarboxylic acid unit comprising at least 1,4-cyclohexanedicarboxylic acid; (B) a diamine unit containing at least an aliphatic diamine; A polyamide containing In the differential scanning calorimetry according to JIS-K7121, ⁇ Hm1 / which is the ratio between the heat of fusion ⁇ Hm1 obtained when the temperature is raised at 20 ° C./min and the crystallization enthalpy ⁇ Hc obtained when the temperature is lowered at 20 ° C./min. ⁇ Hc is 1.0 ⁇ Hm1 / ⁇ Hc ⁇ 2.2 And The trans isomer ratio mol% of the dicarboxylic acid monomer unit in the polyamide is 71 ⁇ trans isomer ratio ⁇ 75 It is.
  • the content of 1,4-cyclohexanedicarboxylic acid is preferably at least 50 mol% in the dicarboxylic acid unit.
  • all the dicarboxylic acid units are preferably 1,4-cyclohexanedicarboxylic acid.
  • the aliphatic diamine preferably has 6 to 12 carbon atoms.
  • the aliphatic diamine is hexamethylene diamine, 2-methyl-pentamethylene diamine, 2-methyl-1,8-octane diamine, nonamethylene diamine, decamethylene diamine, or dodecamethylene diamine. Preferably there is.
  • the aliphatic diamine is particularly preferably 2-methyl-pentamethylenediamine.
  • the first polyamide of the present invention is (A) a dicarboxylic acid unit comprising at least 1,4-cyclohexanedicarboxylic acid; (B) a diamine unit containing at least an aliphatic diamine; A polyamide containing The aliphatic diamine comprises a branched aliphatic diamine; The trans isomer ratio mol% of the dicarboxylic acid monomer unit in the polyamide is 71 ⁇ trans isomer ratio ⁇ 100 It may be.
  • the proportion of the branched aliphatic diamine in the (b) diamine unit is preferably 10 to 100 mol%.
  • ⁇ Hm1 / ⁇ Hc is 1.0 ⁇ Hm1 / ⁇ Hc ⁇ 1.4 It is preferable that
  • the first polyamide of the present invention has a ratio [NH 2 ] / ([NH 2 ] + [COOH] which is a ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]). ]) [NH 2 ] / ([NH 2 ] + [COOH]) ⁇ 0.5 It is preferable that
  • the total amount of active ends ([NH 2 ] + [COOH]) ⁇ eq / g is 20 ⁇ [NH 2 ] + [COOH] ⁇ 60 It is preferable that
  • the sulfuric acid relative viscosity ⁇ r is preferably 1.8 ⁇ r.
  • the weight average molecular weight Mw / number average molecular weight Mn as the molecular weight distribution is: Mw / Mn ⁇ 3.5 It is preferable that
  • Tm1-Tc which is the difference between the melting peak temperature Tm1 of the polyamide and the crystallization peak temperature Tc of the polyamide, is preferably 40 ° C. ⁇ Tm1-Tc ⁇ 90 ° C.
  • the first polyamide composition of the present invention contains the first polyamide of the present invention and at least one selected from an inorganic filler, a nucleating agent, a heat stabilizer and a light stabilizer.
  • the first polyamide composition of the present invention may further contain titanium oxide.
  • the polyamide composition molded article of the present invention may be formed by molding the first polyamide composition of the present invention.
  • the method for producing the first polyamide of the present invention comprises: (A) a dicarboxylic acid unit comprising at least 1,4-cyclohexanedicarboxylic acid; (B) a diamine unit containing at least an aliphatic diamine, [NH 2 ] / ([NH 2 ] + [COOH]), which is the ratio of the amino terminal amount [NH 2 ] to the total active terminal amount ([NH 2 ] + [COOH]), [NH 2 ] / ([NH 2 ] + [COOH]) ⁇ 0.5 And Active terminal total amount ([NH 2 ] + [COOH]) ⁇ eq / g is 60 ⁇ [NH 2 ] + [COOH] ⁇ 110 Is heat-treated at 200 ° C. or higher and lower than the melting point for 10 hours or longer.
  • the “melting point” indicates a melting peak temperature Tm2 by differential scanning calorimetry (input compensation DSC) according to JIS-K7121.
  • the second polyamide of the present invention is (A) a dicarboxylic acid unit comprising at least 1,4-cyclohexanedicarboxylic acid; (B) a diamine unit containing at least an aliphatic diamine; A polyamide containing Sulfuric acid relative viscosity ⁇ r is 2.5 or more, In the differential scanning calorimetry according to JIS-K7121, ⁇ Hm1 / which is the ratio between the heat of fusion ⁇ Hm1 obtained when the temperature is raised at 20 ° C./min and the crystallization enthalpy ⁇ Hc obtained when the temperature is lowered at 20 ° C./min. ⁇ Hc is 1.0 ⁇ Hm1 / ⁇ Hc ⁇ 2.2 And The trans isomer ratio mol% of the dicarboxylic acid monomer unit in the polyamide is 75 ⁇ trans isomer ratio ⁇ 100 It is.
  • the content of 1,4-cyclohexanedicarboxylic acid is preferably at least 50 mol% in the dicarboxylic acid unit.
  • all the dicarboxylic acid units are preferably 1,4-cyclohexanedicarboxylic acid.
  • the aliphatic diamine preferably has 6 to 12 carbon atoms.
  • the aliphatic diamine is hexamethylenediamine, 2-methylpentamethylenediamine, 2-methyl-1,8-octanediamine, nonamethylenediamine, decamethylenediamine, or dodecamethylenediamine. It is preferable.
  • the aliphatic diamine is preferably 2-methylpentamethylenediamine or decamethylenediamine.
  • the second polyamide of the present invention is (A) a dicarboxylic acid unit comprising at least 1,4-cyclohexanedicarboxylic acid; (B) a diamine unit containing at least an aliphatic diamine; A polyamide containing The aliphatic diamine comprises a branched aliphatic diamine; Sulfuric acid relative viscosity ⁇ r is 2.5 or more, The trans isomer ratio mol% of the dicarboxylic acid monomer unit in the polyamide is 71 ⁇ trans isomer ratio ⁇ 100 It may be.
  • the proportion of the (b) branched aliphatic diamine in the diamine unit is preferably 10 to 100 mol%.
  • ⁇ Hm1 / ⁇ Hc is preferably 1.4 ⁇ Hm1 / ⁇ Hc ⁇ 2.2.
  • active end the total amount of amino-terminus weight [NH 2] is the ratio ([NH 2] + [COOH ]) [NH 2] / ([NH 2] + [COOH]) Is [NH 2 ] / ([NH 2 ] + [COOH]) ⁇ 0.5 It is preferable that
  • the weight average molecular weight Mw / number average molecular weight Mn indicating the molecular weight distribution is Mw / Mn ⁇ 3.5. It is preferable that
  • the second polyamide composition of the present invention preferably contains the second polyamide of the present invention and at least one selected from an inorganic filler, a heat stabilizer, and a light stabilizer.
  • the molded article of the polyamide composition of the present invention may be formed by molding the second polyamide composition of the present invention.
  • the second method for producing a polyamide of the present invention comprises (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine.
  • Active end the total amount of amino-terminus weight [NH 2] is the ratio ([NH 2] + [COOH ]) [NH 2] / ([NH 2] + [COOH]) is, [NH 2] / ([ NH 2 ] + [COOH]) ⁇ 0.5, and the active terminal total amount ([NH 2 ] + [COOH]) ⁇ eq / g is 110 ⁇ [NH 2 ] + [COOH] ⁇ 200 Is heat-treated at 200 ° C. or higher and lower than the melting point for 10 hours or longer.
  • the polyamide composition molded article of the present invention is a polyamide composition molded article containing a polyamide containing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine, Since the trans isomer ratio of the dicarboxylic acid monomer unit in this molded product is 71 to 100 mol%, it can be excellent in hot strength and hot stiffness.
  • the method for producing a molded article of a polyamide composition according to the present invention comprises a polyamide composition containing a polyamide containing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine. Since the molded polyamide composition body is heat-treated at 200 ° C. or higher, the trans isomer ratio of the dicarboxylic acid monomer unit in the molded product is 71 to 100 mol%, and is excellent in heat strength and heat rigidity. Polyamide composition molded articles can be produced.
  • the first polyamide of the present invention is a polyamide containing (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine, ⁇ Hm1 / ⁇ Hc, which is the ratio between the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc obtained when the temperature is lowered at 20 ° C./min, is 1.0 ⁇ Hm1 / ⁇ Hc ⁇ 2.2, and the dicarboxylic acid monomer in the polyamide
  • the trans isomer ratio (mol%) of the unit is 71 ⁇ trans isomer ratio ⁇ 75.
  • the trans isomer ratio mol% can be made greater than 71 and 75 or less, and the heat resistance, reflow resistance, aging resistance, and release properties are excellent.
  • the polyamide composition molded article of the invention can be obtained.
  • the first polyamide production method of the present invention comprises (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine.
  • active end the total amount of end weight [NH 2] is the ratio ([NH 2] + [COOH ]) [NH 2] / ([NH 2] + [COOH]) is, [NH 2] / ([ NH 2 ] + [COOH]) ⁇ 0.5
  • the active terminal total amount ([NH 2 ] + [COOH]) ⁇ equivalent / g is 60 ⁇ [NH 2 ] + [COOH] ⁇ 110 , Heat treatment at 200 ° C.
  • ⁇ Hm1 / ⁇ Hc is 1.0 ⁇ Hm1 / ⁇ Hc ⁇ 2.2
  • the trans isomer ratio (mol%) of the dicarboxylic acid monomer unit in the polyamide is 71 ⁇ trans isomer ratio. It can be set to ⁇ 75, and a polyamide and a polyamide composition excellent in heat resistance, reflow resistance, aging resistance, and releasability can be provided.
  • the second polyamide of the present invention is a polyamide containing (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine, wherein the relative viscosity of sulfuric acid is ⁇ r is 2.5 or more, ⁇ Hm / ⁇ Hc is more than 1.0 and 2.2 or less, and the trans isomer ratio mol% of the dicarboxylic acid monomer unit is more than 75 and 100 or less.
  • the polyamide composition of the present invention can have a trans isomer ratio mol% of more than 75 and 100 or less, and is excellent in hot strength, hot rigidity, and low water absorption.
  • a composition molded article can be obtained.
  • the second polyamide production method of the present invention comprises (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine.
  • active end the total amount of end weight [NH 2] is the ratio ([NH 2] + [COOH ]) [NH 2] / ([NH 2] + [COOH]) is, [NH 2] / ([ NH 2 ] + [COOH]) ⁇ 0.5
  • the active terminal total amount ([NH 2 ] + [COOH]) ⁇ equivalent / g is 110 ⁇ [NH 2 ] + [COOH] ⁇ 200 , Heat treatment at 200 ° C.
  • the sulfuric acid relative viscosity ⁇ r is 2.5 or more, ⁇ Hm / ⁇ Hc is greater than 1.0 and 2.2 or less, and the trans isomer ratio mol% of the dicarboxylic acid monomer unit is 75%. Larger and less than 100 polyamides and polyamide compositions can be obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following this embodiment is an illustration for demonstrating this invention, and is not the meaning which limits this invention to the following content.
  • the present invention can be implemented with various modifications within the scope of the gist.
  • the polyamide composition molded article of the present invention is a polyamide composition molded article containing a polyamide containing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine,
  • the trans isomer ratio of the dicarboxylic acid monomer unit in the molded product is 71 to 100 mol%.
  • Such a polyamide composition molded article can be obtained by the following method.
  • One method is to mold a polyamide composition containing a polyamide obtained by polymerizing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine.
  • a polyamide composition molded article is obtained by heat treatment at 200 ° C. or higher.
  • Another method is to mold the first polyamide composition or the second polyamide composition having a specific trans isomer ratio and ⁇ Hm1 / ⁇ Hc to obtain a polyamide composition molded article.
  • these methods will be described as a first embodiment to a third embodiment.
  • the polyamide composition molded article according to the first embodiment is a molded polyamide composition containing a polyamide containing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine. Then, the molded polyamide composition object is heat-treated at 200 ° C. or higher to obtain a polyamide composition molded article.
  • the polyamide contained in the polyamide composition for obtaining the polyamide composition molded product according to the first embodiment, its structural unit, the polyamide composition containing the polyamide, and the method for producing the polyamide composition molded product will be described.
  • polyamide in the polyamide composition molded article and the method for producing the same of the present invention is a polyamide containing a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and a diamine unit containing at least an aliphatic diamine.
  • polyamide means a polymer having an amide bond (—NHCO—) in the main chain.
  • the dicarboxylic acid unit is a dicarboxylic acid containing at least 1,4-cyclohexanedicarboxylic acid.
  • 1,4-cyclohexanedicarboxylic acid in the dicarboxylic acid unit, it is possible to obtain a polyamide that satisfies the strength, toughness, stability during heat, etc., has a high melting point, and is excellent in fluidity and low water absorption. it can.
  • the content of 1,4-cyclohexanedicarboxylic acid is preferably at least 50 mol%.
  • 1,4-cyclohexanedicarboxylic acid When the proportion of 1,4-cyclohexanedicarboxylic acid is at least 50 mol%, that is, 50 mol% or more, a polyamide having excellent strength and toughness and a high melting point can be obtained.
  • the proportion of 1,4-cyclohexanedicarboxylic acid is more preferably 60 to 100 mol%, still more preferably 70 to 100 mol%, and most preferably 100 mol%.
  • the proportion of dicarboxylic acid other than 1,4-cyclohexanedicarboxylic acid in the dicarboxylic acid unit is 0 to 50 mol%, preferably 0 to 40 mol%, more preferably 0 to 30 mol%.
  • 1,4-cyclohexanedicarboxylic acid there are trans isomers and cis geometric isomers.
  • 1,4-Cyclohexanedicarboxylic acid as a raw material monomer for polyamide has a trans isomer and a cis isomer, and even if either a trans isomer or a cis isomer is used, However, the raw material monomer is isomerized at a high temperature to have a certain ratio, and the cis isomer has higher water solubility in the equivalent salt with the diamine described later than the trans isomer.
  • the trans / cis ratio in terms of molar ratio is preferably 50/50 to 0/100, more preferably 40/60 to 10/90, and even more preferably 35/65 to 15/85. It is preferable.
  • the trans / cis ratio (molar ratio) of 1,4-cyclohexanedicarboxylic acid can be determined by nuclear magnetic resonance spectroscopy (NMR).
  • the dicarboxylic acid unit may contain a dicarboxylic acid other than 1,4-cyclohexanedicarboxylic acid, and examples thereof include aliphatic dicarboxylic acids and aromatic dicarboxylic acids.
  • examples of the aliphatic dicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2,2-diethylsuccinic acid, and 2,3-diethylglutaric acid.
  • Glutaric acid 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecane
  • Examples thereof include linear or branched saturated aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as diacid, eicosane diacid, and diglycolic acid.
  • aromatic dicarboxylic acid examples include unsubstituted or various terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, etc.
  • aromatic dicarboxylic acids having 8 to 20 carbon atoms substituted with a substituent.
  • Examples of the various substituents in the aromatic dicarboxylic acid include halogens such as alkyl groups having 1 to 4 carbon atoms, aryl groups having 6 to 10 carbon atoms, arylalkyl groups having 7 to 10 carbon atoms, chloro groups, and bromo groups. Groups, silyl groups having 1 to 6 carbon atoms, and sulfonic acid groups and sodium salts thereof.
  • aliphatic dicarboxylic acids are preferable from the viewpoint of heat resistance, fluidity, toughness, low water absorption, strength, etc., and the number of carbon atoms is 6 or more. Aliphatic dicarboxylic acids are more preferred. Of these, aliphatic dicarboxylic acids having 10 or more carbon atoms are preferred from the viewpoints of heat resistance and low water absorption.
  • Examples of the aliphatic dicarboxylic acid having 10 or more carbon atoms include sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and eicosanedioic acid.
  • sebacic acid or dodecanedioic acid is preferable from the viewpoint of heat resistance and the like.
  • Dicarboxylic acids other than 1,4-cyclohexanedicarboxylic acid may be used alone or in combination of two or more.
  • the dicarboxylic acid may further contain a trivalent or higher polyvalent carboxylic acid such as trimellitic acid, trimesic acid, pyromellitic acid and the like within a range not impairing the object of the present invention.
  • a trivalent or higher polyvalent carboxylic acid such as trimellitic acid, trimesic acid, pyromellitic acid and the like within a range not impairing the object of the present invention.
  • One type of polyvalent carboxylic acid may be used alone, or two or more types may be used in combination.
  • the dicarboxylic acid other than 1,4-cyclohexanedicarboxylic acid is not limited to the compounds described as the dicarboxylic acid, and may be a compound equivalent to the dicarboxylic acid.
  • the compound equivalent to the dicarboxylic acid is not particularly limited as long as it can be a dicarboxylic acid structure similar to the dicarboxylic acid structure derived from the dicarboxylic acid, and examples thereof include anhydrides and halides of dicarboxylic acids. .
  • the dicarboxylic acid other than 1,4-cyclohexanedicarboxylic acid includes an aliphatic dicarboxylic acid having 10 or more carbon atoms
  • 50 to 99.9 mol% of 1,4-cyclohexanedicarboxylic acid and preferably 10 or more carbon atoms are preferable.
  • the aliphatic dicarboxylic acid is 0.1 to 50 mol%, more preferably 1,4-cyclohexanedicarboxylic acid is 60 to 99 mol% and the aliphatic dicarboxylic acid having 10 or more carbon atoms is 1 to 40 mol%. More preferably, the amount of 1,4-cyclohexanedicarboxylic acid is 70 to 99 mol% and the aliphatic dicarboxylic acid having 10 or more carbon atoms is 1 to 30 mol%.
  • the diamine unit includes at least an aliphatic diamine.
  • an aliphatic diamine-containing component as the diamine unit, it is possible to obtain a polyamide that simultaneously satisfies the strength, toughness and the like and has excellent moldability.
  • the proportion of the aliphatic diamine in the diamine unit is preferably at least 50 mol%, more preferably 60 to 100 mol%, further 70 to 100 mol%, and particularly preferably 100 mol%.
  • a polyamide having higher strength and toughness and a high melting point can be obtained.
  • the aliphatic diamine is preferably a saturated aliphatic diamine having 2 to 20 carbon atoms, more preferably a saturated fat having 4 to 12 carbon atoms, from the viewpoint of heat resistance, fluidity, toughness, low water absorption and strength. It is preferably an aliphatic diamine, and more preferably a saturated aliphatic diamine having 6 to 10 carbon atoms.
  • One type of aliphatic diamine may be used alone, or two or more types may be used in combination.
  • saturated aliphatic diamine examples include ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, 2-methylpentamethylenediamine, hexamethylenediamine, 2-methylhexamethylenediamine, 2,4-dimethylhexamethylenediamine, hepta
  • saturated aliphatic diamines having 2 to 20 carbon atoms such as methylene diamine, octamethylene diamine, nonamethylene diamine, 2-methyloctamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, and tridecamethylene diamine. It is done. From the viewpoints of heat resistance, fluidity, toughness, low water absorption and strength, 2-methylpentamethylenediamine, hexamethylenediamine, decamethylenediamine, and dodecamethylenediamine are more preferable.
  • a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine may be further included within a range not impairing the object of the present invention.
  • a polyvalent aliphatic amine may be used individually by 1 type, and may be used in combination of 2 or more types.
  • a diamine other than an aliphatic diamine such as an aromatic diamine or an alicyclic diamine may be included as long as the object of the present invention is not impaired.
  • the aromatic diamine include metaxylylenediamine, paraxylylenediamine, paraphenylenediamine, metaphenylenediamine, and the like.
  • the alicyclic diamine include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,3-cyclopentanediamine, and the like.
  • the polyamide may be a polyamide obtained by further copolymerizing lactam and / or aminocarboxylic acid from the viewpoint of toughness.
  • the lactam and / or aminocarboxylic acid means a lactam and / or aminocarboxylic acid that can be polymerized to polyamide.
  • a lactam and / or aminocarboxylic acid having 4 to 14 carbon atoms is preferable, and a lactam and / or aminocarboxylic acid having 6 to 12 carbon atoms is more preferable.
  • lactam examples include butyrolactam, pivalolactam, ⁇ -caprolactam, caprilactam, enantolactam, undecanolactam, laurolactam (dodecanolactam), and the like.
  • ⁇ -caprolactam and laurolactam are preferable, and ⁇ -caprolactam is more preferable.
  • aminocarboxylic acid examples include ⁇ -aminocarboxylic acid and ⁇ , ⁇ -amino acid that are compounds in which a lactam is ring-opened.
  • the aminocarboxylic acid is preferably a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms substituted with an amino group at the ⁇ position.
  • 6-aminocaproic acid, 11-aminoundecanoic acid Examples thereof include 12-aminododecanoic acid, and examples of the aminocarboxylic acid include paraaminomethylbenzoic acid.
  • a lactam and / or aminocarboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the addition amount of the lactam and / or aminocarboxylic acid is preferably 0 to 20 mol% with respect to the molar amount of the dicarboxylic acid unit, diamine unit, and lactam and / or aminocarboxylic acid.
  • End sealant Polyamide may use a known end-capping agent for molecular weight adjustment when polymerizing using the above-described dicarboxylic acid unit, diamine unit and, if necessary, lactam and / or aminocarboxylic acid. You may have the residue of terminal blocker at the terminal.
  • Examples of the end-capping agent include monocarboxylic acids, monoamines, acid anhydrides such as phthalic anhydride, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like, from the viewpoint of thermal stability. Monocarboxylic acids or monoamines are preferred. As a terminal blocker, one type may be used alone, or two or more types may be used in combination.
  • the monocarboxylic acid that can be used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
  • the monocarboxylic acid one kind may be used alone, or two or more kinds may be used in combination.
  • the monoamine that can be used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine Aliphatic monoamines such as decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine; and And cyclic amines such as pyrrolidine, piperidine, 3-methylpiperidine; and the like. Monoamines may be used alone or in combination of two or more.
  • the method for producing polyamide is not particularly limited, and examples thereof include the methods exemplified below. 1) A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (hereinafter referred to as hot melt polymerization method). 2) A method of increasing the degree of polymerization while maintaining the solid state of the polyamide obtained by the hot melt polymerization method at a temperature below the melting point (hereinafter referred to as a hot melt polymerization / solid phase polymerization method).
  • a method in which the dicarboxylic acid / diamine salt or a mixture thereof is polymerized in one step while maintaining the solid state (hereinafter referred to as a one-step solid phase polymerization method). 6) A method of polymerization using a dicarboxylic acid halide equivalent to a dicarboxylic acid and a diamine (hereinafter referred to as a solution method).
  • the polyamide production method is preferably 1) hot melt polymerization, 2) hot melt polymerization / solid phase polymerization, 4) prepolymer / solid phase polymerization, more preferably 1) hot melt polymerization, 2)
  • the hot melt polymerization / solid phase polymerization method is desirable, and the hot melt polymerization method is preferred from the viewpoint of shortening the polymerization cycle time of polyamide and improving the molecular weight.
  • the addition amount of the dicarboxylic acid unit and the addition amount of the diamine unit are preferably around the same molar amount.
  • the amount of diamine units escaped from the reaction system during the polymerization reaction is also considered in terms of the molar ratio, and the molar amount of the entire diamine unit is preferably 0.9 to 1 with respect to the molar amount 1 of the entire dicarboxylic acid unit. .2, more preferably 0.95 to 1.1, and further preferably 0.98 to 1.05.
  • a diamine is mentioned as an additive at the time of superposition
  • This diamine means a diamine to be added separately from the diamine unit used in the production of an equimolar amount of dicarboxylic acid / diamine salt.
  • the amount of the diamine added as an additive is preferably 0.1 to 10 mol%. More preferably, it is 0.5 to 5.0 mol%, more preferably 1.5 to 4.5 mol%, and still more preferably 2.6 to 4.0 mol%.
  • This diamine may be the same component as the diamine unit used in the production of the dicarboxylic acid / diamine salt or a different compound. By adding diamine or the like, the degree of polymerization can be increased or adjusted, which is effective as a method for controlling the molecular weight.
  • the polymerization form may be batch or continuous.
  • the reactor used by a method other than the solid phase polymerization method include an autoclave type reactor, a tumbler type reactor, and an extruder type reactor such as a kneader.
  • the reaction can be performed.
  • a tumbler reactor, a vibration dryer reactor, a Nauter mixer reactor, a stirring reactor, or the like can be used.
  • polyamide pellets, flakes, or powder is placed in the reactor to polymerize the polyamide.
  • it may be performed under a stream of inert gas such as nitrogen, argon or helium or under reduced pressure, or the inert gas may be supplied from the lower part of the reactor while pulling the internal gas to the reduced pressure at the upper part of the reactor.
  • the molecular weight of the polyamide can be improved by heating at a temperature below the melting point of the polyamide.
  • the reaction temperature of the solid phase polymerization is preferably 100 to 350 ° C, more preferably 120 to 300 ° C, and further preferably 150 to 270 ° C. After the polymerization, the heating is stopped, and the polyamide is taken out from the reactor after the reaction temperature is lowered preferably from 0 to 100 ° C., more preferably from room temperature to 60 ° C.
  • the hot melt polymerization method can be carried out in a known manner, but is preferably carried out under a temperature condition of 100 ° C. or higher, more preferably 120 ° C. or higher, and most preferably 170 ° C. or higher.
  • a mixture of 1,4-cyclohexanedicarboxylic acid and a dicarboxylic acid such as hexamethylene adipamide and a diamine, a solid salt or an aqueous solution is heated and concentrated at a temperature of 100 to 300 ° C., and the generated water vapor pressure is changed from normal pressure to The pressure is kept at about 5 MPa (gauge pressure), and finally the pressure is released, and polycondensation is performed at normal pressure or reduced pressure.
  • a solid phase polymerization method in which a mixture of dicarboxylic acid and diamine, a solid salt or a polycondensate is thermally polycondensed at a temperature below the melting point can be used. These methods may be combined as necessary.
  • the above-mentioned known end-capping agent is used for molecular weight adjustment when the polymerization is performed using the dicarboxylic acid unit and the diamine unit, and if necessary, lactam and / or aminocarboxylic acid. Further polymerization may be carried out by adding.
  • the molecular weight of the polyamide is based on the sulfuric acid relative viscosity ⁇ r at 25 ° C., and the sulfuric acid relative viscosity ⁇ r at 25 ° C. is preferably 2.3 or more. More preferably, it is 2.3 to 7.0, more preferably 2.5 to 6.5, and particularly preferably 3.0 to 6.5.
  • Effective methods for controlling the relative viscosity ⁇ r of sulfuric acid at 25 ° C. for polyamides include, for example, methods for controlling the addition amount of diamine and end-capping agent as additives during hot melt polymerization of polyamide, and polymerization conditions. Method.
  • the polyamide is excellent in mechanical properties such as toughness and strength. From the viewpoint of melt fluidity, a polyamide having excellent fluidity can be obtained when the sulfuric acid relative viscosity ⁇ r at 25 ° C. of 7.0 is 7.0 or less.
  • the relative viscosity of sulfuric acid at 25 ° C. can be measured at 25 ° C. in 98% sulfuric acid according to JIS-K6920.
  • a number average molecular weight Mn obtained by GPC (gel permeation chromatography), a weight average molecular weight Mw, and a molecular weight distribution Mw / Mn can be used.
  • the number average molecular weight Mn of the polyamide is preferably larger than 15000, more preferably 18000 or more, and further preferably 20000 or more.
  • Mw / Mn which shows the molecular weight distribution of (A) polyamide becomes like this.
  • Mn and Mw can produce
  • the melting point Tm2 of the polyamide is preferably 280 to 350 ° C. from the viewpoint of heat resistance. Melting
  • the melting point Tm2 is preferably 350 ° C. or lower, more preferably 340 ° C. or lower, further preferably 335 ° C. or lower, and still more preferably 330 ° C. or lower.
  • the melting point Tm2 of the polyamide is 280 ° C. or higher, a polyamide having excellent heat resistance can be obtained. Moreover, when the melting point Tm2 of the polyamide is 350 ° C. or less, the thermal decomposition of the polyamide in the melt processing such as extrusion and molding can be suppressed.
  • the heat of fusion ⁇ Hm2 of the polyamide is preferably 10 to 100 J / g, more preferably 14 to 100 J / g, and further preferably 20 to 100 J / g from the viewpoint of heat resistance.
  • the measurement of the melting point Tm2 and the heat of fusion ⁇ Hm2 of the polyamide can be performed according to JIS-K7121 as described in the following examples. Examples of the measuring device for melting point and heat of fusion include Diamond-DSC manufactured by PERKIN-ELMER.
  • the polyamide composition can contain an inorganic filler and other additives in addition to the polyamide.
  • an inorganic filler as the polyamide composition, the polyamide composition is excellent in heat resistance and thermal stability, and without damaging the properties of the polyamide having a high melting point, the polyamide composition also has heat resistance and thermal stability. While satisfying the above, etc., it is particularly excellent in strength and moldability.
  • inorganic filler It does not specifically limit as an inorganic filler which comprises the polyamide composition of this embodiment, A well-known material can be used.
  • a well-known material can be used.
  • One type of inorganic filler may be used
  • the glass fiber and the carbon fiber may have a round shape or a flat shape in cross section.
  • the flat cross section include a rectangle, an oval close to a rectangle, an ellipse, and a bowl shape with a narrowed central portion in the longitudinal direction.
  • the polyamide composition has a number average fiber diameter of 3 to 30 ⁇ m and a weight average fiber length of 100 to 750 ⁇ m.
  • a glass fiber or carbon fiber having an aspect ratio (L / D) of 10 to 100 between the weight average fiber length (L) and the number average fiber diameter (D) is preferably used.
  • the number average fiber diameter of the inorganic filler in the polyamide composition is, for example, putting the polyamide composition in an electric furnace, incinerating the organic matter contained in the polyamide composition, and, for example, 100 or more glass fibers from the residue.
  • the number average fiber diameter can be determined by arbitrarily selecting, observing with SEM, and measuring the fiber diameter.
  • the glass fiber is arbitrarily selected in the same manner, and the weight average fiber length is measured by measuring the fiber length using an SEM photograph at a magnification of 1000 times. be able to.
  • the inorganic filler reinforcing fibers having a weight average fiber length of 1 to 15 mm are more preferable.
  • the weight average fiber length of such reinforcing fibers is 1 to 15 mm, preferably 3 to 12 mm, from the viewpoint of improving mechanical strength, rigidity and moldability.
  • the weight average fiber length of the reinforcing fibers is the length of 400 reinforcing fibers arbitrarily selected using an image analyzer after observing with an optical microscope after burning or dissolving only the polyamide of the polyamide composition. It is calculated
  • the calculation formula for the weight average fiber length for each reinforcing fiber is expressed by the following formula.
  • “i” is an integer from 1 to 400.
  • Weight average fiber length ⁇ (Li 2 ) / ⁇ Li
  • a weight average fiber length is a value applied with respect to the reinforced fiber of the state contained in the polyamide composition of this embodiment. That is, the weight average fiber length of the reinforcing fiber before blending with the polyamide is not limited to the above.
  • the material of the reinforcing fiber is not particularly limited as long as it is a reinforcing fiber generally used for polyamide.
  • inorganic fiber such as glass fiber, carbon fiber, boron fiber, metal fiber (eg, stainless fiber, aluminum fiber, copper fiber), polyparaphenylene terephthalamide fiber, polymetaphenylene terephthalamide fiber, polyparaffin Organic materials such as phenylene isophthalamide fiber, polymetaphenylene isophthalamide fiber, wholly aromatic polyamide fiber such as fiber obtained from condensate of diaminodiphenyl ether and terephthalic acid or isophthalic acid, or wholly aromatic liquid crystal polyester fiber Is mentioned.
  • the said material may be used independently and 2 or more types may be used together. Especially, it is preferable that it is 1 or more types chosen from a glass fiber, a carbon fiber, a boron fiber, and a metal fiber from a viewpoint of an improvement of mechanical strength and rigidity, and a glass fiber and / or a carbon fiber are more preferable.
  • the reinforcing fiber is not particularly limited with respect to the average fiber diameter of the single fiber, but, for example, those having a diameter of 5 to 25 ⁇ m are generally used.
  • the average fiber diameter of single fibers is obtained by observing the reinforcing fibers to be used under an optical microscope and calculating the average value when measuring 400 fiber diameters arbitrarily selected using an image analyzer. It is done. Further, as the reinforcing fiber, it is preferable to use roving which is a continuous fiber in which single fibers are bundled.
  • the inorganic filler such as glass fiber or carbon fiber may be surface-treated with a silane coupling agent or the like.
  • the silane coupling agent is not particularly limited, and examples thereof include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane.
  • aminosilanes such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane; epoxysilanes; vinylsilanes and the like. Of these, aminosilanes are preferable.
  • the silane coupling agent one kind may be used alone, or two or more kinds may be used in combination.
  • Fibrous inorganic fillers such as glass fibers and carbon fibers are further used as sizing agents, copolymers and epoxy containing carboxylic anhydride-containing unsaturated vinyl monomers and unsaturated vinyl monomers as constituent units.
  • Compounds, polyurethane resins, and homopolymers of acrylic acid, copolymers of acrylic acid and other copolymerizable monomers, and salts with primary, secondary, or tertiary amines thereof may be included.
  • a copolymer containing a carboxylic acid anhydride-containing unsaturated vinyl monomer and an unsaturated vinyl monomer as structural units containing carboxylic acid anhydride
  • a copolymer containing an unsaturated vinyl monomer and an unsaturated vinyl monomer excluding an unsaturated vinyl monomer containing a carboxylic acid anhydride as a structural unit), an epoxy compound, and a polyurethane resin are preferred, and a carboxylic acid anhydride More preferred are a copolymer containing a contained unsaturated vinyl monomer and an unsaturated vinyl monomer as structural units, and a polyurethane resin.
  • the sizing agent one type may be used alone, or two or more types may be used in combination.
  • the carboxylic acid anhydride-containing unsaturated vinyl monomer constituting the copolymer containing the carboxylic acid anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer as structural units is not particularly limited. Examples thereof include maleic anhydride, itaconic anhydride, and citraconic anhydride, and maleic anhydride is preferred.
  • the unsaturated vinyl monomer constituting the copolymer containing carboxylic acid anhydride-containing unsaturated vinyl monomer and unsaturated vinyl monomer as structural units is not particularly limited, for example Styrene, ⁇ -methylstyrene, ethylene, propylene, butadiene, isoprene, chloroprene, 2,3-dichlorobutadiene, 1,3-pentadiene, cyclooctadiene, methyl methacrylate, methyl acrylate, ethyl acrylate, and ethyl methacrylate. Styrene and butadiene are preferred.
  • Examples of the copolymer containing a carboxylic acid anhydride-containing unsaturated vinyl monomer and an unsaturated vinyl monomer as structural units include, for example, a copolymer of maleic anhydride and butadiene, a maleic anhydride and ethylene. Copolymers and copolymers of maleic anhydride and styrene are preferred.
  • the copolymer containing a carboxylic anhydride-containing unsaturated vinyl monomer and an unsaturated vinyl monomer as constituent units has a weight average molecular weight of preferably 2,000 or more, and improves the fluidity of the polyamide composition. From this viewpoint, it is more preferably 2,000 to 1,000,000, and further preferably 2,000 to 900,000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the epoxy compound is not particularly limited, and examples thereof include ethylene oxide, propylene oxide, butene oxide, pentene oxide, hexene oxide, heptene oxide, octene oxide, nonene oxide, decene oxide, undecenoxide, and dodecene oxide.
  • Aliphatic epoxy compounds such as pentadecene oxide and eicosene oxide; glycidol, epoxypentanol, 1-chloro-3,4-epoxybutane, 1-chloro-2-methyl-3,4-epoxybutane, 1,4 -Dichloro-2,3-epoxybutane, cyclopentene oxide, cyclohexene oxide, cycloheptene oxide, cyclooctene oxide, methylcyclohexene oxide, vinylcyclohexe Alicyclic epoxy compounds such as oxide and epoxidized cyclohexene methyl alcohol; terpene epoxy compounds such as pinene oxide; aromatic epoxy compounds such as styrene oxide, p-chlorostyrene oxide and m-chlorostyrene oxide; epoxidized soybean oil; And epoxidized linseed oil.
  • Aliphatic epoxy compounds such as pentadecene oxide and eico
  • the polyurethane resin is not particularly limited, and those generally used as a sizing agent can be used.
  • isocyanates such as m-xylylene diisocyanate (XDI), 4,4′-methylenebis (cyclohexyl isocyanate) (HMDI), and isophorone diisocyanate (IPDI), polyester-based and polyether-based diols, Those synthesized from can be suitably used.
  • the weight average molecular weight is preferably 1,000 to 90,000, more preferably 1,000 to 25,000.
  • the polyacrylic acid may be in the form of a salt with a primary, secondary, or tertiary amine.
  • the amine is not particularly limited, and examples thereof include triethylamine, triethanolamine, and glycine.
  • the degree of neutralization of polyacrylic acid by having a salt form means the ratio of the acrylic acid component forming a salt out of the acrylic acid component of polyacrylic acid, and other concomitant drugs (silane coupling agents, etc.) From the standpoint of improving the stability of the mixed solution with) and reducing the amine odor, it is preferably 20 to 90%, more preferably 40 to 60%.
  • the weight-average molecular weight of the salt-form polyacrylic acid is preferably 3,000 to 50,000, and preferably 3,000 or more from the viewpoint of improving the converging property of glass fibers and carbon fibers. From the viewpoint of improving the mechanical properties of the product, it is preferably 50,000 or less.
  • the other copolymerizable monomer in the copolymer of acrylic acid and other copolymerizable monomer is not particularly limited, and examples thereof include acrylic acid, maleic acid, and methacrylic acid, which are monomers having a hydroxyl group and / or a carboxyl group. Vinyl acetic acid, crotonic acid, isocrotonic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid.
  • a monomer that is an ester of a monomer having a hydroxyl group and / or a carboxyl group can be suitably used.
  • the copolymer of acrylic acid and other copolymerizable monomer preferably has a weight average molecular weight of 1,000 to 90,000, more preferably 1,000 to 25,000.
  • the copolymer of acrylic acid and other copolymerizable monomers may be in the form of a salt with a primary, secondary, or tertiary amine.
  • the amine is not particularly limited, and examples thereof include triethylamine, triethanolamine, and glycine.
  • the degree of neutralization of the copolymer by having a salt form means the proportion of the acid component forming a salt in the acid component of the copolymer, and the mixed solution with other concomitant drugs (such as a silane coupling agent) From the viewpoint of improving the stability and reducing the amine odor, it is preferably 20 to 90%, more preferably 40 to 60%.
  • the weight average molecular weight of the salt-form copolymer is preferably 3,000 to 50,000, and preferably 3,000 or more from the viewpoint of improving the converging property of glass fiber or carbon fiber. From the viewpoint of improving the characteristics, it is preferably 50,000 or less.
  • the fibrous inorganic filler such as glass fiber and carbon fiber containing a sizing agent is obtained by using the above sizing agent in a known glass fiber or carbon fiber manufacturing process using a known method such as a roller type applicator. It is obtained by reacting continuously by drying fiber strands produced by applying to a fibrous inorganic filler such as carbon fiber.
  • the fiber strand may be used as it is as roving, or may be used as a chopped glass strand after further obtaining a cutting step.
  • the sizing agent is preferably imparted (added) in an amount corresponding to 0.2 to 3% by mass as a solid content with respect to 100% by mass of a fibrous inorganic filler such as glass fiber or carbon fiber. It is more preferable to apply (add) mass%.
  • the amount of sizing agent added is 100% by mass with respect to 100% by mass of fibrous inorganic fillers such as glass fibers and carbon fibers. Is preferably 0.2% by mass or more. From the viewpoint of improving the thermal stability of the polyamide composition, the addition amount of the sizing agent is preferably 3% by mass or less as the solid content. Moreover, drying of a strand may be performed after a cutting process, and you may cut
  • the polyamide composition When wollastonite is used as the inorganic filler constituting the polyamide composition, the polyamide composition has a number average fiber diameter of 3 to 30 ⁇ m, a weight average fiber length of 10 to 500 ⁇ m, and an aspect ratio (L / Those having D) of 3 to 100 are preferably used.
  • the inorganic filler when talc, mica, kaolin, silicon nitride or the like is used, the polyamide composition preferably has a number average fiber diameter of 0.1 to 3 ⁇ m.
  • additives that are conventionally used for polyamide, for example, colorants such as pigments and dyes (including colored master batches), flame retardants, fibrillating agents, and lubricants, as long as the object of the present invention is not impaired.
  • colorants such as pigments and dyes (including colored master batches), flame retardants, fibrillating agents, and lubricants, as long as the object of the present invention is not impaired.
  • Agent, fluorescent bleaching agent, plasticizer, antioxidant, light stabilizer, UV absorber, antistatic agent, fluidity improver, filler, reinforcing agent, spreading agent, nucleating agent, rubber, reinforcing agent and Other polymers can also be contained.
  • polyamide composition as a heat stabilizer, phenol stabilizer, phosphorus stabilizer, amine stabilizer, Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa of the periodic table
  • phenol stabilizer, phosphorus stabilizer, amine stabilizer, Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa of the periodic table One or more selected from the group consisting of metal salts of Group IVb and Group IVb elements and halides of alkali metals and alkaline earth metals can be blended.
  • the phenol-based stabilizer is not particularly limited, and examples thereof include hindered phenol compounds.
  • the phenol-based stabilizer has a property of imparting heat resistance and light resistance to resins and fibers such as polyamide.
  • the hindered phenol compound is not particularly limited, and examples thereof include N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide).
  • Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t-butyl-4 -Hydroxy-hydrocinnamamide), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3- t-butyl-4-hydroxy-5-methylphenyl) propynyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxapyro [5,5] undecane, 3 5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, And 1,3,5-tris (4
  • N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide)] is preferable from the viewpoint of improving heat aging resistance.
  • the phenol-based stabilizer one type may be used alone, or two or more types may be used in combination.
  • the amount of the phenol stabilizer in the polyamide composition is preferably 0.01 to 1 part by mass, more preferably 0.1 to 100 parts by mass of the polyamide composition. ⁇ 1 part by mass.
  • the heat aging resistance can be further improved and the amount of generated gas can be further reduced.
  • the phosphorus stabilizer is not particularly limited, for example, pentaerythritol type phosphite compound, trioctyl phosphite, trilauryl phosphite, tridecyl phosphite, octyl diphenyl phosphite, trisisodecyl phosphite, Phenyl diisodecyl phosphite, phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl (tridecyl) phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4- Di-t-butylphenyl) phosphite, tris (2,4-di-t-but
  • pentaerythritol phosphite compounds and tris (2,4-di-t-butylphenyl) phosphite are preferable from the viewpoint of further improving the heat aging resistance and reducing the generated gas.
  • the pentaerythritol type phosphite compound is not particularly limited.
  • 2,6-di-t-butyl-4-methylphenyl phenyl pentaerythritol diphosphite 2,6-di-t- Butyl-4-methylphenyl methyl pentaerythritol diphosphite
  • bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,6-di-t-octyl-4-methylphenyl) pentaerythritol diphosphite are preferred, and bis (2 , 6-Di-t-butyl-4-methylphenyl) pentaerythritol diphosphite is more preferred.
  • a phosphorus stabilizer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the phosphorus stabilizer in the polyamide composition is 0.01 to 1 part by mass, more preferably 0.1 to 1 part per 100 parts by mass of the polyamide composition. Part by mass.
  • the heat aging resistance can be further improved and the amount of generated gas can be further reduced.
  • the amine stabilizer is not particularly limited, and examples thereof include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetra Methylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetra Methylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpipe Gin, 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarb
  • One type of amine stabilizer may be used alone, or two or more types may be used in combination.
  • the compounding amount of the amine stabilizer in the polyamide composition is preferably 0.01 to 1 part by mass, more preferably 0.1 to 100 parts by mass of the polyamide composition. ⁇ 1 part by mass.
  • the amount is within the above range, light resistance and heat aging resistance can be further improved, and the amount of generated gas can be further reduced.
  • the metal salt of the elements of Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa, and Group IVb of the periodic table is not particularly limited and is preferably a heat stabilizer. Copper salt.
  • the copper salt is not particularly limited.
  • copper halide copper iodide, cuprous bromide, cupric bromide, cuprous chloride, etc.
  • copper acetate copper propionate
  • benzoic acid examples thereof include copper oxide, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate and copper stearate, and a copper complex salt in which copper is coordinated to a chelating agent such as ethylenediamine and ethylenediaminetetraacetic acid.
  • metal salt especially copper salt
  • a polyamide composition having excellent heat aging resistance and capable of suppressing metal corrosion (hereinafter also simply referred to as “metal corrosion”) of screws and cylinders during extrusion is obtained. be able to.
  • the said metal salt may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the compounding amount of the copper salt in the polyamide composition is preferably 0.01 to 0.2 parts by mass, more preferably 0.02 to 0 parts per 100 parts by mass of the polyamide composition. 15 parts by mass.
  • the amount is within the above range, the heat aging resistance is further improved, and copper precipitation and metal corrosion can be suppressed.
  • the content of copper element is preferably 10 to 500 ppm, more preferably 30 to 500 ppm, still more preferably 50 to 300 ppm with respect to the total amount of the polyamide composition. .
  • Alkali metal and alkaline earth metal halides are not particularly limited, and examples thereof include potassium iodide, potassium bromide, potassium chloride, sodium iodide and sodium chloride, and mixtures thereof. Among these, potassium iodide and potassium bromide, and a mixture thereof are preferable, and potassium iodide is more preferable from the viewpoint of improving heat aging resistance and suppressing metal corrosion. As the halide, one kind may be used alone, or two or more kinds may be used in combination.
  • the blending amount of alkali and alkaline earth metal halides in the polyamide composition is preferably 0.05 to 5 with respect to 100 parts by mass of the polyamide composition. Part by mass, more preferably 0.2 to 2 parts by mass. When the amount is within the above range, the heat aging resistance is further improved, and copper precipitation and metal corrosion can be suppressed.
  • a mixture of a copper salt and a halide of an alkali or alkaline earth metal can be suitably used as a heat stabilizer.
  • the ratio of the copper salt to the alkali and alkaline earth metal halide may be contained in the polyamide composition so that the molar ratio of halogen to copper (halogen / copper) is 2/1 to 40/1. It is preferably 5/1 to 30/1.
  • the heat aging resistance of the polyamide composition can be further improved.
  • the molar ratio (halogen / copper) is 2/1 or more, it is preferable because copper precipitation and metal corrosion can be suppressed.
  • the molar ratio (halogen / copper) is 40/1 or less, corrosion of the screws of the molding machine can be prevented without substantially impairing mechanical properties such as toughness, which is preferable.
  • a method for producing the polyamide composition is not particularly limited as long as it is a method of mixing the above-described polyamide, an inorganic filler, and, if necessary, the above-described other additives.
  • a method of mixing the constituent materials of the polyamide composition for example, a method of mixing using a Henschel mixer and the like, supplying to a melt kneader and kneading, or a polyamide melted with a single screw or twin screw extruder, from a side feeder The method etc. which mix
  • all the components may be supplied to the same supply port at once, or the components may be supplied differently. You may supply from a mouth.
  • the melt kneading temperature is preferably about 250 to 375 ° C. as the resin temperature.
  • the melt kneading time is preferably about 0.5 to 5 minutes.
  • the apparatus for performing melt kneading is not particularly limited, and a known apparatus, for example, a melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, and a mixing roll can be used.
  • the method for producing a polyamide composition when the inorganic filler contained in the polyamide composition is a reinforcing fiber having a weight average fiber length of 1 to 15 mm is not particularly limited.
  • the polyamide composition preferably has a sulfuric acid relative viscosity ⁇ r at 25 ° C. of 2.3 or more. More preferably, it is 2.3 to 7.0, more preferably 2.5 to 6.5, and particularly preferably 3.0 to 6.5.
  • the sulfuric acid relative viscosity ⁇ r at 25 ° C. is 2.3 or more, the mechanical properties such as toughness and strength are excellent.
  • the polyamide relative viscosity ⁇ r at 25 ° C. is preferably 7.0 or less.
  • the relative viscosity of sulfuric acid at 25 ° C. can be measured at 25 ° C. in 98% sulfuric acid according to JIS-K6920.
  • the melting point of the polyamide composition is preferably 280 to 350 ° C. from the viewpoint of heat resistance. Melting
  • the melting point is preferably 350 ° C. or lower, more preferably 340 ° C. or lower, further preferably 335 ° C. or lower, and still more preferably 330 ° C. or lower.
  • the melting point of the polyamide composition is 280 ° C. or higher, the polyamide composition can have excellent heat resistance. Moreover, when the melting point is 350 ° C. or lower, thermal decomposition in melt processing such as extrusion and molding can be suppressed.
  • the melting point of the polyamide composition can be measured according to JIS-K7121, and basically has the same value as the melting point Tm2 of the polyamide.
  • the heat of fusion of the polyamide composition is preferably 10 to 100 J / g, more preferably 14 to 100 J / g, even more preferably 20 to 100 J / g from the viewpoint of heat resistance.
  • the heat of fusion of the polyamide composition can be measured according to JIS-K7121.
  • the value of the heat value is the ratio of the polyamide to the composition. Convert and calculate. Examples of the measuring device for melting point and heat of fusion include Diamond-DSC manufactured by PERKIN-ELMER.
  • the polyamide composition molded article of the present invention is a known molding method of the above-mentioned polyamide or polyamide composition, for example, press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding. It can be obtained by heat treatment at 200 ° C. or higher after molding using multilayer molding, melt spinning, etc., and molding the molded polyamide composition.
  • the heat treatment method for the polyamide composition molded body is not particularly limited as long as heating at 200 ° C. or higher is possible.
  • an apparatus such as an electric furnace, a gear oven, a hot plate, or a molding die is used.
  • the heat treatment may be performed in the air, may be performed in an inert gas atmosphere, for example, a nitrogen gas atmosphere, or may be performed in a reduced pressure environment.
  • the heat treatment temperature is 200 ° C. or higher, preferably 220 ° C. to 300 ° C., more preferably 240 ° C. to 300 ° C. By setting the temperature to 200 ° C.
  • the trans isomer ratio of the 1,4-cyclohexanedicarboxylic acid monomer unit in the molded product can be set to 71 mol% or higher.
  • the temperature can be set to 300 ° C. or lower, it is possible to satisfactorily prevent the molded product from melting, so that the trans isomer ratio can be set to 71 mol% or higher.
  • the heat treatment time can be appropriately selected depending on the size and thickness of the molded product and the heat treatment temperature. For example, when the heat treatment time is 200 to 240 ° C., it is preferably 1 to 72 hours, more preferably about 1 to 48 hours.
  • the trans isomer ratio of the dicarboxylic acid monomer unit in the molded article is 71 to 100 mol%.
  • the dicarboxylic acid monomer unit means a unit derived from a dicarboxylic acid of a monomer as a raw material.
  • the trans isomer ratio mol% is more preferably more than 75 and 100 or less, more preferably 80 or more and 100 or less, and still more preferably 85 or more and 100 or less.
  • the trans isomer ratio (mol%) of the dicarboxylic acid monomer unit of the polyamide composition molded article can be determined by nuclear magnetic resonance spectroscopy (NMR).
  • the heat of fusion ⁇ Hm, crystallization enthalpy ⁇ Hc, melting peak temperature Tm of the polyamide composition molded product are each preferably 40 J / g or more, more preferably 45 J / g or more from the viewpoint of heat resistance, and 50 J / g. More preferably, it is the above.
  • the heat of fusion ⁇ Hm and the crystallization enthalpy ⁇ Hc of the polyamide composition molded product are preferably 80 J / g or less from the viewpoint of moldability.
  • the value of the heat value is relative to the composition. Calculated by converting the ratio of polyamide.
  • the ratio ( ⁇ Hm / ⁇ Hc) between the heat of fusion ⁇ Hm and the crystallization enthalpy ⁇ Hc of the polyamide composition molded article of the present invention is preferably greater than 1.0, more preferably 1.5 or more, further from the viewpoint of heat resistance. Is more preferably 1.8 or more.
  • the heat of fusion ⁇ Hm and the crystallization enthalpy ⁇ Hc of the polyamide composition molded product can be measured in accordance with JIS-K7121, and the heat of fusion ⁇ Hm is raised at a rate of temperature increase of 20 ° C./min.
  • This is the Tm peak area when the endothermic peak appearing on the highest temperature side of the endothermic peak (melting peak) appearing at the time of the first temperature rise (melting peak) is defined as the melting peak temperature Tm (° C.).
  • a peak having ⁇ H of 1 J / g or more is regarded as a peak, the highest temperature is defined as a melting peak temperature Tm, and ⁇ Hm is a sum of peak areas.
  • the crystallization enthalpy ⁇ Hc is the Tc value when the temperature of the exothermic peak (crystallization peak) that appears when the polyamide composition molded article is cooled at a temperature decrease rate of 20 ° C./min is the crystallization peak temperature Tc (° C.). It is the peak area.
  • Diamond-DSC manufactured by PERKIN-ELMER can be used as a measuring device.
  • the melting peak temperature Tm of the molded polyamide composition of the present invention is preferably 300 ° C. or higher, more preferably 310 ° C. or higher, from the viewpoint of heat resistance.
  • the polyamide composition molded article of the present invention is excellent in heat resistance, strength, heat strength, rigidity, heat stiffness, heat stability, and has LLC (Long Life Coolant) resistance as shown in the following examples. Since it is improved, it can be suitably used as various parts materials for automobiles, electric and electronic, industrial materials, extrusion applications, daily necessities and household goods.
  • Examples of automobile intake system parts include an air intake manifold, an intercooler inlet, an exhaust pipe cover, an inner bush, a bearing retainer, an engine mount, an engine head cover, a resonator, and a throttle body.
  • Examples of automobile cooling system parts include a chain cover, a thermostat housing, an outlet pipe, a radiator tank, an oil netter, and a delivery pipe.
  • Examples of automobile fuel system parts include fuel delivery pipes and gasoline tank cases.
  • interior parts include instrument panels, console boxes, glove boxes, steering wheels, and trims.
  • Examples of exterior parts include a mall, a lamp housing, a front grille, a mud guard, a side bumper, a door mirror stay, and a roof rail.
  • the trans isomer ratio mol% is more than 75 and 100 or less, it can be suitably used for automobile engine mounts, air ducts, cooling pipes, and vibration-proof components.
  • the electrical parts are not particularly limited, and examples thereof include connectors, wire harness connectors, motor parts, lamp sockets, sensor on-vehicle switches, and combination switches.
  • Examples of electrical and electronic products include connectors, switches, relays, printed wiring boards, electronic component housings, outlets, noise filters, coil bobbins, and motor end caps.
  • the trans isomer ratio mol% is greater than 71 and 75 or less, it can be suitably used as an LED reflector.
  • Examples of industrial materials include gears, cams, insulating blocks, valves, power tool parts, agricultural equipment parts, engine covers, and the like.
  • Examples of daily necessities and household items include buttons, food containers, and office furniture.
  • Extrusion applications include, for example, films, sheets, filaments, tubes, rods, and hollow molded products.
  • the polyamide composition molded article according to this embodiment is formed by molding a first polyamide composition containing a first polyamide having a specific trans isomer ratio and ⁇ Hm1 / ⁇ Hc. Details of the first polyamide, the first polyamide composition, and the molded polyamide composition will be described below.
  • the first polyamide of the present invention (hereinafter also simply referred to as “polyamide”) is (A) a dicarboxylic acid unit comprising at least 1,4-cyclohexanedicarboxylic acid; (B) a diamine unit containing at least an aliphatic diamine,
  • ⁇ Hm1 / which is the ratio between the heat of fusion ⁇ Hm1 obtained when the temperature is raised at 20 ° C./min and the crystallization enthalpy ⁇ Hc obtained when the temperature is lowered at 20 ° C./min.
  • ⁇ Hc is 1.0 ⁇ Hm1 / ⁇ Hc ⁇ 2.2
  • the trans isomer ratio mol% of the dicarboxylic acid monomer unit in the polyamide is 71 ⁇ trans isomer ratio ⁇ 75 It is.
  • the (A1) polyamide of the present invention contains as structural units (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid and (b) a diamine unit containing at least an aliphatic diamine.
  • the total amount of the above (a) dicarboxylic acid unit and (b) diamine unit is preferably 20 to 100 mol%, and preferably 50 to 100 mol%, relative to 100 mol% of all structural units of (A1) polyamide. More preferably, it is more preferably 90 to 100 mol%, and most preferably 100 mol%.
  • the ratio of the predetermined monomer unit constituting (A1) polyamide can be measured by nuclear magnetic resonance spectroscopy (NMR) or the like.
  • NMR nuclear magnetic resonance spectroscopy
  • the structural unit of (A1) polyamide other than the above (a) dicarboxylic acid unit and (b) diamine unit is not particularly limited.
  • (c) lactam and / or aminocarboxylic acid described later The unit which consists of is mentioned.
  • the polyamide of the present invention having ⁇ Hm1 / ⁇ Hc, which is the ratio between the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc, and the trans isomer ratio as described above can be obtained by the polyamide structural unit and production method described below. .
  • the dicarboxylic acid unit contains at least a 1,4-cyclohexanedicarboxylic acid unit.
  • the dicarboxylic acid unit preferably contains 50 to 100 mol% of 1,4-cyclohexanedicarboxylic acid units (based on the total number of moles of dicarboxylic acid), more preferably 60 to 100 mol%, more preferably 70 to 100 mol. % Is more preferable, and 100 mol% is most preferable.
  • the unit (a) that may be contained in the dicarboxylic acid unit includes (a-1) an alicyclic dicarboxylic acid unit, (a-2) an aromatic dicarboxylic acid unit, and (A-3) Aliphatic dicarboxylic acid units.
  • alicyclic carboxylic acid unit is used to mean 1,4-cyclohexanedicarboxylic acid.
  • the alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit is not limited to the following. However, examples thereof include alicyclic dicarboxylic acids having 3 to 12 carbon atoms in the alicyclic structure, and alicyclic dicarboxylic acids having 5 to 12 carbon atoms in the alicyclic structure are preferable. Examples of such (a-1) alicyclic dicarboxylic acid units include, but are not limited to, 1,3-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, and the like. .
  • the polyamide composition tends to be more excellent in heat resistance, low water absorption, rigidity, and the like.
  • the (a-1) alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit may be used alone or in combination of two or more.
  • the alicyclic group of the alicyclic dicarboxylic acid unit may be unsubstituted or may have a substituent.
  • substituents include, but are not limited to, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group having 1 to 4 alkyl groups and the like.
  • Aromatic dicarboxylic acid unit (a-2)
  • the aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid unit is not limited to the following, but examples thereof include dicarboxylic acids having a phenyl group or a naphthyl group. Examples include acids.
  • the aromatic group of the aromatic dicarboxylic acid unit may be unsubstituted or may have a substituent.
  • substituents include, but are not limited to, for example, an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, a halogen group such as a chloro group and a bromo group, carbon Examples thereof include silyl groups of 1 to 6, sulfonic acid groups and salts thereof (sodium salts, etc.).
  • the aromatic dicarboxylic acid unit is not limited to the following, but specific examples include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, and 5-methylisophthalic acid. And an aromatic dicarboxylic acid having 8 to 20 carbon atoms which is unsubstituted or substituted with a predetermined substituent such as 5-sodium sulfoisophthalic acid. (A-2) As the aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid unit, only one kind may be used alone, or two or more kinds may be used in combination.
  • Aliphatic dicarboxylic acid unit (a-3) Aliphatic dicarboxylic acid unit (a-3)
  • the aliphatic dicarboxylic acid constituting the aliphatic dicarboxylic acid unit is not limited to the following, but examples thereof include malonic acid, dimethylmalonic acid, and succinic acid.
  • the aliphatic dicarboxylic acid unit contains an aliphatic dicarboxylic acid having 6 or more carbon atoms, the heat resistance, fluidity, toughness, low water absorption, rigidity and the like of the polyamide composition are more excellent. This is preferable because of its tendency.
  • the aliphatic dicarboxylic acid unit is preferably an aliphatic dicarboxylic acid having 10 or more carbon atoms. By using such a dicarboxylic acid, the heat resistance and low water absorption of the polyamide composition tend to be more excellent.
  • the aliphatic dicarboxylic acid unit having 10 or more carbon atoms is not particularly limited, and examples thereof include sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and eicosanedioic acid. Among these, sebacic acid and dodecanedioic acid are preferable from the viewpoint of heat resistance of the polyamide composition. (A-3) As the aliphatic dicarboxylic acid constituting the aliphatic dicarboxylic acid unit, only one kind may be used alone, or two or more kinds may be used in combination.
  • the proportion (mol%) of dicarboxylic acids other than 1,4-cyclohexadicarboxylic acid units in the dicarboxylic acid units is preferably 0 to 50 mol%, and preferably 0 to 40 mol%. More preferred is 0 to 30 mol%.
  • the aliphatic dicarboxylic acid unit (a-3) having 10 or more carbon atoms 50 to 99.9 mol% of 1,4-cyclohexanedicarboxylic acid and (a-3) the aliphatic dicarboxylic acid unit is included. It is preferably 0.1 to 50 mol%, more preferably 60 to 95 mol% of 1,4-cyclohexanedicarboxylic acid and (a-3) 5 to 40 mol% of an aliphatic dicarboxylic acid unit, More preferably, the amount of 1,4-cyclohexanedicarboxylic acid is 80 to 95 mol% and (a-3) the aliphatic dicarboxylic acid unit is 5 to 20 mol%.
  • Polyamide that satisfies the excellent heat resistance, fluidity, toughness, low water absorption, rigidity, etc. at the same time when the ratio of the aliphatic dicarboxylic acid unit (a-3) having 10 or more carbon atoms is in the above range. There is a tendency to obtain a composition.
  • the dicarboxylic acid constituting the dicarboxylic acid unit is not limited to the compounds described as the dicarboxylic acid, and may be a compound equivalent to the dicarboxylic acid.
  • the “compound equivalent to dicarboxylic acid” refers to a compound that can have the same dicarboxylic acid structure as the dicarboxylic acid structure derived from the dicarboxylic acid. Examples of such compounds include dicarboxylic acid anhydrides and halides.
  • (A1) polyamide may further contain the unit derived from polyvalent carboxylic acid more than trivalence, such as trimellitic acid, trimesic acid, and pyromellitic acid, as needed. Only one trivalent or higher polyvalent carboxylic acid may be used alone, or two or more polycarboxylic acids may be used in combination.
  • the alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit has a trans isomer and a cis geometric isomer.
  • a trans isomer or a cis isomer may be used, or a mixture containing a trans isomer and a cis isomer in a predetermined ratio may be used.
  • the diamine unit includes at least an aliphatic diamine unit.
  • the aliphatic diamine constituting the aliphatic diamine unit may be linear or branched.
  • Examples of (b) diamine units include, but are not limited to, (b-1) diamine units having a substituent branched from the main chain, and (b-2) linear aliphatic diamine units. Is mentioned.
  • Other diamine units may include (b-3) alicyclic diamine units and (b-4) aromatic diamine units.
  • the diamine unit preferably has 6 to 12 carbon atoms.
  • a carbon number of 6 or more is preferable because of excellent heat resistance, and a carbon number of 12 or less is preferable because of excellent crystallinity and releasability.
  • As for carbon number of a diamine unit 6-10 is more preferable.
  • (B-1) Aliphatic diamine unit having a substituent branched from the main chain (branched aliphatic diamine)
  • the (b) diamine unit preferably includes (b-1) an aliphatic diamine unit having a substituent branched from the main chain.
  • a polyamide having a high glass transition temperature Tg and high crystallinity ie, high ⁇ Hm1 / ⁇ Hc
  • Tg and high crystallinity ie, high ⁇ Hm1 / ⁇ Hc
  • the aliphatic diamine unit having a substituent branched from the main chain (b-1) may be simply referred to as (b-1).
  • the “substituent branched from the main chain” in (b-1) is not limited to the following, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • the diamine constituting such (b-1) is not limited to the following, but for example, 2-methylpentamethylenediamine (also referred to as 2-methyl-1,5-diaminopentane), 2 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyl-1,8-octanediamine (also called 2-methyloctamethylenediamine), and 2,4-dimethyloctane Examples thereof include branched saturated aliphatic diamines having 3 to 20 carbon atoms such as methylene diamine. Among these, 2-methylpentamethylenediamine and 2-methyl-1,8-octanediamine are preferable, and 2-methylpentamethylenediamine is more preferable. By including such (b-1), it tends to be a polyamide composition having superior heat resistance and rigidity. As the diamine constituting (b-1), only one kind may be used alone, or two or more kinds may be used in combination.
  • the (b) diamine unit preferably contains 10 mol% or more of (b-1).
  • the proportion (mol%) of (b-1) in the diamine unit is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 60 to 100 mol%. More preferably 85 to 100 mol%, still more preferably 90 to 100 mol%, most preferably 100 mol%.
  • the ratio of (b-1) in the diamine unit is preferably in the above range from the viewpoint of obtaining a polyamide having a high glass transition temperature Tg and ⁇ Hm1 / ⁇ Hc within the range of the present application. For this reason, the polyamide composition using this polyamide tends to be a polyamide composition that is superior in fluidity, toughness, and rigidity.
  • (B-2) Linear aliphatic diamine unit may be simply referred to as (b-2).
  • the aliphatic diamine constituting (b-2) is not limited to the following, but examples include ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine.
  • linear saturated aliphatic diamines having 2 to 20 carbon atoms such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
  • (B-3) Alicyclic diamine unit may be simply referred to as (b-3).
  • the alicyclic diamine (hereinafter also referred to as “alicyclic diamine”) constituting (b-3) is not limited to the following, but for example, 1,4-cyclohexanediamine, 1,3 -Cyclohexanediamine, 1,3-cyclopentanediamine and the like.
  • (B-4) Aromatic diamine unit hereinafter, the (b-4) aromatic diamine unit may be simply referred to as (b-4).
  • Examples of the aromatic diamine constituting (b-4) include metaxylylenediamine, paraxylylenediamine, paraphenylenediamine, metaphenylenediamine, and the like.
  • diamine units (b-2) to (b-4), (b-2) and (b-3) are preferable, and a linear saturated aliphatic group having 4 to 13 carbon atoms is more preferable.
  • the polyamide composition tends to be excellent in heat resistance, fluidity, toughness, low water absorption, rigidity, and the like.
  • diamine may be used individually by 1 type and may be used in combination of 2 or more types.
  • the total proportion (mol%) of the diamine units (b-2) to (b-4) is preferably 0 to less than 50 mol%, and 0 to 40 mol% with respect to the entire diamine unit (b). More preferably, it is more preferably 0 to 30 mol%.
  • the polyamide composition tends to be excellent in fluidity, toughness, and rigidity.
  • the (A1) polyamide may further contain a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine, if necessary. Trivalent or higher polyvalent aliphatic amines may be used alone or in combination of two or more.
  • the (A1) polyamide of the present invention includes (a) and (b), (c) lactam units (c-1) and / or aminocarboxylic acid units (c-), as long as the object of the present invention is not impaired. 2) can be further contained. By including such a unit, a polyamide composition that is superior in toughness tends to be obtained.
  • the lactam and aminocarboxylic acid constituting the lactam unit (c-1) and aminocarboxylic acid (c-2) refer to a lactam and aminocarboxylic acid capable of polymerization or condensation polymerization.
  • lactam and aminocarboxylic acid constituting the lactam unit (c-1) and the aminocarboxylic acid unit (c-2) are not limited to the following, but for example, lactam and amino acid having 4 to 14 carbon atoms Carboxylic acids are preferred, and lactams having 6 to 12 carbon atoms and aminocarboxylic acids are more preferred.
  • the lactam constituting the lactam unit (c-1) is not limited to the following. Noractam) and the like. Among these, as the lactam, ⁇ -caprolactam, laurolactam and the like are preferable, and ⁇ -caprolactam is more preferable. By including such a lactam, it tends to be a polyamide composition having better toughness.
