WO2018135043A1 - Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device - Google Patents

Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device Download PDF

Info

Publication number
WO2018135043A1
WO2018135043A1 PCT/JP2017/035571 JP2017035571W WO2018135043A1 WO 2018135043 A1 WO2018135043 A1 WO 2018135043A1 JP 2017035571 W JP2017035571 W JP 2017035571W WO 2018135043 A1 WO2018135043 A1 WO 2018135043A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
solvent
ethylene carbonate
electrolyte salt
content
Prior art date
Application number
PCT/JP2017/035571
Other languages
French (fr)
Japanese (ja)
Inventor
岡江 功弥
裕介 森野
信洋 井上
寿朗 西
一正 武志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018135043A1 publication Critical patent/WO2018135043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present technology relates to an electrolytic solution used for a secondary battery, a secondary battery using the electrolytic solution, a battery pack using the secondary battery, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
  • Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses.
  • a battery pack detachably mounted on an electronic device, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
  • This secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode. Since the composition of the electrolytic solution greatly affects the battery characteristics, various studies have been made on the composition of the electrolytic solution.
  • the nonaqueous solvent contains ethylene carbonate, propylene carbonate, chain carbonate, vinylene carbonate, and the like, and the lithium salt contains LiPF 6 and LiBF 4 .
  • the ratio of the total of ethylene carbonate, propylene carbonate and chain carbonate, the ratio of vinylene carbonate, and the ratio of the total of ethylene carbonate and propylene carbonate to the chain carbonate are defined (for example, Patent Documents). 1).
  • the electrolyte solution for a secondary battery includes (A) a solvent and an electrolyte salt, the solvent includes ethylene carbonate, and (B) the content of the electrolyte salt is 0.8 mol / kg or more 2 0.0 mol / kg or less, (C) the content of ethylene carbonate in the solvent is 10% by weight or more and 30% by weight or less, and (D) the ratio M2 of the number of moles of ethylene carbonate M2 to the number of moles M1 of the electrolyte salt. / M1 is 0.4 or more and 2.4 or less.
  • a secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution has the same configuration as the electrolytic solution for a secondary battery according to the embodiment of the present technology described above. .
  • Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
  • the value of the molar ratio M2 / M1 is a value obtained by rounding off the value of the second decimal place.
  • the electrolyte satisfies the conditions shown in (A) to (D) at the same time, so that excellent battery characteristics are obtained. be able to. The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
  • effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 4 is a block diagram illustrating a configuration of the battery pack illustrated in FIG. 3. It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery. It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery. It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery. It is a block diagram showing the structure of the application example (electric tool) of a secondary battery.
  • Electrolyte for secondary battery First, a secondary battery electrolyte solution according to an embodiment of the present technology will be described.
  • the secondary battery electrolyte described here (hereinafter simply referred to as “electrolyte”) is used in, for example, a secondary battery such as a lithium ion secondary battery.
  • a secondary battery such as a lithium ion secondary battery.
  • the type of secondary battery in which the electrolytic solution is used is not limited to the lithium ion secondary battery.
  • the electrolytic solution contains a solvent and an electrolyte salt.
  • This electrolyte salt may be dissolved in a solvent or may be dispersed in a solvent.
  • the solvent contains ethylene carbonate which is a cyclic carbonate described later.
  • the solvent may contain any 1 type or 2 or more types of other materials with ethylene carbonate. Details of “other materials” will be described later.
  • An electrolytic solution containing ethylene carbonate which is a non-aqueous solvent (organic solvent) is a so-called non-aqueous electrolytic solution.
  • the type of electrolyte salt is not particularly limited. Only one type of electrolyte salt may be used, or two or more types may be used. Especially, it is preferable that electrolyte salt is a metal salt which contains the same kind of metal element as an electrode reactant as a structural element. This is because the electrode reaction easily proceeds.
  • Electrode reaction substance is a substance used for advancing an electrode reaction (charge / discharge reaction) in a secondary battery using an electrolytic solution.
  • the electrode reactant used in a lithium ion secondary battery or the like is lithium.
  • the electrolyte salt is preferably a lithium salt.
  • the content of the electrolyte salt in the electrolytic solution (so-called concentration: mol / kg), the content of ethylene carbonate in the solvent (so-called solvent composition ratio: wt%), and the number of moles M1 of the electrolyte salt
  • concentration: mol / kg the content of the electrolyte salt in the electrolytic solution
  • solvent composition ratio: wt% the content of ethylene carbonate in the solvent
  • wt% the content of ethylene carbonate in the solvent composition ratio: wt%)
  • the ratio of the number of moles M2 of ethylene carbonate (so-called mole ratio) M2 / M1 satisfies the following three conditions simultaneously.
  • the molar ratio M2 / M1 is 2.4 or less, preferably 0.4 to 2.4.
  • the content (mol / kg) of the electrolyte salt in the electrolytic solution is 0.8 mol / kg to 2.0 mol / kg, preferably 0.9 mol / kg to 1.5 mol / kg.
  • the content (% by weight) of the electrolyte salt in the electrolytic solution is 12% by weight to 30% by weight, preferably 14% by weight to 23% by weight.
  • the content (% by weight) of ethylene carbonate in the solvent is 10% to 30% by weight.
  • a laminated film type secondary battery (see FIG. 1) described later uses a film-like exterior member 40 that easily deforms in response to an external force, it swells due to generation of gas (increase in internal pressure). It tends to be easy. Therefore, if the above three conditions regarding the electrolytic solution used in the laminated film type secondary battery are satisfied at the same time, even if the secondary battery is essentially swelled, the secondary battery effectively swells. It becomes difficult.
  • the main factor among the gas generation factors is the decomposition reaction of the solvent, and particularly the oxidative decomposition reaction of ethylene carbonate.
  • the ethylene carbonate plays a role as a high dielectric constant solvent for dissolving the electrolyte salt, and also forms a stable coating (SEI: Solid Electrolyte Interphase) on the negative electrode surface when the secondary battery is used for the first time. Therefore, it is widely used as a solvent for electrolytic solutions.
  • ethylene carbonate plays a useful role as described above, depending on the compatibility with the material of the components (for example, positive electrode) mounted on the secondary battery and charge / discharge conditions, it is a major gas source. Become. Therefore, in order to suppress the generation of gas during use of the secondary battery while utilizing the advantages based on the useful role of ethylene carbonate, as described above, focus on ethylene carbonate, which is a component of the solvent. There is a need to.
  • the secondary battery is less likely to swell because ethylene carbonate is sufficiently solvated with respect to the cation constituting the electrolyte salt in the electrolytic solution. This is thought to be because the electronic state of ethylene becomes an electronic state that is difficult to be decarboxylated.
  • the “cation” is, for example, lithium ion when the electrolyte salt is a lithium salt.
  • the procedure for specifying the content (mol / kg) of the electrolyte salt in the electrolytic solution is, for example, as follows.
  • nuclear magnetic resonance By analyzing the electrolyte using one or more of spectroscopic analysis (NMR), atomic absorption spectrometry (AAS), and ion chromatography (IC), etc., in the electrolyte Quantify the content of electrolyte salt.
