WO2016027571A1 - Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device - Google Patents

Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device Download PDF

Info

Publication number
WO2016027571A1
WO2016027571A1 PCT/JP2015/069092 JP2015069092W WO2016027571A1 WO 2016027571 A1 WO2016027571 A1 WO 2016027571A1 JP 2015069092 W JP2015069092 W JP 2015069092W WO 2016027571 A1 WO2016027571 A1 WO 2016027571A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
group
fluorinated
alkyl group
aqueous solvent
Prior art date
Application number
PCT/JP2015/069092
Other languages
French (fr)
Japanese (ja)
Inventor
中村 泰弘
雅洋 田中
明 市橋
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016027571A1 publication Critical patent/WO2016027571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Secondary batteries that use various charge / discharge principles have been proposed to obtain battery capacity.
  • secondary batteries that use the storage and release of electrode reactants, and those that use precipitation and dissolution of electrode reactants. Secondary batteries are attracting attention. This is because these secondary batteries can provide a higher energy density than lead batteries and nickel cadmium batteries.
  • the secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode, and the electrolytic solution includes a nonaqueous solvent and an electrolyte salt. Since the composition of the electrolytic solution greatly affects the battery characteristics, various studies have been made on the composition of the electrolytic solution.
  • a fluorinated cyclic carbonate such as 4-fluoro-1,3-dioxolan-2-one is used as a non-aqueous solvent.
  • an imide compound such as bis (trifluoromethanesulfonyl) imide lithium is used as the electrolyte salt (see, for example, Patent Documents 1 to 4).
  • an electrolytic solution for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device that can achieve both battery characteristics and safety.
  • the electrolyte solution for a secondary battery includes a nonaqueous solvent and an electrolyte salt.
  • the non-aqueous solvent includes a fluorinated cyclic compound represented by Formula (1)
  • the electrolyte salt includes a fluorinated imide compound represented by Formula (2).
  • the content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
  • Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.
  • a secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution containing a nonaqueous solvent and an electrolyte salt, and the electrolytic solution is an electrolytic solution for a secondary battery according to an embodiment of the present technology described above. It has the same configuration as the liquid.
  • Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
  • the non-aqueous solvent contains a predetermined amount (95 wt% to 100 wt%) of the fluorinated cyclic compound, and the electrolyte salt includes Since the fluorinated imide compound is contained, both battery characteristics and safety can be achieved. The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of the spirally wound electrode body illustrated in FIG. 3.
  • FIG. 4 is a perspective view showing the structure of the application example (battery pack: single cell) of a secondary battery.
  • It is a block diagram showing the structure of the battery pack shown in FIG. It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery.
  • Electrolytic solution for secondary battery Secondary battery 2-1. Lithium ion secondary battery (cylindrical type) 2-2. Lithium ion secondary battery (laminate film type) 2-3. Lithium metal secondary battery Applications of secondary batteries 3-1. Battery pack (single cell) 3-2. Battery pack (assembled battery) 3-3. Electric vehicle 3-4. Electric power storage system 3-5. Electric tool
  • the electrolytic solution described here is used for, for example, a lithium secondary battery.
  • the type of secondary battery in which the electrolytic solution is used is not limited to the lithium secondary battery.
  • This electrolytic solution is a so-called liquid electrolyte and contains a nonaqueous solvent and an electrolyte salt.
  • the kind of nonaqueous solvent may be only one kind, and may be two or more kinds.
  • only one type of electrolyte salt may be used, or two or more types may be used.
  • Each of R1 to R4 is a hydrogen group, a fluorine group, an alkyl group or a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group or a fluorinated alkyl group. Either)
  • the fluorinated cyclic compound represented by the formula (1) is an ethylene carbonate type compound containing one or more fluorine (F) as a constituent element.
  • R1 to R4 is not particularly limited as long as it is any one of a hydrogen group, a fluorine group, an alkyl group, and a fluorinated alkyl group.
  • R1 to R4 may be the same group or different groups. Of course, some of R1 to R4 may be the same group.
  • the type of the alkyl group is not particularly limited as long as it is one of monovalent groups composed of carbon (C) and hydrogen (H).
  • This alkyl group may be linear or branched having one or more side chains.
  • the kind of the fluorinated alkyl group is not particularly limited as long as it is any of the groups in which at least one hydrogen group of the alkyl groups is substituted with a fluorine group.
  • Specific examples of the fluorinated alkyl group include a monofluoromethyl group (—CH 2 F), a difluoromethyl group (—CHF 2 ), a perfluoromethyl group (—CF 3 ), and a perfluoroethyl group (—C 2 F 5 ).
  • Perfluoropropyl group (—C 3 F 7 ), perfluoro-n-butyl group (—C 4 F 8 ) and perfluoro-t-butyl group (—C (—CF 3 ) 2 —CF 3 ), etc. is there.
  • specific examples of the fluorinated alkyl group may be other groups not exemplified here.
  • any one or two or more of R1 to R4 are either a fluorine group or a fluorinated alkyl group. This is because the fluorinated cyclic compound must contain one or more fluorine atoms as constituent elements, as described above.
  • each of R1 to R4 is either a hydrogen group or a fluorine group, and any one or two or more of R1 to R4 are preferably a fluorine group. This is because the fluorinated cyclic compound can be easily synthesized and the compatibility of the fluorinated cyclic compound is ensured.
  • the content of the fluorinated cyclic compound in the non-aqueous solvent needs to be sufficiently large in order to achieve both battery characteristics and safety in the secondary battery as will be described later.
  • the content of the fluorinated cyclic compound is 95% by weight to 100% by weight.
  • the non-aqueous solvent may be only the fluorinated cyclic compound, or may contain any one or more of other materials (other non-aqueous solvents described later) in addition to the fluorinated cyclic compound. Also good.
  • fluorinated cyclic compound examples include compounds represented by the following formulas (1-1) to (1-16), and the compounds include geometric isomers. In this geometric isomer, the trans isomer is preferable to the cis isomer. This is because it can be easily synthesized.
  • specific examples of the fluorinated cyclic compound may be other compounds not exemplified here.
  • 4-fluoro-1,3-dioxolan-2-one represented by the formula (1-1) is preferable. This is because it can be easily synthesized and has excellent compatibility.
  • the fluorinated imide compound represented by the formula (2) is an imide lithium salt containing one or more fluorine atoms as constituent elements and two sulfonyl groups (> SO 2 ).
  • R5 and R6 are not particularly limited as long as it is either a fluorine group or a fluorinated alkyl group.
  • R5 and R6 may be the same group or different groups.
  • fluorinated alkyl group Details regarding the fluorinated alkyl group are the same as those described for the fluorinated cyclic compound, for example.
  • fluorinated imide compound examples include LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 3 H 7 SO 2 ) 2 , LiN (FSO). 2 ) (CF 3 SO 2 ), LiN (FSO 2 ) (C 2 F 5 SO 2 ), LiN (FSO 2 ) (C 3 H 7 SO 2 ), LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ), LiN (CF 3 SO 2 ) (C 3 F 7 SO 2 ) and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ).
  • specific examples of the fluorinated imide compound may be other compounds not exemplified here.
  • a fluorinated imide compound When a fluorinated imide compound is used as the electrolyte salt, battery characteristics such as initial charge / discharge characteristics can be improved. However, since the fluorinated imide compound has a property of easily corroding a metal material such as aluminum, safety is lowered.
  • the metal material such as aluminum described here is, for example, a current collector and a lead used for a secondary battery as described later.
  • the tendency for the safety to decrease due to the corrosion of the metal material becomes more prominent as the upper limit voltage during charging becomes higher, and more specifically, when the upper limit voltage becomes 3.6 V or more, it becomes more prominent. Become.
  • a fluorinated cyclic compound when used as the non-aqueous solvent, a coating derived from the fluorinated cyclic compound is formed on the surface of the electrode during charge / discharge, and thus the electrode is protected by the coating.
  • the fluorinated cyclic compound since the decomposition reaction of the electrolytic solution is suppressed, battery characteristics such as initial charge / discharge characteristics are improved.
  • the fluorinated cyclic compound since the fluorinated cyclic compound has the property of easily reacting with general electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ), the reaction Due to this, gas is likely to be generated.
  • the secondary battery tends to swell, and safety is reduced.
  • the tendency for the safety to decrease due to the reaction between the non-aqueous solvent and the electrolyte salt becomes particularly prominent as the environmental temperature increases, and the content of the fluorinated cyclic compound in the non-aqueous solvent increases. The larger it becomes, the more noticeable it becomes.
  • the fluorinated imide compound is used in a state where the content of the fluorinated cyclic compound in the non-aqueous solvent is sufficiently increased.
  • the state where the content of the fluorinated cyclic compound is sufficiently increased means the case where the content of the fluorinated cyclic compound is 95 wt% to 100 wt% as described above.
  • the decomposition reaction of the electrolytic solution is suppressed by the coating derived from the fluorinated cyclic compound.
  • the reactivity of the non-aqueous solvent is specifically reduced, so that gas is hardly generated.
  • the corrosive ability of the fluorinated imide compound is specifically reduced, making it difficult for metal materials such as aluminum to be corroded.
  • the reactivity of the fluorinated cyclic compound is also specifically reduced, so that gas is hardly generated.
  • the decomposition reaction of the electrolytic solution is suppressed by the synergistic action of the fluorinated cyclic compound and the fluorinated imide compound.
  • the corrosion reaction of a metal material such as aluminum is suppressed, and the generation of gas is also suppressed. Therefore, not only the battery characteristics are improved, but also the safety is improved, so that both the battery characteristics and the safety are compatible.
  • the negative electrode material contains both a carbon material and a metal-based material
  • the above-described advantages can be effectively obtained as the content of the metal-based material in the negative electrode material increases.
  • the metal-based material has a high theoretical capacity, but has a property of easily expanding and contracting at the time of charge / discharge, so that the respective effects of improving battery characteristics and safety are more easily exhibited.
  • non-aqueous solvent may contain any one type or two or more types of other materials (other non-aqueous solvents).
  • the other non-aqueous solvent is, for example, one or more of the compounds described below (excluding fluorinated cyclic compounds).
  • the other non-aqueous solvent is one or more of unsaturated cyclic carbonates. This is because a stable protective film is formed on the surface of the electrode during charging / discharging, so that the decomposition reaction of the electrolytic solution is suppressed.
  • This unsaturated cyclic ester carbonate is a cyclic ester carbonate containing one or more unsaturated bonds (carbon-carbon double bonds), and more specifically, the following formulas (3) to (5): These are compounds represented by each.
  • the content of the unsaturated cyclic carbonate in the non-aqueous solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • the compound represented by the formula (3) is a vinylene carbonate-based compound.
  • R11 and R12 may be the same group or different groups.
  • Specific examples of vinylene carbonate compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethyl vinylene carbonate (4-ethyl).
  • -1,3-dioxol-2-one 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1, Such as 3-dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
  • vinylene carbonate is preferable. This is because it can be easily obtained and a high effect can be obtained.
  • the compound represented by the formula (4) is a vinyl ethylene carbonate compound.
  • R13 to R16 may be the same group or different groups. Of course, some of R13 to R16 may be the same group.
  • Specific examples of the vinyl ethylene carbonate compounds include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, 4- Ethyl-4-vinyl-1,3-dioxolane-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolane- 2-one, 4,4-divinyl-1,3-dioxolan-2-one and 4,5-divinyl-1,3-dioxolan-2-one.
  • vinyl ethylene carbonate is preferred. It is because it is easily available and a high effect is obtained.
  • R13 to R16 all may
  • the compound represented by the formula (5) is a methylene ethylene carbonate compound.
  • R18 and R19 may be the same group or different groups.
  • Specific examples of methylene ethylene carbonate compounds include methylene ethylene carbonate (4-methylene-1,3-dioxolan-2-one), 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, and 4,4-diethyl-5-methylene-1,3-dioxolan-2-one and the like.
  • This methylene ethylene carbonate compound may be a compound containing one methylene group as shown in the formula (5) or a compound containing two or more methylene groups.
  • the unsaturated cyclic carbonate may be catechol carbonate having a benzene ring (catechol carbonate).
  • specific examples of the unsaturated cyclic ester carbonate may be other compounds not exemplified here.
  • the other non-aqueous solvent is any one type or two or more types of halogenated carbonates. This is because a stable protective film is formed on the surface of the electrode during charging / discharging, so that the decomposition reaction of the electrolytic solution is suppressed.
  • This halogenated carbonate is a carbonate containing 1 or 2 or more halogens as a constituent element. More specifically, it is a compound represented by each of the following formulas (6) and (7). is there.
  • the content of the halogenated carbonate in the non-aqueous solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
  • Each of R21 to R24 is any one of a hydrogen group, a halogen group, an alkyl group and a halogenated alkyl group, and at least one of R21 to R24 is a halogen group or a halogenated alkyl group.
  • Each of R25 to R30 is any one of a hydrogen group, a halogen group, an alkyl group, and a halogenated alkyl group, and at least one of R25 to R30 is a halogen group or a halogen atom.
  • the compound represented by the formula (6) is a cyclic halogenated carbonate.
  • R21 to R24 may be the same group or different groups. Of course, some of R21 to R24 may be the same group.
  • halogen group is not particularly limited, but among them, one or more of fluorine group, chlorine group, bromine group and iodine group are preferable, and fluorine group is more preferable. This is because a fluorine group is easier to form the protective film than other halogen groups.
  • the number of halogen groups is preferably two rather than one, and may be three or more. This is because the ability to form a protective film becomes higher and the protective film becomes stronger.
  • the halogenated alkyl group is a group in which one or two or more hydrogen groups in the alkyl group are substituted (halogenated) with a halogen group. Details regarding the halogen group are as described above.
  • cyclic halogenated carbonate examples are compounds represented by the following formulas (6-1) to (6-5), and the compounds include geometric isomers.
  • specific examples of the cyclic halogenated carbonate may be other compounds not exemplified here.
  • R25 to R30 may be the same group or different groups. Of course, a part of R25 to R30 may be the same group.
  • chain halogenated carbonate examples include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
  • chain halogenated carbonate may be other compounds not exemplified here.
  • Sulfonic acid esters include monosulfonic acid esters and disulfonic acid esters.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester.
  • Cyclic monosulfonates are, for example, sultone such as propane sultone and propene sultone.
  • a chain monosulfonic acid ester is a compound in which a cyclic monosulfonic acid ester is cleaved on the way.
  • the chain monosulfonic acid ester when propane sultone is cleaved in the middle is CH 3 —CH 2 —CH 2 —SO 3 —CH 3 or the like.
  • the direction of —SO 3 — (— S ( ⁇ O) 2 —O—) is not particularly limited.
  • CH 3 —CH 2 —CH 2 —SO 3 —CH 3 may be CH 3 —CH 2 —CH 2 —S ( ⁇ O) 2 —O—CH 3 , or CH 3 —CH 2 —.
  • CH 2 —O—S ( ⁇ O) 2 —CH 3 may also be used.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester.
  • the cyclic disulfonic acid ester include compounds represented by the following formulas (8-1) to (8-3).
  • a chain disulfonic acid ester is a compound in which a cyclic disulfonic acid ester is cleaved on the way.
  • a chain disulfonic acid ester obtained by cleaving the compound represented by formula (8-2) in the middle is CH 3 —SO 3 —CH 2 —SO 3 —CH 3 or the like.
  • the directions of the two —SO 3 — (— S ( ⁇ O) 2 —O—) are not particularly limited.
  • the other non-aqueous solvent is an acid anhydride.
  • the acid anhydride include a carboxylic acid anhydride, a disulfonic acid anhydride, and a carboxylic acid sulfonic acid anhydride.
  • the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • carboxylic acid sulfonic acid anhydride examples include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • the content of the acid anhydride in the non-aqueous solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • specific examples of the acid anhydride may be other compounds not exemplified here.
  • non-aqueous solvents are dicyano compounds and diisocyanate compounds. This is because the chemical stability of the electrolytic solution is further improved.
  • the dicyano compound is, for example, a compound represented by NC-C m H 2m -CN (m is an integer of 1 or more), and more specifically NC-C 2 H 4 -CN.
  • the diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more), and more specifically OCN—C 6 H 12 —NCO.
  • the content of the dicyano compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight. The range of this content is the same also about a diisocyanate compound, for example. However, specific examples of the dicyano compound and the diisocyanate compound may be other compounds not exemplified here.
  • the electrolyte salt may contain any one kind or two or more kinds of other materials (other electrolyte salts).
  • the other electrolyte salt is, for example, any one or more of lithium salts.
  • the fluorinated imide compounds described above are excluded from the other electrolyte salts described herein.
  • the other electrolyte salt may contain a salt other than the lithium salt, for example.
  • Examples of the salt other than the lithium salt include salts of light metals other than lithium.
  • lithium salts include, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), tetrachloroaluminate lithium (LiAlCl 4), six Dilithium fluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl) and lithium bromide (LiBr).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium perchlorate
  • LiAsF 6 lithium hexafluoroarsenate
  • LiB (C 6 H 5) 4 lithium hexafluo
  • lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable. This is because the internal resistance is lowered.
  • the other electrolyte salt is any one or more of compounds represented by the following formulas (9) to (11).
  • R41 and R43 may be the same group or different groups. This is the same for R51 to R53 and the same for R61 and R62.
  • X41 is a group 1 element or group 2 element in the long-period periodic table, or Al.
  • M41 is a transition metal, or a group 13 element, group 14 element, or group 15 element in the long-period periodic table.
  • R41 is a halogen group
  • Y41 is —C ( ⁇ O) —R42—C ( ⁇ O) —, —C ( ⁇ O) —CR43 2 —, or —C ( ⁇ O) —C ( ⁇ O
  • R42 is an alkylene group, a halogenated alkylene group, an arylene group or a halogenated arylene group
  • R43 is an alkyl group, a halogenated alkyl group, an aryl group or a halogenated aryl group.
  • A4 is an integer of 1 to 4
  • b4 is an integer of 0, 2 or 4
  • c4, d4, m4 and n4 are integers of 1 to 3.
  • X51 is a group 1 element or a group 2 element in the long-period periodic table.
  • M51 is a transition metal, or a group 13, element or a group 15 element in the long-period periodic table.
  • X61 is a group 1 element or a group 2 element in the long-period periodic table.
  • M61 is a transition metal, or a group 13, element or a group 15 element in the long-period periodic table.
  • Rf is A fluorinated alkyl group or a fluorinated aryl group, each having 1 to 10 carbon atoms
  • the Group 1 elements are hydrogen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • Group 2 elements are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • Group 13 elements are boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl).
  • Group 14 elements are carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb).
  • Group 15 elements are nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi).
  • Specific examples of the compound represented by the formula (9) include compounds represented by the following formulas (9-1) to (9-6).
  • Specific examples of the compound represented by the formula (10) include compounds represented by the following formulas (10-1) to (10-8).
  • Specific examples of the compound represented by the formula (11) include a compound represented by the following formula (11-1).
  • specific examples of the compounds represented by the formulas (9) to (11) may be other compounds not exemplified here.
  • the total content of the electrolyte salt is not particularly limited, but is preferably 0.6 mol / kg to 2.5 mol / kg with respect to the nonaqueous solvent. This is because high ionic conductivity is obtained.
  • the lithium-containing phosphate compound having an olivine type crystal structure is, for example, a compound represented by the following formula (25).
  • the positive electrode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like.
  • oxide include titanium oxide, vanadium oxide, and manganese dioxide.
  • disulfide include titanium disulfide and molybdenum sulfide.
  • chalcogenide is niobium selenide.
  • conductive polymer include sulfur, polyaniline, and polythiophene.
  • the positive electrode material may be a material other than the above.
  • the positive electrode binder contains, for example, one or more of synthetic rubber and polymer material.
  • synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • polymer material include polyvinylidene fluoride and polyimide.
  • the negative electrode current collector 22A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as copper (Cu), aluminum (Al), nickel (Ni), and stainless steel.
  • the anode current collector 22A may be a single layer or a multilayer.
  • the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
  • the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy and a compound of silicon, or any of a simple substance, an alloy and a compound of tin. It may be a kind or more, and may be a material having at least a part of one kind or two or more kinds of phases.
  • the simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
  • the alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more.
  • the compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon.
  • the compound of silicon may contain, for example, any one kind or two kinds or more of the series of elements described regarding the silicon alloy as a constituent element other than silicon.
  • the alloy of tin for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more.
  • the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain, for example, any one kind or two kinds or more of the series of elements described regarding the tin alloy as a constituent element other than tin.
  • tin alloy and the tin compound include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
  • the material containing tin as a constituent element is preferably a material (Sn-containing material) containing, for example, tin (first constituent element) and second and third constituent elements as constituent elements.
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included.
  • the third constituent element includes, for example, any one or more of boron, carbon, aluminum, phosphorus (P), and the like. This is because when the Sn-containing material contains the second and third constituent elements, a high battery capacity and excellent cycle characteristics can be obtained.
  • Sn containing material is a material (SnCoC containing material) which contains tin, cobalt, and carbon as a constituent element.
  • SnCoC-containing material for example, the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
  • a diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium can be easily determined by comparing X-ray diffraction charts before and after electrochemical reaction with lithium. .
  • the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it corresponds to a reaction phase capable of reacting with lithium.
  • Such a reaction phase contains, for example, each of the above-described constituent elements, and is considered to be low crystallized or amorphous mainly due to the presence of carbon.
  • the SnCoC-containing material it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed.
  • the bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al—K ⁇ ray or Mg—K ⁇ ray is used as the soft X-ray.
  • This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon.
  • This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon
  • One kind or two or more kinds may be included as constituent elements.
  • SnCoC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • SnCoFeC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • the composition of the SnCoFeC-containing material is arbitrary.
  • the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%.
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the carbon content is 11.9% to 29.7% by mass
  • the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass
  • the content ratio of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
  • the negative electrode active material layer 22B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method).
  • the coating method is, for example, a method in which a particulate (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 22A.
  • the vapor phase method include a physical deposition method and a chemical deposition method.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
  • the liquid phase method include an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 22A.
  • the firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 22A using a coating method and then heat-treated at a temperature higher than the melting point of the negative electrode binder or the like.
  • the firing method include an atmosphere firing method, a reaction firing method, a hot press firing method, and the like.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is, for example, a porous film of any one of synthetic resin and ceramic, and may be a laminated film using two or more kinds of porous films.
  • the synthetic resin is, for example, one or more of polytetrafluoroethylene, polypropylene, and polyethylene.
  • the separator 23 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the wound electrode body 20 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is not easily increased even if charging and discharging are repeated, and the battery swelling is also suppressed. Is done.
  • the polymer compound layer includes, for example, a polymer material such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
  • the polymer material may be a material other than polyvinylidene fluoride.
  • the wound electrode body 20 is impregnated with the electrolytic solution of the present technology. That is, the electrolytic solution contains a nonaqueous solvent and an electrolyte salt.
  • the non-aqueous solvent contains a fluorinated cyclic compound
  • the electrolyte salt contains a fluorinated imide compound.
  • This secondary battery operates as follows, for example.
  • lithium ions are released from the positive electrode 21, and the lithium ions are occluded in the negative electrode 22 through the electrolytic solution.
  • lithium ions are released from the negative electrode 22, and the lithium ions are occluded in the positive electrode 21 through the electrolytic solution.
  • the positive electrode 21 When the positive electrode 21 is produced, first, a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry. Subsequently, after applying the positive electrode mixture slurry to both surfaces of the positive electrode current collector 21A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. Subsequently, the positive electrode active material layer 21B is compression-molded using a roll press or the like while heating the positive electrode active material layer 21B as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode active material layer 22B is formed on the negative electrode current collector 22A by the same procedure as that of the positive electrode 21 described above. Specifically, a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like negative electrode mixture. A slurry is obtained. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 22A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 22B. Finally, the negative electrode active material layer 22B is compression molded using a roll press or the like.
  • an electrolyte salt containing a fluorinated imide compound is dissolved in a non-aqueous solvent containing a fluorinated cyclic compound.
  • the content of the fluorinated cyclic compound in the nonaqueous solvent is 95% by weight to 100% by weight.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead is connected to the negative electrode current collector 22A using a welding method or the like. 26 is attached. Subsequently, after the positive electrode 21 and the negative electrode 22 are laminated via the separator 23, the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form the wound electrode body 20. Subsequently, the center pin 24 is inserted into the center of the wound electrode body 20. Subsequently, the spirally wound electrode body 20 is accommodated in the battery can 11 while the spirally wound electrode body 20 is sandwiched between the pair of insulating plates 12 and 13.
  • FIG. 3 shows a perspective configuration of another secondary battery.
  • FIG. 4 shows a cross-sectional configuration along line IV-IV of the spirally wound electrode body 30 shown in FIG.
  • FIG. 3 shows a state where the wound electrode body 30 and the exterior member 40 are separated from each other.
  • the components of the cylindrical secondary battery already described will be referred to as needed.
  • the positive electrode lead 31 and the negative electrode lead 32 is led out in the same direction from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 is formed of any one type or two or more types of conductive materials such as aluminum (Al).
  • the negative electrode lead 32 is formed of any one type or two or more types of conductive materials such as copper (Cu), nickel (Ni), and stainless steel, for example. These conductive materials have, for example, a thin plate shape or a mesh shape.
  • the exterior member 40 is, for example, a single film that can be folded in the direction of the arrow R, and a recess for accommodating the wound electrode body 30 is provided in a part of the exterior member 40.
  • the exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the secondary battery, after the exterior member 40 is folded so that the fusion layers face each other with the wound electrode body 30 therebetween, the outer peripheral edges of the fusion layers are fused.
  • the exterior member 40 may be one in which two laminated films are bonded together with an adhesive or the like.
  • the fusion layer is, for example, any one kind or two or more kinds of films such as polyethylene and polypropylene.
  • the metal layer is, for example, one or more of aluminum foils.
  • the surface protective layer is, for example, any one film or two or more films selected from nylon and polyethylene terephthalate.
  • the exterior member 40 is an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • the positive electrode 33 includes a positive electrode current collector 33A and a positive electrode active material layer 33B
  • the negative electrode 34 includes, for example, the negative electrode current collector 34A and the negative electrode active material layer. 34B is included.
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode
  • the configuration is the same as that of each of the active material layers 22B.
  • the configuration of the separator 35 is the same as that of the separator 23, for example.
  • This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropropylene.
  • a copolymer of vinylidene fluoride and hexafluoropropylene is preferable. This is because it is electrochemically stable.
  • the wound electrode body 30 is impregnated with the electrolytic solution.
  • This secondary battery operates as follows, for example.
  • lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36.
  • lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
  • the secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
  • each of the positive electrode 33 and the negative electrode 34 is manufactured by the same manufacturing procedure as that of the positive electrode 21 and the negative electrode 22. That is, when the positive electrode 33 is produced, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, and when the negative electrode 34 is produced, the negative electrode active material layer is formed on both surfaces of the negative electrode current collector 34A. 34B is formed. Subsequently, an electrolytic solution, a polymer compound, an organic solvent, and the like are mixed to prepare a precursor solution. Subsequently, after applying a precursor solution to each of the positive electrode 33 and the negative electrode 34, the precursor solution is dried to form a gel electrolyte layer 36.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like.
  • the protective tape 37 is attached to the outermost peripheral portion of the wound electrode body 30.
  • the outer peripheral edge portions of the exterior member 40 are bonded to each other using a heat fusion method or the like, and the wound member 40 is wound inside the exterior member 40.
  • the electrode body 30 is encapsulated. In this case, the adhesion film 41 is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 41 is inserted between the negative electrode lead 32 and the exterior member 40.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A.
  • the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to produce a wound body that is a precursor of the wound electrode body 30, and then the outermost peripheral portion of the wound body.
  • a protective tape 37 is affixed to the surface.
  • the remaining outer peripheral edge portion excluding the outer peripheral edge portion of one side of the exterior member 40 is bonded using a heat fusion method or the like.
  • the wound body is housed inside the bag-shaped exterior member 40.
  • an electrolyte solution is prepared by mixing the electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary.
  • the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • the monomer is thermally polymerized to form a polymer compound. Thereby, since the electrolytic solution is held by the polymer compound, the gel electrolyte layer 36 is formed.
  • the polymer compound layer includes, for example, polyvinylidene fluoride, a binary copolymer of vinylidene fluoride and hexafluoropropylene, and a ternary of vinylidene fluoride, hexafluoropropylene, and chlorotrifluoroethylene. System copolymer and the like.
  • the polymer compound layer may contain one or more other polymer compounds together with a polymer containing vinylidene fluoride as a component. Subsequently, after injecting the electrolyte into the exterior member 40, the opening of the exterior member 40 is sealed using a thermal fusion method or the like.
  • the exterior member 40 is heated while applying a load, and the separator 35 is brought into close contact with each of the positive electrode 33 and the negative electrode 34 through the polymer compound layer.
  • the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled, so that the electrolyte layer 36 is formed.
  • Lithium metal secondary battery The secondary battery described here is a cylindrical secondary battery (lithium metal secondary battery) in which the capacity of the negative electrode 22 is expressed by precipitation and dissolution of lithium metal.
  • This secondary battery has the same configuration as the above-described lithium ion secondary battery (cylindrical type) except that the negative electrode active material layer 22B is formed of lithium metal, and is manufactured by the same procedure. Is done.
  • the negative electrode active material layer 22B may already exist from the time of assembly, but does not exist at the time of assembly, and may be formed of lithium metal deposited during charging. Further, the anode current collector 22A may be omitted by using the anode active material layer 22B as a current collector.
  • This secondary battery operates as follows, for example. At the time of charging, when lithium ions are released from the positive electrode 21, the lithium ions are deposited as lithium metal on the surface of the negative electrode current collector 22A through the electrolytic solution. At the time of discharge, when lithium metal is eluted from the negative electrode active material layer 22B as lithium ions into the electrolytic solution, the lithium ions are occluded in the positive electrode 21 through the electrolytic solution.
  • the configuration of the lithium metal secondary battery described here is not limited to the cylindrical secondary battery, and may be applied to a laminate film type secondary battery. In this case, the same effect can be obtained.
  • the secondary battery can be used for machines, devices, instruments, devices, and systems (a collection of multiple devices) that can use the secondary battery as a power source for driving or a power storage source for storing power.
  • the secondary battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of the main power source or switched from the main power source).
  • the type of the main power source is not limited to the secondary battery.
  • the usage of the secondary battery is, for example, as follows.
  • Electronic devices including portable electronic devices
  • portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
  • It is a portable living device such as an electric shaver.
  • Storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack used for a notebook computer or the like as a detachable power source.
  • Medical electronic devices such as pacemakers and hearing aids.
  • An electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is an electric power storage system such as a home battery system that stores electric power in case of an emergency.
  • the secondary battery may be used for other purposes not illustrated here.
  • the battery pack is a power source using a secondary battery, and is a so-called assembled battery.
  • the electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that is provided with a drive source other than the secondary battery as described above.
  • the power storage system is a system using a secondary battery as a power storage source.
  • a secondary battery which is a power storage source
  • An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source.
  • An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
  • FIG. 5 shows a perspective configuration of a battery pack using single cells.
  • FIG. 6 shows a block configuration of the battery pack shown in FIG. FIG. 5 shows a state where the battery pack is disassembled.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted on, for example, an electronic device typified by a smartphone.
  • the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 connected to the power supply 111.
  • a positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111.
  • a protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115.
  • the circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power supply 111, the circuit board 116 is protected from above and below by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detector 124 can detect the temperature using a temperature detection terminal (so-called T terminal) 126.
  • the control unit 121 controls the operation of the entire battery pack (including the usage state of the power supply 111), and includes, for example, a central processing unit (CPU) and a memory.
  • CPU central processing unit
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 disconnects the charging current by cutting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 so that the discharge current does not flow in the current path of the power supply 111. For example, when a large current flows during discharging, the control unit 121 cuts off the switch unit 122 and cuts off the discharging current.
  • the overcharge detection voltage of the secondary battery is, for example, 4.20V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the switch unit 122 switches the usage state of the power source 111 (whether the power source 111 can be connected to an external device) in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the measurement result to the control unit 121.
  • the temperature detection unit 124 includes a temperature detection element such as a thermistor.
  • the measurement result by the temperature detection unit 124 is used for the control unit 121 to perform charge / discharge control during abnormal heat generation, and is used for the control unit 121 to perform correction processing when calculating the remaining capacity.
  • circuit board 116 may not include the PTC 123.
  • a PTC element may be attached to the circuit board 116 separately.
  • FIG. 7 shows a block configuration of a battery pack using an assembled battery.
  • This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60.
  • the housing 60 is made of, for example, a plastic material.
  • the control unit 61 controls the entire operation of the battery pack (including the usage state of the power supply 62), and includes, for example, a CPU.
  • the power source 62 includes one or more secondary batteries.
  • the power source 62 is, for example, an assembled battery including two or more secondary batteries, and the connection form of these secondary batteries may be in series, in parallel, or a mixture of both.
  • the power source 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, for the controller 61 to perform charge / discharge control during abnormal heat generation, and for the controller 61 to perform correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power source 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
  • the switch control unit 67 controls the operation of the switch unit 63 according to the signals input from the current measurement unit 64 and the voltage detection unit 66.
  • the electrolyte salt was dissolved in the nonaqueous solvent by the same procedure as the procedure for preparing the electrolytic solution in the coin-type secondary battery.