  • the aminocarboxylic acid constituting the aminocarboxylic acid unit (c-2) is not limited to the following, but examples thereof include ⁇ -aminocarboxylic acid and ⁇ , ⁇ -amino acid which are compounds in which a lactam is opened. Is mentioned.
  • the aminocarboxylic acid is preferably a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms substituted with an amino group at the ⁇ position.
  • Examples of such aminocarboxylic acids include, but are not limited to, 6-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
  • Examples of the aminocarboxylic acid include paraaminomethylbenzoic acid.
  • lactam and aminocarboxylic acid constituting the lactam unit (c-1) and aminocarboxylic acid unit (c-2) may each be used alone or in combination of two or more. .
  • the total ratio (mol%) of the lactam unit (c-1) and the aminocarboxylic acid unit (c-2) is preferably 0 to 20 mol%, more preferably 0 to It is 10 mol%, and more preferably 0 to 5 mol%.
  • the total ratio of the lactam unit (c-1) and the aminocarboxylic acid unit (c-2) is in the above range, effects such as improvement in fluidity tend to be obtained.
  • the terminal of (A1) polyamide used in the present invention may be end-capped with a known end-capping agent.
  • a known end-capping agent is also added as a molecular weight regulator in the production of (A1) polyamide from the above-described dicarboxylic acid and diamine and lactam and / or aminocarboxylic acid used as necessary. Can do.
  • end-capping agents include, but are not limited to, acid anhydrides such as monocarboxylic acids, monoamines, and phthalic anhydride, monoisocyanates, monoacid halides, monoesters, and monoalcohols. Etc. Among these, monocarboxylic acid and monoamine are preferable.
  • acid anhydrides such as monocarboxylic acids, monoamines, and phthalic anhydride
  • monoisocyanates monoacid halides
  • monoesters monoalcohols.
  • monocarboxylic acid and monoamine are preferable.
  • the monocarboxylic acid that can be used as the end-capping agent is not limited to the following as long as it has reactivity with the amino group that can be present at the terminal of the (A1) polyamide.
  • formic acid Aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid; cyclohexanecarboxylic acid, etc.
  • aromatic monocarboxylic acids such as benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid.
  • acetic acid is particularly preferred.
  • a monocarboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a monocarboxylic acid as a terminal blocking agent.
  • the addition amount of the monocarboxylic acid is preferably 0.1 to 2.0 mol%, more preferably 0.3 to 1.5 mol%, and still more preferably 0.5 to 0.1 mol%, based on the charged diamine. ⁇ 1.5 mol%.
  • the ratio [NH 2 ] / ([NH 2 ] + [COOH]) of the amino terminal amount to the total active terminal amount can be less than 0.5, and the trans isomer ratio Can be more than 71 mol% and 75 mol% or less.
  • the monoamine that can be used as the end-capping agent is not limited to the following as long as it has reactivity with the carboxyl group that can be present at the end of the (A1) polyamide, but for example, methylamine, Aliphatic monoamines such as ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; and aniline , Aromatic monoamines such as toluidine, diphenylamine, and naphthylamine. Only one monoamine may be used alone, or two or more monoamines may be used in combination.
  • the polyamide composition containing (A1) polyamide end-capped with an end-capping agent tends to be excellent in heat resistance, fluidity, toughness, low water absorption, and rigidity.
  • the method for producing a first polyamide of the present invention comprises (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine.
  • the first method for producing a polyamide of the present invention is a method for obtaining a polyamide having a specific terminal structure (hereinafter referred to as a precursor polyamide), and further heat-treating it below the melting point (A1) to obtain a polyamide.
  • a “hot melt polymerization / solid phase polymerization method” is preferable.
  • the method for obtaining the precursor polyamide (thermal melt polymerization method) and the heat treatment (solid phase polymerization method) will be described in detail.
  • the method for obtaining the precursor polyamide is not particularly limited, and examples thereof include the methods exemplified below. 1) A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (hereinafter referred to as hot melt polymerization method).
  • prepolymer ⁇ Called the extrusion polymerization method A method in which an aqueous solution or suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated, and the precipitated prepolymer is melted again with an extruder such as a kneader to increase the degree of polymerization (hereinafter referred to as prepolymer ⁇ Called the extrusion polymerization method).
  • prepolymer ⁇ Called the extrusion polymerization method A method of polymerizing using a dicarboxylic acid halide equivalent to a dicarboxylic acid and a diamine.
  • the hot melt polymerization method is preferable from the viewpoint of increasing the molecular weight by polymerization in a short time and suppressing gelation.
  • the addition amount of the dicarboxylic acid constituting the dicarboxylic acid unit and (b) the addition amount of the diamine constituting the diamine unit are about the same molar amount.
  • the dicarboxylic acid unit preferably contains 50 to 100 mol% of 1,4-cyclohexanedicarboxylic acid units (based on the total number of moles of dicarboxylic acid), more preferably 60 to 100 mol%, more preferably 70 to 100 mol. % Is more preferable, and 100 mol% is most preferable.
  • the trans isomer / cis isomer ratio (molar ratio) of the alicyclic dicarboxylic acid as the raw material monomer is preferably 50/50 to 0/100, more preferably 40/60 to 10/90. More preferably, it is 35/65 to 15/85.
  • the trans / cis ratio (molar ratio) of the alicyclic dicarboxylic acid can be determined by liquid chromatography (HPLC) or nuclear magnetic resonance spectroscopy (NMR).
  • the (b) diamine unit preferably includes (b-1) an aliphatic diamine unit having a substituent branched from the main chain, and the proportion thereof is preferably 10 to 100 mol%, more preferably 50 to 100 mol%. 60 to 100 mol% is more preferable, 85 to 100 mol% is still more preferable, 90 to 100 mol% is particularly preferable, and 100 mol% is most preferable.
  • (B-1) is most preferably 2-methyl-5-pentamethylenediamine.
  • a terminal blocking agent may be used for molecular weight and terminal adjustment.
  • the terminal blocking agent is not particularly limited, but acetic acid is preferable.
  • the amount of acetic acid added to the charged diamine is 0.1 to 2.0 mol%, more preferably 0.3 to 1.5 mol%, and still more preferably 0.5 to 1.5 mol% in terms of a molar ratio.
  • Such diamine is preferably 2-methyl-5-pentamethylenediamine.
  • the amount of added diamine with respect to the diamine unit is 1.0 to 5.0 mol%, more preferably 1.5 to 4.5 mol%, still more preferably 2.0 to 4.0 mol% in terms of molar ratio. It is.
  • a phosphorus compound as a heat stabilizer (catalyst) at the time of hot melt polymerization.
  • the heat stabilizer is not particularly limited, but sodium hypophosphite is preferable.
  • the method for producing polyamide preferably further includes a step of increasing the degree of polymerization of the polyamide. Moreover, the sealing process which seals the terminal of the obtained polymer with a terminal sealing agent may be included as needed.
  • the physical property of the precursor polyamide is the ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]) [NH 2 ] / ([NH 2 ] + [COOH]) is 0. It is preferably less than 5, more preferably 0.2 or more and less than 0.5, and further preferably 0.2 to 0.4.
  • the total active terminal amount ([NH 2 ] + [COOH]) is preferably 60 or more and less than 110 ⁇ eq / g, more preferably 70 to 110 ⁇ eq / g, even more preferably 80 to 110 ⁇ eq / g, and 80 to 100 ⁇ m. Equivalent / g is particularly preferred.
  • the terminal structure of the polyamide is controlled by adjusting the amounts of the structural units (a) to (c) of the polyamide, the end-capping agent and the additional diamine. Can be obtained.
  • the heat treatment in the production method of the present invention is a method of heating the precursor polyamide at 200 ° C. or higher and lower than the melting point (Tm 2).
  • the heat treatment method is not particularly limited as long as heating at 200 ° C. or more and less than the melting point (Tm2) is possible.
  • apparatuses such as a dryer, an autoclave, an electric furnace, a gear oven, a hot plate, and a molding die This can be done by using
  • the heat treatment may be performed in the air, may be performed in an inert gas atmosphere, for example, a nitrogen gas atmosphere, or may be performed in a reduced pressure environment.
  • a solid phase polymerization method in which constituent units such as monomers and precursor polyamide are polymerized in a solid state at a temperature lower than the melting point is preferable.
  • the heat treatment temperature is 200 ° C to less than the melting point (Tm2), more preferably 220 ° C to less than the melting point (Tm2), and even more preferably 240 ° C to less than the melting point (Tm2).
  • Tm2 melting point
  • Tm2 melting point
  • Tm2 melting point
  • Tm2 melting point
  • Tm2 melting point
  • the trans isomer ratio of the dicarboxylic acid monomer unit in the polyamide is preferably more than 71 mol% and 75 mol% or less, more preferably 72 mol% or more and 75 mol% or less. Since the polyamide of the present invention is highly crystallized because the trans isomer ratio is in the above range, the polyamide and the polyamide composition of the present invention have a high melting point, toughness and rigidity, in addition to the characteristics of being high. It tends to have the property of simultaneously satisfying the thermal rigidity due to the glass transition temperature (Tg), the fluidity, which is usually a property contrary to heat resistance, and the high crystallinity.
  • Tg glass transition temperature
  • the trans isomer ratio of the dicarboxylic acid monomer unit in such a polyamide can be controlled by controlling the carboxyl terminal amount of the polyamide and the method for producing the polyamide of the present invention.
  • the trans isomer ratio (molar ratio) of the 1,4-cyclohexanedicarboxylic acid monomer unit of the polyamide composition molded article can be determined by nuclear magnetic resonance spectroscopy (NMR).
  • the sulfuric acid relative viscosity ⁇ r of the polyamide is preferably larger than 1.8. More than 1.8 and 3.0 or less are more preferable, and 2.0 or more and 2.5 or less are more preferable. When it is larger than 1.8, the mechanical properties of toughness and rigidity are excellent, and when it is 3.0 or less, the fluidity and moldability are excellent.
  • the sulfuric acid relative viscosity ⁇ r at 25 ° C. can be measured at 25 ° C. in 98% sulfuric acid according to JIS-K6920.
  • A1 As an index of the molecular weight of polyamide, the number average molecular weight Mn, the weight average molecular weight Mw, and the molecular weight distribution Mw / Mn obtained by GPC (gel permeation chromatography) can be used. The larger the Mn, the higher the molecular weight of the (A1) polyamide, and the smaller the Mn, the lower the molecular weight of the (A1) polyamide.
  • the Mn of the polyamide is preferably greater than 15000, more preferably 18000 or greater, and even more preferably 19000 or greater. Further, the Mw / Mn of the (A1) polyamide is preferably less than 3.5, more preferably 3.0 or less.
  • Mn and Mw can produce
  • the melting peak temperature Tm1 of the polyamide is preferably 300 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 325 ° C. or higher.
  • the melting peak temperature Tm1 of (A1) polyamide is preferably 350 ° C. or lower, more preferably 345 ° C. or lower, and further preferably 340 ° C. or lower.
  • (A1) When the melting peak temperature Tm1 of the polyamide is 300 ° C. or higher, a polyamide composition excellent in heat resistance tends to be obtained. Moreover, when (A1) polyamide melting peak temperature Tm1 is 350 ° C. or less, (A1) thermal decomposition of polyamide in melt processing such as extrusion and molding tends to be further suppressed.
  • the melting peak temperature Tm2 of the polyamide is preferably 270 ° C. or higher, more preferably 275 ° C. or higher, and further preferably 280 ° C. or higher.
  • the melting peak temperature Tm2 of the (A1) polyamide is preferably 350 ° C. or lower, more preferably 340 ° C. or lower, further preferably 335 ° C. or lower, and still more preferably 330 ° C. or lower.
  • (A1) When the melting peak temperature Tm2 of the polyamide is 270 ° C. or higher, a polyamide composition excellent in heat resistance tends to be obtained. Moreover, when (A1) polyamide melting peak temperature Tm2 is 350 ° C.
  • thermo decomposition of polyamide in melt processing such as extrusion and molding tends to be further suppressed.
  • the melting peak temperatures Tm1 and Tm2 of the polyamide can be measured according to JIS-K7121 by the method described in Examples below.
  • the heat of fusion ⁇ Hm1 and crystallization enthalpy ⁇ Hc of the polyamide are each preferably 30 J / g or more, more preferably 35 J / g or more, and still more preferably 40 J / g or more.
  • the upper limit of the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc is not particularly limited and is preferably as high as possible.
  • (A1) When the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide are each 30 J / g or more, the heat resistance of the polyamide composition tends to be further improved.
  • the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide can be measured according to JIS-K7121 by the methods described in the Examples below.
  • the heat of fusion ⁇ Hm1 and crystallization enthalpy ⁇ Hc of the (A1) polyamide described above can be measured according to JIS-K7121 by the method described later.
  • the heat of fusion ⁇ Hm2 of the polyamide is preferably 20 J / g or more, more preferably 25 J / g or more, and further preferably 30 J / g or more.
  • the upper limit of the heat of fusion ⁇ Hm2 is not particularly limited and is preferably as high as possible.
  • the heat resistance of the polyamide composition tends to be further improved.
  • the heat of fusion ⁇ Hm1 is a heat of fusion reflecting the heat history received by the polyamide during heat treatment or cooling, and is different from the heat of fusion inherent in the polyamide.
  • ⁇ Hc is a crystallization enthalpy obtained through a cooling process (slow cooling) after complete melting, and is equal to the heat of fusion inherent in polyamide. Therefore, ⁇ Hm1 / ⁇ Hc means the ratio between the heat of fusion inherent in polyamide and the heat of fusion of polyamide subjected to a thermal history.
  • Ratio ⁇ Hm1 / ⁇ Hc of polyamide heat of fusion ⁇ Hm1 and crystallization enthalpy ⁇ Hc is greater than 1.0 and less than or equal to 2.2, preferably greater than 1.0 and less than or equal to 1.4, more preferably 1 It is 1 or more and 1.4 or less, More preferably, it is 1.2 or more and 1.4 or less.
  • the ratio ⁇ Hm1 / ⁇ Hc between the heat of fusion ⁇ Hm1 of the polyamide and the crystallization enthalpy ⁇ Hc is greater than 1.0 and 2.2 or less, whereby the heat resistance of the polyamide composition tends to be improved.
  • Tm1-Tc ⁇ Difference between melting peak temperature Tm1 and crystallization peak temperature Tc (Tm1-Tc)> (A1)
  • Tm1-Tc is preferably higher than 40 ° C and lower than 90 ° C, and more preferably 50 ° C to 80 ° C.
  • the measurement of the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide can be performed according to JIS-K7121, and the heat of fusion ⁇ Hm1 is measured when the temperature of the polyamide is raised at a rate of temperature increase of 20 ° C./min (the first temperature rise).
  • the endothermic peak appearing on the highest temperature side of the endothermic peak (melting peak) appearing at the time) is the peak area of Tm when the melting peak temperature is Tm (° C.).
  • a peak having ⁇ H of 1 J / g or more is regarded as a peak, the highest temperature is defined as a melting peak temperature Tm1, and ⁇ Hm1 is a sum of peak areas.
  • the crystallization enthalpy ⁇ Hc is the Tc value when the temperature of the exothermic peak (crystallization peak) that appears when the polyamide composition molded article is cooled at a temperature decrease rate of 20 ° C./min is the crystallization peak temperature Tc (° C.). It is the peak area.
  • Diamond-DSC manufactured by PERKIN-ELMER can be used as the measuring apparatus.
  • the glass transition temperature Tg of the polyamide is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, even more preferably 130 ° C. or higher, and even more preferably. Is 135 ° C. or higher.
  • the glass transition temperature Tg of (A1) polyamide is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 160 ° C. or lower. (A1) When the glass transition temperature Tg of polyamide is 90 ° C. or higher, a polyamide composition excellent in heat discoloration resistance and chemical resistance tends to be obtained.
  • the glass transition temperature Tg of (A1) polyamide can be measured according to JIS-K7121 as described in the following examples. Examples of the measuring device for the glass transition temperature Tg include Diamond-DSC manufactured by PERKIN-ELMER.
  • the amino terminal is a polymer terminal having an amino group (—NH 2 group) and is derived from the raw material (b) diamine unit.
  • the amino terminal amount ([NH 2 ]) is preferably 5 to 100 ⁇ equivalent / g, more preferably 5 to 70 ⁇ equivalent / g, and further preferably 5 to 50 ⁇ equivalent to 1 g of (A1) polyamide. / G, even more preferably 5 to 30 ⁇ eq / g, and particularly preferably 5 to 20 ⁇ eq / g.
  • the amino terminal amount is in the above range, the whiteness, reflow resistance, heat discoloration resistance, light discoloration resistance, hydrolysis resistance, and heat retention stability of the polyamide composition tend to be more excellent.
  • the amino terminal amount can be measured by neutralization titration. Specifically, 3.0 g of polyamide is dissolved in 100 mL of a 90 mass% phenol aqueous solution, and the obtained solution is titrated with 0.025N hydrochloric acid to obtain the amino terminal amount ( ⁇ equivalent / g). The end point is determined from the indicated value of the pH meter.
  • the carboxyl terminal is a polymer terminal having a carboxyl group (—COOH group) and is derived from the raw material (a) dicarboxylic acid.
  • the carboxyl terminal amount ([COOH]) is preferably 5 to 100 ⁇ equivalent / g, more preferably 5 to 70 ⁇ equivalent / g, and further preferably 5 to 50 ⁇ equivalent / g with respect to 1 g of (A1) polyamide. g, even more preferably 5 to 30 ⁇ eq / g, and particularly preferably 5 to 20 ⁇ eq / g.
  • the carboxyl end amount When the carboxyl end amount is in the above range, the whiteness, reflow resistance, heat discoloration resistance, and light discoloration resistance of the polyamide composition tend to be more excellent.
  • the carboxyl end amount can be measured by neutralization titration. Specifically, 4.0 g of polyamide is dissolved in 50 mL of benzyl alcohol, and the obtained solution is titrated with 0.1 N NaOH to obtain the carboxyl terminal amount ( ⁇ equivalent / g). The end point is determined from the discoloration of the phenolphthalein indicator.
  • the total amount of the amino terminal amount ([NH 2 ]) and the carboxyl terminal amount ([COOH]) is defined as the active terminal total amount ([NH 2 ] + [COOH]).
  • the total amount of active terminals is preferably 10 to 200 ⁇ eq / g, more preferably 10 to 150 ⁇ eq / g, still more preferably 10 to 100 ⁇ eq / g, based on 1 g of (A1) polyamide. Particularly preferred is 20 to 60 ⁇ equivalent / g. [NH 2 ] / ([NH 2 ] + [COOH]), which is a ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]), is preferably 0.5.
  • ⁇ Hm1 / ⁇ Hc it is less than, More preferably, it is 0.2 or more and less than 0.5, More preferably, it is 0.2 or more and 0.4 or less, Most preferably, it is 0.2 or more and 0.3 or less. It is possible to control ⁇ Hm1 / ⁇ Hc to be larger than 1.0 and 2.2 or less because the ratio of the total amount of amino terminal and carboxyl terminal and the ratio of amino terminal to the total active terminal is within the above range. The whiteness, reflow resistance, heat discoloration resistance, and light discoloration resistance of the polyamide composition tend to be more excellent.
  • Examples of the method for controlling the ratio of the amino terminal amount to the total active terminal amount include a method of controlling the addition amount of diamine and terminal blocking agent as additives during hot melt polymerization of polyamide, and the polymerization conditions. .
  • the cyclic amino terminus is a polymer terminus having a cyclic amino group (a group represented by the following (formula 1)).
  • R represents a substituent bonded to the carbon constituting the piperidine ring.
  • Specific examples of R include a hydrogen atom, a methyl group, an ethyl group, and a t-butyl group.
  • the amount of the cyclic amino terminus is preferably 30 ⁇ eq / g or more and 100 ⁇ eq / g or less, more preferably 30 ⁇ eq / g or more and 80 ⁇ eq / g or less, relative to 1 g of (A1) polyamide. Preferably they are 35 microequivalent / g or more and 70 microequivalent / g or less.
  • the polyamide composition of the present invention tends to be more excellent in toughness, hydrolysis resistance, and processability.
  • the amount of the cyclic amino terminus can be measured using 1 H-NMR. For example, there is a method of calculation based on the integral ratio of hydrogen bonded to carbon adjacent to the nitrogen atom of the heterocyclic ring of nitrogen and hydrogen bonded to carbon adjacent to the nitrogen atom of the amide bond of the polyamide main chain.
  • Cyclic amino terminal can be generated by dehydration reaction of cyclic amine and carboxyl terminal, and can also be generated by deammonia reaction of amino terminal in the polymer molecule. Cyclic amine is added as end-capping agent. It can also be produced by the diamine having a pentamethylenediamine skeleton, which is a raw material for polyamide, and cyclizing by deammonia reaction.
  • the cyclic amino terminal is preferably derived from a raw material diamine. Without adding cyclic amine as an end-capping agent at the initial stage of polymerization, the cyclic amino terminal is generated from the raw material diamine, so that the low molecular weight carboxylic acid terminal is prevented from being blocked at the initial stage of polymerization. Thus, the polymerization reaction rate of the polyamide is maintained high, and as a result, a high molecular weight product tends to be obtained. As described above, when a cyclic amine is generated during the reaction, the carboxylic acid terminal is sealed with the cyclic amine at a later stage of the polymerization, so that a high molecular weight polyamide is easily obtained.
  • a cyclic amine that generates a cyclic amino terminus can be generated as a by-product during the polymerization reaction of polyamide.
  • the higher the reaction temperature the higher the reaction rate. Therefore, in order to make the cyclic amino terminal of the (A1) polyamide constant, it is preferable to promote the formation of a cyclic amine. Therefore, the reaction temperature for the polymerization of the precursor polyamide is preferably 300 ° C. or higher, and more preferably 320 ° C. or higher.
  • control is performed by appropriately adjusting the polymerization temperature, the holding time of the reaction temperature of 300 ° C. or more during the polymerization step, the addition amount of the amine forming the cyclic structure, and the like. The method of doing is mentioned.
  • the end by the sealant is an end formed when a sealant is added during polymerization.
  • the sealing agent include the above-described end sealing agents.
  • the other terminal is a polymer terminal not classified in the above 1) to 4), such as a terminal generated by deammonia reaction at the amino terminal or a terminal generated by decarboxylation from the carboxylic acid terminal. It is done.
  • the first polyamide composition contains the first polyamide and at least one of an inorganic filler, a nucleating agent, a heat stabilizer and a light stabilizer. Furthermore, titanium oxide may be included. By containing such a structural component, a polyamide composition excellent in heat resistance, whiteness, reflow resistance, aging resistance and releasability can be obtained.
  • an inorganic filler e.g., titanium oxide
  • titanium oxide e.g., titanium oxide
  • a polyamide composition excellent in heat resistance, whiteness, reflow resistance, aging resistance and releasability e.g., the components of the first polyamide composition will be described.
  • the first polyamide composition of the present invention may further contain (B) titanium oxide.
  • (B) titanium oxide include, but are not limited to, titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), and titanium dioxide (TiO 2 ). Of these, titanium dioxide is preferable.
  • the crystal structure of titanium oxide is not particularly limited, but is preferably a rutile type from the viewpoint of light resistance of the polyamide composition.
  • Titanium oxide is preferably in the form of particles, and the number average particle diameter of (B) titanium oxide is preferably 0.1 to 0.8 ⁇ m, more preferably 0.15 to 0.4 ⁇ m. More preferably 0.15 to 0.3 ⁇ m.
  • the number average particle diameter of titanium oxide is 0.1 ⁇ m or more, the extrusion processability of the polyamide composition tends to be further improved.
  • the number average particle diameter of titanium oxide is 0.8 ⁇ m or less, the toughness of the polyamide composition tends to be further improved.
  • the number average particle diameter of titanium oxide can be measured by an electron micrograph.
  • the polyamide composition is put in an electric furnace, the organic matter contained in the polyamide composition is incinerated, and, for example, 100 or more arbitrarily selected titanium oxides from the residue are observed with an electron microscope. By measuring the particle diameter, it is possible to determine the number average particle diameter of (B) titanium oxide.
  • the method for producing titanium oxide is not limited to the following, and examples thereof include a so-called sulfuric acid method in which a titanium sulfate solution is hydrolyzed, or a so-called chlorine method in which titanium halide is vapor-phase oxidized.
  • the titanium oxide has an inorganic coating layer and / or an organic coating layer on the surface.
  • titanium oxide having an inorganic coating layer on the surface of titanium oxide and an organic coating layer on the inorganic coating layer is preferable.
  • Titanium oxide may be coated using any known method.
  • the inorganic coating is not limited to the following, but preferably includes, for example, a metal oxide.
  • the organic coating is not limited to the following, but for example, it preferably contains one or more organic substances selected from the group consisting of carboxylic acids, polyols, alkanolamines, and organosilicon compounds.
  • the surface of (B) titanium oxide is more preferably coated using polyols and organosilicon compounds. From the viewpoint of reducing generated gas, it is more preferable that coating is performed using an organosilicon compound.
  • titanium oxide only 1 type may be used independently and it may be used in combination of 2 or more types.
  • the content of (B) titanium oxide in the first polyamide composition is preferably 5% by mass to 70% by mass, and preferably 20% by mass to 70% by mass with respect to 100% by mass of the first polyamide composition. More preferably, it is 25 to 60% by mass, still more preferably 30 to 50% by mass. (B) When the content of titanium oxide is in the above range, the whiteness of the polyamide composition tends to be more excellent.
  • the first polyamide composition may further contain (C) an inorganic filler other than (B) titanium oxide described above from the viewpoint of mechanical properties such as strength and rigidity.
  • the inorganic filler is not limited to the following, for example, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, aluminum borate fiber, glass flake, hydrotalcite, carbonic acid Zinc, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, silicon oxide, magnesium oxide, calcium silicate, sodium aluminosilicate, magnesium silicate, ketjen black, acetylene Examples thereof include black, furnace black, carbon nanotube, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, montmorillonite, swellable fluorine mica, and apatite.
  • the inorganic filler (C) at least one selected from the group consisting of glass fiber, potassium titanate fiber, wollastonite, and clay is preferable, and wollastonite is more preferable.
  • the number average particle diameter of the inorganic filler is preferably from 0.1 to 20 ⁇ m, more preferably from 0.15 to 15 ⁇ m, from the viewpoint of whiteness, toughness and extrusion processability of the first polyamide composition.
  • the thickness is preferably 0.15 to 10 ⁇ m.
  • the content of the inorganic filler (C) in the first polyamide composition is preferably 1 to 30% by mass, more preferably 1 to 20% by mass with respect to 100% by mass of the polyamide composition. More preferably, it is 1 to 10% by mass.
  • (C) When content of an inorganic filler exists in said range, the intensity
  • the first polyamide composition preferably further contains a nucleating agent from the viewpoint of releasability.
  • Nucleating agent is a substance that can increase the crystallization peak temperature measured by differential scanning calorimetry by addition, or can improve the spherulite of the resulting molded product or make the size uniform. Means that.
  • nucleating agent examples include, but are not limited to, talc, boron nitride, mica, kaolin, calcium carbonate, barium sulfate, silicon nitride, carbon black, potassium titanate, and molybdenum disulfide. It is done.
  • a nucleating agent may be used individually by 1 type, and may combine 2 or more types. Of these, talc, boron nitride, and carbon black are preferable from the viewpoint of the nucleation effect, more preferably talc and boron nitride, and still more preferably talc.
  • the nucleating agent is preferably in the form of particles, and the number average particle diameter of the nucleating agent is preferably 0.01 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m. When the number average particle diameter of the nucleating agent is within the above range, the nucleating effect tends to be further improved.
  • the molded article of the polyamide composition is dissolved in a polyamide-soluble solvent such as formic acid, and, for example, 100 or more nucleating agents are obtained from the obtained insoluble components. It can be selected arbitrarily and observed and obtained with an optical microscope or a scanning electron microscope.
  • the blending amount of the nucleating agent is preferably 0.001 to 15% by mass, more preferably 0.001 to 5% by mass, and still more preferably 0.001 to 100% by mass of the polyamide composition. Is 3% by mass, and still more preferably 0.5-2.5% by mass.
  • the first polyamide composition may contain a heat stabilizer from the viewpoint of heat stability.
  • a heat stabilizer the following (E) metal hydroxide, (F) phosphorus compound, (G) phenol antioxidant and / or amine antioxidant can be mentioned.
  • the first polyamide composition may contain (E) a metal hydroxide as a heat stabilizer.
  • the metal hydroxide is represented by a general formula M (OH) x (M represents a metal element, and x represents a number corresponding to the multivalent value of M).
  • the metal element M is preferably a monovalent or higher metal. Examples of the monovalent or higher metal include, but are not limited to, sodium, potassium, lithium, calcium, magnesium, barium, zinc, aluminum, strontium, and the like.
  • the metal element M an alkaline earth metal is preferable.
  • the (E) metal hydroxide contained in the first polyamide composition is not limited to the following.
  • sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, hydroxide Aluminum, zinc hydroxide, manganese hydroxide, etc. are mentioned.
  • calcium hydroxide and magnesium hydroxide are preferable, and calcium hydroxide is more preferable.
  • a metal hydroxide may be used individually by 1 type, and may use 2 or more types together. Moreover, you may use these (E) metal hydroxide which performed the surface treatment in order to improve adhesiveness and a dispersibility.
  • the surface treatment agent examples include, but are not limited to, for example, silane coupling agents such as aminosilane and epoxysilane, organosilicon compounds such as silicone; organic titanium compounds such as titanium coupling agents; organic acids and polyols And organic substances such as
  • the (E) metal hydroxide in the first polyamide composition is preferably in the form of particles, and the average particle diameter is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the average particle diameter is in the above range, the effects of reflow resistance and heat discoloration can be obtained in the polyamide composition.
  • grains of (E) metal hydroxide becomes like this. Preferably it is 1 mass% or less, More preferably, it is 0.1 mass% or less.
  • E By making the mass ratio of the particle
  • the purity of the (E) metal hydroxide in the first polyamide composition is preferably 99% or more, more preferably 99.5% or more, and further preferably 99.9% or more. Due to the high purity, the whiteness, reflow resistance, and light discoloration resistance of the first polyamide composition tend to be excellent.
  • the content of the metal hydroxide (E) described above is 0.1 to 20% by mass, preferably 0.1 to 10% by mass, more preferably 100% by mass with respect to the first polyamide composition. Is 0.3 to 5% by mass, more preferably 0.3 to 2% by mass, even more preferably 0.5 to 1.5% by mass, and still more preferably 0.5 to 1.% by mass. 0% by mass.
  • the polyamide composition tends to be more excellent in heat discoloration resistance, extrusion processing stability, and molding processing stability.
  • the first polyamide composition may further contain a metal compound other than the above-described (C) metal hydroxide from the viewpoint of whiteness and heat discoloration.
  • the metal compound other than the metal hydroxide is not limited to the following, and examples thereof include metal carbonates and metal halides.
  • a metal element contained in metal compounds other than a metal hydroxide For example, a monovalent or more metal element is preferable. Examples of such metal elements include, but are not limited to, sodium, potassium, lithium, calcium, magnesium barium, zinc, aluminum, strontium, and the like. As the metal element, an alkaline earth metal is preferable.
  • the metal hydroxide may be added during the polymerization of the (A1) polyamide, but is preferably added during the production of the polyamide composition to be mixed with the (A1) polyamide after the polymerization of the (A1) polyamide.
  • the thermal history can be reduced, (E) the decomposition of the metal hydroxide can be suppressed, whiteness, reflow resistance, heat discoloration resistance, extrusion processing And a polyamide composition excellent in molding process stability can be obtained.
  • the polyamide composition may contain (F) a phosphorus compound as a heat stabilizer.
  • (F) phosphorus compounds include, but are not limited to, 1) phosphoric acid, phosphorous acid, hypophosphorous acid, and intramolecular and / or intermolecular condensates thereof, 2) Examples thereof include phosphoric acid, phosphorous acid, hypophosphorous acid, and metal salts of intramolecular and / or intermolecular condensates thereof.
  • (F) phosphorus type compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the phosphoric acid, phosphorous acid, hypophosphorous acid, and intramolecular and / or intermolecular condensates thereof in 1) are not limited to the following, but examples include phosphoric acid, pyrophosphoric acid, and metalin. Examples thereof include acids, phosphorous acid, hypophosphorous acid, pyrophosphorous acid, and diphosphorous acid.
  • the metal salts of the above-mentioned 2) phosphoric acid, phosphorous acid, hypophosphorous acid, and intramolecular and / or intermolecular condensates thereof are not limited to the following. Mention may be made of salts of the compounds with Group 1 and 2 of the periodic table, manganese, zinc and aluminum.
  • More preferable (F) phosphorus compounds are selected from the group consisting of metal phosphates, metal phosphites, metal hypophosphites, intramolecular condensates of these metal salts, and intermolecular condensates of these metal salts. One or more selected.
  • the polyamide composition tends to be more excellent in whiteness, heat discoloration resistance, heat reflow resistance, and light discoloration resistance.
  • More preferable (F) phosphorus compound is a phosphorus compound selected from phosphoric acid, phosphorous acid and hypophosphorous acid, group 1 (alkali metal) and group 2 (alkaline earth metal) of the periodic table, manganese , Zinc, and a metal selected from aluminum, or an intramolecular condensate of these metal salts or an intermolecular condensate of these metal salts. More preferably (F) phosphorus compound is a metal salt containing a phosphorus compound selected from phosphoric acid, phosphorous acid and hypophosphorous acid, and a metal selected from Groups 1 and 2 of the periodic table. is there.
  • the metal salt as such a (F) phosphorus compound is not particularly limited.
  • sodium hypophosphite, calcium hypophosphite, and magnesium hypophosphite are preferable, and calcium hypophosphite and magnesium hypophosphite, which are alkaline earth metal salts, are more preferable.
  • a phosphorus compound (F) it tends to be more excellent in whiteness, heat discoloration resistance, light discoloration resistance and extrusion processability.
  • a phosphorus compound is a hypophosphite metal salt, the 1st polyamide composition excellent in extrusion processability and shaping
  • Metal of (F) phosphorus compound selected from the group consisting of metal phosphate, metal phosphite, metal hypophosphite, intramolecular condensate of these metal salts, and intermolecular condensate of these metal salts
  • the species is preferably the same as the metal species of (E) the metal hydroxide.
  • the metal species of the (F) phosphorus compound is preferably an alkaline earth metal.
  • the phosphorus compound is selected from the group consisting of metal salts, intramolecular condensates of metal salts, and intermolecular condensates of metal salts, and (F) the metal species of the phosphorus compound is (E) metal
  • the metal species of the hydroxide are the same, it is possible to obtain a polyamide composition having improved thermal stability and excellent extrusion processability and molding process stability. Furthermore, by using an alkaline earth metal as the metal species of the (F) phosphorus compound, a more excellent effect can be obtained in the above characteristics.
  • an anhydrous salt or a metal salt that does not contain a hydrate as the phosphorus compound By using an anhydrous salt or a metal salt that does not contain a hydrate as the phosphorus compound, the amount of water generated during processing can be suppressed, and a decrease in the molecular weight of polyamide and gas generation can be suppressed. .
  • phosphorus compound (F) selected from the group consisting of metal phosphates, metal phosphites, metal hypophosphites, intramolecular condensates of these metal salts, and intermolecular condensates of these metal salts. Those having low deliquescence are preferred, and those having no deliquescence are more preferred.
  • (F) By using a metal salt with low deliquescence as a phosphorus compound, processing is reduced due to a decrease in workability and an increase in the amount of water in the raw material component when mixing each raw material component during the production of the polyamide composition. It is possible to suppress the molecular weight reduction and gas generation of the polyamide at the time. By using a metal salt having low deliquescence, a polyamide composition excellent in whiteness, reflow resistance, heat discoloration resistance, extrusion processability, and molding process stability can be obtained.
  • the phosphorus compound may include an organic phosphorus compound.
  • organic phosphorus compounds include, but are not limited to, pentaerythritol phosphite compounds, trioctyl phosphites, trilauryl phosphites, tridecyl phosphites, octyl diphenyl phosphites, trisisodecyl phosphites.
  • phenyl diisodecyl phosphite phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl (tridecyl) phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2, 4-di-tert-butylphenyl) phosphite, tris (2,4-di-tert-butyl-5-methylphenyl) phosphite, tris (butoxyethyl) phosphite, 4,4′-butylidene -Bis (3-methyl-6-t-butylphenyl-tetra-tridecyl) diphosphite, tetra (C12-C15 mixed alkyl) -4,
  • a pentaerythritol type phosphite compound tris (2,4-di-t-butylphenyl), from the viewpoint of further improving the heat aging resistance of the polyamide composition and reducing the generated gas.
  • Phosphites are preferred, and pentaerythritol phosphite compounds are more preferred.
  • pentaerythritol type phosphite compound examples include, but are not limited to, for example, 2,6-di-t-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-di- t-butyl-4-methylphenyl-methyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-2-ethylhexyl-pentaerythritol diphosphite, 2,6-di-t- Butyl-4-methylphenyl-isodecyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-lauryl-pentaerythritol diphosphite, 2,6-di-t-butyl-4- Methylphenyl-isotridecyl-pent
  • pentaerythritol type phosphite compounds listed above bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-) Ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-octyl-4-methylphenyl) penta Erythritol diphosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are preferred.
  • the content of the (F) phosphorus compound in the first polyamide composition is 0.1 to 20.0 mass% with respect to 100 mass% of the first polyamide composition. It is preferably 0.2 to 7.0% by mass, more preferably 0.5 to 3.0% by mass, still more preferably 0.5 to 2.5% by mass, and even more preferably 0.5%. It is -2.0 mass%, More preferably, it is 0.5-1.5 mass%.
  • the content of the (F) phosphorus compound in the first polyamide composition is preferably greater than (E) the metal hydroxide. (F) When the content of the phosphorus compound is within the above range, the first polyamide composition tends to be excellent in whiteness, reflow resistance, heat discoloration resistance, extrusion stability, and molding stability. is there.
  • the phosphorus compound (F) is preferably contained in an amount such that the phosphorus element concentration is 1,400 to 20,000 ppm relative to the first polyamide composition. More preferably, it is contained in an amount of 3,000 ppm, more preferably in an amount of 3,000 to 20,000 ppm, even more preferably in an amount of 3,000 to 10,000 ppm, More preferably, it is contained in an amount of 4,000 to 6,000 ppm.
  • the polyamide composition has whiteness, reflow resistance, heat discoloration resistance, extrusion stability, molding. Excellent processing stability.
  • (F) Phosphorus compound may be added during the polymerization of (A1) polyamide, but (A1) after the polyamide is polymerized, and added during the manufacture of the polyamide composition mixed with (E) the metal hydroxide described above. It is preferable to do. By adding it during the production of the polyamide composition, it is possible to reduce the heat history, (F) to suppress the decomposition of the phosphorus compound, etc., whiteness, reflow resistance, heat discoloration resistance, extrusion processability And a polyamide composition excellent in molding process stability can be obtained.
  • the metal element concentration can be measured by ICP emission spectroscopic analysis, and the metal element / phosphorus concentration derived from the (E) metal hydroxide and (F) phosphorus compound contained in the first polyamide composition.
  • (E) the metal hydroxide and (F) the phosphorus compound have a combined value of metal element concentrations derived from these components (excluding the phosphorus element) of 1,000 to 40, It is preferably contained in an amount of 000 ppm, more preferably in an amount of 2,000 to 30,000 ppm, further preferably in an amount of 3,000 to 25,000 ppm, Even more preferably, it is contained in an amount of ⁇ 20,000 ppm, and even more preferably in an amount of 5,000 ⁇ 10,000 ppm.
  • the metal element concentration is in the above range, the first polyamide composition tends to be more excellent in reflow resistance and light discoloration resistance.
  • the polyamide composition may contain a phenol-based antioxidant and / or an amine-based antioxidant as a heat stabilizer.
  • phenolic antioxidants include, but are not limited to, hindered phenolic compounds. Phenol-based antioxidants, particularly hindered phenol compounds, have the property of imparting heat resistance and light resistance to resins such as polyamide and fibers.
  • hindered phenol compound examples include, but are not limited to, for example, N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropylene Onamide), pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-tert-butyl- 4-hydroxy-hydrocinnamamide), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3 -T-butyl-4-hydroxy-5-methylphenyl) propynyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane 3,5-di-tert-butyl-4-
  • N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide) )] is preferred.
  • the phenolic antioxidant mentioned above may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the phenolic antioxidant in the first polyamide composition is preferably 0 to 1% by mass, more preferably 0.01 to 1% by mass with respect to 100% by mass of the first polyamide composition. %, More preferably 0.1 to 1% by mass.
  • the first polyamide composition tends to be superior in heat aging resistance and lower in the amount of generated gas.
  • amine-based antioxidants include, but are not limited to, poly (2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethoxy-1,2-dihydro-2, 2,4-trimethylquinoline, phenyl- ⁇ -naphthylamine, 4,4-bis ( ⁇ , ⁇ -dimethyldendyl) diphenylamine, (p-toluenesulfonylamido) diphenylamine, N, N′-diphenyl-p-phenylenediamine, N, N′-di- ⁇ -naphthyl-p-phenylenediamine, N, N′-di (1,4-dimethylpentyl) -p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine, N- (1-methylheptyl
  • the content of the amine-based antioxidant in the first polyamide composition is preferably 0 to 1% by mass, more preferably 0.01 to 1% by mass with respect to 100% by mass of the first polyamide composition. %, More preferably 0.1 to 1% by mass.
  • the first polyamide composition tends to be superior in heat aging resistance and have a lower generated gas amount.
  • the first polyamide composition may further contain a light stabilizer from the viewpoint of light stability.
  • the light stabilizer has a property of imparting excellent heat resistance and light resistance to resins such as polyamide and fibers.
  • Examples of the light stabilizer include amine light stabilizers.
  • amine light stabilizers include, but are not limited to, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetra Methylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6 6-tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethyl Peridine, 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclo
  • amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2, 2,6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) ) Adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, N, N′-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedi Carboxamide and tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate are preferred.
  • bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, N, N′-bis-2,2,6,6-tetramethyl-4 are used as amine light stabilizers.
  • -Piperidinyl-1,3-benzenedicarboxamide, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate are more preferred
  • N, N ′ -Bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide is more preferred.
  • the content of the amine light stabilizer in the first polyamide composition is preferably 0 to 2% by mass, more preferably 0.01 to 2% by mass with respect to 100% by mass of the first polyamide composition. %, More preferably 0.1 to 2% by mass.
  • the content of the amine light stabilizer is within the above range, the light stability and heat aging resistance of the polyamide composition can be further improved, and the amount of generated gas can be further reduced.
  • the first polyamide composition of the present invention may further contain other components as necessary.
  • other components include, but are not limited to, colorants such as pigments and dyes (including colored master batches), mold release agents, flame retardants, fibrillating agents, lubricants, and optical brighteners. , Plasticizers, copper compounds, alkali metal halide compounds, antistatic agents, fluidity improvers, reinforcing agents, spreader rubbers, reinforcing agents and other polymers.
  • suitable content ratios for the respective components are various. A person skilled in the art can easily set a suitable content for each of the other components described above.
  • the mixing method of (A1) polyamide and (B) titanium oxide is not limited to the following, but for example, (A1 ) Mixing polyamide, etc. and (B) titanium oxide using a tumbler, Henschel mixer, etc., supplying the resulting mixture to a melt kneader and kneading, or by using a single or twin screw extruder (A1) The method etc. which mix
  • the same method can also be used when blending a heat stabilizer.
  • A1 Polyamide or the like, (E) a metal hydroxide, and (F) a phosphorus compound are mixed, and the resulting mixture is obtained.
  • blend a phenol type / amine type antioxidant are mentioned.
  • the heat stabilizer (E) metal hydroxide, (F) phosphorus compound, and (G) phenol / amine antioxidant As a method of mixing the heat stabilizer (E) metal hydroxide, (F) phosphorus compound, and (G) phenol / amine antioxidant, a method of blending from a side feeder is preferred.
  • a method of blending from a side feeder By producing a polyamide composition by a method of blending from a side feeder, the polyamide composition tends to have excellent whiteness, reflow resistance, heat discoloration resistance, light discoloration resistance, and molding process stability.
  • the same method can also be used when blending (C) inorganic filler, (A1) polyamide etc. and (C) inorganic filler are mixed, and the resulting mixture is fed to a melt kneader.
  • examples thereof include a kneading method and a method of blending (C) an inorganic filler from a side feeder into (A1) polyamide or the like that has been melted with a single or twin screw extruder.
  • a method of supplying each component of the first polyamide composition to the melt kneader a method may be used in which all the components are supplied to the same supply port at a time, or each component is supplied from a different supply port. It is also possible to do it.
  • the melt kneading temperature is preferably 250 to 375 ° C. as the resin temperature.
  • the melt kneading time is preferably 0.25 to 5 minutes.
  • the apparatus for melt kneading is not particularly limited, and a known apparatus such as a single or twin screw extruder, a Banbury mixer, a mixing roll, or the like can be used.
  • the physical properties of the polyamide in the first polyamide composition of the present invention are equivalent to the physical properties of the first polyamide of the present invention. That is, the first polyamide of the present invention maintains its original physical properties even after it is melt-kneaded with other additives as necessary to form the first polyamide composition. For this reason, the polyamide contained in it can be specified by measuring said each physical property about the 1st polyamide in a 1st polyamide composition.
  • Trans isomer ratio, sulfuric acid relative viscosity ⁇ r, number average molecular weight Mn, molecular weight distribution Mw / Mn, melting peak temperature Tm1, Tm2, heat of fusion ⁇ Hm1, ⁇ Hm2, crystallization peak temperature Tc of the first polyamide composition of the present invention The ratio of crystallization enthalpy ⁇ Hc, glass transition temperature Tg, amino terminal, carboxyl terminal, and amino terminal amount to the total amount of active terminals can be measured by the method for measuring the physical properties of the polyamide described in the examples described later.
  • the value of the heat value is the ratio of polyamide to the composition. Calculate by converting. Since the measured values of the physical properties of the polyamide in the first polyamide composition of the present invention are in the same range as the measured values of the physical properties of the first polyamide of the present invention, the first polyamide composition of the present invention is Excellent heat resistance, whiteness, reflow resistance, aging resistance and releasability.
  • the polyamide composition molded article of the present invention (hereinafter sometimes simply referred to as a molded article) is formed by molding the above-mentioned first polyamide composition.
  • the polyamide composition molded article maintains a high trans isomer ratio of dicarboxylic acid monomer units, is excellent in reflow resistance, heat discoloration resistance, and light discoloration resistance, and can be suitably used for a reflector or the like.
  • the polyamide composition molded article can be obtained, for example, by molding the first polyamide composition described above by a known molding method.
  • Known molding methods include, but are not limited to, for example, press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multilayer molding, and melting. Commonly known plastic molding methods such as spinning can be listed.
  • the polyamide composition molded article is excellent in heat resistance, whiteness, reflow resistance, aging resistance, and mold releasability.
  • the initial reflectance is preferably 96.5% or more.
  • the reflection retention after the reflow process is preferably 95% or more, and more preferably 96.2% or more.
  • the aging retention is preferably 86% or more, and more preferably 86.5% or more.
  • the polyamide composition molded product By including the first polyamide composition, the polyamide composition molded article is excellent in heat resistance, moldability, mechanical strength, and low water absorption. Therefore, the above-mentioned polyamide composition can be suitably used as various component materials such as reflectors, automobiles, electric and electronic, industrial materials, daily necessities and household goods, and for extrusion applications. It can be used suitably. About these specific uses, the thing similar to said 1st embodiment is mentioned.
  • the reflectance retention of the polyamide composition molded product can be measured by the method described in the examples described later.
  • the molded product containing the first polyamide composition of the present invention can be suitably used as a reflector.
  • the reflector by using a combination of (A1) polyamide, (E) metal hydroxide, and (F) phosphorus compound, it is possible to effectively suppress a decrease in reflectance due to heat.
  • A1 polyamide, (E) metal hydroxide, and (F) phosphorus compound it is possible to effectively suppress a decrease in reflectance due to heat.
  • About a reflectance it can measure by the method described in the Example mentioned later. It has been verified in Examples to be described later that the above-described combination can effectively suppress a decrease in reflectance in a reflector containing the polyamide composition of the present invention.
  • the polyamide composition molded article according to this embodiment is formed by molding a second polyamide composition containing a second polyamide having a specific trans isomer ratio and ⁇ Hm1 / ⁇ Hc. Details of the second polyamide, the second polyamide composition, and the molded polyamide composition will be described below.
  • the second polyamide of the present invention contains (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine.
  • Sulfuric acid relative viscosity ⁇ r is 2.5 or more, and obtained in the differential scanning calorimetry according to JIS-K7121, the heat of fusion ⁇ Hm1 obtained when the temperature is raised at 20 ° C./min and the temperature is lowered at 20 ° C./min.
  • ⁇ Hm / ⁇ Hc which is a ratio to the crystallization enthalpy ⁇ Hc obtained, 1.0 ⁇ Hm / ⁇ Hc ⁇ 2.2
  • the trans isomer ratio mol% of the dicarboxylic acid monomer unit in the polyamide is 75 ⁇ trans isomer ratio ⁇ 100.
  • the second polyamide of the present invention having the relative viscosity of sulfuric acid ⁇ r, ⁇ Hm1 / ⁇ Hc, which is the ratio of the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc, and the trans isomer ratio as described above, is composed of the polyamide described below. It can be obtained by unit and manufacturing method. First, the structural unit of (A2) polyamide will be described in detail. ((A) dicarboxylic acid unit) As the dicarboxylic acid unit constituting the polyamide of the present embodiment, the same dicarboxylic acid as in the second embodiment can be used.
  • the diamine unit contains at least an aliphatic diamine. This aliphatic diamine may be linear or branched.
  • the diamine unit is not limited to the following, but for example, (b-1) an aliphatic diamine unit having a substituent branched from the main chain (branched aliphatic diamine), and (b-2) ) Linear aliphatic diamine unit and the like.
  • Other diamine units may include (b-3) alicyclic diamine units and (b-4) aromatic diamine units.
  • the aliphatic diamine unit preferably has 6 to 12 carbon atoms.
  • a carbon number of 6 or more is preferable because of excellent heat resistance and low water absorption, and a carbon number of 12 or less is preferable because of high temperature strength and crystallinity.
  • carbon number of a diamine unit 6-10 is more preferable.
  • (B-1) Aliphatic diamine unit having a substituent branched from the main chain (branched aliphatic diamine)
  • the (b) diamine unit preferably contains (b-1) an aliphatic diamine having a substituent branched from the main chain.
  • the diamine unit includes (b-1) a diamine unit having a substituent branched from the main chain, a polyamide having a high glass transition temperature Tg and high crystallinity (ie, high ⁇ Hm1 / ⁇ Hc) is obtained. Obtainable. For this reason, the polyamide composition of the present invention using this polyamide tends to satisfy more excellent fluidity, toughness, rigidity and the like at the same time.
  • the aliphatic diamine unit having a substituent branched from the main chain (b-1) may be simply referred to as (b-1).
  • the “substituent branched from the main chain” in (b-1) is not limited to the following, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • the diamine constituting such (b-1) is not limited to the following, but for example, 2-methylpentamethylenediamine (also referred to as 2-methyl-1,5-diaminopentane), 2 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyl-1,8-octanediamine (also called 2-methyloctamethylenediamine), and 2,4-dimethyloctane Examples thereof include branched saturated aliphatic diamines having 3 to 20 carbon atoms such as methylene diamine. Among these, 2-methylpentamethylenediamine and 2-methyl-1,8-octanediamine are preferable, and 2-methylpentamethylenediamine is more preferable. By including such (b-1), it tends to be a polyamide composition having superior heat resistance and rigidity. As the diamine constituting (b-1), only one kind may be used alone, or two or more kinds may be used in combination.
  • the (b) diamine unit preferably contains 10 mol% or more of (b-1).
  • the proportion (mol%) of (b-1) in the diamine unit is preferably 10 to 80 mol%, more preferably 20 to 60 mol%, still more preferably 30 to 50 mol%. is there.
  • the ratio of (b-1) in the diamine unit is preferably in the above range from the viewpoint of obtaining a polyamide having a high glass transition temperature Tg and ⁇ Hm1 / ⁇ Hc within the range of the present application. For this reason, the polyamide composition using this polyamide tends to be a polyamide composition that is superior in fluidity, toughness, and rigidity.
  • (B-2) Linear aliphatic diamine unit may be simply referred to as (b-2).
  • the aliphatic diamine constituting (b-2) is not limited to the following, but examples include ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine.
  • linear saturated aliphatic diamines having 2 to 20 carbon atoms such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
  • (B-3) Alicyclic diamine unit may be simply referred to as (b-3).
  • the alicyclic diamine (hereinafter also referred to as “alicyclic diamine”) constituting (b-3) is not limited to the following, but for example, 1,4-cyclohexanediamine, 1,3 -Cyclohexanediamine, 1,3-cyclopentanediamine and the like.
  • (B-4) Aromatic diamine unit hereinafter, the (b-4) aromatic diamine unit may be simply referred to as (b-4).
  • Examples of the aromatic diamine constituting (b-4) include metaxylylenediamine, paraxylylenediamine, paraphenylenediamine, metaphenylenediamine, and the like.
  • diamine units (b-2) to (b-4), (b-2) and (b-3) are preferable, and a linear saturated aliphatic group having 4 to 13 carbon atoms is more preferable.
  • the polyamide composition tends to be excellent in heat resistance, fluidity, toughness, low water absorption, rigidity, and the like.
  • diamine may be used individually by 1 type and may be used in combination of 2 or more types.
  • the total ratio (mol%) of the diamine units (b-2) to (b-4) is preferably 50 mol% or more, and preferably 60 mol% or more with respect to the entire diamine unit (b). More preferred.
  • the polyamide composition tends to be excellent in fluidity, toughness, and rigidity.
  • the (A2) polyamide may further contain a trivalent or higher polyvalent aliphatic amine such as bishexamethylene triamine, if necessary. Trivalent or higher polyvalent aliphatic amines may be used alone or in combination of two or more.
  • the (A2) polyamide of the present invention includes (c) a lactam unit (c-1) and / or an aminocarboxylic acid unit (c) in addition to the above (a) and (b), as long as the object of the present invention is not impaired. -2) can be further contained. By including such a unit, a polyamide composition that is superior in toughness tends to be obtained.
  • the lactam and aminocarboxylic acid constituting the lactam unit (c-1) and aminocarboxylic acid (c-2) refer to a lactam and aminocarboxylic acid capable of polymerization or condensation polymerization.
  • lactam and aminocarboxylic acid constituting the lactam unit (c-1) and aminocarboxylic acid unit (c-2) the same lactam and aminocarboxylic acid as in the second embodiment can be used.
  • the terminal of (A2) polyamide used in the present invention may be end-capped with a known end-capping agent.
  • a known end-capping agent is also added as a molecular weight regulator in the production of (A2) polyamide from the above-described dicarboxylic acid and diamine, and lactam and / or aminocarboxylic acid used as necessary. Can do.
  • end-capping agents include, but are not limited to, acid anhydrides such as monocarboxylic acids, monoamines, and phthalic anhydride, monoisocyanates, monoacid halides, monoesters, and monoalcohols. Etc. Among these, monocarboxylic acid and monoamine are preferable.
  • acid anhydrides such as monocarboxylic acids, monoamines, and phthalic anhydride
  • monoisocyanates monoacid halides
  • monoesters monoalcohols.
  • monocarboxylic acid and monoamine are preferable.
  • A2 When the terminal of the polyamide is sealed with a terminal sealing agent, it tends to be a polyamide composition having better thermal stability. Only one type of end capping agent may be used alone, or two or more types may be used in combination.
  • the monocarboxylic acid that can be used as the end-capping agent is not limited to the following as long as it has reactivity with an amino group that can be present at the terminal of the (A2) polyamide.
  • formic acid Aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid; cyclohexanecarboxylic acid, etc.
  • aromatic monocarboxylic acids such as benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid.
  • acetic acid is particularly preferred.
  • a monocarboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the monoamine that can be used as the end-capping agent is not limited to the following as long as it has reactivity with the carboxyl group that can be present at the terminal of the (A2) polyamide, but for example, methylamine, Aliphatic monoamines such as ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; and aniline , Aromatic monoamines such as toluidine, diphenylamine, and naphthylamine. Monoamines may be used alone or in combination of two or more.
  • the polyamide composition containing (A2) polyamide end-capped with an end-capping agent tends to be excellent in heat resistance, fluidity, toughness, low water absorption, and rigidity.
  • the second method for producing a polyamide of the present invention comprises (a) a dicarboxylic acid unit containing at least 1,4-cyclohexanedicarboxylic acid, and (b) a diamine unit containing at least an aliphatic diamine.
  • the second method for producing a polyamide of the present invention is a method for obtaining a polyamide having a specific terminal structure (hereinafter referred to as a precursor polyamide) and further heat-treating it at a temperature lower than the melting point (A2) to obtain a polyamide.
  • a “hot melt polymerization / solid phase polymerization method” is preferable.
  • the method for obtaining the precursor polyamide (thermal melt polymerization method) and the heat treatment (solid phase polymerization method) will be described in detail.
  • the method for obtaining the precursor polyamide is not particularly limited, and examples thereof include the methods exemplified below. 1) A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (hereinafter referred to as hot melt polymerization method).
  • prepolymer ⁇ Called the extrusion polymerization method A method in which an aqueous solution or suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated, and the precipitated prepolymer is melted again with an extruder such as a kneader to increase the degree of polymerization (hereinafter referred to as prepolymer ⁇ Called the extrusion polymerization method).
  • prepolymer ⁇ Called the extrusion polymerization method A method of polymerizing using a dicarboxylic acid halide equivalent to a dicarboxylic acid and a diamine.
  • the hot melt polymerization method is preferable from the viewpoint of increasing the molecular weight by polymerization in a short time and suppressing gelation.
  • the addition amount of the dicarboxylic acid constituting the dicarboxylic acid unit and (b) the addition amount of the diamine constituting the diamine unit are about the same molar amount.
  • the dicarboxylic acid unit preferably contains 50 to 100 mol% of 1,4-cyclohexanedicarboxylic acid units (based on the total number of moles of dicarboxylic acid), more preferably 60 to 100 mol%, more preferably 70 to 100 mol. % Is more preferable, and 100 mol% is most preferable.
  • the trans isomer / cis isomer ratio (molar ratio) of the alicyclic dicarboxylic acid as the raw material monomer is preferably 50/50 to 0/100, more preferably 40/60 to 10/90. More preferably, it is 35/65 to 15/85.
  • the trans / cis ratio (molar ratio) of the alicyclic dicarboxylic acid can be determined by liquid chromatography (HPLC) or nuclear magnetic resonance spectroscopy (NMR).
  • the (b) diamine unit preferably includes (b-1) a diamine unit having a substituent branched from the main chain, and the proportion is preferably 10 to 80 mol%, more preferably 20 to 60 mol%, More preferred is ⁇ 50 mol%.
  • (B-1) is most preferably 2-methyl-5-pentamethylenediamine.
  • a diamine may be added in addition to (b) for adjusting the molecular weight and terminal.
  • the diamine to be added 2-methyl-5-pentamethylenediamine is preferable.
  • the amount of diamine added relative to the diamine is 0 to 5.0 mol%, more preferably 0 to 2.0 mol%, and still more preferably 0 to 1.0 mol% in terms of a molar ratio.
  • a phosphorus compound as a heat stabilizer (catalyst) at the time of hot melt polymerization.
  • the heat stabilizer is not particularly limited, but sodium hypophosphite is preferable.
  • the polyamide production method preferably further includes a step of increasing the degree of polymerization of the polyamide. Moreover, the sealing process which seals the terminal of the obtained polymer with a terminal sealing agent may be included as needed.
  • the physical property of the precursor polyamide is the ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]) [NH 2 ] / ([NH 2 ] + [COOH]) is 0. It is preferably less than 5, more preferably from 0.01 to less than 0.5, and even more preferably from 0.05 to 0.4.
  • the total amount of active terminals ([NH 2 ] + [COOH]) is preferably 110 to 200 ⁇ eq / g, more preferably 110 to 180 ⁇ eq / g, and even more preferably 110 to 160 ⁇ eq / g.
  • the terminal structure of the polyamide is controlled by adjusting the amounts of the structural units (a) to (c) of the polyamide, the end-capping agent and the additional diamine. Can be obtained.
  • the heat treatment in the production method of the present invention can use the same method as the heat treatment in the second embodiment, and the preferred temperature range is also the same.
  • the trans isomer ratio of the dicarboxylic acid monomer unit in the second polyamide of the present invention is more than 75 mol% and not more than 100 mol%.
  • the trans isomer ratio is more preferably more than 75 mol% and 100 mol% or less, further preferably more than 75 mol% and 90 mol% or less, and more preferably 80 mol% or more and 90 mol% or less.
  • the polyamide of the present invention is highly crystallized because the trans isomer ratio is in the above range, the polyamide and the polyamide composition of the present invention have a high melting point, toughness and rigidity, in addition to the characteristics of being high. It tends to have the property of simultaneously satisfying the thermal rigidity due to the glass transition temperature (Tg), the fluidity, which is usually a property contrary to heat resistance, and the high crystallinity.
  • Tg glass transition temperature
  • the fluidity which is usually a property contrary to heat resistance
  • the trans isomer ratio of the dicarboxylic acid monomer unit in such a polyamide can be controlled by controlling the carboxyl terminal amount of the polyamide and the method for producing the polyamide of the present invention.
  • the trans isomer ratio (molar ratio) of the 1,4-cyclohexanedicarboxylic acid monomer unit of the polyamide composition molded article can be determined by nuclear magnetic resonance spectroscopy (NMR).
  • Sulfuric acid relative viscosity ⁇ r of polyamide uses sulfuric acid relative viscosity ⁇ r at 25 ° C. as an index.
  • the sulfuric acid relative viscosity ⁇ r at 25 ° C. is 2.5 or more. Preferably it is 2.6 to 5.0, more preferably 2.7 to 4.0.
  • Effective methods for controlling the relative viscosity ⁇ r of sulfuric acid at 25 ° C. for polyamides include, for example, methods for controlling the addition amount of diamine and end-capping agent as additives during hot melt polymerization of polyamide, and polymerization conditions. Method.
  • the polyamide When the sulfuric acid relative viscosity ⁇ r at 25 ° C. is 2.5 or more, the polyamide is excellent in mechanical properties such as toughness and strength. From the viewpoint of melt fluidity, a polyamide having excellent fluidity can be obtained when the sulfuric acid relative viscosity ⁇ r at 25 ° C. of the polyamide is 5.0 or less.
  • the relative viscosity of sulfuric acid at 25 ° C. can be measured at 25 ° C. in 98% sulfuric acid according to JIS-K6920.
  • a number average molecular weight Mn obtained by GPC (gel permeation chromatography), a weight average molecular weight Mw, and a molecular weight distribution Mw / Mn can be used.
  • the number average molecular weight Mn of the polyamide is preferably greater than 15000, more preferably 16000 or more, and even more preferably 17000 or more.
  • Mw / Mn which shows the molecular weight distribution of (A2) polyamide becomes like this.
  • Mn and Mw can produce
  • the melting peak temperature Tm1 of the polyamide is preferably 300 ° C. or higher, more preferably 310 ° C. or higher. Further, the melting peak temperature Tm1 of the polyamide is preferably 350 ° C. or lower, more preferably 345 ° C. or lower, and further preferably 340 ° C. or lower.
  • Tm1 of the polyamide is 300 ° C. or higher, a polyamide composition excellent in heat resistance tends to be obtained.
  • (A2) polyamide melting peak temperature Tm1 is 350 ° C. or lower, (A2) thermal decomposition of polyamide in melt processing such as extrusion and molding tends to be further suppressed.
  • the melting peak temperature Tm2 of the polyamide is preferably 270 ° C. or higher, more preferably 275 ° C. or higher, and further preferably 280 ° C. or higher. Further, the melting peak temperature Tm2 of (A2) polyamide is preferably 350 ° C. or lower, more preferably 340 ° C. or lower, further preferably 335 ° C. or lower, and still more preferably 330 ° C. or lower. (A2) When the melting peak temperature Tm2 of the polyamide is 270 ° C. or higher, a polyamide composition excellent in heat resistance tends to be obtained. Moreover, (A2) When the melting peak temperature Tm2 of the polyamide is 350 ° C.
  • the melting peak temperatures Tm1 and Tm2 of the polyamide can be measured according to JIS-K7121 by the method described in Examples below.
  • the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide are each preferably 30 J / g or more, more preferably 35 J / g or more, and further preferably 40 J / g or more.
  • the upper limit of the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc is not particularly limited and is preferably as high as possible.
  • the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide are each 30 J / g or more, the heat resistance of the polyamide composition tends to be further improved.
  • the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide can be measured according to JIS-K7121 by the method described later.
  • the heat of fusion ⁇ Hm2 of the polyamide is preferably 20 J / g or more, more preferably 25 J / g or more, and further preferably 30 J / g or more.
  • the upper limit of the heat of fusion ⁇ Hm2 is not particularly limited and is preferably as high as possible.