  • NMR spectroscopic analysis
  • AAS atomic absorption spectrometry
  • IC ion chromatography
  • the procedure for specifying the content (% by weight) of ethylene carbonate in the solvent is, for example, as follows.
  • gas chromatography mass spectrometry Each solvent component contained in the electrolytic solution is quantified by analyzing the electrolytic solution using one or more of (GC / MS) and NMR. Based on this quantitative result, the content of ethylene carbonate in the solvent is specified.
  • the procedure for specifying the molar ratio M2 / M1 is, for example, as follows.
  • the molar ratio M2 / M1 for example, after collecting the electrolytic solution by the same procedure as the case of specifying the content of the electrolyte salt described above, the NMR, AAS, IC, GC / MS, etc.
  • the molar concentration of ethylene / the molar concentration of electrolyte salt is calculated.
  • GC gas chromatograph method
  • the solvent may contain any 1 type or 2 or more types of other materials with ethylene carbonate.
  • the solvent preferably contains a high viscosity (high dielectric constant) solvent and a low viscosity (low dielectric constant) solvent together. This is because the dissociation property of the electrolyte salt and the mobility of ions are improved.
  • high viscosity solvent or two or more kinds.
  • low-viscosity solvent only one type of low-viscosity solvent may be used, or two or more types may be used.
  • the type of the high-viscosity solvent is not particularly limited, and examples thereof include cyclic carbonates.
  • examples of the cyclic carbonate include propylene carbonate in addition to the above-described ethylene carbonate.
  • the kind of the low-viscosity solvent is not particularly limited, and examples thereof include a chain carbonate ester and a chain carboxylate ester.
  • This low-viscosity solvent may contain only a chain carbonate ester, may contain only a chain carboxylate ester, or may contain both a chain carbonate ester and a chain carboxylate ester. Good.
  • chain carbonate examples include diethyl carbonate and ethyl methyl carbonate.
  • chain carboxylic acid ester examples include ethyl propionate and propyl propionate.
  • the cyclic carbonate contains propylene carbonate together with the above-described ethylene carbonate. This is because the generation of gas due to the decomposition reaction of the electrolytic solution is further suppressed.
  • the solvent may contain propylene carbonate together with ethylene carbonate, or may not contain propylene carbonate together with ethylene carbonate.
  • the content (% by weight) of propylene carbonate in the solvent is not particularly limited, but is preferably 30% by weight or less.
  • the lower limit of the content of propylene carbonate in the solvent is not particularly limited, but is 0.01% by weight, for example. It is because generation
  • the electrolyte solution may contain any one type or two or more types of other solvents together with the above-described solvent.
  • the other solvent is, for example, any one kind or two or more kinds of solvents such as a non-aqueous solvent (organic solvent).
  • solvents are, for example, lactone and nitrile (mononitrile). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • lactones examples include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Nitriles are, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • solvents include, for example, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N -Methyl oxazolidinone, N, N'-dimethylimidazolidinone, sulfolane, trimethyl phosphate and dimethyl sulfoxide may be used. This is because similar advantages can be obtained.
  • solvents may be unsaturated cyclic carbonates, halogenated carbonates, sulfonates, acid anhydrides, dinitrile compounds, diisocyanate compounds, and the like. This is because the chemical stability of the electrolytic solution is further improved.
  • An unsaturated cyclic carbonate is a cyclic carbonate containing one or more carbon-carbon unsaturated bonds (carbon-carbon double bonds). For example, each of the following formulas (1) to (3): And the like.
  • the content of the unsaturated cyclic carbonate in the total solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • Each of R11 and R12 is any one of a hydrogen group and an alkyl group.
  • Each of R13 to R16 is any one of a hydrogen group, an alkyl group, a vinyl group, and an allyl group.
  • R17 is a group represented by> CR171R172, and each of R171 and R172 is any one of a hydrogen group and an alkyl group.
  • the compound represented by the formula (1) is a vinylene carbonate type compound.
  • R11 and R12 may be the same type of group or different types of groups.
  • the type of the alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • Specific examples of vinylene carbonate type compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethyl vinylene carbonate (4-ethyl).
  • -1,3-dioxol-2-one 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1, Such as 3-dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
  • the compound represented by the formula (2) is a vinyl ethylene carbonate type compound.
  • Each of R13 to R16 may be the same type of group, or may be a different type of group. Of course, some of R13 to R16 may be the same type of group.
  • Specific examples of vinyl ethylene carbonate type compounds include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, 4- Ethyl-4-vinyl-1,3-dioxolane-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolane- 2-one, 4,4-divinyl-1,3-dioxolan-2-one and 4,5-divinyl-1,3-dioxolan-2-one.
  • the compound represented by the formula (3) is a methylene ethylene carbonate type compound.
  • R171 and R172 may be the same type of group or different types of groups.
  • Specific examples of methylene ethylene carbonate type compounds include methylene ethylene carbonate (4-methylene-1,3-dioxolan-2-one), 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one and 4,4-diethyl-5-methylene-1,3-dioxolan-2-one and the like.
  • the unsaturated cyclic carbonate may be catechol carbonate having a benzene ring (catechol carbonate).
  • the halogenated carbonate is a cyclic or chain carbonate containing one or two or more halogens as a constituent element.
  • the halogenated carbonate is a compound represented by each of the following formulas (4) and (5). is there.
  • the content of the halogenated carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • Each of R18 to R21 is any one of a hydrogen group, a halogen group, an alkyl group, and a halogenated alkyl group, and at least one of R18 to R21 is a halogen group or a halogenated alkyl group.
  • Each of R22 to R27 is any one of a hydrogen group, a halogen group, an alkyl group, and a halogenated alkyl group, and at least one of R22 to R27 is a halogen group and an alkyl halide. Any of the groups.
  • the compound represented by the formula (4) is a cyclic halogenated carbonate.
  • R18 to R21 may be the same type of group, or may be a group different from each other. Of course, some of R18 to R21 may be the same type of group.
  • the type of the halogen group is not particularly limited, and examples thereof include a fluorine group, a chlorine group, a bromine group, and an iodine group. Among them, a fluorine group is preferable.
  • the halogenated alkyl group is a group in which one or two or more hydrogen groups in an alkyl group are substituted (halogenated) with a halogen group.
  • the details regarding the halogen group are as described above.
  • the number of halogen groups contained in the halogenated alkyl group may be one or two or more.
  • cyclic halogenated carbonate examples include compounds represented by the following formulas (4-1) to (4-21), and the compounds include geometric isomers.
  • 4,5-difluoro-1,3-dioxolan-2-one represented by the formula (4-3), etc. Is preferred.
  • a trans isomer is preferable to a cis isomer. This is because it can be easily obtained and a high effect can be obtained.
  • the compound represented by the formula (5) is a chain halogenated carbonate.
  • R22 to R27 may be the same type of group, or may be a different type of group. Of course, a part of R22 to R27 may be the same type of group.