Abstract

This secondary battery is provided with a positive electrode, a negative electrode, and an electrolyte solution that contains a nonaqueous solvent and an electrolyte salt. The nonaqueous solvent contains a fluorinated cyclic compound, and the electrolyte salt contains a fluorinated imide compound. The content of the fluorinated cyclic compound within the nonaqueous solvent is from 95% by weight to 100% by weight.

Description

二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
 本技術は、二次電池に用いられる電解液、その電解液を用いた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。 The present technology relates to an electrolytic solution used for a secondary battery, a secondary battery using the electrolytic solution, a battery pack using the secondary battery, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
 携帯電話機および携帯情報端末機器(PDA)などの多様な電子機器が広く普及しており、その電子機器のさらなる小型化、軽量化および長寿命化が要望されている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。 A variety of electronic devices such as mobile phones and personal digital assistants (PDAs) are widely used, and there is a demand for further downsizing, weight reduction, and longer life of the electronic devices. Accordingly, as a power source, development of a battery, in particular, a secondary battery that is small and lightweight and capable of obtaining a high energy density is in progress.
 二次電池は、上記した電子機器に限らず、他の用途への適用も検討されている。一例を挙げると、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、および電動ドリルなどの電動工具である。 Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses. For example, a battery pack detachably mounted on an electronic device, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
 電池容量を得るためにさまざまな充放電原理を利用する二次電池が提案されているが、中でも、電極反応物質の吸蔵放出を利用する二次電池、および電極反応物質の析出溶解を利用する二次電池が注目されている。これらの二次電池では、鉛電池およびニッケルカドミウム電池などと比較して、高いエネルギー密度が得られるからである。 Secondary batteries that use various charge / discharge principles have been proposed to obtain battery capacity. Among these, secondary batteries that use the storage and release of electrode reactants, and those that use precipitation and dissolution of electrode reactants. Secondary batteries are attracting attention. This is because these secondary batteries can provide a higher energy density than lead batteries and nickel cadmium batteries.
 二次電池は、正極および負極と共に電解液を備えており、その電解液は、非水溶媒および電解質塩を含んでいる。電解液の組成は、電池特性に大きな影響を及ぼすため、その電解液の組成に関しては、さまざまな検討がなされている。 The secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode, and the electrolytic solution includes a nonaqueous solvent and an electrolyte salt. Since the composition of the electrolytic solution greatly affects the battery characteristics, various studies have been made on the composition of the electrolytic solution.
 具体的には、サイクル特性などを向上させるために、非水溶媒として、4-フルオロ-1,3-ジオキソラン-2-オンなどのフッ素化環状炭酸エステルが用いられている。この場合には、電解質塩として、ビス(トリフルオロメタンスルホニル)イミドリチウムなどのイミド化合物が用いられている(例えば、特許文献1~4参照。)。 Specifically, in order to improve cycle characteristics and the like, a fluorinated cyclic carbonate such as 4-fluoro-1,3-dioxolan-2-one is used as a non-aqueous solvent. In this case, an imide compound such as bis (trifluoromethanesulfonyl) imide lithium is used as the electrolyte salt (see, for example, Patent Documents 1 to 4).
特開2008-123714号公報JP 2008-123714 A 特開2010-129449号公報JP 2010-129449 A 特開2013-131394号公報JP 2013-131394 A 特開2013-225388号公報JP 2013-225388 A
 電子機器などは高性能化および多機能化していると共に、その電子機器などの使用頻度は増加しているため、二次電池は頻繁に充放電される傾向にある。よって、二次電池の電池特性に関しては、未だ改善の余地がある。この場合には、特に、二次電池を安定かつ継続的に使用することを考えれば、電池特性を改善するだけでなく、安全性を確保することも重要である。 As electronic devices become more sophisticated and multifunctional, and the frequency of use of such electronic devices is increasing, secondary batteries tend to be charged and discharged frequently. Therefore, there is still room for improvement regarding the battery characteristics of the secondary battery. In this case, in particular, considering the stable and continuous use of the secondary battery, it is important not only to improve battery characteristics but also to ensure safety.
 したがって、電池特性と安全性とを両立させることが可能な二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することが望ましい。 Therefore, it is desirable to provide an electrolytic solution for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device that can achieve both battery characteristics and safety.
 本技術の一実施形態の二次電池用電解液は、非水溶媒および電解質塩を含むものである。非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、電解質塩は、式(2)で表されるフッ素化イミド化合物を含む。非水溶媒中におけるフッ素化環状化合物の含有量は、95重量%~100重量%である。 The electrolyte solution for a secondary battery according to an embodiment of the present technology includes a nonaqueous solvent and an electrolyte salt. The non-aqueous solvent includes a fluorinated cyclic compound represented by Formula (1), and the electrolyte salt includes a fluorinated imide compound represented by Formula (2). The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
Figure JPOXMLDOC01-appb-C000008
(R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000008
(Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
 LiN(R5SO)(R6SO) ・・・(2)
(R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
LiN (R5SO 2 ) (R6SO 2 ) (2)
(R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
 本技術の一実施形態の二次電池は、正極と、負極と、非水溶媒および電解質塩を含む電解液とを備え、その電解液が上記した本技術の一実施形態の二次電池用電解液と同様の構成を有するものである。本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の一実施形態の二次電池と同様の構成を有するものである。 A secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution containing a nonaqueous solvent and an electrolyte salt, and the electrolytic solution is an electrolytic solution for a secondary battery according to an embodiment of the present technology described above. It has the same configuration as the liquid. Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
 ここで、フッ素化アルキル基とは、アルキル基のうちの少なくとも1つの水素基がフッ素基により置換された基である。 Here, the fluorinated alkyl group is a group in which at least one hydrogen group of the alkyl groups is substituted with a fluorine group.
 本技術の一実施形態の二次電池用電解液または二次電池によれば、非水溶媒が所定量(95重量%~100重量%)のフッ素化環状化合物を含んでいると共に、電解質塩がフッ素化イミド化合物を含んでいるので、電池特性と安全性とを両立させることができる。また、本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器においても、同様の効果を得ることができる。 According to the secondary battery electrolyte or secondary battery of one embodiment of the present technology, the non-aqueous solvent contains a predetermined amount (95 wt% to 100 wt%) of the fluorinated cyclic compound, and the electrolyte salt includes Since the fluorinated imide compound is contained, both battery characteristics and safety can be achieved. The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本技術中に記載されたいずれの効果であってもよい。 Note that the effects described here are not necessarily limited, and may be any effects described in the present technology.
本技術の一実施形態の二次電池(円筒型)の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery (cylindrical type) of one Embodiment of this technique. 図1に示した巻回電極体の一部を拡大して表す断面図である。It is sectional drawing which expands and represents a part of winding electrode body shown in FIG. 本技術の一実施形態の他の二次電池(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view showing the structure of the other secondary battery (laminate film type) of one Embodiment of this technique. 図3に示した巻回電極体のIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV of the spirally wound electrode body illustrated in FIG. 3. 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。It is a perspective view showing the structure of the application example (battery pack: single cell) of a secondary battery. 図5に示した電池パックの構成を表すブロック図である。It is a block diagram showing the structure of the battery pack shown in FIG. 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery. 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery. 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery. 二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric tool) of a secondary battery. 試験用の二次電池(コイン型)の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery (coin type) for a test.
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池用電解液
 2.二次電池
  2-1.リチウムイオン二次電池(円筒型)
  2-2.リチウムイオン二次電池(ラミネートフィルム型)
  2-3.リチウム金属二次電池
 3.二次電池の用途
  3-1.電池パック(単電池)
  3-2.電池パック(組電池)
  3-3.電動車両
  3-4.電力貯蔵システム
  3-5.電動工具
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. 1. Electrolytic solution for secondary battery Secondary battery 2-1. Lithium ion secondary battery (cylindrical type)
2-2. Lithium ion secondary battery (laminate film type)
2-3. Lithium metal secondary battery Applications of secondary batteries 3-1. Battery pack (single cell)
3-2. Battery pack (assembled battery)
3-3. Electric vehicle 3-4. Electric power storage system 3-5. Electric tool
<1.二次電池用電解液>
 まず、本技術の一実施形態の二次電池用電解液(以下、単に「電解液」という。)に関して説明する。
<1. Electrolyte for secondary battery>
First, an electrolytic solution for a secondary battery (hereinafter simply referred to as “electrolytic solution”) according to an embodiment of the present technology will be described.
 ここで説明する電解液は、例えば、リチウム二次電池などに用いられる。ただし、電解液が用いられる二次電池の種類は、リチウム二次電池に限定されない。 The electrolytic solution described here is used for, for example, a lithium secondary battery. However, the type of secondary battery in which the electrolytic solution is used is not limited to the lithium secondary battery.
[電解液の組成]
 この電解液は、いわゆる液状の電解質であり、非水溶媒および電解質塩を含んでいる。なお、非水溶媒の種類は、1種類だけでもよいし、2種類以上でもよい。同様に、電解質塩の種類は、1種類だけでもよいし、2種類以上でもよい。
[Composition of electrolyte]
This electrolytic solution is a so-called liquid electrolyte and contains a nonaqueous solvent and an electrolyte salt. In addition, the kind of nonaqueous solvent may be only one kind, and may be two or more kinds. Similarly, only one type of electrolyte salt may be used, or two or more types may be used.
 非水溶媒は、下記の式(1)で表されるフッ素化環状化合物のうちのいずれか1種類または2種類以上を含んでいる。また、電解質塩は、下記の式(2)で表されるフッ素化イミド化合物のうちのいずれか1種類または2種類以上を含んでいる。 The non-aqueous solvent contains any one or more of the fluorinated cyclic compounds represented by the following formula (1). Moreover, electrolyte salt contains any 1 type in the fluorinated imide compound represented by following formula (2), or 2 or more types.
Figure JPOXMLDOC01-appb-C000009
(R1~R4のそれぞれは、水素基、フッ素基、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000009
(Each of R1 to R4 is a hydrogen group, a fluorine group, an alkyl group or a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group or a fluorinated alkyl group. Either)
 LiN(R5SO)(R6SO) ・・・(2)
(R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
LiN (R5SO 2 ) (R6SO 2 ) (2)
(R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
[フッ素化環状化合物]
 式(1)に示したフッ素化環状化合物は、1または2以上のフッ素(F)を構成元素として含む炭酸エチレン型の化合物である。
[Fluorinated cyclic compounds]
The fluorinated cyclic compound represented by the formula (1) is an ethylene carbonate type compound containing one or more fluorine (F) as a constituent element.
 R1~R4のそれぞれの種類は、水素基、フッ素基、アルキル基およびフッ素化アルキル基のうちのいずれかであれば、特に限定されない。なお、R1~R4は、同じ基でもよいし、異なる基でもよい。もちろん、R1~R4のうちの一部が同じ基でもよい。 Each type of R1 to R4 is not particularly limited as long as it is any one of a hydrogen group, a fluorine group, an alkyl group, and a fluorinated alkyl group. R1 to R4 may be the same group or different groups. Of course, some of R1 to R4 may be the same group.
 アルキル基の種類は、炭素(C)および水素(H)により構成される1価の基のうちのいずれかであれば、特に限定されない。このアルキル基は、直鎖状でもよいし、1または2以上の側鎖を有する分岐状でもよい。 The type of the alkyl group is not particularly limited as long as it is one of monovalent groups composed of carbon (C) and hydrogen (H). This alkyl group may be linear or branched having one or more side chains.
 アルキル基の具体例は、メチル基(-CH)、エチル基(-C)、プロピル基(-C)、n-ブチル基(-C)およびt-ブチル基(-C(-CH-CH)などである。ただし、アルキル基の具体例は、ここで例示していない他の基でもよい。 Specific examples of the alkyl group include a methyl group (—CH 3 ), an ethyl group (—C 2 H 5 ), a propyl group (—C 3 H 7 ), an n-butyl group (—C 4 H 8 ), and t-butyl. Group (—C (—CH 3 ) 2 —CH 3 ) and the like. However, specific examples of the alkyl group may be other groups not exemplified here.
 アルキル基の炭素数は、特に限定されないが、中でも、極端に多すぎないことが好ましい。フッ素化環状化合物の相溶性などが確保されるからである。具体的には、アルキル基の炭素数は、1~10であることが好ましく、1~5であることがより好ましい。 The number of carbon atoms of the alkyl group is not particularly limited, but it is preferable that the number of carbons is not extremely large. This is because the compatibility of the fluorinated cyclic compound is ensured. Specifically, the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
 フッ素化アルキル基の種類は、アルキル基のうちの少なくとも1つの水素基がフッ素基により置換された基のうちのいずれかであれば、特に限定されない。フッ素化アルキル基の具体例は、モノフルオロメチル基(-CHF)、ジフルオロメチル基(-CHF)、パーフルオロメチル基(-CF)、パーフルオロエチル基(-C)、パーフルオロプロピル基(-C)、パーフルオロ-n-ブチル基(-C)およびパーフルオロ-t-ブチル基(-C(-CF-CF)などである。ただし、フッ素化アルキル基の具体例は、ここで例示していない他の基でもよい。 The kind of the fluorinated alkyl group is not particularly limited as long as it is any of the groups in which at least one hydrogen group of the alkyl groups is substituted with a fluorine group. Specific examples of the fluorinated alkyl group include a monofluoromethyl group (—CH 2 F), a difluoromethyl group (—CHF 2 ), a perfluoromethyl group (—CF 3 ), and a perfluoroethyl group (—C 2 F 5 ). Perfluoropropyl group (—C 3 F 7 ), perfluoro-n-butyl group (—C 4 F 8 ) and perfluoro-t-butyl group (—C (—CF 3 ) 2 —CF 3 ), etc. is there. However, specific examples of the fluorinated alkyl group may be other groups not exemplified here.
 フッ素化アルキル基の炭素数に関する詳細は、例えば、上記したアルキル基の炭素数に関する詳細と同様である。 Details regarding the carbon number of the fluorinated alkyl group are the same as, for example, the details regarding the carbon number of the alkyl group described above.
 ただし、R1~R4のうちのいずれか1つまたは2つ以上は、フッ素基およびフッ素化アルキル基のうちのいずれかである。フッ素化環状化合物は、上記したように、1または2以上のフッ素を構成元素として含んでいなければならないからである。 However, any one or two or more of R1 to R4 are either a fluorine group or a fluorinated alkyl group. This is because the fluorinated cyclic compound must contain one or more fluorine atoms as constituent elements, as described above.
 中でも、R1~R4のそれぞれは、水素基およびフッ素基のうちのいずれかであり、そのR1~R4のうちのいずれか1つまたは2つ以上は、フッ素基であることが好ましい。フッ素化環状化合物を容易に合成可能であると共に、そのフッ素化環状化合物の相溶性などが確保されるからである。 In particular, each of R1 to R4 is either a hydrogen group or a fluorine group, and any one or two or more of R1 to R4 are preferably a fluorine group. This is because the fluorinated cyclic compound can be easily synthesized and the compatibility of the fluorinated cyclic compound is ensured.
 また、非水溶媒中におけるフッ素化環状化合物の含有量は、後述するように二次電池において電池特性と安全性とを両立させるために、十分に大きい必要がある。具体的には、フッ素化環状化合物の含有量は、95重量%~100重量%である。 Further, the content of the fluorinated cyclic compound in the non-aqueous solvent needs to be sufficiently large in order to achieve both battery characteristics and safety in the secondary battery as will be described later. Specifically, the content of the fluorinated cyclic compound is 95% by weight to 100% by weight.
 すなわち、非水溶媒は、フッ素化環状化合物だけでもよいし、フッ素化環状化合物に加えて他の材料(後述する他の非水溶媒)のうちのいずれか1種類または2種類以上を含んでいてもよい。 That is, the non-aqueous solvent may be only the fluorinated cyclic compound, or may contain any one or more of other materials (other non-aqueous solvents described later) in addition to the fluorinated cyclic compound. Also good.
 ただし、非水溶媒がフッ素化環状化合物と共に他の材料を含んでいるため、そのフッ素化環状化合物の含有量が100重量%未満である場合には、他の材料の含有量は、5重量%以下に抑えられる。この他の材料の種類は、特に限定されないが、例えば、後述する他の非水溶媒のうちのいずれか1種類または2種類以上である。中でも、他の材料は、環状炭酸エステルおよび鎖状炭酸エステルのうちの一方または双方を含んでいることが好ましい。後述するように、電解質塩の解離性およびイオンの移動度が向上するからである。 However, since the non-aqueous solvent contains another material together with the fluorinated cyclic compound, when the content of the fluorinated cyclic compound is less than 100% by weight, the content of the other material is 5% by weight. It is suppressed to the following. Although the kind of this other material is not specifically limited, For example, it is any 1 type or 2 or more types in the other nonaqueous solvent mentioned later. Especially, it is preferable that the other material contains one or both of cyclic carbonate and chain carbonate. This is because the dissociation property of the electrolyte salt and the ion mobility are improved as described later.
 フッ素化環状化合物の具体例は、下記の式(1-1)~式(1-16)のそれぞれで表される化合物などであり、それらの化合物には、幾何異性体も含まれる。この幾何異性体では、シス異性体よりもトランス異性体が好ましい。容易に合成可能だからである。ただし、フッ素化環状化合物の具体例は、ここで例示していない他の化合物でもよい。 Specific examples of the fluorinated cyclic compound include compounds represented by the following formulas (1-1) to (1-16), and the compounds include geometric isomers. In this geometric isomer, the trans isomer is preferable to the cis isomer. This is because it can be easily synthesized. However, specific examples of the fluorinated cyclic compound may be other compounds not exemplified here.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 中でも、式(1-1)に示した4-フルオロ-1,3-ジオキソラン-2-オンなどが好ましい。容易に合成可能であると共に、優れた相溶性などが得られるからである。 Of these, 4-fluoro-1,3-dioxolan-2-one represented by the formula (1-1) is preferable. This is because it can be easily synthesized and has excellent compatibility.
[フッ素化イミド化合物]
 式(2)に示したフッ素化イミド化合物は、1または2以上のフッ素を構成元素として含むと共に2つのスルホニル基(>SO)を含むイミドリチウム塩である。
[Fluorinated imide compound]
The fluorinated imide compound represented by the formula (2) is an imide lithium salt containing one or more fluorine atoms as constituent elements and two sulfonyl groups (> SO 2 ).
 R5およびR6のそれぞれの種類は、フッ素基およびフッ素化アルキル基のうちのいずれかであれば、特に限定されない。なお、R5およびR6は、同じ基でもよいし、異なる基でもよい。 Each type of R5 and R6 is not particularly limited as long as it is either a fluorine group or a fluorinated alkyl group. R5 and R6 may be the same group or different groups.
 フッ素化アルキル基に関する詳細は、例えば、上記したフッ素化環状化合物に関して説明した場合と同様である。 Details regarding the fluorinated alkyl group are the same as those described for the fluorinated cyclic compound, for example.
 中でも、R5およびR6のそれぞれは、フッ素基およびパーフルオロアルキル基のうちのいずれかであることが好ましい。フッ素化イミド化合物を容易に合成可能であると共に、そのフッ素化イミド化合物の溶解性および相溶性などが確保されるからである。 Of these, each of R5 and R6 is preferably either a fluorine group or a perfluoroalkyl group. This is because the fluorinated imide compound can be easily synthesized, and the solubility and compatibility of the fluorinated imide compound are ensured.
 フッ素化イミド化合物の具体例は、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CSO、LiN(FSO)(CFSO)、LiN(FSO)(CSO)、LiN(FSO)(CSO)、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)およびLiN(CFSO)(CSO)などである。ただし、フッ素化イミド化合物の具体例は、ここで例示していない他の化合物でもよい。 Specific examples of the fluorinated imide compound include LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 3 H 7 SO 2 ) 2 , LiN (FSO). 2 ) (CF 3 SO 2 ), LiN (FSO 2 ) (C 2 F 5 SO 2 ), LiN (FSO 2 ) (C 3 H 7 SO 2 ), LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ), LiN (CF 3 SO 2 ) (C 3 F 7 SO 2 ) and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ). However, specific examples of the fluorinated imide compound may be other compounds not exemplified here.
 中でも、LiN(FSO、LiN(CFSOおよびLiN(CSOなどが好ましい。容易に合成可能であると共に、優れた溶解性などが得られるからである。 Among these, LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 are preferable. This is because it can be easily synthesized and has excellent solubility and the like.
 なお、電解質塩は、フッ素化イミド化合物だけでもよいし、フッ素化イミド化合物に加えて他の材料(後述する他の電解質塩)のうちのいずれか1種類または2種類以上を含んでいてもよい。 The electrolyte salt may be only a fluorinated imide compound, or may contain any one or more of other materials (other electrolyte salts described later) in addition to the fluorinated imide compound. .
 フッ素化イミド化合物の含有量は、特に限定されないが、中でも、非水溶媒に対して、0.6mol/kg~2mol/kgであることが好ましい。高いイオン伝導性が得られると共に、後述するフッ素化環状化合物とフッ素化イミド化合物との相乗作用が得られやすいからである。 The content of the fluorinated imide compound is not particularly limited, but among them, it is preferably 0.6 mol / kg to 2 mol / kg with respect to the non-aqueous solvent. This is because high ionic conductivity is obtained and a synergistic action of a fluorinated cyclic compound and a fluorinated imide compound described later is easily obtained.
[フッ素化環状化合物とフッ素化イミド化合物とを一緒に用いる理由]
 ここで、非水溶媒が所定量(95重量%~100重量%)のフッ素化環状化合物を含んでいると共に、電解質塩がフッ素化イミド化合物を含んでいる理由は、以下の通りである。
[Reason for using fluorinated cyclic compound and fluorinated imide compound together]
Here, the reason why the non-aqueous solvent contains a predetermined amount (95 wt% to 100 wt%) of the fluorinated cyclic compound and the electrolyte salt contains the fluorinated imide compound is as follows.
 電解質塩としてフッ素化イミド化合物を用いると、初回充放電特性などの電池特性が向上し得る。しかしながら、フッ素化イミド化合物は、アルミニウムなどの金属材料を腐食しやすい性質を有しているため、安全性が低下する。ここで説明しているアルミニウムなどの金属材料は、例えば、後述するように、二次電池に用いられる集電体およびリードなどである。このように金属材料の腐食に起因して安全性が低下する傾向は、特に、充電時の上限電圧が高くなるほど顕著になり、より具体的には、上限電圧が3.6V以上になると顕著になる。 When a fluorinated imide compound is used as the electrolyte salt, battery characteristics such as initial charge / discharge characteristics can be improved. However, since the fluorinated imide compound has a property of easily corroding a metal material such as aluminum, safety is lowered. The metal material such as aluminum described here is, for example, a current collector and a lead used for a secondary battery as described later. Thus, the tendency for the safety to decrease due to the corrosion of the metal material becomes more prominent as the upper limit voltage during charging becomes higher, and more specifically, when the upper limit voltage becomes 3.6 V or more, it becomes more prominent. Become.
 一方、非水溶媒としてフッ素化環状化合物を用いると、充放電時においてフッ素化環状化合物に由来する被膜が電極の表面に形成されるため、その被膜により電極が保護される。これにより、電解液の分解反応が抑制されるため、初回充放電特性などの電池特性が向上する。しかしながら、フッ素化環状化合物は、六フッ化リン酸リチウム(LiPF)および四フッ化ホウ酸リチウム(LiBF)などの一般的な電解質塩と反応しやすい性質を有しているため、その反応に起因してガスが発生しやすくなる。これにより、二次電池が膨れやすくなるため、安全性が低下する。このように非水溶媒と電解質塩との反応に起因して安全性が低下する傾向は、特に、環境温度が高温になるほど顕著になると共に、非水溶媒中におけるフッ素化環状化合物の含有量が大きくなるほど顕著になる。 On the other hand, when a fluorinated cyclic compound is used as the non-aqueous solvent, a coating derived from the fluorinated cyclic compound is formed on the surface of the electrode during charge / discharge, and thus the electrode is protected by the coating. Thereby, since the decomposition reaction of the electrolytic solution is suppressed, battery characteristics such as initial charge / discharge characteristics are improved. However, since the fluorinated cyclic compound has the property of easily reacting with general electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ), the reaction Due to this, gas is likely to be generated. As a result, the secondary battery tends to swell, and safety is reduced. Thus, the tendency for the safety to decrease due to the reaction between the non-aqueous solvent and the electrolyte salt becomes particularly prominent as the environmental temperature increases, and the content of the fluorinated cyclic compound in the non-aqueous solvent increases. The larger it becomes, the more noticeable it becomes.
 これらのことから、フッ素化環状化合物とフッ素化イミド化合物とを組み合わせると、電池特性は改善され得るが、安全性は改善されず、むしろ安全性は悪化するように予想される。 From these facts, when the fluorinated cyclic compound and the fluorinated imide compound are combined, the battery characteristics can be improved, but the safety is not improved, but rather the safety is expected to deteriorate.
 しかしながら、非水溶媒中におけるフッ素化環状化合物の含有量を十分に大きくした状態において、フッ素化イミド化合物を用いる。この場合には、上記した予想に反して、フッ素化環状化合物とフッ素化イミド化合物との相乗作用により、電池特性だけでなく、安全性も改善される。フッ素化環状化合物の含有量を十分に大きくした状態とは、上記したように、フッ素化環状化合物の含有量を95重量%~100重量%にした場合を意味している。 However, the fluorinated imide compound is used in a state where the content of the fluorinated cyclic compound in the non-aqueous solvent is sufficiently increased. In this case, contrary to the above prediction, not only the battery characteristics but also the safety is improved by the synergistic action of the fluorinated cyclic compound and the fluorinated imide compound. The state where the content of the fluorinated cyclic compound is sufficiently increased means the case where the content of the fluorinated cyclic compound is 95 wt% to 100 wt% as described above.
 詳細には、フッ素化環状化合物に由来する被膜により、電解液の分解反応が抑制される。この場合には、フッ素化環状化合物を用いているにもかかわらず、非水溶媒の反応性が特異的に低下するため、ガスが発生しにくくなる。 Specifically, the decomposition reaction of the electrolytic solution is suppressed by the coating derived from the fluorinated cyclic compound. In this case, despite the use of the fluorinated cyclic compound, the reactivity of the non-aqueous solvent is specifically reduced, so that gas is hardly generated.
 しかも、フッ素化イミド化合物を用いているにもかかわらず、そのフッ素化イミド化合物の腐食能が特異的に低下するため、アルミニウムなどの金属材料が腐食されるにくくなる。この場合には、フッ素化環状化合物の反応性も特異的に低下するため、ガスも発生しにくくなる。 In addition, despite the use of a fluorinated imide compound, the corrosive ability of the fluorinated imide compound is specifically reduced, making it difficult for metal materials such as aluminum to be corroded. In this case, the reactivity of the fluorinated cyclic compound is also specifically reduced, so that gas is hardly generated.
 これらのことから、フッ素化環状化合物とフッ素化イミド化合物との相乗作用により、電解液の分解反応が抑制される。この場合には、アルミニウムなどの金属材料の腐食反応が抑制されると共に、ガスの発生も抑制される。よって、電池特性が改善されるだけでなく、安全性も改善されるため、電池特性と安全性とが両立される。 Therefore, the decomposition reaction of the electrolytic solution is suppressed by the synergistic action of the fluorinated cyclic compound and the fluorinated imide compound. In this case, the corrosion reaction of a metal material such as aluminum is suppressed, and the generation of gas is also suppressed. Therefore, not only the battery characteristics are improved, but also the safety is improved, so that both the battery characteristics and the safety are compatible.
