WO2016029629A1 - 电力变压器内部松动判断***及其方法 - Google Patents

电力变压器内部松动判断***及其方法 Download PDF

Info

Publication number
WO2016029629A1
WO2016029629A1 PCT/CN2015/070754 CN2015070754W WO2016029629A1 WO 2016029629 A1 WO2016029629 A1 WO 2016029629A1 CN 2015070754 W CN2015070754 W CN 2015070754W WO 2016029629 A1 WO2016029629 A1 WO 2016029629A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transformer
looseness
vibration
amplitude
judging
Prior art date
Application number
PCT/CN2015/070754
Other languages
English (en)
French (fr)
Inventor
姜宁
马宏忠
李凯
陈冰冰
许洪华
李勇
王春宁
赵宏飞
Original Assignee
国家电网公司
江苏省电力公司
江苏省电力公司南京供电公司
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 江苏省电力公司, 江苏省电力公司南京供电公司, 河海大学 filed Critical 国家电网公司
Publication of WO2016029629A1 publication Critical patent/WO2016029629A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the invention belongs to the technical field of intelligent substation, and particularly relates to a system for judging internal looseness of a power transformer and a method thereof.
  • the loose deformation of the iron core and winding of the power transformer will pose a great threat to the safe operation of the transformer. Therefore, it is very important to monitor the running status of the transformer online and find the hidden troubles in time.
  • the power transformer state monitoring method based on the vibration signal is convenient to implement, and the monitoring system has no electrical connection with the transformer, and does not affect the normal operation of the device.
  • the prior art studies the vibration of the transformer. After analyzing the internal core failure of the transformer, the 100 Hz signal in the vibration signal of the fuel tank changes, and the influence of the voltage and current changes of the transformer on the vibration is analyzed.
  • the 100Hz signal size is not linear with the core fault, or even monotonous, the internal transformer is loose, the fundamental frequency component of the fuel tank will increase in some positions, and some positions may be reduced. The law is not clear. Judgment is still difficult.
  • the relationship of 300Hz, 150Hz and 50Hz components in the vibration signal is proposed to diagnose the loosening of the core, which improves the diagnostic accuracy.
  • the overall values of the 50Hz, 150Hz, and 300Hz signals are small, and the vibration monitoring accuracy is relatively high.
  • the fuel tank surface vibration signal is a vector superposition of the vibration signals generated by the vibrations inside the transformer on the fuel tank surface.
  • the amplitude of the fundamental frequency component of the vibration signal is linear except for the square of the no-load voltage and the square of the current when the load is applied; when the phase core/winding of the A, B, and C phases is loose, the phase iron
  • the amplitude of the 100Hz fundamental frequency component of the vibration signal of the core/winding at the corresponding position on the top or bottom of the fuel tank is larger than normal, and becomes larger as the looseness of the iron core increases.
  • the other two-phase iron core/winding is at the top of the fuel tank.
  • the vibration amplitude of the vibration point of the measuring point corresponding to the surface or the bottom is first decreased and then increased as the degree of looseness of the core increases. According to this rule, the loosening of the core winding can be judged and the preliminary positioning of loosening can be performed.
  • the present invention aims to provide a system for judging the internal looseness of a power transformer and a method thereof, and judging the looseness of the transformer by using a 100 Hz signal in the vibration signal according to the variation characteristic of the vibration signal with the degree of looseness.
  • the power transformer internal looseness judging system comprises a signal conditioning circuit, a data acquisition instrument and a data analysis module connected in sequence, and further comprises three vibration sensors, wherein the three vibration sensors are respectively connected to the data acquisition device via a signal conditioning circuit;
  • the vibration sensors respectively measure the three-phase vibration signals of the power transformer, and the vibration signals are amplified, filtered and noise-reduced by the signal conditioning circuit and then transmitted to the data acquisition instrument, and the data acquisition instrument transmits the collected vibration signals to the data analysis module, and the data analysis module
  • the vibration signal is stored and processed, and fault diagnosis is performed.
  • the invention also includes a looseness judging method based on the internal looseness judging system of the power transformer, the method is used for judging and preliminary positioning of the power transformer core looseness, and the method is performed under the no-load operation of the power transformer, and includes the following steps, wherein Steps (1)-(4) are to measure the looseness threshold when it is determined that the power transformer is not faulty, and steps (5)-(6) are to detect the looseness fault in routine maintenance:
  • the data acquisition instrument samples the vibration signals detected by each vibration sensor at least 3 times in succession;
  • the data analysis module filters the vibration signal intercepted in the whole cycle, and then performs time-frequency transform to obtain the amplitude of the spectral component at 100 Hz in the vibration signal sampled by each vibration sensor;
  • the time-frequency transform in the above step (3) adopts a Fourier transform.
  • a certain multiple in the above step (4) is 1.2 to 2 times.