  • chain halogenated carbonate examples include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
  • Sulfonic acid esters include, for example, monosulfonic acid esters and disulfonic acid esters.
  • the content of the sulfonic acid ester in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester.
  • cyclic monosulfonic acid esters are sultone such as 1,3-propane sultone and 1,3-propene sultone.
  • chain monosulfonic acid ester include a compound in which a cyclic monosulfonic acid ester is cleaved on the way.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester.
  • Specific examples of the cyclic disulfonic acid ester include compounds represented by the following formulas (6-1) to (6-3).
  • Specific examples of the chain disulfonic acid ester include a compound in which a cyclic disulfonic acid ester is cleaved on the way.
  • Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • the content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • carboxylic acid anhydride examples include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • disulfonic anhydride examples include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • carboxylic acid sulfonic acid anhydride examples include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • the dinitrile compound is, for example, a compound represented by NC—C m H 2m —CN (m is an integer of 1 or more).
  • Examples of the dinitrile compound include succinonitrile (NC—C 2 H 4 —CN), glutaronitrile (NC—C 3 H 6 —CN), and adiponitrile (NC—C 4 H 8 —CN).
  • the dinitrile compound may be, for example, a compound represented by NC-R1-CN (R1 is an arylene group).
  • This dinitrile compound is, for example, phthalonitrile (NC—C 6 H 4 —CN).
  • the content of the dinitrile compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more).
  • the content of the diisocyanate compound in the solvent is not particularly limited, and is, for example, 0.1% by weight to 10% by weight.
  • Specific examples of the diisocyanate compound include OCN—C 6 H 12 —NCO.
  • the electrolyte salt includes, for example, any one or more of lithium salts. However, the electrolyte salt may contain a salt other than the lithium salt, for example.
  • the type of the lithium salt is not particularly limited.
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium tetraphenylborate LiB (C 6 H 5 ) 4
  • Lithium methanesulfonate LiCH 3 SO 3
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium tetrachloroaluminate LiAlCl 4
  • dilithium hexafluorosilicate Li 2 SiF 6
  • lithium chloride LiCl
  • lithium bromide LiBr
  • the lithium salt is preferably lithium hexafluorophosphate and lithium tetrafluoroborate, and more preferably lithium hexafluorophosphate. This is because the internal resistance is reduced in the secondary battery using the electrolytic solution.
  • the electrolyte solution may contain any one kind or two or more kinds of other electrolyte salts together with the above-described electrolyte salt.
  • Electrolyte salts are, for example, compounds represented by the following formulas (7) to (9).
  • Each of R41 and R43 may be the same type of group or different types of groups.
  • Each of R51 to R53 may be the same type of group, or may be a group different from each other. Of course, some of R51 to R53 may be the same type of group.
  • Each of R61 and R62 may be the same type of group or different types of groups.
  • X41 is one of Group 1 and Group 2 elements in the long-period periodic table, and aluminum (Al).
  • M41 is a transition metal, and Group 13 element and Group 14 in the long-period periodic table. And any one of elements and Group 15.
  • R41 is a halogen group
  • Y41 is —C ( ⁇ O) —R42—C ( ⁇ O) —, —C ( ⁇ O) —CR43 2 —.
  • R43 is any one of an alkyl group, a halogenated alkyl group, an aryl group, and a halogenated aryl group, a4 is an integer of 1 to 4, b4 is an integer of 0, 2 or 4, and c4 d4, each of m4 and n4 is an integer of 1-3.
  • X51 is one of Group 1 and Group 2 elements in the long-period periodic table.
  • M51 is a transition metal, and Group 13 element, Group 14 element and Group 15 element in the long-period periodic table.
  • any of the alkyl groups provided that at least one of R51 is It is either a halogen group or a halogenated alkyl group, and at least one of R53 is any one of a halogen group and a halogenated alkyl group, and R52 is a hydrogen group, an alkyl group, or a halogen group.
  • R51 is It is either a halogen group or a halogenated alkyl group
  • at least one of R53 is any one of a halogen group and a halogenated alkyl group
  • R52 is a hydrogen group, an alkyl group, or a halogen group.
  • Each of a5, e5 and n5 is an integer of 1 or 2
  • each of b5 and d5 is an integer of 1 to 4
  • c5 is an integer of 0 to 4
  • each of f5 and m5 is an integer of 1 to 3.
  • X61 is one of Group 1 and Group 2 elements in the long-period periodic table.
  • M61 is a transition metal, and Group 13 element, Group 14 element and Group 15 element in the long-period periodic table.
  • Rf is either a fluorinated alkyl group or a fluorinated aryl group, and each of the fluorinated alkyl group and the fluorinated aryl group has 1 to 10 carbon atoms.
  • R61 is any one of a hydrogen group, an alkyl group, a halogen group, and a halogenated alkyl group
  • R62 is any one of a hydrogen group, an alkyl group, a halogen group, and a halogenated alkyl group.
  • R62 is any one of a halogen group and a halogenated alkyl group, each of a6, f6 and n6 is an integer of 1 or 2, and each of b6, c6 and e6 is 1 D6 is an integer from 0 to 4, and each of g6 and m6 is an integer from 1 to 3.
  • the Group 1 elements are hydrogen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • Group 2 elements are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • Group 13 elements are boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl).
  • Group 14 elements are carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb).
  • Group 15 elements are nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi).
  • Specific examples of the compound represented by the formula (7) include compounds represented by the following formulas (7-1) to (7-6).
  • Specific examples of the compound represented by the formula (8) include compounds represented by the following formulas (8-1) to (8-8).
  • Specific examples of the compound represented by the formula (9) include a compound represented by the following formula (9-1).
  • the other electrolyte salt may be a compound represented by each of the following formulas (10) to (12).
  • Each of m and n may be the same value or different values.
  • each of p, q, and r may be the same value or different values. Of course, some of p, q and r may have the same value.
  • R71 is a linear or branched perfluoroalkylene group having 2 to 4 carbon atoms.
  • the compound shown in Formula (10) is a chain imide compound.
  • the chain imide compound include bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), bis (pentafluoroethane (Sulfonyl) imidolithium (LiN (C 2 F 5 SO 2 ) 2 ), (trifluoromethanesulfonyl) (pentafluoroethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 )), (trifluoro Lomethanesulfonyl) (heptafluoropropanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) (C 3 F 7 SO 2 )) and (trifluoromethanesulfonyl) (nonaflu
  • the compound shown in Formula (11) is a cyclic imide compound.
  • Specific examples of the cyclic imide compound include compounds represented by the following formulas (11-1) to (11-4).
  • the compound represented by the formula (12) is a chain methide compound.
  • Specific examples of the chain methide compound include lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ).
  • electrolyte salts may be phosphorous fluorine-containing salts such as lithium difluorophosphate (LiPF 2 O 2 ) and lithium fluorophosphate (Li 2 PFO 3 ).
  • the content of the electrolyte salt is not particularly limited, but among them, it is preferably 0.8 mol / kg to 2.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
  • the “electrolyte salt” described here is the sum of the contents of the above-described electrolyte salt and other electrolyte salts.