 特に、後述するように、負極材料が炭素材料および金属系材料の双方を含んでいる場合には、その負極材料中における金属系材料の含有量が大きくなるほど、上記した利点が効果的に得られる傾向にある。金属系材料は、理論容量が高い反面、充放電時において膨張収縮しやすい性質を有するため、電池特性および安全性のそれぞれの改善効果がより発揮されやすいからである。 In particular, as described later, when the negative electrode material contains both a carbon material and a metal-based material, the above-described advantages can be effectively obtained as the content of the metal-based material in the negative electrode material increases. There is a tendency. This is because the metal-based material has a high theoretical capacity, but has a property of easily expanding and contracting at the time of charge / discharge, so that the respective effects of improving battery characteristics and safety are more easily exhibited.
[他の非水溶媒]
 なお、非水溶媒は、上記したフッ素化環状化合物に加えて、他の材料(他の非水溶媒)のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Other non-aqueous solvents]
In addition, in addition to the above-mentioned fluorinated cyclic compound, the non-aqueous solvent may contain any one type or two or more types of other materials (other non-aqueous solvents).
 他の非水溶媒は、例えば、以下で説明する化合物(フッ素化環状化合物を除く。)のうちのいずれか1種類または2種類以上である。 The other non-aqueous solvent is, for example, one or more of the compounds described below (excluding fluorinated cyclic compounds).
 他の非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリルなどである。優れた溶解性および相溶性などが得られるからである。環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどであり、鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。 Other non-aqueous solvents are, for example, cyclic carbonates, chain carbonates, lactones, chain carboxylic esters and nitriles. This is because excellent solubility and compatibility are obtained. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate, and examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate. Examples of the lactone include γ-butyrolactone and γ-valerolactone. Examples of the carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate. Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
 また、他の非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどである。 Other nonaqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide.
 中でも、環状炭酸エステルおよび鎖状炭酸エステルのうちの一方または双方が好ましい。より具体的には、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちのいずれか1種類または2種類以上が好ましい。この場合には、炭酸エチレンまたは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルまたは炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解液において、電解質塩の解離性およびイオンの移動度が向上するからである。 Of these, one or both of a cyclic carbonate and a chain carbonate are preferable. More specifically, any one or two or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are preferable. In this case, a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, a relative dielectric constant ε ≧ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate (for example, viscosity ≦ 1 mPas). -A combination with s) is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved in the electrolytic solution.
 この他、他の非水溶媒は、不飽和環状炭酸エステルのうちのいずれか1種類または2種類以上である。充放電時において電極の表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。 In addition, the other non-aqueous solvent is one or more of unsaturated cyclic carbonates. This is because a stable protective film is formed on the surface of the electrode during charging / discharging, so that the decomposition reaction of the electrolytic solution is suppressed.
 この不飽和環状炭酸エステルとは、1または2以上の不飽和結合(炭素間二重結合)を含む環状炭酸エステルであり、より具体的には、下記の式(3)~式(5)のそれぞれで表される化合物などである。非水溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 This unsaturated cyclic ester carbonate is a cyclic ester carbonate containing one or more unsaturated bonds (carbon-carbon double bonds), and more specifically, the following formulas (3) to (5): These are compounds represented by each. The content of the unsaturated cyclic carbonate in the non-aqueous solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
Figure JPOXMLDOC01-appb-C000011
(R11およびR12のそれぞれは、水素基およびアルキル基のうちのいずれかである。R13~R16のそれぞれは、水素基、アルキル基、ビニル基およびアリル基のうちのいずれかであり、そのR13~R16のうちの少なくとも1つは、ビニル基およびアリル基のうちのいずれかである。R17は、>CR18R19で表される基であり、R18およびR19のそれぞれは、水素基およびアルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000011
(Each of R11 and R12 is any one of a hydrogen group and an alkyl group. Each of R13 to R16 is any one of a hydrogen group, an alkyl group, a vinyl group, and an allyl group. At least one of R16 is any one of a vinyl group and an allyl group, R17 is a group represented by> CR18R19, and each of R18 and R19 is a hydrogen group or an alkyl group. Either.)
 式(3)に示した化合物は、炭酸ビニレン系の化合物である。R11およびR12は、同じ基でもよいし、異なる基でもよい。炭酸ビニレン系の化合物の具体例は、炭酸ビニレン(1,3-ジオキソール-2-オン)、炭酸メチルビニレン(4-メチル-1,3-ジオキソール-2-オン)、炭酸エチルビニレン(4-エチル-1,3-ジオキソール-2-オン)、4,5-ジメチル-1,3-ジオキソール-2-オン、4,5-ジエチル-1,3-ジオキソール-2-オン、4-フルオロ-1,3-ジオキソール-2-オンおよび4-トリフルオロメチル-1,3-ジオキソール-2-オンなどである。中でも、炭酸ビニレンが好ましい。容易に入手できると共に、高い効果が得られるからである。 The compound represented by the formula (3) is a vinylene carbonate-based compound. R11 and R12 may be the same group or different groups. Specific examples of vinylene carbonate compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethyl vinylene carbonate (4-ethyl). -1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1, Such as 3-dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one. Among these, vinylene carbonate is preferable. This is because it can be easily obtained and a high effect can be obtained.
 式(4)に示した化合物は、炭酸ビニルエチレン系の化合物である。R13~R16は、同じ基でもよいし、異なる基でもよい。もちろん、R13~R16のうちの一部が同じ基でもよい。炭酸ビニルエチレン系の化合物の具体例は、炭酸ビニルエチレン(4-ビニル-1,3-ジオキソラン-2-オン)、4-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4-エチル-4-ビニル-1,3-ジオキソラン-2-オン、4-n-プロピル-4-ビニル-1,3-ジオキソラン-2-オン、5-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4,4-ジビニル-1,3-ジオキソラン-2-オンおよび4,5-ジビニル-1,3-ジオキソラン-2-オンなどである。中でも、炭酸ビニルエチレンが好ましい。容易に入手できると共に、高い効果が得られるからである。もちろん、R13~R16としては、全てがビニル基でもよいし、全てがアリル基でもよいし、ビニル基とアリル基とが混在していてもよい。 The compound represented by the formula (4) is a vinyl ethylene carbonate compound. R13 to R16 may be the same group or different groups. Of course, some of R13 to R16 may be the same group. Specific examples of the vinyl ethylene carbonate compounds include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, 4- Ethyl-4-vinyl-1,3-dioxolane-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolane- 2-one, 4,4-divinyl-1,3-dioxolan-2-one and 4,5-divinyl-1,3-dioxolan-2-one. Of these, vinyl ethylene carbonate is preferred. It is because it is easily available and a high effect is obtained. Of course, as R13 to R16, all may be vinyl groups, all may be allyl groups, or vinyl groups and allyl groups may be mixed.
 式(5)に示した化合物は、炭酸メチレンエチレン系の化合物である。R18およびR19は、同じ基でもよいし、異なる基でもよい。炭酸メチレンエチレン系の化合物の具体例は、炭酸メチレンエチレン(4-メチレン-1,3-ジオキソラン-2-オン)、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オンおよび4,4-ジエチル-5-メチレン-1,3-ジオキソラン-2-オンなどである。この炭酸メチレンエチレン系の化合物は、式(5)に示したように1つのメチレン基を含む化合物の他、2つ以上のメチレン基を含む化合物でもよい。 The compound represented by the formula (5) is a methylene ethylene carbonate compound. R18 and R19 may be the same group or different groups. Specific examples of methylene ethylene carbonate compounds include methylene ethylene carbonate (4-methylene-1,3-dioxolan-2-one), 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, and 4,4-diethyl-5-methylene-1,3-dioxolan-2-one and the like. This methylene ethylene carbonate compound may be a compound containing one methylene group as shown in the formula (5) or a compound containing two or more methylene groups.
 この他、不飽和環状炭酸エステルは、ベンゼン環を有する炭酸カテコール(カテコールカーボネート)などでもよい。ただし、不飽和環状炭酸エステルの具体例は、ここで例示していない他の化合物でもよい。 In addition, the unsaturated cyclic carbonate may be catechol carbonate having a benzene ring (catechol carbonate). However, specific examples of the unsaturated cyclic ester carbonate may be other compounds not exemplified here.
 また、他の非水溶媒は、ハロゲン化炭酸エステルのうちのいずれか1種類または2種類以上である。充放電時において電極の表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。このハロゲン化炭酸エステルとは、1または2以上のハロゲンを構成元素として含む炭酸エステルであり、より具体的には、下記の式(6)および式(7)のそれぞれで表される化合物などである。非水溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。 In addition, the other non-aqueous solvent is any one type or two or more types of halogenated carbonates. This is because a stable protective film is formed on the surface of the electrode during charging / discharging, so that the decomposition reaction of the electrolytic solution is suppressed. This halogenated carbonate is a carbonate containing 1 or 2 or more halogens as a constituent element. More specifically, it is a compound represented by each of the following formulas (6) and (7). is there. The content of the halogenated carbonate in the non-aqueous solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
Figure JPOXMLDOC01-appb-C000012
(R21~R24のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかであり、そのR21~R24のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。R25~R30のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかであり、そのR25~R30のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000012
(Each of R21 to R24 is any one of a hydrogen group, a halogen group, an alkyl group and a halogenated alkyl group, and at least one of R21 to R24 is a halogen group or a halogenated alkyl group. Each of R25 to R30 is any one of a hydrogen group, a halogen group, an alkyl group, and a halogenated alkyl group, and at least one of R25 to R30 is a halogen group or a halogen atom. One of the alkyl groups.)
 式(6)に示した化合物は、環状ハロゲン化炭酸エステルである。ただし、上記したフッ素化環状化合物は、ここで説明する環状ハロゲン化炭酸エステルから除かれる。なお、R21~R24は、同じ基でもよいし、異なる基でもよい。もちろん、R21~R24のうちの一部が同じ基でもよい。 The compound represented by the formula (6) is a cyclic halogenated carbonate. However, the above-mentioned fluorinated cyclic compound is excluded from the cyclic halogenated carbonate described here. R21 to R24 may be the same group or different groups. Of course, some of R21 to R24 may be the same group.
 ハロゲン基の種類は、特に限定されないが、中でも、フッ素基、塩素基、臭素基およびヨウ素基のうちのいずれか1種類または2種類以上であることが好ましく、フッ素基がより好ましい。フッ素基は、他のハロゲン基と比較して、上記した保護膜を形成しやすいからである。なお、ハロゲン基の数は、1つよりも2つが好ましく、さらに3つ以上でもよい。保護膜を形成する能力がより高くなると共に、その保護膜がより強固になるからである。 The type of halogen group is not particularly limited, but among them, one or more of fluorine group, chlorine group, bromine group and iodine group are preferable, and fluorine group is more preferable. This is because a fluorine group is easier to form the protective film than other halogen groups. The number of halogen groups is preferably two rather than one, and may be three or more. This is because the ability to form a protective film becomes higher and the protective film becomes stronger.
 ハロゲン化アルキル基とは、アルキル基のうちの1または2以上の水素基がハロゲン基により置換(ハロゲン化)された基である。このハロゲン基に関する詳細は、上記した通りである。 The halogenated alkyl group is a group in which one or two or more hydrogen groups in the alkyl group are substituted (halogenated) with a halogen group. Details regarding the halogen group are as described above.
 環状ハロゲン化炭酸エステルの具体例は、下記の式(6-1)~式(6-5)のそれぞれで表される化合物などであり、それらの化合物には、幾何異性体も含まれる。ただし、環状ハロゲン化炭酸エステルの具体例は、ここで例示していない他の化合物でもよい。 Specific examples of the cyclic halogenated carbonate are compounds represented by the following formulas (6-1) to (6-5), and the compounds include geometric isomers. However, specific examples of the cyclic halogenated carbonate may be other compounds not exemplified here.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(7)に示した化合物は、鎖状ハロゲン化炭酸エステルである。なお、R25~R30は、同じ基でもよいし、異なる基でもよい。もちろん、R25~R30の一部が同じ基でもよい。 The compound represented by the formula (7) is a chain halogenated carbonate. R25 to R30 may be the same group or different groups. Of course, a part of R25 to R30 may be the same group.
 鎖状ハロゲン化炭酸エステルの具体例は、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。ただし、鎖状ハロゲン化炭酸エステルの具体例は、ここで例示していない他の化合物でもよい。 Specific examples of the chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate. However, specific examples of the chain halogenated carbonate may be other compounds not exemplified here.
 また、他の非水溶媒は、スルホン酸エステルでもある。電解液の化学的安定性がより向上するからである。スルホン酸エステルは、モノスルホン酸エステルおよびジスルホン酸エステルを含む。 Other non-aqueous solvents are also sulfonate esters. This is because the chemical stability of the electrolytic solution is further improved. Sulfonic acid esters include monosulfonic acid esters and disulfonic acid esters.
 モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。環状モノスルホン酸エステルは、例えば、プロパンスルトンおよびプロペンスルトンなどのスルトンである。鎖状モノスルホン酸エステルは、環状モノスルホン酸エステルが途中で切断された化合物である。一例を挙げると、プロパンスルトンが途中で切断された場合の鎖状モノスルホン酸エステルは、CH-CH-CH-SO-CHなどである。この-SO-(-S(=O)-O-)の向きは、特に限定されない。すなわち、上記したCH-CH-CH-SO-CHは、CH-CH-CH-S(=O)-O-CHでもよいし、CH-CH-CH-O-S(=O)-CHでもよい。 The monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester. Cyclic monosulfonates are, for example, sultone such as propane sultone and propene sultone. A chain monosulfonic acid ester is a compound in which a cyclic monosulfonic acid ester is cleaved on the way. As an example, the chain monosulfonic acid ester when propane sultone is cleaved in the middle is CH 3 —CH 2 —CH 2 —SO 3 —CH 3 or the like. The direction of —SO 3 — (— S (═O) 2 —O—) is not particularly limited. That is, the above CH 3 —CH 2 —CH 2 —SO 3 —CH 3 may be CH 3 —CH 2 —CH 2 —S (═O) 2 —O—CH 3 , or CH 3 —CH 2 —. CH 2 —O—S (═O) 2 —CH 3 may also be used.
 ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。環状ジスルホン酸エステルは、例えば、下記の式(8-1)~式(8-3)のそれぞれで表される化合物などである。鎖状ジスルホン酸エステルは、環状ジスルホン酸エステルが途中で切断された化合物である。一例を挙げると、式(8-2)に示した化合物が途中で切断された鎖状ジスルホン酸エステルは、CH-SO-CH-SO-CHなどである。2つの-SO-(-S(=O)-O-)の向きは、特に限定されない。すなわち、上記したCH-SO-CH-SO-CHは、CH-S(=O)-O-CH-S(=O)-O-CHでもよいし、CH-O-S(=O)-CH-S(=O)-O-CHでもよいし、CH-S(=O)-O-CH-O-S(=O)-CHでもよい。 The disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester. Examples of the cyclic disulfonic acid ester include compounds represented by the following formulas (8-1) to (8-3). A chain disulfonic acid ester is a compound in which a cyclic disulfonic acid ester is cleaved on the way. As an example, a chain disulfonic acid ester obtained by cleaving the compound represented by formula (8-2) in the middle is CH 3 —SO 3 —CH 2 —SO 3 —CH 3 or the like. The directions of the two —SO 3 — (— S (═O) 2 —O—) are not particularly limited. That is, the above CH 3 —SO 3 —CH 2 —SO 3 —CH 3 may be CH 3 —S (═O) 2 —O—CH 2 —S (═O) 2 —O—CH 3 , CH 3 —O—S (═O) 2 —CH 2 —S (═O) 2 —O—CH 3 may be used, or CH 3 —S (═O) 2 —O—CH 2 —O—S (= O) 2 —CH 3 may be used.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 非水溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。ただし、スルホン酸エステルの具体例は、ここで例示していない他の化合物でもよい。 The content of the sulfonic acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight. However, specific examples of the sulfonate ester may be other compounds not exemplified here.
 また、他の非水溶媒は、酸無水物である。電解液の化学的安定性がより向上するからである。この酸無水物は、例えば、例えば、カルボン酸無水物、ジスルホン酸無水物、またはカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸などである。非水溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。ただし、酸無水物の具体例は、ここで例示していない他の化合物でもよい。 Further, the other non-aqueous solvent is an acid anhydride. This is because the chemical stability of the electrolytic solution is further improved. Examples of the acid anhydride include a carboxylic acid anhydride, a disulfonic acid anhydride, and a carboxylic acid sulfonic acid anhydride. Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride. Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride. Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid. The content of the acid anhydride in the non-aqueous solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight. However, specific examples of the acid anhydride may be other compounds not exemplified here.
 さらに、他の非水溶媒は、ジシアノ化合物およびジイソシアネート化合物である。電解液の化学的安定性がより向上するからである。ジシアノ化合物は、例えば、NC-C2m-CN(mは1以上の整数)で表される化合物であり、より具体的には、NC-C-CNなどである。ジイソシアネート化合物は、例えば、OCN-C2n-NCO(nは1以上の整数)で表される化合物であり、より具体的には、OCN-C12-NCOなどである。溶媒中におけるジシアノ化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。この含有量の範囲は、例えば、ジイソシアネート化合物に関しても同様である。ただし、ジシアノ化合物およびジイソシアネート化合物のそれぞれの具体例は、ここで例示していない他の化合物でもよい。 Furthermore, other non-aqueous solvents are dicyano compounds and diisocyanate compounds. This is because the chemical stability of the electrolytic solution is further improved. The dicyano compound is, for example, a compound represented by NC-C m H 2m -CN (m is an integer of 1 or more), and more specifically NC-C 2 H 4 -CN. The diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more), and more specifically OCN—C 6 H 12 —NCO. The content of the dicyano compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight. The range of this content is the same also about a diisocyanate compound, for example. However, specific examples of the dicyano compound and the diisocyanate compound may be other compounds not exemplified here.
[他の電解質塩]
 なお、電解質塩は、上記したフッ素化イミド化合物に加えて、他の材料(他の電解質塩)のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Other electrolyte salts]
In addition, in addition to the above-mentioned fluorinated imide compound, the electrolyte salt may contain any one kind or two or more kinds of other materials (other electrolyte salts).
 他の電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上である。ただし、上記したフッ素化イミド化合物は、ここで説明する他の電解質塩から除かれる。なお、他の電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。このリチウム塩以外の塩は、例えば、リチウム以外の軽金属の塩などである。 The other electrolyte salt is, for example, any one or more of lithium salts. However, the fluorinated imide compounds described above are excluded from the other electrolyte salts described herein. The other electrolyte salt may contain a salt other than the lithium salt, for example. Examples of the salt other than the lithium salt include salts of light metals other than lithium.
 他のリチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)である。 Other lithium salts include, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), tetrachloroaluminate lithium (LiAlCl 4), six Dilithium fluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl) and lithium bromide (LiBr).
 中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちのいずれか1種類または2種類以上が好ましい。内部抵抗が低下するからである。 Of these, one or more of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable. This is because the internal resistance is lowered.
 特に、電解液は、フッ素化イミド化合物に加えて、他の電解質塩として六フッ化リン酸リチウムを含んでいてもよい。電池特性がより向上するからである。この六フッ化リン酸リチウムの含有量は、特に限定されない。ただし、六フッ化リン酸リチウムの含有量が多すぎると、電池特性が向上する反面、二次電池が膨れやすくなる可能性がある。このため、六フッ化リン酸リチウムの含有量は、フッ素化イミド化合物の物質量(mol)に対して40mol%以下であることが好ましく、10mol%以下であることがより好ましい。 In particular, the electrolytic solution may contain lithium hexafluorophosphate as another electrolyte salt in addition to the fluorinated imide compound. This is because the battery characteristics are further improved. The content of this lithium hexafluorophosphate is not particularly limited. However, if the content of lithium hexafluorophosphate is too large, the battery characteristics are improved, but the secondary battery may easily swell. For this reason, the content of lithium hexafluorophosphate is preferably 40 mol% or less, more preferably 10 mol% or less with respect to the substance amount (mol) of the fluorinated imide compound.
 この他、他の電解質塩は、下記の式(9)~式(11)のそれぞれで表される化合物のうちのいずれか1種類または2種類以上である。なお、R41およびR43は、同じ基でもよいし、異なる基でもよい。このことは、R51~R53に関しても同様であると共に、R61およびR62に関しても同様である。 In addition, the other electrolyte salt is any one or more of compounds represented by the following formulas (9) to (11). R41 and R43 may be the same group or different groups. This is the same for R51 to R53 and the same for R61 and R62.
Figure JPOXMLDOC01-appb-C000015
(X41は、長周期型周期表における1族元素または2族元素、またはAlである。M41は、遷移金属、または長周期型周期表における13族元素、14族元素または15族元素である。R41は、ハロゲン基である。Y41は、-C(=O)-R42-C(=O)-、-C(=O)-CR43-、または-C(=O)-C(=O)-である。ただし、R42は、アルキレン基、ハロゲン化アルキレン基、アリーレン基またはハロゲン化アリーレン基である。R43は、アルキル基、ハロゲン化アルキル基、アリール基またはハロゲン化アリール基である。なお、a4は1~4の整数であり、b4は0、2または4の整数であり、c4、d4、m4およびn4は1~3の整数である。)
Figure JPOXMLDOC01-appb-C000015
(X41 is a group 1 element or group 2 element in the long-period periodic table, or Al. M41 is a transition metal, or a group 13 element, group 14 element, or group 15 element in the long-period periodic table. R41 is a halogen group Y41 is —C (═O) —R42—C (═O) —, —C (═O) —CR43 2 —, or —C (═O) —C (═O Where R42 is an alkylene group, a halogenated alkylene group, an arylene group or a halogenated arylene group, and R43 is an alkyl group, a halogenated alkyl group, an aryl group or a halogenated aryl group. A4 is an integer of 1 to 4, b4 is an integer of 0, 2 or 4, and c4, d4, m4 and n4 are integers of 1 to 3.)
Figure JPOXMLDOC01-appb-C000016
(X51は、長周期型周期表における1族元素または2族元素である。M51は、遷移金属、または長周期型周期表における13族元素、14族元素または15族元素である。Y51は、-C(=O)-(CR51b5-C(=O)-、-R53C-(CR52c5-C(=O)-、-R53C-(CR52c5-CR53-、-R53C-(CR52c5-S(=O)-、-S(=O)-(CR52d5-S(=O)-、または-C(=O)-(CR52d5-S(=O)-である。ただし、R51およびR53のそれぞれは、水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つは、ハロゲン基またはハロゲン化アルキル基である。R52は、水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。なお、a5、e5およびn5は1または2の整数であり、b5およびd5は1~4の整数であり、c5は0~4の整数であり、f5およびm5は1~3の整数である。)
Figure JPOXMLDOC01-appb-C000016
(X51 is a group 1 element or a group 2 element in the long-period periodic table. M51 is a transition metal, or a group 13, element or a group 15 element in the long-period periodic table. Y51 is -C (= O) - (CR51 2) b5 -C (= O) -, - R53 2 C- (CR52 2) c5 -C (= O) -, - R53 2 C- (CR52 2) c5 -CR53 2 —, —R53 2 C— (CR52 2 ) c5 —S (═O) 2 —, —S (═O) 2 — (CR52 2 ) d5 —S (═O) 2 —, or —C (═O ) — (CR52 2 ) d5 —S (═O) 2 —, wherein each of R51 and R53 is a hydrogen group, an alkyl group, a halogen group or a halogenated alkyl group, and at least one of each Is a halogen group or a halogenated alkyl group, and R52 is a hydrogen group. An alkyl group, a halogen group or a halogenated alkyl group, wherein a5, e5 and n5 are integers of 1 or 2, b5 and d5 are integers of 1 to 4, and c5 is an integer of 0 to 4. , F5 and m5 are integers of 1 to 3.)
Figure JPOXMLDOC01-appb-C000017
(X61は、長周期型周期表における1族元素または2族元素である。M61は、遷移金属、または長周期型周期表における13族元素、14族元素または15族元素である。Rfは、フッ素化アルキル基またはフッ素化アリール基であり、いずれの炭素数も1~10である。Y61は、-C(=O)-(CR61d6-C(=O)-、-R62C-(CR61d6-C(=O)-、-R62C-(CR61d6-CR62-、-R62C-(CR61d6-S(=O)-、-S(=O)-(CR61e6-S(=O)-、または-C(=O)-(CR61e6-S(=O)-である。ただし、R61は、水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。R62は、水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、そのうちの少なくとも1つは、ハロゲン基またはハロゲン化アルキル基である。なお、a6、f6およびn6は1または2の整数であり、b6、c6およびe6は1~4の整数であり、d6は0~4の整数であり、g6およびm6は1~3の整数である。)
Figure JPOXMLDOC01-appb-C000017
(X61 is a group 1 element or a group 2 element in the long-period periodic table. M61 is a transition metal, or a group 13, element or a group 15 element in the long-period periodic table. Rf is A fluorinated alkyl group or a fluorinated aryl group, each having 1 to 10 carbon atoms, Y61 is —C (═O) — (CR61 2 ) d6 —C (═O) —, —R62 2 C - (CR61 2) d6 -C ( = O) -, - R62 2 C- (CR61 2) d6 -CR62 2 -, - R62 2 C- (CR61 2) d6 -S (= O) 2 -, - S (═O) 2 — (CR61 2 ) e6 —S (═O) 2 —, or —C (═O) — (CR61 2 ) e6 —S (═O) 2 —, wherein R61 is hydrogen A group, an alkyl group, a halogen group or a halogenated alkyl group, wherein R62 represents a hydrogen group, an alkyl group; , A halogen group or a halogenated alkyl group, at least one of which is a halogen group or a halogenated alkyl group, wherein a6, f6 and n6 are integers of 1 or 2, and b6, c6 and e6 are (It is an integer of 1 to 4, d6 is an integer of 0 to 4, and g6 and m6 are integers of 1 to 3.)
 なお、1族元素とは、水素(H)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)およびフランシウム(Fr)である。2族元素とは、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)およびラジウム(Ra)である。13族元素とは、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)およびタリウム(Tl)である。14族元素とは、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)および鉛(Pb)である。15族元素とは、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)およびビスマス(Bi)である。 The Group 1 elements are hydrogen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Group 2 elements are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). Group 13 elements are boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl). Group 14 elements are carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb). Group 15 elements are nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi).
 式(9)に示した化合物の具体例は、下記の式(9-1)~式(9-6)のそれぞれで表される化合物などである。式(10)に示した化合物の具体例は、下記の式(10-1)~式(10-8)のそれぞれで表される化合物などである。式(11)に示した化合物の具体例は、下記の式(11-1)で表される化合物などである。ただし、式(9)~式(11)のそれぞれに示した化合物の具体例は、ここで例示していない他の化合物でもよい。 Specific examples of the compound represented by the formula (9) include compounds represented by the following formulas (9-1) to (9-6). Specific examples of the compound represented by the formula (10) include compounds represented by the following formulas (10-1) to (10-8). Specific examples of the compound represented by the formula (11) include a compound represented by the following formula (11-1). However, specific examples of the compounds represented by the formulas (9) to (11) may be other compounds not exemplified here.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 また、電解質塩は、下記の式(12)および式(13)のそれぞれで表される化合物である。なお、mおよびnは、同じ値でもよいし、異なる値でもよい。このことは、p、qおよびrに関しても同様である。 The electrolyte salt is a compound represented by each of the following formulas (12) and (13). Note that m and n may be the same value or different values. The same applies to p, q and r.