  • the invention further comprises a looseness judging method based on the internal looseness judging system of the power transformer, the method is used for judging and preliminary positioning of the looseness of the power transformer winding, and the method is performed under the load operation of the power transformer, comprising the following steps, wherein the step ( 1)-(4) is to measure the looseness threshold when determining that the power transformer is not faulty, and steps (5)-(6) are to detect the looseness fault in routine maintenance:
  • the data acquisition instrument samples the vibration signals detected by each vibration sensor at least 3 times in succession;
  • the data analysis module filters the vibration signal intercepted in the whole cycle, and then performs time-frequency transform to obtain the amplitude of the spectral component at 100 Hz in the vibration signal sampled by each vibration sensor;
  • the load current of the power transformer is equal to the load current of the power transformer when the detection looseness fault is maintained.
  • the amplitude of the spectral component of the vibration signal at 100 Hz is converted by the following formula:
  • a x is the amplitude of the spectral component of the vibration signal at 100 Hz at any load current
  • a 100 is the converted value of A x
  • I 2* is the standard value of the load current of the power transformer when detecting the loose fault.
  • the invention can conveniently judge the looseness of the iron core and the winding of the power transformer, and can initially locate the loose position.
  • the invention utilizes the amplitude of the component at 100 Hz in the vibration signal. Since the amplitude of the 100 Hz component in the vibration signal of the transformer is large, the accuracy of the measurement system is not high, and the anti-interference ability is strong.
  • Figure 1 is a block diagram showing the structure of the system of the present invention
  • FIG. 2 is a schematic view showing the position of a suspension type power transformer vibration sensor of the present invention.
  • FIG. 1 is a structural block diagram of the system of the present invention, the power transformer internal looseness judging system, comprising a signal conditioning circuit, a data acquisition device and a data analysis module connected in sequence, and further comprising three vibration sensors, wherein the three vibration sensors respectively
  • the signal conditioning circuit is connected with the data acquisition instrument; the three vibration sensors respectively measure the three-phase vibration signal of the power transformer, and the vibration signal is amplified, filtered and noise-reduced by the signal conditioning circuit, and then transmitted to the data acquisition instrument, and the data acquisition device collects
  • the vibration signal is transmitted to the data analysis module, and the data analysis module stores and processes the vibration signal and performs fault diagnosis.
  • the three vibration sensors are firmly bonded to the surface of the tank with glue.
  • the detected power transformer is a suspended core type power transformer
  • three vibration sensors are respectively disposed at three positions corresponding to the top surface of the power transformer tank and the three-phase winding of the power transformer, as shown in FIG. 2, and 1, 2, and 3 are 3 Vibration sensor mounting position.
  • the detected power transformer is a ceiling-type power transformer
  • three vibration sensors are respectively disposed at three positions corresponding to the bottom surface of the power transformer tank and the three-phase winding of the power transformer.
  • the present invention also includes a method for judging the looseness of the core based on the above system, and the method is performed under no-load operation of the power transformer, and includes the following steps, wherein the steps (1)-(4) are performed when determining that the power transformer is fault-free Loosening the threshold, steps (5)-(6) are to detect loose faults in routine maintenance:
  • the data acquisition instrument samples the vibration signals detected by each vibration sensor at least 3 times in succession;
  • the data analysis module filters the vibration signal intercepted in the whole cycle, and then performs time-frequency transform to obtain the amplitude of the spectral component at 100 Hz in the vibration signal sampled by each vibration sensor;
  • the time-frequency transform in the above step (3) adopts a Fourier transform, and a certain multiple in the step (4) is 1.2 to 2 times.
  • the invention further comprises a method for judging the looseness of the winding of the power transformer, the steps of the method being consistent with the judging and preliminary positioning method of the looseness of the iron core of the power transformer, the only difference being: when judging that the iron core is loose, The power transformer must be in no-load operation, and when it is judged that the winding is loose, the power transformer must be in a load operation state.
  • the load current of the power transformer should be kept equal when the load current of the power transformer is detected and the measurement loosening threshold is detected. If it is not possible to maintain the same, you need to use the following formula to convert the amplitude of the spectral component of the vibration signal at 100 Hz:
  • a x is the amplitude of the spectral component of the vibration signal at 100 Hz at any load current
  • a 100 is the converted value of A x
  • I 2* is the standard value of the load current of the power transformer when detecting the loose fault.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