  • an electrolytic solution for example, after adding an electrolyte salt to a solvent containing ethylene carbonate, the solvent is stirred to dissolve or disperse the electrolyte salt in the solvent.
  • the content of the electrolyte salt in the electrolytic solution (mol / kg)
  • the content of ethylene carbonate in the solvent (wt%)
  • the mixing ratio of the electrolyte salt and ethylene carbonate are adjusted.
  • the electrolyte solution containing a solvent (ethylene carbonate) and an electrolyte salt is completed.
  • the solvent contains ethylene carbonate
  • the above three conditions regarding the content of the electrolyte salt in the electrolytic solution, the content of ethylene carbonate in the solvent, and the molar ratio M2 / M1 are the same. be satisfied.
  • the electrode reaction using the electrolyte salt is sufficiently advanced, and the gas caused by the decomposition reaction of the electrolytic solution is reduced. Occurrence is suppressed. Therefore, in the secondary battery using the electrolytic solution, the discharge capacity is hardly reduced and the secondary battery is less likely to swell, so that excellent battery characteristics can be obtained.
  • the solvent contains a cyclic carbonate and one or both of a chain carbonate ester and a chain carboxylate ester
  • the cyclic carbonate ester contains ethylene carbonate
  • the chain carbonate ester contains diethyl carbonate and the like.
  • the chain carboxylic acid ester contains ethyl propionate or the like, the generation of gas due to the decomposition reaction of the electrolytic solution is sufficiently suppressed, so that a higher effect can be obtained.
  • the solvent contains propylene carbonate and the content of propylene carbonate in the solvent is 30% by weight or less, the secondary battery is less likely to swell, and thus a higher effect can be obtained.
  • the electrolyte salt contains a lithium salt
  • ethylene carbonate is likely to be solvated with the cations (lithium ions) constituting the electrolyte salt.
  • FIG. 1 shows a cross-sectional configuration of the secondary battery
  • FIG. 2 shows an enlarged cross-sectional configuration of a part of the spirally wound electrode body 30 shown in FIG.
  • FIG. 1 shows a state where the wound electrode body 30 and the exterior member 40 are separated from each other.
  • the secondary battery described here is, for example, a lithium ion secondary battery in which the capacity of the negative electrode 22 can be obtained by occlusion and release of lithium as an electrode reactant.
  • This secondary battery is a lithium ion secondary battery having a so-called laminate film type battery structure. That is, for example, as shown in FIG. 1, in a laminated film type secondary battery, a wound electrode body 30, which is a battery element, is accommodated inside a film-shaped exterior member 40.
  • the wound electrode body 30 for example, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34, and the separator 35 are wound.
  • the wound electrode body 30 is impregnated with an electrolytic solution that is a liquid electrolyte. That is, the wound electrode body 30 housed in the film-shaped exterior member 40 includes the positive electrode 33, the negative electrode 34, and the electrolytic solution.
  • a positive electrode lead 31 is attached to the positive electrode 33, and a negative electrode lead 32 is attached to the negative electrode 34.
  • the outermost periphery of the wound electrode body 30 is protected by a protective tape.
  • the positive electrode lead 31 and the negative electrode lead 32 is led out in the same direction from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 includes, for example, any one type or two or more types of conductive materials such as aluminum (Al).
  • the negative electrode lead 32 includes any one type or two or more types of conductive materials such as copper (Cu), nickel (Ni), and stainless steel. These conductive materials have, for example, a thin plate shape or a mesh shape.
  • the exterior member 40 is, for example, one film that can be folded in the direction of the arrow R shown in FIG. 1, and a recess for accommodating the wound electrode body 30 is provided in a part of the exterior member 40. It has been.
  • the exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the secondary battery, after the exterior member 40 is folded so that the fusion layers face each other with the wound electrode body 30 therebetween, the outer peripheral edges of the fusion layers are fused.
  • the exterior member 40 may be one in which two laminated films are bonded together with an adhesive or the like.
  • the fusion layer is, for example, any one kind or two or more kinds of films such as polyethylene and polypropylene.
  • the metal layer is, for example, one or more of aluminum foils.
  • the surface protective layer is, for example, any one film or two or more films selected from nylon and polyethylene terephthalate.
  • the exterior member 40 is an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • an adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 in order to prevent intrusion of outside air. Further, for example, the adhesion film 41 described above is inserted between the exterior member 40 and the negative electrode lead 32.
  • the adhesion film 41 includes a material having adhesion to both the positive electrode lead 31 and the negative electrode lead 32.
  • the material having this adhesion is, for example, a polyolefin resin, and more specifically, any one or more of polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
  • the positive electrode 33 includes a positive electrode current collector 33A and positive electrode active material layers 33B provided on both surfaces of the positive electrode current collector 33A.
  • the positive electrode active material layer 33B may be provided only on one surface of the positive electrode current collector 33A.
  • the positive electrode current collector 33A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as aluminum, nickel, and stainless steel.
  • the positive electrode current collector 33A may be a single layer or a multilayer.
  • the positive electrode active material layer 33B contains any one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material.
  • the positive electrode active material layer 33B may include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent in addition to the positive electrode active material.
  • the positive electrode material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide is an oxide containing lithium and one or more other elements (elements other than lithium) as constituent elements.
  • the crystal structure of any one of a layered rock salt type and a spinel type have.
  • the lithium-containing phosphate compound is a phosphate compound containing lithium and one or more other elements as constituent elements, and has, for example, an olivine type crystal structure.
  • the type of other element is not particularly limited as long as it is any one or more of arbitrary elements.
  • the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, it is more preferable that the other elements include one or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). preferable. This is because a high voltage can be obtained.
  • lithium-containing composite oxide having a layered rock salt type crystal structure examples include compounds represented by the following formulas (21) to (23).
  • M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1 are satisfied.
  • the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.
  • M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8.
  • composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.
  • M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure may be, for example, a compound represented by the following formula (24). This compound is a lithium nickel-containing composite oxide containing nickel as a constituent element and having a relatively high nickel content.
  • M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb), and
  • X is a halogen element
  • x, y, z , A and b are 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 1.0, 0.5 ⁇ z ⁇ 1.0, 0 ⁇ a ⁇ 1.0, 1.8 ⁇ b ⁇ 2. 2 and y ⁇ z are satisfied.
  • lithium-containing composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements
  • the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (25).
  • M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9.
  • composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.
  • lithium-containing composite oxide having a spinel crystal structure examples include LiMn 2 O 4 .
  • lithium-containing phosphate compound having an olivine type crystal structure examples include a compound represented by the following formula (26).
  • Li a M15PO 4 (26) (M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ⁇ a ⁇ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
  • lithium-containing phosphate compound having an olivine type crystal structure examples include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the lithium-containing composite oxide may be a compound represented by the following formula (27).
  • the positive electrode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like.
  • oxide include titanium oxide, vanadium oxide, and manganese dioxide.
  • disulfide include titanium disulfide and molybdenum sulfide.