Figure JPOXMLDOC01-appb-C000021
(R71は炭素数=2~4の直鎖状または分岐状のパーフルオロアルキレン基である。)
Figure JPOXMLDOC01-appb-C000021
(R71 is a linear or branched perfluoroalkylene group having 2 to 4 carbon atoms.)
 LiC(C2p+1SO)(C2q+1SO)(C2r+1SO) …(13)(p、qおよびrは1以上の整数である。) LiC (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) ... (13) (p, q and r is an integer of 1 or more.)
 式(12)に示した化合物は、環状のイミド化合物である。環状のイミド化合物の具体例は、下記の式(12-1)~式(12-4)のそれぞれで表される化合物などである。ただし、環状のイミド化合物の具体例は、ここで例示していない他の化合物でもよい。 The compound represented by Formula (12) is a cyclic imide compound. Specific examples of the cyclic imide compound include compounds represented by the following formulas (12-1) to (12-4). However, specific examples of the cyclic imide compound may be other compounds not exemplified here.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(13)に示した化合物は、鎖状のメチド化合物である。鎖状のメチド化合物の具体例は、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)などである。ただし、鎖状のメチド化合物の具体例は、ここで例示していない他の化合物でもよい。 The compound represented by the formula (13) is a chain methide compound. Specific examples of the chain methide compound include lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ). However, specific examples of the chain-like methide compound may be other compounds not exemplified here.
 ここで、電解質塩の総含有量は、特に限定されないが、中でも、非水溶媒に対して、0.6mol/kg~2.5mol/kgであることが好ましい。高いイオン伝導性が得られるからである。 Here, the total content of the electrolyte salt is not particularly limited, but is preferably 0.6 mol / kg to 2.5 mol / kg with respect to the nonaqueous solvent. This is because high ionic conductivity is obtained.
 ここで説明する電解質塩の総含有量は、上記したように、電解質塩がフッ素化イミド化合物だけを含む場合には、そのフッ素化イミド化合物の含有量を意味する。これに対して、電解質塩がフッ素化イミド化合物に加えて他の電解質塩のうちのいずれか1種類または2種類以上を含む場合には、そのフッ素化イミド化合物の含有量と他の電解質塩の含有量との総和を意味する。 The total content of the electrolyte salt described here means the content of the fluorinated imide compound when the electrolyte salt contains only the fluorinated imide compound as described above. On the other hand, in the case where the electrolyte salt contains any one kind or two or more kinds of other electrolyte salts in addition to the fluorinated imide compound, the content of the fluorinated imide compound and other electrolyte salts Means the total content.
[さらに他の材料]
 なお、電解液は、上記した非水溶媒(フッ素化環状化合物を含む)および電解質塩(フッ素化イミド化合物を含む)に加えて、さらに他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Further other materials]
In addition to the non-aqueous solvent (including the fluorinated cyclic compound) and the electrolyte salt (including the fluorinated imide compound), the electrolyte solution may include any one or more of other materials. May be included.
 さらに他の材料は、例えば、LiPFおよびLiPFOなどのリンフッ素含有塩のうちのいずれか1種類または2種類以上である。電解液中におけるリンフッ素含有塩の含有量は、特に限定されない。 Still another material is, for example, one or more of phosphorous fluorine-containing salts such as LiPF 2 O 2 and Li 2 PFO 3 . The content of the phosphorus fluorine-containing salt in the electrolytic solution is not particularly limited.
[電解液の作用および効果]
 この電解液によれば、非水溶媒が所定量(95重量%~100重量%)のフッ素化環状化合物を含んでいると共に、電解質塩がフッ素化イミド化合物を含んでいる。この場合には、上記したように、フッ素化環状化合物とフッ素化イミド化合物との相乗作用により、電解液の分解反応が抑制されるだけでなく、アルミニウムなどの金属材料の腐食反応が抑制されると共に、ガスの発生も抑制される。よって、電池特性と安全性とを両立させることができる。
[Action and effect of electrolyte]
According to this electrolytic solution, the non-aqueous solvent contains a predetermined amount (95 wt% to 100 wt%) of the fluorinated cyclic compound, and the electrolyte salt contains the fluorinated imide compound. In this case, as described above, the synergistic action of the fluorinated cyclic compound and the fluorinated imide compound not only suppresses the decomposition reaction of the electrolytic solution, but also suppresses the corrosion reaction of metal materials such as aluminum. At the same time, the generation of gas is suppressed. Therefore, both battery characteristics and safety can be achieved.
<2.二次電池>
 次に、上記した電解液を用いた二次電池に関して説明する。
<2. Secondary battery>
Next, a secondary battery using the above electrolytic solution will be described.
<2-1.リチウムイオン二次電池(円筒型)>
 図1は、二次電池の断面構成を表している。図2は、図1に示した巻回電極体20の一部の断面構成を拡大している。
<2-1. Lithium-ion secondary battery (cylindrical type)>
FIG. 1 shows a cross-sectional configuration of the secondary battery. FIG. 2 is an enlarged partial cross-sectional configuration of the spirally wound electrode body 20 shown in FIG.
 ここで説明する二次電池は、例えば、電極反応物質であるリチウム(Li)の吸蔵放出により負極22の容量が得られるリチウム二次電池(リチウムイオン二次電池)である。 The secondary battery described here is, for example, a lithium secondary battery (lithium ion secondary battery) in which the capacity of the negative electrode 22 is obtained by occlusion / release of lithium (Li) as an electrode reactant.
[全体構成]
 この二次電池は、いわゆる円筒型の電池構造を有しており、例えば、図1に示したように、中空円柱状の電池缶11の内部に、一対の絶縁板12,13と、電池素子である巻回電極体20とが収納されている。巻回電極体20は、例えば、セパレータ23を介して正極21と負極22とが積層されたのち、その正極21、負極22およびセパレータ23が巻回されたものである。この巻回電極体20には、上記した本技術の電解液が含浸されている。
[overall structure]
The secondary battery has a so-called cylindrical battery structure. For example, as shown in FIG. 1, a pair of insulating plates 12 and 13 and a battery element are provided inside a hollow cylindrical battery can 11. The wound electrode body 20 is housed. The wound electrode body 20 is obtained by, for example, laminating a positive electrode 21 and a negative electrode 22 via a separator 23 and then winding the positive electrode 21, the negative electrode 22, and the separator 23. The wound electrode body 20 is impregnated with the electrolytic solution of the present technology described above.
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、鉄(Fe)、アルミニウム(Al)およびそれらの合金などのうちのいずれか1種類または2種類以上により形成されている。この電池缶11の表面には、ニッケルなどが鍍金されていてもよい。一対の絶縁板12,13は、巻回電極体20を挟むと共にその巻回周面に対して垂直に延在するように配置されている。 The battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened. For example, any of iron (Fe), aluminum (Al), and alloys thereof It is formed of one type or two or more types. Nickel or the like may be plated on the surface of the battery can 11. The pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 and to extend perpendicularly to the wound peripheral surface.
 電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介してかしめられている。これにより、電池缶11は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により形成されている。安全弁機構15および熱感抵抗素子16のそれぞれは、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱などに起因して内圧が一定以上になると、ディスク板15Aが反転する。これにより、電池蓋14と巻回電極体20との電気的接続が切断される。大電流に起因する異常な発熱を防止するために、熱感抵抗素子16の抵抗は、温度の上昇に応じて増加する。ガスケット17は、例えば、絶縁材料により形成されており、そのガスケット17の表面には、アスファルトなどが塗布されていてもよい。 A battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11. Thereby, the battery can 11 is sealed. The battery lid 14 is formed of the same material as the battery can 11, for example. Each of the safety valve mechanism 15 and the thermal resistance element 16 is provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16. In the safety valve mechanism 15, the disk plate 15 </ b> A is reversed when the internal pressure becomes a certain level or more due to an internal short circuit or external heating. Thereby, the electrical connection between the battery lid 14 and the wound electrode body 20 is cut. In order to prevent abnormal heat generation due to a large current, the resistance of the heat sensitive resistor 16 increases as the temperature rises. The gasket 17 is formed of, for example, an insulating material, and asphalt or the like may be applied to the surface of the gasket 17.
 巻回電極体20の巻回中心には、例えば、センターピン24が挿入されている。ただし、センターピン24は、巻回電極体20の巻回中心に挿入されていなくてもよい。正極21には、正極リード25が取り付けられていると共に、負極22には、負極リード26が取り付けられている。正極リード25は、例えば、アルミニウムなどの導電性材料により形成されている。この正極リード25は、例えば、安全弁機構15に取り付けられていると共に、電池蓋14と電気的に接続されている。負極リード26は、例えば、ニッケルなどの導電性材料により形成されている。この負極リード26は、例えば、電池缶11に取り付けられており、その電池缶11と電気的に接続されている。 For example, a center pin 24 is inserted into the winding center of the wound electrode body 20. However, the center pin 24 may not be inserted into the winding center of the wound electrode body 20. A positive electrode lead 25 is attached to the positive electrode 21, and a negative electrode lead 26 is attached to the negative electrode 22. The positive electrode lead 25 is formed of a conductive material such as aluminum, for example. For example, the positive electrode lead 25 is attached to the safety valve mechanism 15 and is electrically connected to the battery lid 14. The negative electrode lead 26 is formed of a conductive material such as nickel, for example. For example, the negative electrode lead 26 is attached to the battery can 11 and is electrically connected to the battery can 11.
[正極]
 正極21は、例えば、図2に示したように、正極集電体21Aと、その正極集電体21Aの両面に設けられた正極活物質層21Bとを含んでいる。ただし、正極活物質層21Bは、正極集電体21Aの片面だけに設けられていてもよい。
[Positive electrode]
For example, as illustrated in FIG. 2, the positive electrode 21 includes a positive electrode current collector 21 </ b> A and a positive electrode active material layer 21 </ b> B provided on both surfaces of the positive electrode current collector 21 </ b> A. However, the positive electrode active material layer 21B may be provided only on one surface of the positive electrode current collector 21A.
 正極集電体21Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、アルミニウム(Al)、ニッケル(Ni)およびステンレスなどの金属材料である。この正極集電体21Aは、単層でもよいし、多層でもよい。 The positive electrode current collector 21A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as aluminum (Al), nickel (Ni), and stainless steel. The positive electrode current collector 21A may be a single layer or a multilayer.
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵放出可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、正極活物質に加えて、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material layer 21B contains any one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material. However, the positive electrode active material layer 21 </ b> B may include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent in addition to the positive electrode active material.
 正極材料は、リチウム含有化合物であることが好ましく、より具体的には、リチウム含有複合酸化物およびリチウム含有リン酸化合物のうちの一方または双方であることが好ましい。高いエネルギー密度が得られるからである。 The positive electrode material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
 リチウム含有複合酸化物は、リチウムと1または2以上のリチウム以外の元素(以下、「他元素」という。)とを構成元素として含む酸化物であり、例えば、層状岩塩型およびスピネル型などの結晶構造を有している。リチウム含有リン酸化合物は、リチウムと1または2以上の他元素とを構成元素として含むリン酸化合物であり、例えば、オリビン型などの結晶構造を有している。 The lithium-containing composite oxide is an oxide containing lithium and one or more elements other than lithium (hereinafter referred to as “other elements”) as constituent elements, for example, crystals such as layered rock salt type and spinel type It has a structure. The lithium-containing phosphate compound is a phosphate compound containing lithium and one or more other elements as constituent elements, and has, for example, an olivine type crystal structure.
 他元素の種類は、任意の元素のうちのいずれか1種類または2種類以上であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素のうちのいずれか1種類または2種類以上であることが好ましい。より具体的には、他元素は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)のうちのいずれか1種類または2種類以上の金属元素を含んでいることがより好ましい。高い電圧が得られるからである。 The type of other element is not particularly limited as long as it is any one or more of arbitrary elements. Among them, the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, it is more preferable that the other elements include one or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). preferable. This is because a high voltage can be obtained.
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(21)~式(23)のそれぞれで表される化合物である。 The lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, a compound represented by each of the following formulas (21) to (23).
 LiMn(1-b-c) NiM11(2-d)  ・・・(21)
(M11は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (1-bc) Ni b M11 c O (2-d) F e ··· (21)
(M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ≦ a ≦ 1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5, (b + c) <1, −0.1 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.1 are satisfied. However, the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.)
 LiNi(1-b) M12(2-c)  ・・・(22)
(M12は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Ni (1-b) M12 b O (2-c) F d (22)
(M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0.005 ≦ b ≦ 0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.)
 LiCo(1-b) M13(2-c)  ・・・(23)
(M13は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Co (1-b) M13 b O (2-c) F d (23)
(M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0 ≦ b <0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a is the value of the fully discharged state.)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。 Specific examples of the lithium-containing composite oxide having a layered rock salt type crystal structure are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2. LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。 When the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements, the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(24)で表される化合物である。 The lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (24).
 LiMn(2-b) M14 ・・・(24)
(M14は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (2-b) M14 b O c F d (24)
(M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9. ≦ a ≦ 1.1, 0 ≦ b ≦ 0.6, 3.7 ≦ c ≦ 4.1 and 0 ≦ d ≦ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。 Specific examples of the lithium-containing composite oxide having a spinel crystal structure include LiMn 2 O 4 .
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(25)で表される化合物である。 The lithium-containing phosphate compound having an olivine type crystal structure is, for example, a compound represented by the following formula (25).
 LiM15PO ・・・(25)
(M15は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a M15PO 4 (25)
(M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ≦ a ≦ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
 なお、リチウム含有複合酸化物は、下記の式(26)で表される化合物でもよい。 The lithium-containing composite oxide may be a compound represented by the following formula (26).
 (LiMnO(LiMnO1-x  ・・・(26)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
(Li 2 MnO 3 ) x (LiMnO 2 ) 1-x (26)
(X satisfies 0 ≦ x ≦ 1, where the composition of lithium varies depending on the charge / discharge state, and x is the value of the complete discharge state.)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などのうちのいずれか1種類または2種類以上でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。ただし、正極材料は、上記以外の他の材料でもよい。 In addition, the positive electrode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene. However, the positive electrode material may be a material other than the above.
 正極結着剤は、例えば、合成ゴムおよび高分子材料などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。 The positive electrode binder contains, for example, one or more of synthetic rubber and polymer material. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. Examples of the polymer material include polyvinylidene fluoride and polyimide.
 正極導電剤は、例えば、炭素材料などのうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケチェンブラックなどである。ただし、正極導電剤は、導電性を有する材料であれば、金属材料および導電性高分子などでもよい。 The positive electrode conductive agent includes, for example, one or more of carbon materials. Examples of the carbon material include graphite, carbon black, acetylene black, and ketjen black. However, the positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
[負極]
 負極22は、例えば、図2に示したように、負極集電体22Aと、その負極集電体22Aの両面に設けられた負極活物質層22Bとを含んでいる。ただし、負極活物質層22Bは、負極集電体22Aの片面だけに設けられていてもよい。
[Negative electrode]
For example, as illustrated in FIG. 2, the negative electrode 22 includes a negative electrode current collector 22A and negative electrode active material layers 22B provided on both surfaces of the negative electrode current collector 22A. However, the negative electrode active material layer 22B may be provided only on one surface of the negative electrode current collector 22A.
 負極集電体22Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)およびステンレスなどの金属材料である。この負極集電体22Aは、単層でもよいし、多層でもよい。 The negative electrode current collector 22A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as copper (Cu), aluminum (Al), nickel (Ni), and stainless steel. The anode current collector 22A may be a single layer or a multilayer.
 負極集電体22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域において、負極集電体22Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法により負極集電体22Aの表面に微粒子が形成されるため、その負極集電体22Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。 The surface of the negative electrode current collector 22A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 22B to the negative electrode current collector 22A. In this case, the surface of the negative electrode current collector 22A only needs to be roughened at least in a region facing the negative electrode active material layer 22B. The roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, fine particles are formed on the surface of the negative electrode current collector 22A by an electrolysis method in an electrolytic bath, so that the surface of the negative electrode current collector 22A is provided with irregularities. A copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵放出可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、負極活物質に加えて、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The negative electrode active material layer 22B includes one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material. However, the negative electrode active material layer 22B may include any one type or two or more types of other materials such as a negative electrode binder and a negative electrode conductive agent in addition to the negative electrode active material.
 充電途中において意図せずにリチウム金属が負極22に析出することを防止するために、負極材料の充電可能な容量は、正極21の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵放出可能である負極材料の電気化学当量は、正極21の電気化学当量よりも大きいことが好ましい。 It is preferable that the chargeable capacity of the negative electrode material is larger than the discharge capacity of the positive electrode 21 in order to prevent unintentional deposition of lithium metal on the negative electrode 22 during charging. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 21.
 負極材料は、例えば、炭素材料のうちのいずれか1種類または2種類以上である。リチウムの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層22Bの導電性が向上するからである。 The negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
 炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素における(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛における(002)面の面間隔は、0.34nm以下であることが好ましい。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類には、ピッチコークス、ニードルコークスおよび石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。 Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite. However, the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less. More specifically, examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks. The cokes include pitch coke, needle coke, petroleum coke and the like. The organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon. The shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
 また、負極材料は、例えば、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料(金属系材料)である。高いエネルギー密度が得られるからである。 Further, the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
 金属系材料は、単体、合金および化合物のいずれでもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素のうちのいずれか1種類または2種類以上を含んでいてもよい。この金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物、およびそれらの2種類以上の共存物などである。 The metal-based material may be any of a simple substance, an alloy, and a compound, or two or more of them, or a material having one or two or more phases thereof at least in part. However, the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements. Moreover, the alloy may contain any 1 type or 2 types or more of nonmetallic elements. The structure of this metal material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
 上記した金属元素および半金属元素は、例えば、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上である。具体的には、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。 The metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
 中でも、ケイ素およびスズのうちの一方または双方が好ましい。リチウムを吸蔵放出する能力が優れているため、著しく高いエネルギー密度が得られるからである。 Among these, one or both of silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
 ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、ケイ素の単体、合金および化合物のうちのいずれでもよいし、スズの単体、合金および化合物のうちのいずれでもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ここで説明する単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)を意味しており、必ずしも純度100%を意味しているわけではない。 The material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy and a compound of silicon, or any of a simple substance, an alloy and a compound of tin. It may be a kind or more, and may be a material having at least a part of one kind or two or more kinds of phases. The simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。ただし、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more. The compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon. However, the compound of silicon may contain, for example, any one kind or two kinds or more of the series of elements described regarding the silicon alloy as a constituent element other than silicon.
 ケイ素の合金およびケイ素の化合物の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)およびLiSiOなどである。なお、SiOにおけるvは、0.2<v<1.4でもよい。 Specific examples of silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2. MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 <v ≦ 2), LiSiO, and the like. Note that v in SiO v may be 0.2 <v <1.4.
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。ただし、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of tin, for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more. The tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin. However, the compound of tin may contain, for example, any one kind or two kinds or more of the series of elements described regarding the tin alloy as a constituent element other than tin.
 スズの合金およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。 Specific examples of the tin alloy and the tin compound include SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
 特に、スズを構成元素として含む材料は、例えば、スズ(第1構成元素)と共に第2および第3構成元素を構成元素として含む材料(Sn含有材料)であることが好ましい。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上を含んでいる。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリン(P)などのうちのいずれか1種類または2種類以上を含んでいる。Sn含有材料が第2および第3構成元素を含んでいると、高い電池容量および優れたサイクル特性などが得られるからである。 In particular, the material containing tin as a constituent element is preferably a material (Sn-containing material) containing, for example, tin (first constituent element) and second and third constituent elements as constituent elements. The second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included. The third constituent element includes, for example, any one or more of boron, carbon, aluminum, phosphorus (P), and the like. This is because when the Sn-containing material contains the second and third constituent elements, a high battery capacity and excellent cycle characteristics can be obtained.
 中でも、Sn含有材料は、スズ、コバルトおよび炭素を構成元素として含む材料(SnCoC含有材料)であることが好ましい。このSnCoC含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。 Especially, it is preferable that Sn containing material is a material (SnCoC containing material) which contains tin, cobalt, and carbon as a constituent element. In this SnCoC-containing material, for example, the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
 SnCoC含有材料は、スズ、コバルトおよび炭素を含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応可能な反応相であるため、その反応相の存在により優れた特性が得られる。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。リチウムがより円滑に吸蔵放出されると共に、電解液との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を含んでいる場合もある。 The SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a reaction phase capable of reacting with lithium, excellent characteristics can be obtained due to the presence of the reaction phase. The half-width (diffraction angle 2θ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuKα ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred. This is because lithium is occluded and released more smoothly and the reactivity with the electrolytic solution is reduced. In addition, the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
 X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応するものであるか否かは、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°~50°の間に見られる。このような反応相は、例えば、上記した各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化しているものと考えられる。 Whether a diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium can be easily determined by comparing X-ray diffraction charts before and after electrochemical reaction with lithium. . For example, if the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it corresponds to a reaction phase capable of reacting with lithium. In this case, for example, a diffraction peak of a low crystalline or amorphous reaction phase is observed between 2θ = 20 ° and 50 °. Such a reaction phase contains, for example, each of the above-described constituent elements, and is considered to be low crystallized or amorphous mainly due to the presence of carbon.