电力变压器内部松动判断***及其方法,所述***电力变压器内部松动判断与初步定位***,包含依次连接的信号调理电路、数据采集仪和数据分析模块,还包含3个振动传感器,3个振动传感器分别经信号调理电路与数据采集仪连接;3个振动传感器分别对应测量电力变压器三相的振动信号,振动信号经信号调理电路放大、滤波和降噪后传送给数据采集仪,数据采集仪将采集的振动信号传送给数据分析模块,数据分析模块对振动信号进行存储和处理,并进行故障判断。该方案根据振动信号随松动程度的变化特点,利用振动信号中100Hz信号判断出变压器的松动故障。

Description

电力变压器内部松动判断***及其方法 技术领域
本发明属于智能变电站技术领域,特别涉及了电力变压器内部松动判断***及其方法。
背景技术
电力变压器铁芯和绕组的松动变形会对变压器的安全运行产生巨大威胁,因此,对变压器运行状况进行在线监测,及时发现故障隐患具有非常重要的意义。基于振动信号的电力变压器状态监测方法实现方便,监测***与变压器没有电气联系,不影响设备正常运行。现有技术对变压器振动进行研究,分析变压器内部铁芯故障后油箱振动信号中100Hz信号会发生变化,并分析了变压器电压、电流变化对振动的影响。但因为100Hz信号大小并不与铁芯故障呈线性关系,甚至不成单调关系,变压器内部松动,油箱有些位置振动基频分量会增大,有些位置有可能还会减小,规律并不明确,直接判断依然困难。通过研究,发现变压器铁芯/绕组松动故障后50Hz、150Hz、300Hz信号发生明显变化,提出基于振动信号中300Hz、150Hz和50Hz分量的关系进行铁芯松动诊断,提高了诊断准确性。但是50Hz、150Hz、300Hz信号总体量值很小,对振动监测精度要求较高。
通过进一步研究,油箱表面振动信号是变压器内部各振动的产生振动信号在油箱表面测点的矢量叠加。振动信号基频分量幅值除了与空载电压的平方成线性和负载时电流平方成线性关系外;当A、B、C三相中某一相铁芯/绕组发生松动故障时,此相铁芯/绕组在油箱顶面或底部对应位置测点的振动信号100Hz基频分量幅值比正常时增大,且随铁芯松动程度增大而变大,其他两相铁芯/绕组在油箱顶面或底部对应位置测点的振动点的振动幅值随铁芯松动程度增加而先减小后增大。可根据此规律进行铁芯绕组松动判断,并进行松动初步定位。
发明内容
为了解决背景技术存在的技术问题,本发明旨在提供电力变压器内部松动判断***及其方法,根据振动信号随松动程度的变化特点,利用振动信号中100Hz信号判断出变压器的松动故障。
电力变压器内部松动判断***,包含依次连接的信号调理电路、数据采集仪和数据分析模块,还包含3个振动传感器,所述3个振动传感器分别经信号调理电路与数据采集仪连接;所述3个振动传感器分别对应测量电力变压器三相的振动信号,振动信号经信号调理电路放大、滤波和降噪后传送给数据采集仪,数据采集仪将采集的振动信号传送给数据分析模块,数据分析模块对振动信号进行存储和处理,并进行故障判断。
本发明还包括基于上述电力变压器内部松动判断***的松动判断方法,该方法用于电力变压器铁芯松动的判断和初步定位,且该方法是在电力变压器空载运行下进行,包括以下步骤,其中步骤(1)-(4)为在确定电力变压器无故障时测量松动阈值,步骤(5)-(6)是在日常维护中检测松动故障:
(1)预设采样频率和采样时间,数据采集仪连续至少3次采样各振动传感器检测到的振动信号;
(2)根据采样频率和采样时间,整周期截取每个振动传感器每次采样的振动信号;
(3)数据分析模块对整周期截取的振动信号进行滤波处理,再进行时频变换,得到各振动传感器每次采样的振动信号中100Hz处的频谱分量幅值;
(4)对每个振动传感器多次采样的振动信号中100Hz处的频谱分量幅值取算数平均值,得到每个振动传感器采样的振动信号中100Hz处的频谱分量平均幅值,将该平均幅值乘以一定倍数后分别得到电力变压器三相铁芯的松动阈值CR1A、CR1B、CR1C,并将松动阈值存储于数据分析模块中;
(5)重复步骤(1)-(3),重新得到每个振动传感器每次采样的振动信号中100Hz处的频谱分量幅值,当某一振动传感器至少连续2次其采样的振动信号100Hz处的频谱分量幅值大于该振动传感器对应相铁芯的松动阈值时,进入步骤(6),否则返回步骤(5);
(6)各振动传感器某次采样的振动信号中100Hz处的频谱分量幅值与其对应相铁芯的松动阈值的比值分别表示为λ1A、λ1B和λ1C
当3个比值中最大比值大于2,且其余2个比值均不大于1时,判断电力变压器存在明显的铁芯松动,且最大比值对应的电力变压器的该相铁芯存在松动;
当3个比值中最大比值大于2,且其余2个比值至少有1个比值大于1时,仅判断出电力变压器存在明显的铁芯松动;
当3个比值中最大比值大于1且小于2时,仅能判断出电力变压器存在微小的铁芯松动;
当3个比值中最大比值不大于1时,判断出电力变压器不存在铁芯松动。
其中,上述步骤(3)中的时频变换采用傅里叶变换。
其中,上述步骤(4)中的一定倍数为1.2~2倍。
本发明还包括基于上述电力变压器内部松动判断***的松动判断方法,该方法用于电力变压器绕组松动的判断和初步定位,且该方法是在电力变压器负载运行下进行,包括以下步骤,其中步骤(1)-(4)为在确定电力变压器无故障时测量松动阈值,步骤(5)-(6)是在日常维护中检测松动故障:
(1)预设采样频率和采样时间,数据采集仪连续至少3次采样各振动传感器检测到的振动信号;
(2)根据采样频率和采样时间,整周期截取每个振动传感器每次采样的振动信号;
(3)数据分析模块对整周期截取的振动信号进行滤波处理,再进行时频变换,得到各振动传感器每次采样的振动信号中100Hz处的频谱分量幅值;