  • chalcogenide is niobium selenide.
  • conductive polymer include sulfur, polyaniline, and polythiophene.
  • the positive electrode material may be a material other than the above.
  • the positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound.
  • synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • polymer compound include polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent includes, for example, one or more of carbon materials.
  • the carbon material include graphite, carbon black, acetylene black, and ketjen black.
  • the positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
  • the negative electrode 34 includes a negative electrode current collector 34A and negative electrode active material layers 34B provided on both surfaces of the negative electrode current collector 34A.
  • the negative electrode active material layer 34B may be provided only on one surface of the negative electrode current collector 34A.
  • the negative electrode current collector 34A includes, for example, any one type or two or more types of conductive materials. Although the kind of electrically conductive material is not specifically limited, For example, they are metal materials, such as copper, aluminum, nickel, and stainless steel.
  • the negative electrode current collector 34A may be a single layer or a multilayer.
  • the surface of the negative electrode current collector 34A is preferably roughened. This is because the adhesion of the negative electrode active material layer 34B to the negative electrode current collector 34A is improved by a so-called anchor effect. In this case, the surface of the negative electrode current collector 34A only needs to be roughened at least in a region facing the negative electrode active material layer 34B.
  • the roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, fine particles are formed on the surface of the negative electrode current collector 34A by an electrolysis method in an electrolytic bath, so that the surface of the negative electrode current collector 34A is provided with irregularities.
  • a copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 34B includes one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material.
  • the negative electrode active material layer 34B may include any one kind or two or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent in addition to the negative electrode active material.
  • the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 33. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 33.
  • the negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 34B is improved.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite.
  • the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less.
  • examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks.
  • the cokes include pitch coke, needle coke, petroleum coke and the like.
  • the organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
  • the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be any of a simple substance, an alloy, and a compound, or may be two or more of them, or may be a material having at least a part of one or two or more of them.
  • the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements.
  • the alloy may contain a nonmetallic element.
  • the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
  • the metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
  • silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
  • the material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy, and a compound of silicon, or any of a simple substance, an alloy, and a compound of tin. These may be two or more types, or may be a material having at least a part of one or two or more of them.
  • the simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
  • the alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more.
  • the compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon.
  • the compound of silicon may contain any 1 type or 2 types or more of the series of elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
  • silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), and LiSiO.
  • v in SiO v may be 0.2 ⁇ v ⁇ 1.4.
  • the alloy of tin for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more.
  • the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain any 1 type in the series of elements demonstrated regarding the alloy of tin, or 2 or more types as structural elements other than tin, for example.
  • tin alloy and the tin compound include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
  • the material containing tin as a constituent element is preferably, for example, a material (Sn-containing material) containing a second constituent element and a third constituent element together with tin which is the first constituent element.
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included.
  • the third constituent element includes, for example, one or more of boron, carbon, aluminum, phosphorus, and the like. This is because, when the Sn-containing material contains the second and third constituent elements, a high battery capacity and excellent cycle characteristics can be obtained.
  • the Sn-containing material is preferably a material (SnCoC-containing material) containing tin, cobalt, and carbon as constituent elements.
  • the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
  • the SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a reaction phase capable of reacting with lithium, excellent characteristics can be obtained due to the presence of the reaction phase.
  • the half-width (diffraction angle 2 ⁇ ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuK ⁇ ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred. This is because lithium is occluded and released more smoothly and the reactivity with the electrolytic solution is reduced.
  • the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
  • a diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium can be easily determined by comparing X-ray diffraction charts before and after electrochemical reaction with lithium. .
  • the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it corresponds to a reaction phase capable of reacting with lithium.
  • Such a reaction phase contains, for example, each of the above-described constituent elements, and is considered to be low crystallized or amorphous mainly due to the presence of carbon.
  • the SnCoC-containing material it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed.
  • the bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al—K ⁇ ray or Mg—K ⁇ ray is used as the soft X-ray.
  • the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference.
  • the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon.
  • This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon
  • One kind or two or more kinds may be included as constituent elements.
  • SnCoC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • SnCoFeC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • the composition of the SnCoFeC-containing material is arbitrary.
  • the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%.
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the carbon content is 11.9% to 29.7% by mass
  • the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4 mass% to 48.5 mass%, and the ratio of cobalt and iron content (Co / (Co + Fe)) is 9.9 mass% to 79.5 mass%.
  • the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
  • the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example.
  • the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
  • Metal materials in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging.
  • the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using both a carbon material and a metal-based material, expansion and contraction during charging and discharging are suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
  • the negative electrode active material layer 34B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method).
  • the coating method is, for example, a method in which a particle (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 34A.
  • the vapor phase method include a physical deposition method and a chemical deposition method.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
  • the liquid phase method include an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 34A.
  • the firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 34A using a coating method, and then heat-treated at a temperature higher than the melting point of the negative electrode binder or the like.
  • an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be used.
  • the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is , Greater than the electrochemical equivalent of the positive electrode.
  • the open circuit voltage at the time of full charge that is, the battery voltage
  • the same positive electrode active material is used compared to the case where the open circuit voltage at the time of full charge is 4.20 V.
  • the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
  • the open circuit voltage (charge end voltage) at the time of full charge is not particularly limited, but is preferably 4.2 V or more as described above. Especially, it is preferable that it is 4.25V or more at the time of complete charge, and it is more preferable that it is 4.35V or more. This is because even if the open circuit voltage at the time of full charge is remarkably increased, an advantage based on the optimization of the mixing ratio of the electrolyte salt and ethylene carbonate can be obtained, so that excellent battery characteristics can be obtained.
  • the discharge end voltage is not specifically limited, For example, it is 3.0 V or less.
  • the separator 35 is disposed between the positive electrode 33 and the negative electrode 34.
  • the separator 35 separates the positive electrode 33 and the negative electrode 34 and allows lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 35 is, for example, one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more kinds of porous films.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • the separator 35 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 35 to each of the positive electrode 33 and the negative electrode 34 is improved, so that the distortion of the wound electrode body 30 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is not easily increased even if charging and discharging are repeated, and the battery swelling is also suppressed. Is done.
  • the polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer compound may be other than polyvinylidene fluoride.
  • the substrate layer is dried.
  • the base material layer may be dried.
  • This polymer compound layer may contain any one kind or two or more kinds of insulating particles such as inorganic particles. Examples of the inorganic particles include aluminum oxide and aluminum nitride.
  • the electrolytic solution has the same configuration as the electrolytic solution of the present technology described above. That is, in the electrolytic solution, the solvent contains ethylene carbonate, and the mixing ratio of the electrolyte salt and ethylene carbonate is optimized. That is, the above three conditions are simultaneously satisfied with respect to the content of the electrolyte salt in the electrolytic solution, the content of ethylene carbonate in the solvent, and the molar ratio M2 / M1.
  • An electrolyte layer that is a gel electrolyte may be used instead of the electrolyte that is a liquid electrolyte.