 SnCoC含有材料では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に現れる。なお、金原子の4f軌道(Au4f)のピークは、84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面に表面汚染炭素が存在しているため、その表面汚染炭素のC1sのピークを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られる。このため、例えば、市販のソフトウエアを用いて解析することで、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。 In the SnCoC-containing material, it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed. The bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS). In a commercially available apparatus, for example, Al—Kα ray or Mg—Kα ray is used as the soft X-ray. When at least a part of carbon is bonded to a metal element, a metalloid element, or the like, the peak of the synthetic wave of carbon 1s orbital (C1s) appears in a region lower than 284.5 eV. It is assumed that the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV. At this time, since surface-contaminated carbon is usually present on the surface of the substance, the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference. In the XPS measurement, the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
 このSnCoC含有材料は、構成元素がスズ、コバルトおよび炭素だけである材料(SnCoC)に限られない。このSnCoC含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。 This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon. This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon One kind or two or more kinds may be included as constituent elements.
 SnCoC含有材料の他、スズ、コバルト、鉄および炭素を構成元素として含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。なお、SnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料の物性と同様である。 In addition to SnCoC-containing materials, materials containing tin, cobalt, iron and carbon as constituent elements (SnCoFeC-containing materials) are also preferable. The composition of the SnCoFeC-containing material is arbitrary. For example, when the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%. The content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass. Further, when the iron content is set to be large, the carbon content is 11.9% to 29.7% by mass, and the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the content ratio of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass. This is because a high energy density can be obtained in such a composition range. Note that the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
 この他、負極材料は、例えば、金属酸化物および高分子化合物などのうちのいずれか1種類または2種類以上でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。 In addition, the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
 中でも、負極材料は、以下の理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。 Among these, the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
 金属系材料、特に、ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張収縮しにくいという利点を有する。よって、炭素材料と金属系材料とを一緒に用いることで、高い理論容量(言い替えれば電池容量)を得つつ、充放電時の膨張収縮が抑制される。 Metal materials, in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging. On the other hand, the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using the carbon material and the metal-based material together, expansion / contraction during charging / discharging is suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
 負極材料中における炭素材料および金属系材料のそれぞれの含有量、言い替えれば炭素材料と金属系材料との混合比は、特に限定されない。中でも、金属系材料の含有量は、50重量%以下であることが好ましく、30重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。上記した炭素材料の利点および金属系材料の利点がバランスよく得られるからである。 The respective contents of the carbon material and the metal material in the negative electrode material, in other words, the mixing ratio of the carbon material and the metal material is not particularly limited. Among these, the content of the metal material is preferably 50% by weight or less, more preferably 30% by weight or less, and further preferably 20% by weight or less. This is because the advantages of the carbon material and the metal material can be obtained in a balanced manner.
 負極活物質層22Bは、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上の方法により形成されている。塗布法とは、例えば、粒子(粉末)状の負極活物質を負極結着剤などと混合したのち、その混合物を有機溶剤などに分散させてから負極集電体22Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などである。より具体的には、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法とは、溶融状態または半溶融状態の負極活物質を負極集電体22Aに噴き付ける方法である。焼成法とは、例えば、塗布法を用いて、有機溶剤などに分散された混合物を負極集電体22Aに塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。この焼成法は、例えば、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。 The negative electrode active material layer 22B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method). The coating method is, for example, a method in which a particulate (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 22A. Examples of the vapor phase method include a physical deposition method and a chemical deposition method. More specifically, for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method. Examples of the liquid phase method include an electrolytic plating method and an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 22A. The firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 22A using a coating method and then heat-treated at a temperature higher than the melting point of the negative electrode binder or the like. Examples of the firing method include an atmosphere firing method, a reaction firing method, a hot press firing method, and the like.
 この二次電池では、上記したように、充電途中において負極22にリチウムが意図せずに析出することを防止するために、リチウムを吸蔵放出可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きい。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られる。 In this secondary battery, as described above, in order to prevent unintentional precipitation of lithium on the negative electrode 22 during charging, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is the electrical equivalent of the positive electrode. Greater than the chemical equivalent. Further, when the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25 V or more, compared with the case where it is 4.20 V, even when the same positive electrode active material is used, the amount of lithium released per unit mass Therefore, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
[セパレータ]
 セパレータ23は、正極21と負極22とを隔離して、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23は、例えば、合成樹脂およびセラミックなどのうちのいずれかの多孔質膜であり、2種類以上の多孔質膜を用いた積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどのうちのいずれか1種類または2種類以上である。
[Separator]
The separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator 23 is, for example, a porous film of any one of synthetic resin and ceramic, and may be a laminated film using two or more kinds of porous films. The synthetic resin is, for example, one or more of polytetrafluoroethylene, polypropylene, and polyethylene.
 特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極21および負極22のそれぞれに対するセパレータ23の密着性が向上するため、巻回電極体20の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に、電池膨れが抑制される。 In particular, the separator 23 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the wound electrode body 20 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is not easily increased even if charging and discharging are repeated, and the battery swelling is also suppressed. Is done.
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子材料を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子材料は、ポリフッ化ビニリデン以外の他の材料でもよい。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子材料が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。 The polymer compound layer includes, for example, a polymer material such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer material may be a material other than polyvinylidene fluoride. When forming this polymer compound layer, for example, after applying a solution in which a polymer material is dissolved in an organic solvent or the like to the substrate layer, the substrate layer is dried. In addition, after immersing a base material layer in a solution, the base material layer may be dried.
[電解液]
 巻回電極体20には、上記したように、本技術の電解液が含浸されている。すなわち、電解液は、非水溶媒および電解質塩を含んでいる。非水溶媒は、フッ素化環状化合物を含んでいると共に、電解質塩は、フッ素化イミド化合物を含んでいる。
[Electrolyte]
As described above, the wound electrode body 20 is impregnated with the electrolytic solution of the present technology. That is, the electrolytic solution contains a nonaqueous solvent and an electrolyte salt. The non-aqueous solvent contains a fluorinated cyclic compound, and the electrolyte salt contains a fluorinated imide compound.
[二次電池の動作]
 この二次電池は、例えば、以下のように動作する。
[Operation of secondary battery]
This secondary battery operates as follows, for example.
 充電時には、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。一方、放電時には、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。 At the time of charging, lithium ions are released from the positive electrode 21, and the lithium ions are occluded in the negative electrode 22 through the electrolytic solution. On the other hand, at the time of discharging, lithium ions are released from the negative electrode 22, and the lithium ions are occluded in the positive electrode 21 through the electrolytic solution.
[二次電池の製造方法]
 この二次電池は、例えば、以下の手順により製造される。
[Method for producing secondary battery]
This secondary battery is manufactured by the following procedure, for example.
 正極21を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合して、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させて、ペースト状の正極合剤スラリーとする。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させて、正極活物質層21Bを形成する。続いて、必要に応じて正極活物質層21Bを加熱しながら、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。 When the positive electrode 21 is produced, first, a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry. Subsequently, after applying the positive electrode mixture slurry to both surfaces of the positive electrode current collector 21A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. Subsequently, the positive electrode active material layer 21B is compression-molded using a roll press or the like while heating the positive electrode active material layer 21B as necessary. In this case, compression molding may be repeated a plurality of times.
 負極22を作製する場合には、上記した正極21と同様の手順により、負極集電体22Aに負極活物質層22Bを形成する。具体的には、負極活物質と、負正極結着剤および負極導電剤などとを混合して、負極合剤としたのち、有機溶剤などに負極合剤を分散させて、ペースト状の負極合剤スラリーとする。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させて、負極活物質層22Bを形成する。最後に、ロールプレス機などを用いて負極活物質層22Bを圧縮成型する。 When the negative electrode 22 is manufactured, the negative electrode active material layer 22B is formed on the negative electrode current collector 22A by the same procedure as that of the positive electrode 21 described above. Specifically, a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like negative electrode mixture. A slurry is obtained. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 22A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 22B. Finally, the negative electrode active material layer 22B is compression molded using a roll press or the like.
 電解液を調製する場合には、フッ素化環状化合物を含む非水溶媒に、フッ素化イミド化合物を含む電解質塩を溶解させる。この場合には、非水溶媒中におけるフッ素化環状化合物の含有量を95重量%~100重量%とする。 When preparing an electrolytic solution, an electrolyte salt containing a fluorinated imide compound is dissolved in a non-aqueous solvent containing a fluorinated cyclic compound. In this case, the content of the fluorinated cyclic compound in the nonaqueous solvent is 95% by weight to 100% by weight.
 正極21および負極22を用いて二次電池を組み立てる場合には、溶接法などを用いて正極集電体21Aに正極リード25を取り付けると共に、溶接法などを用いて負極集電体22Aに負極リード26を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層させたのち、その正極21、負極22およびセパレータ23を巻回させて、巻回電極体20を形成する。続いて、巻回電極体20の中心にセンターピン24を挿入する。続いて、一対の絶縁板12,13で巻回電極体20を挟みながら、その巻回電極体20を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25の先端部を安全弁機構15に取り付けると共に、溶接法などを用いて負極リード26の先端部を電池缶11に取り付ける。続いて、電池缶11の内部に電解液を注入して、その電解液をセパレータ23に含浸させる。続いて、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。これにより、円筒型の二次電池が完成する。 When the secondary battery is assembled using the positive electrode 21 and the negative electrode 22, the positive electrode lead 25 is attached to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead is connected to the negative electrode current collector 22A using a welding method or the like. 26 is attached. Subsequently, after the positive electrode 21 and the negative electrode 22 are laminated via the separator 23, the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form the wound electrode body 20. Subsequently, the center pin 24 is inserted into the center of the wound electrode body 20. Subsequently, the spirally wound electrode body 20 is accommodated in the battery can 11 while the spirally wound electrode body 20 is sandwiched between the pair of insulating plates 12 and 13. In this case, the tip of the positive electrode lead 25 is attached to the safety valve mechanism 15 using a welding method or the like, and the tip of the negative electrode lead 26 is attached to the battery can 11 using a welding method or the like. Subsequently, an electrolytic solution is injected into the battery can 11 and the separator 23 is impregnated with the electrolytic solution. Subsequently, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are caulked to the opening end portion of the battery can 11 through the gasket 17. Thereby, a cylindrical secondary battery is completed.
[二次電池の作用および効果]
 この二次電池によれば、上記した本技術の電解液を用いているので、電解液の分解反応が抑制されるだけでなく、アルミニウムなどの金属材料の腐食反応が抑制されると共に、ガスの発生も抑制される。よって、電池特性と安全性とを両立させることができる。
[Operation and effect of secondary battery]
According to this secondary battery, since the electrolytic solution of the present technology described above is used, not only the decomposition reaction of the electrolytic solution is suppressed, but also the corrosion reaction of a metal material such as aluminum is suppressed, and the gas Occurrence is also suppressed. Therefore, both battery characteristics and safety can be achieved.
<2-2.リチウムイオン二次電池(ラミネートフィルム型)>
 図3は、他の二次電池の斜視構成を表している。図4は、図3に示した巻回電極体30のIV-IV線に沿った断面構成を表している。なお、図3では、巻回電極体30と外装部材40とを離間させた状態を示している。以下では、既に説明した円筒型の二次電池の構成要素を随時引用する。
<2-2. Lithium-ion secondary battery (laminate film type)>
FIG. 3 shows a perspective configuration of another secondary battery. FIG. 4 shows a cross-sectional configuration along line IV-IV of the spirally wound electrode body 30 shown in FIG. FIG. 3 shows a state where the wound electrode body 30 and the exterior member 40 are separated from each other. In the following, the components of the cylindrical secondary battery already described will be referred to as needed.
[二次電池の全体構成]
 この二次電池は、いわゆるラミネートフィルム型の電池構造を有するリチウムイオン二次電池であり、例えば、図3に示したように、フィルム状の外装部材40の内部に、電池素子である巻回電極体30が収納されている。巻回電極体30は、例えば、セパレータ35および電解質層36を介して正極33と負極34とが積層されたのち、その正極33、負極34、セパレータ35および電解質層36が巻回されたものである。正極33には正極リード31が取り付けられていると共に、負極34には負極リード32が取り付けられている。巻回電極体30の最外周部は、保護テープ37により保護されている。
[Overall structure of secondary battery]
This secondary battery is a lithium ion secondary battery having a so-called laminate film type battery structure. For example, as shown in FIG. 3, a wound electrode as a battery element is provided inside a film-shaped exterior member 40. The body 30 is stored. The wound electrode body 30 is obtained by, for example, laminating a positive electrode 33 and a negative electrode 34 with a separator 35 and an electrolyte layer 36 interposed therebetween, and then winding the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36. is there. A positive electrode lead 31 is attached to the positive electrode 33, and a negative electrode lead 32 is attached to the negative electrode 34. The outermost peripheral part of the wound electrode body 30 is protected by a protective tape 37.
 正極リード31および負極リード32のそれぞれは、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウム(Al)などの導電性材料のうちのいずれか1種類または2種類以上により形成されている。負極リード32は、例えば、銅(Cu)、ニッケル(Ni)およびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上により形成されている。これらの導電性材料は、例えば、薄板状または網目状である。 Each of the positive electrode lead 31 and the negative electrode lead 32 is led out in the same direction from the inside of the exterior member 40 to the outside, for example. The positive electrode lead 31 is formed of any one type or two or more types of conductive materials such as aluminum (Al). The negative electrode lead 32 is formed of any one type or two or more types of conductive materials such as copper (Cu), nickel (Ni), and stainless steel, for example. These conductive materials have, for example, a thin plate shape or a mesh shape.
 外装部材40は、例えば、矢印Rの方向に折り畳み可能な1枚のフィルムであり、その外装部材40の一部には、巻回電極体30を収納するための窪みが設けられている。この外装部材40は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。二次電池の製造工程では、融着層同士が巻回電極体30を介して対向するように外装部材40が折り畳まれたのち、その融着層の外周縁部同士が融着される。ただし、外装部材40は、2枚のラミネートフィルムが接着剤などを介して貼り合わされたものでもよい。融着層は、例えば、ポリエチレンおよびポリプロピレンなどのうちのいずれか1種類または2種類以上のフィルムである。金属層は、例えば、アルミニウム箔などのうちのいずれか1種類または2種類以上である。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのうちのいずれか1種類または2種類以上のフィルムである。 The exterior member 40 is, for example, a single film that can be folded in the direction of the arrow R, and a recess for accommodating the wound electrode body 30 is provided in a part of the exterior member 40. The exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the secondary battery, after the exterior member 40 is folded so that the fusion layers face each other with the wound electrode body 30 therebetween, the outer peripheral edges of the fusion layers are fused. However, the exterior member 40 may be one in which two laminated films are bonded together with an adhesive or the like. The fusion layer is, for example, any one kind or two or more kinds of films such as polyethylene and polypropylene. The metal layer is, for example, one or more of aluminum foils. The surface protective layer is, for example, any one film or two or more films selected from nylon and polyethylene terephthalate.
 中でも、外装部材40は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムでもよいし、金属フィルムでもよい。 Especially, it is preferable that the exterior member 40 is an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order. However, the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
 外装部材40と正極リード31との間、および外装部材40と負極リード32との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32の双方に対して密着性を有する材料により形成されている。この密着性を有する材料は、例えば、ポリオレフィン樹脂などであり、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどのうちのいずれか1種類または2種類以上である。 For example, an adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and between the exterior member 40 and the negative electrode lead 32 to prevent intrusion of outside air. The adhesion film 41 is formed of a material having adhesion to both the positive electrode lead 31 and the negative electrode lead 32. The material having this adhesion is, for example, a polyolefin resin, and more specifically, any one or more of polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
[正極、負極およびセパレータ]
 例えば、図3および図4に示したように、正極33は、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、例えば、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。セパレータ35の構成は、例えば、セパレータ23の構成と同様である。
[Positive electrode, negative electrode and separator]
For example, as shown in FIGS. 3 and 4, the positive electrode 33 includes a positive electrode current collector 33A and a positive electrode active material layer 33B, and the negative electrode 34 includes, for example, the negative electrode current collector 34A and the negative electrode active material layer. 34B is included. The configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode The configuration is the same as that of each of the active material layers 22B. The configuration of the separator 35 is the same as that of the separator 23, for example.
 電解質層36は、上記した本技術の電解液と、高分子化合物とを含んでいる。この電解質層36は、いわゆるゲル状の電解質であり、高分子化合物により電解液が保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。なお、電解質層36は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The electrolyte layer 36 contains the above-described electrolytic solution of the present technology and a polymer compound. The electrolyte layer 36 is a so-called gel electrolyte, and an electrolytic solution is held by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented. The electrolyte layer 36 may further include any one kind or two or more kinds of other materials such as additives.
 高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどのうちのいずれか1種類または2種類以上を含んでいる。この他、高分子化合物は、共重合体でもよい。この共重合体は、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などである。中でも、単独重合体としては、ポリフッ化ビニリデンが好ましいと共に、共重合体としては、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体が好ましい。電気化学的に安定だからである。 Examples of the polymer compound include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl It includes any one or more of methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate. In addition, the polymer compound may be a copolymer. This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropropylene. Among them, as the homopolymer, polyvinylidene fluoride is preferable, and as the copolymer, a copolymer of vinylidene fluoride and hexafluoropropylene is preferable. This is because it is electrochemically stable.
 ゲル状の電解質である電解質層36において、電解液に含まれる非水溶媒とは、液状の材料だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も非水溶媒に含まれる。 In the electrolyte layer 36 which is a gel electrolyte, the non-aqueous solvent contained in the electrolytic solution is a broad concept including not only a liquid material but also a material having ion conductivity capable of dissociating the electrolyte salt. . Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the non-aqueous solvent.
 なお、ゲル状の電解質層36に代えて、電解液をそのまま用いてもよい。この場合には、電解液が巻回電極体30に含浸される。 In addition, it may replace with the gel-like electrolyte layer 36 and may use electrolyte solution as it is. In this case, the wound electrode body 30 is impregnated with the electrolytic solution.
[二次電池の動作]
 この二次電池は、例えば、以下のように動作する。
[Operation of secondary battery]
This secondary battery operates as follows, for example.
 充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。 At the time of charging, lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36. On the other hand, during discharge, lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
[二次電池の製造方法]
 ゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
[Method for producing secondary battery]
The secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
 第1手順では、正極21および負極22のそれぞれと同様の作製手順により、正極33および負極34のそれぞれを作製する。すなわち、正極33を作製する場合には、正極集電体33Aの両面に正極活物質層33Bを形成すると共に、負極34を作製する場合には、負極集電体34Aの両面に負極活物質層34Bを形成する。続いて、電解液と、高分子化合物と、有機溶剤などとを混合して、前駆溶液を調製する。続いて、正極33および負極34のそれぞれに前駆溶液を塗布したのち、その前駆溶液を乾燥させて、ゲル状の電解質層36を形成する。続いて、溶接法などを用いて正極集電体33Aに正極リード31を取り付けると共に、溶接法などを用いて負極集電体34Aに負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層させたのち、その正極33、負極34およびセパレータ35を巻回させて、巻回電極体30を形成する。続いて、巻回電極体30の最外周部に、保護テープ37を貼り付ける。続いて、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40の外周縁部同士を接着させて、その外装部材40の内部に巻回電極体30を封入する。この場合には、正極リード31と外装部材40との間に密着フィルム41を挿入すると共に、負極リード32と外装部材40との間に密着フィルム41を挿入する。 In the first procedure, each of the positive electrode 33 and the negative electrode 34 is manufactured by the same manufacturing procedure as that of the positive electrode 21 and the negative electrode 22. That is, when the positive electrode 33 is produced, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, and when the negative electrode 34 is produced, the negative electrode active material layer is formed on both surfaces of the negative electrode current collector 34A. 34B is formed. Subsequently, an electrolytic solution, a polymer compound, an organic solvent, and the like are mixed to prepare a precursor solution. Subsequently, after applying a precursor solution to each of the positive electrode 33 and the negative electrode 34, the precursor solution is dried to form a gel electrolyte layer 36. Subsequently, the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34, and the separator 35 are wound to form the wound electrode body 30. Subsequently, the protective tape 37 is attached to the outermost peripheral portion of the wound electrode body 30. Subsequently, after folding the exterior member 40 so as to sandwich the wound electrode body 30, the outer peripheral edge portions of the exterior member 40 are bonded to each other using a heat fusion method or the like, and the wound member 40 is wound inside the exterior member 40. The electrode body 30 is encapsulated. In this case, the adhesion film 41 is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 41 is inserted between the negative electrode lead 32 and the exterior member 40.