  • the heat resistance of the polyamide composition tends to be further improved.
  • the heat of fusion ⁇ Hm1 is a heat of fusion reflecting the heat history received by the polyamide during heat treatment or cooling, and is different from the heat of fusion inherent in the polyamide.
  • ⁇ Hc is a crystallization enthalpy obtained through a cooling process (slow cooling) after complete melting, and is equal to the heat of fusion inherent in polyamide. Therefore, ⁇ Hm1 / ⁇ Hc means the ratio between the heat of fusion inherent in polyamide and the heat of fusion of polyamide subjected to a thermal history.
  • the ratio ( ⁇ Hm1 / ⁇ Hc) between the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide of the present invention is greater than 1.0 and less than or equal to 2.2, preferably greater than 1.4 and less than 2.2 from the viewpoint of heat resistance. Or less, more preferably 1.5 or more and 2 or less, still more preferably 1.6 or more and 2.2 or less, and particularly preferably 1.7 or more and 2.2 or less.
  • Tm1-Tc ⁇ Difference between Polyamide Melting Peak Temperature Tm1 and Crystallization Peak Temperature Tc (Tm1-Tc)> (A2)
  • Tm1-Tc is preferably higher than 40 ° C and lower than 90 ° C, and more preferably 50 ° C to 80 ° C.
  • the measurement of the heat of fusion ⁇ Hm1 and the crystallization enthalpy ⁇ Hc of the polyamide can be performed according to JIS-K7121, and the heat of fusion ⁇ Hm1 is measured when the temperature of the polyamide is raised at a rate of temperature increase of 20 ° C./min (the first temperature rise).
  • the endothermic peak appearing on the highest temperature side of the endothermic peak (melting peak) appearing at the time) is the peak area of Tm when the melting peak temperature is Tm (° C.).
  • a peak having ⁇ H of 1 J / g or more is regarded as a peak, the highest temperature is defined as a melting peak temperature Tm1, and ⁇ Hm1 is a sum of peak areas.
  • the crystallization enthalpy ⁇ Hc is the Tc value when the temperature of the exothermic peak (crystallization peak) that appears when the polyamide composition molded article is cooled at a temperature decrease rate of 20 ° C./min is the crystallization peak temperature Tc (° C.). It is the peak area.
  • Diamond-DSC manufactured by PERKIN-ELMER can be used as the measuring apparatus.
  • the melting peak temperature Tm2 and the heat of fusion ⁇ Hm2 of polyamide can be measured as follows. After the first temperature increase, the temperature is maintained for 2 minutes in the molten state at the maximum temperature increase, then the temperature is decreased to 30 ° C. at a temperature decrease rate of 20 ° C./min, maintained at 30 ° C. for 2 minutes, and then the temperature increase rate is 20.
  • the endothermic peak temperature that appears at the highest temperature side of the endothermic peak that appears when the temperature is similarly raised at the same temperature (° C./min) is the melting peak temperature Tm2 of the polyamide itself, and the peak area at this melting peak temperature. Is the heat of fusion ⁇ Hm2 of the polyamide.
  • the measurement of the melting peak temperature Tm2 and the heat of fusion ⁇ Hm2 of polyamide can be performed according to JIS-K7121 as described in the following examples.
  • Examples of the measuring device for the melting peak temperature and the heat of fusion include Diamond-DSC manufactured by PERKIN-ELMER.
  • the glass transition temperature Tg of the polyamide is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, even more preferably 130 ° C. or higher, and even more preferably. Is 135 ° C. or higher. Further, the glass transition temperature Tg of the (A2) polyamide is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 160 ° C. or lower. (A2) When the glass transition temperature Tg of the polyamide is 90 ° C. or higher, a polyamide composition excellent in heat discoloration resistance and chemical resistance tends to be obtained.
  • the glass transition temperature Tg of (A2) polyamide is 170 ° C. or less, a molded product having a good appearance tends to be obtained.
  • the glass transition temperature Tg of the polyamide can be measured according to JIS-K7121 as described in the following examples. Examples of the measuring device for the glass transition temperature Tg include Diamond-DSC manufactured by PERKIN-ELMER.
  • Polymer end> Although it does not specifically limit as a polymer terminal of the polyamide used for this invention, It can classify
  • the amino terminal is a polymer terminal having an amino group (—NH 2 group) and is derived from the raw material (b) diamine unit.
  • the amino terminal amount ([NH 2 ]) is preferably 5 to 100 ⁇ equivalent / g, more preferably 5 to 70 ⁇ equivalent / g, and further preferably 5 to 50 ⁇ equivalent / g with respect to 1 g of polyamide. More preferably 5 to 30 ⁇ eq / g, and even more preferably 5 to 20 ⁇ eq / g.
  • the amino terminal amount can be measured by neutralization titration. Specifically, 3.0 g of polyamide is dissolved in 100 mL of a 90 mass% phenol aqueous solution, and the obtained solution is titrated with 0.025N hydrochloric acid to obtain the amino terminal amount ( ⁇ equivalent / g). The end point is determined from the indicated value of the pH meter.
  • the carboxyl terminal is a polymer terminal having a carboxyl group (—COOH group) and is derived from the raw material (a) dicarboxylic acid.
  • the carboxyl terminal amount ([COOH]) is preferably 5 to 150 ⁇ equivalent / g, more preferably 5 to 140 ⁇ equivalent / g, and further preferably 5 to 130 ⁇ equivalent / g with respect to 1 g of polyamide. Even more preferably, it is 5 to 120 ⁇ eq / g, and even more preferably 5 to 110 ⁇ eq / g.
  • the carboxyl end amount When the carboxyl end amount is in the above range, the whiteness, reflow resistance, heat discoloration resistance, and light discoloration resistance of the polyamide composition tend to be more excellent.
  • the carboxyl end amount can be measured by neutralization titration. Specifically, 4.0 g of polyamide is dissolved in 50 mL of benzyl alcohol, and the obtained solution is titrated with 0.1 N NaOH to obtain the carboxyl terminal amount ( ⁇ equivalent / g). The end point is determined from the discoloration of the phenolphthalein indicator.
  • the total amount of the amino terminal amount ([NH 2 ]) and the carboxyl terminal amount ([COOH]) is defined as the active terminal total amount ([NH 2 ] + [COOH]).
  • the total amount of active terminals is preferably 10 to 200 ⁇ eq / g, more preferably 10 to 150 ⁇ eq / g, and still more preferably 10 to 120 ⁇ eq / g, based on 1 g of (A2) polyamide.
  • [NH 2 ] / ([NH 2 ] + [COOH]) which is the ratio of the amino terminal amount to the total active terminal amount, is preferably less than 0.5, more preferably less than 0.4, More preferably, it is less than 0.3, Most preferably, it is less than 0.1.
  • ⁇ Hm1 / ⁇ Hc can be controlled to be greater than 1.0 and less than or equal to 2.2 because the ratio of the amino terminal amount and the carboxyl terminal amount and the ratio of the amino terminal amount to the active terminal total amount are within the above ranges.
  • the heat discoloration resistance and light discoloration resistance of the polyamide composition tend to be more excellent.
  • Examples of the method for controlling the ratio of the amino terminal amount to the total active terminal amount include a method of controlling the addition amount of diamine and terminal blocking agent as additives during hot melt polymerization of polyamide, and the polymerization conditions. .
  • the cyclic amino terminus is a polymer terminus having a cyclic amino group (a group represented by the following (formula 1)).
  • R represents a substituent bonded to the carbon constituting the piperidine ring.
  • Specific examples of R include a hydrogen atom, a methyl group, an ethyl group, and a t-butyl group.
  • the amount of the cyclic amino terminal is preferably 0 ⁇ e equivalent / g or more and 65 ⁇ e equivalent / g or less, more preferably 10 ⁇ e equivalent / g or more and 60 ⁇ equivalent / g or less, with respect to 1 g of (A2) polyamide. Preferably they are 20 microequivalent / g or more and 55 microequivalent / g or less.
  • the polyamide composition of the present invention tends to be more excellent in toughness, hydrolysis resistance, and processability.
  • the amount of the cyclic amino terminus can be measured using 1 H-NMR. For example, there is a method of calculation based on the integral ratio of hydrogen bonded to carbon adjacent to the nitrogen atom of the heterocyclic ring of nitrogen and hydrogen bonded to carbon adjacent to the nitrogen atom of the amide bond of the polyamide main chain.
  • Cyclic amino terminal can be generated by dehydration reaction of cyclic amine and carboxyl terminal, and can also be generated by deammonia reaction of amino terminal in the polymer molecule. Cyclic amine is added as end-capping agent. It can also be produced by the diamine having a pentamethylenediamine skeleton, which is a raw material for polyamide, and cyclizing by deammonia reaction.
  • the cyclic amino terminal is preferably derived from a raw material diamine. Without adding cyclic amine as an end-capping agent at the initial stage of polymerization, the cyclic amino terminal is generated from the raw material diamine, so that the low molecular weight carboxylic acid terminal is prevented from being blocked at the initial stage of polymerization. Thus, the polymerization reaction rate of the polyamide is maintained high, and as a result, a high molecular weight product tends to be obtained. As described above, when a cyclic amine is generated during the reaction, the carboxylic acid terminal is sealed with the cyclic amine at a later stage of the polymerization, so that a high molecular weight polyamide is easily obtained.
  • a cyclic amine that generates a cyclic amino terminus can be generated as a by-product during the polymerization reaction of polyamide.
  • the higher the reaction temperature the higher the reaction rate. Therefore, in order to make the cyclic amino terminal of the polyamide (A2) constant, it is preferable to promote the generation of cyclic amine. Therefore, the reaction temperature for the polymerization of the precursor polyamide is preferably 300 ° C. or higher, and more preferably 320 ° C. or higher.
  • control is performed by appropriately adjusting the polymerization temperature, the holding time of the reaction temperature of 300 ° C. or more during the polymerization step, the addition amount of the amine forming the cyclic structure, and the like. The method of doing is mentioned.
  • the end by the sealant is an end formed when a sealant is added during polymerization.
  • the sealing agent include the above-described end sealing agents.
  • the other terminal is a polymer terminal not classified in the above 1) to 4), such as a terminal generated by deammonia reaction at the amino terminal or a terminal generated by decarboxylation from the carboxylic acid terminal. It is done.
  • the second polyamide composition of the present invention contains the first polyamide of the present invention and at least one selected from an inorganic filler, a heat stabilizer, and a light stabilizer.
  • an inorganic filler as the second polyamide composition, it has excellent heat resistance and stability under heat and has a high melting point.
  • the second polyamide composition does not impair the properties of the polyamide. It will be.
  • the components of the polyamide composition will be described.
  • inorganic filler It does not specifically limit as an inorganic filler which comprises the 2nd polyamide composition of this invention, A well-known material can be used.
  • a well-known material can be used.
  • An inorganic filler may be used
  • the glass fiber and the carbon fiber may have a round shape or a flat shape in cross section.
  • the flat cross section include a rectangle, an oval close to a rectangle, an ellipse, and a bowl shape with a narrowed central portion in the longitudinal direction.
  • the polyamide composition has a number average fiber diameter of 3 to 30 ⁇ m and a weight average fiber length of 100 to 750 ⁇ m.
  • a glass fiber or carbon fiber having an aspect ratio (L / D) of 10 to 100 between the weight average fiber length (L) and the number average fiber diameter (D) is preferably used.
  • the number average fiber diameter of the inorganic filler in the polyamide composition is, for example, putting the polyamide composition in an electric furnace, incinerating the organic matter contained in the polyamide composition, and, for example, 100 or more glass fibers from the residue.
  • the number average fiber diameter can be determined by arbitrarily selecting, observing with a SEM photograph, and measuring the fiber diameter.
  • the glass fiber is arbitrarily selected in the same manner, and the weight average fiber length is measured by measuring the fiber length using an SEM photograph at a magnification of 1000 times. be able to.
  • the inorganic filler reinforcing fibers having a weight average fiber length of 1 to 15 mm are more preferable.
  • the weight average fiber length of such reinforcing fibers is 1 to 15 mm, preferably 3 to 12 mm, from the viewpoint of improving mechanical strength, rigidity and moldability.
  • the weight average fiber length of the reinforcing fibers is the length of 400 reinforcing fibers arbitrarily selected using an image analyzer after observing with an optical microscope after burning or dissolving only the polyamide of the polyamide composition. It is calculated
  • the calculation formula for the weight average fiber length for each reinforcing fiber is expressed by the following formula.
  • “i” is an integer from 1 to 400.
  • Weight average fiber length ⁇ (Li 2 ) / ⁇ Li
  • a weight average fiber length is a value applied with respect to the reinforced fiber of the state contained in the polyamide composition of this invention. That is, the weight average fiber length of the reinforcing fiber before blending with the polyamide is not limited to the above.
  • the material of the reinforcing fiber is not particularly limited as long as it is a reinforcing fiber generally used for polyamide.
  • inorganic fiber such as glass fiber, carbon fiber, boron fiber, metal fiber (eg, stainless fiber, aluminum fiber, copper fiber), polyparaphenylene terephthalamide fiber, polymetaphenylene terephthalamide fiber, polyparaffin Organic materials such as phenylene isophthalamide fiber, polymetaphenylene isophthalamide fiber, wholly aromatic polyamide fiber such as fiber obtained from condensate of diaminodiphenyl ether and terephthalic acid or isophthalic acid, or wholly aromatic liquid crystal polyester fiber Is mentioned.
  • the said material may be used independently and 2 or more types may be used together. Especially, it is preferable that it is 1 or more types chosen from a glass fiber, a carbon fiber, a boron fiber, and a metal fiber from a viewpoint of an improvement of mechanical strength and rigidity, and a glass fiber and / or a carbon fiber are more preferable.
  • the reinforcing fiber is not particularly limited with respect to the average fiber diameter of the single fiber, but, for example, those having a diameter of 5 to 25 ⁇ m are generally used.
  • the average fiber diameter of single fibers is obtained by observing the reinforcing fibers to be used under an optical microscope and calculating the average value when measuring 400 fiber diameters arbitrarily selected using an image analyzer. It is done. Further, as the reinforcing fiber, it is preferable to use roving which is a continuous fiber in which single fibers are bundled.
  • An inorganic filler such as glass fiber or carbon fiber may be surface-treated with a surface treatment agent such as a silane coupling agent.
  • a surface treatment agent such as a silane coupling agent.
  • silane coupling agent the same one as in the first embodiment can be used.
  • the fibrous inorganic filler such as glass fiber or carbon fiber may further contain a sizing agent.
  • a sizing agent the same sizing agent as in the first embodiment can be used.
  • the polyamide composition may contain a heat stabilizer.
  • a heat stabilizer phosphorus stabilizer (phosphorus compound), phenolic antioxidant, amine antioxidant, Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa of the periodic table And one or more selected from the group consisting of metal salts of Group IVb elements and halides of alkali metals and alkaline earth metals. Specific examples of the heat stabilizer are shown below.
  • phosphorus compounds include organic phosphorus compounds.
  • organic phosphorus compounds include, but are not limited to, pentaerythritol phosphite compounds, trioctyl phosphites, trilauryl phosphites, tridecyl phosphites, octyl diphenyl phosphites, trisisodecyl phosphites.
  • phenyl diisodecyl phosphite phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl (tridecyl) phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2, 4-di-tert-butylphenyl) phosphite, tris (2,4-di-tert-butyl-5-methylphenyl) phosphite, tris (butoxyethyl) phosphite, 4,4′-butylidene -Bis (3-methyl-6-t-butylphenyl-tetra-tridecyl) diphosphite, tetra (C12-C15 mixed alkyl) -4,
  • a pentaerythritol type phosphite compound tris (2,4-di-t-butylphenyl), from the viewpoint of further improving the heat aging resistance of the polyamide composition and reducing the generated gas.
  • Phosphites are preferred, and pentaerythritol phosphite compounds are more preferred.
  • pentaerythritol type phosphite compound examples include, but are not limited to, for example, 2,6-di-t-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-di- t-butyl-4-methylphenyl-methyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-2-ethylhexyl-pentaerythritol diphosphite, 2,6-di-t- Butyl-4-methylphenyl-isodecyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-lauryl-pentaerythritol diphosphite, 2,6-di-t-butyl-4- Methylphenyl-isotridecyl-pent
  • pentaerythritol type phosphite compounds listed above bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-) Ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-octyl-4-methylphenyl) penta Erythritol diphosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are preferred.
  • the content of the phosphorus compound in the polyamide composition is 0.1 to 20.0 mass% with respect to 100 mass% of the polyamide composition. It is preferably 0.2 to 7.0% by mass, more preferably 0.5 to 3.0% by mass, still more preferably 0.5 to 2.5% by mass, and even more preferably 0.5%. It is -2.0 mass%, More preferably, it is 0.5-1.5 mass%.
  • the polyamide composition tends to be excellent in whiteness, reflow resistance, heat discoloration resistance, extrusion process stability, and molding process stability.
  • the polyamide composition may contain a phenol-based antioxidant and / or an amine-based antioxidant as a heat stabilizer.
  • phenolic antioxidants include, but are not limited to, hindered phenolic compounds. Phenol-based antioxidants, particularly hindered phenol compounds, have the property of imparting heat resistance and light resistance to resins such as polyamide and fibers.
  • hindered phenol compound examples include, but are not limited to, for example, N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropylene Onamide), pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-tert-butyl- 4-hydroxy-hydrocinnamamide), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3 -T-butyl-4-hydroxy-5-methylphenyl) propynyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane 3,5-di-tert-butyl-4-
  • N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide) )] is preferred.
  • the phenolic antioxidant mentioned above may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the phenolic antioxidant in the polyamide composition is preferably 0 to 1% by mass, more preferably 0.01 to 1% by mass, even more preferably 100% by mass of the polyamide composition. Is 0.1 to 1% by mass. When the content of the phenolic antioxidant is within the above range, the polyamide composition tends to be superior in heat aging resistance and lower in the amount of generated gas.
  • amine-based antioxidants include, but are not limited to, poly (2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethoxy-1,2-dihydro-2, 2,4-trimethylquinoline, phenyl- ⁇ -naphthylamine, 4,4-bis ( ⁇ , ⁇ -dimethyldendyl) diphenylamine, (p-toluenesulfonylamido) diphenylamine, N, N′-diphenyl-p-phenylenediamine, N, N′-di- ⁇ -naphthyl-p-phenylenediamine, N, N′-di (1,4-dimethylpentyl) -p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine, N- (1-methylheptyl
  • the content of the amine antioxidant in the polyamide composition is preferably 0 to 1% by mass, more preferably 0.01 to 1% by mass, and still more preferably 100% by mass of the polyamide composition. Is 0.1 to 1% by mass.
  • the polyamide composition tends to be more excellent in heat aging resistance and lower in the amount of generated gas.
  • the metal salt of the elements of Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa, and Group IVb of the periodic table is not particularly limited and is preferably a heat stabilizer. Copper salt.
  • the copper salt is not particularly limited.
  • copper halide copper iodide, cuprous bromide, cupric bromide, cuprous chloride, etc.
  • copper acetate copper propionate
  • benzoic acid examples thereof include copper oxide, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate and copper stearate, and a copper complex salt in which copper is coordinated to a chelating agent such as ethylenediamine and ethylenediaminetetraacetic acid.
  • metal salt especially copper salt
  • a polyamide composition having excellent heat aging resistance and capable of suppressing metal corrosion (hereinafter also simply referred to as “metal corrosion”) of screws and cylinders during extrusion is obtained. be able to.
  • the said metal salt may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the compounding amount of the copper salt in the polyamide composition is preferably 0.01 to 0.2 parts by mass, more preferably 0.02 to 0 parts per 100 parts by mass of the polyamide composition. 15 parts by mass.
  • the amount is within the above range, the heat aging resistance is further improved, and copper precipitation and metal corrosion can be suppressed.
  • the content of copper element is preferably 10 to 500 ppm, more preferably 30 to 500 ppm, still more preferably 50 to 300 ppm with respect to the total amount of the polyamide composition. .
  • Alkali metal and alkaline earth metal halides are not particularly limited, and examples thereof include potassium iodide, potassium bromide, potassium chloride, sodium iodide and sodium chloride, and mixtures thereof. Among these, potassium iodide and potassium bromide, and a mixture thereof are preferable, and potassium iodide is more preferable from the viewpoint of improving heat aging resistance and suppressing metal corrosion.
  • 1 type may be used independently and 2 or more types may be used in combination.
  • the blending amount of alkali and alkaline earth metal halides in the polyamide composition is preferably 0.05 to 5 with respect to 100 parts by mass of the polyamide composition. Part by mass, more preferably 0.2 to 2 parts by mass. When the amount is within the above range, the heat aging resistance is further improved, and copper precipitation and metal corrosion can be suppressed.
  • a mixture of a copper salt and a halide of alkali and alkaline earth metal can be suitably used as a heat stabilizer.
  • the ratio of the copper salt to the alkali and alkaline earth metal halide may be contained in the polyamide composition so that the molar ratio of halogen to copper (halogen / copper) is 2/1 to 40/1. It is preferably 5/1 to 30/1.
  • the heat aging resistance of the polyamide composition can be further improved.
  • the molar ratio (halogen / copper) is 2/1 or more, it is preferable because copper precipitation and metal corrosion can be suppressed.
  • the molar ratio (halogen / copper) is 40/1 or less, corrosion of the screws of the molding machine can be prevented without substantially impairing mechanical properties such as toughness, which is preferable.
  • the polyamide composition may contain a light stabilizer from the viewpoint of light stability.
  • the light stabilizer has a property of imparting excellent heat resistance and light resistance to resins such as polyamide and fibers.
  • Examples of the light stabilizer include amine light stabilizers.
  • amine light stabilizers include, but are not limited to, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetra Methylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6 6-tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethyl Peridine, 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy
  • amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2, 2,6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) ) Adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, N, N′-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedi Carboxamide and tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate are preferred.
  • bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, N, N′-bis-2,2,6,6-tetramethyl-4 are used as amine light stabilizers.
  • -Piperidinyl-1,3-benzenedicarboxamide, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate are more preferred
  • N, N ′ -Bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide is more preferred.
  • the content of the amine light stabilizer in the polyamide composition is preferably 0 to 2% by mass, more preferably 0.01 to 2% by mass, and further preferably 100% by mass of the polyamide composition. Is 0.1 to 2% by mass.
  • the content of the amine light stabilizer is within the above range, the light stability and heat aging resistance of the polyamide composition can be further improved, and the amount of generated gas can be further reduced.
  • additives that are conventionally used for polyamide, for example, colorants such as pigments and dyes (including colored master batches), flame retardants, fibrillating agents, and lubricants, as long as the object of the present invention is not impaired.
  • colorants such as pigments and dyes (including colored master batches), flame retardants, fibrillating agents, and lubricants, as long as the object of the present invention is not impaired.
  • Containing agents, fluorescent bleaching agents, plasticizers, ultraviolet absorbers, antistatic agents, fluidity improvers, fillers, reinforcing agents, spreading agents, nucleating agents, rubbers, reinforcing agents and other polymers You can also.
  • the method for producing the polyamide composition is not particularly limited as long as it is a method of mixing the above-described second polyamide and, if necessary, the inorganic filler and other additives described above.
  • a method for mixing the constituent materials of the second polyamide composition for example, a method of mixing using a Henschel mixer or the like, supplying to a melt kneader and kneading, or a polyamide melted with a single screw or twin screw extruder, The method of mix
  • all the components may be supplied to the same supply port at the same time. You may supply from a different supply port.
  • the melt kneading temperature is preferably about 250 to 375 ° C. as the resin temperature.
  • the melt kneading time is preferably about 0.5 to 5 minutes.
  • the apparatus for performing melt kneading is not particularly limited, and a known apparatus, for example, a melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, and a mixing roll can be used.
  • the method for producing the polyamide composition when the inorganic filler contained in the second polyamide composition is a reinforcing fiber having a weight average fiber length of 1 to 15 mm is not particularly limited.
  • a pultrusion method in which polyamide is melt-kneaded with a twin-screw extruder, and the molten polyamide is impregnated into a roving of reinforcing fibers to obtain a polyamide-impregnated strand as described in JP-A-2008-221574
  • a method of sufficiently impregnating the polyamide by a process of twisting the impregnated strand in a spiral shape is mentioned.
  • the physical properties of the polyamide in the second polyamide composition of the present invention are equivalent to the physical properties of the second polyamide of the present invention.
  • the polyamide in the second polyamide composition maintains the physical properties of the second polyamide even after being melt-kneaded with other additives as necessary to obtain a composition. Has a measured value. Therefore, it is possible to specify the physical property of the polyamide contained in it by measuring each said physical property about a polyamide composition.
  • the ratio of crystallization enthalpy ⁇ Hc, glass transition temperature Tg, amino terminal, carboxyl terminal, and amino terminal amount to the total amount of active terminals can be measured by the method for measuring the physical properties of the polyamide described in the examples described later. Since the measured value in the second polyamide composition of the present invention is in the same range as the measured value of the second polyamide of the present invention, the polyamide composition of the present invention has low strength during heating, Excellent water absorption.
  • the value of the heat value is the value for the composition. Calculated by converting the ratio of the two polyamides.
  • the polyamide composition molded article of the present invention (hereinafter sometimes simply referred to as a molded article) is formed by molding the above-mentioned second polyamide composition.
  • the polyamide composition molded article maintains a high trans isomer ratio of the dicarboxylic acid monomer unit, and is excellent in hot strength, hot stiffness, and low water absorption, so it can be suitably used for automotive parts. it can.
  • the molded article of the polyamide composition of the present invention is a known molding method such as press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, and blow molding of the second polyamide or the second polyamide composition described above. , Film molding, hollow molding, multilayer molding, melt spinning and the like.
  • the polyamide composition molded article is excellent in mechanical properties and low water absorption during heating.
  • the hot strength at 120 ° C. is preferably 120 MPa or more, and more preferably 125 MPa or more.
  • the thermal tensile elastic modulus at 120 ° C. is preferably 5.0 GPa or more, and more preferably 5.3 GPa or more.
  • the water absorption after 24 hours of 80 ° C. water is preferably less than 2.0%, more preferably 1.5% or less.
  • the retention is preferably 75% or more, and more preferably 80% or more.
  • the polyamide composition molded article of the present invention is excellent in heat resistance, strength, heat strength, rigidity, heat rigidity, heat stability, and has mold release and LLC resistance as shown in the following examples. Since it is improved, it can be suitably used as various parts materials for automobiles, electric and electronic, industrial materials, extrusion applications, daily necessities and household goods. About these specific uses, the thing similar to said 1st embodiment is mentioned.
  • the mol% of 1,4-cyclohexanedicarboxylic acid was determined by calculation as (number of moles of 1,4-cyclohexanedicarboxylic acid added as a raw material monomer / number of moles of all dicarboxylic acid units added as a raw material monomer) ⁇ 100. It was.
  • the mol% of the aliphatic diamine was determined by calculation as (number of moles of aliphatic diamine added as a raw material monomer / number of moles of all diamine units added as a raw material monomer) ⁇ 100.
  • the denominator and numerator do not include the number of moles of aliphatic diamine added as an additive during melt polymerization.
  • the melting peak temperature appearing on the highest temperature side of the endothermic peak (melting peak) appearing at the time of temperature rise was defined as Tm (° C.), and the peak area of Tm was defined as the heat of fusion ⁇ Hm (J / g).
  • the melting point Tm2 and the heat of fusion ⁇ Hm2 of the starting polyamide can be measured from the DSC of the molded product as follows. After the first temperature increase, the temperature is maintained for 2 minutes in the molten state at the maximum temperature increase, then the temperature is decreased to 30 ° C. at a temperature decrease rate of 20 ° C./min, maintained at 30 ° C.
  • the endothermic peak temperature that appears on the highest temperature side of the endothermic peak that appears when the temperature is similarly raised at the same temperature (° C./min) is the melting point of the polyamide itself, and the peak area at this melting point is the heat of fusion of the polyamide. ⁇ Hm2.
  • the temperature of the exothermic peak (crystallization peak) that appears when the temperature is lowered at a rate of temperature decrease of 20 ° C./min is defined as the crystallization peak temperature Tc (° C.), and the total peak area of Tc is the crystallization enthalpy ⁇ Hc (J / g). did.
  • the glass transition temperature Tg (° C.) was measured by using Diamond-DSC manufactured by PERKIN-ELMER according to JIS-K7121. The measurement conditions were that the polyamide composition molded products obtained in Examples and Comparative Examples were melted on a hot stage (EP80 manufactured by Mettler), and the molten sample obtained was rapidly cooled using liquid nitrogen and solidified. A measurement sample was obtained. Using 10 mg of the sample, the glass transition temperature was measured by raising the temperature in the range of 30 to 350 ° C. under a temperature raising speed of 20 ° C./min.
  • Trans isomer ratio 30-40 mg of the polyamide composition molded product obtained in Examples and Comparative Examples was dissolved in 1.2 g of hexafluoroisopropanol deuterated and measured by 1 H-NMR (ECA500 manufactured by JEOL).
  • Trans isomer ratio mol% of 1,4-cyclohexanedicarboxylic acid monomer unit of molded article, peak area of 2.00 ppm derived from trans isomer and peaks of 1.77 ppm and 1.87 ppm derived from cis isomer It calculated
  • Example 1-1 (Production of polyamide) The polymerization reaction of polyamide was carried out as follows by a hot melt polymerization method. CHDA 896 g (5.2 mol) as the dicarboxylic acid unit and 2PMD 604 g (5.2 mol) as the diamine unit were dissolved in 1500 g of distilled water to prepare an equimolar aqueous solution of about 50% by mass of the raw material monomer. The obtained aqueous solution was charged into an autoclave (made by Nitto Koatsu Co., Ltd.) having an internal volume of 5.4 L, kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was purged with nitrogen.
  • an autoclave made by Nitto Koatsu Co., Ltd.
  • the pressure in the autoclave tank (hereinafter also referred to simply as “inside the tank”) reaches about 2.5 kg / cm 2 as gauge pressure (hereinafter, all pressure in the tank is expressed as gauge pressure).
  • the liquid temperature was continuously heated from about 50 ° C. (the liquid temperature in this system was about 145 ° C.). In order to keep the pressure in the tank at about 2.5 kg / cm 2 , heating was continued while removing water out of the system, and the solution was concentrated until the concentration of the aqueous solution reached about 75% by mass (the liquid temperature in this system was about It was 160 ° C.).
  • the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) in the tank was about 340 ° C.
  • the resin temperature was kept at about 340 ° C., and the inside of the tank was maintained under a reduced pressure of about 79.9 kPa (about 600 torr) for 20 minutes by a vacuum apparatus to obtain a polymer.
  • the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut, and discharged in a pellet form to obtain polyamide pellets.
  • the obtained polyamide composition was molded into a multi-purpose test piece (A type) by injection molding in accordance with ISO 3167, and then further heat treated at 240 ° C. in a reduced pressure environment at ⁇ 0.1 MPa (gauge pressure) for 2 hours. Thus, a molded article of the polyamide composition was obtained. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-2 A polyamide composition molded article was obtained in the same manner as in Example 1-1 except that the heat treatment time in (manufacturing the polyamide composition molded article) was 7 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-3 (Production of polyamide) The polymerization reaction of polyamide was carried out as follows by a hot melt polymerization method. CHDA 795 g (4.62 mol) as a dicarboxylic acid unit, C10DA 517 g (3.00 mol) as a diamine unit, and 188 g (1.62 mol) of 2PMD are dissolved in 1500 g of distilled water, and an equimolar aqueous solution of about 50% by mass of the raw material monomer. Was made.
  • the obtained aqueous solution was charged into an autoclave (made by Nitto Koatsu Co., Ltd.) having an internal volume of 5.4 L, kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was purged with nitrogen.
  • the liquid temperature was continuously heated from about 50 ° C. until the pressure in the tank was about 2.5 kg / cm 2 as a gauge pressure (the liquid temperature in this system was about 145 ° C.).
  • water was removed from the system while heating was continued until the concentration of the aqueous solution reached about 75% by mass (the liquid temperature in this system was It was about 160 ° C.).
  • the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) in the tank was about 330 ° C.
  • the resin temperature was kept at about 340 ° C., and the inside of the tank was maintained under a reduced pressure of about 79.9 kPa (about 600 torr) for 20 minutes by a vacuum apparatus to obtain a polymer.
  • the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut, and discharged in a pellet form to obtain polyamide pellets.
  • the obtained polyamide composition was molded into a multi-purpose test piece (A type) in accordance with ISO 3167, and then heat-treated at a temperature of 240 ° C. under a reduced pressure environment of ⁇ 0.1 MPa (gauge pressure) for 2 hours to obtain a polyamide composition.
  • a molded article was obtained.
  • Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-4 A polyamide composition molded article was obtained in the same manner as in Example 1-3, except that the heat treatment time in (manufacturing the polyamide composition molded article) was 7 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-5 A polyamide composition molded article was obtained in the same manner as in Example 1-3, except that the heat treatment time in (manufacturing the polyamide composition molded article) was 24 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-6 (Production of polyamide)
  • the polymerization reaction of polyamide was carried out as follows by a hot melt polymerization method. CHDA 802 g (4.66 mol) as a dicarboxylic acid unit, C10DA 481 g (2.79 mol) as a diamine unit, 216 g (1.86 mol) of 2PMD are dissolved in 1500 g of distilled water, and an equimolar aqueous solution of about 50% by mass of the raw material monomer. Was made.
  • the obtained aqueous solution was charged into an autoclave (made by Nitto Koatsu Co., Ltd.) having an internal volume of 5.4 L, kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was purged with nitrogen.
  • the liquid temperature was continuously heated from about 50 ° C. until the pressure in the tank was about 2.5 kg / cm 2 as a gauge pressure (the liquid temperature in this system was about 145 ° C.).
  • water was removed from the system while heating was continued until the concentration of the aqueous solution reached about 75% by mass (the liquid temperature in this system was It was about 160 ° C.).
  • the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) in the tank was about 320 ° C.
  • the resin temperature was kept at about 320 ° C., and the inside of the tank was maintained under a reduced pressure of about 79.9 kPa (about 600 torr) for 20 minutes with a vacuum apparatus to obtain a polymer.
  • the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut, and discharged in a pellet form to obtain polyamide pellets.
  • the obtained polyamide composition was formed into a multi-purpose test piece (A type) in accordance with ISO 3167, and then heat-treated at a temperature of 240 ° C. under a reduced pressure environment of ⁇ 0.2 MPa (gauge pressure) for 2 hours.
  • Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-7 A polyamide composition molded article was obtained in the same manner as in Example 1-6 except that the heat treatment time in (manufacturing the polyamide composition molded article) was set to 7 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-8 A polyamide composition molded article was obtained in the same manner as in Example 1-6, except that the heat treatment time in (manufacturing the polyamide composition molded article) was 24 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-9 (Production of polyamide) The polymerization reaction of polyamide was carried out as follows by a hot melt polymerization method. CHDA 795 g (4.62 mol) as a dicarboxylic acid unit, C10DA 517 g (3.00 mol) and HMD 188 g (1.62 mol) as a diamine unit are dissolved in 1500 g of distilled water, and an equimolar aqueous solution of about 50% by mass of the raw material monomer is obtained. Was made.
  • the obtained aqueous solution was charged into an autoclave (made by Nitto Koatsu Co., Ltd.) having an internal volume of 5.4 L, kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was purged with nitrogen.
  • the liquid temperature was continuously heated from about 50 ° C. until the pressure in the tank was about 2.5 kg / cm 2 as a gauge pressure (the liquid temperature in this system was about 145 ° C.).
  • water was removed from the system while heating was continued until the concentration of the aqueous solution reached about 75% by mass (the liquid temperature in this system was It was about 160 ° C.).
  • the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) in the tank was about 330 ° C.
  • the resin temperature was kept at about 340 ° C., and the inside of the tank was maintained under a reduced pressure of about 79.9 kPa (about 600 torr) for 20 minutes by a vacuum apparatus to obtain a polymer.
  • the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut, and discharged in a pellet form to obtain polyamide pellets.
  • the obtained polyamide composition was formed into a multi-purpose test piece (A type) in accordance with ISO 3167, and then heat-treated at a temperature of 240 ° C. under a reduced pressure environment of ⁇ 0.2 MPa (gauge pressure) for 2 hours.
  • Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-10 A polyamide composition molded product was obtained in the same manner as in Example 1-9, except that the heat treatment time in (Manufacturing the polyamide composition molded product) was set to 7 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-11 A polyamide composition molded article was obtained in the same manner as in Example 1-9, except that the heat treatment time in (manufacturing the polyamide composition molded article) was 24 hours. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-2 A polyamide composition molded article was obtained in the same manner as in Example 1-3, except that the heat treatment in (Manufacturing the polyamide composition molded article) was not performed. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the resulting reaction liquid was stirred at a liquid temperature (internal temperature) of 100 ° C. for 30 minutes, and then heated to a liquid temperature of 210 ° C. over 2 hours. At this time, the pressure in the tank was increased to 22 kg / cm 2 . The reaction was continued for 1 hour at a liquid temperature of 210 ° C. and a pressure in the tank of 22 kg / cm 2 , then the temperature was raised to 230 ° C., and then the liquid temperature was maintained at 230 ° C. for 2 hours. The reaction was carried out while maintaining the internal pressure at 22 kg / cm 2 .
  • the pressure in the tank was lowered to 10 kg / cm 2 over 30 minutes, and the reaction was further continued for 1 hour to obtain a prepolymer having a sulfuric acid relative viscosity [ ⁇ r] of 1.25.
  • the obtained prepolymer was dried at 100 ° C. under reduced pressure for 12 hours, pulverized to a size of 2 mm or less, and then subjected to solid phase polymerization at 230 ° C. and 0.1 mmHg for 10 hours to obtain a polyamide (hereinafter referred to as "PA9T”) was obtained.
  • PA9T polyamide
  • the polyamide composition molded article of the present invention is a trans-rich polyamide composition molded article obtained only by heat treatment after molding, regardless of the ratio of cis-trans in the raw material or polyamide state, and is apparent from the results shown in Table 1A.
  • the polyamide composition molded products of Examples 1-1 to 1-11 had excellent characteristics in terms of hot strength and hot stiffness. In general, when the polymer absorbs water, degradation occurs due to hydrolysis and chemical penetration, and so-called LLC resistance decreases. However, the polyamide composition molded product of the present invention has improved LLC resistance as shown in the tensile strength retention after immersion. did.
  • the penetration rate (degradation rate) of LLC differs between the amorphous part and the crystalline part of the molded product, and the amorphous part deteriorates faster than the crystalline part.
  • the polyamide composition molded product of the present invention is not treated by heat treatment after molding. As a result of the decrease in the crystal portion and the increase in the crystal portion ( ⁇ Hm), it is considered that the LLC resistance was improved.
  • Comparative Example 1-1 the composition pellets before molding had a trans isomer ratio of 70 mol%, and even after melt molding, the ratio was 70 mol%. As a result, the hot strength, the hot stiffness, and the LLC resistance were insufficient. Also in Comparative Example 1-2, the composition pellets before molding had a trans isomer ratio of 70 mol%, and even after melt molding, the trans isomer ratio was 70 mol%. It was insufficient in terms of LLC resistance. On the other hand, Comparative Examples 1-3 and 1-4 were not sufficient in terms of hot strength, hot stiffness, and LLC resistance because no isomers were present.
  • Example 1-12 In the same manner as described above, the non-reinforced polyamide molded article not containing the inorganic filler was subjected to Examples and Comparative Examples as follows. [Example 1-12] In the same manner as in Example 1-1, except that the glass fiber in (manufacturing the polyamide composition) was not added and the heat treatment time in (manufacturing the polyamide composition) was set to 7 hours, the same was done. Got. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-13 In the same manner as in Example 1-3, except that the glass fiber in (Production of polyamide composition) was not added and the heat treatment time in (Production of polyamide composition product) was 24 hours, the same was done. Got. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-5 A polyamide composition molded product was obtained in the same manner as in Example 1-1 except that the glass fiber in (manufacturing the polyamide composition) was not added and heat treatment was not performed in (manufacturing the polyamide composition molded product). It was. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 1-6 A polyamide composition molded product was obtained in the same manner as in Example 1-3, except that the glass fiber in (manufacturing the polyamide composition) was not added and heat treatment was not performed in (manufacturing the polyamide composition molded product). It was. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods. Each physical property of the polyamide composition molded product obtained in Examples and Comparative Examples was measured based on the above method. The measurement results are shown in Table 1C.
  • the present example relates to a polyamide composition molded article obtained by molding the first polyamide composition using the first polyamide.
  • (A) Polyamide used in the examples and comparative examples was produced using the following (a) and (b) as appropriate.
  • (A) Dicarboxylic acid (1) 1,4-cyclohexanedicarboxylic acid (CHDA) (manufactured by Eastman Chemical Co., Ltd., trade name: 1,4-CHDA HP grade (trans isomer / cis isomer 25/75)
  • C6DA Hexamethylenediamine
  • C11DA Undecamethylenediamine
  • C12DA Dodecamethylenediamine
  • (B) Titanium oxide TiO 2 manufactured by Ishihara Sangyo Co., Ltd., trade name: Taipei (registered trademark) CR-63, number average particle size: 0.21 ⁇ m, coating: alumina, silica and siloxane compound
  • the number average particle diameter of (B) titanium oxide was measured as follows by an electron micrograph method.
  • the polyamide compositions of Examples and Comparative Examples to be described later are placed in an electric furnace, the organic matter contained in the polyamide composition is incinerated, and 100 or more titanium oxides arbitrarily selected from the residue are observed with an electron microscope. And the number average particle diameter of (B) titanium oxide was calculated
  • (C) The number average fiber diameter of an inorganic filler puts the polyamide composition of the Example and comparative example which are mentioned later into an electric furnace, and incinerates the organic substance contained in a polyamide composition. From the residue, 100 or more arbitrarily selected wollastonites were observed with an SEM, and the number average fiber diameter was determined by measuring the fiber diameters of these wollastonites.
  • the mol% of 1,4-cyclohexanedicarboxylic acid was determined by calculation as (number of moles of 1,4-cyclohexanedicarboxylic acid added as a raw material monomer / number of moles of all dicarboxylic acid units added as a raw material monomer) ⁇ 100. It was. Further, the mol% of the aliphatic diamine was obtained by calculation as (number of moles of aliphatic diamine added as raw material monomer / number of moles of all diamine units added as raw material monomer) ⁇ 100. In addition, when calculating by the above formula, the denominator and numerator do not include the number of moles of aliphatic diamine added as an additive during melt polymerization.
  • the melting peak temperature that appeared on the highest temperature side of the melting peak) was Tm1 (° C.), and the peak area of Tm1 was the heat of fusion ⁇ Hm1 (J / g).
  • the melting point Tm2 and the heat of fusion ⁇ Hm2 of the starting polyamide can be measured as follows. After the first temperature increase, the temperature is maintained for 2 minutes in the molten state at the maximum temperature increase, then the temperature is decreased to 30 ° C.
  • the endothermic peak temperature that appears at the highest temperature side of the endothermic peak that appears when the temperature is similarly raised at the same temperature (° C./min) is the melting peak temperature Tm2 of the polyamide itself, and the peak area at Tm2 is the polyamide area.
  • the temperature of the exothermic peak (crystallization peak) that appears when the temperature is lowered at a rate of temperature decrease of 20 ° C./min is defined as the crystallization peak temperature Tc (° C.), and the total peak area of Tc is the crystallization enthalpy ⁇ Hc (J / g). did.
  • Trans isomer ratio of polyamide The trans isomer ratio of the portion derived from 1,4-cyclohexadicarboxylic acid in the polyamide was measured as follows. 30-40 mg of polyamide was dissolved in 1.2 g of hexafluoroisopropanol deuteride, and the trans isomer ratio was measured by 1 H-NMR (ECA500 manufactured by JEOL) using the resulting solution. When the alicyclic dicarboxylic acid is 1,4-cyclohexanedicarboxylic acid, the ratio between the peak area of 1.98 ppm derived from the trans isomer and the peak areas of 1.77 ppm and 1.86 ppm derived from the cis isomer From which the trans isomer ratio was determined.
  • Polyamide molecular weight (Mn, Mw / Mn) Mw (weight average molecular weight) / Mn (number average molecular weight) of the polyamides obtained in Examples and Comparative Examples are GPC (gel permeation chromatography, manufactured by Tosoh Corporation, HLC-8020, hexafluoroisopropanol solvent, PMMA (poly It was calculated using Mw and Mn measured by methyl methacrylate) standard sample (manufactured by Polymer Laboratories).
  • the GPC column used was TSK-GEL GMHHR-M and G1000HHR.
  • Carboxyl end amount ([COOH]) In the polyamides obtained in the examples and comparative examples, the amount of carboxyl terminal bound to the polymer terminal was measured by neutralization titration as follows. 4.0 g of polyamide was dissolved in 50 mL of benzyl alcohol, and the resulting solution was titrated with 0.1N NaOH to obtain the carboxyl end amount ( ⁇ equivalent / g). The end point was determined from the discoloration of the phenolphthalein indicator.
  • the pressure inside the tank of the autoclave (hereinafter also simply referred to as “inside the tank”) is about 2.5 kg / cm 2 as gauge pressure (hereinafter, all the pressure inside the tank is expressed as gauge pressure (G)). Heating was continued until At this time, the liquid temperature was about 145 ° C. While maintaining the pressure in the tank at about 2.5 kg / cm 2 (G), heating was continued while removing water out of the system, and the aqueous solution in the tank was concentrated to a concentration of about 85% by mass.
  • the inside of the tank was maintained under a reduced pressure of 100 torr (1.33 ⁇ 10 4 Pa) for 10 minutes with a vacuum apparatus. Then, the inside of the tank was pressurized with nitrogen, and the product was discharged in a strand form from the lower nozzle (nozzle). Further, the strand-like product was cooled with water and cut to obtain a pellet-like precursor polyamide (precursor polyamide pellet).
  • the total active terminal amount ([NH 2 ] + [COOH]) of this precursor polyamide was 98 ⁇ eq / g, and the ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]). [NH 2 ] / ([NH 2 ] + [COOH]) was 0.37.
  • the obtained polyamide was dried in a nitrogen stream to adjust the moisture content to less than about 0.2% by mass, and then each property of the polyamide was measured based on the above measurement method.
  • the total active terminal amount ([NH 2 ] + [COOH]) of the obtained precursor polyamide was 91 ⁇ equivalent / g, and the total active terminal amount of amino terminal amount [NH 2 ] ([NH 2 ] + [COOH]).
  • [NH 2 ] / ([NH 2 ] + [COOH]) which is the ratio to, was 0.49.
  • the obtained polyamide was dried in a nitrogen stream to adjust the moisture content to less than about 0.2% by mass, and then each property of the polyamide was measured based on the above measurement method.
  • the total active terminal amount ([NH 2 ] + [COOH]) of this precursor polyamide was 85 ⁇ eq / g, the ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]).
  • [NH 2 ] / ([NH 2 ] + [COOH]) was 0.39.
  • the obtained polyamide was dried in a nitrogen stream to adjust the moisture content to less than about 0.2% by mass, and then each property of the polyamide was measured based on the above measurement method.
  • the total active terminal amount ([NH 2 ] + [COOH]) of this precursor polyamide was 102 ⁇ eq / g, the ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]).
  • [NH 2 ] / ([NH 2 ] + [COOH]) was 0.55.
  • the obtained polyamide was dried in a nitrogen stream to adjust the moisture content to less than about 0.2% by mass, and then each property of the polyamide was measured based on the above measurement method.
  • the obtained polyamide was dried in a nitrogen stream to adjust the moisture content to less than about 0.2% by mass, and then each property of the polyamide was measured based on the above measurement method.
  • the obtained polyamide was dried in a nitrogen stream to adjust the moisture content to less than about 0.2% by mass, and then each property of the polyamide was measured based on the above measurement method.
  • the liquid temperature was continuously heated from about 50 ° C. to 210 ° C., and heating was continued while removing water out of the system in order to keep the pressure in the autoclave tank at 17.5 kg / cm 2 as a gauge pressure. Thereafter, the internal temperature was raised to 320 ° C., and the pressure was reduced while taking about 120 minutes until the pressure in the tank reached atmospheric pressure (gauge pressure was 0 kg / cm 2 ). Thereafter, nitrogen gas was allowed to flow through the tank for 30 minutes, and the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) was about 323 ° C. to obtain a polymer.
  • the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut and discharged in a pellet form to obtain copolymer polyamide pellets.
  • Each physical property of the obtained polyamide was measured based on the above method.
  • the internal temperature was maintained at 160 ° C. for 30 minutes, and while continuing to heat while removing the steam from the system, the solution was concentrated until the concentration of the aqueous solution reached 70% by mass.
  • the removal of water was stopped and heating was continued until the internal pressure of the tank reached about 35 kg / cm 2 (the liquid temperature in this system was about 250 ° C.).
  • the prepolymer was obtained by reacting for 1 hour until the final temperature reached 300 ° C. while removing water out of the system.
  • the prepolymer was pulverized to a size of 3 mm or less, and then dried at 100 ° C. for 24 hours in an atmosphere in which nitrogen gas was flowed at a flow rate of 20 L / min. Thereafter, a prepolymer was subjected to solid phase polymerization at 280 ° C. for 10 hours in an atmosphere in which nitrogen gas was flowed at a flow rate of 200 mL / min, to obtain a polyamide.
  • the composition and polymerization conditions of this polyamide are shown in Table 2A.
  • the autoclave was heated up to 22 kg / cm 2 .
  • the reaction was continued as it was for 1 hour, then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours, and the reaction was carried out while gradually removing water vapor and keeping the pressure at 22 kg / cm 2 .
  • the pressure was reduced to 10 kg / cm 2 over 30 minutes, and the reaction was further continued for 1 hour to obtain a prepolymer.
  • the prepolymer was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less. This was solid-phase polymerized at 230 ° C. and 0.1 mmHg for 10 hours to obtain polyamide.
  • the polyamides (PA-1 to PA-9) obtained in the above Production Examples 1 to 9 were dried in a nitrogen stream and the moisture content was adjusted to about 0.2% by mass, and then the raw material for the polyamide composition Used as.
  • a twin screw extruder [ZSK-26MC: manufactured by Coperion (Germany)] was used as an apparatus for producing the polyamide composition.
  • the twin screw extruder has an upstream supply port in the first barrel from the upstream side of the extruder, a downstream first supply port in the sixth barrel, and a downstream second supply port in the ninth barrel.
  • L / D extruder cylinder length / extruder cylinder diameter
  • the number of barrels was 12.
  • the temperature from the upstream supply port to the die is set to the melting peak temperature Tm2 + 10 ° C. of each (A) polyamide produced in the above production example, the screw rotation speed is set to 250 rpm, and the discharge amount is set to 25 kg / h. did.
  • the inorganic filler (C) was supplied from the downstream second supply port of the twin-screw extruder in the types and proportions described in Table 2B below.
  • the raw materials supplied as described above were melt-kneaded with a twin-screw extruder to produce polyamide composition pellets.
  • the obtained polyamide composition pellets were dried in a nitrogen stream, and the water content in the polyamide composition was reduced to 500 ppm or less.
  • Various evaluations were performed as described above using the polyamide composition after adjusting the water content. The evaluation results are shown in Table 2B below.
  • the polyamide compositions of Examples 2-1 to 2-3 have high initial reflectivity, reflectivity retention after the reflow process, reflectivity retention after heat treatment, and excellent mold release properties. I understood that.
  • the comparative example in which the trans isomer ratio is out of the scope of the present invention was inferior to the examples, particularly in the reflectance retention and the aging retention after the reflow process.
  • Comparative Examples 2-1 and 2-2 in which the ratio of the trans isomer was low and the ratio of the amino terminal amount to the total active terminal amount was 0.5 or more were inferior to the Examples in terms of releasability. From the above results, it was shown that the polyamide composition of the present invention is excellent in reflectance retention, aging retention and releasability, and therefore can be suitably used for LED reflectors.
  • the present example relates to a polyamide composition molded article obtained by molding the second polyamide composition using the second polyamide.
  • Example 3 Measuring methods for raw materials and physical properties used in Examples and Comparative Examples are shown below.
  • C6DA Hexamethylenediamine
  • C10DA Decamethylenediamine
  • C11DA Undecamethylenediamine
  • C12DA Dodecamethylenediamine
  • the mol% of 1,4-cyclohexanedicarboxylic acid was determined by calculation as (number of moles of 1,4-cyclohexanedicarboxylic acid added as a raw material monomer / number of moles of all dicarboxylic acid units added as a raw material monomer) ⁇ 100. It was.
  • the mol% of the aliphatic diamine was determined by calculation as (number of moles of aliphatic diamine added as a raw material monomer / number of moles of all diamine units added as a raw material monomer) ⁇ 100.
  • the denominator and numerator do not include the number of moles of aliphatic diamine added as an additive during melt polymerization.
  • the melting point (Tm) of the sample at a heating rate of 20 ° C./min in the nitrogen atmosphere (first time) The melting peak temperature appearing on the highest temperature side of the endothermic peak (melting peak) appearing at the time of temperature rise was Tm1 (° C.), and the peak area of Tm1 was the heat of fusion ⁇ Hm1 (J / g). Further, the melting peak temperature Tm2 and the heat of fusion ⁇ Hm2 of the starting polyamide can be measured as follows. After the first temperature increase, the temperature is maintained for 2 minutes in the molten state at the maximum temperature increase, then the temperature is decreased to 30 ° C. at a temperature decrease rate of 20 ° C./min, maintained at 30 ° C.
  • the endothermic peak temperature that appears at the highest temperature side of the endothermic peak that appears when the temperature is similarly raised at the same temperature (° C./min) is the melting peak temperature Tm2 of the polyamide itself, and the peak area at Tm2 is the polyamide area.
  • the temperature of the exothermic peak (crystallization peak) that appears when the temperature is lowered at a rate of temperature decrease of 20 ° C./min is defined as the crystallization peak temperature Tc (° C.), and the total peak area of Tc is the crystallization enthalpy ⁇ Hc (J / g). did.
  • the glass transition temperature Tg (° C) was measured by using Diamond-DSC manufactured by PERKIN-ELMER according to JIS-K7121.
  • the measurement conditions were as follows: a sample obtained by melting the polyamide obtained in Examples and Comparative Examples on a hot stage (EP80 manufactured by Mettler) was rapidly cooled and solidified using liquid nitrogen, and the measurement sample and did. Using 10 mg of the sample, the glass transition temperature was measured by raising the temperature in the range of 30 to 350 ° C. under a temperature raising speed of 20 ° C./min.
  • Trans isomer ratio 30-40 mg of the polyamides obtained in Examples and Comparative Examples were dissolved in 1.2 g of hexafluoroisopropanol deuterated and measured by 1 H-NMR (ECA500 manufactured by JEOL).
  • the trans isomer ratio of the 1,4-cyclohexanedicarboxylic acid monomer unit of the polyamide is 2.00 ppm peak area derived from the trans isomer, and 1.77 ppm and 1.87 ppm peak area ratio derived from the cis isomer. I asked for it.
  • Molecular weight Number average molecular weight Mn, weight average molecular weight Mw, molecular weight distribution Mw / Mn are GPC (gel permeation chromatography, manufactured by Tosoh Corporation, HLC-8020, hexafluoroisopropanol solvent, PMMA (polymethyl methacrylate) standard sample. A calibration curve was prepared using the number average molecular weight Mn measured by Polymer Laboratories Co., Ltd., and the molecular weight of the polyamide obtained in this example and the comparative example was obtained.
  • the GPC column was TSK-GEL GMHHR. -M and G1000HHR were used.
  • Carboxyl end amount ([COOH]) In the polyamides obtained in the examples and comparative examples, the amount of carboxyl terminal bound to the polymer terminal was measured by neutralization titration as follows. 4.0 g of polyamide was dissolved in 50 mL of benzyl alcohol, and the resulting solution was titrated with 0.1N NaOH to obtain the carboxyl end amount ( ⁇ equivalent / g). The end point was determined from the discoloration of the phenolphthalein indicator.
  • Example 3-1 (Production of polyamide)
  • the polymerization reaction of polyamide was carried out as follows by a hot melt polymerization method. CHDA 802 g (4.66 mol) as a dicarboxylic acid unit, 2MC5DA 217 g (1.86 mol) and C10DA 482 g (2.79 mol) as a diamine unit are dissolved in 1500 g of distilled water, and an equimolar aqueous solution of about 50% by mass of the starting monomer is equimolar. Was made.
  • the obtained aqueous solution was charged into an autoclave having an internal volume of 5.4 L (manufactured by Nitto Koatsu), and 5.4 g of 2MC5DA was further added to the autoclave as an additional diamine.
  • the temperature was maintained until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was purged with nitrogen.
  • the pressure in the autoclave tank (hereinafter, also simply referred to as “inside the tank”) is about 2.5 kg / cm 2 (G) as gauge pressure (hereinafter, all pressure in the tank is expressed as gauge pressure).
  • the liquid temperature was continuously heated from about 50 ° C. until the temperature reached (the liquid temperature in this system was about 145 ° C.).
  • the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) in the tank was about 330 ° C. While the resin temperature was kept at about 330 ° C., the inside of the tank was maintained under a reduced pressure of about 50 kPa for 20 minutes with a vacuum apparatus to obtain a polymer. Thereafter, the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut and discharged in a pellet form to obtain a precursor polyamide pellet (precursor polyamide pellet). .
  • the total active terminal amount ([NH 2 ] + [COOH]) of this precursor polyamide was 115 ⁇ eq / g, the ratio of the amino terminal amount [NH 2 ] to the active terminal total amount ([NH 2 ] + [COOH]).
  • [NH 2 ] / ([NH 2 ] + [COOH]) was 0.39.
  • Example 3-2 A polyamide composition molded article was obtained in the same manner as in Example 3-1, except that the amount of 2MC5DA additional diamine was 4.3 g. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the active terminal total amount ([NH 2 ] + [COOH]) of this precursor polyamide is 118 ⁇ equivalent / g, the active terminal total amount of amino terminal amount [NH 2 ] ([NH 2 ] + [COOH]).
  • the ratio to [NH 2 ] / ([NH 2 ] + [COOH]) was 0.29.
  • Example 3-3 A polyamide composition molded article was obtained in the same manner as in Example 3-1, except that the amount of 2MC5DA additional diamine was changed to 0 g. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the active terminal total amount ([NH 2 ] + [COOH]) of this precursor polyamide is 135 ⁇ equivalent / g, and the amino terminal amount [NH 2 ] active terminal total amount ([NH 2 ] + [COOH]).
  • [NH 2 ] / ([NH 2 ] + [COOH]) which is the ratio to, was 0.17.
  • Example 3-4 A polyamide composition molded article was obtained in the same manner as in Example 3-3, except that the precursor polyamide pellets obtained by melt polymerization were dried at 250 ° C. for 10 hours in a vacuum dryer. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 3-5 CHDA 795 g (4.62 mol) as dicarboxylic acid units, 2MC5DA 188 g (1.62 mol) and C10DA 517 g (3.00 mol) as diamine units were dissolved in 1500 g of distilled water, and an equimolar aqueous solution of about 50% by mass of raw material monomers was obtained.
  • a polyamide composition molded product was obtained in the same manner as in Example 3-3, except that was prepared. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the total active terminal amount of the precursor polyamide ([NH2] + [COOH]) is 132 ⁇ eq / g, based on the total active terminal amount of the amino terminal amount [NH 2 ] ([NH 2 ] + [COOH]).
  • the ratio [NH 2 ] / ([NH 2 ] + [COOH]) was 0.21.
  • Example 3-6 10 kg of the precursor polyamide pellet obtained by using melt polymerization was put in a vacuum dryer and sufficiently purged with nitrogen. After flowing nitrogen at 10 L / min, the precursor polyamide pellet was stirred at 235 ° C. for 10 hours while stirring. And heated. Thereafter, the temperature in the vacuum dryer was lowered to about 50 ° C. with nitrogen flowing, and the polyamide pellets were removed from the vacuum dryer in the form of pellets to obtain polyamide. Except for these, a polyamide composition molded article was obtained in the same manner as in Example 3-5. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • Example 3-1 A polyamide composition molded product was obtained in the same manner as in Example 3-1, except that the amount of 2MC5DA additional diamine was 13 g, and the precursor polyamide pellets obtained by subsequent melt polymerization were dried at 150 ° C. for 10 hours in a vacuum dryer. Obtained. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods. The measurement results are shown in Table 3B.
  • the active terminal total amount ([NH 2 ] + [COOH]) of this precursor polyamide is 123 ⁇ equivalent / g, the active terminal total amount of amino terminal amount [NH 2 ] ([NH 2 ] + [COOH]). [NH 2 ] / ([NH 2 ] + [COOH]), which is the ratio to, was 0.55.
  • Comparative Example 3-2 A polyamide composition molded article was obtained in the same manner as in Comparative Example 3-1, except that the precursor polyamide pellets obtained by melt polymerization were dried at 200 ° C. for 10 hours in a vacuum dryer. Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the liquid temperature is continuously heated from about 50 ° C. to 210 ° C., and the pressure in the autoclave tank is referred to as gauge pressure (hereinafter, all the pressure in the tank is expressed as gauge pressure (G)), 17.5 kg / Heating was continued while removing water out of the system to maintain cm 2 (G). Thereafter, the internal temperature was raised to 320 ° C., and the pressure was reduced while taking about 120 minutes until the pressure in the tank reached atmospheric pressure (gauge pressure was 0 kg / cm 2 ). Thereafter, nitrogen gas was allowed to flow through the tank for 30 minutes, and the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) was about 323 ° C. to obtain a polymer.
  • the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut and discharged in a pellet form to obtain copolymer polyamide pellets.
  • a polyamide composition and a polyamide composition molded article were produced based on Example 3-1.
  • Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the solution in the autoclave was stirred and the internal temperature was raised to 160 ° C. over 50 minutes. Thereafter, the internal temperature was maintained at 160 ° C. for 30 minutes, and while continuing to heat while removing the steam from the system, the solution was concentrated until the concentration of the aqueous solution reached 70% by mass. The removal of water was stopped and heating was continued until the internal pressure of the tank reached about 35 kg / cm 2 (the liquid temperature in this system was about 250 ° C.). In order to keep the pressure in the tank at about 35 kg / cm 2 , the prepolymer was obtained by reacting for 1 hour until the final temperature reached 300 ° C. while removing water out of the system.
  • the prepolymer was pulverized to a size of 3 mm or less, and then dried at 100 ° C. for 24 hours in an atmosphere in which nitrogen gas was flowed at a flow rate of 20 L / min. Thereafter, a prepolymer was subjected to solid phase polymerization at 280 ° C. for 10 hours in an atmosphere in which nitrogen gas was flowed at a flow rate of 200 mL / min, to obtain a polyamide.
  • the production of the polyamide composition and the production of the molded article of the polyamide composition were based on Example 3-1, and a polyamide composition and its molded article were obtained.
  • Various physical properties of the obtained polyamide composition molded article were measured based on the above methods.
  • the autoclave was heated up to 22 kg / cm 2 .
  • the reaction was continued as it was for 1 hour, then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours, and the reaction was carried out while gradually removing water vapor and keeping the pressure at 22 kg / cm 2 .
  • the pressure was reduced to 10 kg / cm 2 over 30 minutes, and the reaction was further continued for 1 hour to obtain a prepolymer.
  • the prepolymer was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less. This was solid-phase polymerized at 230 ° C. and 0.1 mmHg for 10 hours to obtain polyamide.
  • the polyamide composition and the polyamide composition molded article were produced based on Example 3-1.
  • Various physical properties of the obtained polyamide composition molded article were measured based on the above methods. The evaluation results are shown in Table 3A and Table 3B below.
  • the polyamides of the present invention have the polyamide compositions of Examples 3-1 to 3-6 by increasing the ratio of heat of fusion ⁇ Hm1 / crystallization enthalpy ⁇ Hc, which is an index of crystal growth.
  • the molded article had excellent properties in hot strength and hot stiffness. In general, when the polymer absorbs water, degradation occurs due to hydrolysis and chemical penetration, and so-called LLC resistance is lowered. However, the molded article containing the polyamide of the present invention is resistant to LLC as shown in the tensile strength retention after immersion. Improved.
  • the penetration rate (degradation rate) of LLC differs between the amorphous part and the crystalline part of the molded product, and the amorphous part deteriorates faster than the crystalline part.
  • the amorphous part after molding of the composition As a result of the decrease and increase in the crystal part ( ⁇ Hm), it is considered that the LLC resistance was improved.
  • the molded article of the polyamide composition of the present invention has industrial applicability as various parts such as LED reflectors, automobiles, electric and electronic, industrial materials, and daily and household products.