  • the electrolyte layer is formed on the surface of one or both of the positive electrode 33 and the negative electrode 34.
  • the electrolyte layer includes an electrolytic solution and a polymer compound that holds the electrolytic solution. The configuration of the electrolytic solution is as described above.
  • the polymer compound contains, for example, one or more of polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, and polypropylene oxide.
  • the polymer compound may be a copolymer. This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
  • This secondary battery operates as follows, for example.
  • lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36.
  • lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
  • This secondary battery is manufactured by the following procedure, for example.
  • the positive electrode 33 When the positive electrode 33 is manufactured, first, a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, a positive electrode mixture slurry is obtained by dispersing the positive electrode mixture in an organic solvent or the like. Subsequently, after the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 33A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 33B. Subsequently, the positive electrode active material layer 33B is compression-molded using a roll press or the like while heating the positive electrode active material layer 33B as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A by the same procedure as that of the positive electrode 33 described above. Specifically, a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like. A negative electrode mixture slurry. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 34A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 34B. Finally, the negative electrode active material layer 34B is compression molded using a roll press or the like.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34 and the separator 35 are wound to produce a wound body that is a precursor of the wound electrode body 30. To do. Then, a protective tape is affixed on the outermost peripheral part of a wound body.
  • the remaining outer peripheral edge portion excluding the outer peripheral edge portion of one side of the exterior member 40 is adhered by using a heat sealing method or the like.
  • the wound body is housed inside the bag-shaped exterior member 40.
  • the exterior member 40 is sealed using a thermal fusion method or the like.
  • a precursor solution is prepared by mixing an electrolytic solution, a polymer compound, an organic solvent, and the like. Subsequently, after applying the precursor solution to the surface of the positive electrode 33, the precursor solution is dried to form an electrolyte layer. Moreover, after apply
  • the positive electrode 33 on which the electrolyte layer is formed and the negative electrode 34 on which the electrolyte layer is formed are stacked via the separator 35, and then the positive electrode 33, the negative electrode 34, and the separator 35 are stacked. And winding the electrolyte layer.
  • the electrolyte has the same configuration as the electrolyte of the present technology. Therefore, as mentioned above, generation
  • the lithium nickel-containing composite oxide has a property that facilitates the decomposition reaction of the electrolytic solution.
  • blisters resulting from the generation of the gas described above are easily manifested. Therefore, by utilizing the advantage based on the above-described configuration of the electrolytic solution (optimization of the mixing ratio of the electrolyte salt and ethylene carbonate), the swelling of the secondary battery can be effectively suppressed.
  • the swelling due to the generation of the gas tends to be manifested. Therefore, by utilizing the advantage based on the configuration of the electrolytic solution described above, it is possible to effectively suppress the swelling of the secondary battery.
  • Secondary batteries can be used in machines, equipment, instruments, devices and systems (aggregates of multiple equipment) that can be used as a power source for driving or a power storage source for power storage. If there is, it will not be specifically limited.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • the auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary.
  • the type of main power source is not limited to the secondary battery.
  • the usage of the secondary battery is, for example, as follows.
  • Electronic devices including portable electronic devices
  • portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
  • It is a portable living device such as an electric shaver.
  • Storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack that is mounted on a notebook computer or the like as a detachable power source.
  • Medical electronic devices such as pacemakers and hearing aids.
  • An electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is an electric power storage system such as a home battery system that stores electric power in case of an emergency.
  • the secondary battery may be used for other purposes.
  • the battery pack is a power source using a secondary battery. As will be described later, this battery pack may use a single battery or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above.
  • the power storage system is a system that uses a secondary battery as a power storage source.
  • a secondary battery which is a power storage source
  • An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source.
  • An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
  • FIG. 3 shows a perspective configuration of a battery pack using single cells.
  • FIG. 4 shows a block configuration of the battery pack shown in FIG. FIG. 3 shows a state where the battery pack is disassembled.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery of the present technology, and is mounted on, for example, an electronic device typified by a smartphone.
  • the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 that is connected to the power supply 111.
  • a positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111.
  • a protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115.
  • the circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power source 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detector 124 detects the temperature using a temperature detection terminal (so-called T terminal) 126.
  • the controller 121 controls the operation of the entire battery pack (including the usage state of the power supply 111).
  • the control unit 121 includes, for example, a central processing unit (CPU) and a memory.
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 cuts off the charging current by cutting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 so that no discharge current flows in the current path of the power supply 111.
  • the control unit 121 cuts off the discharge current by cutting the switch unit 122.
  • the overcharge detection voltage is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the switch unit 122 switches the usage state of the power source 111, that is, whether or not the power source 111 is connected to an external device, in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the temperature measurement result to the control unit 121.
  • the temperature detection unit 124 includes a temperature detection element such as a thermistor, for example.
  • the temperature measurement result measured by the temperature detection unit 124 is used when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
  • circuit board 116 may not include the PTC element 123. In this case, a PTC element may be attached to the circuit board 116 separately.
  • FIG. 5 shows a block configuration of a battery pack using an assembled battery.
  • This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60.
  • the housing 60 includes, for example, a plastic material.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62).
  • the control unit 61 includes, for example, a CPU.
  • the power source 62 is an assembled battery including two or more types of secondary batteries of the present technology, and the connection type of the two or more types of secondary batteries may be in series, in parallel, or a mixture of both. .
  • the power source 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the usage state of the power source 62, that is, whether or not the power source 62 is connected to an external device, in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result of the current to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the temperature measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power source 62 and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
  • the switch control unit 67 controls the operation of the switch unit 63 according to signals input from the current measurement unit 64 and the voltage detection unit 66, respectively.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62.
  • the power source 62 can only discharge through the discharging diode.
  • the switch control unit 67 cuts off the charging current.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62.
  • the power source 62 can only be charged via the charging diode.
  • the switch control unit 67 interrupts the discharge current.
  • the overcharge detection voltage is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the memory 68 includes, for example, an EEPROM which is a nonvolatile memory.
  • the memory 68 stores, for example, numerical values calculated by the control unit 61, information on the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state), and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
  • the temperature detection element 69 measures the temperature of the power supply 62 and outputs the temperature measurement result to the control unit 61.
  • the temperature detection element 69 includes, for example, a thermistor.
  • Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (eg, a notebook personal computer) that is operated using a battery pack, an external device (eg, a charger) that is used to charge the battery pack, and the like. It is a terminal to be connected.
  • the power source 62 is charged and discharged via the positive terminal 71 and the negative terminal 72.
  • FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • This electric vehicle can travel using, for example, one of the engine 75 and the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential device 78, the transmission 80, and the clutch 81 which are driving units.
  • the motor 77 serving as the conversion unit is used as a power source
  • the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and therefore the motor is utilized using the AC power.
  • 77 is driven.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheels 86 and the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
  • the motor 77 may generate AC power using the rotational force. Good. Since this AC power is converted into DC power via the inverter 82, the DC regenerative power is preferably stored in the power source 76.
  • the control unit 74 controls the operation of the entire electric vehicle.