 第2手順では、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層してから巻回させて、巻回電極体30の前駆体である巻回体を作製したのち、その巻回体の最外周部に保護テープ37を貼り付ける。続いて、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部を接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合して、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。続いて、モノマーを熱重合させて、高分子化合物を形成する。これにより、高分子化合物により電解液が保持されるため、ゲル状の電解質層36が形成される。 In the second procedure, the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A. Subsequently, the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to produce a wound body that is a precursor of the wound electrode body 30, and then the outermost peripheral portion of the wound body. A protective tape 37 is affixed to the surface. Subsequently, after folding the exterior member 40 so as to sandwich the spirally wound electrode body 30, the remaining outer peripheral edge portion excluding the outer peripheral edge portion of one side of the exterior member 40 is bonded using a heat fusion method or the like. Thus, the wound body is housed inside the bag-shaped exterior member 40. Subsequently, an electrolyte solution is prepared by mixing the electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary. Subsequently, after the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like. Subsequently, the monomer is thermally polymerized to form a polymer compound. Thereby, since the electrolytic solution is held by the polymer compound, the gel electrolyte layer 36 is formed.
 第3手順では、高分子化合物層が片面または両面に形成されたセパレータ35を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材40の内部に収納する。この高分子化合物層は、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体または多元共重合体)などのうちのいずれか1種類または2種類以上を含んでおり、塗布法などにより形成される。具体的には、高分子化合物層は、例えば、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの二元系共重合体、およびフッ化ビニリデンとヘキサフルオロプロピレンとクロロトリフルオロエチレンとの三元系共重合体などを含んでいる。なお、高分子化合物層は、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を含んでいてもよい。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。続いて、外装部材40に加重をかけながら加熱して、高分子化合物層を介してセパレータ35を正極33および負極34のそれぞれに密着させる。これにより、電解液が高分子化合物に含浸して、その高分子化合物がゲル化するため、電解質層36が形成される。 In the third procedure, except for using the separator 35 in which the polymer compound layer is formed on one side or both sides, a wound body is prepared and placed inside the bag-shaped exterior member 40 in the same manner as the second procedure described above. Store. This polymer compound layer contains, for example, any one or more of polymers (homopolymers, copolymers, or multi-component copolymers) containing vinylidene fluoride as a component. It is formed by the law etc. Specifically, the polymer compound layer includes, for example, polyvinylidene fluoride, a binary copolymer of vinylidene fluoride and hexafluoropropylene, and a ternary of vinylidene fluoride, hexafluoropropylene, and chlorotrifluoroethylene. System copolymer and the like. The polymer compound layer may contain one or more other polymer compounds together with a polymer containing vinylidene fluoride as a component. Subsequently, after injecting the electrolyte into the exterior member 40, the opening of the exterior member 40 is sealed using a thermal fusion method or the like. Subsequently, the exterior member 40 is heated while applying a load, and the separator 35 is brought into close contact with each of the positive electrode 33 and the negative electrode 34 through the polymer compound layer. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled, so that the electrolyte layer 36 is formed.
 この第3手順では、第1手順よりも二次電池の膨れが抑制される。また、第3手順では、第2手順と比較して、非水溶媒およびモノマー(高分子化合物の原料)などが電解質層36中にほとんど残存しないため、高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35のそれぞれと電解質層36とが十分に密着する。 In this third procedure, swelling of the secondary battery is suppressed more than in the first procedure. Further, in the third procedure, compared with the second procedure, the non-aqueous solvent, the monomer (raw material of the polymer compound) and the like hardly remain in the electrolyte layer 36, and therefore the formation process of the polymer compound is well controlled. The For this reason, each of the positive electrode 33, the negative electrode 34, and the separator 35 and the electrolyte layer 36 are sufficiently adhered.
[二次電池の作用および効果]
 この二次電池によれば、上記した本技術の電解液を用いているので、円筒型の二次電池と同様の理由により、電池特性と安全性とを両立させることができる。
[Operation and effect of secondary battery]
According to this secondary battery, since the above-described electrolyte solution of the present technology is used, both battery characteristics and safety can be achieved for the same reason as the cylindrical secondary battery.
<2-3.リチウム金属二次電池>
 ここで説明する二次電池は、リチウム金属の析出溶解により負極22の容量が表される円筒型の二次電池(リチウム金属二次電池)である。この二次電池は、負極活物質層22Bがリチウム金属により形成されていることを除き、上記したリチウムイオン二次電池(円筒型)と同様の構成を有していると共に、同様の手順により製造される。
<2-3. Lithium metal secondary battery>
The secondary battery described here is a cylindrical secondary battery (lithium metal secondary battery) in which the capacity of the negative electrode 22 is expressed by precipitation and dissolution of lithium metal. This secondary battery has the same configuration as the above-described lithium ion secondary battery (cylindrical type) except that the negative electrode active material layer 22B is formed of lithium metal, and is manufactured by the same procedure. Is done.
 この二次電池では、負極活物質としてリチウム金属が用いられているため、高いエネルギー密度が得られる。負極活物質層22Bは、組み立て時から既に存在してもよいが、組み立て時には存在しておらず、充電時に析出したリチウム金属により形成されてもよい。また、負極活物質層22Bを集電体として利用することで、負極集電体22Aを省略してもよい。 In this secondary battery, since lithium metal is used as the negative electrode active material, a high energy density can be obtained. The negative electrode active material layer 22B may already exist from the time of assembly, but does not exist at the time of assembly, and may be formed of lithium metal deposited during charging. Further, the anode current collector 22A may be omitted by using the anode active material layer 22B as a current collector.
 この二次電池は、例えば、以下のように動作する。充電時には、正極21からリチウムイオンが放出されると、そのリチウムイオンが電解液を介して負極集電体22Aの表面にリチウム金属として析出する。放電時には、負極活物質層22Bからリチウム金属がリチウムイオンとして電解液中に溶出すると、そのリチウムイオンが電解液を介して正極21に吸蔵される。 This secondary battery operates as follows, for example. At the time of charging, when lithium ions are released from the positive electrode 21, the lithium ions are deposited as lithium metal on the surface of the negative electrode current collector 22A through the electrolytic solution. At the time of discharge, when lithium metal is eluted from the negative electrode active material layer 22B as lithium ions into the electrolytic solution, the lithium ions are occluded in the positive electrode 21 through the electrolytic solution.
 この円筒型のリチウム金属二次電池によれば、上記した本技術の電解液を用いているので、上記したリチウムイオン二次電池と同様の理由により、電池特性と安全性とを両立させることができる。 According to this cylindrical lithium metal secondary battery, since the electrolytic solution of the present technology described above is used, both battery characteristics and safety can be achieved for the same reason as the above-described lithium ion secondary battery. it can.
 なお、ここで説明したリチウム金属二次電池の構成は、円筒型の二次電池に限らず、ラミネートフィルム型の二次電池に適用されてもよい。この場合においても、同様の効果を得ることができる。 Note that the configuration of the lithium metal secondary battery described here is not limited to the cylindrical secondary battery, and may be applied to a laminate film type secondary battery. In this case, the same effect can be obtained.
<3.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
<3. Applications of secondary batteries>
Next, application examples of the above-described secondary battery will be described.
 二次電池の用途は、その二次電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能な機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として使用される二次電池は、主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。二次電池を補助電源として使用する場合には、主電源の種類は二次電池に限られない。 The secondary battery can be used for machines, devices, instruments, devices, and systems (a collection of multiple devices) that can use the secondary battery as a power source for driving or a power storage source for storing power. There is no particular limitation. The secondary battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of the main power source or switched from the main power source). When the secondary battery is used as an auxiliary power source, the type of the main power source is not limited to the secondary battery.
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに用いられる電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、ここで例示していない他の用途でもよい。 The usage of the secondary battery is, for example, as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable living device such as an electric shaver. Storage devices such as backup power supplies and memory cards. Electric tools such as electric drills and electric saws. It is a battery pack used for a notebook computer or the like as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, the secondary battery may be used for other purposes not illustrated here.
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。優れた電池特性が要求されるため、本技術の二次電池を用いることで、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源であり、いわゆる組電池などである。電動車両は、二次電池を駆動用の電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いたシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用可能になる。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。 Among them, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. This is because, since excellent battery characteristics are required, the performance can be effectively improved by using the secondary battery of the present technology. The battery pack is a power source using a secondary battery, and is a so-called assembled battery. The electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that is provided with a drive source other than the secondary battery as described above. The power storage system is a system using a secondary battery as a power storage source. For example, in a household power storage system, power is stored in a secondary battery, which is a power storage source, so that it is possible to use household electrical products using the power. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source. An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する各適用例の構成は、あくまで一例であるため、それらの構成は、適宜変更可能である。 Here, some application examples of the secondary battery will be specifically described. In addition, since the structure of each application example demonstrated below is an example to the last, those structures can be changed suitably.
<3-1.電池パック(単電池)>
 図5は、単電池を用いた電池パックの斜視構成を表している。図6は、図5に示した電池パックのブロック構成を表している。なお、図5では、電池パックが分解された状態を示している。
<3-1. Battery pack (single cell)>
FIG. 5 shows a perspective configuration of a battery pack using single cells. FIG. 6 shows a block configuration of the battery pack shown in FIG. FIG. 5 shows a state where the battery pack is disassembled.
 ここで説明する電池パックは、1つの二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図5に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。 The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted on, for example, an electronic device typified by a smartphone. For example, as shown in FIG. 5, the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 connected to the power supply 111. A positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:Protection・Circuit・Module )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により上下から保護されている。このラベル120が貼り付けられることで、回路基板116および絶縁シート121などは固定されている。 A pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111. A protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 116. The circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115. The circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power supply 111, the circuit board 116 is protected from above and below by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
 また、電池パックは、例えば、図6に示しているように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出可能である。 Further, the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG. The circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127. The temperature detector 124 can detect the temperature using a temperature detection terminal (so-called T terminal) 126.
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御しており、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。 The control unit 121 controls the operation of the entire battery pack (including the usage state of the power supply 111), and includes, for example, a central processing unit (CPU) and a memory.
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることで、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させて、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 disconnects the charging current by cutting the switch unit 122.
 この他、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることで、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させて、放電電流を遮断する。 In addition, for example, when the battery voltage reaches the overdischarge detection voltage, the control unit 121 disconnects the switch unit 122 so that the discharge current does not flow in the current path of the power supply 111. For example, when a large current flows during discharging, the control unit 121 cuts off the switch unit 122 and cuts off the discharging current.
 なお、二次電池の過充電検出電圧は、例えば、4.20V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage of the secondary battery is, for example, 4.20V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態(電源111と外部機器との接続の可否)を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。 The switch unit 122 switches the usage state of the power source 111 (whether the power source 111 can be connected to an external device) in accordance with an instruction from the control unit 121. The switch unit 122 includes, for example, a charge control switch and a discharge control switch. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor. The charge / discharge current is detected based on, for example, the ON resistance of the switch unit 122.
 温度検出部124は、電源111の温度を測定して、その測定結果を制御部121に出力しており、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124による測定結果は、異常発熱時において制御部121が充放電制御を行うために用いられると共に、制御部121が残容量の算出時において補正処理を行うために用いられる。 The temperature detection unit 124 measures the temperature of the power supply 111 and outputs the measurement result to the control unit 121. For example, the temperature detection unit 124 includes a temperature detection element such as a thermistor. The measurement result by the temperature detection unit 124 is used for the control unit 121 to perform charge / discharge control during abnormal heat generation, and is used for the control unit 121 to perform correction processing when calculating the remaining capacity.
 なお、回路基板116は、PTC123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。 Note that the circuit board 116 may not include the PTC 123. In this case, a PTC element may be attached to the circuit board 116 separately.
<3-2.電池パック(組電池)>
 図7は、組電池を用いた電池パックのブロック構成を表している。この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などにより形成されている。
<3-2. Battery Pack (Battery)>
FIG. 7 shows a block configuration of a battery pack using an assembled battery. This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60. A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive terminal 71 and a negative terminal 72. The housing 60 is made of, for example, a plastic material.
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御しており、例えば、CPUなどを含んでいる。電源62は、1または2以上の二次電池を含んでいる。この電源62は、例えば、2以上の二次電池を含む組電池であり、それらの二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。 The control unit 61 controls the entire operation of the battery pack (including the usage state of the power supply 62), and includes, for example, a CPU. The power source 62 includes one or more secondary batteries. The power source 62 is, for example, an assembled battery including two or more secondary batteries, and the connection form of these secondary batteries may be in series, in parallel, or a mixture of both. For example, the power source 62 includes six secondary batteries connected in two parallel three series.
 スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。 The switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) in accordance with an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
 電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力する。この温度測定結果は、例えば、異常発熱時において制御部61が充放電制御を行うために用いられると共に、制御部61が残容量の算出時において補正処理を行うために用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定して、その測定電圧をアナログ-デジタル変換して制御部61に供給する。 The current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, for the controller 61 to perform charge / discharge control during abnormal heat generation, and for the controller 61 to perform correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the secondary battery in the power source 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
 スイッチ制御部67は、電流測定部64および電圧検出部66から入力される信号に応じて、スイッチ部63の動作を制御する。 The switch control unit 67 controls the operation of the switch unit 63 according to the signals input from the current measurement unit 64 and the voltage detection unit 66.
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部63(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62. As a result, the power source 62 can only discharge through the discharging diode. Note that the switch control unit 67 cuts off the charging current when a large current flows during charging, for example.
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部63(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断する。 Further, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. . As a result, the power source 62 can only be charged via the charging diode. In addition, the switch control part 67 interrupts | blocks a discharge current, for example, when a big current flows at the time of discharge.
 なお、二次電池において、例えば、過充電検出電圧は4.20V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。 In the secondary battery, for example, the overcharge detection voltage is 4.20V ± 0.05V, and the overdischarge detection voltage is 2.4V ± 0.1V.
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階で測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握可能になる。 The memory 68 is, for example, an EEPROM which is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61, secondary battery information (for example, internal resistance in an initial state) measured in the manufacturing process stage, and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
 温度検出素子69は、電源62の温度を測定すると共にその測定結果を制御部61に出力しており、例えば、サーミスタなどである。 The temperature detection element 69 measures the temperature of the power source 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.
 正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)や、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される。電源62の充放電は、正極端子71および負極端子72を介して行われる。 The positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack, an external device (for example, a charger) used to charge the battery pack, or the like. Is done. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.
<3-3.電動車両>
 図8は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
<3-3. Electric vehicle>
FIG. 8 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle. This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン75またはモータ77のいずれか一方を駆動源として走行可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合、そのエンジン75の駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン75の回転力は発電機79にも伝達され、その回転力を利用して発電機79が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。 This electric vehicle can run using, for example, either the engine 75 or the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81 which are driving units. . The rotational force of the engine 75 is also transmitted to the generator 79, and the generator 79 generates AC power using the rotational force. The AC power is converted into DC power via the inverter 83, and the power source 76. On the other hand, when the motor 77 which is the conversion unit is used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and the motor 77 is driven using the AC power. . The driving force (rotational force) converted from electric power by the motor 77 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81, which are driving units.
 なお、図示しない制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達され、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電源76に蓄積されることが好ましい。 When the electric vehicle decelerates via a braking mechanism (not shown), the resistance force at the time of deceleration is transmitted as a rotational force to the motor 77, and the motor 77 generates AC power using the rotational force. Good. This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the power source 76.
 制御部74は、電動車両全体の動作を制御しており、例えば、CPUなどを含んでいる。電源76は、1または2以上の二次電池を含んでいる。この電源76は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能でもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどを含んでいる。 The control unit 74 controls the operation of the entire electric vehicle, and includes, for example, a CPU. The power source 76 includes one or more secondary batteries. The power source 76 may be connected to an external power source and be able to store power by receiving power supply from the external power source. The various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the opening (throttle opening) of a throttle valve (not shown). The various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 なお、電動車両がハイブリッド自動車である場合に関して説明したが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle has been described, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
<3-4.電力貯蔵システム>
 図9は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
<3-4. Power storage system>
FIG. 9 shows a block configuration of the power storage system. This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house and a commercial building.
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能である。 Here, for example, the power source 91 is connected to an electric device 94 installed inside the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89. The power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and can be connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. is there.
 なお、電気機器94は、例えば、1または2以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上である。 Note that the electric device 94 includes, for example, one or more home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater. The private generator 95 is, for example, any one type or two types or more of a solar power generator and a wind power generator. The electric vehicle 96 is, for example, any one type or two or more types of electric vehicles, electric motorcycles, hybrid vehicles, and the like. The centralized power system 97 is, for example, any one type or two or more types among a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御しており、例えば、CPUなどを含んでいる。電源91は、1または2以上の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給を可能とする。 The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91), and includes, for example, a CPU. The power source 91 includes one or more secondary batteries. The smart meter 92 is, for example, a network-compatible power meter installed in a house 89 on the power demand side, and can communicate with the power supply side. Accordingly, for example, the smart meter 92 enables efficient and stable energy supply by controlling the balance between supply and demand in the house 89 while communicating with the outside.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93. Thus, electric power is accumulated in the power source 91. Since the electric power stored in the power source 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, the electric device 94 can be operated and the electric vehicle 96 can be charged. . In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
 電源91に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用料が安い深夜に集中型電力系統97から電源91に電力を蓄積しておき、その電源91に蓄積しておいた電力を電気使用料が高い日中に用いることができる。 The power stored in the power supply 91 can be used arbitrarily. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
<3-5.電動工具>
 図10は、電動工具のブロック構成を表している。この電動工具は、例えば、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
<3-5. Electric tool>
FIG. 10 shows a block configuration of the electric power tool. This electric tool is, for example, an electric drill, and includes a control unit 99 and a power supply 100 inside a tool main body 98 formed of a plastic material or the like. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
 制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御しており、例えば、CPUなどを含んでいる。電源100は、1または2以上の二次電池を含んでいる。この制御部99は、図示しない動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。 The control unit 99 controls the operation of the entire power tool (including the use state of the power supply 100), and includes, for example, a CPU. The power supply 100 includes one or more secondary batteries. The control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to an operation switch (not shown).
 本技術の実施例に関して、詳細に説明する。 ) An example of this technology will be described in detail.
(実験例1-1~1-14)
 以下で説明するように、二次電池を作製すると共に電池特性および安全性を調べた。なお、説明する順序は、下記の通りである。