Abstract

【課題】熱時強度及び熱時剛性に優れるポリアミド組成物成形品を提供する。 【解決手段】少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を重合させたポリアミドを含有するポリアミド組成物成形品であって、この成形品における1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率を71~100モル%とする。

Description

ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
 本発明は、ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品およびその成形品の製造方法に関するものである。
 ポリアミド6(以下、「PA6」ともいう。)及びポリアミド66(以下、「PA66」ともいう。)等に代表されるポリアミドは、成形加工性、機械物性又は耐薬品性に優れていることから、自動車用、電気及び電子用、産業資材用、工業材料用、日用品用及び家庭品用等の各種部品材料として広く用いられている。
 近年、環境に対する取り組みとして、例えば自動車産業においては、排出ガス低減化を図るために、金属代替材料による車体軽量化の要求がある。この要求に応えるために、外装材料や内装材料等としてポリアミド材料が多く用いられるようになっており、ポリアミド材料に対する耐熱性、強度及び外観等の要求特性のレベルは一層向上している。特にエンジンルーム内の温度は上昇傾向にあるため、ポリアミド材料に対する高耐熱化の要求が強まっている。
 また、家電等の電気及び電子産業においては、表面実装(SMT)ハンダの鉛フリー化に対応するべく、ハンダの融点上昇に耐えられる、高耐熱性を有するポリアミド材料が要求されている。
 しかしながら、従来のPA6及びPA66等のポリアミドでは、融点が低く、耐熱性の点でさらなる改良が必要である。
 そこで、従来のPA6及びPA66等のポリアミドの問題点を解決するため、高融点ポリアミドが提案されており、たとえば、テレフタル酸とヘキサメチレンジアミンとを重合してなるポリアミド(以下、PA6Tともいう)が知られている。PA6Tは、低吸水性、高耐熱性、及び高耐薬品性という特性を有しているものの、融点が370℃程度という高融点ポリアミドであるため、溶融成形により成形品を得ようとしても、ポリアミドの熱分解が激しく起こり、充分な特性を有する成形品を得ることが難しい。
 PA6Tの熱分解に関する問題点を解決するために、PA6Tにポリアミド6及びポリアミド66(以下、それぞれPA6、PA66ともいう)等の脂肪族ポリアミドや、イソフタル酸とヘキサメチレンジアミンとからなる非晶性芳香族ポリアミド(以下、PA6Iともいう)等を共重合させ、融点を220~340℃程度にまで低融点化した高融点半芳香族ポリアミド(以下、PA6T共重合体ともいう)等が提案されている。
 このようなPA6T共重合体として、特許文献1には、芳香族ジカルボン酸と脂肪族ジアミンとからなり、脂肪族ジアミンがヘキサメチレンジアミン及び2-メチルペンタメチレンジアミンの混合物である芳香族ポリアミド(以下、PA6T/2MPDTともいう)が開示されている。PA6T/2MPDTは、従来のPA6T共重合体の問題点を一部改善することができるものの、流動性、成形性、靭性、成形品表面外観及び耐光性の面での改善水準は不充分である。
 良好な耐熱性及び成形性を有するポリアミドとして、アジピン酸とテトラメチレンジアミンとからなる高融点脂肪族ポリアミド(以下、PA46ともいう)が知られているが、PA46は吸水率が高く、また、吸水による寸法変化や機械物性の低下が著しく大きいという問題があり、自動車用途等で要求される寸法変化の面で要求を満たせない場合がある。
 脂環族ジカルボン酸と脂肪族ジアミンとからなる脂環族ポリアミドとして、例えば、特許文献2や3には、1,4-シクロヘキサンジカルボン酸とヘキサメチレンジアミンとからなる脂環族ポリアミド(以下、PA6Cともいう)と他のポリアミドとの半脂環族ポリアミド(以下、PA6C共重合体ともいう)が開示されている。しかし、特許文献2や3に開示されているPA6C、PA6C共重合体も吸水率が高く、流動性が不充分である等の問題がある。
 特許文献4には、1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と2-メチル-1,8-オクタンジアミンを含むジアミン単位とからなるポリアミドが、耐光性、靭性、成形性、軽量性、及び耐熱性等に優れていることが開示されているが、このポリアミドも、靭性、強度及び流動性の面での改善が不充分である。
 特許文献5には、全カルボン酸成分中、トランス体/シス体がモル比にして50/50~97/3である1,4-シクロヘキサンジカルボン酸を10~80モル%含有するジカルボン酸成分と脂肪族ジアミン成分とを熱重縮合して得られるポリアミドが記載されており、原料モノマーのトランス体/シス体の比率を所定の範囲としたポリアミドは、靭性、耐薬品性に優れるとともに、成形性に優れることが記載されている。
 また、特許文献6には、脂環族ジカルボン酸を含むジカルボン酸と、主鎖から分岐した置換基を持つジアミンを含むジアミンとを重合させたポリアミドが記載されており、原料モノマーの脂環族ジカルボン酸は高温で異性化し一定の比率になることやシス体の方がトランス体に比べて、ジアミンとの当量塩の水溶性が高いことから、原料モノマーのトランス体/シス体のモル比はシス体が多いことが好ましいこと、また、ポリアミド中の脂環族ジカルボン酸全体のトランス異性体比率は50~85モル%が好ましいことが記載されている。
 さらに、特許文献7には、脂環族ジカルボン酸を含むジカルボン酸と、炭素数8以上のジアミンとを原料として用いた共重合ポリアミドが記載されており、同様に、原料モノマーとしてはシス体が多いことが好ましいこと、共重合ポリアミドの脂環族ジカルボン酸に由来する部分におけるトランス異性体比率は65~80モル%が好ましいことが記載されている。
 さらに、特許文献8には、テレフタル酸単位を含有するジカルボン酸と、1,9-ノナンジアミン単位及び/又は2-メチル-1,8-オクタンジアミン単位を含有するジアミンと、からなるポリアミド樹脂(以下、「PA9T」ともいう。)と、酸化チタンと、水酸化マグネシウムと、特定の強化剤と、からなるポリアミド組成物が開示されており、このポリアミド組成物は耐熱性に優れていることが開示されている。
 さらにまた、特許文献9には、ジカルボン酸単位として1,4-シクロヘキサンジカルボン酸を70%以上配合した半脂環族ポリアミドと、酸化チタンと、無機充填材と、を含有し、それらの質量比を所定の値としたポリアミド組成物が開示されており、このポリアミド組成物は耐リフロー性及び耐熱性等に優れていることが開示されている。
 しかしながら、上記特許文献に開示されている従来のポリアミド又はポリアミド組成物は、耐熱変色性、押出加工性、及び成形加工安定性において、さらに高いレベルの特性を得るために、さらなる改良が求められる。
特表平6-503590号公報 特表平11-512476号公報 特表2001-514695号公報 特開平9-12868号公報 国際公開第2002/048239号 特開2010-111843号公報 国際公開第2012/093722号 特開2006-257314号公報 特開2011-219697号公報
 特許文献6や7に記載されているポリアミドは、原料モノマーのトランス体/シス体の比率に加えて、ポリアミド中の脂環族ジカルボン酸全体のトランス異性体比率を所定の範囲とすることで、高融点、靭性及び剛性に優れるという特徴に加えて、高いガラス転移温度による熱時剛性と、通常では耐熱性と相反する性質である流動性と、高い結晶性及び低吸水性とを同時に実現することが可能であることが記載されている。
 しかし、原料モノマーのトランス体/シス体の比率を調整しても、また成形品の原料であるポリアミドのトランス異性体比率を調整しても、成形品の機械物性が想定している以上に向上しないことが判明した。本発明者らが鋭意検討をしたところ、その原因がポリアミドのトランス異性体比率が成形品において維持されていないことにあることがわかり本発明に至った。
 本発明は、上記事情に鑑みてなされたものであり、熱時強度および熱時剛性に優れるポリアミド組成物成形品およびその成形品の製造方法、そのようなポリアミド組成物成形品を提供することが可能なポリアミド、そのポリアミドの製造方法、およびそのポリアミドを含むポリアミド組成物を提供することを目的とするものである。
 本発明のポリアミド組成物成形品は、
 少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、
を含むポリアミドを含有するポリアミド組成物成形品であって、
 成形品における1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率が71~100モル%である。
 なお、本発明および本明細書においてトランス異性比率モル%を、トランス/シス比率(モル比)あるいはトランス/シス異性体比率と記載する場合があるが、トランス/シス比率(モル比)あるいはトランス/シス異性体比率の記載から、トランス異性体比率モル%を一義的に導くことができる。トランス異性体比率とシス異性体比率の合計を100とすると、トランス/シス比率(モル比)として記載した場合、一方の比は、すなわち、一方の異性体比率(モル%)を示す。例えば、トランス/シス比率(モル比)が71/29の場合、トランス異性体比率は71モル%である。
 1,4-シクロヘキサンジカルボン酸の含有量は、ジカルボン酸単位中、少なくとも50モル%であることが好ましい。
 また、本発明のポリアミド組成物成形品は、JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHmと20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比が、
ΔHm/ΔHc>1.0
であることが好ましく、さらには
ΔHm/ΔHc≧1.5
であることが好ましい。
 なお、JIS-K7121に準じた示差走査熱量測定には入力補償DSCと熱流速DSCの2つの測定方法があるが、本発明において示差走査熱量測定は入力補償DSCにより測定されるものである。
 また、本発明のポリアミドにおける「トランス異性体比率」は、(a)ジカルボン酸単量体単位中に複数種の幾何異性体を含む場合には、複数種のそれぞれのトランス異性体比率の合計を意味する。
 本発明のポリアミド組成物成形品は、示差走査熱量測定における融解ピーク温度が300℃以上であることが好ましい。
 本発明のポリアミド組成物成形品は、融解熱量ΔHmが40J/g以上であること好ましい。
 トランス異性体比率モル%は80~100であることがより好ましい。
 本発明のポリアミド組成物成形品において、脂肪族ジアミン単位は、炭素数4~12の飽和脂肪族ジアミンであることが好ましく、炭素数6~10の飽和脂肪族ジアミンであることがより好ましい。
 本発明のポリアミド組成物成形品の製造方法は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドを含有するポリアミド組成物を成形し、成形したポリアミド組成物体を200℃以上で熱処理してポリアミド組成物成形品を製造するものである。
 また、本発明者らは、さらに、上記課題を解決するため鋭意検討を重ねた結果、特定のトランス異性体比率と結晶化度ΔHm1/ΔHcを制御したポリアミドとそのポリアミド組成物およびポリアミド組成物成形品が、上記課題を解決できることを見出した。
 すなわち本発明の第一のポリアミドは、
 (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
 (b)少なくとも脂肪族ジアミンを含むジアミン単位と、
を含有するポリアミドであって、
 JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcが、
 1.0<ΔHm1/ΔHc≦2.2
であり、
 ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
 71<トランス異性体比率≦75
である。
 本発明の第一のポリアミドにおいて、1,4-シクロヘキサンジカルボン酸の含有量は、ジカルボン酸単位中、少なくとも50モル%であることが好ましい。
 本発明の第一のポリアミドにおいて、ジカルボン酸単位は、すべて1,4-シクロヘキサンジカルボン酸であることが好ましい。
 本発明の第一のポリアミドにおいて、脂肪族ジアミンの炭素数は6~12であることが好ましい。
 本発明の第一のポリアミドにおいて、脂肪族ジアミンは、ヘキサメチレンジアミン、2-メチル-ペンタメチレンジアミン、2-メチル-1,8-オクタンジアミン、ノナメチレンジアミン、デカメチレンジアミン、またはドデカメチレンジアミンであることが好ましい。
 本発明の第一のポリアミドにおいて、特に、脂肪族ジアミンは、2-メチル-ペンタメチレンジアミンが好ましい。
 本発明の第一のポリアミドは、
(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
(b)少なくとも脂肪族ジアミンを含むジアミン単位と、
を含有するポリアミドであって、
 脂肪族ジアミンが分岐脂肪族ジアミンを含み、
 ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
 71<トランス異性体比率≦100
であってもよい。
 本発明の第一のポリアミドは、(b)ジアミン単位中の分岐脂肪族ジアミンの割合は、10~100モル%であることが好ましい。
 また、本発明の第一のポリアミドにおいて、ΔHm1/ΔHcが、
  1.0<ΔHm1/ΔHc≦1.4
であることが好ましい。
 さらに、ΔHm1/ΔHcをyとし、トランス異性体比率をxとしたとき、
  y≧0.04x-1.8
であることが好ましい。
 また、本発明の第一のポリアミドは、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、
 [NH]/([NH]+[COOH])<0.5
であることが好ましい。
 本発明の第一のポリアミドにおいて、活性末端合計量([NH]+[COOH])μ当量/gは、
 20<[NH]+[COOH]<60
であることが好ましい。
 本発明の第一のポリアミドにおいて、硫酸相対粘度ηrは、1.8<ηrであることが好ましい。
 本発明の第一のポリアミドにおいて、分子量分布である重量平均分子量Mw/数平均分子量Mnは、
 Mw/Mn<3.5
であることが好ましい。
 本発明の第一のポリアミドにおいて、ポリアミドの融解ピーク温度Tm1とポリアミドの結晶化ピーク温度Tcの差であるTm1-Tcは、40℃<Tm1-Tc<90℃であることが好ましい。
 本発明の第一のポリアミド組成物は、本発明の第一のポリアミドと、無機充填材、造核剤、熱安定剤および光安定剤から選ばれる少なくとも一つと、を含む。
 本発明の第一のポリアミド組成物は、酸化チタンをさらに含んでもよい。
 上記本発明のポリアミド組成物成形品は、本発明の第一のポリアミド組成物を成形してなるものであってもよい。
 本発明の第一のポリアミドの製造方法は、
(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、
 アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、
 [NH]/([NH]+[COOH])<0.5
であり、
 活性末端合計量([NH]+[COOH])μ当量/gが、
 60≦[NH]+[COOH]<110
であるポリアミドを、200℃以上融点未満で10時間以上熱処理するものである。
 なお、本発明のポリアミドの製造方法において、「融点」とは、JIS-K7121に準じた示差走査熱量測定(入力補償DSC)による、融解ピーク温度Tm2のことを示す。
 本発明の第二のポリアミドは、
 (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
 (b)少なくとも脂肪族ジアミンを含むジアミン単位と、
を含有するポリアミドであって、
 硫酸相対粘度ηrが2.5以上であり、
 JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcが、
 1.0<ΔHm1/ΔHc≦2.2
であり、
 ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
 75<トランス異性体比率≦100
である。
 本発明の第二のポリアミドにおいて、1,4-シクロヘキサンジカルボン酸の含有量は、ジカルボン酸単位中、少なくとも50モル%であることが好ましい。
 本発明の第二のポリアミドにおいて、ジカルボン酸単位は、すべて1,4-シクロヘキサンジカルボン酸であることが好ましい。
 本発明の第二のポリアミドにおいて、脂肪族ジアミンの炭素数は6~12であることが好ましい。
 本発明の第二のポリアミドにおいて、脂肪族ジアミンは、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、2-メチル-1,8-オクタンジアミン、ノナメチレンジアミン、デカメチレンジアミン、またはドデカメチレンジアミンであることが好ましい。
 本発明の第二のポリアミドにおいて、脂肪族ジアミンは、2-メチルペンタメチレンジアミン、またはデカメチレンジアミンであることが好ましい。
 本発明の第二のポリアミドは、
(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
(b)少なくとも脂肪族ジアミンを含むジアミン単位と、
を含有するポリアミドであって、
 脂肪族ジアミンが分岐脂肪族ジアミンを含み、
 硫酸相対粘度ηrが2.5以上であり、
 ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
71<トランス異性体比率≦100
であってもよい。
 本発明の第二のポリアミドにおいて、(b)ジアミン単位中の分岐脂肪族ジアミンの割合は、10~100モル%であることが好ましい。
 本発明の第二のポリアミドにおいて、ΔHm1/ΔHcは、1.4<ΔHm1/ΔHc≦2.2であることが好ましい。
 本発明の第二のポリアミドにおいて、ΔHm1/ΔHcをyとし、トランス異性体比率をxとしたとき、
  y≧0.04x-1.8
であることが好ましい。
 本発明の第二のポリアミドにおいて、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、
[NH]/([NH]+[COOH])<0.5
であることが好ましい。
 本発明の第二のポリアミドにおいて、分子量分布を示す重量平均分子量Mw/数平均分子量Mnは、Mw/Mn<3.5
であることが好ましい。
 本発明の第二のポリアミド組成物は、本発明の第二のポリアミドと、無機充填材、熱安定剤、および光安定剤から選ばれる少なくとも一つと、を含むことが好ましい。
 上記本発明のポリアミド組成物成形品は、本発明の第二のポリアミド組成物を成形してなるものであってもよい。
 本発明の第二のポリアミドの製造方法は、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、
 アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、[NH]/([NH]+[COOH])<0.5であり、活性末端合計量([NH]+[COOH])μ当量/gが、
 110≦[NH]+[COOH]≦200
であるポリアミドを、200℃以上融点未満で10時間以上熱処理するものである。
 本発明のポリアミド組成物成形品は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドを含有するポリアミド組成物成形品であって、この成形品におけるジカルボン酸単量体単位のトランス異性体比率が71~100モル%であるので、熱時強度及び熱時剛性に優れたものとすることができる。
 また、本発明のポリアミド組成物成形品の製造方法は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドを含有するポリアミド組成物を成形し、この成形したポリアミド組成物体を200℃以上で熱処理するので、成形品におけるジカルボン酸単量体単位のトランス異性体比率が71~100モル%となり、熱時強度及び熱時剛性に優れたポリアミド組成物成形品を製造することができる。
 また、本発明の第一のポリアミドは、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有するポリアミドであって、融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcが、1.0<ΔHm1/ΔHc≦2.2であり、ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率(モル%)が、71<トランス異性体比率≦75である。かかる構成を有することにより、ポリアミド組成物成形品においてもトランス異性体比率モル%を71より大きく75以下とすることができ、耐熱性、耐リフロー性、耐エージング性、離型性に優れる、本発明のポリアミド組成物成形品を得ることができる。
 また、本発明の第一のポリアミドの製造方法は、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、[NH]/([NH]+[COOH])<0.5であり、活性末端合計量([NH]+[COOH])μ当量/gが、60≦[NH]+[COOH]<110であるポリアミドを、200℃以上融点未満で10時間以上熱処理するものである。かかる構成を有することにより、ΔHm1/ΔHcが、1.0<ΔHm1/ΔHc≦2.2とし、ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率(モル%)を、71<トランス異性体比率≦75とすることができ、耐熱性、耐リフロー性、耐エージング性、離型性に優れる、ポリアミドおよびポリアミド組成物を提供することができる。
 本発明の第二のポリアミドは(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有するポリアミドであって、硫酸相対粘度ηrが2.5以上であり、ΔHm/ΔHcが1.0より大きく2.2以下であり、ジカルボン酸単量体単位のトランス異性体比率モル%が75より大きく100以下である。かかる構成を有することにより、ポリアミド組成物成形品においてもトランス異性体比率モル%を75より大きく100以下とすることができ、熱時強度、熱時剛性、及び低吸水に優れた本発明のポリアミド組成物成形品を得ることができる。
 また、本発明の第二のポリアミドの製造方法は、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、[NH]/([NH]+[COOH])<0.5であり、活性末端合計量([NH]+[COOH])μ当量/gが、110≦[NH]+[COOH]≦200であるポリアミドを、200℃以上融点未満で10時間以上熱処理するものである。かかる構成を有することにより、硫酸相対粘度ηrが2.5以上であり、ΔHm/ΔHcが1.0より大きく2.2以下であり、ジカルボン酸単量体単位のトランス異性体比率モル%が75より大きく100以下のポリアミドおよびポリアミド組成物を得ることができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。
 本発明のポリアミド組成物成形品は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドを含有するポリアミド組成物成形品であって、成形品におけるジカルボン酸単量体単位のトランス異性体比率が71~100モル%である。
 このようなポリアミド組成物成形品は、以下の方法によって得ることができる。
 一の方法は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位とを重合させたポリアミドを含有するポリアミド組成物を成形し、成形したポリアミド組成物体を200℃以上で熱処理してポリアミド組成物成形品を得るものである。
 また、別の方法は、特定のトランス異性体比率およびΔHm1/ΔHcを有する、上記第一のポリアミド組成物または第二のポリアミド組成物を成形してポリアミド組成物成形品を得るものである。
 以下、これらの方法を第一の実施形態から第三の実施形態として説明する。
 まず、本発明の第一の実施態様について説明する。
 第一の実施形態にかかるポリアミド組成物成形品は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドを含有するポリアミド組成物を成形し、成形したポリアミド組成物体を200℃以上で熱処理してポリアミド組成物成形品を得るものである。
 以下、第一の実施態様にかかるポリアミド組成物成形品を得るためのポリアミド組成物に含まれるポリアミドおよびその構成単位、そのポリアミドを含むポリアミド組成物、ポリアミド組成物成形品の製造方法について説明する。
〔ポリアミド〕
 本発明のポリアミド組成物成形品及びその製造方法におけるポリアミドは、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドである。
 なお、本明細書中、ポリアミドとは主鎖中にアミド結合(-NHCO-)を有する重合体を意味する。
(ジカルボン酸単位)
 ジカルボン酸単位は、少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸である。ジカルボン酸単位に1,4-シクロヘキサンジカルボン酸を含むことにより、強度、靭性及び熱時安定性等を満足し、かつ高い融点を有するとともに、流動性及び低吸水性にも優れるポリアミドを得ることができる。
 1,4-シクロヘキサンジカルボン酸の含有量は少なくとも50モル%が好ましい。1,4-シクロヘキサンジカルボン酸の割合が少なくとも50モル%、すなわち50モル%以上であることにより、強度及び靭性等に優れ、高い融点を有するポリアミドとすることができる。1,4-シクロヘキサンジカルボン酸の割合はより好ましくは60~100モル%であり、さらに好ましくは70~100モル%であり、最も好ましくは100モル%である。
 ジカルボン酸単位中の1,4-シクロヘキサンジカルボン酸以外のジカルボン酸の割合は0~50モル%であり、好ましくは0~40モル%であり、より好ましくは0~30モル%である。
 1,4-シクロヘキサンジカルボン酸には、トランス体及びシス体の幾何異性体が存在する。ポリアミドの原料モノマーとしての1,4-シクロヘキサンジカルボン酸はトランス体及びシス体の幾何異性体が存在しており、トランス体、シス体のどちらか一方を用いても、トランス体、シス体の種々の比率の混合物を用いてもよいが、高温で異性化し一定の比率になることや、シス体の方がトランス体に比べて後述するジアミンとの当量塩の水溶性が高いという観点から原料モノマーとしては、トランス/シス比率がモル比にして、50/50~0/100であることが好ましく、より好ましくは40/60~10/90であり、さらには35/65~15/85であることが好ましい。
 1,4-シクロヘキサンジカルボン酸のトランス/シス比率(モル比)は、核磁気共鳴分光法(NMR)により求めることができる。
 ジカルボン酸単位としては、1,4-シクロヘキサンジカルボン酸以外のジカルボン酸を含んでいてもよく、例えば、脂肪族ジカルボン酸及び芳香族ジカルボン酸等が挙げられる。
 脂肪族ジカルボン酸としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、2,3-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,3-ジエチルグルタル酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、ジグリコール酸等の炭素数3~20の直鎖又は分岐状飽和脂肪族ジカルボン酸等が挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等の無置換又は種々の置換基で置換された炭素数8~20の芳香族ジカルボン酸等が挙げられる。
 芳香族ジカルボン酸における種々の置換基としては、例えば、炭素数1~4のアルキル基、炭素数6~10のアリール基、炭素数7~10のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数1~6のシリル基、並びにスルホン酸基及びそのナトリウム塩等が挙げられる。
 1,4-シクロヘキサンジカルボン酸以外のジカルボン酸を共重合する場合、耐熱性、流動性、靭性、低吸水性及び強度等の観点からすると、脂肪族ジカルボン酸が好ましく、炭素数が6以上である脂肪族ジカルボン酸がより好ましい。中でも、耐熱性及び低吸水性等の観点から、炭素数が10以上である脂肪族ジカルボン酸が好ましい。
 炭素数が10以上である脂肪族ジカルボン酸としては、例えば、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等が挙げられる。中でも、耐熱性等の観点から、セバシン酸又はドデカン二酸が好ましい。
 1,4-シクロヘキサンジカルボン酸以外のジカルボン酸は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ジカルボン酸として、さらに、本発明の目的を損なわない範囲で、トリメリット酸、トリメシン酸、ピロメリット酸等の3価以上の多価カルボン酸を含んでもよい。多価カルボン酸は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 1,4-シクロヘキサンジカルボン酸以外のジカルボン酸は、上記ジカルボン酸として記載の化合物に限定されるものではなく、ジカルボン酸と等価な化合物であってもよい。ジカルボン酸と等価な化合物は、ジカルボン酸に由来するジカルボン酸構造と同様のジカルボン酸構造となり得る化合物であれば特に限定されるものではなく、例えば、ジカルボン酸の無水物及びハロゲン化物等が挙げられる。
 1,4-シクロヘキサンジカルボン酸以外のジカルボン酸として、炭素数10以上の脂肪族ジカルボン酸を含む場合には、好ましくは1,4-シクロヘキサンジカルボン酸が50~99.9モル%及び炭素数10以上の脂肪族ジカルボン酸が0.1~50モル%であり、より好ましくは1,4-シクロヘキサンジカルボン酸が60~99モル%及び炭素数10以上の脂肪族ジカルボン酸が1~40モル%であり、さらに好ましくは1,4-シクロヘキサンジカルボン酸が70~99モル%及び炭素数10以上の脂肪族ジカルボン酸が1~30モル%であることが好ましい。
(ジアミン単位)
 ジアミン単位は少なくとも脂肪族ジアミンを含む。ジアミン単位として、脂肪族ジアミンを含むものを使用することにより、強度、靭性等を同時に満足し、かつ成形性も優れているポリアミドを得ることができる。ジアミン単位中の脂肪族ジアミンの割合は少なくとも50モル%以上であることが好ましく、より好ましくは60~100モル%であり、さらには70~100モル%であり、特には100モル%が好ましい。脂肪族ジアミンを少なくとも50モル%含むことにより、より強度及び靭性等に優れ、高い融点を有するポリアミドとすることができる。
 脂肪族ジアミンは、耐熱性、流動性、靭性、低吸水性及び強度等の観点から、炭素数2~20の飽和脂肪族ジアミンであることが好ましく、より好ましくは炭素数4~12の飽和脂肪族ジアミンであり、さらには炭素数6~10の飽和脂肪族ジアミンであることが好ましい。脂肪族ジアミンは1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 飽和脂肪族ジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルヘキサメチレンジアミン、2,4-ジメチルヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、2-メチルオクタメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等の炭素数2~20の飽和脂肪族ジアミン等が挙げられる。
 耐熱性、流動性、靭性、低吸水性及び強度等の観点からすれば、2-メチルペンタメチレンジアミン、ヘキサメチレンジアミン、デカメチレンンジアミン、ドデカメチレンジアミンがより好ましい。
 ジアミン単位として、さらに、本発明の目的を損なわない範囲で、ビスヘキサメチレントリアミン等の3価以上の多価脂肪族アミンを含んでもよい。
 多価脂肪族アミンは、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ジアミン単位として、本発明の目的を損なわない範囲で、芳香族ジアミン、脂環族ジアミン等の脂肪族ジアミン以外のジアミンを含んでもよい。
 芳香族ジアミンとしては、例えば、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミン等が挙げられる。
 脂環族ジアミンとしては、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,3-シクロペンタンジアミン等が挙げられる。
 (ラクタム及び/又はアミノカルボン酸)
 ポリアミドは、靭性の観点からラクタム及び/又はアミノカルボン酸をさらに共重合させたポリアミドであってもよい。ラクタム及び/又はアミノカルボン酸とは、ポリアミドに重合可能なラクタム及び/又はアミノカルボン酸を意味する。
 ラクタム及び/又はアミノカルボン酸としては、炭素数が4~14のラクタム及び/又はアミノカルボン酸が好ましく、炭素数6~12のラクタム及び/又はアミノカルボン酸がより好ましい。
 ラクタムとしては、例えば、ブチロラクタム、ピバロラクタム、ε-カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、及びラウロラクタム(ドデカノラクタム)等が挙げられる。中でも、靭性の観点で、ε-カプロラクタム及びラウロラクタム等が好ましく、ε-カプロラクタムがより好ましい。
 アミノカルボン酸としては、例えば、ラクタムが開環した化合物であるω-アミノカルボン酸やα,ω-アミノ酸等が挙げられる。
 アミノカルボン酸としては、ω位がアミノ基で置換された炭素数4~14の直鎖又は分岐状飽和脂肪族カルボン酸であることが好ましく、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられ、アミノカルボン酸としては、パラアミノメチル安息香酸等も挙げられる。
 ラクタム及び/又はアミノカルボン酸は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ラクタム及び/又はアミノカルボン酸の添加量は、ジカルボン酸単位、ジアミン単位及びラクタム及び/又はアミノカルボン酸の各モノマー全体のモル量に対して、0~20モル%であることが好ましい。
(末端封止剤)
 ポリアミドは、上述したジカルボン酸単位、ジアミン単位、さらに必要に応じてラクタム及び/又はアミノカルボン酸を用いて重合する際に、分子量調節のために公知の末端封止剤を用いてもよく、分子末端に末端封止剤の残基を有していてもよい。
 末端封止剤としては、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられ、熱安定性の観点で、モノカルボン酸又はモノアミンが好ましい。
 末端封止剤としては、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノカルボン酸としては、アミノ基との反応性を有するものであれば、特に限定されるものではなく、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、及びイソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環族モノカルボン酸;並びに安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸;等が挙げられる。
 モノカルボン酸としては、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノアミンとしては、カルボキシル基との反応性を有するものであれば、特に限定されるものではなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、及びジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン及びジシクロヘキシルアミン等の脂環族モノアミン;アニリン、トルイジン、ジフェニルアミン、及びナフチルアミン等の芳香族モノアミン;並びにピロリジン、ピペリジン、3-メチルピペリジン等の環状アミン;等が挙げられる。
 モノアミンは、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
〔ポリアミドの製造方法〕
 ポリアミドの製造方法としては、特に限定されるものではなく、例えば、以下に例示する方法等が挙げられる。
 1)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、熱溶融重合法という)。
 2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、熱溶融重合・固相重合法という)。
 3)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融して重合度を上昇させる方法(以下、プレポリマー・押出重合法という)。
 4)ジカルボン酸・ジアミン塩又は、その混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、プレポリマー・固相重合法という)。
 5)ジカルボン酸・ジアミン塩又はその混合物を固体状態に維持したまま、一段で重合させる方法(以下、一段固相重合法という)。
 6)ジカルボン酸と等価なジカルボン酸ハライドとジアミンとを用いて重合させる方法(以下、溶液法という)。
 ポリアミドの製造方法としては、1)熱溶融重合法、2)熱溶融重合・固相重合法、4)プレポリマー・固相重合法が好ましく、より好ましくは、1)熱溶融重合法、2)熱溶融重合・固相重合法が望ましく、ポリアミドの重合サイクル時間の短縮、分子量を向上させる点で、熱溶融重合法が好ましい。
 ジカルボン酸単位の添加量とジアミン単位の添加量とは、同モル量付近であることが好ましい。重合反応中のジアミン単位の反応系外への逃散分もモル比においては考慮して、ジカルボン酸単位全体のモル量1に対して、ジアミン単位全体のモル量は、好ましくは0.9~1.2であり、より好ましくは0.95~1.1であり、さらには0.98~1.05であることが好ましい。
 ポリアミドの製造工程において、重合を行う際には、重合時に添加物を加えておくことが好適である。重合時の添加物としては、ジアミンが挙げられる。このジアミンは、等モル量のジカルボン酸・ジアミン塩の製造に用いるジアミン単位とは別に、さらに添加するジアミンを意味し、添加物としてのジアミンの添加量は、好ましくは0.1~10モル%であり、より好ましくは0.5~5.0モル%であり、さらに好ましくは1.5~4.5モル%であり、よりさらに好ましくは2.6~4.0モル%である。このジアミンは、ジカルボン酸・ジアミン塩の製造に用いられるジアミン単位と同一成分でも別の化合物でも構わない。ジアミン等を加えることにより、重合度の上昇や調節ができるため、分子量を制御するための方法として有効である。
 ポリアミドの製造方法において、重合形態としてはバッチ式でも連続式でもよい。また、固相重合法以外の方法により用いる反応器に関しては、例えば、オートクレーブ型の反応器、タンブラー型反応器、及び、ニーダー等の押出機型反応器等が挙げられ、これらを用いて各種重合反応を行うことができる。固相重合法の場合には、例えば、タンブラー型の反応器、振動乾燥機型の反応器、ナウターミキサー型の反応器、及び攪拌型の反応器等を用いて行うことができる。
 具体的には、ポリアミドのペレット、フレーク、又は粉体を上記反応器に入れ、ポリアミドを重合する。このとき、窒素、アルゴン、ヘリウム等の不活性ガスの気流下又は減圧下で行ってもよく、また、反応器上部で減圧に内部気体を引きながら反応器下部から不活性ガスを供給してもよく、ポリアミドの融点以下の温度で加熱することによって、ポリアミドの分子量を向上させることができる。
 固相重合の反応温度は、好ましくは100~350℃であり、より好ましくは120~300℃であり、さらに好ましくは150~270℃である。
 重合後、加熱を停止し、好ましくは0~100℃、より好ましくは室温から60℃に反応温度が低下してから、反応器よりポリアミドを取り出して得ることができる。
 上記熱溶融重合法は公知の態様で行うことができるが、好ましくは100℃以上、より好ましくは120℃以上、最も好ましくは170℃以上の温度条件下で行うことが好ましい。例えば、1,4-シクロヘキサンジカルボン酸とヘキサメチレンアジパミドなどのジカルボン酸とジアミンとの混合物、固体塩又は水溶液を100~300℃の温度下、加熱濃縮し、発生する水蒸気圧を常圧~約5MPa(ゲージ圧)の間の圧力に保ち、最終的には圧力を抜き、常圧で又は減圧して重縮合を行う。また、ジカルボン酸とジアミンの混合物、固体塩または重縮合物を融点以下の温度で熱重縮合させる固相重合法なども用いることができる。これらの方法は必要に応じて組み合わせても構わない。
 ポリアミドの製造工程においては、上述したジカルボン酸単位とジアミン単位、必要に応じてラクタム及び/又はアミノカルボン酸を用いて重合する際に、分子量調節のために、上述した公知の末端封止剤をさらに添加して重合を行ってもよい。
〔ポリアミドの物性〕
(分子量)
 ポリアミドの分子量は25℃の硫酸相対粘度ηrを指標とし、25℃の硫酸相対粘度ηrは、2.3以上であることが好ましい。より好ましくは2.3~7.0であり、さらに好ましくは2.5~6.5であり、特に好ましくは3.0~6.5である。ポリアミドの、25℃における硫酸相対粘度ηrを制御する方法としては、例えば、ポリアミドの熱溶融重合時の添加物としてのジアミン及び末端封止剤の添加量、並びに重合条件を制御する方法等が有効な方法として挙げられる。
 25℃の硫酸相対粘度ηrが2.3以上であることで、ポリアミドは靭性及び強度等の機械物性に優れる。溶融流動性の観点から、ポリアミドの25℃の硫酸相対粘度ηrが7.0以下であると、流動性に優れるポリアミドとすることができる。
 25℃の硫酸相対粘度の測定は、JIS-K6920に準じて98%硫酸中、25℃で測定することができる。
<分子量>
 ポリアミドの分子量の指標としては、GPC(ゲルパーミエーションクロマトグラフィー)で得られる数平均分子量Mnと重量平均分子量Mw、分子量分布Mw/Mnを利用できる。Mnが大きいほど(A)ポリアミドの分子量が高く、小さいほど(A)ポリアミドの分子量が低い。
 ポリアミドの数平均分子量Mnは、好ましくは15000より大きく、より好ましくは、18000以上であり、さらに好ましくは20000以上である。
 また、(A)ポリアミドの分子量分布を示すMw/Mnは、好ましくは10未満であり、より好ましくは5以下である。
 数平均分子量Mnと分子量分布Mw/Mnが上記範囲であることにより、靭性及び剛性等の機械物性並びに成形性等により優れるポリアミド組成物となる傾向にある。なお、MnとMwはPMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算で測定した数平均分子量Mnを用いて、検量線を作製し、ポリアミドの分子量を求めることができる。より具体的には、後述する実施例の方法により測定することができる。
(融点)
 ポリアミドの融点Tm2は、耐熱性の観点から、280~350℃であることが好ましい。
 融点Tm2は、好ましくは280℃以上であり、より好ましくは305℃以上であり、さらに好ましくは315℃以上である。また、融点Tm2は、好ましくは350℃以下であり、より好ましくは340℃以下であり、さらに好ましくは335℃以下であり、よりさらに好ましくは330℃以下である。
 ポリアミドの融点Tm2が280℃以上であることにより、耐熱性に優れるポリアミドとすることができる。また、ポリアミドの融点Tm2が350℃以下であることにより、押出、成形等の溶融加工でのポリアミドの熱分解等を抑制することができる。
 ポリアミドの融解熱量ΔHm2は、耐熱性の観点から、10~100J/gであることが好ましく、14~100J/gであることがより好ましく、20~100J/gであることがさらに好ましい。
 ポリアミドの融点Tm2及び融解熱量△Hm2の測定は、下記実施例でも記載しているようにJIS-K7121に準じて行うことができる。融点及び融解熱量の測定装置としては、例えば、PERKIN-ELMER社製Diamond-DSC等が挙げられる。
〔ポリアミド組成物〕
 ポリアミド組成物は、上記ポリアミドの他、無機充填材やその他の添加剤を含有することができる。ポリアミド組成物として、無機充填材を含有することにより、耐熱性、熱時安定性に優れ、かつ高い融点を有するポリアミドの性質を損なうことなく、ポリアミド組成物としても、耐熱性、熱時安定性等を満足しながら、さらに、特に強度、成形加工性に優れたものとなる。
 (無機充填材)
 本実施形態のポリアミド組成物を構成する無機充填材としては、特に限定されるものではなく、公知の材料を用いることができる。
 例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ガラスフレーク、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、クレー、モンモリロナイト、膨潤性フッ素雲母、窒化珪素、及びアパタイト等が挙げられる。
 無機充填材は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 無機充填材のうち、ガラス繊維や炭素繊維は、断面が真円状でも扁平状でもよい。
扁平状の断面としては、例えば、長方形、長方形に近い長円形、楕円形、長手方向の中央部がくびれた繭型等が挙げられる。
 ガラス繊維や炭素繊維の中でも、優れた機械物性をポリアミド組成物に付与する観点から、ポリアミド組成物中において、数平均繊維径が3~30μmであり、重量平均繊維長が100~750μmであり、重量平均繊維長(L)と数平均繊維径(D)とのアスペクト比(L/D)が10~100であるガラス繊維又は炭素繊維が好ましく用いられる。
 ポリアミド組成物中の無機充填材の数平均繊維径は、例えば、ポリアミド組成物を電気炉に入れて、ポリアミド組成物に含まれる有機物を焼却処理し、残渣分から、例えば100本以上のガラス繊維を任意に選択し、SEMで観察して、繊維径を測定することにより数平均繊維径を求めることができる。
 ポリアミド組成物中の無機充填材の重量平均繊維長は、同様にしてガラス繊維を任意に選択し、倍率1000倍でのSEM写真を用いて繊維長を計測することにより重量平均繊維長を測定することができる。
 無機充填材としては、重量平均繊維長が1~15mmである強化繊維がより好ましい。このような強化繊維の重量平均繊維長は、機械的強度、剛性及び成形性の向上の観点から1~15mmであるものとし、好ましくは3~12mmである。
 なお、強化繊維の重量平均繊維長は、ポリアミド組成物のポリアミドのみ燃焼又は溶解させて除去した後、光学顕微鏡を用いて観察し、画像解析装置を用いて任意に選択した強化繊維400本の長さを測定し、平均値を算出することにより求められる。
 ここで、強化繊維一本一本の長さを、それぞれL1、L2、・・・、L400としたとき、一本ごとの重量平均繊維長の算出式は下記式で表される。なお、下記式中、「i」は、1~400までの整数をとる。
 重量平均繊維長=Σ(Li)/ΣLi
 なお、重量平均繊維長は、本実施形態のポリアミド組成物に含有されている状態の強化繊維に対して適用される値である。すなわち、ポリアミドに配合する前の段階の強化繊維の重量平均繊維長については上記に限定されない。
 強化繊維の材料としては、一般的にポリアミドに使用される強化繊維であれば特に制限はない。
 例えば、ガラス繊維、炭素繊維、ホウ素繊維、金属繊維(例:ステンレス繊維、アルミニウム繊維、銅繊維等)等の無機系のものや、ポリパラフェニレンテレフタルアミド繊維、ポリメタフェニレンテレフタルアミド繊維、ポリパラフェニレンイソフタルアミド繊維、ポリメタフェニレンイソフタルアミド繊維、ジアミノジフェニルエーテルとテレフタル酸又はイソフタル酸からの縮合物から得られる繊維等の全芳香族ポリアミド繊維、あるいは、全芳香族液晶ポリエステル繊維等の有機系のものが挙げられる。
 強化繊維としては、上記材料を単独で使用してもよく、2種以上を併用してもよい。中でも、機械的強度及び剛性の向上の観点から、ガラス繊維、炭素繊維、ホウ素繊維、金属繊維から選ばれる1種以上であることが好ましく、ガラス繊維及び/又は炭素繊維がより好ましい。
 強化繊維は、単繊維における平均繊維径に関して特に限定されるものではないが、例えば、直径5~25μmのものが一般的に使用される。
 なお、単繊維の平均繊維径は、使用する強化繊維を光学顕微鏡下で観察し、画像解析装置を用いて任意に選んだ400本の繊維径を測定したときの平均値を算出することにより求められる。
 また、強化繊維としては、単繊維を集束した連続繊維であるロービングを用いることが好ましい。
 <表面処理剤>
 ガラス繊維や炭素繊維等の無機充填材は、シランカップリング剤等により表面処理されていてもよい。
 シランカップリング剤としては、特に限定されるものではなく、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、及びN-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシランなどのアミノシラン類;γ-メルカプトプロピルトリメトキシシラン及びγ-メルカプトプロピルトリエトキシシランなどのメルカプトシラン類;エポキシシラン類;ビニルシラン類等が挙げられる。中でも、アミノシラン類が好ましい。
 シランカップリング剤としては、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 <集束剤>
 ガラス繊維や炭素繊維等の、繊維状の無機充填材は、さらに集束剤として、カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリウレタン樹脂、並びにアクリル酸のホモポリマー、アクリル酸とその他共重合性モノマーとのコポリマー、及びこれらの第一級、第二級、又は第三級アミンとの塩等を含んでもよい。
 中でも、ポリアミド組成物の機械物性(中でも、強度)の観点から、カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体(カルボン酸無水物含有不飽和ビニル単量体とカルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体)、エポキシ化合物、及びポリウレタン樹脂が好ましく、カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体、及びポリウレタン樹脂がより好ましい。
 集束剤としては、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体を構成するカルボン酸無水物含有不飽和ビニル単量体としては、特に限定されるものではなく、例えば、無水マレイン酸、無水イタコン酸、及び無水シトラコン酸等が挙げられ、無水マレイン酸が好ましい。
 また、カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体を構成する不飽和ビニル単量体としては、特に限定されるものではなく、例えば、スチレン、α-メチルスチレン、エチレン、プロピレン、ブタジエン、イソプレン、クロロプレン、2,3-ジクロロブタジエン、1,3-ペンタジエン、シクロオクタジエン、メチルメタクリレート、メチルアクリレート、エチルアクリレート、及びエチルメタクリレート等が挙げられ、スチレン及びブタジエンが好ましい。
 カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体としては、例えば、無水マレイン酸とブタジエンとの共重合体、無水マレイン酸とエチレンとの共重合体、及び無水マレイン酸とスチレンとの共重合体が好ましい。
 カルボン酸無水物含有不飽和ビニル単量体と不飽和ビニル単量体とを構成単位として含む共重合体は、重量平均分子量が、好ましくは2,000以上であり、ポリアミド組成物の流動性向上の観点から、より好ましくは2,000~1,000,000であり、さらに好ましくは2,000~900,000である。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。
 エポキシ化合物としては、特に限定されるものではなく、例えば、エチレンオキサイド、プロピレンオキサイド、ブテンオキサイド、ペンテンオキサイド、ヘキセンオキサイド、ヘプテンオキサイド、オクテンオキサイド、ノネンオキサイド、デセンオキサイド、ウンデセンオキサイド、ドデセンオキサイド、ペンタデセンオキサイド、エイコセンオキサイド等の脂肪族エポキシ化合物;グリシドール、エポキシペンタノール、1-クロロ-3,4-エポキシブタン、1-クロロ-2-メチル-3,4-エポキシブタン、1,4-ジクロロ-2,3-エポキシブタン、シクロペンテンオキサイド、シクロヘキセンオキサイド、シクロヘプテンオキサイド、シクロオクテンオキサイド、メチルシクロヘキセンオキサイド、ビニルシクロヘキセンオキサイド、エポキシ化シクロヘキセンメチルアルコール等の脂環族エポキシ化合物;ピネンオキサイド等のテルペン系エポキシ化合物;スチレンオキサイド、p-クロロスチレンオキサイド、m-クロロスチレンオキサイド等の芳香族エポキシ化合物;エポキシ化大豆油;及びエポキシ化亜麻仁油等が挙げられる。
 ポリウレタン樹脂は、特に限定されるものではなく、集束剤として一般的に用いられるものを用いることができる。例えば、m-キシリレンジイソシアナート(XDI)、4,4’-メチレンビス(シクロヘキシルイソシアナート)(HMDI)、及びイソホロンジイソシアナート(IPDI)等のイソシアネートと、ポリエステル系及びポリエーテル系のジオールと、から合成されるものが好適に使用できる。
 アクリル酸のホモポリマー(ポリアクリル酸)としては、重量平均分子量が、好ましくは1,000~90,000であり、より好ましくは1,000~25,000である。
 ポリアクリル酸は、第一級、第二級、又は第三級のアミンとの塩形態であってもよい。
 アミンとしては、特に限定されるものではなく、例えば、トリエチルアミン、トリエタノールアミン、及びグリシン等が挙げられる。
 塩形態を有することによるポリアクリル酸の中和度は、ポリアクリル酸のアクリル酸成分のうち、塩を形成しているアクリル酸成分の割合を意味し、他の併用薬剤(シランカップリング剤等)との混合溶液の安定性向上の観点や、アミン臭低減の観点から、好ましくは20~90%であり、より好ましくは40~60%である。
 塩形態のポリアクリル酸の重量平均分子量は、好ましくは3,000~50,000であり、また、ガラス繊維や炭素繊維の集束性向上の観点から、好ましくは3,000以上であり、ポリアミド組成物の機械物性向上の観点から、好ましくは50,000以下である。
 アクリル酸とその他共重合性モノマーとのコポリマーにおけるその他共重合性モノマーとしては、特に限定されるものではなく、例えば、水酸基及び/又はカルボキシル基を有するモノマーである、アクリル酸、マレイン酸、メタクリル酸、ビニル酢酸、クロトン酸、イソクロトン酸、フマル酸、イタコン酸、シトラコン酸、及びメサコン酸などが挙げられる。その他共重合性モノマーとしては、水酸基及び/又はカルボキシル基を有するモノマーのエステルであるモノマーを好適に用いることができる。
 アクリル酸とその他共重合性モノマーとのコポリマーとしては、重量平均分子量が好ましくは1,000~90,000であり、より好ましくは1,000~25,000である。
 アクリル酸とその他共重合性モノマーとのコポリマーは、第一級、第二級、又は第三級のアミンとの塩形態であってもよい。
 アミンとしては、特に限定されるものではなく、例えば、トリエチルアミン、トリエタノールアミン、及びグリシン等が挙げられる。
 塩形態を有することによるコポリマーの中和度は、コポリマーの酸成分のうち、塩を形成している酸成分の割合を意味し、他の併用薬剤(シランカップリング剤など)との混合溶液の安定性向上の観点や、アミン臭低減の観点から、好ましくは20~90%であり、より好ましくは40~60%である。
 塩形態のコポリマーの重量平均分子量は、好ましくは3,000~50,000であり、ガラス繊維や炭素繊維の集束性向上の観点から、好ましくは3,000以上であり、ポリアミド組成物の機械物特性向上の観点から、好ましくは50,000以下である。
 集束剤を含むガラス繊維や炭素繊維等の繊維状の無機充填材は、上記集束剤を、公知のガラス繊維や炭素繊維の製造工程において、ローラー型アプリケーター等の公知の方法を用いて、ガラス繊維や炭素繊維等の繊維状の無機充填材に付与して製造した繊維ストランドを乾燥することによって連続的に反応させて得られる。
 繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。
 集束剤は、ガラス繊維や炭素繊維等の繊維状の無機充填材100質量%に対し、固形分率として0.2~3質量%相当を付与(添加)することが好ましく、0.3~2質量%付与(添加)することがより好ましい。
 ガラス繊維や炭素繊維等の繊維状の無機充填材の集束を維持する観点から、集束剤の添加量が、ガラス繊維や炭素繊維等の繊維状の無機充填材100質量%に対し、固形分率として0.2質量%以上であることが好ましい。ポリアミド組成物の熱安定性向上の観点から、集束剤の添加量が固形分率として3質量%以下であることが好ましい。また、ストランドの乾燥は切断工程後に行ってもよく、ストランドを乾燥した後に切断してもよい。
 ポリアミド組成物を構成する無機充填材としてウォラストナイトを用いる場合、ポリアミド組成物中において、数平均繊維径が3~30μmであり、重量平均繊維長が10~500μmであり、アスペクト比(L/D)が3~100であるものが好ましく用いられる。
 無機充填材としては、タルク、マイカ、カオリン、及び窒化珪素等を用いる場合、ポリアミド組成物中において、数平均繊維径が0.1~3μmであるものが好ましい。
 (その他の添加剤)
 ポリアミド組成物には、本発明の目的を損なわない範囲で、ポリアミドに慣用的に用いられる添加剤、例えば、顔料及び染料等の着色剤(着色マスターバッチ含む)、難燃剤、フィブリル化剤、潤滑剤、蛍光漂白剤、可塑化剤、酸化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、流動性改良剤、充填材、補強剤、展着剤、造核剤、ゴム、強化剤並びにその他のポリマー等を含有することもできる。
 また、ポリアミド組成物には、熱安定剤として、フェノール系安定剤、リン系安定剤、アミン系安定剤、周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族及び第IVb族の元素の金属塩、並びにアルカリ金属及びアルカリ土類金属のハロゲン化物よりなる群から選択される1種類以上を配合することができる。
 フェノール系安定剤としては、特に限定されるものではなく、例えば、ヒンダードフェノール化合物が挙げられる。
 フェノール系安定剤は、ポリアミド等の樹脂や繊維に耐熱性や耐光性を付与する性質を有する。
 ヒンダードフェノール化合物としては、特に限定されるものではなく、例えば、N,N’-へキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオンアミド)]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピニロキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサピロ[5,5]ウンデカン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、及び1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸等が挙げられる。中でも、耐熱エージング性向上の観点から、N,N’-へキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオンアミド)]が好ましい。
 フェノール系安定剤としては、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 フェノール系安定剤を用いる場合、ポリアミド組成物中のフェノール系安定剤の配合量は、ポリアミド組成物100質量部に対して、好ましくは0.01~1質量部であり、より好ましくは0.1~1質量部である。配合量が上記範囲内である場合、耐熱エージング性を一層向上させ、さらに発生ガス量を低減させることができる。
 リン系安定剤としては、特に限定されるものではなく、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチル-5-メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-テトラ-トリデシル)ジホスファイト、テトラ(C12~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、4,4’-イソプロピリデンビス(2-t-ブチルフェニル)・ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)-4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル)ジホスファイト、テトラ(C1~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、4,4’-イソプロピリデンビス(2-t-ブチルフェニル)・ジ(ノニルフェニル)ホスファイト、9,10-ジ-ヒドロ-9-オキサ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)ホスファイト、水素化-4,4’-イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)・ビス(4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル))・1,6-ヘキサノールジホスファイト、ヘキサトリデシル-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ジホスファイト、トリス(4、4’-イソプロピリデンビス(2-t-ブチルフェニル))ホスファイト、トリス(1,3-ステアロイルオキシイソプロピル)ホスファイト、2、2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(3-メチル-4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスファイト、及びテトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスファイト等が挙げられる。中でも、耐熱エージング性の一層の向上及び発生ガスの低減という観点から、ペンタエリスリトール型ホスファイト化合物、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトが好ましい。
 ペンタエリスリトール型ホスファイト化合物としては、特に限定されるものではなく、例えば、2,6-ジ-t-ブチル-4-メチルフェニル・フェニル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・メチル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・2-エチルヘキシル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・イソデシル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・ラウリル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・イソトリデシル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・ステアリル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・シクロヘキシル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・ベンジル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・エチルセロソルブ・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・ブチルカルビトール・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・オクチルフェニル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・ノニルフェニル・ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・2,6-ジ-t-ブチルフェニル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・2,4-ジ-t-ブチルフェニル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・2,4-ジ-t-オクチルフェニル・ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル・2-シクロヘキシルフェニル・ペンタエリスリトールジホスファイト、2,6-ジ-t-アミル-4-メチルフェニル・フェニル・ペンタエリストリトールジホスファイト、ビス(2,6-ジ-t-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,6-ジ-t-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。中でも、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2、6-ジ-t-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイトが好ましく、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトがより好ましい。
 リン系安定剤は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 リン系安定剤を用いる場合、ポリアミド組成物中のリン系安定剤の配合量は、ポリアミド組成物100質量部に対して、0.01~1質量部であり、より好ましくは0.1~1質量部である。配合量が上記範囲内である場合、耐熱エージング性を一層向上させ、さらに発生ガス量を低減させることができる。
 アミン系安定剤としては、特に限定されるものではなく、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-テレフタレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-エタン、α,α’-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、及び1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β’,β’-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物等が挙げられる。
 アミン系安定剤は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 アミン系安定剤を用いる場合、ポリアミド組成物中のアミン系安定剤の配合量は、ポリアミド組成物100質量部に対して、好ましくは0.01~1質量部であり、より好ましくは0.1~1質量部である。配合量が上記範囲内である場合、耐光性や耐熱エージング性を一層向上させることができ、さらに発生ガス量を低減させることができる。
 周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族、及び第IVb族の元素の金属塩としては、特に限定されるものではなく、熱安定剤として好ましくは銅塩である。
 銅塩としては、特に限定されるものではなく、例えば、ハロゲン化銅(ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅等)、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅及びステアリン酸銅、並びにエチレンジアミン、エチレンジアミン四酢酸等のキレート剤に銅の配位した銅錯塩等が挙げられる。中でも、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅、及び酢酸銅よりなる群から選択される1種以上であることが好ましく、ヨウ化銅及び/又は酢酸銅がより好ましい。上記金属塩、中でも、銅塩を用いた場合、耐熱エージング性に優れ、且つ押出時のスクリューやシリンダー部の金属腐食(以下、単に「金属腐食」ともいう)を抑制可能なポリアミド組成物を得ることができる。
 上記金属塩は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 銅塩を用いる場合、ポリアミド組成物中の銅塩の配合量は、ポリアミド組成物100質量部に対して、好ましくは0.01~0.2質量部であり、より好ましくは0.02~0.15質量部である。配合量が上記範囲内である場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を抑制することができる。
 また、耐熱エージング性を向上させる観点から、ポリアミド組成物全量に対し、銅元素の含有濃度として、好ましくは10~500ppmであり、より好ましくは30~500ppmであり、さらに好ましくは50~300ppmである。
 アルカリ金属及びアルカリ土類金属のハロゲン化物としては、特に限定されるものではなく、例えば、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム及び塩化ナトリウム、並びにこれらの混合物等が挙げられる。中でも、耐熱エージング性の向上及び金属腐食の抑制という観点から、ヨウ化カリウム及び臭化カリウム、並びにこれらの混合物が好ましく、ヨウ化カリウムがより好ましい。
 上記ハロゲン化物としては、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 アルカリ金属及びアルカリ土類金属のハロゲン化物を用いる場合、ポリアミド組成物中のアルカリ及びアルカリ土類金属のハロゲン化物の配合量は、ポリアミド組成物100質量部に対して、好ましくは0.05~5質量部であり、より好ましくは0.2~2質量部である。配合量が上記範囲内である場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を抑制することができる。
 本実施形態のポリアミド組成物においては、銅塩とアルカリ及びアルカリ土類金属のハロゲン化物との混合物を熱安定剤として好適に用いることができる。銅塩とアルカリ及びアルカリ土類金属のハロゲン化物との割合は、ハロゲンと銅とのモル比(ハロゲン/銅)が2/1~40/1となるように、ポリアミド組成物に含有させることが好ましく、より好ましくは5/1~30/1である。
 モル比(ハロゲン/銅)が上記範囲内である場合、ポリアミド組成物の耐熱エージング性を一層向上させることができる。また、モル比(ハロゲン/銅)が2/1以上である場合、銅の析出及び金属腐食を抑制することができるため好適である。モル比(ハロゲン/銅)が40/1以下である場合、靭性等の機械物性を殆ど損なうことなく、成形機のスクリュー等の腐食を防止できるため、好適である。
〔ポリアミド組成物の製造方法〕
 ポリアミド組成物の製造方法としては、上述したポリアミドと、無機充填材と、必要に応じて、上述したその他の添加剤を混合する方法であれば、特に限定されるものではない。
 ポリアミド組成物の構成材料の混合方法として、例えば、ヘンシェルミキサー等を用いて混合し溶融混練機に供給し混練する方法や、単軸又は2軸押出機で溶融状態にしたポリアミドに、サイドフィーダーから無機充填材やその他の添加剤を配合する方法等が挙げられる。
 ポリアミド組成物を構成する成分を溶融混練機に供給する方法は、すべての構成成分(ポリアミド及び無機充填材等)を同一の供給口に一度に供給してもよいし、構成成分をそれぞれ異なる供給口から供給してもよい。
 溶融混練温度は、樹脂温度にして250~375℃程度であることが好ましい。
 溶融混練時間は、0.5~5分程度であることが好ましい。
 溶融混練を行う装置としては、特に限定されるものではなく、公知の装置、例えば、単軸又は2軸押出機、バンバリーミキサー、及びミキシングロール等の溶融混練機を用いることができる。
 なお、ポリアミド組成物に含有されている無機充填材が、重量平均繊維長が1~15mmの強化繊維である場合のポリアミド組成物の製造方法としては、特に限定されるものではないが、例えば、ポリアミドを二軸押出機で溶融混練し、溶融したポリアミドを強化繊維のロービングに含浸させ、ポリアミド含浸ストランドを得るプルトルージョン法や、特開2008-221574号公報に記載されているように、含浸ストランドを螺旋状に撚る工程によってポリアミドを十分に含浸させる方法が挙げられる。
〔ポリアミド組成物の物性〕
 ポリアミド組成物は、25℃の硫酸相対粘度ηrは2.3以上であることが好ましい。より好ましくは2.3~7.0であり、さらに好ましくは2.5~6.5であり、特に好ましくは3.0~6.5である。25℃の硫酸相対粘度ηrが2.3以上であることにより、靭性及び強度等の機械物性に優れたものとなる。溶融流動性の観点から、ポリアミドの25℃の硫酸相対粘度ηrは、7.0以下が好ましい。
 25℃の硫酸相対粘度の測定は、JIS-K6920に準じて98%硫酸中、25℃で測定することができる。