(4)对每个振动传感器多次采样的振动信号中100Hz处的频谱分量幅值取算数平均值,得到每个振动传感器采样的振动信号中100Hz处的频谱分量平均幅值,将该平均幅值乘以一定倍数后分别得到电力变压器三相绕组的松动阈值CR2A、CR2B、CR2C,并将松动阈值存储于数据分析模块中;
(5)重复步骤(1)-(3),重新得到每个振动传感器每次采样的振动信号中100Hz处的频谱分量幅值,当某一振动传感器至少连续2次其采样的振动信号100Hz处的频谱分量幅值大于该振动传感器对应相绕组的松动阈值时,进入步骤(6),否则返回步骤(5);
(6)各振动传感器某次采样的振动信号中100Hz处的频谱分量幅值与其对应相绕组的松动阈值的比值分别表示为λ2A、λ2B和λ2C
当3个比值中最大比值大于2,且其余2个比值均不大于1时,判断电力变压器存在明显的绕组松动,且最大比值对应的电力变压器的该相绕组存在松动;
当3个比值中最大比值大于2,且其余2个比值至少有1个比值大于1时,仅判断出电力变压器存在明显的绕组松动;
当3个比值中最大比值大于1且小于2时,仅判断出电力变压器存在微小的绕 组松动;
当3个比值中最大比值不大于1时,判断出电力变压器不存在绕组松动。
其中,保持检测松动故障时电力变压器的负载电流与测量松动阈值时电力变压器的负载电流相等。
其中,若检测松动故障时电力变压器的负载电流与测量松动阈值时电力变压器的负载电流存在偏差,则用下式折合振动信号在100Hz处的频谱分量幅值:
Figure PCTCN2015070754-appb-000001
上式中,Ax是任意负载电流下振动信号在100Hz处的频谱分量幅值,A100是Ax的折合值,I2*是检测松动故障时电力变压器负载电流的标幺值。
采用上述技术方案带来的有益效果:
本发明能够方便地判断出电力变压器铁芯、绕组松动,并且能对松动位置初步定位。本发明利用了振动信号中100Hz处的分量幅值,由于变压器振动信号中100Hz分量幅值较大,所以对测量***精度要求不高,且抗干扰能力较强。
附图说明
图1是本发明的***结构框图;
图2是本发明吊芯式电力变压器振动传感器的位置示意图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示本发明的***结构框图,电力变压器内部松动判断***,包含依次连接的信号调理电路、数据采集仪和数据分析模块,还包含3个振动传感器,所述3个振动传感器分别经信号调理电路与数据采集仪连接;所述3个振动传感器分别对应测量电力变压器三相的振动信号,振动信号经信号调理电路放大、滤波和降噪后传送给数据采集仪,数据采集仪将采集的振动信号传送给数据分析模块,数据分析模块对振动信号进行存储和处理,并进行故障判断。
在本实施例中,3个振动传感器用胶牢固地粘接在油箱表面。当检测的电力变压器为吊芯式电力变压器,3个振动传感器分别设置在电力变压器油箱顶面与电力变压器三相绕组对应的3个位置,如图2所示,1、2、3号即3个振动传感器安装位置。当检测的电力变压器为吊罩式电力变压器,3个振动传感器分别设置在电力变压器油箱底面与电力变压器三相绕组对应的3个位置。
本发明还包括基于上述***的铁芯松动的判断方法,且该方法是在电力变压器空载运行下进行,包括以下步骤,其中步骤(1)-(4)为在确定电力变压器无故障时测量松动阈值,步骤(5)-(6)是在日常维护中检测松动故障:
(1)预设采样频率和采样时间,数据采集仪连续至少3次采样各振动传感器检测到的振动信号;
(2)根据采样频率和采样时间,整周期截取每个振动传感器每次采样的振动信号;
(3)数据分析模块对整周期截取的振动信号进行滤波处理,再进行时频变换,得到各振动传感器每次采样的振动信号中100Hz处的频谱分量幅值;
(4)对每个振动传感器多次采样的振动信号中100Hz处的频谱分量幅值取算数平均值,得到每个振动传感器采样的振动信号中100Hz处的频谱分量平均幅值,将该平均幅值乘以一定倍数后分别得到电力变压器三相铁芯的松动阈值CR1A、CR1B、CR1C,并将松动阈值存储于数据分析模块中;
(5)重复步骤(1)-(3),重新得到每个振动传感器每次采样的振动信号中100Hz处的频谱分量幅值,当某一振动传感器至少2次其采样的振动信号100Hz处的频谱分量幅值大于该振动传感器对应相铁芯的松动阈值时,进入步骤(6),否则返回步骤(5);
(6)各振动传感器某次采样的振动信号中100Hz处的频谱分量幅值与其对应相铁芯的松动阈值的比值分别表示为λ1A、λ1B和λ1C
当3个比值中最大比值大于2,且其余2个比值均不大于1时,判断电力变压器存在明显的铁芯松动,且最大比值对应的电力变压器的该相铁芯存在松动;
当3个比值中最大比值大于2,且其余2个比值至少有1个比值大于1时,仅判断出电力变压器存在明显的铁芯松动;
当3个比值中最大比值大于1且小于2时,仅能判断出电力变压器存在微小的铁芯松动;
当3个比值中最大比值不大于1时,判断出电力变压器不存在铁芯松动。
在本实施例中,上述步骤(3)中的时频变换采用傅里叶变换,步骤(4)中的一定倍数为1.2~2倍。
本发明还包含用于电力变压器绕组松动的判断方法,该方法的步骤与上述电力变压器铁芯松动的判断和初步定位方法一致,唯一的区别在于:判断铁芯松动时, 电力变压器必须处于空载运行状态,而判断绕组松动时,电力变压器必须处于负载运行状态。
在判断绕组松动时,检测松动故障时电力变压器的负载电流与测量松动阈值时电力变压器的负载电流应该保持相等。若无法保持相等,则需要用下式折合振动信号在100Hz处的频谱分量幅值:
Figure PCTCN2015070754-appb-000002
上式中,Ax是任意负载电流下振动信号在100Hz处的频谱分量幅值,A100是Ax的折合值,I2*是检测松动故障时电力变压器负载电流的标幺值。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (7)