 1.コイン型の二次電池の作製
 2.ラミネートフィルム型の二次電池の作製
 3.電池特性および安全性の評価
(Experimental Examples 1-1 to 1-14)
As will be described below, secondary batteries were fabricated and battery characteristics and safety were examined. The order of explanation is as follows.

1. 1. Production of coin-type secondary battery 2. Production of a laminate film type secondary battery Battery characteristics and safety assessment
<1.コイン型の二次電池の作製>
 以下の手順により、試験用の二次電池として、図11に示したコイン型の二次電池(リチウムイオン二次電池)を作製した。
<1. Production of coin-type secondary battery>
The coin type secondary battery (lithium ion secondary battery) shown in FIG. 11 was produced as a test secondary battery by the following procedure.
 この二次電池では、試験極51と対極53とがセパレータ55を介して積層されていると共に、試験極51が収容された外装缶52と対極53が収容された外装カップ54とがガスケット56を介してかしめられている。 In this secondary battery, a test electrode 51 and a counter electrode 53 are laminated via a separator 55, and an outer can 52 in which the test electrode 51 is accommodated and an outer cup 54 in which the counter electrode 53 is accommodated form a gasket 56. It is squeezed through.
 試験極51を作製する場合には、最初に、活物質(LiCoO)96質量部と、結着剤(ポリフッ化ビニリデン)3質量部と、導電剤(カーボンブラック)1質量部とを混合して、合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に合剤を分散させて、ペースト状の合剤スラリーとした。続いて、コーティング装置を用いて集電体(20μm厚の帯状アルミニウム箔)の両面に合剤スラリーを塗布したのち、その合剤スラリーを乾燥させて、活物質層を形成した。最後に、ロールプレス機を用いて活物質層を圧縮成型した。 When preparing the test electrode 51, first, 96 parts by mass of an active material (LiCoO 2 ), 3 parts by mass of a binder (polyvinylidene fluoride), and 1 part by mass of a conductive agent (carbon black) are mixed. The mixture was used. Subsequently, the mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone) to obtain a paste mixture slurry. Subsequently, the mixture slurry was applied to both surfaces of the current collector (20 μm-thick striped aluminum foil) using a coating apparatus, and then the mixture slurry was dried to form an active material layer. Finally, the active material layer was compression molded using a roll press.
 対極53を作製する場合には、最初に、活物質(黒鉛とケイ素との混合物)90質量部と、結着剤(ポリフッ化ビニリデン)10質量部とを混合して、合剤とした。この場合には、活物質の混合比を質量比で黒鉛:ケイ素=80:10とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に合剤を分散させて、ペースト状の合剤スラリーとした。続いて、コーティング装置を用いて集電体(15μm厚の帯状電解銅箔)の両面に合剤スラリーを塗布したのち、その合剤スラリーを乾燥させて、活物質層を形成した。最後に、ロールプレス機を用いて活物質層を圧縮成型した。 When the counter electrode 53 was manufactured, first, 90 parts by mass of an active material (mixture of graphite and silicon) and 10 parts by mass of a binder (polyvinylidene fluoride) were mixed to obtain a mixture. In this case, the mixing ratio of the active materials was graphite: silicon = 80: 10 by mass ratio. Subsequently, the mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone) to obtain a paste mixture slurry. Subsequently, the mixture slurry was applied to both surfaces of the current collector (15 μm thick strip-like electrolytic copper foil) using a coating apparatus, and then the mixture slurry was dried to form an active material layer. Finally, the active material layer was compression molded using a roll press.
 電解液を調製する場合には、非水溶媒に電解質塩を溶解させた。非水溶媒および電解質塩のそれぞれの組成は、表1に示した通りである。非水溶媒としては、フッ素化環状化合物である4-フルオロ-1,3-ジオキソラン-2-オン(FEC)と、他の非水溶媒である炭酸エチレン(EC)および炭酸プロピレン(PC)とを用いた。電解質塩としては、フッ素化イミド化合物であるビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO:LiTFSI)と、他の電解質塩である六フッ化ホウ酸リチウム(LiPF)とを用いた。 When preparing the electrolytic solution, the electrolyte salt was dissolved in a non-aqueous solvent. The respective compositions of the nonaqueous solvent and the electrolyte salt are as shown in Table 1. Nonaqueous solvents include fluorinated cyclic compound 4-fluoro-1,3-dioxolan-2-one (FEC) and other nonaqueous solvents ethylene carbonate (EC) and propylene carbonate (PC). Using. Examples of the electrolyte salt include bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 : LiTFSI) which is a fluorinated imide compound, and lithium hexafluoroborate (LiPF 6 ) which is another electrolyte salt. Was used.
 二次電池を組み立てる場合には、試験極51をペレット状に打ち抜いたのち、その試験極51を外装缶52に収容した。続いて、対極53をペレット状に打ち抜いたのち、その対極53を外装カップ54に収容した。続いて、セパレータ55(23μm厚の微多孔質ポリプロピレン微多孔質フィルム)を介して、外装缶52に収容された試験極51と外装カップ54に収容された対極53とを積層させたのち、ガスケット56を介して外装缶52および外装カップ54をかしめた。これにより、コイン型の二次電池が完成した。 When assembling the secondary battery, the test electrode 51 was punched out into a pellet shape, and then the test electrode 51 was accommodated in an outer can 52. Subsequently, after punching the counter electrode 53 into a pellet, the counter electrode 53 was accommodated in the exterior cup 54. Subsequently, the test electrode 51 accommodated in the outer can 52 and the counter electrode 53 accommodated in the outer cup 54 are laminated via a separator 55 (a microporous polypropylene microporous film having a thickness of 23 μm), and then a gasket. The outer can 52 and the outer cup 54 were caulked through 56. Thereby, a coin-type secondary battery was completed.
<2.ラミネートフィルム型の二次電池の作製>
 以下の手順により、図3および図4に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製した。以下では、既に説明したコイン型の二次電池の構成要素を随時引用する。
<2. Fabrication of laminated film type secondary battery>
The laminate film type secondary battery (lithium ion secondary battery) shown in FIGS. 3 and 4 was produced by the following procedure. In the following, the components of the coin-type secondary battery already described will be quoted as needed.
 正極33を作製する場合には、試験極51の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成した。また、負極34を作製する場合には、対極53の作製手順と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成した。 When producing the positive electrode 33, the positive electrode active material layer 33 </ b> B was formed on both surfaces of the positive electrode current collector 33 </ b> A by the same procedure as the production procedure of the test electrode 51. Further, when producing the negative electrode 34, the negative electrode active material layer 34 </ b> B was formed on both surfaces of the negative electrode current collector 34 </ b> A by the same procedure as the production procedure of the counter electrode 53.
 電解液を調製する場合には、コイン型の二次電池における電解液の調製手順と同様の手順により、非水溶媒に電解質塩を溶解させた。 When preparing the electrolytic solution, the electrolyte salt was dissolved in the nonaqueous solvent by the same procedure as the procedure for preparing the electrolytic solution in the coin-type secondary battery.
 二次電池を組み立てる場合には、最初に、正極集電体33Aにアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aに銅製の負極リード32を溶接した。続いて、セパレータ35(23μm厚の微孔性ポリプロピレンフィルム)を介して正極33と負極34とを積層させたのち、その正極33、負極34およびセパレータ35を長手方向に巻回させて、巻回電極体30を形成した。続いて、巻回電極体30の最外周部に保護テープ37を貼り付けた。続いて、巻回電極体30を挟むように外装部材40を折り曲げたのち、その外装部材40の3辺における外周縁部同士を熱融着した。これにより、袋状の外装部材40の内部に巻回電極体30が収納された。この外装部材40としては、ナイロンフィルム(30μm厚)と、アルミニウム箔(40μm厚)と、無延伸ポリプロピレンフィルム(30μm厚)とが外側からこの順に積層された耐湿性のアルミラミネートフィルム(総厚100μm)を用いた。最後に、外装部材40の内部に電解液を注入して、その電解液を巻回電極体30に含浸させたのち、減圧環境中において外装部材40の残りの1辺を熱融着した。この場合には、正極リード31と外装部材40との間に密着フィルム41(50μm厚の酸変性プロピレンフィルム)を挿入すると共に、負極リード32と外装部材40との間に同様に密着フィルム41を挿入した。これにより、ラミネートフィルム型の二次電池が完成した。 When assembling the secondary battery, first, the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35 (23 μm-thick microporous polypropylene film), the positive electrode 33, the negative electrode 34, and the separator 35 are wound in the longitudinal direction to be wound. An electrode body 30 was formed. Subsequently, a protective tape 37 was attached to the outermost peripheral portion of the wound electrode body 30. Subsequently, after the exterior member 40 was bent so as to sandwich the wound electrode body 30, the outer peripheral edge portions on the three sides of the exterior member 40 were heat-sealed. Thereby, the wound electrode body 30 was accommodated in the bag-shaped exterior member 40. The exterior member 40 includes a nylon film (30 μm thickness), an aluminum foil (40 μm thickness), and an unstretched polypropylene film (30 μm thickness) laminated in this order from the outside in a moisture resistant aluminum laminate film (total thickness 100 μm). ) Was used. Finally, an electrolyte solution was injected into the exterior member 40 and the wound electrode body 30 was impregnated with the electrolyte solution, and then the remaining one side of the exterior member 40 was heat-sealed in a reduced pressure environment. In this case, the adhesion film 41 (50 μm thick acid-modified propylene film) is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 41 is similarly inserted between the negative electrode lead 32 and the exterior member 40. Inserted. Thereby, a laminated film type secondary battery was completed.
 この二次電池を作製する場合には、負極34の充放電容量が正極33の充放電容量よりも大きくなるように正極活物質層33Bの厚さを調整して、満充電時において負極34にリチウム金属が析出しないようした。 When producing this secondary battery, the thickness of the positive electrode active material layer 33B is adjusted so that the charge / discharge capacity of the negative electrode 34 is larger than the charge / discharge capacity of the positive electrode 33, and the negative electrode 34 is fully charged. Lithium metal was not precipitated.
<3.電池特性および安全性の評価>
 電池特性として初回充放電特性および負荷特性を調べると共に、安全性として膨れ特性および腐食特性を調べたところ、表1に示した結果が得られた。なお、初回充放電特性および負荷特性を調べるためにはコイン型の二次電池を用いると共に、膨れ特性を調べるためにはラミネートフィルム型の二次電池を用いた。
<3. Evaluation of battery characteristics and safety>
When the initial charge / discharge characteristics and load characteristics were examined as battery characteristics, and the swelling characteristics and corrosion characteristics were examined as safety, the results shown in Table 1 were obtained. A coin-type secondary battery was used to examine the initial charge / discharge characteristics and load characteristics, and a laminate film-type secondary battery was used to examine the swelling characteristics.
 初回充放電特性を調べる場合には、最初に、常温環境中(23℃)において二次電池を充電させて、充電容量を測定した。続いて、同環境中において二次電池を放電させて、放電容量を測定した。これらの測定結果から、初回効率(%)=(放電容量/充電容量)×100を算出した。なお、充電時には、0.2Cの電流で電圧が4.35Vに到達するまで充電した。放電時には、0.2Cの電流で電圧が2.5Vに到達するまで放電した。0.2Cとは、電池容量(理論容量)を5時間で放電しきる電流値である。 When examining the initial charge / discharge characteristics, first, the secondary battery was charged in a room temperature environment (23 ° C.), and the charge capacity was measured. Subsequently, the secondary battery was discharged in the same environment, and the discharge capacity was measured. From these measurement results, the initial efficiency (%) = (discharge capacity / charge capacity) × 100 was calculated. At the time of charging, the battery was charged with a current of 0.2 C until the voltage reached 4.35V. During discharging, discharging was performed at a current of 0.2 C until the voltage reached 2.5V. 0.2 C is a current value at which the battery capacity (theoretical capacity) can be discharged in 5 hours.
 負荷特性を調べる場合には、放電時の電流を1Cに変更したことを除き、初回充放電特性を調べた場合と同様の手順により、負荷維持率(%)=(放電容量/放電容量)×100を算出した。1Cとは、電池容量を1時間で放電しきる電流値である。 When examining the load characteristics, except that the current at the time of discharge was changed to 1 C, the load retention rate (%) = (discharge capacity / discharge capacity) × by the same procedure as the case of examining the initial charge / discharge characteristics. 100 was calculated. 1C is a current value at which the battery capacity can be discharged in one hour.
 なお、表1では、上記した初回効率の値として、実験例1-12の初回効率の値を100として規格化した値を示している。また、表1に示した「不能」とは、二次電池が充放電できないため、初回効率を測定できなかったことを表している。これらの表記内容は、負荷維持率に関しても同様である。 In Table 1, as the initial efficiency value described above, values normalized by setting the initial efficiency value of Experimental Example 1-12 to 100 are shown. Further, “impossible” shown in Table 1 means that the initial efficiency could not be measured because the secondary battery could not be charged / discharged. These notations are the same for the load maintenance rate.
 膨れ特性を調べる場合には、常温環境中(23℃)において二次電池を充電させたのち、その二次電池の厚さを測定した。続いて、充電状態の二次電池を高温環境中(80℃)に保存(90時間)したのち、その二次電池の厚さを測定した。これらの測定結果から、膨れ率(%)=[(保存後の厚さ-保存前の厚さ)/保存前の厚さ]×100を算出した。なお、充放電条件は、初回充放電特性を調べた場合と同様にした。 When investigating the swelling characteristics, the secondary battery was charged in a room temperature environment (23 ° C.), and then the thickness of the secondary battery was measured. Subsequently, the charged secondary battery was stored in a high-temperature environment (80 ° C.) (90 hours), and then the thickness of the secondary battery was measured. From these measurement results, the swelling ratio (%) = [(thickness after storage−thickness before storage) / thickness before storage] × 100 was calculated. The charge / discharge conditions were the same as in the case of examining the initial charge / discharge characteristics.
 腐食特性を調べる場合には、電解液と共に三極式セルを用いて、リニアスイープボルタンメトリー(LSV)で電流-電位曲線を計測して、アルミニウムの腐食に起因して流れる電流(腐食電流)値を調べた。この場合には、参照電極としてリチウム、対極として白金、作用極としてアルミニウムをそれぞれ用いた。また、電圧の範囲を対リチウム基準で0V~5V、掃引速度を0.1mV/sとした。 When investigating the corrosion characteristics, measure the current-potential curve by linear sweep voltammetry (LSV) using a triode cell together with the electrolyte, and determine the current (corrosion current) value that flows due to the corrosion of aluminum. Examined. In this case, lithium was used as the reference electrode, platinum was used as the counter electrode, and aluminum was used as the working electrode. The voltage range was 0 V to 5 V with respect to lithium, and the sweep rate was 0.1 mV / s.
 なお、表1では、上記した腐食電流の値として、実験例1-13の腐食電流の値を100として規格化した値を示している。 In Table 1, as the above-described corrosion current value, a value normalized by setting the corrosion current value of Experimental Example 1-13 to 100 is shown.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 電池特性および安全性のそれぞれは、以下で説明するように、非水溶媒および電解質塩のそれぞれの組成に応じて変動した。なお、ここでは、非水溶媒がフッ素化環状化合物(FEC)を含んでいないと共に電解質塩がフッ素化イミド化合物(LiTFSI)を含んでいない場合(実験例1-12)を比較基準とする。 Each of the battery characteristics and safety varied depending on the respective compositions of the non-aqueous solvent and the electrolyte salt, as will be described below. Here, the case where the non-aqueous solvent does not contain a fluorinated cyclic compound (FEC) and the electrolyte salt does not contain a fluorinated imide compound (LiTFSI) (Experimental Example 1-12) is used as a reference for comparison.
 非水溶媒がフッ素化環状化合物を含んでいないが、電解質塩がフッ素化イミド化合物を含んでいる場合(実験例1-13)には、比較基準と比較して、腐食電流が大幅に増加した。この場合には、特に、二次電池が充放電できないため、初回効率および負荷維持率のそれぞれを算出できなかった。 When the non-aqueous solvent did not contain a fluorinated cyclic compound, but the electrolyte salt contained a fluorinated imide compound (Experimental Example 1-13), the corrosion current was significantly increased compared to the comparative standard. . In this case, in particular, since the secondary battery cannot be charged / discharged, each of the initial efficiency and the load retention rate could not be calculated.
 また、非水溶媒がフッ素化環状化合物を含んでいるが、電解質塩がフッ素化イミド化合物を含んでいない場合(実験例1-14)には、比較基準と比較して、初回効率および負荷維持率のそれぞれは増加したが、膨れ率も大幅に増加した。 In addition, when the non-aqueous solvent contains a fluorinated cyclic compound but the electrolyte salt does not contain a fluorinated imide compound (Experimental Example 1-14), the initial efficiency and load maintenance are compared with the comparative standard. Each of the rates increased, but the swelling rate also increased significantly.
 これらの結果から、非水溶媒がフッ素化環状化合物を含んでいると共に、電解質塩がフッ素化イミド化合物を含んでいる場合には、比較基準と比較して、電池特性は改善されるどころか、そもそも二次電池が充放電できないと共に、安全性も悪化するように予想される。 From these results, when the non-aqueous solvent contains a fluorinated cyclic compound and the electrolyte salt contains a fluorinated imide compound, the battery characteristics are improved in the first place as compared with the comparative standard. The secondary battery cannot be charged / discharged, and the safety is expected to deteriorate.
 しかしながら、実際(実験例1-1~1-4)には、比較基準と比較して、膨れ率および腐食電流のそれぞれを十分に抑制しつつ、初回効率および負荷維持率のそれぞれが増加した。 However, in practice (Experimental Examples 1-1 to 1-4), each of the initial efficiency and the load maintenance rate increased while sufficiently suppressing the swelling rate and the corrosion current, respectively, as compared with the comparative standard.
 この結果は、非水溶媒がフッ素化環状化合物を含んでいると共に、電解質塩がフッ素化イミド化合物を含んでいると、フッ素化環状化合物とフッ素化イミド化合物との相乗作用により、上記した予想に反する有利な傾向が得られることを表している。具体的には、充放電を繰り返しても電解液の分解反応性が抑制される。しかも、電解液によるアルミニウムの腐食反応が抑制されると共に、非水溶媒と電解質塩との反応に起因するガスの発生も抑制される。 As a result, when the non-aqueous solvent contains a fluorinated cyclic compound and the electrolyte salt contains a fluorinated imide compound, the synergistic action of the fluorinated cyclic compound and the fluorinated imide compound leads to the above-mentioned prediction. This shows that an advantageous tendency to the contrary is obtained. Specifically, the decomposition reactivity of the electrolytic solution is suppressed even when charging and discharging are repeated. Moreover, the corrosion reaction of aluminum by the electrolytic solution is suppressed, and the generation of gas due to the reaction between the nonaqueous solvent and the electrolyte salt is also suppressed.
 ただし、フッ素化イミド化合物を用いた場合には、非水溶媒がフッ素化環状化合物を含んでいれば、その非水溶媒中におけるフッ素化環状化合物の含有量がどのような値でもよいというわけではなかった。具体的には、フッ素化環状化合物の含有量が95重量%~100重量%である場合(実験例1-1~1-4)には、95重量%未満である場合(実験例1-5~1-7)とは異なり、二次電池が充放電可能であるため、膨れ率および腐食電流を十分に抑制しつつ、初回効率および負荷維持率が増加した。 However, when a fluorinated imide compound is used, if the nonaqueous solvent contains a fluorinated cyclic compound, the content of the fluorinated cyclic compound in the nonaqueous solvent may be any value. There wasn't. Specifically, when the content of the fluorinated cyclic compound is 95% to 100% by weight (Experimental Examples 1-1 to 1-4), the content is less than 95% by weight (Experimental Example 1-5). Unlike ˜1-7), since the secondary battery can be charged / discharged, the initial efficiency and the load maintenance ratio increased while sufficiently suppressing the swelling rate and the corrosion current.
 なお、電解質塩がさらにLiPFを含んでいる場合(実験例1-8~1-11)には、電解質塩がLiPFを含んでいない場合(実験例1-2)と比較して、そのLiPFの含有量によっては膨れ率が増加したが、初回効率および負荷維持率はより増加した。 When the electrolyte salt further contains LiPF 6 (Experimental Examples 1-8 to 1-11), compared with the case where the electrolyte salt does not contain LiPF 6 (Experimental Example 1-2), Although the swelling rate increased depending on the LiPF 6 content, the initial efficiency and the load retention rate increased more.
(実験例2-1~2-7)
 負極合剤の組成を変更したことを除き、同様の手順により二次電池を作製すると共に電池特性および安全性を調べたところ、表2に示した結果が得られた。なお、負極合剤を調製する場合には、負極活物質(黒鉛)90質量部と、負極結着剤(ポリフッ化ビニリデン)10質量部とを混合した。
(Experimental examples 2-1 to 2-7)
Except that the composition of the negative electrode mixture was changed, a secondary battery was produced by the same procedure and the battery characteristics and safety were examined. The results shown in Table 2 were obtained. In preparing the negative electrode mixture, 90 parts by mass of the negative electrode active material (graphite) and 10 parts by mass of the negative electrode binder (polyvinylidene fluoride) were mixed.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 負極合剤の組成などを変更した場合(表2)においても、表1と同様の結果が得られた。すなわち、フッ素化環状化合物とフッ素化イミド化合物とを一緒に用いた場合には、そのフッ素化環状化合物の含有量が95重量%~100重量%上であると(実験例2-1)、それ以外の場合(実験例2-2~2-7)と比較して、良好な結果が得られた。 Even when the composition of the negative electrode mixture was changed (Table 2), the same results as in Table 1 were obtained. That is, when a fluorinated cyclic compound and a fluorinated imide compound are used together, if the content of the fluorinated cyclic compound is 95 wt% to 100 wt% (Experimental Example 2-1), Good results were obtained as compared with cases other than (Experimental Examples 2-2 to 2-7).
 表1および表2のそれぞれに示した結果から、非水溶媒が所定量(95重量%~100重量%)のフッ素化環状化合物を含んでいると共に、電解質塩がフッ素化イミド化合物を含んでいると、電池特性が向上すると共に、安全性が改善された。よって、二次電池において電池特性と安全性とが両立された。 From the results shown in Table 1 and Table 2, the non-aqueous solvent contains a predetermined amount (95 wt% to 100 wt%) of a fluorinated cyclic compound, and the electrolyte salt contains a fluorinated imide compound. As a result, the battery characteristics were improved and the safety was improved. Therefore, the battery characteristics and safety are compatible in the secondary battery.
 以上、一実施形態および実施例を挙げながら本技術を説明したが、本技術は一実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。 As mentioned above, although this technique was demonstrated, giving one embodiment and an Example, this technique is not limited to the aspect demonstrated in one Embodiment and an Example, A various deformation | transformation is possible.
 例えば、電池構造が円筒型、ラミネートフィルム型およびコイン型であると共に、電池素子が巻回構造を有する場合を例に挙げて説明したが、これらに限られない。本技術の二次電池は、角型およびボタン型などの他の電池構造を有する場合においても同様に適用可能である。また、本技術の二次電池は、電池素子が積層構造などの他の構造を有する場合においても同様に適用可能である。 For example, the case where the battery structure is a cylindrical type, a laminate film type, and a coin type and the battery element has a winding structure has been described as an example, but is not limited thereto. The secondary battery of the present technology can be similarly applied even when other battery structures such as a square type and a button type are provided. Further, the secondary battery of the present technology can be similarly applied when the battery element has another structure such as a laminated structure.
 また、本技術の二次電池用電解液は、二次電池に限らず、他の電気化学デバイスに適用されてもよい。この他の電気化学デバイスは、例えば、キャパシタなどである。 Also, the secondary battery electrolyte of the present technology is not limited to the secondary battery, and may be applied to other electrochemical devices. Other electrochemical devices are, for example, capacitors.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 正極と、
 負極と、
 非水溶媒および電解質塩を含む電解液と
 を備え、
 前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
 前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
 前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
 二次電池。
Figure JPOXMLDOC01-appb-C000025
(R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
 LiN(R5SO)(R6SO) ・・・(2)
(R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
(2)
 前記R1~R4のそれぞれは、水素基およびフッ素基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基である、
 上記(1)に記載の二次電池。
(3)
 前記フッ素化環状化合物は、4-フルオロ-1,3-ジオキソラン-2-オンを含む、
 上記(1)または(2)に記載の二次電池。
(4)
 前記非水溶媒中における前記フッ素化環状化合物の含有量は、100重量%未満であり、
 前記非水溶媒は、環状炭酸エステルおよび鎖状炭酸エステルのうちの少なくとも一方を含む、
 上記(1)ないし(3)のいずれかに記載の二次電池。
(5)
 前記R5およびR6のそれぞれは、フッ素基およびパーフルオロアルキル基のうちのいずれかである、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 前記フッ素化イミド化合物は、LiN(FSO、LiN(CFSOおよびLiN(CSOのうちの少なくとも1種を含む、
 上記(1)ないし(5)のいずれかに記載の二次電池。
(7)
 前記フッ素化イミド化合物の含有量は、前記非水溶媒に対して、0.6mol/kg~2mol/kgである、
 上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 リチウム二次電池である、
 上記(1)ないし(7)のいずれかに記載の二次電池。
(9)
 非水溶媒および電解質塩を含み、
 前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
 前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
 前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
 二次電池用電解液。
Figure JPOXMLDOC01-appb-C000026
(R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
 LiN(R5SO)(R6SO) ・・・(2)
(R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
(10)
 上記(1)ないし(8)のいずれかに記載の二次電池と、
 その二次電池の動作を制御する制御部と、
 その制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(11)
 上記(1)ないし(8)のいずれかに記載の二次電池と、
 その二次電池から供給された電力を駆動力に変換する変換部と、
 その駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(12)
 上記(1)ないし(8)のいずれかに記載の二次電池と、
 その二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(13)
 上記(1)ないし(8)のいずれかに記載の二次電池と、
 その二次電池から電力を供給される可動部と
 を備えた、電動工具。
(14)
 上記(1)ないし(8)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。
In addition, this technique can also take the following structures.
(1)
A positive electrode;
A negative electrode,
An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
Secondary battery.
Figure JPOXMLDOC01-appb-C000025
(Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
LiN (R5SO 2 ) (R6SO 2 ) (2)
(R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
(2)
Each of R1 to R4 is a hydrogen group or a fluorine group, and at least one of R1 to R4 is a fluorine group.
The secondary battery as described in said (1).
(3)
The fluorinated cyclic compound includes 4-fluoro-1,3-dioxolan-2-one,
The secondary battery according to (1) or (2) above.
(4)
The content of the fluorinated cyclic compound in the non-aqueous solvent is less than 100% by weight,
The non-aqueous solvent includes at least one of a cyclic carbonate and a chain carbonate,
The secondary battery according to any one of (1) to (3).
(5)
Each of R5 and R6 is either a fluorine group or a perfluoroalkyl group.
The secondary battery according to any one of (1) to (4) above.
(6)
The fluorinated imide compound includes at least one of LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
The secondary battery according to any one of (1) to (5) above.
(7)
The content of the fluorinated imide compound is 0.6 mol / kg to 2 mol / kg with respect to the non-aqueous solvent.
The secondary battery according to any one of (1) to (6) above.
(8)
Lithium secondary battery,
The secondary battery according to any one of (1) to (7) above.
(9)
Including a non-aqueous solvent and an electrolyte salt,
The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
Secondary battery electrolyte.
Figure JPOXMLDOC01-appb-C000026
(Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
LiN (R5SO 2 ) (R6SO 2 ) (2)
(R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
(10)
The secondary battery according to any one of (1) to (8) above;
A control unit for controlling the operation of the secondary battery;
A battery pack comprising: a switch unit that switches the operation of the secondary battery in accordance with an instruction from the control unit.
(11)
The secondary battery according to any one of (1) to (8) above;
A converter that converts electric power supplied from the secondary battery into driving force;
A drive unit that drives according to the driving force;
An electric vehicle comprising: a control unit that controls the operation of the secondary battery.
(12)
The secondary battery according to any one of (1) to (8) above;
One or more electric devices supplied with power from the secondary battery;
And a control unit that controls power supply from the secondary battery to the electrical device.
(13)
The secondary battery according to any one of (1) to (8) above;
And a movable part to which electric power is supplied from the secondary battery.
(14)
An electronic apparatus comprising the secondary battery according to any one of (1) to (8) as a power supply source.
 本出願は、日本国特許庁において2014年8月21日に出願された日本特許出願番号第2014-168326号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2014-168326 filed on August 21, 2014 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. Is understood to be included.