 ポリアミド組成物の融点は、耐熱性の観点から、280~350℃であることが好ましい。融点は、好ましくは280℃以上であり、より好ましくは305℃以上であり、さらに好ましくは315℃以上である。また、融点は、好ましくは350℃以下であり、より好ましくは340℃以下であり、さらに好ましくは335℃以下であり、よりさらに好ましくは330℃以下である。ポリアミド組成物の融点が280℃以上であることにより、耐熱性に優れたものとすることができる。また、融点が350℃以下であることにより、押出、成形等の溶融加工での熱分解等を抑制することができる。ポリアミド組成物の融点の測定は、JIS-K7121に準じて行うことができ、基本的にポリアミドの融点Tm2と同じ値になる。
 ポリアミド組成物の融解熱量は、耐熱性の観点から、10~100J/gであることが好ましく、14~100J/gであることがより好ましく、20~100J/gであることがさらに好ましい。ポリアミド組成物の融解熱量の測定は、JIS-K7121に準じて行うことができる。なお、ポリアミド組成物の融解熱量と結晶化エンタルピーを決定する際に、無機充填材や造核剤、潤滑剤、安定剤等を含む場合には、上記熱量の値は組成物に対するポリアミドの割合で換算し算出する。
 融点及び融解熱量の測定装置としては、例えば、PERKIN-ELMER社製Diamond-DSC等が挙げられる。
〔ポリアミド組成物成形品の製造方法〕
 本発明のポリアミド組成物成形品は、上記したポリアミド又はポリアミド組成物を周知の成形方法、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、及び溶融紡糸等を用いて成形し、成形したポリアミド組成物成形体を200℃以上で熱処理することにより得ることができる。
 ポリアミド組成物成形体に対する熱処理方法としては、200℃以上の加熱が可能であれば特に限定されるものではなく、例えば、電気炉、ギヤオーブン、ホットプレート、成形金型等の装置を使用することにより行うことができる。熱処理は大気中で行っても、また不活性ガス雰囲気下、たとえば窒素ガス雰囲気下で行ってもよく、さらには減圧環境下で行ってもよい。熱処理温度は200℃以上、好ましくは220℃~300℃、より好ましくは240℃~300℃で行うことが望ましい。200℃以上とすることにより、成形品における1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率を71モル%以上とすることができる。一方、300℃以下とすることにより、成形品の溶融を良好に防止することできるため、トランス異性体比率を71モル%以上とすることができる。熱処理時間は成形品の大きさや厚さ、熱処理温度により適宜選択することができ、例えば熱処理時間が200~240℃の場合には、1~72時間、より好ましくは1~48時間程度が好ましい。
〔ポリアミド組成物成形品の物性〕
 本発明のポリアミド組成物成形品は、成形品におけるジカルボン酸単量体単位のトランス異性体比率が71~100モル%である。ここで、ジカルボン酸単量体単位とは、原料であるモノマーのジカルボン酸に由来する単位を意味する。トランス異性体比率モル%はより好ましくは75より大きく100以下、さらに好ましくは80以上100以下、よりさらに好ましくは85以上100以下である。
 ポリアミド組成物成形品のジカルボン酸単量体単位のトランス異性体比率(モル%)は、核磁気共鳴分光法(NMR)により求めることができる。
〔ポリアミド組成物成形品の融解熱量ΔHm、結晶化エンタルピーΔHc、融解ピーク温度Tm〕
 本発明のポリアミド組成物成形品の融解熱量ΔHmと結晶化エンタルピーΔHcは、耐熱性の観点から、それぞれ40J/g以上であることが好ましく、45J/g以上であることがより好ましく、50J/g以上であることがさらに好ましい。一方、ポリアミド組成物成形品の融解熱量ΔHmと結晶化エンタルピーΔHcは、成形性の観点から、80J/g以下であることが好ましい。なお、ポリアミド組成物成形品の融解熱量ΔHmと結晶化エンタルピーΔHcを決定する際に、無機充填材や造核剤、潤滑剤、安定剤等を含む場合には、上記熱量の値は組成物に対するポリアミドの割合で換算し算出する。
 本発明のポリアミド組成物成形品の融解熱量ΔHmと結晶化エンタルピーΔHcの比(ΔHm/ΔHc)は、耐熱性の観点から、1.0より大きいことが好ましく、より好ましくは1.5以上、さらには1.8以上であることがより好ましい。
 ポリアミド組成物成形品の融解熱量ΔHmと結晶化エンタルピーΔHcの測定は、JIS-K7121に準じて行うことができ、融解熱量ΔHmは、ポリアミド組成物成形品を昇温速度20℃/minで昇温したとき(1回目の昇温時)に現れる吸熱ピーク(融解ピーク)のもっとも高温側に現れる吸熱ピークを融解ピーク温度Tm(℃)としたときの、Tmのピーク面積である。吸熱ピークが複数ある場合には、ΔHが1J/g以上のものをピークとみなし、最も高い温度を融解ピーク温度Tmとし、ΔHmはピーク面積の合算である。また、結晶化エンタルピーΔHcはポリアミド組成物成形品を降温速度20℃/minで降温したときに現れる発熱ピーク(結晶化ピーク)の温度を結晶化ピーク温度Tc(℃)としたときの、Tcのピーク面積である。測定装置としては、PERKIN-ELMER社製Diamond-DSCを用いることができる。
 本発明のポリアミド組成物成形品の融解ピーク温度Tmは、耐熱性の観点から、300℃以上であることが好ましく、310℃以上であることがより好ましい。
〔ポリアミド組成物成形品の用途〕
 本発明のポリアミド組成物成形品は、耐熱性、強度、熱時強度、剛性、熱時剛性、熱時安定性に優れ、また、下記実施例で示すように耐LLC(Long Life Coolant)性が向上しているため、自動車用、電気及び電子用、産業資材用、押出用途並びに日用品用及び家庭品用等の各種部品材料として好適に用いることができる。
 自動車用としては、特に限定されるものではなく、例えば、吸気系部品、冷却系部品、燃料系部品、内装部品、外装部品、及び電装部品等に用いられる。
 自動車吸気系部品としては、例えば、エアインテークマニホールド、インタークーラーインレット、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディ等が挙げられる。
 自動車冷却系部品としては、例えば、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オイルネーター、及びデリバリーパイプ等が挙げられる。
 自動車燃料系部品としては、例えば、燃料デリバリーパイプおよびガソリンタンクケース等が挙げれらる。
 内装部品としては、例えば、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、及びトリム等が挙げられる。
 外装部品としては、例えば、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパー、及びドアミラーステイ、ルーフレール等が挙げられる。
 特に、トランス異性体比率モル%が75より大きく100以下であると、自動車エンジンマウント、エアーダクト、冷却パイプ、防振用部品に好適に用いることができる。
 電装部品としては、特に限定されるものではなく、例えば、コネクターやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、及びコンビネーションスイッチ等が挙げられる。
 電気及び電子用としては、例えば、コネクター、スイッチ、リレー、プリント配線板、電子部品のハウジング、コンセント、ノイズフィルター、コイルボビン、及びモーターエンドキャップ等が挙げられる。
 特に、トランス異性体比率モル%が71より大きく75以下であると、LED反射板として好適に用いることができる。
 産業資材用としては、例えば、ギヤ、カム、絶縁ブロック、バルブ、電動工具部品、農機具部品、エンジンカバー等が挙げられる。
 日用品用及び家庭品用としては、例えば、ボタン、食品容器、及びオフィス家具等が挙げられる。
 押出用途としては、例えば、フィルム、シート、フィラメント、チューブ、棒、及び中空成形品等に用いられる。
 次に、本発明の第二の実施態様について説明する。
 本実施形態にかかるポリアミド組成物成形品は、特定のトランス異性体比率およびΔHm1/ΔHcを有する第一のポリアミドを含む第一のポリアミド組成物を成形してなるものである。
 以下、第一のポリアミド、第一のポリアミド組成物、およびポリアミド組成物成形品の詳細を説明する。
〔(A1)ポリアミド〕
 本発明の第一のポリアミド(以下、単に「ポリアミド」ともいう。)は、
 (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
 (b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、
 JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcが、
 1.0<ΔHm1/ΔHc≦2.2
であり、ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
 71<トランス異性体比率≦75
である。
 本発明の(A1)ポリアミドは、構成単位として、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含む。
 上記(a)ジカルボン酸単位及び(b)ジアミン単位の合計量は、(A1)ポリアミドの全構成単位100モル%に対して、20~100モル%であることが好ましく、50~100モル%であることがより好ましく、90~100モル%であることがさらに好ましく、100モル%であることが最も好ましい。
 なお、(A1)ポリアミドを構成する所定の単量体単位の割合は、核磁気共鳴分光法(NMR)等により測定することができる。
 (A1)ポリアミドにおいて、上記(a)ジカルボン酸単位及び(b)ジアミン単位以外の(A1)ポリアミドの構成単位としては、特に限定されないが、例えば、後述する(c)ラクタム及び/又はアミノカルボン酸からなる単位が挙げられる。
 上記のような、融解熱量ΔHm1と結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcおよびトランス異性体比率を有する本発明のポリアミドは、以下に説明するポリアミドの構成単位および製造方法によって得ることができる。
 まず、(A1)ポリアミドの構成単位について詳細に説明する。
((a)ジカルボン酸単位)
 (a)ジカルボン酸単位は、少なくとも1,4-シクロヘキサンジカルボン酸単位を含む。(a)ジカルボン酸単位は、1,4-シクロヘキサンジカルボン酸単位を50~100モル%含むことが好ましく(ジカルボン酸全モル数基準)、60~100モル%含むことがより好ましく、70~100モル%含むことがさらに好ましく、100モル%含むことが最も好ましい。
 (a)ジカルボン酸単位中の1,4-シクロヘキサンジカルボン酸単位の割合(モル%)が上記範囲であることにより、耐熱性、流動性、靭性、低吸水性、及び剛性等を同時に満足する、ポリアミド組成物を得ることができる。
 1,4-シクロヘキサンジカルボン酸以外に(a)ジカルボン酸単位に含まれていてもよい単位としては、(a-1)脂環族ジカルボン酸単位、(a-2)芳香族ジカルボン酸単位、及び(a-3)脂肪族ジカルボン酸単位が挙げられる。以下、(a-1)と断らない限り、単に「脂環族カルボン酸単位」と記載する場合は、1,4-シクロヘキサンジカルボン酸を含む意味で用いる。
(a-1)脂環族ジカルボン酸単位
 1,4-シクロヘキサンジカルボン酸以外の(a-1)脂環族ジカルボン酸単位を構成する脂環族ジカルボン酸としては、以下に限定されるものではないが、例えば、脂環構造の炭素数が3~12の脂環族ジカルボン酸が挙げられ、脂環構造の炭素数が5~12の脂環族ジカルボン酸が好ましい。
 このような(a-1)脂環族ジカルボン酸単位としては、以下に限定されるものではないが、例えば、1,3-シクロヘキサンジカルボン酸、及び1,3-シクロペンタンジカルボン酸等が挙げられる。
 このような(a-1)脂環族ジカルボン酸単位を含むことにより、ポリアミド組成物の耐熱性、低吸水性、及び剛性等がより優れる傾向にある。
 なお、(a-1)脂環族ジカルボン酸単位を構成する脂環族ジカルボン酸は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 脂環族ジカルボン酸単位の脂環族基は、無置換でも置換基を有していてもよい。
 この置換基としては、以下に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びtert-ブチル基の炭素数1~4のアルキル基等が挙げられる。
(a-2)芳香族ジカルボン酸単位
 (a-2)芳香族ジカルボン酸単位を構成する芳香族ジカルボン酸としては、以下に限定されるものではないが、例えば、フェニル基、ナフチル基を有するジカルボン酸が挙げられる。芳香族ジカルボン酸単位の芳香族基は、無置換でも置換基を有していてもよい。
 置換基としては、特に限定されないが、例えば、炭素数1~4のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数1~6のシリル基、並びにスルホン酸基及びその塩(ナトリウム塩等)等が挙げられる。
 芳香族ジカルボン酸単位としては、以下に限定されるものではないが、具体的には、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、及び5-ナトリウムスルホイソフタル酸等の無置換又は所定の置換基で置換された炭素数8~20の芳香族ジカルボン酸等が挙げられる。
 (a-2)芳香族ジカルボン酸単位を構成する芳香族ジカルボン酸は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(a-3)脂肪族ジカルボン酸単位
 (a-3)脂肪族ジカルボン酸単位を構成する脂肪族ジカルボン酸としては、以下に限定されるものではないが、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、2,3-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,3-ジエチルグルタル酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、及びジグリコール酸等の炭素数3~20の直鎖又は分岐状飽和脂肪族ジカルボン酸等が挙げられる。
 (a-3)脂肪族ジカルボン酸単位は、炭素数が6以上である脂肪族ジカルボン酸を含むことにより、ポリアミド組成物の耐熱性、流動性、靭性、低吸水性、及び剛性等がより優れる傾向にあるので、好ましい。
 中でも、(a-3)脂肪族ジカルボン酸単位としては、炭素数が10以上である脂肪族ジカルボン酸が好ましい。このようなジカルボン酸を用いることにより、ポリアミド組成物の耐熱性及び低吸水性等がより優れる傾向にある。
 炭素数が10以上である脂肪族ジカルボン酸単位としては、特に限定されないが、例えば、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、及びエイコサン二酸等が挙げられる。この中でも、ポリアミド組成物の耐熱性等の観点で、セバシン酸及びドデカン二酸が好ましい。
 (a-3)脂肪族ジカルボン酸単位を構成する脂肪族ジカルボン酸は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (a)ジカルボン酸単位中の、1,4-シクロヘキサジカルボン酸単位以外のジカルボン酸の割合(モル%)は、0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることがさらに好ましい。
 また、炭素数10以上の脂肪族ジカルボン酸単位(a-3)を含む場合には、1,4-シクロヘキサンジカルボン酸が50~99.9モル%及び(a-3)脂肪族ジカルボン酸単位が0.1~50モル%であることが好ましく、1,4-シクロヘキサンジカルボン酸が60~95モル%及び(a-3)脂肪族ジカルボン酸単位が5~40モル%であることがより好ましく、1,4-シクロヘキサンジカルボン酸が80~95モル%及び(a-3)脂肪族ジカルボン酸単位が5~20モル%であることがさらに好ましい。
 炭素数10以上の脂肪族ジカルボン酸単位(a-3)の割合が上記範囲であることにより、より優れた、耐熱性、流動性、靭性、低吸水性、及び剛性等を同時に満足する、ポリアミド組成物が得られる傾向にある。
 (a)ジカルボン酸単位を構成するジカルボン酸としては、上記ジカルボン酸として記載の化合物に限定されるものではなく、上記ジカルボン酸と等価な化合物であってもよい。
 ここで「ジカルボン酸と等価な化合物」とは、上記ジカルボン酸に由来するジカルボン酸構造と同様のジカルボン酸構造となり得る化合物をいう。このような化合物としては、例えば、ジカルボン酸の無水物及びハロゲン化物等が挙げられる。
 また、(A1)ポリアミドは、必要に応じて、トリメリット酸、トリメシン酸、及びピロメリット酸等の3価以上の多価カルボン酸に由来する単位をさらに含んでもよい。
 3価以上の多価カルボン酸は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 脂環族ジカルボン酸単位を構成する脂環族ジカルボン酸には、トランス体とシス体の幾何異性体が存在する。
 原料モノマーとしての脂環族ジカルボン酸としては、トランス体とシス体とのどちらか一方を用いてもよく、トランス体とシス体とを所定の比率で含む混合物として用いてもよい。
((b)ジアミン単位)
 (b)ジアミン単位は、少なくとも脂肪族ジアミン単位を含む。この脂肪族ジアミン単位を構成する脂肪族ジアミンは、直鎖であっても分岐していてもよい。(b)ジアミン単位としては、以下に限定されるものではないが、例えば、(b-1)主鎖から分岐した置換基を持つジアミン単位、および(b-2)直鎖脂肪族ジアミン単位等が挙げられる。その他のジアミン単位としては、(b-3)脂環式ジアミン単位、および(b-4)芳香族ジアミン単位等を含んでもよい。
 (b)ジアミン単位の炭素数は、6~12であることが好ましい。炭素数が6以上であると、耐熱性に優れるため好ましく、12以下であると結晶性、離型性に優れるため好ましい。(b)ジアミン単位の炭素数は、6以上10以下がより好ましい。
(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位(分岐脂肪族ジアミン)
 (b)ジアミン単位は、(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位を含むことが好ましい。(b)ジアミン単位が、(b-1)主鎖から分岐した置換基を持つジアミン単位を含むことにより、ガラス転移温度Tgが高く、結晶性が高い(すなわち、ΔHm1/ΔHcが高い)ポリアミドを得ることができる。このため、このポリアミドを用いた本発明のポリアミド組成物は、より優れた、流動性、靭性及び剛性等を同時に満足できる傾向にある。以下、(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位は、単に(b-1)と記載する場合がある。
 (b-1)における「主鎖から分岐した置換基」としては、以下に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びtert-ブチル基の炭素数1~4のアルキル基等が挙げられる。
 このような(b-1)を構成するジアミンとしては、以下に限定されるものではないが、例えば、2-メチルペンタメチレンジアミン(2-メチル-1,5-ジアミノペンタンともいう。)、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、2-メチル-1,8-オクタンジアミン(2-メチルオクタメチレンジアミンともいう。)、及び2,4-ジメチルオクタメチレンジアミン等の炭素数3~20の分岐飽和脂肪族ジアミン等が挙げられる。
 これらの中でも、2-メチルペンタメチレンジアミンと2-メチル-1,8-オクタンジアミンが好ましく、2-メチルペンタメチレンジアミンがより好ましい。このような(b-1)を含むことにより、耐熱性及び剛性等により優れるポリアミド組成物となる傾向にある。
 なお、(b-1)を構成するジアミンは、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 (b)ジアミン単位は、(b-1)を10モル%以上含むことが好ましい。(b)ジアミン単位中の(b-1)の割合(モル%)は、好ましくは30~100モル%であり、より好ましくは50~100モル%であり、さらに好ましくは60~100モル%であり、さらに好ましくは85~100モル%であり、さらにより好ましくは90~100モル%であり、100モル%が最も好ましい。
 (b)ジアミン単位中の(b-1)の割合が、上記範囲であることは、ガラス転移温度Tgが高く、ΔHm1/ΔHcが本願範囲内であるポリアミドを得る観点から好ましい。このため、このポリアミドを用いたポリアミド組成物は、流動性、靭性、及び剛性により優れるポリアミド組成物となる傾向にある。
(b-2)直鎖脂肪族ジアミン単位
 以下、(b-2)直鎖脂肪族ジアミン単位を、単に(b-2)と記載する場合がある。
 (b-2)を構成する脂肪族ジアミンとしては、以下に限定されるものではないが、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、及びトリデカメチレンジアミン等の炭素数2~20の直鎖飽和脂肪族ジアミン等が挙げられる。
(b-3)脂環族ジアミン単位
 以下、(b-3)脂環族ジアミン単位を、単に(b-3)と記載する場合がある。
 (b-3)を構成する脂環族ジアミン(以下、「脂環式ジアミン」ともいう。)としては、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、及び1,3-シクロペンタンジアミン等が挙げられる。
(b-4)芳香族ジアミン単位
 以下、(b-4)芳香族ジアミン単位を、単に(b-4)と記載する場合がある。
 (b-4)を構成する芳香族ジアミンとしては、例えば、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミン等が挙げられる。
 ジアミン単位(b-2)~(b-4)のなかでも、好ましくは(b-2)及び(b-3)であり、より好ましくは、炭素数4~13の直鎖飽和脂肪族基を有するジアミン単位(b-2)であり、さらに好ましくは、炭素数6~12の直鎖飽和脂肪族基を有するジアミン単位(b-2)であり、さらにより好ましくはヘキサメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンである。
 このようなジアミンを用いることにより、耐熱性、流動性、靭性、低吸水性、及び剛性等により優れるポリアミド組成物となる傾向にある。
 なお、ジアミンは、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ジアミン単位(b-2)~(b-4)の合計割合(モル%)は、(b)ジアミン単位全体に対して、0~50モル%未満であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることがさらに好ましい。
 (b)ジアミン単位中のジアミン単位(b-2)~(b-4)の合計割合が、上記範囲であることにより、流動性、靭性、及び剛性により優れるポリアミド組成物となる傾向にある。
 なお、(A1)ポリアミドは、必要に応じて、ビスヘキサメチレントリアミン等の3価以上の多価脂肪族アミンをさらに含んでもよい。
 3価以上の多価脂肪族アミンは、1種のみ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
((c)ラクタム単位(c-1)及び/又はアミノカルボン酸単位(c-2))
 本発明の(A1)ポリアミドは、本発明の目的を損なわない範囲で、上述した(a)および(b)他、(c)ラクタム単位(c-1)及び/又はアミノカルボン酸単位(c-2)をさらに含有することができる。
 このような単位を含むことにより、靭性により優れるポリアミド組成物が得られる傾向にある。なお、ここでラクタム単位(c-1)及びアミノカルボン酸(c-2)を構成するラクタム及びアミノカルボン酸とは、重合または縮合重合可能なラクタム及びアミノカルボン酸をいう。
 ラクタム単位(c-1)及びアミノカルボン酸単位(c-2)を構成するラクタム及びアミノカルボン酸としては、以下に限定されるものではないが、例えば、炭素数が4~14のラクタム及びアミノカルボン酸が好ましく、炭素数6~12のラクタム及びアミノカルボン酸がより好ましい。
 ラクタム単位(c-1)を構成するラクタムとしては、以下に限定されるものではないが、例えば、ブチロラクタム、ピバロラクタム、ε-カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、及びラウロラクタム(ドデカノラクタム)等が挙げられる。
 中でも、ラクタムとしては、ε-カプロラクタム、ラウロラクタム等が好ましく、ε-カプロラクタムがより好ましい。このようなラクタムを含むことにより、靭性により優れるポリアミド組成物となる傾向にある。
 アミノカルボン酸単位(c-2)を構成するアミノカルボン酸としては、以下に限定されるものではないが、例えば、ラクタムが開環した化合物であるω-アミノカルボン酸やα,ω-アミノ酸等が挙げられる。
 アミノカルボン酸としては、ω位がアミノ基で置換された炭素数4~14の直鎖又は分岐状飽和脂肪族カルボン酸が好ましい。このようなアミノカルボン酸としては、以下に限定されるものではないが、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、及び12-アミノドデカン酸等が挙げられる。また、アミノカルボン酸としては、パラアミノメチル安息香酸等も挙げられる。
 ラクタム単位(c-1)及びアミノカルボン酸単位(c-2)を構成するラクタム及びアミノカルボン酸は、それぞれ1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ラクタム単位(c-1)及びアミノカルボン酸単位(c-2)の合計割合(モル%)は、(A1)ポリアミド全体に対して、好ましくは0~20モル%であり、より好ましくは0~10モル%であり、さらに好ましくは0~5モル%である。
 ラクタム単位(c-1)及びアミノカルボン酸単位(c-2)の合計割合が上記範囲であることにより、流動性の向上等の効果が得られる傾向にある。
(末端封止剤)
 本発明において用いる(A1)ポリアミドの末端は、公知の末端封止剤により末端封止されていてもよい。
 このような末端封止剤は、上述したジカルボン酸とジアミンと、必要に応じて用いるラクタム及び/又はアミノカルボン酸とから、(A1)ポリアミドを製造する際に、分子量調節剤としても添加することができる。
 末端封止剤としては、以下に限定されるものではないが、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、及びモノアルコール類等が挙げられる。
 この中でも、モノカルボン酸、及びモノアミンが好ましい。(A1)ポリアミドの末端が末端封止剤で封止されていることにより、熱安定性により優れるポリアミド組成物となる傾向にある。末端封止剤は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノカルボン酸としては、(A1)ポリアミドの末端に存在し得るアミノ基との反応性を有するものであればよく、以下に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、及びイソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環族モノカルボン酸;並びに安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸等が挙げられる。なかでも、酢酸が特に好ましい。
 モノカルボン酸は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 本発明のポリアミドを得るためには、末端封止剤としてモノカルボン酸を用いることが好ましい。モノカルボン酸の添加量は、仕込みジアミンに対して、モル比で0.1~2.0モル%が好ましく、より好ましくは0.3~1.5モル%であり、さらに好ましくは0.5~1.5モル%である。このような添加量とすることにより、アミノ末端量の活性末端合計量に対する比[NH]/([NH]+[COOH])を0.5未満とすることができ、トランス異性体比率を71モル%より大きく75モル%以下とすることができる。
 末端封止剤として使用できるモノアミンとしては、(A1)ポリアミドの末端に存在し得るカルボキシル基との反応性を有するものであればよく、以下に限定されるものではないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、及びジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン及びジシクロヘキシルアミン等の脂環族モノアミン;並びにアニリン、トルイジン、ジフェニルアミン、及びナフチルアミン等の芳香族モノアミン等が挙げられる。
 モノアミンは、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤により末端封止された(A1)ポリアミドを含有するポリアミド組成物は、耐熱性、流動性、靭性、低吸水性、及び剛性に優れている傾向にある。
 次に、本発明の第一のポリアミドを得るための製造方法について説明する。
〔(A1)ポリアミドの製造方法〕
 本発明の第一のポリアミドの製造方法は、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、
 アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、
 [NH]/([NH]+[COOH])<0.5であり、
 活性末端合計量([NH]+[COOH])μ当量/gが、
 60≦[NH]+[COOH]<110
であるポリアミドを、200℃以上融点未満で10時間以上熱処理するものである。
 すなわち、本発明の第一のポリアミドの製造方法は、特定の末端構造を有するポリアミドを得て(以下、前駆体ポリアミドという。)、さらに融点未満で熱処理して(A1)ポリアミドを得る方法である。このような製造方法としては、「熱溶融重合・固相重合法」が好ましい。
 以下、前駆体ポリアミドを得る方法(熱溶融重合法)と熱処理(固相重合法)について、それぞれ詳細に説明する。
<前駆体ポリアミドを得る方法>
 前駆体ポリアミドを得る手法は、特に限定されるものではなく、例えば、以下に例示する方法等が挙げられる。
 1)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、熱溶融重合法という)。
 2)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融して重合度を上昇させる方法(以下、プレポリマー・押出重合法という)。
 3)ジカルボン酸と等価なジカルボン酸ハライドとジアミンとを用いて重合させる方法(以下、溶液法という)。
 中でも、短時間での重合による高分子量化、ゲル化抑制の観点から熱溶融重合法が好ましい。
 前駆体ポリアミドを製造する際に、(a)ジカルボン酸単位を構成するジカルボン酸の添加量と、(b)ジアミン単位を構成するジアミンの添加量とは、同モル量程度であることが好ましい。
 (a)ジカルボン酸単位は、1,4-シクロヘキサンジカルボン酸単位を50~100モル%含むことが好ましく(ジカルボン酸全モル数基準)、60~100モル%含むことがより好ましく、70~100モル%含むことがさらに好ましく、100モル%含むことが最も好ましい。
 なお、脂環族ジカルボン酸は、高温で異性化し、トランス体とシス体が一定の比率になることが知られており、シス体の脂環族ジカルボン酸の方がトランス体の脂環族ジカルボン酸に比べて、脂環族ジカルボン酸とジアミンとの当量塩の水溶性が高い傾向にある。このことから、原料モノマーとしての脂環族ジカルボン酸のトランス体/シス体比(モル比)は、好ましくは50/50~0/100であり、より好ましくは40/60~10/90であり、さらに好ましくは35/65~15/85である。
 脂環族ジカルボン酸のトランス体/シス体比(モル比)は、液体クロマトグラフィー(HPLC)や核磁気共鳴分光法(NMR)により求めることができる。
 (b)ジアミン単位は、(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位を含むことが好ましく、その割合は10~100モル%が好ましく、50~100モル%がより好ましく、60~100モル%がさらに好ましく、85~100モル%がよりさらに好ましく、90~100モル%が特に好ましく、100モル%が最も好ましい。(b-1)としては2-メチル-5-ペンタメチレンジアミンが最も好ましい。
 前駆体ポリアミドを製造(熱溶融重合)する際、分子量と末端調整のため、末端封止剤を使用してもよい。末端封止剤は特に限定されないが、酢酸が好ましい。仕込みジアミンに対する酢酸添加量は、モル比で0.1~2.0モル%、より好ましくは0.3~1.5モル%、さらに好ましくは0.5~1.5モル%である。
 また、前駆体ポリアミドを製造(熱溶融重合)する際、(b)ジアミン単位以外にジアミンを追添してもよい。そのようなジアミンは2-メチル-5-ペンタメチレンジアミンが好ましい。(b)ジアミン単位に対する追添ジアミン量は、モル比で1.0~5.0モル%、より好ましくは1.5~4.5モル%、さらに好ましくは2.0~4.0モル%である。
 また、熱安定剤(触媒)としてリン系化合物を熱溶融重合時に添加してもよい。熱安定剤は特に限定されないが、次亜リン酸ナトリウムが好ましい。
 前駆体ポリアミドの製造方法においては、ポリアミドの色調、流動性の観点から、ポリアミド中のジカルボン酸単量体単位のトランス異性体比率を85%以下に維持して熱溶融重合することが好ましく、特に、ジカルボン酸単量体単位のトランス異性体比率を80%以下に維持して熱溶融重合することがより好ましい。
 (A1)ポリアミドの製造方法は、ポリアミドの重合度を上昇させる工程を、さらに含むことが好ましい。また、必要に応じて、得られた重合体の末端を末端封止剤により封止する封止工程を含んでいてもよい。
<前駆体ポリアミドの物性>
 前駆体ポリアミドの物性はアミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は0.5未満が好ましく、0.2以上0.5未満がより好ましく、0.2~0.4がさらに好ましい。活性末端合計量([NH]+[COOH])は60以上110μ当量/g未満が好ましく、70~110μ当量/g未満がより好ましく、80~110μ当量/g未満がさらに好ましく、80~100μ当量/gが特に好ましい。
 このような前駆体ポリアミドの物性を得るためには、上記ポリアミドの構成単位(a)~(c)、末端封止剤および追加ジアミン等の量を調整して、ポリアミドの末端構造を制御することにより得ることができる。
<熱処理>
 本発明の製造方法における熱処理は、200℃以上融点(Tm2)未満で前駆体ポリアミドを加熱する方法である。
 熱処理方法としては、200℃以上融点(Tm2)未満の加熱が可能であれば特に限定されるものではなく、例えば、乾燥機、オートクレーブ、電気炉、ギヤオーブン、ホットプレート、成形金型等の装置を使用することにより行うことができる。熱処理は大気中で行っても、また不活性ガス雰囲気下、たとえば窒素ガス雰囲気下で行ってもよく、さらには減圧環境下で行ってもよい。熱処理方法としては、モノマー、前駆体ポリアミド等の構成単位を融点より低い温度で固態のまま重合させる固相重合法が好ましい。
 熱処理温度は200℃~融点(Tm2)未満、より好ましくは220℃~融点(Tm2)未満、さらに好ましくは240℃~融点(Tm2)未満である。200℃以上とすることにより、ポリアミドにおける1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率を71モル%より大きくすることができる。一方、融点(Tm2)未満とすることにより、ポリアミドの溶融を良好に防止することができるため、トランス異性体比率を71モル%より大きくすることができる。熱処理時間は熱処理温度により適宜選択することができ、例えば熱処理時間が200~240℃の場合には、10~72時間、より好ましくは10~48時間程度が好ましい。
 次に、本発明のポリアミドの物性について説明する。
〔(A1)ポリアミドの物性〕
<トランス異性体比率>
 (A1)ポリアミド中におけるジカルボン酸単量体単位のトランス異性体比率は、好ましくは71モル%より大きく75モル%以下であり、より好ましくは72モル%以上75モル%以下である。
 トランス異性体比率が上記範囲内にあることにより、本発明のポリアミドは高結晶化しているため、本発明のポリアミドおよびポリアミド組成物は、高融点、靭性及び剛性により優れるという特徴に加えて、高いガラス転移温度(Tg)による熱時剛性と、通常では耐熱性と相反する性質である流動性と、高い結晶性とを同時に満足するという性質を持つ傾向にある。
 このようなポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率は、上記のように、ポリアミドのカルボキシル末端量を制御すること、および本発明のポリアミドの製造方法により制御することが可能である。
 ポリアミド組成物成形品の1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率(モル比)は、核磁気共鳴分光法(NMR)により求めることができる。
<硫酸相対粘度ηr>
 (A1)ポリアミドの硫酸相対粘度ηrは、1.8より大きいことが好ましい。1.8より大きく3.0以下がより好ましく、2.0以上2.5以下がさらに好ましい。1.8より大きいことにより靱性及び剛性の機械特性に優れ、3.0以下であることにより、流動性及び成形性に優れる。
 25℃の硫酸相対粘度ηrの測定は、JIS-K6920に準じて98%硫酸中、25℃で測定することができる。
<分子量>
 (A1)ポリアミドの分子量の指標としては、GPC(ゲルパーミエーションクロマトグラフィー)で得られる数平均分子量Mnと重量平均分子量Mw、分子量分布Mw/Mnを利用できる。Mnが大きいほど(A1)ポリアミドの分子量が高く、小さいほど(A1)ポリアミドの分子量が低い。
 (A1)ポリアミドのMnは、好ましくは15000より大きく、より好ましくは18000以上であり、さらに好ましくは19000以上である。
 また、(A1)ポリアミドのMw/Mnは、好ましくは3.5より小さく、より好ましくは3.0以下である。
 数平均分子量Mnと分子量分布Mw/Mnが上記範囲であることにより、靭性及び剛性等の機械物性並びに成形性等により優れるポリアミド組成物となる傾向にある。
 なお、MnとMwはPMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算で測定した数平均分子量Mnを用いて、検量線を作製し、ポリアミドの分子量を求めることができる。より具体的には、下記実施例に記載する方法により測定される。
<融解ピーク温度Tm1,Tm2>
 (A1)ポリアミドの融解ピーク温度Tm1は、好ましくは300℃以上であり、より好ましくは320℃以上であり、さらに好ましくは325℃以上である。
 また、(A1)ポリアミドの融解ピーク温度Tm1は、好ましくは350℃以下であり、より好ましくは345℃以下であり、さらに好ましくは340℃以下である。
 (A1)ポリアミドの融解ピーク温度Tm1が300℃以上であることにより、耐熱性により優れるポリアミド組成物を得ることができる傾向にある。
 また、(A1)ポリアミドの融解ピーク温度Tm1が350℃以下であることにより、押出、成形等の溶融加工における(A1)ポリアミドの熱分解等をより抑制することができる傾向にある。
 (A1)ポリアミドの融解ピーク温度Tm2は、好ましくは270℃以上であり、より好ましくは275℃以上であり、さらに好ましくは280℃以上である。
 また、(A1)ポリアミドの融解ピーク温度Tm2は、好ましくは350℃以下であり、より好ましくは340℃以下であり、さらに好ましくは335℃以下であり、よりさらに好ましくは330℃以下である。
 (A1)ポリアミドの融解ピーク温度Tm2が270℃以上であることにより、耐熱性により優れるポリアミド組成物を得ることができる傾向にある。
 また、(A1)ポリアミドの融解ピーク温度Tm2が350℃以下であることにより、押出、成形等の溶融加工における(A1)ポリアミドの熱分解等をより抑制することができる傾向にある。
 (A1)ポリアミドの融解ピーク温度Tm1,Tm2は、後述の実施例に記載の方法により、JIS-K7121に準じて測定することができる。
<融解熱量ΔHm1,ΔHm2、結晶化エンタルピーΔHc>
 (A1)ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcはそれぞれ、好ましくは30J/g以上であり、より好ましくは35J/g以上であり、さらに好ましくは40J/g以上である。また、融解熱量ΔHm1、および結晶化エンタルピーΔHcの上限は特に限定されず高いほど好ましい。
 (A1)ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcがそれぞれ30J/g以上であることにより、ポリアミド組成物の耐熱性がより向上する傾向にある。
 (A1)ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcは、後述の実施例に記載の方法により、JIS-K7121に準じて測定することができる。
 上述した(A1)ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcは、後述の方法により、JIS-K7121に準じて測定することができる。
 ポリアミドの融解熱量ΔHm2は、好ましくは20J/g以上であり、より好ましくは25J/g以上であり、さらに好ましくは30J/g以上である。また、融解熱量ΔHm2の上限は特に限定されず高いほど好ましい。
 ポリアミドの融解熱量ΔHm2が20J/g以上であることにより、ポリアミド組成物の耐熱性がより向上する傾向にある。
<融解熱量ΔHm1と結晶化エンタルピーΔHcの比ΔHm1/ΔHc>
融解熱量ΔHm1は、熱処理や冷却過程などでポリアミドが受けた熱履歴を反映した融解熱量であり、ポリアミド本来の融解熱量と異なる。一方、ΔHcは完全溶融後に冷却過程(徐冷)を経て得られる結晶化エンタルピーであり、ポリアミド本来の融解熱量と等しい。従って、ΔHm1/ΔHcはポリアミド本来の融解熱量と熱履歴を受けたポリアミドの融解熱量との比を意味する。例えば、融点以下での熱処理を行った場合、結晶化が進行しΔHm1が大きくなるのでΔHm1/ΔHc>1.0となる。急冷した場合、結晶化が進行せずΔHm1が小さくなるのでΔHm1/ΔHc≦1.0となる。
(A1)ポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの比ΔHm1/ΔHcは、1.0より大きく2.2以下であり、好ましくは1.0より大きく1.4以下であり、より好ましくは1.1以上1.4以下であり、さらに好ましくは1.2以上1.4以下である。
 (A1)ポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの比ΔHm1/ΔHcは1.0より大きく2.2以下であることにより、ポリアミド組成物の耐熱性が向上する傾向にある。
 (A1)ポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの比ΔHm1/ΔHcをyとし、トランス異性体比率をxとするとき、y≧0.04x-1.8であることが好ましく、この場合ポリアミド組成物の耐熱性が向上する傾向にある。
<融解ピーク温度Tm1と結晶化ピーク温度Tcの差(Tm1-Tc)>
 (A1)ポリアミドの融解ピーク温度Tm1と結晶化ピーク温度Tcの差(Tm1-Tc)が40℃より高く90℃より低い範囲であるとき、ポリアミド組成物の流動性に優れ、離型性が向上する傾向にある。Tm1-Tcは、40℃より高く90℃未満が好ましく、50℃~80℃がより好ましい。
 ポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの測定は、JIS-K7121に準じて行うことができ、融解熱量ΔHm1は、ポリアミドを昇温速度20℃/minで昇温したとき(1回目の昇温時)に現れる吸熱ピーク(融解ピーク)のもっとも高温側に現れる吸熱ピークを融解ピーク温度Tm(℃)としたときの、Tmのピーク面積である。吸熱ピークが複数ある場合には、ΔHが1J/g以上のものをピークとみなし、最も高い温度を融解ピーク温度Tm1とし、ΔHm1はピーク面積の合算である。また、結晶化エンタルピーΔHcはポリアミド組成物成形品を降温速度20℃/minで降温したときに現れる発熱ピーク(結晶化ピーク)の温度を結晶化ピーク温度Tc(℃)としたときの、Tcのピーク面積である。測定装置としては、下記実施例でも記載しているように、PERKIN-ELMER社製Diamond-DSCを用いることができる。
<ガラス転移温度Tg>
 (A1)ポリアミドのガラス転移温度Tgは、好ましくは90℃以上であり、より好ましくは110℃以上であり、さらに好ましくは120℃以上であり、さらにより好ましくは130℃以上であり、よりさらに好ましくは135℃以上である。
 また、(A1)ポリアミドのガラス転移温度Tgは、好ましくは170℃以下であり、より好ましくは165℃以下であり、さらに好ましくは160℃以下である。
 (A1)ポリアミドのガラス転移温度Tgが90℃以上であることにより、耐熱変色性や耐薬品性に優れるポリアミド組成物を得ることができる傾向にある。また、(A1)ポリアミドのガラス転移温度Tgが170℃以下であることにより、外観のよい成形品を得ることができる傾向にある。
 (A1)ポリアミドのガラス転移温度Tgは、下記実施例に記載するように、JIS-K7121に準じて測定することができる。
 ガラス転移温度Tgの測定装置としては、例えば、PERKIN-ELMER社製Diamond-DSC等が挙げられる。
<ポリマー末端>
 本発明に用いる(A1)ポリアミドのポリマー末端としては、特に限定されないが、以下のように分類され、定義することができる。
 すなわち、1)アミノ末端、2)カルボキシル末端、3)環状アミノ末端、4)封止剤による末端、5)その他の末端である。
 1)アミノ末端は、アミノ基(-NH基)を有するポリマー末端であり、原料の(b)ジアミン単位に由来する。
 アミノ末端量([NH])は、(A1)ポリアミド1gに対して、好ましくは5~100μ当量/gであり、より好ましくは5~70μ当量/gであり、さらに好ましくは5~50μ当量/gであり、さらにより好ましくは5~30μ当量/gであり、特に好ましくは、5~20μ当量/gである。
 アミノ末端量が上記の範囲であることにより、ポリアミド組成物の白色度、耐リフロー性、耐熱変色性、耐光変色性、耐加水分解性、及び熱滞留安定性がより優れる傾向にある。アミノ末端量は、中和滴定により測定することができる。具体的には、ポリアミド3.0gを90質量%フェノール水溶液100mLに溶解し、得られた溶液を用い、0.025Nの塩酸で滴定を行い、アミノ末端量(μ当量/g)を求める。終点はpH計の指示値から決定する。
 2)カルボキシル末端は、カルボキシル基(-COOH基)を有するポリマー末端であり、原料の(a)ジカルボン酸に由来する。
 カルボキシル末端量([COOH])は、(A1)ポリアミド1gに対して、好ましくは5~100μ当量/gであり、より好ましくは5~70μ当量/gであり、さらに好ましくは5~50μ当量/gであり、さらにより好ましくは5~30μ当量/gであり、特に好ましくは、5~20μ当量/gである。カルボキシル末端量が上記の範囲であることにより、ポリアミド組成物の白色度、耐リフロー性、耐熱変色性、及び耐光変色性がより優れる傾向にある。カルボキシル末端量は、中和滴定により測定することができる。具体的には、ポリアミド4.0gをベンジルアルコール50mLに溶解し、得られた溶液を用い、0.1NのNaOHで滴定を行い、カルボキシル末端量(μ当量/g)を求める。終点はフェノールフタレイン指示薬の変色から決定する。
 ここで、アミノ末端量([NH])とカルボキシル末端量([COOH])の合計量を活性末端合計量([NH]+[COOH])とする。活性末端合計量は、(A1)ポリアミド1gに対して、好ましくは10~200μ当量/gであり、より好ましくは10~150μ当量/gであり、さらに好ましくは10~100μ当量/gであり、特に好ましくは20~60μ当量/gである。
 また、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、好ましくは0.5未満であり、より好ましくは0.2以上0.5未満であり、さらに好ましくは0.2以上0.4以下であり、特に好ましくは0.2以上0.3以下である。アミノ末端量とカルボキシル末端量の合計量、アミノ末端の活性末端合計量に対する比が上記の範囲であることにより、ΔHm1/ΔHcを1.0より大きく2.2以下に制御することが可能であり、ポリアミド組成物の白色度、耐リフロー性、耐熱変色性、及び耐光変色性がより優れる傾向にある。
 アミノ末端量の活性末端合計量に対する比を制御する方法としては、例えば、ポリアミドの熱溶融重合時の添加物としてのジアミンおよび末端封止剤の添加量、ならびに重合条件を制御する方法が挙げられる。
 3)環状アミノ末端は、環状アミノ基(下記(式1)で表される基)を有するポリマー末端である。
 下記(式1)中でRはピペリジン環を構成する炭素に結合する置換基を示す。Rの具体例としては、水素原子、メチル基、エチル基、t-ブチル基などが挙げられる。
 また、例えば、原料のペンタメチレンジアミン骨格を有するジアミンの脱アンモニア反応により環化したピペリジンがポリマー末端に結合してもこの環状アミノ基の末端となる。これらの構造は、モノマーとして、ペンタメチレンジアミン骨格を有するものを含む場合にとることがある。
Figure JPOXMLDOC01-appb-C000001
    ・・・(式1)
 3)環状アミノ末端の量は、(A1)ポリアミド1gに対して、好ましくは30μ当量/g以上100μ当量/g以下であり、より好ましくは30μ当量/g以上80μ当量/g以下であり、さらに好ましくは35μ当量/g以上70μ当量/g以下である。
 環状アミノ末端の量が上記の範囲であることにより、本発明のポリアミド組成物は、靭性、耐加水分解性、及び加工性がより優れる傾向にある。
 環状アミノ末端の量は、H-NMRを用いて測定することができる。例えば、窒素の複素環の窒素原子に隣接する炭素に結合する水素とポリアミド主鎖のアミド結合の窒素原子に隣接する炭素に結合する水素との積分比を基に算出する方法が挙げられる。
 環状アミノ末端は、環状アミンとカルボキシル末端とが脱水反応することによって生成可能であり、アミノ末端がポリマー分子内で脱アンモニア反応することによっても生成可能であり、環状アミンを末端封止剤として添加することによっても生成可能であり、ポリアミドの原料のペンタメチレンジアミン骨格を有するジアミンが脱アンモニア反応して環化することによっても生成可能である。
 本発明において、環状アミノ末端は、原料のジアミンに由来することが好ましい。
 環状アミンを末端封止剤として重合初期に添加せずに、原料のジアミンに由来して環状アミノ末端が生成することにより、低分子量のカルボン酸末端を重合初期の段階で封止することが回避され、ポリアミドの重合反応速度が高く維持され、結果として高分子量体が得られやすい傾向にある。このように、反応の途中で環状アミンが生成する場合、重合後期の段階で環状アミンによりカルボン酸末端を封止することになるため、高分子量のポリアミドが得られ易くなる。
 環状アミノ末端を生成する環状アミンは、ポリアミドの重合反応の際に副生物として生成しうる。この環状アミンの生成反応において、反応温度が高いほど反応速度も向上する。よって、(A1)ポリアミドの環状アミノ末端を一定量にするためには、環状アミンの生成を促すことが好ましい。そのため、前駆体ポリアミドの重合の反応温度は300℃以上であることが好ましく、320℃以上であることがさらに好ましい。
 これら環状アミノ末端をある一定量に調整する方法としては、重合温度、重合工程中の上記反応温度300℃以上の保持時間や、環状構造を形成するアミンの添加量等を適宜調整することで制御する方法が挙げられる。
 4)封止剤による末端は、重合時に封止剤を添加した場合に形成される末端である。封止剤としては、上述した末端封止剤が挙げられる。
 5)その他の末端は、上述した1)~4)に分類されないポリマー末端であり、アミノ末端が脱アンモニア反応して生成した末端や、カルボン酸末端から脱炭酸反応して生成した末端等が挙げられる。
〔第一のポリアミド組成物〕
 第一のポリアミド組成物は、上記第一のポリアミドと、無機充填材、造核剤、熱安定剤および光安定剤の少なくとも一つとを含むものである。さらに、酸化チタンを含んでもよい。このような構成成分を含有することにより、耐熱性、白色度、耐リフロー性、耐エージング性、離型性に優れるポリアミド組成物を得ることができる。
 以下、第一のポリアミド組成物の構成成分について説明する。
((B)酸化チタン)
 本発明の第一のポリアミド組成物は、(B)酸化チタンをさらに含有してもよい。
 (B)酸化チタンとしては、以下に限定されるものではないが、例えば、一酸化チタン(TiO)、三酸化二チタン(Ti)、及び二酸化チタン(TiO)等が挙げられる。中でも、二酸化チタンが好ましい。
 (B)酸化チタンの結晶構造は、特に限定されないが、ポリアミド組成物の耐光性の観点から、好ましくはルチル型である。
 (B)酸化チタンは、粒子状であることが好ましく、(B)酸化チタンの数平均粒子径は、好ましくは0.1~0.8μmであり、より好ましくは0.15~0.4μmであり、さらに好ましくは0.15~0.3μmである。
 (B)酸化チタンの数平均粒子径が0.1μm以上であることにより、ポリアミド組成物の押出加工性がより向上する傾向にある。
 (B)酸化チタンの数平均粒子径が0.8μm以下であることにより、ポリアミド組成物の靱性がより向上する傾向にある。
 (B)酸化チタンの数平均粒子径は、電子顕微鏡写真法により測定することができる。例えば、ポリアミド組成物を電気炉に入れて、ポリアミド組成物中に含まれる有機物を焼却処理し、残渣分から、例えば任意に選択した100個以上の酸化チタンを、電子顕微鏡で観察して、これらの粒子径を測定することにより、(B)酸化チタンの数平均粒子径を求めることが可能である。
 (B)酸化チタンの製造方法としては、以下に限定されるものではないが、例えば、硫酸チタン溶液を加水分解するいわゆる硫酸法、又はハロゲン化チタンを気相酸化するいわゆる塩素法が挙げられる。
 (B)酸化チタンは、表面に無機コーティング層及び/又は有機コーティング層を有していることが好ましい。
 特に、(B)酸化チタンの表面に無機コーティング層を有し、無機コーティング層上に有機コーティング層を有する(B)酸化チタンが好ましい。
 (B)酸化チタンは公知のいかなる方法を使用してコーティングされてもよい。
 無機コーティングとしては、以下に限定されるものではないが、例えば、金属酸化物を含むことが好ましい。
 有機コーティングとしては、以下に限定されるものではないが、例えば、カルボン酸類、ポリオール類、アルカノールアミン類、及び有機ケイ素化合物からなる群より選ばれる1種以上の有機物を含んでいることが好ましい。
 中でも、ポリアミド組成物の耐光性及び押出加工性の観点から、(B)酸化チタンの表面は、ポリオール類、有機ケイ素化合物を使用してコーティングされることがより好ましく、ポリアミド組成物の加工時の発生ガスの低減の観点から、有機ケイ素化合物を使用してコーティングされることがさらに好ましい。
 なお、(B)酸化チタンとしては、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 第一のポリアミド組成物中の(B)酸化チタンの含有量は、第一のポリアミド組成物100質量%に対し、5質量%~70質量%であることが好ましく、20~70質量%であることがより好ましく、さらに好ましくは25~60質量%であり、さらにより好ましくは30~50質量%である。
 (B)酸化チタンの含有量が上記範囲であることにより、ポリアミド組成物の白色度がより優れる傾向にある。
((C)無機充填材)
 第一のポリアミド組成物は、強度剛性等の機械物性の観点から、上述した(B)酸化チタン以外の(C)無機充填材をさらに含有していてもよい。
 (C)無機充填材としては、以下に限定されるものではないが、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ガラスフレーク、ハイドロタルサイト、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、モンモリロナイト、膨潤性フッ素雲母、及びアパタイト等が挙げられる。
 これらの中でも、(C)無機充填材としては、ガラス繊維、チタン酸カリウム繊維、ウォラストナイト、及びクレーからなる群より選ばれる1種以上が好ましく、ウォラストナイトがより好ましい。
 (C)無機充填材の数平均粒子径は、第一のポリアミド組成物の白色度、靭性及び押出加工性の観点から、好ましくは0.1~20μm、より好ましくは0.15~15μm、さらに好ましくは0.15~10μmである。
 このような(C)無機充填材を含むことにより、第一のポリアミド組成物の機械的強度、外観、白色度等がより優れる傾向にある。
 (C)無機充填材は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第一のポリアミド組成物中の(C)無機充填材の含有量は、ポリアミド組成物100質量%に対して、好ましくは1~30質量%であり、より好ましくは1~20質量%であり、さらに好ましくは1~10質量%である。
 (C)無機充填材の含有量が上記の範囲内であることにより、第一のポリアミド組成物の強度、剛性及び靭性をよりバランス良く保つことができる。
 上記観点から(C)無機充填材の含有量は1質量%以上であることが好ましく、より好ましくは2質量%以上、さらに好ましくは5質量%以上である。
((D)造核剤)
 第一のポリアミド組成物は、離型性の観点から、造核剤をさらに含有することが好ましい。
 「造核剤」とは、添加により示差走査熱量測定で測定される結晶化ピーク温度を上昇させる効果や、得られる成形品の球晶を微細化又はサイズの均一化に効果が得られる物質のことを意味する。
 造核剤としては、以下に限定されるものではないが、例えば、タルク、窒化ホウ素、マイカ、カオリン、炭酸カルシウム、硫酸バリウム、窒化珪素、カーボンブラック、チタン酸カリウム、及び二硫化モリブデンなどが挙げられる。
 造核剤は、1種のみを単独で用いてもよく、2種以上を組み合わせてもよい。
 中でも、造核効果の観点で、タルク、窒化ホウ素、及びカーボンブラックが好ましく、より好ましくはタルク、窒化ホウ素であり、さらに好ましくはタルクである。
 造核剤は、粒子形状であることが好ましく、当該造核剤の数平均粒子径は、好ましくは0.01~10μmであり、より好ましくは0.5~5μmである。
 造核剤の数平均粒子径が上記範囲内であることにより、造核効果がより向上する傾向にある。
 造核剤の数平均粒子径の測定は、ポリアミド組成物の成形品をギ酸などのポリアミドが可溶な溶媒で溶解し、得られた不溶成分の中から、例えば100個以上の造核剤を任意に選択し、光学顕微鏡や走査型電子顕微鏡などで観察し、求めることができる。
 造核剤の配合量は、ポリアミド組成物100質量%に対して、0.001~15質量%であることが好ましく、より好ましくは0.001~5質量%であり、さらに好ましくは0.001~3質量%であり、さらにより好ましくは0.5~2.5質量%である。
 造核剤の配合量をポリアミド組成物100質量%に対して0.001質量%以上とすることにより、ポリアミド組成物の耐熱性が良好に向上し、また、配合量を15質量%以下とすることにより、靭性に優れるポリアミド組成物を得ることができる。
(熱安定剤)
 第一のポリアミド組成物は、熱安定性の観点から、熱安定剤を含有してもよい。熱安定剤として、下記の(E)金属水酸化物、(F)リン系化合物、(G)フェノール系酸化防止剤及び/またはアミン系酸化防止剤を挙げることができる。
<(E)金属水酸化物>
 第一のポリアミド組成物は、熱安定剤として(E)金属水酸化物を含有してもよい。
 (E)金属水酸化物は、一般式M(OH)xで表される(Mは、金属元素を示し、xは、Mの多価に対応する数を示す。)。
 金属元素Mは、1価以上の金属であることが好ましい。1価以上の金属としては、以下に限定されるものではないが、例えば、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、バリウム、亜鉛、アルミニウム、ストロンチウム等が挙げられる。金属元素Mとしては、アルカリ土類金属が好ましい。
 第一のポリアミド組成物に含有される(E)金属水酸化物としては、以下に限定されるものではないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化マンガンなどが挙げられる。これらの中でも、ポリアミド組成物が耐リフロー性、押出加工安定性、成形加工安定性に優れるという観点から、水酸化カルシウム、水酸化マグネシウムが好ましく、水酸化カルシウムがより好ましい。
 (E)金属水酸化物は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、これらの(E)金属水酸化物は、密着性及び分散性を向上させるために表面処理を施したものを使用してもよい。
 表面処理剤としては、以下に限定されるものではないが、例えば、アミノシラン、エポキシシランなどのシランカップリング剤、シリコーン等の有機ケイ素化合物;チタンカップリング剤等の有機チタン化合物;有機酸、ポリオール等の有機物などが挙げられる。
 第一のポリアミド組成物中の(E)金属水酸化物は、粒子状であることが好ましく、その平均粒子径は、0.05~10μmが好ましく、より好ましくは0.1~5μmである。平均粒子径が上記範囲内にあることにより、ポリアミド組成物において、耐リフロー性、耐熱変色性の効果が得られる。
 また、(E)金属水酸化物の粒子全体に対する30μm以上の粒子の質量割合は、好ましくは1質量%以下であり、より好ましくは0.1質量%以下である。
 (E)金属水酸化物全体に対する30μm以上の粒子の質量割合を上記範囲内とすることにより、第一のポリアミド組成物において、耐リフロー性、耐熱変色性の効果が得られる。
 第一のポリアミド組成物中の(E)金属水酸化物の純度は好ましくは99%以上であり、より好ましくは99.5%以上であり、さらに好ましくは99.9%以上である。純度が高いことにより、第一のポリアミド組成物の白色度、耐リフロー性、耐光変色性は優れたものとなる傾向がある。
 上述した(E)金属水酸化物の含有量は、第一のポリアミド組成物100質量%に対して0.1~20質量%であり、好ましくは0.1~10質量%であり、より好ましくは0.3~5質量%であり、さらに好ましくは0.3~2質量%であり、さらにより好ましくは0.5~1.5質量%であり、よりさらに好ましくは0.5~1.0質量%である。
 (E)金属水酸化物の含有量が上記の範囲内であることにより、ポリアミド組成物は耐熱変色性、押出加工安定性、成形加工安定性により優れる傾向にある。
 第一のポリアミド組成物は、白色度、耐熱変色性の観点から、上述した(C)金属水酸化物以外の金属化合物をさらに含有していてもよい。
 (E)金属水酸化物以外の金属化合物としては、以下に限定されるものではないが、例えば、金属炭酸塩、金属ハロゲン化物等が挙げられる。
 (E)金属水酸化物以外の金属化合物に含まれる金属元素としては、特に限定されないが、例えば、1価以上の金属元素が好ましい。このような金属元素としては、以下に限定されるものではないが、例えば、ナトリウム、カリウム、リチウム、カルシウム、マグネシウムバリウム、亜鉛、アルミニウム、ストロンチウム等を挙げることができる。金属元素として、アルカリ土類金属が好ましい。
 (E)金属水酸化物は、(A1)ポリアミドの重合時に添加してもよいが、(A1)ポリアミドの重合後、(A1)ポリアミドと混合するポリアミド組成物の製造時に添加することが好ましい。ポリアミド組成物の製造時に添加することで、熱履歴を少なくすることができ、(E)金属水酸化物の分解等を抑制することができ、白色度、耐リフロー性、耐熱変色性、押出加工性、及び成形加工安定性に優れるポリアミド組成物を得ることができる。
<(F)リン系化合物>
 ポリアミド組成物は、熱安定剤として(F)リン系化合物を含有してもよい。
 (F)リン系化合物としては、以下に限定されるものではないが、例えば、1)リン酸、亜リン酸、次亜リン酸、並びにそれらの分子内及び/又は分子間縮合物、2)リン酸、亜リン酸、次亜リン酸、並びにそれらの分子内及び/又は分子間縮合物の金属塩類等が挙げられる。
 なお、(F)リン系化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記1)のリン酸、亜リン酸、次亜リン酸、並びにそれらの分子内及び/又は分子間縮合物としては、以下に限定されるものではないが、例えば、リン酸、ピロリン酸、メタリン酸、亜リン酸、次亜リン酸、ピロ亜リン酸、二亜リン酸などを挙げることができる。
 上記2)のリン酸、亜リン酸、次亜リン酸、並びにそれらの分子内及び/又は分子間縮合物の金属塩類としては、以下に限定されるものではないが、例えば、1)のリン化合物と周期律表第1族及び第2族、マンガン、亜鉛、アルミニウムとの塩を挙げることができる。
 より好ましい(F)リン系化合物は、リン酸金属塩、亜リン酸金属塩、次亜リン酸金属塩、これら金属塩の分子内縮合物、及びこれら金属塩の分子間縮合物からなる群より選ばれる1種以上である。このような(F)リン系化合物を用いることにより、ポリアミド組成物は、白色度、耐熱変色性、耐熱リフロー性、耐光変色性により優れる傾向にある。
 さらに好ましい(F)リン系化合物は、リン酸、亜リン酸及び次亜リン酸から選ばれるリン化合物と、周期律表第1族(アルカリ金属)及び第2族(アルカリ土類金属)、マンガン、亜鉛並びにアルミニウムから選ばれる金属と、を含む金属塩、あるいは、これら金属塩の分子内縮合物又はこれら金属塩の分子間縮合物である。
 よりさらに好ましい(F)リン系化合物は、リン酸、亜リン酸及び次亜リン酸から選ばれるリン化合物と、周期律表第1族及び第2族から選ばれる金属と、を含む金属塩である。
 このような(F)リン系化合物としての金属塩としては、特に限定されないが、例えば、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、リン酸一カルシウム、リン酸二カルシウム、リン酸三カルシウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、メタリン酸カルシウム、次亜リン酸ナトリウム、次亜リン酸カルシウム等;これらの無水塩;これらの水和物が挙げられる。
 これらの中でも、次亜リン酸ナトリウム、次亜リン酸カルシウム、次亜リン酸マグネシウムが好ましく、より好ましくはアルカリ土類金属塩である次亜リン酸カルシウム、次亜リン酸マグネシウムである。このような(F)リン系化合物を用いることにより、白色度、耐熱変色性、耐光変色性及び押出加工性により優れる傾向にある。
 上述したリン酸金属塩、亜リン酸金属塩、次亜リン酸金属塩、これら金属塩の分子内縮合物、及びこれら金属塩の分子間縮合物からなる群より選ばれる(F)リン系化合物は、次亜リン酸金属塩であることがより好ましい。(F)リン系化合物が次亜リン酸金属塩であることにより、押出加工性、及び成形加工安定性に優れる第一のポリアミド組成物を得ることができる。
 リン酸金属塩、亜リン酸金属塩、次亜リン酸金属塩、これら金属塩の分子内縮合物、及びこれら金属塩の分子間縮合物からなる群より選ばれる(F)リン系化合物の金属種は、(E)金属水酸化物の金属種と同一であることが好ましい。
 特に、(F)リン系化合物の金属種としては、アルカリ土類金属であることが好ましい。
 (F)リン系化合物が金属塩、金属塩の分子内縮合物、及び金属塩の分子間縮合物からなる群より選ばれるものであり、かつ(F)リン化合物の金属種が(E)金属水酸化物の金属種が同一であることにより、熱安定性が高まり、押出加工性、及び成形加工安定性に優れるポリアミド組成物を得ることができる。さらに、(F)リン系化合物の金属種としてアルカリ土類金属を用いることにより、上記特性において、より一層優れた効果が得られる。
 リン酸金属塩、亜リン酸金属塩、次亜リン酸金属塩、これら金属塩の分子内縮合物、及びこれら金属塩の分子間縮合物からなる群より選ばれる(F)リン系化合物は、無水塩や水和物を含まない金属塩であることが好ましい。
 (F)リン系化合物として、無水塩、水和物を含まない金属塩を使用することにより、加工時に発生する水分量を抑えることができ、ポリアミドの分子量低下やガス発生を抑制することができる。また、(F)リン系化合物として、無水塩、水和物を含まない金属塩を用いることにより、白色度、耐リフロー性、耐熱変色性、押出加工性、及び成形加工安定性に優れるポリアミド組成物を得ることができる。
 リン酸金属塩、亜リン酸金属塩、次亜リン酸金属塩、これら金属塩の分子内縮合物、及びこれら金属塩の分子間縮合物からなる群より選ばれる(F)リン系化合物としては、潮解性の低いものが好ましく、潮解性の無いものがより好ましい。
 (F)リン系化合物として潮解性の低い金属塩を用いることにより、ポリアミド組成物の製造時に各原料成分を混合する際に作業性が低下や原料成分中の水分量が高くなることによる、加工時のポリアミドの分子量低下やガス発生を抑制することができる。潮解性の低い金属塩を用いることにより、白色度、耐リフロー性、耐熱変色性、押出加工性、及び成形加工安定性に優れるポリアミド組成物を得ることができる。
 (F)リン系化合物は、有機リン系化合物を含んでもよい。
 有機リン系化合物としては、以下に限定されるものではないが、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチル-5-メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-テトラ-トリデシル)ジホスファイト、テトラ(C12~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、4,4’-イソプロピリデンビス(2-t-ブチルフェニル)-ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)-4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル)ジホスファイト、テトラ(C1~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、トリス(モノ,ジ混合ノニルフェニル)ホスファイト、9,10-ジ-ヒドロ-9-オキサ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)ホスファイト、水素化-4,4’-イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)-ビス(4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル))・1,6-ヘキサノールジホスファイト、ヘキサトリデシル-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ジホスファイト、トリス(4,4’-イソプロピリデンビス(2-t-ブチルフェニル))ホスファイト、トリス(1,3-ステアロイルオキシイソプロピル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(3-メチル-4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスファイト、及びテトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスファイトが挙げられる。
 有機リン系化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記の列挙した有機リン系化合物の中でも、ポリアミド組成物の耐熱エージング性の一層の向上及び発生ガスの低減という観点から、ペンタエリスリトール型ホスファイト化合物、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトが好ましく、ペンタエリスリトール型ホスファイト化合物がより好ましい。
 ペンタエリスリトール型ホスファイト化合物としては、以下に限定されるものではないが、例えば、2,6-ジ-t-ブチル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-メチル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2-エチルヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-イソデシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ラウリル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-イソトリデシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ステアリル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-シクロヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ベンジル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-エチルセロソルブ-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ブチルカルビトール-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ノニルフェニル-ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2,6-ジ-t-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2,4-ジ-t-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2,4-ジ-t-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2-シクロヘキシルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-アミル-4-メチルフェニル-フェニル-ペンタエリストリトールジホスファイト、ビス(2,6-ジ-t-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトが挙げられる。