  1. 电力变压器内部松动判断***,其特征在于:包含依次连接的信号调理电路、数据采集仪和数据分析模块,还包含3个振动传感器,所述3个振动传感器分别经信号调理电路与数据采集仪连接;所述3个振动传感器分别对应测量电力变压器三相的振动信号,振动信号经信号调理电路放大、滤波和降噪后传送给数据采集仪,数据采集仪将采集的振动信号传送给数据分析模块,数据分析模块对振动信号进行存储和处理,并进行故障判断。
  2. 基于权利要求1所述电力变压器内部松动判断***的松动判断方法,其特征在于:该方法用于电力变压器铁芯松动的判断和初步定位,且该方法是在电力变压器空载运行下进行,包括以下步骤:
    (1)预设采样频率和采样时间,数据采集仪连续至少3次采样各振动传感器检测到的振动信号;
    (2)根据采样频率和采样时间,整周期截取每个振动传感器每次采样的振动信号;
    (3)数据分析模块对整周期截取的振动信号进行滤波处理,再进行时频变换,得到各振动传感器每次采样的振动信号中100Hz处的频谱分量幅值;
    (4)对每个振动传感器多次采样的振动信号中100Hz处的频谱分量幅值取算数平均值,得到每个振动传感器采样的振动信号中100Hz处的频谱分量平均幅值,将该平均幅值乘以一定倍数后分别得到电力变压器三相铁芯的松动阈值CR1A、CR1B、CR1C,并将松动阈值存储于数据分析模块中;
    (5)当需要对电力变压器进行松动检测时,重复步骤(1)-(3),重新得到每个振动传感器每次采样的振动信号中100Hz处的频谱分量幅值,当某一振动传感器至少连续2次其采样的振动信号100Hz处的频谱分量幅值大于该振动传感器对应相铁芯的松动阈值时,进入步骤(6),否则返回步骤(5);
    (6)各振动传感器某次采样的振动信号中100Hz处的频谱分量幅值与其对应相铁芯的松动阈值的比值分别表示为λ1A、λ1B和λ1C
    当3个比值中最大比值大于2,且其余2个比值均不大于1时,判断电力变压器存在明显的铁芯松动,且最大比值对应的电力变压器的该相铁芯存在松动;
    当3个比值中最大比值大于2,且其余2个比值至少有1个比值大于1时,仅 判断出电力变压器存在明显的铁芯松动;
    当3个比值中最大比值大于1且小于2时,仅能判断出电力变压器存在微小的铁芯松动;
    当3个比值中最大比值不大于1时,判断出电力变压器不存在铁芯松动。
  3. 根据权利要求2所述基于电力变压器内部松动判断***的松动判断方法,其特征在于:步骤(3)中的时频变换采用傅里叶变换。
  4. 根据权利要求2所述基于电力变压器内部松动判断***的松动判断方法,其特征在于:步骤(4)中的一定倍数为1.2~2倍。
  5. 基于权利要求1所述电力变压器内部松动判断***的松动判断方法,其特征在于:该方法用于电力变压器绕组松动的判断和初步定位,且该方法是在电力变压器负载运行下进行,包括以下步骤:
    (1)预设采样频率和采样时间,数据采集仪连续至少3次采样各振动传感器检测到的振动信号;
    (2)根据采样频率和采样时间,整周期截取每个振动传感器每次采样的振动信号;
    (3)数据分析模块对整周期截取的振动信号进行滤波处理,再进行时频变换,得到各振动传感器每次采样的振动信号中100Hz处的频谱分量幅值;
    (4)对每个振动传感器多次采样的振动信号中100Hz处的频谱分量幅值取算数平均值,得到每个振动传感器采样的振动信号中100Hz处的频谱分量平均幅值,将该平均幅值乘以一定倍数后分别得到电力变压器三相绕组的松动阈值CR2A、CR2B、CR2C,并将松动阈值存储于数据分析模块中;
    (5)当需要对电力变压器进行松动检测时,重复步骤(1)-(3),重新得到每个振动传感器每次采样的振动信号中100Hz处的频谱分量幅值,当某一振动传感器至少连续2次其采样的振动信号100Hz处的频谱分量幅值大于该振动传感器对应相绕组的松动阈值时,进入步骤(6),否则返回步骤(5);
    (6)各振动传感器某次采样的振动信号中100Hz处的频谱分量幅值与其对应相绕组的松动阈值的比值分别表示为λ2A、λ2B和λ2C
    当3个比值中最大比值大于2,且其余2个比值均不大于1时,判断电力变压器存在明显的绕组松动,且最大比值对应的电力变压器的该相绕组存在松动;
    当3个比值中最大比值大于2,且其余2个比值至少有1个比值大于1时,仅 判断出电力变压器存在明显的绕组松动;
    当3个比值中最大比值大于1且小于2时,仅判断出电力变压器存在微小的绕组松动;
    当3个比值中最大比值不大于1时,判断出电力变压器不存在绕组松动。
  6. 根据权利要求5所述基于电力变压器内部松动判断***的松动判断方法,其特征在于:保持检测松动故障时电力变压器的负载电流与测量松动阈值时电力变压器的负载电流相等。
  7. 根据权利要求5所述基于电力变压器内部松动判断***的松动判断方法,其特征在于:若检测松动故障时电力变压器的负载电流与测量松动阈值时电力变压器的负载电流存在偏差,则用下式折合振动信号在100Hz处的频谱分量幅值:
    Figure PCTCN2015070754-appb-100001
    上式中,Ax是任意负载电流下振动信号在100Hz处的频谱分量幅值,A100是Ax的折合值,I2*是检测松动故障时电力变压器负载电流的标幺值。
PCT/CN2015/070754 2014-08-29 2015-01-15 电力变压器内部松动判断***及其方法 WO2016029629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410436393.0A CN104236702B (zh) 2014-08-29 2014-08-29 电力变压器内部松动判断***及其方法
CN2014104363930 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016029629A1 true WO2016029629A1 (zh) 2016-03-03