  • the control unit 74 includes, for example, a CPU.
  • the power source 76 includes one or more types of secondary batteries of the present technology.
  • the power source 76 may be connected to an external power source, and may store power by receiving power supply from the external power source.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the throttle valve opening (throttle opening).
  • the various sensors 84 include, for example, any one or more of speed sensors, acceleration sensors, engine speed sensors, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
  • FIG. 7 shows a block configuration of the power storage system.
  • This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building.
  • the power source 91 is connected to an electric device 94 installed in the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89.
  • the power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and also connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
  • the electric device 94 includes, for example, one or more kinds of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater.
  • the private power generator 95 includes, for example, any one type or two or more types among a solar power generator and a wind power generator.
  • the electric vehicle 96 includes, for example, any one or more of an electric vehicle, an electric motorcycle, and a hybrid vehicle.
  • the centralized power system 97 includes, for example, any one or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91).
  • the control unit 90 includes, for example, a CPU.
  • the power source 91 includes one or more types of secondary batteries of the present technology.
  • the smart meter 92 is, for example, a network-compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Accordingly, the smart meter 92 enables highly efficient and stable energy supply, for example, by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside.
  • the power storage system for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93.
  • electric power is accumulated in the power source 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged.
  • the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
  • the power stored in the power source 91 can be used as necessary. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
  • the power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
  • FIG. 8 shows a block configuration of the electric power tool.
  • the electric tool described here is, for example, an electric drill.
  • This electric tool includes, for example, a control unit 99 and a power source 100 inside a tool body 98.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the tool main body 98 includes, for example, a plastic material.
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100).
  • the control unit 99 includes, for example, a CPU.
  • the power supply 100 includes one or more types of secondary batteries of the present technology.
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in accordance with the operation of the operation switch.
  • a positive electrode binder polyvinylidene fluoride
  • a positive electrode conductive agent acetylene black
  • the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 33A (20 ⁇ m-thick striped aluminum foil) using a coating apparatus, and then the positive electrode mixture slurry was dried, whereby the positive electrode active material layer 33B was formed. Formed. Finally, the positive electrode active material layer 33B was compression molded using a roll press.
  • the negative electrode active material layer 34B was compression molded using a roll press.
  • an electrolyte salt LiPF 6
  • LiPF 6 an electrolyte salt
  • the solvent composition content of each component in the solvent: wt%)
  • the content of the electrolyte salt in the electrolytic solution mol / kg
  • the molar ratio M2 / M1 is as shown in Table 1.
  • the molar ratio M2 / M1 was changed by changing the amount of electrolyte salt added (the amount of electrolyte salt in the electrolytic solution) and the content of ethylene carbonate in the solvent.
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) were used.
  • the chain carbonates diethyl carbonate (DEC) and ethyl methyl carbonate (EMC) were used.
  • the chain carboxylic acid ester propyl propionate (PRP) was used.
  • the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A.
  • the laminated body was obtained by laminating
  • the wound body was produced by sticking a protective tape on the outermost periphery part of the laminated body.
  • the exterior member 40 so as to sandwich the wound body the outer peripheral edge portions of three sides of the exterior member 40 were heat-sealed.
  • the exterior member 40 is an aluminum laminated film in which a 25 ⁇ m thick nylon film, a 40 ⁇ m thick aluminum foil, and a 30 ⁇ m thick polypropylene film are laminated in this order from the outside.
  • the adhesion film 41 was inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 41 was inserted between the negative electrode lead 32 and the exterior member 40.
  • the electrolytic solution is injected into the exterior member 40 to impregnate the wound body with the electrolytic solution, and then the outer peripheral edge portions of the remaining one side of the exterior member 40 are thermally melted in a reduced pressure environment. I wore it.
  • the spirally wound electrode body 30 was produced and the spirally wound electrode body 30 was enclosed in the exterior member 40, so that a laminate film type lithium ion secondary battery was completed.
  • the thickness change rate and the capacity retention rate varied depending on the ethylene carbonate content, the electrolyte salt content, and the molar ratio M2 / M1.
  • the ethylene carbonate content is 10 wt% to 30 wt%
  • the electrolyte salt content is 0.8 mol / kg to 2.0 mol / kg
  • the molar ratio M2 / M1 is 0.4 to 2.4.
  • the rate of change in thickness is further reduced while maintaining a high capacity retention rate as compared with the case where the solvent does not contain propylene carbonate.
  • the solvent contains ethylene carbonate, and the above three conditions regarding the content of ethylene carbonate in the solvent, the content of electrolyte salt in the electrolytic solution, and the molar ratio M2 / M1 are simultaneously satisfied. As a result, both the swollenness characteristics and the cycle characteristics were improved. Therefore, excellent battery characteristics were obtained in the secondary battery.
  • the structure of the battery element in the secondary battery of the present technology is not particularly limited.
  • the battery element may have another structure such as a laminated structure.
  • a positive electrode A negative electrode
  • a solvent and an electrolyte salt the solvent contains ethylene carbonate
  • B a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less
  • C in the solvent
  • the content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less
  • D the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4.
  • a secondary battery comprising the following electrolyte solution.
  • the positive electrode includes a positive electrode active material
  • the positive electrode active material includes a compound represented by the following formula (24):
  • M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb)
  • X is a halogen element
  • a and b are 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 1.0, 0.5 ⁇ z ⁇ 1.0, 0 ⁇ a ⁇ 1.0, 1.8 ⁇ b ⁇ 2.
  • the solvent includes a cyclic carbonate and at least one of a chain carbonate ester and a chain carboxylate ester,
  • the cyclic carbonate includes the ethylene carbonate
  • the chain carbonate includes at least one of diethyl carbonate and ethyl methyl carbonate
  • the chain carboxylic acid ester includes at least one of ethyl propionate and propyl propionate.
  • the cyclic carbonate further contains propylene carbonate, The content of the propylene carbonate in the solvent is 30% by weight or less.
  • the electrolyte salt includes at least one lithium salt, The secondary battery according to any one of (1) to (4) above.
  • Each of the positive electrode, the negative electrode, and the electrolytic solution is housed in a film-shaped exterior member.
  • (A) includes a solvent and an electrolyte salt, and the solvent includes ethylene carbonate;
  • (B) The content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less,
  • (C) The content of the ethylene carbonate in the solvent is 10 wt% or more and 30 wt% or less,
  • (D) The ratio M2 / M1 of the number of moles M2 of ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4 or less.
  • (11) The secondary battery according to any one of the above (1) to (7); One or more electric devices supplied with electric power from the secondary battery; And a control unit that controls power supply from the secondary battery to the electrical device.
  • a power tool comprising: a movable part to which electric power is supplied from the secondary battery.
  • An electronic device comprising the secondary battery according to any one of (1) to (7) as a power supply source.