 ペンタエリスリトール型ホスファイト化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記で列挙したペンタエリスリトール型ホスファイト化合物の中でも、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトが好ましい。
 第一のポリアミド組成物中の(F)リン系化合物の含有量は、第一のポリアミド組成物100質量%に対して、0.1~20.0質量%である。好ましくは0.2~7.0質量%であり、より好ましくは0.5~3.0質量%であり、さらに好ましくは0.5~2.5質量%あり、さらにより好ましくは0.5~2.0質量%であり、よりさらに好ましくは0.5~1.5質量%である。
 第一のポリアミド組成物中の(F)リン系化合物の含有量は、(E)金属水酸化物よりも多く含有している方が好ましい。
 (F)リン系化合物の含有量が上記の範囲内であることにより、第一のポリアミド組成物は白色度、耐リフロー性、耐熱変色性、押出加工安定性、成形加工安定性に優れる傾向にある。
 ポリアミド組成物において、(F)リン系化合物は、第一のポリアミド組成物に対して、リン元素濃度が、1,400~20,000ppmとなる量で含まれることが好ましく、2,000~20,000ppmとなる量で含まれることがより好ましく、3,000~20,000ppmとなる量で含まれることがさらに好ましく、3,000~10,000ppmとなる量で含まれることがさらにより好ましく、4,000~6,000ppmとなる量で含まれることがよりさらに好ましい。
 第一のポリアミド組成物中に含まれる(F)リン系化合物由来のリン元素濃度が上記範囲であることにより、ポリアミド組成物は白色度、耐リフロー性、耐熱変色性、押出加工安定性、成形加工安定性に優れる。
 (F)リン系化合物は、(A1)ポリアミドの重合時に添加してもよいが、(A1)ポリアミドを重合した後、上述した(E)金属水酸化物と混合するポリアミド組成物の製造時に添加することが好ましい。ポリアミド組成物の製造時に添加することで、熱履歴を少なくすることができ、(F)リン系化合物の分解等を抑制することができ、白色度、耐リフロー性、耐熱変色性、押出加工性、及び成形加工安定性に優れるポリアミド組成物を得ることができる。
 金属元素濃度はICP発光分光分析法により、第一のポリアミド組成物中に含まれる(E)金属水酸化物、(F)リン系化合物に由来する金属元素・リン濃度を測定することができる。
 第一のポリアミド組成物において、(E)金属水酸化物、(F)リン系化合物は、これらの成分由来の金属元素濃度の合算値(但し、リン元素を除く)が1,000~40,000ppmとなる量で含まれることが好ましく、2,000~30,000ppmとなる量で含まれることがより好ましく、3,000~25,000ppmとなる量で含まれることがさらに好ましく、4,000~20,000ppmとなる量で含まれることがさらにより好ましく、5,000~10,000ppmとなる量で含まれることがよりさらに好ましい。
 金属元素濃度が上記範囲であることにより、第一のポリアミド組成物が、耐リフロー性、耐光変色性がより優れる傾向にある。
<(G)フェノール系酸化防止剤及び/又はアミン系酸化防止剤>
 ポリアミド組成物は、熱安定剤としてフェノール系酸化防止剤及び/又はアミン系酸化防止剤を含有していてもよい。
 フェノール系酸化防止剤としては、以下に限定されるものではないが、例えば、ヒンダードフェノール化合物が挙げられる。フェノール系酸化防止剤、中でもヒンダードフェノール化合物は、ポリアミド等の樹脂や繊維に耐熱性や耐光性を付与する性質を有する。
 ヒンダードフェノール化合物としては、以下に限定されるものではないが、例えば、N,N’-へキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオンアミド)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピニロキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、及び1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸が挙げられる。
 中でも、耐熱エージング性向上の観点から、ヒンダードフェノール化合物としては、N,N’-へキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオンアミド)]が好ましい。
 なお、上述したフェノール系酸化防止剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第一のポリアミド組成物中のフェノール系酸化防止剤の含有量は、第一のポリアミド組成物100質量%に対して、好ましくは0~1質量%であり、より好ましくは0.01~1質量%であり、さらに好ましくは0.1~1質量%である。
 フェノール系酸化防止剤の含有量が上記の範囲内であることにより、第一のポリアミド組成物は、耐熱エージング性により優れ、発生ガス量のより低いものとなる傾向にある。
 アミン系酸化防止剤としては、以下に限定されるものではないが、例えば、ポリ(2,2,4-トリメチル-1,2-ジハイドロキノリン、6-エトキシ-1,2-ジハイドロ-2,2,4-トリメチルキノリン、フェニル-α-ナフチルアミン、4,4-ビス(α,α-ジメチルデンジル)ジフェニルアミン、(p-トルエンスルフォニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-β-ナフチル-p-フェニレンジアミン、N,N’-ジ(1,4-ジメチルペンチル)-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン、N-(1-メチルヘプチル)-N’-フェニル-p-フェニレンジアミンなどの芳香族アミンが挙げられる。
 なお、アミン系酸化防止剤には、芳香族アミン系化合物を含む。アミン系酸化防止剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第一のポリアミド組成物中のアミン系酸化防止剤の含有量は、第一のポリアミド組成物100質量%に対して、好ましくは0~1質量%であり、より好ましくは0.01~1質量%であり、さらに好ましくは0.1~1質量%である。
 アミン系酸化防止剤の含有量が上記の範囲内であることにより、第一のポリアミド組成物は、耐熱エージング性により優れ、発生ガス量のより低いものとなる傾向にある。
(光安定剤)
 第一のポリアミド組成物は、光安定性の観点から、光安定剤をさらに含有していてもよい。光安定剤とはポリアミド等の樹脂や繊維に優れた耐熱性及び耐光性を付与する性質を有する。光安定剤としては、アミン系光安定剤を挙げることができる。
<アミン系光安定剤>
 アミン系光安定剤としては、以下に限定されるものではないが、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)カーボネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)オキサレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、α,α’-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、N,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン-1,3,5-トリアジン-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、及び1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β’,β’-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物が挙げられる。
 アミン系光安定剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラートが好ましい。
 これらの中でも、アミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラートがより好ましく、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミドがさらに好ましい。
 第一のポリアミド組成物中のアミン系光安定剤の含有量は、第一のポリアミド組成物100質量%に対して、好ましくは0~2質量%であり、より好ましくは0.01~2質量%であり、さらに好ましくは0.1~2質量%である。アミン系光安定剤の含有量が上記の範囲内であることにより、ポリアミド組成物の光安定性、耐熱エージング性を一層向上させることができ、さらに発生ガス量を低減させることができる。
(その他の成分)
 本発明の第一のポリアミド組成物は、上記した成分の他に、必要に応じてさらに、その他の成分を添加してもよい。
 その他の成分としては、以下に限定されるものではないが、例えば、顔料及び染料等の着色剤(着色マスターバッチ含む)、離型剤、難燃剤、フィブリル化剤、潤滑剤、蛍光増白剤、可塑化剤、銅化合物、ハロゲン化アルカリ金属化合物、帯電防止剤、流動性改良剤、補強剤、展着剤ゴム、強化剤並びに他のポリマー等が挙げられる。
 ここで、上記その他の成分は、それぞれ性質が大きく異なるため、各成分についての好適な含有率は様々である。そして、当業者であれば、上記した他の成分ごとの好適な含有率は容易に設定可能である。
〔第一のポリアミド組成物の製造方法〕
 本発明の第一のポリアミド組成物の製造方法としては、特に限定されず、(A1)ポリアミド、必要に応じて、無機充填材、造核剤、熱安定剤、光安定剤、酸化チタン、その他の成分等を含む各原料成分を混合する方法を用いることができる。
 例えば、第一のポリアミド組成物に(B)酸化チタンを含有させる場合、(A1)ポリアミドと(B)酸化チタンとの混合方法としては、以下に限定されるものではないが、例えば、(A1)ポリアミド等と(B)酸化チタンとをタンブラー、ヘンシェルミキサー等を用いて混合して、得られた混合物を溶融混練機に供給し混練する方法や、単軸又は2軸押出機で溶融状態にした(A1)ポリアミド等に、サイドフィーダーから(B)酸化チタンを配合する方法等が挙げられる。
 また、熱安定剤を配合する場合も同様の方法を用いることができ、(A1)ポリアミド等、(E)金属水酸化物、および(F)リン系化合物を混合して、得られた混合物を溶融混練機に供給して混練する方法や、単軸又は2軸押出機で溶融状態にした(A1)ポリアミド等に、サイドフィーダーから(E)金属水酸化物、(F)リン系化合物、および(G)フェノール系/アミン系酸化防止剤を配合する方法等が挙げられる。
 熱安定剤である(E)金属水酸化物、(F)リン系化合物、および(G)フェノール系/アミン系酸化防止剤の混合方法としては、サイドフィーダーから配合する方法の方が好ましい。サイドフィーダーから配合する方法によりポリアミド組成物を製造することにより、ポリアミド組成物の白色度、耐リフロー性、耐熱変色性、耐光変色性、及び成形加工安定性が優れたものとなる傾向にある。
 (C)無機充填材を配合する場合も同様の方法を用いることができ、(A1)ポリアミド等と(C)無機充填材とを混合して、得られた混合物を溶融混練機に供給して混練する方法や、単軸又は2軸押出機で溶融状態にした(A1)ポリアミド等に、サイドフィーダーから(C)無機充填材を配合する方法等が挙げられる。
 第一のポリアミド組成物の各構成成分を溶融混練機に供給する方法としては、すべての構成成分を同一の供給口に一度に供給する方法でもよいし、各構成成分をそれぞれ異なる供給口から供給する方法でもよい。
 溶融混練温度は、樹脂温度にして250~375℃であることが好ましい。また、溶融混練時間は、0.25~5分であることが好ましい。
 溶融混練を行う装置としては、特に限定されるものではなく、公知の装置、例えば、単軸又は2軸押出機、バンバリーミキサー、及びミキシングロール等の溶融混練機を用いることができる。
〔第一のポリアミド組成物の物性〕
 本発明の第一のポリアミド組成物中のポリアミドの物性は、本発明の第一のポリアミドの物性と同等である。すなわち、本発明の第一のポリアミドは、必要に応じて他の添加物と溶融混練して第一のポリアミド組成物とした後であっても、元の物性を維持している。このため、第一のポリアミド組成物中の第一のポリアミドについて上記各物性を測定することによって、その中に含まれるポリアミドを特定することができる。
 本発明の第一のポリアミド組成物の、トランス異性体比率、硫酸相対粘度ηr、数平均分子量Mn、分子量分布Mw/Mn、融解ピーク温度Tm1,Tm2、融解熱量ΔHm1,ΔHm2、結晶化ピーク温度Tc、結晶化エンタルピーΔHc、ガラス転移温度Tg、アミノ末端、カルボキシル末端、アミノ末端量の活性末端合計量に対する比は、後述する実施例に記載のポリアミドの物性の測定方法により測定することができる。
 なお、ポリアミド組成物の融解熱量と結晶化エンタルピーを決定する際に、無機充填材、造核剤、潤滑剤、および安定剤等を含む場合には、上記熱量の値は組成物に対するポリアミドの割合で換算し算出する。
 本発明の第一のポリアミド組成物におけるポリアミドの各物性の測定値が、本発明の第一のポリアミドの物性の測定値と同等の範囲にあることにより、本発明の第一のポリアミド組成物は、耐熱性、白色度、耐リフロー性、耐エージング性、離型性に優れる。
〔ポリアミド組成物成形品〕
 本発明のポリアミド組成物成形品(以下、単に成形品と記載する場合がある。)は、上述の第一のポリアミド組成物を成形してなる。
 ポリアミド組成物成形品は、ジカルボン酸単量体単位の高いトランス異性体比率が維持されており、耐リフロー性、耐熱変色性、耐光変色性に優れ、反射板等に好適に用いることができる。
〔ポリアミド組成物成形品の製造方法〕
 ポリアミド組成物成形品は、例えば、上述の第一のポリアミド組成物を公知の成形方法で成形することにより得ることができる。
 公知の成形方法としては、以下に限定されるものではないが、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、及び溶融紡糸等、一般に知られているプラスチック成形方法を挙げることができる。
〔成形品の物性〕
 ポリアミド組成物成形品は、耐熱性、白色度、耐リフロー性、耐エージング性、および離型性に優れる。初期反射率は96.5%以上が好ましい。さらに、リフロー工程後の反射保持率は、95%以上が好ましく、96.2%以上がより好ましい。エージング保持率は、86%以上が好ましく、86.5%以上がより好ましい。
〔ポリアミド組成物成形品の用途〕
 ポリアミド組成物成形品は、上述の第一のポリアミド組成物を含むことにより、耐熱性、成形性、機械的強度、及び低吸水性に優れるものとなる。したがって、上述のポリアミド組成物は、反射板、自動車用、電気及び電子用、産業資材用、及び日用品用及び家庭品用等の各種部品材料として好適に用いることができ、また、押出用途等に好適に用いることができる。これらの具体的な用途については、上記第一の実施形態と同様のものが挙げられる。
 ポリアミド組成物成形品の反射率保持率は、後述する実施例に記載する方法により測定することができる。
〔反射板の熱による反射率の低下を抑制する方法〕
 上記のように本発明の第一のポリアミド組成物を含有する成形品は、反射板として好適に用いることができる。
 反射板においては、(A1)ポリアミドと、(E)金属水酸化物、(F)リン系化合物とを、組み合わせて用いることにより、熱による反射率の低下を効果的に抑制することができる。
 反射率については、後述する実施例に記載する方法により測定することができる。上述した組み合わせにより、本発明のポリアミド組成物を含有する反射板において、効果的に反射率の低下が抑制できることは、後述する実施例において検証されている。
 次に、本発明の第三の実施形態について説明する。
 本実施形態にかかるポリアミド組成物成形品は、特定のトランス異性体比率およびΔHm1/ΔHcを有する第二のポリアミドを含む第二のポリアミド組成物を成形してなるものである。
 以下、第二のポリアミド、第二のポリアミド組成物、およびポリアミド組成物成形品の詳細を説明する。
〔(A2)ポリアミド〕
 本発明の第二のポリアミドは、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、
 硫酸相対粘度ηrが2.5以上であり、JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm/ΔHcが、
 1.0<ΔHm/ΔHc≦2.2であり、
ポリアミド中におけるジカルボン酸単量体単位のトランス異性体比率モル%が、
75<トランス異性体比率≦100である。
 上記のような、硫酸相対粘度ηr、融解熱量ΔHm1と結晶化エンタルピーΔHcとの比であるΔHm1/ΔHc、およびトランス異性体比率を有する本発明の第二のポリアミドは、以下に説明するポリアミドの構成単位および製造方法によって得ることができる。
 まず、(A2)ポリアミドの構成単位について詳細に説明する。
((a)ジカルボン酸単位)
 本実施形態のポリアミドを構成するジカルボン酸単位は、上記第二の実施態様におけるジカルボン酸と同じものを用いることができる。
((b)ジアミン単位)
 (b)ジアミン単位は、少なくとも脂肪族ジアミンを含む。この脂肪族ジアミンは、直鎖であっても分岐していてもよい。(b)ジアミン単位としては、以下に限定されるものではないが、例えば、(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位(分岐脂肪族ジアミン)、および(b-2)直鎖脂肪族ジアミン単位等が挙げられる。その他のジアミン単位としては、(b-3)脂環式ジアミン単位、および(b-4)芳香族ジアミン単位等を含んでもよい。
 (b)脂肪族ジアミン単位の炭素数は、6~12であることが好ましい。炭素数が6以上であると、耐熱性、低吸水性に優れるため好ましく、12以下であると、高温強度及び結晶性に優れるため好ましい。(b)ジアミン単位の炭素数は、6以上10以下がより好ましい。
(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位(分岐脂肪族ジアミン)
 (b)ジアミン単位は、(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミンを含むことが好ましい。(b)ジアミン単位が、(b-1)主鎖から分岐した置換基を持つジアミン単位を含むことにより、ガラス転移温度Tgが高く、結晶性が高い(すなわち、ΔHm1/ΔHcが高い)ポリアミドを得ることができる。このため、このポリアミドを用いた本発明のポリアミド組成物は、より優れた、流動性、靭性及び剛性等を同時に満足できる傾向にある。以下、(b-1)主鎖から分岐した置換基を持つ脂肪族ジアミン単位は、単に(b-1)と記載する場合がある。
 (b-1)における「主鎖から分岐した置換基」としては、以下に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びtert-ブチル基の炭素数1~4のアルキル基等が挙げられる。
 このような(b-1)を構成するジアミンとしては、以下に限定されるものではないが、例えば、2-メチルペンタメチレンジアミン(2-メチル-1,5-ジアミノペンタンともいう。)、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、2-メチル-1,8-オクタンジアミン(2-メチルオクタメチレンジアミンともいう。)、及び2,4-ジメチルオクタメチレンジアミン等の炭素数3~20の分岐飽和脂肪族ジアミン等が挙げられる。
 これらの中でも、2-メチルペンタメチレンジアミンと2-メチル-1,8-オクタンジアミンが好ましく、2-メチルペンタメチレンジアミンがより好ましい。このような(b-1)を含むことにより、耐熱性及び剛性等により優れるポリアミド組成物となる傾向にある。
 なお、(b-1)を構成するジアミンは、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 (b)ジアミン単位は、(b-1)を10モル%以上含むことがより好ましい。(b)ジアミン単位中の(b-1)の割合(モル%)は、好ましくは10~80モル%であり、より好ましくは20~60モル%であり、さらに好ましくは30~50モル%である。
 (b)ジアミン単位中の(b-1)の割合が、上記範囲であることは、ガラス転移温度Tgが高く、ΔHm1/ΔHcが本願範囲内であるポリアミドを得る観点から好ましい。このため、このポリアミドを用いたポリアミド組成物は、流動性、靭性、及び剛性により優れるポリアミド組成物となる傾向にある。
(b-2)直鎖脂肪族ジアミン単位
 以下、(b-2)直鎖脂肪族ジアミン単位を、単に(b-2)と記載する場合がある。
 (b-2)を構成する脂肪族ジアミンとしては、以下に限定されるものではないが、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、及びトリデカメチレンジアミン等の炭素数2~20の直鎖飽和脂肪族ジアミン等が挙げられる。
(b-3)脂環族ジアミン単位
 以下、(b-3)脂環族ジアミン単位を、単に(b-3)と記載する場合がある。
 (b-3)を構成する脂環族ジアミン(以下、「脂環式ジアミン」ともいう。)としては、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、及び1,3-シクロペンタンジアミン等が挙げられる。
(b-4)芳香族ジアミン単位
 以下、(b-4)芳香族ジアミン単位を、単に(b-4)と記載する場合がある。
 (b-4)を構成する芳香族ジアミンとしては、例えば、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミン等が挙げられる。
 ジアミン単位(b-2)~(b-4)のなかでも、好ましくは(b-2)及び(b-3)であり、より好ましくは、炭素数4~13の直鎖飽和脂肪族基を有するジアミン単位(b-2)であり、さらに好ましくは、炭素数6~12の直鎖飽和脂肪族基を有するジアミン単位(b-2)であり、さらにより好ましくはヘキサメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンであり、最も好ましくはデカメチレンジアミンである。
 このようなジアミンを用いることにより、耐熱性、流動性、靭性、低吸水性、及び剛性等により優れるポリアミド組成物となる傾向にある。
 なお、ジアミンは、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ジアミン単位(b-2)~(b-4)の合計割合(モル%)は、(b)ジアミン単位全体に対して、50モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 (b)ジアミン単位中のジアミン単位(b-2)~(b-4)の合計割合が、上記範囲であることにより、流動性、靭性、及び剛性により優れるポリアミド組成物となる傾向にある。
 なお、(A2)ポリアミドは、必要に応じて、ビスヘキサメチレントリアミン等の3価以上の多価脂肪族アミンをさらに含んでもよい。
 3価以上の多価脂肪族アミンは、1種のみ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
((c)ラクタム単位(c-1)及び/又はアミノカルボン酸単位(c-2))
 本発明の(A2)ポリアミドは、本発明の目的を損なわない範囲で、上述した(a)および(b)の他、(c)ラクタム単位(c-1)及び/又はアミノカルボン酸単位(c-2)をさらに含有することができる。
 このような単位を含むことにより、靭性により優れるポリアミド組成物が得られる傾向にある。なお、ここでラクタム単位(c-1)及びアミノカルボン酸(c-2)を構成するラクタム及びアミノカルボン酸とは、重合または縮合重合可能なラクタム及びアミノカルボン酸をいう。
 ラクタム単位(c-1)及びアミノカルボン酸単位(c-2)を構成するラクタム及びアミノカルボン酸としては、上記第二の実施態様におけるラクタム及びアミノカルボン酸と同じものを用いることができる。
(末端封止剤)
 本発明において用いる(A2)ポリアミドの末端は、公知の末端封止剤により末端封止されていてもよい。
 このような末端封止剤は、上述したジカルボン酸とジアミンと、必要に応じて用いるラクタム及び/又はアミノカルボン酸とから、(A2)ポリアミドを製造する際に、分子量調節剤としても添加することができる。
 末端封止剤としては、以下に限定されるものではないが、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、及びモノアルコール類等が挙げられる。
 この中でも、モノカルボン酸、及びモノアミンが好ましい。(A2)ポリアミドの末端が末端封止剤で封止されていることにより、熱安定性により優れるポリアミド組成物となる傾向にある。末端封止剤は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノカルボン酸としては、(A2)ポリアミドの末端に存在し得るアミノ基との反応性を有するものであればよく、以下に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、及びイソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環族モノカルボン酸;並びに安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸等が挙げられる。なかでも、酢酸が特に好ましい。
 モノカルボン酸は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノアミンとしては、(A2)ポリアミドの末端に存在し得るカルボキシル基との反応性を有するものであればよく、以下に限定されるものではないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、及びジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン及びジシクロヘキシルアミン等の脂環族モノアミン;並びにアニリン、トルイジン、ジフェニルアミン、及びナフチルアミン等の芳香族モノアミン等が挙げられる。
 モノアミンは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 末端封止剤により末端封止された(A2)ポリアミドを含有するポリアミド組成物は、耐熱性、流動性、靭性、低吸水性、及び剛性に優れている傾向にある。
 次に、本発明の第二のポリアミドを得るための製造方法(第二のポリアミドの製造方法)について説明する。
〔(A2)第二のポリアミドの製造方法〕
 本発明の第二のポリアミドの製造方法は、(a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、
 アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、
 [NH]/([NH]+[COOH])<0.5であり、
 活性末端合計量([NH]+[COOH])μ当量/gが、
 110≦[NH]+[COOH]≦200
であるポリアミドを、200℃以上融点未満で10時間以上熱処理するものである。
 すなわち、本発明の第二のポリアミドの製造方法は、特定の末端構造を有するポリアミドを得て(以下、前駆体ポリアミドという。)、さらに融点未満で熱処理して(A2)ポリアミドを得る方法である。このような製造方法としては、「熱溶融重合・固相重合法」が好ましい。
 以下、前駆体ポリアミドを得る方法(熱溶融重合法)と熱処理(固相重合法)について、それぞれ詳細に説明する。
<前駆体ポリアミドを得る方法>
 前駆体ポリアミドを得る手法は、特に限定されるものではなく、例えば、以下に例示する方法等が挙げられる。
 1)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、熱溶融重合法という)。
 2)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融して重合度を上昇させる方法(以下、プレポリマー・押出重合法という)。
 3)ジカルボン酸と等価なジカルボン酸ハライドとジアミンとを用いて重合させる方法(以下、溶液法という)。
 中でも、短時間での重合による高分子量化、ゲル化抑制の観点から熱溶融重合法が好ましい。
 前駆体ポリアミドを製造する際に、(a)ジカルボン酸単位を構成するジカルボン酸の添加量と、(b)ジアミン単位を構成するジアミンの添加量とは、同モル量程度であることが好ましい。
 (a)ジカルボン酸単位は、1,4-シクロヘキサンジカルボン酸単位を50~100モル%含むことが好ましく(ジカルボン酸全モル数基準)、60~100モル%含むことがより好ましく、70~100モル%含むことがさらに好ましく、100モル%含むことが最も好ましい。
 なお、脂環族ジカルボン酸は、高温で異性化し、トランス体とシス体が一定の比率になることが知られており、シス体の脂環族ジカルボン酸の方がトランス体の脂環族ジカルボン酸に比べて、脂環族ジカルボン酸とジアミンとの当量塩の水溶性が高い傾向にある。このことから、原料モノマーとしての脂環族ジカルボン酸のトランス体/シス体比(モル比)は、好ましくは50/50~0/100であり、より好ましくは40/60~10/90であり、さらに好ましくは35/65~15/85である。
 脂環族ジカルボン酸のトランス体/シス体比(モル比)は、液体クロマトグラフィー(HPLC)や核磁気共鳴分光法(NMR)により求めることができる。
 (b)ジアミン単位は、(b-1)主鎖から分岐した置換基を持つジアミン単位を含むことが好ましく、その割合は10~80モル%が好ましく、20~60モル%がより好ましく、30~50モル%がさらに好ましい。(b-1)は2-メチル-5-ペンタメチレンジアミンが最も好ましい。
 前駆体ポリアミドを製造(熱溶融重合)する際、分子量と末端調整のため、(b)以外にジアミンを追添してもよい。追添するジアミンとしては2-メチル-5-ペンタメチレンジアミンが好ましい。(b)ジアミンに対する追添ジアミン量は、モル比で0~5.0モル%、より好ましくは0~2.0モル%、さらに好ましくは0~1.0モル%である。
 また、熱安定剤(触媒)としてリン系化合物を熱溶融重合時に添加してもよい。熱安定剤は特に限定されないが、次亜リン酸ナトリウムが好ましい。
 前駆体ポリアミドの製造方法においては、ポリアミドの色調、流動性の観点から、ポリアミド中の脂環族ジカルボン酸単位のトランス異性体比率を85%以下に維持して熱溶融重合することが好ましく、特に、脂環族ジカルボン酸単位のトランス異性体比率を80%以下に維持して熱溶融重合することがより好ましい。
 (A2)ポリアミドの製造方法は、ポリアミドの重合度を上昇させる工程を、さらに含むことが好ましい。また、必要に応じて、得られた重合体の末端を末端封止剤により封止する封止工程を含んでいてもよい。
<前駆体ポリアミドの物性>
 前駆体ポリアミドの物性はアミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は0.5未満が好ましく、0.01~0.5未満がより好ましく、0.05~0.4がさらに好ましい。活性末端合計量([NH]+[COOH])は110~200μ当量/gが好ましく、110~180μ当量/gがより好ましく、110~160μ当量/gがさらに好ましい。
 このような前駆体ポリアミドの物性を得るためには、上記ポリアミドの構成単位(a)~(c)、末端封止剤および追加ジアミン等の量を調整して、ポリアミドの末端構造を制御することにより得ることができる。
<熱処理>
 本発明の製造方法における熱処理は、上記第二の実施形態における熱処理と同じ方法を用いることができ、また、好ましい温度範囲も同じである。
〔(A2)ポリアミドの物性〕
 以下次に、本発明の第二のポリアミドの物性について説明する。
<トランス異性体比率>
 本発明の第二のポリアミド中のジカルボン酸単量体単位のトランス異性体比率は、75モル%より大きく100モル%以下である。トランス異性体比率はより好ましくは75モル%より大きく100モル%以下、さらには75モル%より大きく90モル%以下が好ましく、さらには80モル%以上90モル%以下がより好ましい。
 トランス異性体比率が上記範囲内にあることにより、本発明のポリアミドは高結晶化しているため、本発明のポリアミドおよびポリアミド組成物は、高融点、靭性及び剛性により優れるという特徴に加えて、高いガラス転移温度(Tg)による熱時剛性と、通常では耐熱性と相反する性質である流動性と、高い結晶性とを同時に満足するという性質を持つ傾向にある。
 このようなポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率は、上記のように、ポリアミドのカルボキシル末端量を制御すること、および本発明のポリアミドの製造方法により制御することが可能である。
 ポリアミド組成物成形品の1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率(モル比)は、核磁気共鳴分光法(NMR)により求めることができる。
<硫酸相対粘度ηr>
 (A2)ポリアミドの硫酸相対粘度ηrは、25℃の硫酸相対粘度ηrを指標とする。25℃の硫酸相対粘度ηrは、2.5以上である。好ましくは2.6~5.0であり、より好ましくは2.7~4.0である。ポリアミドの、25℃における硫酸相対粘度ηrを制御する方法としては、例えば、ポリアミドの熱溶融重合時の添加物としてのジアミン及び末端封止剤の添加量、並びに重合条件を制御する方法等が有効な方法として挙げられる。
 25℃の硫酸相対粘度ηrが2.5以上であることで、ポリアミドは靭性及び強度等の機械物性に優れる。溶融流動性の観点から、ポリアミドの25℃の硫酸相対粘度ηrが5.0以下であると、流動性に優れるポリアミドとすることができる。
 25℃の硫酸相対粘度の測定は、JIS-K6920に準じて98%硫酸中、25℃で測定することができる。
<分子量>
 ポリアミドの分子量の指標としては、GPC(ゲルパーミエーションクロマトグラフィー)で得られる数平均分子量Mnと重量平均分子量Mw、分子量分布Mw/Mnを利用できる。Mnが大きいほど(A2)ポリアミドの分子量が高く、小さいほど(A2)ポリアミドの分子量が低い。
 ポリアミドの数平均分子量Mnは、好ましくは15000より大きく、より好ましくは16000以上であり、さらに好ましくは17000以上である。
 また、(A2)ポリアミドの分子量分布を示すMw/Mnは、好ましくは3.5未満であり、より好ましくは3.0以下である。
 数平均分子量Mnと分子量分布Mw/Mnが上記範囲であることにより、靭性及び剛性等の機械物性並びに成形性等により優れるポリアミド組成物となる傾向にある。なお、MnとMwはPMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算で測定した数平均分子量Mnを用いて、検量線を作製し、ポリアミドの分子量を求めることができる。より具体的には、下記実施例に記載する方法により測定することができる。
<融解ピーク温度Tm1,Tm2>
 ポリアミドの融解ピーク温度Tm1は、好ましくは300℃以上であり、より好ましくは310℃以上である。
 また、ポリアミドの融解ピーク温度Tm1は、好ましくは350℃以下であり、より好ましくは345℃以下であり、さらに好ましくは340℃以下である。
 ポリアミドの融解ピーク温度Tm1が300℃以上であることにより、耐熱性により優れるポリアミド組成物を得ることができる傾向にある。
 また、(A2)ポリアミドの融解ピーク温度Tm1が350℃以下であることにより、押出、成形等の溶融加工における(A2)ポリアミドの熱分解等をより抑制することができる傾向にある。
 (A2)ポリアミドの融解ピーク温度Tm2は、好ましくは270℃以上であり、より好ましくは275℃以上であり、さらに好ましくは280℃以上である。
 また、(A2)ポリアミドの融解ピーク温度Tm2は、好ましくは350℃以下であり、より好ましくは340℃以下であり、さらに好ましくは335℃以下であり、よりさらに好ましくは330℃以下である。
 (A2)ポリアミドの融解ピーク温度Tm2が270℃以上であることにより、耐熱性により優れるポリアミド組成物を得ることができる傾向にある。
 また、(A2)ポリアミドの融解ピーク温度Tm2が350℃以下であることにより、押出、成形等の溶融加工における(A2)ポリアミドの熱分解等をより抑制することができる傾向にある。
 (A2)ポリアミドの融解ピーク温度Tm1,Tm2は、後述の実施例に記載の方法により、JIS-K7121に準じて測定することができる。
<融解熱量ΔHm1,ΔHm2、結晶化エンタルピーΔHc>
 ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcはそれぞれ、好ましくは30J/g以上であり、より好ましくは35J/g以上であり、さらに好ましくは40J/g以上である。また、融解熱量ΔHm1、および結晶化エンタルピーΔHcの上限は特に限定されず高いほど好ましい。
 ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcがそれぞれ30J/g以上であることにより、ポリアミド組成物の耐熱性がより向上する傾向にある。
 ポリアミドの融解熱量ΔHm1、および結晶化エンタルピーΔHcは、後述の方法により、JIS-K7121に準じて測定することができる。
 ポリアミドの融解熱量ΔHm2は、好ましくは20J/g以上であり、より好ましくは25J/g以上であり、さらに好ましくは30J/g以上である。また、融解熱量ΔHm2上限は特に限定されず高いほど好ましい。
 ポリアミドの融解熱量ΔHm2が20J/g以上であることにより、ポリアミド組成物の耐熱性がより向上する傾向にある。
<融解熱量ΔHm1と結晶化エンタルピーΔHcの比ΔHm1/ΔHc>
 融解熱量ΔHm1は、熱処理や冷却過程などでポリアミドが受けた熱履歴を反映した融解熱量であり、ポリアミド本来の融解熱量と異なる。一方、ΔHcは完全溶融後に冷却過程(徐冷)を経て得られる結晶化エンタルピーであり、ポリアミド本来の融解熱量と等しい。従って、ΔHm1/ΔHcはポリアミド本来の融解熱量と熱履歴を受けたポリアミドの融解熱量との比を意味する。例えば、融点以下での熱処理を行った場合、結晶化が進行しΔHm1が大きくなるのでΔHm1/ΔHc>1.0となる。急冷した場合、結晶化が進行せずΔHm1が小さくなるのでΔHm1/ΔHc≦1.0となる。
 本発明のポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの比(ΔHm1/ΔHc)は、耐熱性の観点から、1.0より大きく2.2以下であり、好ましくは1.4より大きく2.2以下であり、より好ましくは1.5以上2、2以下であり、さらに好ましくは1.6以上2.2以下であり、特に1.7以上2.2以下が好ましい。
 ポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの比ΔHm1/ΔHcをyとして、トランス異性体比率をxとするとき、y≧0.04x-1.8であることが好ましく、この場合ポリアミドの耐熱性が向上する傾向にある。
<ポリアミドの融解ピーク温度Tm1と結晶化ピーク温度Tcの差(Tm1-Tc)>
 (A2)ポリアミドの融解ピーク温度Tm1と結晶化ピーク温度Tcの差(Tm1-Tc)が40℃より高く90℃より低い範囲であるとき、ポリアミド組成物の流動性に優れ、離型性が向上する傾向にある。Tm1-Tcは、40℃より高く90℃未満が好ましく、50℃~80℃がより好ましい。
 ポリアミドの融解熱量ΔHm1と結晶化エンタルピーΔHcの測定は、JIS-K7121に準じて行うことができ、融解熱量ΔHm1は、ポリアミドを昇温速度20℃/minで昇温したとき(1回目の昇温時)に現れる吸熱ピーク(融解ピーク)のもっとも高温側に現れる吸熱ピークを融解ピーク温度Tm(℃)としたときの、Tmのピーク面積である。吸熱ピークが複数ある場合には、ΔHが1J/g以上のものをピークとみなし、最も高い温度を融解ピーク温度Tm1とし、ΔHm1はピーク面積の合算である。また、結晶化エンタルピーΔHcはポリアミド組成物成形品を降温速度20℃/minで降温したときに現れる発熱ピーク(結晶化ピーク)の温度を結晶化ピーク温度Tc(℃)としたときの、Tcのピーク面積である。測定装置としては、下記実施例でも記載しているように、PERKIN-ELMER社製Diamond-DSCを用いることができる。
 また、ポリアミドの融解ピーク温度Tm2や融解熱量ΔHm2は次のようにして測定することができる。1回目の昇温後、昇温の最高温度の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温し、30℃で2分間保持した後、昇温速度20℃/minで同様に昇温したとき(2回目の昇温時)に現れる吸熱ピークのもっとも高温側に現れた吸熱ピーク温度がポリアミド自体の融解ピーク温度Tm2であり、この融解ピーク温度におけるピーク面積がポリアミドの融解熱量ΔHm2である。
 ポリアミドの融解ピーク温度Tm2及び融解熱量ΔHm2の測定は、下記実施例でも記載しているようにJIS-K7121に準じて行うことができる。融解ピーク温度及び融解熱量の測定装置としては、例えば、PERKIN-ELMER社製Diamond-DSC等が挙げられる。
<ガラス転移温度Tg>
 (A2)ポリアミドのガラス転移温度Tgは、好ましくは90℃以上であり、より好ましくは110℃以上であり、さらに好ましくは120℃以上であり、さらにより好ましくは130℃以上であり、よりさらに好ましくは135℃以上である。
 また、(A2)ポリアミドのガラス転移温度Tgは、好ましくは170℃以下であり、より好ましくは165℃以下であり、さらに好ましくは160℃以下である。
 (A2)ポリアミドのガラス転移温度Tgが90℃以上であることにより、耐熱変色性や耐薬品性に優れるポリアミド組成物を得ることができる傾向にある。また、(A2)ポリアミドのガラス転移温度Tgが170℃以下であることにより、外観のよい成形品を得ることができる傾向にある。
 (A2)ポリアミドのガラス転移温度Tgは、下記実施例に記載するように、JIS-K7121に準じて測定することができる。
 ガラス転移温度Tgの測定装置としては、例えば、PERKIN-ELMER社製Diamond-DSC等が挙げられる。
<ポリマー末端>
 本発明に用いるポリアミドのポリマー末端としては、特に限定されないが、以下のように分類され、定義することができる。
 すなわち、1)アミノ末端、2)カルボキシル末端、3)環状アミノ末端、4)封止剤による末端、5)その他の末端である。
 1)アミノ末端は、アミノ基(-NH基)を有するポリマー末端であり、原料の(b)ジアミン単位に由来する。
 アミノ末端量([NH])は、ポリアミド1gに対して、好ましくは5~100μ当量/gであり、より好ましくは5~70μ当量/gであり、さらに好ましくは5~50μ当量/gであり、さらにより好ましくは5~30μ当量/gであり、よりさらに好ましくは、5~20μ当量/gである。
 アミノ末端量が上記の範囲であることにより、ポリアミド組成物の白色度、耐リフロー性、耐熱変色性、耐光変色性、耐加水分解性、及び熱滞留安定性がより優れる傾向にある。アミノ末端量は、中和滴定により測定することができる。具体的には、ポリアミド3.0gを90質量%フェノール水溶液100mLに溶解し、得られた溶液を用い、0.025Nの塩酸で滴定を行い、アミノ末端量(μ当量/g)を求める。終点はpH計の指示値から決定する。
 2)カルボキシル末端は、カルボキシル基(-COOH基)を有するポリマー末端であり、原料の(a)ジカルボン酸に由来する。
 カルボキシル末端量([COOH])は、ポリアミド1gに対して、好ましくは5~150μ当量/gであり、より好ましくは5~140μ当量/gであり、さらに好ましくは5~130μ当量/gであり、さらにより好ましくは5~120μ当量/gであり、よりさらに好ましくは、5~110μ当量/gである。カルボキシル末端量が上記の範囲であることにより、ポリアミド組成物の白色度、耐リフロー性、耐熱変色性、及び耐光変色性がより優れる傾向にある。カルボキシル末端量は、中和滴定により測定することができる。具体的には、ポリアミド4.0gをベンジルアルコール50mLに溶解し、得られた溶液を用い、0.1NのNaOHで滴定を行い、カルボキシル末端量(μ当量/g)を求める。終点はフェノールフタレイン指示薬の変色から決定する。
 アミノ末端量([NH])とカルボキシル末端量([COOH])の合計量を活性末端合計量([NH]+[COOH])とする。活性末端合計量は、(A2)ポリアミド1gに対して、好ましくは10~200μ当量/gであり、より好ましくは10~150μ当量/gであり、さらに好ましくは10~120μ当量/gである。
 また、アミノ末端量の活性末端合計量に対する比である[NH]/([NH]+[COOH])は、好ましくは0.5未満であり、より好ましくは0.4未満であり、さらに好ましくは0.3未満であり、特に好ましくは0.1未満である。アミノ末端の量とカルボキシル末端量の合計量、アミノ末端量の活性末端合計量に対する比が上記の範囲であることにより、ΔHm1/ΔHcを1.0より大きく2.2以下に制御することが可能であり、ポリアミド組成物の耐熱変色性、及び耐光変色性がより優れる傾向にある。
 アミノ末端量の活性末端合計量に対する比を制御する方法としては、例えば、ポリアミドの熱溶融重合時の添加物としてのジアミンおよび末端封止剤の添加量、ならびに重合条件を制御する方法が挙げられる。
 3)環状アミノ末端は、環状アミノ基(下記(式1)で表される基)を有するポリマー末端である。
 下記(式1)中でRはピペリジン環を構成する炭素に結合する置換基を示す。Rの具体例としては、水素原子、メチル基、エチル基、t-ブチル基などが挙げられる。
 また、例えば、原料のペンタメチレンジアミン骨格を有するジアミンの脱アンモニア反応により環化したピペリジンがポリマー末端に結合してもこの環状アミノ基の末端となる。これらの構造は、モノマーとして、ペンタメチレンジアミン骨格を有するものを含む場合にとることがある。
Figure JPOXMLDOC01-appb-C000002
    ・・・(式1)
 3)環状アミノ末端の量は、(A2)ポリアミド1gに対して、好ましくは0μ当量/g以上65μ当量/g以下であり、より好ましくは10μ当量/g以上60μ当量/g以下であり、さらに好ましくは20μ当量/g以上55μ当量/g以下である。
 環状アミノ末端の量が上記の範囲であることにより、本発明のポリアミド組成物は、靭性、耐加水分解性、及び加工性がより優れる傾向にある。
 環状アミノ末端の量は、H-NMRを用いて測定することができる。例えば、窒素の複素環の窒素原子に隣接する炭素に結合する水素とポリアミド主鎖のアミド結合の窒素原子に隣接する炭素に結合する水素との積分比を基に算出する方法が挙げられる。
 環状アミノ末端は、環状アミンとカルボキシル末端とが脱水反応することによって生成可能であり、アミノ末端がポリマー分子内で脱アンモニア反応することによっても生成可能であり、環状アミンを末端封止剤として添加することによっても生成可能であり、ポリアミドの原料のペンタメチレンジアミン骨格を有するジアミンが脱アンモニア反応して環化することによっても生成可能である。
 本発明において、環状アミノ末端は、原料のジアミンに由来することが好ましい。
 環状アミンを末端封止剤として重合初期に添加せずに、原料のジアミンに由来して環状アミノ末端が生成することにより、低分子量のカルボン酸末端を重合初期の段階で封止することが回避され、ポリアミドの重合反応速度が高く維持され、結果として高分子量体が得られやすい傾向にある。このように、反応の途中で環状アミンが生成する場合、重合後期の段階で環状アミンによりカルボン酸末端を封止することになるため、高分子量のポリアミドが得られ易くなる。
 環状アミノ末端を生成する環状アミンは、ポリアミドの重合反応の際に副生物として生成しうる。この環状アミンの生成反応において、反応温度が高いほど反応速度も向上する。よって、(A2)ポリアミドの環状アミノ末端を一定量にするためには、環状アミンの生成を促すことが好ましい。そのため、前駆体ポリアミドの重合の反応温度は300℃以上であることが好ましく、320℃以上であることがさらに好ましい。
 これら環状アミノ末端をある一定量に調整する方法としては、重合温度、重合工程中の上記反応温度300℃以上の保持時間や、環状構造を形成するアミンの添加量等を適宜調整することで制御する方法が挙げられる。
 4)封止剤による末端は、重合時に封止剤を添加した場合に形成される末端である。封止剤としては、上述した末端封止剤が挙げられる。
 5)その他の末端は、上述した1)~4)に分類されないポリマー末端であり、アミノ末端が脱アンモニア反応して生成した末端や、カルボン酸末端から脱炭酸反応して生成した末端等が挙げられる。
〔第二のポリアミド組成物〕
 本発明の第二のポリアミド組成物は、本発明の第一のポリアミドと、無機充填材、熱安定剤、および光安定剤から選ばれる少なくとも一つと、を含むものである。第二のポリアミド組成物として、無機充填材を含有することにより、耐熱性、熱時安定性に優れ、かつ高い融点を有する。また、上記成分を含有することにより、ポリアミドの性質を損なうことなく、第二のポリアミド組成物としても、耐熱性、熱時安定性等を満足しながら、さらに、特に強度、成形加工性に優れたものとなる。以下、ポリアミド組成物の構成成分について説明する。
(無機充填材)
 本発明の第二のポリアミド組成物を構成する無機充填材としては、特に限定されるものではなく、公知の材料を用いることができる。
 例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ガラスフレーク、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、クレー、モンモリロナイト、膨潤性フッ素雲母、窒化珪素、及びアパタイト等が挙げられる。
 無機充填材は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 無機充填材のうち、ガラス繊維や炭素繊維は、断面が真円状でも扁平状でもよい。
扁平状の断面としては、例えば、長方形、長方形に近い長円形、楕円形、長手方向の中央部がくびれた繭型等が挙げられる。
 ガラス繊維や炭素繊維の中でも、優れた機械物性をポリアミド組成物に付与する観点から、ポリアミド組成物中において、数平均繊維径が3~30μmであり、重量平均繊維長が100~750μmであり、重量平均繊維長(L)と数平均繊維径(D)とのアスペクト比(L/D)が10~100であるガラス繊維又は炭素繊維が好ましく用いられる。
 ポリアミド組成物中の無機充填材の数平均繊維径は、例えば、ポリアミド組成物を電気炉に入れて、ポリアミド組成物に含まれる有機物を焼却処理し、残渣分から、例えば100本以上のガラス繊維を任意に選択し、SEM写真で観察して、繊維径を測定することにより数平均繊維径を求めることができる。
 ポリアミド組成物中の無機充填材の重量平均繊維長は、同様にしてガラス繊維を任意に選択し、倍率1000倍でのSEM写真を用いて繊維長を計測することにより重量平均繊維長を測定することができる。
 無機充填材としては、重量平均繊維長が1~15mmである強化繊維がより好ましい。このような強化繊維の重量平均繊維長は、機械的強度、剛性及び成形性の向上の観点から1~15mmであるものとし、好ましくは3~12mmである。
 なお、強化繊維の重量平均繊維長は、ポリアミド組成物のポリアミドのみ燃焼又は溶解させて除去した後、光学顕微鏡を用いて観察し、画像解析装置を用いて任意に選択した強化繊維400本の長さを測定し、平均値を算出することにより求められる。
 ここで、強化繊維一本一本の長さを、それぞれL1、L2、・・・、L400としたとき、一本ごとの重量平均繊維長の算出式は下記式で表される。なお、下記式中、「i」は、1~400までの整数をとる。
 重量平均繊維長=Σ(Li)/ΣLi
 なお、重量平均繊維長は、本発明のポリアミド組成物に含有されている状態の強化繊維に対して適用される値である。すなわち、ポリアミドに配合する前の段階の強化繊維の重量平均繊維長については上記に限定されない。
 強化繊維の材料としては、一般的にポリアミドに使用される強化繊維であれば特に制限はない。
 例えば、ガラス繊維、炭素繊維、ホウ素繊維、金属繊維(例:ステンレス繊維、アルミニウム繊維、銅繊維等)等の無機系のものや、ポリパラフェニレンテレフタルアミド繊維、ポリメタフェニレンテレフタルアミド繊維、ポリパラフェニレンイソフタルアミド繊維、ポリメタフェニレンイソフタルアミド繊維、ジアミノジフェニルエーテルとテレフタル酸又はイソフタル酸からの縮合物から得られる繊維等の全芳香族ポリアミド繊維、あるいは、全芳香族液晶ポリエステル繊維等の有機系のものが挙げられる。
 強化繊維としては、上記材料を単独で使用してもよく、2種以上を併用してもよい。中でも、機械的強度及び剛性の向上の観点から、ガラス繊維、炭素繊維、ホウ素繊維、金属繊維から選ばれる1種以上であることが好ましく、ガラス繊維及び/又は炭素繊維がより好ましい。
 強化繊維は、単繊維における平均繊維径に関して特に限定されるものではないが、例えば、直径5~25μmのものが一般的に使用される。
 なお、単繊維の平均繊維径は、使用する強化繊維を光学顕微鏡下で観察し、画像解析装置を用いて任意に選んだ400本の繊維径を測定したときの平均値を算出することにより求められる。
 また、強化繊維としては、単繊維を集束した連続繊維であるロービングを用いることが好ましい。
<表面処理剤>
 ガラス繊維や炭素繊維等の無機充填材は、シランカップリング剤等の表面処理剤により表面処理されていてもよい。表面処理剤としてのシランカップリング剤は、上記第一の実施形態におけるものと同じものを用いることができる。
<集束剤>
 ガラス繊維や炭素繊維等の繊維状の無機充填材は、さらに集束剤を含んでもよい。集束剤としては、上記第一の実施形態における集束剤と同じものを用いることができる。
(熱安定剤)
 また、ポリアミド組成物には、熱安定剤を含んでもよい。熱安定剤として、リン系安定剤(リン系化合物)、フェノール系酸化防止剤、アミン系酸化防止剤、周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族及び第IVb族の元素の金属塩、並びにアルカリ金属及びアルカリ土類金属のハロゲン化物よりなる群から選択される1種類以上を配合することができる。以下に熱安定剤の具体例を示す。
<リン系安定剤(リン系化合物)>
 リン系化合物として、有機リン系化合物を挙げることができる。
 有機リン系化合物としては、以下に限定されるものではないが、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチル-5-メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-テトラ-トリデシル)ジホスファイト、テトラ(C12~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、4,4’-イソプロピリデンビス(2-t-ブチルフェニル)-ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)-4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル)ジホスファイト、テトラ(C1~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、トリス(モノ,ジ混合ノニルフェニル)ホスファイト、9,10-ジ-ヒドロ-9-オキサ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)ホスファイト、水素化-4,4’-イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)-ビス(4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル))・1,6-ヘキサノールジホスファイト、ヘキサトリデシル-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ジホスファイト、トリス(4,4’-イソプロピリデンビス(2-t-ブチルフェニル))ホスファイト、トリス(1,3-ステアロイルオキシイソプロピル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(3-メチル-4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスファイト、及びテトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスファイトが挙げられる。
 有機リン系化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記の列挙した有機リン系化合物の中でも、ポリアミド組成物の耐熱エージング性の一層の向上及び発生ガスの低減という観点から、ペンタエリスリトール型ホスファイト化合物、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトが好ましく、ペンタエリスリトール型ホスファイト化合物がより好ましい。
 ペンタエリスリトール型ホスファイト化合物としては、以下に限定されるものではないが、例えば、2,6-ジ-t-ブチル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-メチル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2-エチルヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-イソデシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ラウリル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-イソトリデシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ステアリル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-シクロヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ベンジル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-エチルセロソルブ-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ブチルカルビトール-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-ノニルフェニル-ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2,6-ジ-t-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2,4-ジ-t-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2,4-ジ-t-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-2-シクロヘキシルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-アミル-4-メチルフェニル-フェニル-ペンタエリストリトールジホスファイト、ビス(2,6-ジ-t-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトが挙げられる。
 ペンタエリスリトール型ホスファイト化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記で列挙したペンタエリスリトール型ホスファイト化合物の中でも、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトが好ましい。
 ポリアミド組成物中のリン系化合物の含有量は、ポリアミド組成物100質量%に対して、0.1~20.0質量%である。好ましくは0.2~7.0質量%であり、より好ましくは0.5~3.0質量%であり、さらに好ましくは0.5~2.5質量%あり、さらにより好ましくは0.5~2.0質量%であり、よりさらに好ましくは0.5~1.5質量%である。
 リン系化合物の含有量が上記の範囲内であることにより、ポリアミド組成物は白色度、耐リフロー性、耐熱変色性、押出加工安定性、成形加工安定性に優れる傾向にある。
<フェノール系酸化防止剤及び/又はアミン系酸化防止剤>
 ポリアミド組成物は、熱安定剤としてフェノール系酸化防止剤及び/又はアミン系酸化防止剤を含有していてもよい。
 フェノール系酸化防止剤としては、以下に限定されるものではないが、例えば、ヒンダードフェノール化合物が挙げられる。フェノール系酸化防止剤、中でもヒンダードフェノール化合物は、ポリアミド等の樹脂や繊維に耐熱性や耐光性を付与する性質を有する。
 ヒンダードフェノール化合物としては、以下に限定されるものではないが、例えば、N,N’-へキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオンアミド)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピニロキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、及び1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸が挙げられる。
 中でも、耐熱エージング性向上の観点から、ヒンダードフェノール化合物としては、N,N’-へキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオンアミド)]が好ましい。
 なお、上述したフェノール系酸化防止剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリアミド組成物中のフェノール系酸化防止剤の含有量は、ポリアミド組成物100質量%に対して、好ましくは0~1質量%であり、より好ましくは0.01~1質量%であり、さらに好ましくは0.1~1質量%である。
 フェノール系酸化防止剤の含有量が上記の範囲内であることにより、ポリアミド組成物は、耐熱エージング性により優れ、発生ガス量のより低いものとなる傾向にある。
 アミン系酸化防止剤としては、以下に限定されるものではないが、例えば、ポリ(2,2,4-トリメチル-1,2-ジハイドロキノリン、6-エトキシ-1,2-ジハイドロ-2,2,4-トリメチルキノリン、フェニル-α-ナフチルアミン、4,4-ビス(α,α-ジメチルデンジル)ジフェニルアミン、(p-トルエンスルフォニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-β-ナフチル-p-フェニレンジアミン、N,N’-ジ(1,4-ジメチルペンチル)-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン、N-(1-メチルヘプチル)-N’-フェニル-p-フェニレンジアミンなどの芳香族アミンが挙げられる。
 なお、アミン系酸化防止剤には、芳香族アミン系化合物を含む。アミン系酸化防止剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリアミド組成物中のアミン系酸化防止剤の含有量は、ポリアミド組成物100質量%に対して、好ましくは0~1質量%であり、より好ましくは0.01~1質量%であり、さらに好ましくは0.1~1質量%である。
 アミン系酸化防止剤の含有量が上記の範囲内であることにより、ポリアミド組成物は、耐熱エージング性により優れ、発生ガス量のより低いものとなる傾向にある。
 周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族、及び第IVb族の元素の金属塩としては、特に限定されるものではなく、熱安定剤として好ましくは銅塩である。
 銅塩としては、特に限定されるものではなく、例えば、ハロゲン化銅(ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅等)、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅及びステアリン酸銅、並びにエチレンジアミン、エチレンジアミン四酢酸等のキレート剤に銅の配位した銅錯塩等が挙げられる。中でも、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅、及び酢酸銅よりなる群から選択される1種以上であることが好ましく、ヨウ化銅及び/又は酢酸銅がより好ましい。上記金属塩、中でも、銅塩を用いた場合、耐熱エージング性に優れ、且つ押出時のスクリューやシリンダー部の金属腐食(以下、単に「金属腐食」ともいう)を抑制可能なポリアミド組成物を得ることができる。
 上記金属塩は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 銅塩を用いる場合、ポリアミド組成物中の銅塩の配合量は、ポリアミド組成物100質量部に対して、好ましくは0.01~0.2質量部であり、より好ましくは0.02~0.15質量部である。配合量が上記範囲内である場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を抑制することができる。
 また、耐熱エージング性を向上させる観点から、ポリアミド組成物全量に対し、銅元素の含有濃度として、好ましくは10~500ppmであり、より好ましくは30~500ppmであり、さらに好ましくは50~300ppmである。
 アルカリ金属及びアルカリ土類金属のハロゲン化物としては、特に限定されるものではなく、例えば、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム及び塩化ナトリウム、並びにこれらの混合物等が挙げられる。中でも、耐熱エージング性の向上及び金属腐食の抑制という観点から、ヨウ化カリウム及び臭化カリウム、並びにこれらの混合物が好ましく、ヨウ化カリウムがより好ましい。
 上記ハロゲン化物としては、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アルカリ金属及びアルカリ土類金属のハロゲン化物を用いる場合、ポリアミド組成物中のアルカリ及びアルカリ土類金属のハロゲン化物の配合量は、ポリアミド組成物100質量部に対して、好ましくは0.05~5質量部であり、より好ましくは0.2~2質量部である。配合量が上記範囲内である場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を抑制することができる。
 ポリアミド組成物においては、銅塩とアルカリ及びアルカリ土類金属のハロゲン化物との混合物を熱安定剤として好適に用いることができる。銅塩とアルカリ及びアルカリ土類金属のハロゲン化物との割合は、ハロゲンと銅とのモル比(ハロゲン/銅)が2/1~40/1となるように、ポリアミド組成物に含有させることが好ましく、より好ましくは5/1~30/1である。
 モル比(ハロゲン/銅)が上記範囲内である場合、ポリアミド組成物の耐熱エージング性を一層向上させることができる。また、モル比(ハロゲン/銅)が2/1以上である場合、銅の析出及び金属腐食を抑制することができるため好適である。モル比(ハロゲン/銅)が40/1以下である場合、靭性等の機械物性を殆ど損なうことなく、成形機のスクリュー等の腐食を防止できるため、好適である。
(光安定剤)
 ポリアミド組成物は、光安定性の観点から、光安定剤を含有してもよい。光安定剤とは、ポリアミド等の樹脂や繊維に優れた耐熱性及び耐光性を付与する性質を有する。光安定剤としては、アミン系光安定剤を挙げることができる。
 アミン系光安定剤としては、以下に限定されるものではないが、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)カーボネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)オキサレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、α,α’-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、N,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン-1,3,5-トリアジン-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、及び1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β’,β’-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物が挙げられる。
 アミン系光安定剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラートが好ましい。
 これらの中でも、アミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラートがより好ましく、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミドがさらに好ましい。
 ポリアミド組成物中のアミン系光安定剤の含有量は、ポリアミド組成物100質量%に対して、好ましくは0~2質量%であり、より好ましくは0.01~2質量%であり、さらに好ましくは0.1~2質量%である。アミン系光安定剤の含有量が上記の範囲内であることにより、ポリアミド組成物の光安定性、耐熱エージング性を一層向上させることができ、さらに発生ガス量を低減させることができる。
(その他の添加剤)
 ポリアミド組成物には、本発明の目的を損なわない範囲で、ポリアミドに慣用的に用いられる添加剤、例えば、顔料及び染料等の着色剤(着色マスターバッチ含む)、難燃剤、フィブリル化剤、潤滑剤、蛍光漂白剤、可塑化剤、紫外線吸収剤、帯電防止剤、流動性改良剤、充填材、補強剤、展着剤、造核剤、ゴム、強化剤並びにその他のポリマー等を含有することもできる。
〔第二のポリアミド組成物の製造方法〕
 ポリアミド組成物の製造方法としては、上述した第二のポリアミドと、必要に応じて、無機充填材や上述したその他の添加剤を混合する方法であれば、特に限定されるものではない。
 第二のポリアミド組成物の構成材料の混合方法として、例えば、ヘンシェルミキサー等を用いて混合し溶融混練機に供給し混練する方法や、単軸又は2軸押出機で溶融状態にしたポリアミドに、サイドフィーダーから無機充填材やその他の添加剤を配合する方法等が挙げられる。
 第二のポリアミド組成物を構成する成分を溶融混練機に供給する方法は、すべての構成成分(ポリアミド及び無機充填材等)を同一の供給口に一度に供給してもよく、構成成分をそれぞれ異なる供給口から供給してもよい。
 溶融混練温度は、樹脂温度にして250~375℃程度であることが好ましい。
 溶融混練時間は、0.5~5分程度であることが好ましい。
 溶融混練を行う装置としては、特に限定されるものではなく、公知の装置、例えば、単軸又は2軸押出機、バンバリーミキサー、及びミキシングロール等の溶融混練機を用いることができる。
 なお、第二のポリアミド組成物に含有されている無機充填材が、重量平均繊維長が1~15mmの強化繊維である場合のポリアミド組成物の製造方法としては、特に限定されるものではないが、例えば、ポリアミドを二軸押出機で溶融混練し、溶融したポリアミドを強化繊維のロービングに含浸させ、ポリアミド含浸ストランドを得るプルトルージョン法や、特開2008-221574号公報に記載されているように、含浸ストランドを螺旋状に撚る工程によってポリアミドを充分に含浸させる方法が挙げられる。
〔第二のポリアミド組成物の物性〕
 本発明の第二のポリアミド組成物中のポリアミドの物性は、本発明の第二のポリアミドの物性と同等である。つまり、第二のポリアミド組成物中のポリアミドは、必要に応じて他の添加物と溶融混練して組成物とした後であっても、第二のポリアミドの物性を維持しており、同等の測定値を有する。したがって、ポリアミド組成物について上記各物性を測定することによって、その中に含まれるポリアミドの物性を特定することが可能である。
 本発明の第二のポリアミド組成物の、トランス異性体比率、硫酸相対粘度ηr、数平均分子量Mn、分子量分布Mw/Mn、融解ピーク温度Tm1,Tm2、融解熱量ΔHm1、ΔHm2、結晶化ピーク温度Tc、結晶化エンタルピーΔHc、ガラス転移温度Tg、アミノ末端、カルボキシル末端、アミノ末端量の活性末端合計量に対する比は、後述する実施例に記載のポリアミドの物性の測定方法により測定することができる。
 本発明の第二のポリアミド組成物における測定値が、本発明の第二のポリアミドの測定値と同等の範囲にあるため、本発明のポリアミド組成物は、熱時強度、熱時剛性、および低吸水性に優れる。
 なお、第二のポリアミド組成物の融解熱量と結晶化エンタルピーを決定する際に、無機充填材や造核剤、潤滑剤、安定剤等を含む場合には、上記熱量の値は組成物に対する第二のポリアミドの割合で換算し算出する。
〔ポリアミド組成物成形品〕
 本発明のポリアミド組成物成形品(以下、単に成形品と記載する場合がある。)は、上述の第二のポリアミド組成物を成形してなる。
 ポリアミド組成物成形品は、ジカルボン酸単量体単位の高いトランス異性体比率が維持されており、熱時強度、熱時剛性、および低吸水性に優れるため、自動車用部品に好適に用いることができる。
〔ポリアミド組成物成形品の製造方法〕
 本発明のポリアミド組成物成形品は、上記した第二のポリアミド又は第二のポリアミド組成物を周知の成形方法、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、及び溶融紡糸等を用いて成形することにより得ることができる。