Family

ID=52225231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070754 WO2016029629A1 (zh) 2014-08-29 2015-01-15 电力变压器内部松动判断***及其方法

Country Status (2)

Country Link
CN (1) CN104236702B (zh)
WO (1) WO2016029629A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107202634A (zh) * 2017-07-20 2017-09-26 广东电网有限责任公司电力科学研究院 一种油浸式电力变压器动力响应放大方法及装置
CN109632975A (zh) * 2018-12-22 2019-04-16 武汉新运维光电科技股份有限公司 一种变压器油色谱数据综合分析及缺陷预测***及方法
CN110173399A (zh) * 2019-06-06 2019-08-27 上海电力学院 一种海上风力发电机组螺栓松动检测***及方法
CN111027426A (zh) * 2019-11-28 2020-04-17 中国航空工业集团公司西安航空计算技术研究所 一种航空发动机振动信号基频幅值计算方法
CN113701872A (zh) * 2021-08-06 2021-11-26 北京博华信智科技股份有限公司 一种用于振动保护的数据同步方法及***
CN115683687A (zh) * 2023-01-03 2023-02-03 成都大汇物联科技有限公司 一种水电机械设备动静碰磨故障诊断方法
CN116296329A (zh) * 2023-03-14 2023-06-23 苏州纬讯光电科技有限公司 一种变压器铁芯机械状态诊断方法、设备及介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236702B (zh) * 2014-08-29 2017-09-19 国家电网公司 电力变压器内部松动判断***及其方法
CN104655967B (zh) * 2015-03-17 2017-08-01 国家电网公司 配电变压器绕组振动信号特征量提取方法
CN104748838B (zh) * 2015-03-27 2017-09-19 国家电网公司 基于有限元分析的变压器绕组松动判断***和方法
CN104819738B (zh) * 2015-04-21 2017-06-16 嘉兴海格力思电子科技有限公司 传感器结构松动检测的方法
CN105043729B (zh) * 2015-06-25 2017-12-15 中铁第四勘察设计院集团有限公司 一种悬挂设备松动故障的监测预警方法和***
CN105136439B (zh) * 2015-08-25 2017-11-07 江苏省电力公司南京供电公司 一种检测吊罩式变压器绕组松动的方法
CN105136440B (zh) * 2015-08-25 2018-02-02 江苏省电力公司南京供电公司 一种基于负载状态的电力变压器绕组松动的诊断方法
CN105203915B (zh) * 2015-08-26 2018-07-24 江苏省电力公司南京供电公司 一种电力变压器绕组松动缺陷诊断***和诊断方法
CN105300585B (zh) * 2015-10-09 2017-12-15 河海大学 一种基于励磁电流的电力变压器绕组轴向预紧力监测方法
CN105223444B (zh) * 2015-10-20 2018-03-23 国家电网公司 油浸式变压器内部局部过热判断与过热点定位方法
CN105651500A (zh) * 2015-12-01 2016-06-08 哈尔滨电机厂有限责任公司 一种检查汽轮发电机定子铁心装压质量的方法
CN106409351A (zh) * 2016-09-13 2017-02-15 中广核工程有限公司 一种核电厂松动部件振动信号的处理方法及装置
RU2643940C1 (ru) * 2016-12-30 2018-02-06 Общество с ограниченной ответственностью Научно-производственное объединение "Логотех" Способ вибрационного безразборного диагностирования трансформатора
CN109211551A (zh) * 2018-09-14 2019-01-15 南京梵科智能科技有限公司 一种用于旋转机械的故障诊断装置
CN110146772B (zh) * 2019-05-31 2021-05-04 国网江苏省电力有限公司宿迁供电分公司 一种基于振动频谱矩阵的变压器铁心松散缺陷诊断方法
CN110631790B (zh) * 2019-09-25 2022-01-25 歌尔科技有限公司 一种穿戴类设备及其检测方法
CN110907031A (zh) * 2019-12-04 2020-03-24 江苏方天电力技术有限公司 基于数据统计分析的调相机振动异动可视化监测方法
CN113514783B (zh) * 2021-03-16 2023-12-15 国网江苏省电力有限公司南京供电分公司 空载合闸下的变压器绕组机械状态检测判断方法
CN113391174A (zh) * 2021-06-07 2021-09-14 中国南方电网有限责任公司超高压输电公司大理局 一种变压器壳体内故障的定位装置和方法
CN114113982A (zh) * 2021-11-24 2022-03-01 上海明华电力科技有限公司 一种基于变压器振动信号的故障识别方法