Claims (14)

  1.  正極と、
     負極と、
     非水溶媒および電解質塩を含む電解液と
     を備え、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    A positive electrode;
    A negative electrode,
    An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Secondary battery.
    Figure JPOXMLDOC01-appb-C000001
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
  2.  前記R1~R4のそれぞれは、水素基およびフッ素基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基である、
     請求項1記載の二次電池。
    Each of R1 to R4 is a hydrogen group or a fluorine group, and at least one of R1 to R4 is a fluorine group.
    The secondary battery according to claim 1.
  3.  前記フッ素化環状化合物は、4-フルオロ-1,3-ジオキソラン-2-オンを含む、
     請求項1記載の二次電池。
    The fluorinated cyclic compound includes 4-fluoro-1,3-dioxolan-2-one,
    The secondary battery according to claim 1.
  4.  前記非水溶媒中における前記フッ素化環状化合物の含有量は、100重量%未満であり、
     前記非水溶媒は、環状炭酸エステルおよび鎖状炭酸エステルのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    The content of the fluorinated cyclic compound in the non-aqueous solvent is less than 100% by weight,
    The non-aqueous solvent includes at least one of a cyclic carbonate and a chain carbonate,
    The secondary battery according to claim 1.
  5.  前記R5およびR6のそれぞれは、フッ素基およびパーフルオロアルキル基のうちのいずれかである、
     請求項1記載の二次電池。
    Each of R5 and R6 is either a fluorine group or a perfluoroalkyl group.
    The secondary battery according to claim 1.
  6.  前記フッ素化イミド化合物は、LiN(FSO、LiN(CFSOおよびLiN(CSOのうちの少なくとも1種を含む、
     請求項1記載の二次電池。
    The fluorinated imide compound includes at least one of LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
    The secondary battery according to claim 1.
  7.  前記フッ素化イミド化合物の含有量は、前記非水溶媒に対して、0.6mol/kg~2mol/kgである、
     請求項1記載の二次電池。
    The content of the fluorinated imide compound is 0.6 mol / kg to 2 mol / kg with respect to the non-aqueous solvent.
    The secondary battery according to claim 1.
  8.  リチウム二次電池である、
     請求項1記載の二次電池。
    Lithium secondary battery,
    The secondary battery according to claim 1.
  9.  非水溶媒および電解質塩を含み、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    Including a non-aqueous solvent and an electrolyte salt,
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Secondary battery electrolyte.
    Figure JPOXMLDOC01-appb-C000002
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
  10.  二次電池と、
     その二次電池の動作を制御する制御部と、
     その制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     非水溶媒および電解質塩を含む電解液と
     を備え、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     電池パック。
    Figure JPOXMLDOC01-appb-C000003
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    A secondary battery,
    A control unit for controlling the operation of the secondary battery;
    A switch unit for switching the operation of the secondary battery according to an instruction of the control unit,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Battery pack.
    Figure JPOXMLDOC01-appb-C000003
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
  11.  二次電池と、
     その二次電池から供給された電力を駆動力に変換する変換部と、
     その駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     非水溶媒および電解質塩を含む電解液と
     を備え、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     電動車両。
    Figure JPOXMLDOC01-appb-C000004
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    A secondary battery,
    A converter that converts electric power supplied from the secondary battery into driving force;
    A drive unit that drives according to the driving force;
    A control unit for controlling the operation of the secondary battery,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Electric vehicle.
    Figure JPOXMLDOC01-appb-C000004
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
  12.  二次電池と、
     その二次電池から電力を供給される1または2以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     非水溶媒および電解質塩を含む電解液と
     を備え、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     電力貯蔵システム。
    Figure JPOXMLDOC01-appb-C000005
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    A secondary battery,
    One or more electric devices supplied with power from the secondary battery;
    A control unit for controlling power supply from the secondary battery to the electrical device,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Power storage system.
    Figure JPOXMLDOC01-appb-C000005
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
  13.  二次電池と、
     その二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     非水溶媒および電解質塩を含む電解液と
     を備え、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     電動工具。
    Figure JPOXMLDOC01-appb-C000006
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    A secondary battery,
    A movable part to which electric power is supplied from the secondary battery,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Electric tool.
    Figure JPOXMLDOC01-appb-C000006
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
  14.  二次電池を電力供給源として備え、
     前記二次電池は、
     正極と、
     負極と、
     非水溶媒および電解質塩を含む電解液と
     を備え、
     前記非水溶媒は、式(1)で表されるフッ素化環状化合物を含み、
     前記電解質塩は、式(2)で表されるフッ素化イミド化合物を含み、
     前記非水溶媒中における前記フッ素化環状化合物の含有量は、95重量%~100重量%である、
     電子機器。
    Figure JPOXMLDOC01-appb-C000007
    (R1~R4のそれぞれは、水素基(-H)、フッ素基(-F)、アルキル基およびフッ素化アルキル基のうちのいずれかであり、そのR1~R4のうちの少なくとも1つは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
     LiN(R5SO)(R6SO) ・・・(2)
    (R5およびR6のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。)
    A secondary battery is provided as a power supply source,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte containing a non-aqueous solvent and an electrolyte salt, and
    The non-aqueous solvent includes a fluorinated cyclic compound represented by the formula (1),
    The electrolyte salt includes a fluorinated imide compound represented by the formula (2),
    The content of the fluorinated cyclic compound in the non-aqueous solvent is 95% by weight to 100% by weight.
    Electronics.
    Figure JPOXMLDOC01-appb-C000007
    (Each of R1 to R4 is any one of a hydrogen group (—H), a fluorine group (—F), an alkyl group and a fluorinated alkyl group, and at least one of R1 to R4 is a fluorine group) Any one of a group and a fluorinated alkyl group.)
    LiN (R5SO 2 ) (R6SO 2 ) (2)
    (R5 and R6 are each a fluorine group or a fluorinated alkyl group.)
PCT/JP2015/069092 2014-08-21 2015-07-02 Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device WO2016027571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-168326 2014-08-21
JP2014168326A JP6350109B2 (en) 2014-08-21 2014-08-21 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Publications (1)

Publication Number Publication Date
WO2016027571A1 true WO2016027571A1 (en) 2016-02-25

Family

ID=55350523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069092 WO2016027571A1 (en) 2014-08-21 2015-07-02 Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Country Status (2)

Country Link
JP (1) JP6350109B2 (en)
WO (1) WO2016027571A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116888801A (en) * 2022-09-22 2023-10-13 德山伊莱特拉有限公司 Electrolyte additive for secondary battery, nonaqueous electrolyte for lithium secondary battery containing same, and lithium secondary battery containing same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963644A (en) * 1995-06-13 1997-03-07 Mitsui Petrochem Ind Ltd Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH10247519A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Lithium secondary battery
JP2000164247A (en) * 1998-11-24 2000-06-16 Mitsui Chemicals Inc Nonaqueous electrolyte and secondary battery using it
JP2003297420A (en) * 2002-03-29 2003-10-17 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery and electrolytic solution used in the same
JP2008097954A (en) * 2006-10-11 2008-04-24 Sony Corp Electrolyte solution and battery
JP2010103006A (en) * 2008-10-24 2010-05-06 Sony Corp Anode collector, anode, and secondary battery
JP2011028860A (en) * 2009-07-21 2011-02-10 Sony Corp Nonaqueous electrolyte secondary battery
JP2011044339A (en) * 2009-08-21 2011-03-03 Sony Corp Nonaqueous electrolyte secondary battery
WO2011027530A1 (en) * 2009-09-02 2011-03-10 パナソニック株式会社 Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
JP2012033502A (en) * 2011-10-11 2012-02-16 Sony Corp Electrolytic solution and secondary battery
JP2012079593A (en) * 2010-10-04 2012-04-19 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JP2012099474A (en) * 2010-11-03 2012-05-24 Samsung Sdi Co Ltd Electrolyte for lithium-ion battery, and lithium-ion battery including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656105B2 (en) * 2010-08-06 2015-01-21 株式会社リコー Image forming apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963644A (en) * 1995-06-13 1997-03-07 Mitsui Petrochem Ind Ltd Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH10247519A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Lithium secondary battery
JP2000164247A (en) * 1998-11-24 2000-06-16 Mitsui Chemicals Inc Nonaqueous electrolyte and secondary battery using it
JP2003297420A (en) * 2002-03-29 2003-10-17 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery and electrolytic solution used in the same
JP2008097954A (en) * 2006-10-11 2008-04-24 Sony Corp Electrolyte solution and battery
JP2010103006A (en) * 2008-10-24 2010-05-06 Sony Corp Anode collector, anode, and secondary battery
JP2011028860A (en) * 2009-07-21 2011-02-10 Sony Corp Nonaqueous electrolyte secondary battery
JP2011044339A (en) * 2009-08-21 2011-03-03 Sony Corp Nonaqueous electrolyte secondary battery
WO2011027530A1 (en) * 2009-09-02 2011-03-10 パナソニック株式会社 Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
JP2012079593A (en) * 2010-10-04 2012-04-19 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JP2012099474A (en) * 2010-11-03 2012-05-24 Samsung Sdi Co Ltd Electrolyte for lithium-ion battery, and lithium-ion battery including the same
JP2012033502A (en) * 2011-10-11 2012-02-16 Sony Corp Electrolytic solution and secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116888801A (en) * 2022-09-22 2023-10-13 德山伊莱特拉有限公司 Electrolyte additive for secondary battery, nonaqueous electrolyte for lithium secondary battery containing same, and lithium secondary battery containing same

Also Published As

Publication number Publication date
JP2016046030A (en) 2016-04-04
JP6350109B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6561982B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6131877B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2015103288A (en) Secondary battery, battery pack, electrically driven vehicle and electric power storage system
WO2018047499A1 (en) Electrolyte solution for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device
JPWO2015163017A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
CN107210488B (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
WO2016098509A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, electric power storage system, electric tool, and electronic device
WO2016056361A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric power tool and electronic apparatus equipment
JP6831462B2 (en) Bipolar lithium-ion secondary batteries and their battery packs, electric vehicles, power storage systems, power tools and electronics
WO2016088471A1 (en) Secondary battery active material, secondary battery electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
WO2017199572A1 (en) Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2017098851A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic appliance
WO2016129383A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
JP6593305B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2015186517A1 (en) Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
WO2018150625A1 (en) Electrolytic solution for secondary batteries, secondary battery, battery pack, electric-powered vehicle, electric power storage system, electric power tool, and electronic device
JP6131868B2 (en) Nonaqueous electrolyte for lithium secondary battery, lithium secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2015156280A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
JP6257087B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6350109B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6593345B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2018150624A1 (en) Electrolytic solution for lithium ion secondary batteries, lithium ion secondary battery, battery pack, electric-powered vehicle, power storage system, electric power tool, and electronic device
JP2016081645A (en) Electrolytic solution for secondary battery, secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
WO2018135043A1 (en) Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833237

Country of ref document: EP

Kind code of ref document: A1