〔成形品の物性〕
 ポリアミド組成物成形品は、熱時の機械物性および低吸水性に優れる。120℃での熱時強度は120MPa以上が好ましく、125MPa以上がより好ましい。また、120℃での熱時引張弾性率は5.0GPa以上が好ましく、5.3GPa以上がより好ましい。
 また、80℃水24時間後の吸水率は2.0%より小さいことが好ましく、1.5%以下であることがより好ましい。耐LLC性能は保持率が75%以上であることが好ましく、80%以上であることがより好ましい。
〔ポリアミド組成物成形品の用途〕
 本発明のポリアミド組成物成形品は、耐熱性、強度、熱時強度、剛性、熱時剛性、熱時安定性に優れ、また、下記実施例で示すように、離型性および耐LLC性が向上しているため、自動車用、電気及び電子用、産業資材用、押出用途並びに日用品用及び家庭品用等の各種部品材料として好適に用いることができる。これらの具体的な用途については、上記第一の実施形態と同様のものが挙げられる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は、実施例に限定されるものではない。なお、実施例において、1kg/cm2は、0.098MPaを意味する。
 以下、本発明の第一の実施形態の実施例について説明する。
[実施例1]
 実施例及び比較例に用いた原材料及び物性等の測定方法を以下に示す。
〔ポリアミドの原材料〕
<ジカルボン酸単位の原料>
(1)1,4-シクロヘキサンジカルボン酸(CHDA) イーストマンケミカル製 商品名:1,4-CHDA HPグレード(トランス体/シス体(モル比)=25/75)(2)テレフタル酸(TPA) 和光純薬工業製 商品名:テレフタル酸
<ジアミン単位の原料>
(3)2-メチルペンタメチレンジアミン(2MPD) 東京化成工業製 商品名:2-メチル-1,5-ジアミノペンタン
(4)ヘキサメチレンジアミン(HMD) 和光純薬工業製 商品名:ヘキサメチレンジアミン
(5)1,9-ノナンジアミン(NMD) アルドリッチ製 商品名:1,9-ノナンジアミン
(6)2-メチルー1.8-オクタンジアミン(2MODA) 特開平05-17413号公報を参照して作製したものを用いた。
(7)1,10-ジアミノデカン(デカメチレンジアミン)(C10DA) 商品名:1,10-デカンアミン(小倉合成工業社製)
〔ポリアミド〕
(8)ポリアミド66(PA66) 旭化成ケミカルズ製 商品名:レオナ(登録商標)1300-301
〔無機充填材〕
(9)ガラス繊維(GF) 日本電気硝子製 商品名:ECS03T275H 平均繊維径(平均粒径)10μm(真円状)、カット長3mm
〔ポリアミド成分量の計算〕
 1,4-シクロヘキサンジカルボン酸のモル%は、(原料モノマーとして加えた1,4-シクロヘキサンジカルボン酸のモル数/原料モノマーとして加えた全てのジカルボン酸単位のモル数)×100として、計算により求めた。脂肪族ジアミンのモル%は、(原料モノマーとして加えた脂肪族ジアミンのモル数/原料モノマーとして加えた全てのジアミン単位のモル数)×100として、計算により求めた。
 なお、上記式により計算する際に、分母及び分子には、溶融重合時の添加物として加えた脂肪族ジアミンのモル数は含まれない。
 〔物性の測定方法〕
<(1)ガラス転移温度Tg、融解ピーク温度Tm(℃)、融解熱量ΔHm、結晶化エンタルピーΔHc>
 JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。測定条件は、窒素雰囲気下、実施例及び比較例で得られたポリアミド成形品約10mgを昇温速度20℃/minでサンプルの融点に応じて300~350℃まで昇温したとき(1回目の昇温時)に現れる吸熱ピーク(融解ピーク)のもっとも高温側に現れた融解ピーク温度をTm(℃)とし、Tmのピーク面積を融解熱量ΔHm(J/g)とした。なお、原料のポリアミドの融点Tm2や融解熱量ΔHm2は成形品のDSCから次にようにして測定することができる。1回目の昇温後、昇温の最高温度の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温し、30℃で2分間保持した後、昇温速度20℃/minで同様に昇温したとき(2回目の昇温時)に現れる吸熱ピークのもっとも高温側に現れた吸熱ピーク温度がポリアミド自体の融点であり、この融点におけるピーク面積がポリアミドの融解熱量ΔHm2である。
 なお、1回目の昇温時に現れる吸熱ピークが複数ある場合には、ΔHが1J/g以上のものをピークとみなした。例えば、1回目の昇温時に現れる吸熱ピークとして、融点295℃、ΔH=20J/gと、融点325℃、ΔH=5J/gの、二つのピークが存在する場合、融解ピーク温度Tmは高い方の値である325℃、ΔHmは全ピークの合算値の25J/gとした。
 また、降温速度20℃/minで降温したときに現れる発熱ピーク(結晶化ピーク)の温度を結晶化ピーク温度Tc(℃)とし、Tcの全ピーク面積を結晶化エンタルピーΔHc(J/g)とした。
 ガラス転移温度Tg(℃)は、JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。測定条件は、実施例及び比較例で得られたポリアミド組成物成形品をホットステージ(Mettler社製EP80)で溶融させて得られた溶融状態のサンプルを、液体窒素を用いて急冷し、固化させ、測定サンプルとした。そのサンプル10mgを用いて、昇温スピード20℃/minの条件下、30~350℃の範囲で昇温して、ガラス転移温度を測定した。
<(2)トランス異性体比率>
 実施例及び比較例で得られたポリアミド組成物成形品30-40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、H-NMR(JEOL社製ECA500)で測定した。成形品の1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率モル%、トランス異性体に由来する2.00ppmのピーク面積とシス異性体に由来する1.77ppmと1.87ppmのピーク面積比率から求めた。
 <(3)分子量>
 数平均分子量Mn、重量平均分子量Mw、分子量分布Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー、東ソー株式会社製、HLC-8020、ヘキサフルオロイソプロパノール溶媒、PMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算で測定した数平均分子量Mnを用いて、検量線を作製し、本実施例、比較例で得られたポリアミド組成物成形品の分子量を求めた。なお、GPCカラムはTSK-GEL GMHHR-MとG1000HHRを使用した。
 <(4)引張強度(MPa)、引張弾性率(GPa)、引張伸度(%)>
 実施例及び比較例で得られたポリアミド組成物成形品(多目的試験片)を用いて、ISO 527に準拠し、120℃環境下、引張速度5mm/minで引張試験を行い、引張強度、引張弾性率、引張伸度を測定した。
 <(5)浸漬後の引張強度保持率(%)>
 実施例及び比較例で得られたポリアミド組成物成形品の浸漬後の引張強度保持率(%)を以下のとおり測定した。上記(4)の多目的試験片(3mm厚)を、120℃のエチレングリコール50%水溶液に、24時間、720時間浸漬し、室温に放置した後、上記(4)の方法の引張試験を行い、引張強度を測定した。720時間浸漬後に測定した引張強度の、24時間浸漬後に測定した引張強度に対する割合を浸漬後の引張強度保持率として求めた。
〔実施例1-1〕
(ポリアミドの製造)
 熱溶融重合法によりポリアミドの重合反応を以下のとおり実施した。
 ジカルボン酸単位としてCHDA896g(5.2モル)、ジアミン単位として2PMD604g(5.2モル)を、蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。オートクレーブの槽内(以下、単に「槽内」とも記す。)の圧力が、ゲージ圧として(以下、槽内の圧力は全てゲージ圧として表記する。)、約2.5kg/cm2になるまで、液温を約50℃から加熱を続けた(この系での液温は約145℃であった。)。槽内の圧力を約2.5kg/cm2に保つため水を系外に除去しながら加熱を続けて、水溶液の濃度が約75質量%になるまで濃縮した(この系での液温は約160℃であった。)。水の除去を止め、槽内の圧力が約30kg/cm2になるまで加熱を続けた(この系での液温は約245℃であった。)。槽内の圧力を約30kg/cm2に保つため、水を系外に除去しながら、最終温度(後述の340℃)-50℃(ここでは290℃)になるまで加熱を続けた。液温が最終温度(後述の340℃)-50℃(ここでは290℃)まで上昇した後に、加熱は続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分ほどかけながら降圧した。
 その後、槽内の樹脂温度(液温)の最終温度が約340℃になるようにヒーター温度を調整した。樹脂温度は約340℃のまま、槽内を真空装置で約79.9kPa(約600torr)の減圧下に20分維持し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、ポリアミドのペレットを得た。
(ポリアミド組成物の製造)
 上記で得られたポリアミドペレット及びガラス繊維を用いてポリアミド組成物を製造した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+20℃(実施例1-1で得られたポリアミドを用いた場合、325+20=345℃)、スクリュー回転数300rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の質量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物の成形品の製造)
 得られたポリアミド組成物をISO3167に準拠し、射出成形により多目的試験片(A型)の成形片に成形した後、さらに温度240℃減圧環境下-0.1MPa(ゲージ圧)で2時間熱処理してポリアミド組成物の成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-2〕
 実施例1-1において、(ポリアミド組成物成形品の製造)における熱処理時間を7時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-3〕
(ポリアミドの製造)
 熱溶融重合法によりポリアミドの重合反応を以下のとおり実施した。
 ジカルボン酸単位としてCHDA795g(4.62モル)、ジアミン単位としてC10DA517g(3.00モル)、2PMD188g(1.62モル)を、蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。槽内の圧力が、ゲージ圧として約2.5kg/cm2になるまで、液温を約50℃から加熱を続けた(この系での液温は約145℃であった。)。槽内の圧力を約2.5kg/cm2に保つため水を系外に除去しながら、加熱を続けて、水溶液の濃度が約75質量%になるまで濃縮した(この系での液温は約160℃であった。)。水の除去を止め、槽内の圧力が約30kg/cm2になるまで加熱を続けた(この系での液温は約245℃であった。)。槽内の圧力を約30kg/cm2に保つため、水を系外に除去しながら、最終温度(後述の330℃)-40℃(ここでは290℃)になるまで加熱を続けた。液温が最終温度(後述の330℃)-40℃(ここでは290℃)まで上昇した後に、加熱は続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分ほどかけながら降圧した。
 その後、槽内の樹脂温度(液温)の最終温度が約330℃になるようにヒーター温度を調整した。樹脂温度は約340℃のまま、槽内を真空装置で約79.9kPa(約600torr)の減圧下に20分維持し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、ポリアミドのペレットを得た。
(ポリアミド組成物の製造)
 上記で得られたポリアミドペレット及びガラス繊維を用いてポリアミド組成物を製造した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+20℃(実施例3で得られたポリアミドを用いた場合、295+20=315℃)、スクリュー回転数300rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の質量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物成形品の製造)
 得られたポリアミド組成物をISO3167に準拠し、多目的試験片(A型)の成形片に成形した後、さらに温度240℃減圧環境下-0.1MPa(ゲージ圧)で2時間熱処理してポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-4〕
 実施例1-3において、(ポリアミド組成物成形品の製造)における熱処理時間を7時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-5〕
 実施例1-3において、(ポリアミド組成物成形品の製造)における熱処理時間を24時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-6〕
(ポリアミドの製造)
 熱溶融重合法によりポリアミドの重合反応を以下のとおり実施した。
 ジカルボン酸単位としてCHDA802g(4.66モル)、ジアミン単位としてC10DA481g(2.79モル)、2PMD216g(1.86モル)を、蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。槽内の圧力が、ゲージ圧として約2.5kg/cm2になるまで、液温を約50℃から加熱を続けた(この系での液温は約145℃であった。)。槽内の圧力を約2.5kg/cm2に保つため水を系外に除去しながら、加熱を続けて、水溶液の濃度が約75質量%になるまで濃縮した(この系での液温は約160℃であった。)。水の除去を止め、槽内の圧力が約30kg/cm2になるまで加熱を続けた(この系での液温は約245℃であった。)。槽内の圧力を約30kg/cm2に保つため、水を系外に除去しながら、最終温度(後述の320℃)-30℃(ここでは290℃)になるまで加熱を続けた。液温が最終温度(後述の320℃)-30℃(ここでは290℃)まで上昇した後に、加熱は続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分ほどかけながら降圧した。
 その後、槽内の樹脂温度(液温)の最終温度が約320℃になるようにヒーター温度を調整した。樹脂温度は約320℃のまま、槽内を真空装置で約79.9kPa(約600torr)の減圧下に20分維持し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、ポリアミドのペレットを得た。
(ポリアミド組成物の製造)
 上記で得られたポリアミドペレット及びガラス繊維を用いてポリアミド組成物を製造した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+20℃(実施例1-6で得られたポリアミドを用いた場合、325+20=345℃)、スクリュー回転数300rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の重量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物成形品の製造)
 得られたポリアミド組成物をISO3167に準拠し、多目的試験片(A型)の成形片に成形した後、温度240℃減圧環境下-0.2MPa(ゲージ圧)で2時間熱処理した。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-7〕
 実施例1-6において、(ポリアミド組成物成形品の製造)における熱処理時間を7時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-8〕
 実施例1-6において、(ポリアミド組成物成形品の製造)における熱処理時間を24時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-9〕
(ポリアミドの製造)
 熱溶融重合法によりポリアミドの重合反応を以下のとおり実施した。
 ジカルボン酸単位としてCHDA795g(4.62モル)、ジアミン単位としてC10DA517g(3.00モル)、HMD188g(1.62モル)を、蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。槽内の圧力が、ゲージ圧として約2.5kg/cm2になるまで、液温を約50℃から加熱を続けた(この系での液温は約145℃であった。)。槽内の圧力を約2.5kg/cm2に保つため水を系外に除去しながら、加熱を続けて、水溶液の濃度が約75質量%になるまで濃縮した(この系での液温は約160℃であった。)。水の除去を止め、槽内の圧力が約30kg/cm2になるまで加熱を続けた(この系での液温は約245℃であった。)。槽内の圧力を約30kg/cm2に保つため、水を系外に除去しながら、最終温度(後述の330℃)-40℃(ここでは290℃)になるまで加熱を続けた。液温が最終温度(後述の330℃)-40℃(ここでは290℃)まで上昇した後に、加熱は続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分ほどかけながら降圧した。
 その後、槽内の樹脂温度(液温)の最終温度が約330℃になるようにヒーター温度を調整した。樹脂温度は約340℃のまま、槽内を真空装置で約79.9kPa(約600torr)の減圧下に20分維持し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、ポリアミドのペレットを得た。
(ポリアミド組成物の製造)
 上記のポリアミド及びガラス繊維を用いてポリアミド組成物の製造を実施した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+20℃(実施例1-9で得られたポリアミドを用いた場合、295+20=315℃)、スクリュー回転数300rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の質量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物成形品の製造)
 得られたポリアミド組成物をISO3167に準拠し、多目的試験片(A型)の成形片に成形した後、温度240℃減圧環境下-0.2MPa(ゲージ圧)で2時間熱処理した。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-10〕
 実施例1-9において、(ポリアミド組成物成形品の製造)における熱処理時間を7時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-11〕
 実施例1-9において、(ポリアミド組成物成形品の製造)における熱処理時間を24時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例1-1〕
 (ポリアミドの製造)と(ポリアミド組成物の製造)は実施例1-1と同様に行い、(ポリアミド組成物成形品の製造)は次のように行った。
 (ポリアミド組成物の製造)で得られたポリアミド組成物ペレットを温度150℃減圧環境下-0.2MPa(ゲージ圧)で7時間熱処理した。このペレットのトランス異性体比率は70モル%であった。次いでISO3167に準拠し、多目的試験片(A型)の成形片に成形しポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例1-2〕
 実施例1-3において、(ポリアミド組成物成形品の製造)における熱処理を行わなかった以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例1-3〕
(ポリアミドの製造)
 特開平7-228689号公報の実施例1に記載された方法に従って次のようにして調製した。
 TPA818.23g(4.75モル)、NMD712.30g(4.50モル)、2MODA79.15g(0.50モル)、安息香酸18.32g(0.15モル)、次亜リン酸ナトリウム一水和物1.63g(原料モノマーの総和を100質量部として0.1質量部)、及び蒸留水1500gを内容積5.4Lのオートクレーブ(日東高圧(株)製)に入れ、窒素置換した。
 得られた反応液を、液温(内温)100℃で30分間撹拌した後、2時間かけて液温210℃まで昇温した。この時、槽内の圧力を22kg/cm2まで昇圧した。液温210℃、槽内の圧力を22kg/cm2で1時間反応を続けた後、230℃に昇温し、その後、2時間、230℃に液温を保ち、水蒸気を徐々に抜いて槽内の圧力を22kg/cm2に保ちながら反応させた。30分かけて槽内の圧力を10kg/cm2まで下げ、さらに1時間反応させて、硫酸相対粘度[ηr]が1.25のプレポリマーを得た。
 得られたプレポリマーを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕し、次いで、230℃、0.1mmHg下にて、10時間固相重合を行ってポリアミド(以下、「PA9T」という。)を得た。
(ポリアミド組成物の製造)
 上記で得られたPA9T及びガラス繊維を用いてポリアミド組成物の製造を実施した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+20℃(比較例1-3で得られたPA9Tを用いた場合、290+20=310℃)、スクリュー回転数300rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の質量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物成形品の製造)
 得られたポリアミド組成物をISO3167に準拠し、多目的試験片(A型)の成形片に成形した。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例1-4〕
(ポリアミド組成物の製造)
 ポリアミド66及びガラス繊維を用いてポリアミド組成物の製造を実施した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+20℃(比較例1-4で得られたポリアミドを用いた場合、260+20=280℃)、スクリュー回転数300rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の質量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物成形品の製造)
 得られたポリアミド組成物をISO 3167に準拠し、多目的試験片(A型)の成形片に成形した。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
 実施例、比較例で得られたポリアミド組成物成形品の各物性について上記方法に基づいて測定した。測定結果を表1A及び表1Bに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のポリアミド組成物成形品は、原料やポリアミドの状態におけるシストランスの比率に関係なく、成型後に熱処理するだけでトランスリッチなポリアミド組成物成形品が得られ、表1Aに示す結果から明らかなように、実施例1-1~1-11のポリアミド組成物成形品は、熱時強度、熱時剛性において優れた特性を有するものであった。また、一般にポリマーが吸水すると加水分解および薬品浸透により劣化が起こり、いわゆる耐LLC性が低下するが、本発明のポリアミド組成物成形品は浸漬後引張強度保持率に示すように耐LLC性が向上した。成形品の非結晶部分と結晶部分とではLLCの浸透速度(劣化速度)が異なり、非結晶部分が結晶部分より速く劣化するが、本発明のポリアミド組成物成形品は、成型後の熱処理により非結晶部分が減少し結晶部分(ΔHm)が増えた結果、耐LLC性が向上したものと考えられる。
 これに対して、表1Bに示すように、比較例1-1では、成形前の組成物ペレットはトランス異性体比率70モル%であり、溶融成形後でも比率が70モル%であった。その結果、熱時強度、熱時剛性、耐LLC性が不充分であった。また、比較例1-2でも、成形前の組成物ペレットはトランス異性体比率が70モル%であり、溶融成形後でもトランス異性体比率が70モル%であるため熱時強度、熱時剛性、耐LLC性の点で不充分であった。
 一方、比較例1-3、1-4では、異性体が存在しないので、熱時強度、熱時剛性、耐LLC性の点で不充分であった。
 無機充填材を含まない非強化ポリアミド成形品についても上記と同様にして、以下のように実施例および比較例を行った。
〔実施例1-12〕
 実施例1-1において、(ポリアミド組成物の製造)におけるガラス繊維を添加せず、(ポリアミド組成物成形品の製造)における熱処理時間を7時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例1-13〕
 実施例1-3において、(ポリアミド組成物の製造)におけるガラス繊維を添加せず、(ポリアミド組成物成形品の製造)における熱処理時間を24時間とした以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例1-5〕
 実施例1-1において、(ポリアミド組成物の製造)におけるガラス繊維を添加せず、(ポリアミド組成物成形品の製造)における熱処理を行わなかった以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例1-6〕
 実施例1-3において、(ポリアミド組成物の製造)におけるガラス繊維を添加せず、(ポリアミド組成物成形品の製造)における熱処理を行わなかった以外は同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
 実施例、比較例で得られたポリアミド組成物成形品の各物性について上記方法に基づいて測定した。測定結果を表1Cに示す。
Figure JPOXMLDOC01-appb-T000003
 表1Cに示すように、無機充填材を含まない非強化ポリアミド成形品の場合にも成形後熱処理を行った実施例1-12および1-13では、熱時強度、熱時剛性、耐LLC性において優れた特性を有するものであった。一方、比較例1-5および1-6は、トランス異性体比率が70モル%であるため熱時強度、熱時剛性、耐LLC性の点で不充分であった。
 次に、第二の実施態様の実施例について説明する。本実施例は、上記第一のポリアミドを用いた第一のポリアミド組成物を成形してなるポリアミド組成物成形品に関するものである。
[実施例2]
 実施例及び比較例のポリアミド組成物に用いた原材料、及びポリアミドおよびポリアミド組成物成形品の物性の測定方法を以下に示す。
〔原材料〕
(A)ポリアミド
 本実施例および比較例において用いる(A)ポリアミドは、下記(a)及び(b)を適宜用いて製造した。
(a)ジカルボン酸
 (1)1,4-シクロヘキサンジカルボン酸(CHDA)(イーストマンケミカル社製、商品名:1,4-CHDA HPグレード(トランス体/シス体=25/75))
(b)ジアミン
 (1)2-メチルペンタメチレンジアミン(2MC5DA)(東京化成工業株式会社製)
 (2)ノナメチレンジアミン(C9DA)(アルドリッチ社製)
 (3)2-メチルオクタメチレンジアミン(2MC8DA)(特開平05-17413号公報に記載されている製法を参考にして製造した。)
 (4)ヘキサメチレンジアミン(C6DA)(東京化成工業株式会社製)
 (5)ウンデカメチレンジアミン(C11DA)(東京化成工業株式会社製)
 (6)ドデカメチレンジアミン(C12DA)(東京化成工業株式会社製)
(c)モノカルボン酸
 (1)酢酸(和光純薬工業株式会社製)
 (2)安息香酸(和光純薬工業株式会社製)
(B)酸化チタン
 TiO(石原産業社製、商品名:タイペーク(登録商標)CR-63、数平均粒子径:0.21μm、コーティング:アルミナ、シリカ及びシロキサン化合物)
 なお、(B)酸化チタンの数平均粒子径は、電子顕微鏡写真法により以下のとおり測定した。
 後述する実施例及び比較例のポリアミド組成物を電気炉に入れて、ポリアミド組成物中に含まれる有機物を焼却処理し、残渣分から、任意に選択した100個以上の酸化チタンを、電子顕微鏡で観察して、これらの粒子径を測定することにより、(B)酸化チタンの数平均粒子径を求めた。
(C)無機充填材
 ウォラストナイト(数平均繊維径8μm)
 なお、(C)無機充填材の数平均繊維径は、後述する実施例及び比較例のポリアミド組成物を電気炉に入れて、ポリアミド組成物中に含まれる有機物を焼却処理する。残渣分から、任意に選択した100本以上のウォラストナイトを、SEMで観察して、これらのウォラストナイトの繊維径を測定することにより数平均繊維径を求めた。
(D)造核剤
 タルク(日本タルク社製、商品名:MICRO ACE(登録商標)L-1 平均粒子径 5μm)
(E)金属水酸化物
 水酸化カルシウム 純度99.9% (和光純薬工業株式会社製)
(F)リン系化合物
 次亜リン酸カルシウム(和光純薬工業株式会社製、分解開始温度 340℃)
(G)フェノール系酸化防止剤
 フェノール系酸化防止剤(BASF社製、商品名:IRGANOX(登録商標)1098)
〔ポリアミドにおける構成単位の単位量の計算〕
 1,4-シクロヘキサンジカルボン酸のモル%は、(原料モノマーとして加えた1,4-シクロヘキサンジカルボン酸のモル数/原料モノマーとして加えた全てのジカルボン酸単位のモル数)×100として、計算により求めた。
 また、脂肪族ジアミンのモル%は、(原料モノマーとして加えた脂肪族ジアミンのモル数/原料モノマーとして加えた全てのジアミン単位のモル数)×100として、計算により求めた。
 なお、上記式により計算する際に、分母及び分子には、溶融重合時の添加物として加えた脂肪族ジアミンのモル数は含まれない。
〔ポリアミドの物性の測定方法〕
(1)ポリアミドの融解ピーク温度Tm1・Tm2(℃)、融解熱量ΔHm1・ΔHm2(J/g)、結晶化ピーク温度Tc(℃)、結晶化エンタルピーΔHc(J/g)
 JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて、ポリアミドの融解ピーク温度Tm1,Tm2(℃)、融解熱量ΔHm1(J/g)、結晶化ピーク温度Tc(℃)、および結晶化エンタルピーΔHcを測定した。
 具体的には、以下のとおり測定した。
 まず、窒素雰囲気下、サンプル(ポリアミド)約10mgを、昇温速度20℃/minでサンプルの融点に応じて300~350℃まで昇温したとき(1回目の昇温時)に現れる吸熱ピーク(融解ピーク)のもっとも高温側に現れた融解ピーク温度をTm1(℃)とし、Tm1のピーク面積を融解熱量ΔHm1(J/g)とした。なお、原料のポリアミドの融点Tm2や融解熱量ΔHm2は次のようにして測定することができる。1回目の昇温後、昇温の最高温度の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温し、30℃で2分間保持した後、昇温速度20℃/minで同様に昇温したとき(2回目の昇温時)に現れる吸熱ピークのもっとも高温側に現れた吸熱ピーク温度がポリアミド自体の融解ピーク温度Tm2であり、このTm2におけるピーク面積がポリアミドの融解熱量ΔHm2である。
 なお、1回目の昇温時に現れる吸熱ピークが複数ある場合には、ΔHが1J/g以上のものをピークとみなした。例えば、1回目の昇温時に現れる吸熱ピークとして、融点295℃、ΔH=20J/gと、融点325℃、ΔH=5J/gの、二つのピークが存在する場合、融解ピーク温度Tm1は高い方の値である325℃、ΔHm1は全ピークの合算値の25J/gとした。
 また、降温速度20℃/minで降温したときに現れる発熱ピーク(結晶化ピーク)の温度を結晶化ピーク温度Tc(℃)とし、Tcの全ピーク面積を結晶化エンタルピーΔHc(J/g)とした。
(2)ポリアミドのガラス転移温度Tg(℃)
 JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いてガラス転移温度Tg(℃)を測定した。具体的には以下のとおり測定した。サンプルをホットステージ(Mettler社製EP80)で溶融させて、得られた溶融状態のサンプルを、液体窒素を用いて急冷し、固化させ、測定用サンプルとした。その測定用サンプル10mgを、DSCにより、昇温スピード20℃/minの条件下、30~350℃の範囲で昇温して、昇温の際に観測されるガラス転移温度Tg(℃)を測定した。
(3)ポリアミドのトランス異性体比率
 ポリアミド中の1,4-シクロヘキサジカルボン酸に由来する部分のトランス異性体比率を以下のとおり測定した。
 ポリアミド30~40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、得られた溶液を用いてH-NMR(JEOL社製ECA500)でトランス異性体比率を測定した。
 脂環族ジカルボン酸が1,4-シクロヘキサンジカルボン酸の場合、トランス異性体に由来する1.98ppmのピーク面積と、シス異性体に由来する1.77ppm及び1.86ppmのピーク面積と、の比率からトランス異性体比率を求めた。
(4)ポリアミドの硫酸相対粘度ηr
 実施例及び比較例で得られたポリアミドの25℃における硫酸相対粘度ηrを、JIS-K6920に準じて測定した。具体的には、98%硫酸を用いて、1%の濃度の溶解液((ポリアミド1g)/(98%硫酸100mL)の割合)を作製し、得られた溶解液を用いて25℃の温度条件下で硫酸相対粘度ηrを測定した。
(5)ポリアミドの分子量(Mn、Mw/Mn)
 実施例及び比較例で得られたポリアミドのMw(重量平均分子量)/Mn(数平均分子量)はGPC(ゲルパーミエーションクロマトグラフィー、東ソー株式会社製、HLC-8020、ヘキサフルオロイソプロパノール溶媒、PMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算)で測定したMwとMnを用いて計算した。なお、GPCカラムはTSK-GEL GMHHR-MとG1000HHRを使用した。
(6)アミノ末端量([NH])
 実施例及び比較例で得られたポリアミドにおいて、ポリマー末端に結合するアミノ末端量を、中和滴定により以下のとおり測定した。
 ポリアミド3.0gを90質量%フェノール水溶液100mLに溶解し、得られた溶液を用い、0.025Nの塩酸で滴定を行い、アミノ末端量(μ当量/g)を求めた。終点はpH計の指示値から決定した。
(7)カルボキシル末端量([COOH])
 実施例及び比較例で得られたポリアミドにおいて、ポリマー末端に結合するカルボキシル末端量を、中和滴定により以下のとおり測定した。
 ポリアミド4.0gをベンジルアルコール50mLに溶解し、得られた溶液を用い、0.1NのNaOHで滴定を行い、カルボキシル末端量(μ当量/g)を求めた。終点はフェノールフタレイン指示薬の変色から決定した。
 (6)及び(7)により測定したアミノ末端量([NH])とカルボキシル末端量([COOH])により、活性末端合計量([NH]+[COOH])、及びアミノ末端量の活性末端合計量に対する比([NH]/([NH]+[COOH]))を算出した。
〔ポリアミド組成物成形品の物性の測定方法〕
(8)初期反射率(%)
 後述する実施例及び比較例で製造したポリアミド組成物のペレットを、射出成形機[PS-40E:日精樹脂株式会社製]を用いて成形することにより、長さ60mm×幅60mm×厚さ1.0mmの成形片を作製した。
 成形の際、射出および保圧時間の合計時間5秒、冷却時間15秒、金型温度をTg+10℃、溶融ポリアミド組成物の温度を(A)ポリアミドの融解ピーク温度Tm2+10℃に設定した。
 得られた成形片の波長450nmの光に対する反射率を日立分光光度計(U-3310)により測定した。
(9)リフロー工程後の反射率保持率(%)
 後述する実施例及び比較例で製造したポリアミド組成物のペレットを、射出成形機[PS-40E:日精樹脂株式会社製]を用いて成形することにより、長さ60mm×幅60mm×厚さ1.0mmの成形片を作製した。
 成形の際、射出および保圧時間の合計時間が5秒、冷却時間15秒、金型温度をTg+10℃、溶融樹脂温度を(A)ポリアミドの融解ピーク温度Tm2+10℃に設定した。得られた成形片を、熱風リフロー炉(280℃×10秒)で3回加熱処理(リフロー工程)した。
 加熱処理(リフロー工程)前後の成形片の、450nmの光に対する反射率を日立分光光度計(U-3310)により測定し、リフロー工程後の反射率保持率を算出した。
(10)エージング保持率(%)
 上記により得られたリフロー工程後の成形片を、150℃の熱風乾燥機中で300時間加熱処理した。
 熱処理後の成形片の、450nmの光に対する反射率を日立分光光度計(U-3310)により測定し、熱処理前における反射率と対比してエージング保持率を算出した。
(11)離型性
 後述する実施例及び比較例で製造したポリアミド組成物のペレットを、射出成形機(PS-40E:日精樹脂株式会社製)を用いて成形することにより、長さ60mm×幅60mm×厚さ1.0mmの成形品を作製した。
 成形の際、射出および保圧時間の合計時間が2秒、金型温度をTg+10℃に設定し、溶融樹脂温度を(A1)ポリアミドの融解ピーク温度Tm2+10℃に設定した。
 冷却時間を調整し、金型から成形品が問題なく離型する最短の冷却時間を離型性として評価した。冷却時間を短縮することは、生産性の向上に繋がると判断した。
〔(A)ポリアミドの製造〕
(製造例1)
 CHDA896g(5.20モル)、及び2MC5DA604g(5.20モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%の水混合液を作製した。
 得られた水混合液と、溶融重合時の添加物である、2MC5DA21g(0.18モル)と酢酸3.7g(0.06モル)、次亜リン酸ナトリウム・1水和物1.3gを内容積5.4Lのオートクレーブ(日東高圧製)に仕込んだ。各材料の割合および重合条件を表2Aに示す。
 次に、オートクレーブ内の液温(内温)が50℃になるまで加温した。その後、オートクレーブ内を窒素置換した。オートクレーブの槽内(以下、単に「槽内」ともいう。)の圧力が、ゲージ圧として(以下、槽内の圧力は全てゲージ圧(G)として表記した。)、約2.5kg/cmになるまで加熱を続けた。このとき液温は約145℃であった。
 槽内の圧力を約2.5kg/cm(G)に保つため水を系外に除去しながら、加熱を続けて、槽内の水溶液の濃度が約85質量%になるまで濃縮した。
 水の除去を止め、槽内の圧力が約30kg/cm(G)になるまで加熱を続けた。
 槽内の圧力を約30kg/cm(G)に保つため水を系外に除去しながら、最終温度(約345℃)より50℃低い温度(約295℃)になるまで加熱を続けた。さらに加熱を続けながら、槽内の圧力を60分間かけて大気圧(ゲージ圧は0kg/cm)になるまで降圧した。槽内の樹脂温度(液温)の最終温度が約340℃になるようにヒーター温度を調整した。
 槽内の樹脂温度はその状態のまま、槽内を真空装置で100torr(1.33×10Pa)の減圧下に10分維持した。その後、槽内を窒素で加圧し、下部紡口(ノズル)から生成物をストランド状にして排出した。さらにストランド状の生成物を、水冷、カッティングを行いペレット状の前駆体ポリアミド(前駆体ポリアミドペレット)を得た。この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、98μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.37であった。
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名「リボコーンRM-10V」)に入れ、真空乾燥機内を充分に窒素置換した。
 真空乾燥機内に1L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら240℃で10時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ペレット状のポリアミドを作製した。このポリアミドペレットを真空乾燥機から取り出し、ポリアミド(以下、「PA-1」ともいう。)を得た。
 得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%未満に調整してから、ポリアミドの各特性を上記測定方法に基づいて測定した。
(製造例2)
 CHDA896g(5.20モル)、及び2MC5DA604g(5.20モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%の水混合液を作製した。
 得られた水混合液と、溶融重合時の添加物である、2MC5DA18g(0.16モル)と酢酸1.6g(0.03モル)、次亜リン酸ナトリウム・1水和物1.3gを内容積5.4Lのオートクレーブ(日東高圧製)に仕込んだ。重合条件は製造例1に準じた。得られた前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、91μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.49であった。
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名リボコーンRM-10V)に入れ、真空乾燥機内を充分に窒素置換した。
 真空乾燥機内に1L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら250℃で10時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ポリアミドペレットを、ペレット状のまま真空乾燥機から取り出し、ポリアミド(以下、「PA-2」ともいう。)を得た。
 得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%未満に調整してから、ポリアミドの各特性を上記測定方法に基づいて測定した。
(製造例3)
 CHDA896g(5.20モル)、及び2MC5DA604g(5.20モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%の水混合液を作製した。
 得られた水混合液と、溶融重合時の添加物である、2MC5DA15g(0.13モル)と酢酸1.6g(0.03モル)、次亜リン酸ナトリウム・1水和物1.3gを内容積5.4Lのオートクレーブ(日東高圧製)に仕込んだ。重合条件は製造例1に準じた。この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、85μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.39であった。
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名「リボコーンRM-10V」)に入れ、真空乾燥機内を充分に窒素置換した。
 真空乾燥機内に1L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら240℃で10時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ポリアミドペレットを、ペレット状のまま真空乾燥機から取り出し、ポリアミド(以下、「PA-3」ともいう。)を得た。
 得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%未満に調整してから、ポリアミドの各特性を上記測定方法に基づいて測定した。
(製造例4)
 CHDA896g(5.20モル)、及び2MC5DA604g(5.20モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%の水混合液を作製した。
 得られた水混合液と、溶融重合時の添加物である、2MC5DA24g(0.21モル)と酢酸3.7g(0.06モル)、次亜リン酸ナトリウム・1水和物1.3gを内容積5.4Lのオートクレーブ(日東高圧製)に仕込んだ。重合条件は製造例1に準じた。この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、102μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.55であった。
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名リボコーンRM-10V)に入れ、真空乾燥機内を充分に窒素置換した。
 真空乾燥機内に1L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら120℃で24時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ポリアミドペレットを、ペレット状のまま真空乾燥機から取り出し、ポリアミド(以下、「PA-4」ともいう。)を得た。
 得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%未満に調整してから、ポリアミドの各特性を上記測定方法に基づいて測定した。
(製造例5)
 乾燥条件以外は製造例4と同様に行った。
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名「リボコーンRM-10V」)に入れ、真空乾燥機内を充分に窒素置換した。
 真空乾燥機内に1L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら210℃で24時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ポリアミドペレットを、ペレット状のまま真空乾燥機から取り出し、ポリアミド(以下、「PA-5」ともいう。)を得た。
 得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%未満に調整してから、ポリアミドの各特性を上記測定方法に基づいて測定した。
(製造例6)
 CHDA896g(5.20モル)、及び2MC5DA604g(5.20モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%の水混合液を作製した。
 得られた水混合液と、溶融重合時の添加物である、酢酸1.6g(0.03モル)、次亜リン酸ナトリウム・1水和物1.3gを内容積5.4Lのオートクレーブ(日東高圧製)に仕込んだ。重合条件と乾燥条件は製造例1に従った。
 得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%未満に調整してから、ポリアミドの各特性を上記測定方法に基づいて測定した。
(製造例7)
 重合法は、(特公昭64-2131号公報)に記載されている製法に準じた。
 CHDA1007g(5.85モル)、C11DA832g(4.46モル)、及びC6DA161g(1.39モル)を蒸留水500gに溶解させ、原料モノマーの等モル約80質量%均一水溶液を作った。
 得られた水溶液を内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。液温を約50℃から加熱を続けて210℃とし、オートクレーブの槽内の圧力を、ゲージ圧として、17.5kg/cmに保つため水を系外に除去しながら、加熱を続けた。その後、内温を320℃まで昇温し、槽内の圧力が大気圧(ゲージ圧は0kg/cm)になるまで120分ほどかけながら降圧した。その後、槽内に窒素ガスを30分間流し、樹脂温度(液温)の最終温度が約323℃になるようにヒーター温度を調整し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、共重合ポリアミドのペレットを得た。得られたポリアミドの各物性について上記方法に基づいて測定した。
(製造例8)
 重合法は、(国際公開第2008-149862号パンフレット)に記載されている製法に準じた。
 CHDA726g(4.22モル)、C12DA675g(3.37モル)、及びC6DA99g(0.85モル)を蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。
 オートクレーブ内の溶液を撹拌し、50分かけて内温を160℃に昇温した。その後内温を30分、160℃に保ち、オートクレーブ内から水蒸液を系外に除去しながら、加熱を続けて、水溶液の濃度が70質量%になるまで濃縮した。水の除去を止め、槽内圧力が約35kg/cmになるまで加熱を続けた(この系での液温は約250℃であった)。槽内の圧力を約35kg/cmに保つため、水を系外に除去しながら、最終温度が300℃になるまで1時間反応させ、プレポリマーを得た。
 このプレポリマーを3mm以下の大きさまで粉砕した後、窒素ガスを20L/分の流量で流した雰囲気の下、100℃で24時間乾燥した。その後、窒素ガスを200mL/分の流量で流した雰囲気の下、280℃10時間プレポリマーを固相重合し、ポリアミドを得た。このポリアミドの組成及び重合条件を表2Aに示した。
(製造例9)
 重合法は、(特開平9-12868)に記載されている製法に準じた。
 CHDA770g(4.47モル)、C9DA(ノナメチレンジアミン)609g(3.85モル)、2MC8DA(2-メチル-1,8-オクタンジアミン)107g(0.68モル)、安息香酸13.8g(0.11モル)、次亜リン酸ナトリウム・1水和物1.5gおよび蒸留水1500gを内容積5.4Lオートクレーブ(日東高圧製)に仕込み、窒素置換した。100℃で30分撹拌し、2時間かけて内部温度を210℃に昇温した。このときオートクレーブは22kg/cmまで昇温した。そのまま1時間反応を続けた後、230℃に昇温し、その後、2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を22kg/cmに保ちながら反応させた。次いで、30分かけて圧力を10kg/cmまで下げ、さらに1時間反応させ、プレポリマーを得た。このプレポリマーを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕した。これを230℃、0.1mmHg下に、10時間固相重合しポリアミドを得た。
〔ポリアミド組成物の製造〕
(実施例2-1~2-3及び比較例2-1~2-6)
 上記製造例1~9で得られたポリアミド(PA-1)~(PA-9)と、上記各原材料とを、下記表2Bに記載の種類及び割合で用いて、ポリアミド組成物を以下のとおり製造した。
 なお、上記製造例1~9で得られたポリアミド(PA-1~PA-9)は、窒素気流中で乾燥し水分率を約0.2質量%に調整してから、ポリアミド組成物の原料として用いた。
 ポリアミド組成物の製造装置としては、二軸押出機[ZSK-26MC:コペリオン社製(ドイツ)]を用いた。
 二軸押出機は、押出機上流側から1番目のバレルに上流側供給口を有し、6番目のバレルに下流側第1供給口を有し、9番目のバレルに下流側第2供給口を有していた。また、二軸押出機において、L/D(押出機のシリンダーの長さ/押出機のシリンダー径)は48であり、バレル数は12であった。
 二軸押出機において、上流側供給口からダイまでの温度を上記製造例にて製造した各(A)ポリアミドの融解ピーク温度Tm2+10℃に設定し、スクリュー回転数250rpm、吐出量25kg/hに設定した。
 表2Bに記載の種類及び割合となるように、(A)ポリアミド、(D)造核剤、(E)金属水酸化物、(F)リン系化合物、および(G)フェノール系酸化防止剤、をドライブレンドした後に二軸押出機の上流側供給口より供給した。
 次に、二軸押出機の下流側第1供給口より、下記表2Bに記載の種類及び割合で(B)酸化チタンを供給した。
 さらに二軸押出機の下流側第2供給口より、下記表2Bに記載の種類及び割合で(C)無機充填材を供給した。
 上記のとおり供給した原料を二軸押出機で溶融混練してポリアミド組成物のペレットを作製した。
 得られたポリアミド組成物のペレットを、窒素気流中で乾燥し、ポリアミド組成物中の水分量を500ppm以下にした。
 水分量を調整した後のポリアミド組成物を用いて上記のとおり各種評価を実施した。
 評価結果を下記表2Bに示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2Bに示すように、実施例2-1~2-3のポリアミド組成物は、初期反射率、リフロー工程後の反射率保持率、熱処理後の反射率保持率が高く、離型性に優れることが分かった。
 一方、トランス異性体比率が本発明の範囲から外れる比較例は、特に、リフロー工程後の反射率保持率およびエージング保持率において、実施例に劣った。また、トランス異性体比率が低く、かつアミノ末端量の活性末端合計量に対する比が0.5以上である比較例2-1および2-2は、離型性において実施例に劣った。
 以上の結果から、本発明のポリアミド組成物は、反射率保持率、エージング保持率および離型性に優れるため、LED用反射板に好適に用いることができることが示された。
 次に、第三の実施形態の実施例について説明する。本実施例は、上記第二のポリアミドを用いた第二のポリアミド組成物を成形してなるポリアミド組成物成形品に関するものである。
[実施例3]
 実施例及び比較例に用いた原材料及び物性等の測定方法を以下に示す。
〔ポリアミドの原材料〕
<(a)ジカルボン酸単位の原料>
(1)1,4-シクロヘキサンジカルボン酸(CHDA) イーストマンケミカル製 商品名:1,4-CHDA HPグレード(トランス体/シス体(モル比)=25/75)
<(b)ジアミン単位の原料>
 (1)2-メチルペンタメチレンジアミン(2MC5DA)(東京化成工業株式会社製)
 (2)ノナメチレンジアミン(C9DA)(アルドリッチ社製)
 (3)2-メチルオクタメチレンジアミン(2MC8DA)(特開平05-17413号公報に記載されている製法を参考にして製造した。)
 (4)ヘキサメチレンジアミン(C6DA)(東京化成工業株式会社製)
 (5)デカメチレンジアミン(C10DA)(東京化成工業株式会社製)
 (6)ウンデカメチレンジアミン(C11DA)(東京化成工業株式会社製)
 (7)ドデカメチレンジアミン(C12DA)(東京化成工業株式会社製)
〔無機充填材〕
 ガラス繊維(GF) 日本電気硝子製 商品名:ECS03T275H 平均繊維径(平均粒径)10μm(真円状)、カット長3mm
〔ポリアミド単位量の計算〕
 1,4-シクロヘキサンジカルボン酸のモル%は、(原料モノマーとして加えた1,4-シクロヘキサンジカルボン酸のモル数/原料モノマーとして加えた全てのジカルボン酸単位のモル数)×100として、計算により求めた。
 脂肪族ジアミンのモル%は、(原料モノマーとして加えた脂肪族ジアミンのモル数/原料モノマーとして加えた全てのジアミン単位のモル数)×100として、計算により求めた。
 なお、上記式により計算する際に、分母及び分子には、溶融重合時の添加物として加えた脂肪族ジアミンのモル数は含まれない。
 〔ポリアミドの物性の測定方法〕
(1)ポリアミドの融解ピーク温度Tm1・Tm2(℃)、融解熱量ΔHm1・ΔHm2(J/g)、結晶化エンタルピーΔHc(J/g)
 JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。測定条件は、窒素雰囲気下、実施例及び比較例で得られたポリアミド約10mgを昇温速度20℃/minでサンプルの融点(Tm)に応じて300~350℃まで昇温したとき(1回目の昇温時)に現れる吸熱ピーク(融解ピーク)のもっとも高温側に現れた融解ピーク温度をTm1(℃)とし、Tm1のピーク面積を融解熱量ΔHm1(J/g)とした。また、原料のポリアミドの融解ピーク温度Tm2や融解熱量ΔHm2は次のようにして測定することができる。1回目の昇温後、昇温の最高温度の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温し、30℃で2分間保持した後、昇温速度20℃/minで同様に昇温したとき(2回目の昇温時)に現れる吸熱ピークのもっとも高温側に現れた吸熱ピーク温度がポリアミド自体の融解ピーク温度Tm2であり、このTm2におけるピーク面積がポリアミドの融解熱量ΔHm2である。
 なお、1回目の昇温時に現れる吸熱ピークが複数ある場合には、ΔHが1J/g以上のものをピークとみなした。例えば、1回目の昇温時に現れる吸熱ピークとして、融点295℃、ΔH=20J/gと、融点325℃、ΔH=5J/gの、二つのピークが存在する場合、融解ピーク温度Tm1は高い方の値である325℃、ΔHm1は全ピークの合算値の25J/gとした。
 また、降温速度20℃/minで降温したときに現れる発熱ピーク(結晶化ピーク)の温度を結晶化ピーク温度Tc(℃)とし、Tcの全ピーク面積を結晶化エンタルピーΔHc(J/g)とした。
(2)ポリアミドのガラス転移温度Tg(℃)
 ガラス転移温度Tg(℃)は、JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。測定条件は、実施例及び比較例で得られたポリアミドをホットステージ(Mettler社製EP80)で溶融させて得られた溶融状態のサンプルを、液体窒素を用いて急冷し、固化させ、測定サンプルとした。そのサンプル10mgを用いて、昇温スピード20℃/minの条件下、30~350℃の範囲で昇温して、ガラス転移温度を測定した。
(3)トランス異性体比率
 実施例及び比較例で得られたポリアミド30~40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、H-NMR(JEOL社製ECA500)で測定した。ポリアミドの1,4-シクロヘキサンジカルボン酸単量体単位のトランス異性体比率は、トランス異性体に由来する2.00ppmのピーク面積とシス異性体に由来する1.77ppmと1.87ppmのピーク面積比率から求めた。
(4)ポリアミドの硫酸相対粘度ηr
 実施例及び比較例で得られたポリアミドの25℃における硫酸相対粘度ηrを、JIS-K6920に準じて測定した。具体的には、98%硫酸を用いて、1%の濃度の溶解液((ポリアミド1g)/(98%硫酸100mL)の割合)を作成し、得られた溶解液を用いて25℃の温度条件下で硫酸相対粘度ηrを測定した。
(5)分子量
 数平均分子量Mn、重量平均分子量Mw、分子量分布Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー、東ソー株式会社製、HLC-8020、ヘキサフルオロイソプロパノール溶媒、PMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算で測定した数平均分子量Mnを用いて、検量線を作製し、本実施例、比較例で得られたポリアミドの分子量を求めた。なお、GPCカラムはTSK-GEL GMHHR-MとG1000HHRを使用した。
(6)アミノ末端量([NH])
 実施例及び比較例で得られたポリアミドにおいて、ポリマー末端に結合するアミノ末端量を、中和滴定により以下のとおり測定した。
 ポリアミド3.0gを90質量%フェノール水溶液100mLに溶解し、得られた溶液を用い、0.025Nの塩酸で滴定を行い、アミノ末端量(μ当量/g)を求めた。終点はpH計の指示値から決定した。
(7)カルボキシル末端量([COOH])
 実施例及び比較例で得られたポリアミドにおいて、ポリマー末端に結合するカルボキシル末端量を、中和滴定により以下のとおり測定した。
 ポリアミド4.0gをベンジルアルコール50mLに溶解し、得られた溶液を用い、0.1NのNaOHで滴定を行い、カルボキシル末端量(μ当量/g)を求めた。終点はフェノールフタレイン指示薬の変色から決定した。
 (6)及び(7)により測定したアミノ末端量([NH])とカルボキシル末端量([COOH])により、活性末端合計量([NH]+[COOH])及びアミノ末端量の活性末端合計量に対する比([NH]/([NH]+[COOH]))を算出した。
〔ポリアミド組成物成形品の物性の測定方法〕
(8)引張強度(MPa)、引張弾性率(GPa)、破断ひずみ(%)
 実施例及び比較例で得られたポリアミド組成物成形品(多目的試験片)を用いて、ISO 527に準拠し、120℃環境下、引張速度5mm/minで引張試験を行い、引張強度、引張弾性率、破断ひずみを測定した。
(9)吸水率(%)
 実施例及び比較例で得られたポリアミド組成物成形品を80℃の蒸留水に24時間浸漬させ、浸漬前後の重量変化率を吸水率とした。
(10)浸漬後の引張強度保持率(%)(表3Aおよび表3Bにおいて耐LLC(保持率)と記載する。)
 実施例及び比較例で得られたポリアミド組成物成形品の浸漬後の引張強度保持率(%)を以下のとおり測定した。上記(8)の多目的試験片(3mm厚)を、120℃のエチレングリコール50%水溶液に、24時間、720時間浸漬し、室温に放置した後、上記(8)の方法の引張試験を行い、引張強度を測定した。720時間浸漬後に測定した引張強度の、24時間浸漬後に測定した引張強度に対する割合を浸漬後の引張強度保持率として求めた。
〔実施例3-1〕
(ポリアミドの製造)
 熱溶融重合法によりポリアミドの重合反応を以下のとおり実施した。
 ジカルボン酸単位としてCHDA802g(4.66モル)、ジアミン単位として2MC5DA217g(1.86モル)およびC10DA482g(2.79モル)を、蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、さらに追加ジアミンとして2MC5DA5.4gをオートクレーブ内に添加した。液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。オートクレーブの槽内(以下、単に「槽内」とも記す。)の圧力が、ゲージ圧として(以下、槽内の圧力は全てゲージ圧として表記する。)、約2.5kg/cm2(G)になるまで、液温を約50℃から加熱を続けた(この系での液温は約145℃であった。)。槽内の圧力を約2.5kg/cm2(G)に保つため水を系外に除去しながら加熱を続けて、水溶液の濃度が約75質量%になるまで濃縮した(この系での液温は約160℃であった。)。
 水の除去を止め、槽内の圧力が約30kg/cm2(G)になるまで加熱を続けた(この系での液温は約245℃であった。)。槽内の圧力を約30kg/cm2(G)に保つため、水を系外に除去しながら、最終温度(後述の330℃)-40℃(ここでは290℃)になるまで加熱を続けた。液温が最終温度(後述の330℃)-40℃(ここでは290℃)まで上昇した後に、加熱は続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分ほどかけながら降圧した。
 その後、槽内の樹脂温度(液温)の最終温度が約330℃になるようにヒーター温度を調整した。樹脂温度は約330℃のまま、槽内を真空装置で約50kPaの減圧下に20分維持し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、前駆体ポリアミドのペレット(前駆体ポリアミドペレット)を得た。この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、115μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.39であった。
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名「リボコーンRM-10V」)に入れ、真空乾燥機内を充分に窒素置換した。
 該真空乾燥機内に10L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら240℃で10時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ポリアミドペレットを、ペレット状のまま真空乾燥機から取り出した。
(ポリアミド組成物の製造)
 上記で得られたポリアミドペレット及びガラス繊維を用いてポリアミド組成物を製造した。
 具体的には、2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tm2+10℃(上記で得られたポリアミドを用いた場合、310+20=330℃)、スクリュー回転数250rpm)を用いて、以下のとおりポリアミド組成物を製造した。2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整したポリアミド(65質量部)を供給し、2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維(35質量部)を(ポリアミド:ガラス繊維=65:35)の質量比で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
(ポリアミド組成物成形品の製造)
 得られたポリアミド組成物をISO3167に準拠し、射出成形により多目的試験片(A型)に成形し、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。測定結果を表3Aおよび表3Bに示す。
〔実施例3-2〕
 2MC5DA追加ジアミン量を4.3gとした以外は実施例3-1と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。なお、この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、118μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.29であった。
〔実施例3-3〕
 2MC5DA追加ジアミン量を0gとした以外は実施例3-1と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。なお、この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、135μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.17であった。
〔実施例3-4〕
 溶融重合により得られた前駆体ポリアミドペレットを真空乾燥機で250℃10時間乾燥させた以外は実施例3-3と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔実施例3-5〕
 ジカルボン酸単位としてCHDA795g(4.62モル)、ジアミン単位として2MC5DA188g(1.62モル)、C10DA517g(3.00モル)を、蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した以外は実施例3-3と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。なお、この前駆体ポリアミドの活性末端合計量([NH2]+[COOH])は、132μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.21であった。
〔実施例3-6〕
 溶融重合を用いて得られた前駆体ポリアミドペレット10kgを真空乾燥機内に入れ、充分に窒素置換した後、10L/分で窒素を流したまま、前駆体ポリアミドペレットを攪拌しながら235℃で10時間、加熱した。その後、窒素を流通したまま真空乾燥機内の温度を約50℃まで下げて、ポリアミドペレットを、ペレット状のまま真空乾燥機から取り出し、ポリアミドを得た。これら以外は、実施例3-5と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例3-1〕
 2MC5DA追加ジアミン量を13gとして、その後の溶融重合により得られた前駆体ポリアミドペレットを真空乾燥機で150℃10時間乾燥させた以外は実施例3-1と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。測定結果を表3Bに示す。なお、この前駆体ポリアミドの活性末端合計量([NH]+[COOH])は、123μ当量/g、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])は、0.55であった。
〔比較例3-2〕
 溶融重合により得られた前駆体ポリアミドペレットを真空乾燥機で200℃10時間乾燥させた以外は比較例3-1と同様にして、ポリアミド組成物成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例3-3〕
 重合法は、特許文献7(特公昭64-2131号公報)に記載されている製法に準じた。
 CHDA1007g(5.85モル)、C11DA832g(4.46モル)、及びC6DA161g(1.39モル)を蒸留水500gに溶解させ、原料モノマーの等モル約80質量%均一水溶液を作った。
 得られた水溶液を内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。液温を約50℃から加熱を続けて210℃とし、オートクレーブの槽内の圧力を、ゲージ圧として(以下、槽内の圧力は全てゲージ圧(G)として表記する。)、17.5kg/cm2(G)に保つため水を系外に除去しながら、加熱を続けた。その後、内温を320℃まで昇温し、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで120分ほどかけながら降圧した。その後、槽内に窒素ガスを30分間流し、樹脂温度(液温)の最終温度が約323℃になるようにヒーター温度を調整し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、共重合ポリアミドのペレットを得た。
 ポリアミド組成物とポリアミド組成物成形品は、実施例3-1に基づいて製造した。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例3-4〕
 重合法は、(国際公開第2008-149862号パンフレット)に記載されている製法に準じた。
 CHDA726g(4.22モル)、C12DA675g(3.37モル)、及びC6DA99g(0.85モル)を蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作製した。
 得られた水溶液を、内容積5.4Lオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。
 オートクレーブ内の溶液を撹拌し、50分かけて内温を160℃に昇温した。その後内温を30分、160℃に保ち、前記オートクレーブ内から水蒸液を系外に除去しながら、加熱を続けて、水溶液の濃度が70質量%になるまで濃縮した。水の除去を止め、槽内圧力が約35kg/cmになるまで加熱を続けた(この系での液温は約250℃であった)。槽内の圧力を約35kg/cmに保つため、水を系外に除去しながら、最終温度が300℃になるまで1時間反応させ、プレポリマーを得た。
 このプレポリマーを3mm以下の大きさまで粉砕した後、窒素ガスを20L/分の流量で流した雰囲気の下、100℃で24時間乾燥した。その後、窒素ガスを200mL/分の流量で流した雰囲気の下、280℃10時間プレポリマーを固相重合し、ポリアミドを得た。
 ポリアミド組成物の製造とポリアミド組成物の成形品の製造は実施例3-1に基づいて、ポリアミド組成物およびその成形品を得た。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。
〔比較例3-5〕
 重合法は、(特開平9-12868)に記載されている製法に準じた。
 CHDA770g(4.47モル)、C9DA(ノナメチレンジアミン)609g(3.85モル)、2MC8DA(2-メチル-1,8-オクタンジアミン)107g(0.68モル)、安息香酸13.8g(0.11モル)、次亜リン酸ナトリウム・1水和物1.5gおよび蒸留水1500gを内容積5.4Lオートクレーブ(日東高圧製)に仕込み、窒素置換した。100℃で30分撹拌し、2時間かけて内部温度を210℃に昇温した。このときオートクレーブは22kg/cmまで昇温した。そのまま1時間反応を続けた後、230℃に昇温し、その後、2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を22kg/cmに保ちながら反応させた。次いで、30分かけて圧力を10kg/cmまで下げ、さらに1時間反応させ、プレポリマーを得た。このプレポリマーを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕した。これを230℃、0.1mmHg下に、10時間固相重合しポリアミドを得た。
 ポリアミド組成物とポリアミド組成物成形品は、実施例3-1に基づいて製造した。得られたポリアミド組成物成形品の諸物性を上記方法に基づいて測定した。評価結果を下記表3Aおよび表3Bに示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明のポリアミドは、表3Aに示す結果から明らかなように、結晶成長の指標である融解熱量ΔHm1/結晶化エンタルピーΔHcの比を高めることで、実施例3-1~3-6のポリアミド組成物成形品は、熱時強度、熱時剛性において優れた特性を有するものであった。また、一般にポリマーが吸水すると加水分解および薬品浸透により劣化が起こり、いわゆる耐LLC性が低下するが、本発明のポリアミドを含有する組成物成形品は浸漬後引張強度保持率に示すように耐LLC性が向上した。成形品の非結晶部分と結晶部分とではLLCの浸透速度(劣化速度)が異なり、非結晶部分が結晶部分より速く劣化するが、本発明のポリアミドは、組成物の成型後の非結晶部分が減少し結晶部分(ΔHm)が増えた結果、耐LLC性が向上したものと考えられる。
 これに対して、表3Bに示すように、比較例3-1および3-2では、ポリアミドのトランス異性体比率が70モル%と低いため、その結果、熱時強度、熱時剛性、耐LLC性が不充分であった。また、比較例3-3、3-4、および3-5のポリアミドのトランス異性体比率は82~85モル%であったが、結晶成長の指標ΔHm1/ΔHcが1.1~1.3と実施例より低いため熱時強度、熱時剛性、耐LLC性の点で不充分であった。
 本発明のポリアミド組成物成形品は、LED用反射板、自動車用、電気及び電子用、産業資材用、並びに日用及び家庭品用等の各種部品として、産業上の利用可能性を有する。