CN116913658B (zh) * 2023-08-27 2024-03-08 南通兴安源金属制品有限公司 一种降噪效果好的变压器油箱及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769787A (zh) * 2010-01-29 2010-07-07 浙江大学 电力变压器铁心松动故障监测方法
JP2012058046A (ja) * 2010-09-08 2012-03-22 Nissin Electric Co Ltd 電力機器の異常診断装置
CN102721465A (zh) * 2012-06-13 2012-10-10 江苏省电力公司南京供电公司 电力变压器铁芯松动故障诊断与故障初步定位***及方法
CN202735425U (zh) * 2012-06-13 2013-02-13 江苏省电力公司南京供电公司 基于振动的电力变压器故障检测***
CN102998545A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 一种变压器绕组工作状态的在线监测方法
CN104236702A (zh) * 2014-08-29 2014-12-24 国家电网公司 电力变压器内部松动判断***及其方法
CN204085686U (zh) * 2014-08-29 2015-01-07 国家电网公司 电力变压器内部松动判断***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769787A (zh) * 2010-01-29 2010-07-07 浙江大学 电力变压器铁心松动故障监测方法
JP2012058046A (ja) * 2010-09-08 2012-03-22 Nissin Electric Co Ltd 電力機器の異常診断装置
CN102998545A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 一种变压器绕组工作状态的在线监测方法
CN102721465A (zh) * 2012-06-13 2012-10-10 江苏省电力公司南京供电公司 电力变压器铁芯松动故障诊断与故障初步定位***及方法
CN202735425U (zh) * 2012-06-13 2013-02-13 江苏省电力公司南京供电公司 基于振动的电力变压器故障检测***
CN104236702A (zh) * 2014-08-29 2014-12-24 国家电网公司 电力变压器内部松动判断***及其方法
CN204085686U (zh) * 2014-08-29 2015-01-07 国家电网公司 电力变压器内部松动判断***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG, JIN ET AL.: "HIGH VOLTAGE ENGINEERING", APPLICATION OF VIBRATION METHOD ON MONITORING THE WINDING AND CORE CONDITION OF TRANSFORMER, vol. 31, no. 4, 30 April 2005 (2005-04-30), pages 43 - 45, ISSN: 1003-6520 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107202634A (zh) * 2017-07-20 2017-09-26 广东电网有限责任公司电力科学研究院 一种油浸式电力变压器动力响应放大方法及装置
CN107202634B (zh) * 2017-07-20 2023-05-16 南方电网电力科技股份有限公司 一种油浸式电力变压器动力响应放大方法及装置
CN109632975A (zh) * 2018-12-22 2019-04-16 武汉新运维光电科技股份有限公司 一种变压器油色谱数据综合分析及缺陷预测***及方法
CN110173399B (zh) * 2019-06-06 2023-07-04 上海电力学院 一种海上风力发电机组螺栓松动检测***及方法
CN110173399A (zh) * 2019-06-06 2019-08-27 上海电力学院 一种海上风力发电机组螺栓松动检测***及方法
CN111027426A (zh) * 2019-11-28 2020-04-17 中国航空工业集团公司西安航空计算技术研究所 一种航空发动机振动信号基频幅值计算方法
CN111027426B (zh) * 2019-11-28 2023-10-20 中国航空工业集团公司西安航空计算技术研究所 一种航空发动机振动信号基频幅值计算方法
CN113701872A (zh) * 2021-08-06 2021-11-26 北京博华信智科技股份有限公司 一种用于振动保护的数据同步方法及***
CN113701872B (zh) * 2021-08-06 2022-03-25 北京博华信智科技股份有限公司 一种用于振动保护的数据同步方法及***
CN115683687A (zh) * 2023-01-03 2023-02-03 成都大汇物联科技有限公司 一种水电机械设备动静碰磨故障诊断方法
CN115683687B (zh) * 2023-01-03 2023-04-18 成都大汇物联科技有限公司 一种水电机械设备动静碰磨故障诊断方法
CN116296329A (zh) * 2023-03-14 2023-06-23 苏州纬讯光电科技有限公司 一种变压器铁芯机械状态诊断方法、设备及介质
CN116296329B (zh) * 2023-03-14 2023-11-07 苏州纬讯光电科技有限公司 一种变压器铁芯机械状态诊断方法、设备及介质