Claims (43)

  1.  少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
     少なくとも脂肪族ジアミンを含むジアミン単位と、
    を含むポリアミドを含有するポリアミド組成物成形品であって、
     該成形品におけるジカルボン酸単量体単位のトランス異性体比率が71~100モル%であるポリアミド組成物成形品。
  2.  前記1,4-シクロヘキサンジカルボン酸の含有量が、前記ジカルボン酸単位中、少なくとも50モル%である請求項1記載のポリアミド組成物成形品。
  3.  JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHmと20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比が、
    ΔHm/ΔHc>1.0
    である請求項1または2記載のポリアミド組成物成形品。
  4.  前記示差走査熱量測定における融解ピーク温度が300℃以上である請求項2または3記載のポリアミド組成物成形品。
  5.  前記融解熱量ΔHmが40J/g以上である請求項2、3または4記載のポリアミド組成物成形品。
  6.  前記トランス異性体比率モル%が71より大きく75以下である請求項1~5いずれか1項記載のポリアミド組成物成形品。
  7.  前記トランス異性体比率モル%が75より大きく100以下である請求項1~6いずれか1項記載のポリアミド組成物成形品。
  8.  前記脂肪族ジアミン単位が炭素数4~12の飽和脂肪族ジアミンである請求項1~7いずれか1項記載のポリアミド組成物成形品。
  9.  少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、少なくとも脂肪族ジアミンを含むジアミン単位と、を含むポリアミドを含有するポリアミド組成物を成形し、該成形したポリアミド組成物体を200℃以上で熱処理してポリアミド組成物成形品を製造するポリアミド組成物成形品の製造方法。
  10.  (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
     (b)少なくとも脂肪族ジアミンを含むジアミン単位と、
    を含有するポリアミドであって、
     JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcが、
     1.0<ΔHm1/ΔHc≦2.2
    であり、
     前記ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
     71<トランス異性体比率≦75
    であるポリアミド。
  11.  前記1,4-シクロヘキサンジカルボン酸の含有量が、前記ジカルボン酸単位中、少なくとも50モル%である請求項10記載のポリアミド。
  12.  前記ジカルボン酸単位が、すべて1,4-シクロヘキサンジカルボン酸である請求項11記載のポリアミド。
  13.  前記脂肪族ジアミンの炭素数が6~12である請求項10から12いずれか1項記載のポリアミド。
  14.  前記脂肪族ジアミンが、ヘキサメチレンジアミン、2-メチル-ペンタメチレンジアミン、2-メチル-1,8-オクタンジアミン、ノナメチレンジアミン、デカメチレンジアミン、またはドデカメチレンジアミンである請求項13記載のポリアミド。
  15.  前記脂肪族ジアミンが、2-メチル-ペンタメチレンジアミンである請求項14記載のポリアミド。
  16. (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
    (b)少なくとも脂肪族ジアミンを含むジアミン単位と、
    を含有するポリアミドであって、
     脂肪族ジアミンが分岐脂肪族ジアミンを含み、
     前記ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
     71<トランス異性体比率≦100
    であるポリアミド。
  17.  前記(b)ジアミン単位中の分岐脂肪族ジアミンの割合が10~100モル%である請求項16記載のポリアミド。
  18.  前記ΔHm1/ΔHcが、
      1.0<ΔHm1/ΔHc≦1.4
    である請求項10から17いずれか1項記載のポリアミド。
  19.  前記ΔHm1/ΔHcをyとし、前記トランス異性体比率をxとしたとき、
      y≧0.04x-1.8
    である請求項10から18いずれか1項記載のポリアミド。
  20.  アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、
     [NH]/([NH]+[COOH])<0.5
    である請求項10から19いずれか1項記載のポリアミド。
  21.  活性末端合計量([NH]+[COOH])μ当量/gが、
     20<[NH]+[COOH]<60
    である請求項10から20いずれか1項記載のポリアミド。
  22.  硫酸相対粘度ηrが、1.8<ηrである請求項10から21いずれか1項記載のポリアミド。
  23.  分子量分布である重量平均分子量Mw/数平均分子量Mnが、
     Mw/Mn<3.5である請求項10から22いずれか1項記載のポリアミド。
  24.  前記ポリアミドの融解ピーク温度Tm1と前記ポリアミドの結晶化ピーク温度Tcの差であるTm1-Tcが、40℃<Tm1-Tc<90℃である請求項10から23いずれか1項記載のポリアミド。
  25.  請求項10から24いずれか1項記載のポリアミドと、無機充填材、造核剤、熱安定剤および光安定剤から選ばれる少なくとも一つと、を含むポリアミド組成物。
  26.  酸化チタンをさらに含む請求項25記載のポリアミド組成物。
  27.  請求項25または26記載のポリアミド組成物を成形してなるポリアミド組成物成形品。
  28.  (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、
    [NH]/([NH]+[COOH])<0.5であり、活性末端合計量([NH]+[COOH])μ当量/gが、60≦[NH]+[COOH]<110であるポリアミドを、200℃以上融点未満で10時間以上熱処理するポリアミドの製造方法。
  29.  (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
     (b)少なくとも脂肪族ジアミンを含むジアミン単位と、
    を含有するポリアミドであって、
     硫酸相対粘度ηrが2.5以上であり、
     JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解熱量ΔHm1と20℃/minで降温したときに得られる結晶化エンタルピーΔHcとの比であるΔHm1/ΔHcが、
     1.0<ΔHm1/ΔHc≦2.2
    であり、
     前記ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
     75<トランス異性体比率≦100
    であるポリアミド。
  30.  前記1,4-シクロヘキサンジカルボン酸の含有量が、前記ジカルボン酸単位中、少なくとも50モル%である請求項29記載のポリアミド。
  31.  前記ジカルボン酸単位が、すべて1,4-シクロヘキサンジカルボン酸である請求項30記載のポリアミド。
  32.  前記脂肪族ジアミンの炭素数が6~12である請求項29から31いずれか1項記載のポリアミド。
  33.  前記脂肪族ジアミンが、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、2-メチル-1,8-オクタンジアミン、ノナメチレンジアミン、デカメチレンジアミン、またはドデカメチレンジアミンである請求項32記載のポリアミド。
  34.  前記脂肪族ジアミンが、2-メチルペンタメチレンジアミン、またはデカメチレンジアミンである請求項33記載のポリアミド。
  35. (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、
    (b)少なくとも脂肪族ジアミンを含むジアミン単位と、
    を含有するポリアミドであって、
    脂肪族ジアミンが分岐脂肪族ジアミンを含み、
     硫酸相対粘度ηrが2.5以上であり、
     前記ポリアミドにおけるジカルボン酸単量体単位のトランス異性体比率モル%が、
    71<トランス異性体比率≦100
    であるポリアミド。
  36.  前記(b)ジアミン単位中の分岐脂肪族ジアミンの割合が10~100モル%である請求項35記載のポリアミド。
  37.  前記ΔHm1/ΔHcが、
      1.4<ΔHm1/ΔHc≦2.2
    である請求項29から36いずれか1項記載のポリアミド。
  38.  前記ΔHm1/ΔHcをyとし、前記トランス異性体比率をxとしたとき、
      y≧0.04x-1.8
    である請求項29から37いずれか1項記載のポリアミド。
  39.  アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、
    [NH]/([NH]+[COOH])<0.5
    である請求項29から38いずれか1項記載のポリアミド。
  40.  分子量分布を示す重量平均分子量Mw/数平均分子量Mnが、
     Mw/Mn<3.5
    である請求項29から39いずれか1項記載のポリアミド。
  41.  請求項29から40いずれか1項記載のポリアミドと、無機充填材、熱安定剤、および光安定剤から選ばれる少なくとも一つと、を含むポリアミド組成物。
  42.  請求項41記載のポリアミド組成物を成形してなるポリアミド組成物成形品。
  43.  (a)少なくとも1,4-シクロヘキサンジカルボン酸を含むジカルボン酸単位と、(b)少なくとも脂肪族ジアミンを含むジアミン単位と、を含有し、アミノ末端量[NH]の活性末端合計量([NH]+[COOH])に対する比である[NH]/([NH]+[COOH])が、[NH]/([NH]+[COOH])<0.5であり、活性末端合計量([NH]+[COOH])μ当量/gが、110≦[NH]+[COOH]≦200であるポリアミドを、200℃以上融点未満で10時間以上熱処理するポリアミドの製造方法。
PCT/JP2015/004385 2014-08-29 2015-08-28 ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法 WO2016031257A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544970A JPWO2016031257A1 (ja) 2014-08-29 2015-08-28 ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-174864 2014-08-29
JP2014174864 2014-08-29
JP2015-164149 2015-08-21
JP2015164149A JP2017078093A (ja) 2015-08-21 2015-08-21 ポリアミド、ポリアミド組成物、ポリアミド組成物成形品およびポリアミドの製造方法
JP2015164148A JP2017078092A (ja) 2015-08-21 2015-08-21 ポリアミド、ポリアミド組成物、ポリアミド組成物成形品、およびポリアミドの製造方法
JP2015-164148 2015-08-21

Publications (1)

Publication Number Publication Date
WO2016031257A1 true WO2016031257A1 (ja) 2016-03-03

Family

ID=55399168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004385 WO2016031257A1 (ja) 2014-08-29 2015-08-28 ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法

Country Status (1)

Country Link
WO (1) WO2016031257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235348A1 (ja) * 2020-05-18 2021-11-25 宇部興産株式会社 ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027562A1 (ja) * 2009-09-07 2011-03-10 株式会社クラレ Led用反射板およびそれを備える発光装置
WO2011030746A1 (ja) * 2009-09-11 2011-03-17 旭化成ケミカルズ株式会社 発光装置用リフレクタ及び発光装置
JP2011057903A (ja) * 2009-09-11 2011-03-24 Asahi Kasei Chemicals Corp ポリアミド−ポリフェニレンエーテル樹脂組成物及び成形品
JP2011057976A (ja) * 2009-08-11 2011-03-24 Asahi Kasei Chemicals Corp 低吸水性ポリアミド組成物
JP2011068869A (ja) * 2009-08-24 2011-04-07 Asahi Kasei Chemicals Corp ポリアミド組成物及びポリアミド組成物からなる成形品
JP2011074363A (ja) * 2009-09-04 2011-04-14 Asahi Kasei Chemicals Corp ポリアミド組成物を含む自動車部品
JP2011080056A (ja) * 2009-09-11 2011-04-21 Asahi Kasei Chemicals Corp ポリアミド及びポリアミド組成物
JP2014005407A (ja) * 2012-06-26 2014-01-16 Asahi Kasei Chemicals Corp 共重合ポリアミド
JP2014012773A (ja) * 2012-07-04 2014-01-23 Asahi Kasei Chemicals Corp ポリアミド組成物及び成形品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057976A (ja) * 2009-08-11 2011-03-24 Asahi Kasei Chemicals Corp 低吸水性ポリアミド組成物
JP2011068869A (ja) * 2009-08-24 2011-04-07 Asahi Kasei Chemicals Corp ポリアミド組成物及びポリアミド組成物からなる成形品
JP2011074363A (ja) * 2009-09-04 2011-04-14 Asahi Kasei Chemicals Corp ポリアミド組成物を含む自動車部品
WO2011027562A1 (ja) * 2009-09-07 2011-03-10 株式会社クラレ Led用反射板およびそれを備える発光装置
WO2011030746A1 (ja) * 2009-09-11 2011-03-17 旭化成ケミカルズ株式会社 発光装置用リフレクタ及び発光装置
JP2011057903A (ja) * 2009-09-11 2011-03-24 Asahi Kasei Chemicals Corp ポリアミド−ポリフェニレンエーテル樹脂組成物及び成形品
JP2011080056A (ja) * 2009-09-11 2011-04-21 Asahi Kasei Chemicals Corp ポリアミド及びポリアミド組成物
JP2014005407A (ja) * 2012-06-26 2014-01-16 Asahi Kasei Chemicals Corp 共重合ポリアミド
JP2014012773A (ja) * 2012-07-04 2014-01-23 Asahi Kasei Chemicals Corp ポリアミド組成物及び成形品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235348A1 (ja) * 2020-05-18 2021-11-25 宇部興産株式会社 ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体

Similar Documents

Publication Publication Date Title
TWI472552B (zh) 聚醯胺及聚醯胺組成物
JP5733871B2 (ja) ポリアミド組成物及び成形品
JP6035066B2 (ja) ポリアミド組成物及び成形品
JP5942229B2 (ja) ポリアミド及びポリアミド組成物
JP6099767B2 (ja) ポリアミド組成物、成形品、led用反射板、及び熱による反射率の低下を抑制する方法
JP2014231603A (ja) ポリアミド樹脂組成物及び成形品
JP5959325B2 (ja) ポリアミド組成物及びポリアミド組成物を成形した成形体
JP5997525B2 (ja) 共重合ポリアミド組成物及び成形品
WO2016031257A1 (ja) ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
JP2017155150A (ja) ポリアミド組成物、ポリアミド組成物成形品およびポリアミド組成物の製造方法
JP2018012780A (ja) ポリアミド、ポリアミド組成物、ポリアミド組成物成形品、およびポリアミドの製造方法
JP2017078092A (ja) ポリアミド、ポリアミド組成物、ポリアミド組成物成形品、およびポリアミドの製造方法
JP5972088B2 (ja) ポリアミド樹脂組成物及び成形体
JP6042121B2 (ja) ポリアミド樹脂組成物及び成形品
JPWO2016031257A1 (ja) ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
JP6639121B2 (ja) ポリアミド組成物、成形品、及びled用反射板
JP2022044221A (ja) ポリアミド及びポリアミド組成物
JP2023105490A (ja) ポリアミド、ポリアミド組成物及び成形品
JP2017078093A (ja) ポリアミド、ポリアミド組成物、ポリアミド組成物成形品およびポリアミドの製造方法
JP2023028935A (ja) ポリアミド組成物及び成形品
JP2023028726A (ja) ポリアミド組成物及び成形品
JP2023157584A (ja) ポリアミド組成物及び成形品
JP6013813B2 (ja) 共重合ポリアミド組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835507

Country of ref document: EP

Kind code of ref document: A1