Also Published As

Publication number Publication date
CN104236702A (zh) 2014-12-24
CN104236702B (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
WO2016029629A1 (zh) 电力变压器内部松动判断***及其方法
CN202735425U (zh) 基于振动的电力变压器故障检测***
CN102721464B (zh) 电力变压器绕组变形故障检测方法及***
Su et al. Induction machine condition monitoring using neural network modeling
WO2013185405A1 (zh) 电力变压器铁芯松动故障诊断与故障初步定位***及方法
CN103513138B (zh) 一种基于振动特征的变压器绕组与铁芯故障诊断方法
WO2016065959A1 (zh) 中性点不接地的10kV***中铁磁谐振的诊断方法
CN109855874B (zh) 一种声音辅助振动微弱信号增强检测的随机共振滤波器
CN102520373B (zh) 一种基于振动分析的电力变压器直流偏磁的判别方法
WO2023227060A1 (zh) 一种车载燃料电池在线诊断方法和***
CN105629100A (zh) 基于异常振动分析的gis机械缺陷诊断***及方法
CN104792519A (zh) 一种汽车变速箱nvh下线检测方法
CN103472350A (zh) 变压器诊断***及其诊断方法
CN110058157B (zh) 基于对称分量法和多维指标融合的电机监测方法及***
CN102519581B (zh) 一种电力变压器振动信号的分离方法
CN104227501A (zh) 一种主轴回转误差测试分析***
CN104655967B (zh) 配电变压器绕组振动信号特征量提取方法
CN109932053A (zh) 一种用于高压并联电抗器的状态监测装置及方法
CN204255494U (zh) 桥梁振动监测装置
CN102495264B (zh) 基于信息熵的电压跌落持续时间检测方法
CN108169559B (zh) 一种电机定子电流谱分析设备异常的判断方法
CN105203915B (zh) 一种电力变压器绕组松动缺陷诊断***和诊断方法
CN105891625A (zh) 基于能量流的电力***次同步振荡扰动源辨别方法
CN111307084A (zh) 一种基于振动的电力变压器绕组变形故障诊断新方法
CN203519717U (zh) 一种h型滤波电容器组不平衡电流检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836067

Country of ref document: EP

Kind code of ref document: A1