Abstract

This secondary battery comprises: a positive electrode; a negative electrode; and an electrolyte solution which is configured such that (A) a solvent and an electrolyte salt are contained therein, and the solvent contains ethylene carbonate, (B) the content of the electrolyte salt is from 0.8 mol/kg to 2.0 mol/kg (inclusive), (C) the content of the ethylene carbonate in the solvent is from 10% by weight to 30% by weight (inclusive) and (D) the ratio of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt, namely M2/M1 is from 0.4 to 2.4 (inclusive).

Description

二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
 本技術は、二次電池に用いられる電解液、その電解液を用いた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。 The present technology relates to an electrolytic solution used for a secondary battery, a secondary battery using the electrolytic solution, a battery pack using the secondary battery, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
 携帯電話機および携帯情報端末機器(PDA)などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。そこで、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能である二次電池の開発が進められている。 Various electronic devices such as mobile phones and personal digital assistants (PDAs) are widely used, and there is a demand for downsizing, weight reduction, and long life of the electronic devices. Therefore, development of a battery, particularly a secondary battery that is small and lightweight and capable of obtaining a high energy density, is underway as a power source.
 二次電池は、上記した電子機器に限らず、他の用途への適用も検討されている。一例を挙げると、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、および電動ドリルなどの電動工具である。 Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses. For example, a battery pack detachably mounted on an electronic device, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
 この二次電池は、正極および負極と共に電解液を備えている。電解液の組成は、電池特性に大きな影響を及ぼすため、その電解液の組成に関しては、さまざまな検討がなされている。 This secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode. Since the composition of the electrolytic solution greatly affects the battery characteristics, various studies have been made on the composition of the electrolytic solution.
 具体的には、ガス発生量を低減するために、非水溶媒がエチレンカーボネート、プロピレンカーボネート、鎖状カーボネートおよびビニレンカーボネートなどを含んでいると共に、リチウム塩がLiPFおよびLiBFを含んでいる。この場合には、エチレンカーボネート、プロピレンカーボネートおよび鎖状カーボネートの合計の割合、ビニレンカーボネートの割合、ならびにエチレンカーボネートおよびプロピレンカーボネートの合計と鎖状カーボネートとの比などが規定されている(例えば、特許文献1参照。)。 Specifically, in order to reduce the amount of gas generated, the nonaqueous solvent contains ethylene carbonate, propylene carbonate, chain carbonate, vinylene carbonate, and the like, and the lithium salt contains LiPF 6 and LiBF 4 . In this case, the ratio of the total of ethylene carbonate, propylene carbonate and chain carbonate, the ratio of vinylene carbonate, and the ratio of the total of ethylene carbonate and propylene carbonate to the chain carbonate are defined (for example, Patent Documents). 1).
特許第5375816号明細書Japanese Patent No. 5375816
 電子機器などは、益々、高性能化および多機能化している。このため、電子機器などの使用頻度は増加していると共に、その電子機器などの使用環境は拡大している。よって、二次電池の電池特性に関しては、未だ改善の余地がある。 Electronic devices are becoming more sophisticated and multifunctional. For this reason, the use frequency of electronic devices and the like is increasing, and the use environment of the electronic devices and the like is expanding. Therefore, there is still room for improvement regarding the battery characteristics of the secondary battery.
 したがって、優れた電池特性を得ることが可能な二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することが望ましい。 Therefore, it is desirable to provide an electrolytic solution for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device that can obtain excellent battery characteristics.
 本技術の一実施形態の二次電池用電解液は、(A)溶媒および電解質塩を含むと共に、その溶媒が炭酸エチレンを含み、(B)電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)溶媒中における炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)電解質塩のモル数M1に対する炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下であるものである。 The electrolyte solution for a secondary battery according to an embodiment of the present technology includes (A) a solvent and an electrolyte salt, the solvent includes ethylene carbonate, and (B) the content of the electrolyte salt is 0.8 mol / kg or more 2 0.0 mol / kg or less, (C) the content of ethylene carbonate in the solvent is 10% by weight or more and 30% by weight or less, and (D) the ratio M2 of the number of moles of ethylene carbonate M2 to the number of moles M1 of the electrolyte salt. / M1 is 0.4 or more and 2.4 or less.
 本技術の一実施形態の二次電池は、正極と負極と電解液とを備え、その電解液が上記した本技術の一実施形態の二次電池用電解液と同様の構成を有するものである。 A secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution has the same configuration as the electrolytic solution for a secondary battery according to the embodiment of the present technology described above. .
 本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の一実施形態の二次電池と同様の構成を有するものである。 Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
 なお、モル比M2/M1の値は、小数点第二位の値を四捨五入した値である。 In addition, the value of the molar ratio M2 / M1 is a value obtained by rounding off the value of the second decimal place.
 本技術の一実施形態の二次電池用電解液または二次電池によれば、電解液が(A)~(D)のそれぞれに示した条件を同時に満たしているので、優れた電池特性を得ることができる。また、本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器においても、同様の効果を得ることができる。 According to the secondary battery electrolyte or secondary battery of an embodiment of the present technology, the electrolyte satisfies the conditions shown in (A) to (D) at the same time, so that excellent battery characteristics are obtained. be able to. The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
 なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.
本技術の一実施形態の二次電池(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view showing the structure of the secondary battery (laminate film type) of one Embodiment of this technique. 図1に示した巻回電極体の構成のうちの一部を表す断面図である。It is sectional drawing showing a part of structure of the winding electrode body shown in FIG. 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。It is a perspective view showing the structure of the application example (battery pack: single cell) of a secondary battery. 図3に示した電池パックの構成を表すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the battery pack illustrated in FIG. 3. 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery. 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery. 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery. 二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric tool) of a secondary battery.
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池用電解液
 2.二次電池
 3.二次電池の用途
  3-1.電池パック(単電池)
  3-2.電池パック(組電池)
  3-3.電動車両
  3-4.電力貯蔵システム
  3-5.電動工具
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. 1. Electrolytic solution for secondary battery Secondary battery Applications of secondary batteries 3-1. Battery pack (single cell)
3-2. Battery pack (assembled battery)
3-3. Electric vehicle 3-4. Electric power storage system 3-5. Electric tool
<1.二次電池用電解液>
 まず、本技術の一実施形態の二次電池用電解液に関して説明する。
<1. Electrolyte for secondary battery>
First, a secondary battery electrolyte solution according to an embodiment of the present technology will be described.
 ここで説明する二次電池用電解液(以下、単に「電解液」と呼称する。)は、例えば、リチウムイオン二次電池などの二次電池に用いられる。ただし、電解液が用いられる二次電池の種類は、リチウムイオン二次電池に限定されない。 The secondary battery electrolyte described here (hereinafter simply referred to as “electrolyte”) is used in, for example, a secondary battery such as a lithium ion secondary battery. However, the type of secondary battery in which the electrolytic solution is used is not limited to the lithium ion secondary battery.
[全体構成]
 電解液は、溶媒および電解質塩を含んでいる。この電解質塩は、溶媒中において溶解されていてもよいし、溶媒中において分散されていてもよい。
[overall structure]
The electrolytic solution contains a solvent and an electrolyte salt. This electrolyte salt may be dissolved in a solvent or may be dispersed in a solvent.
 溶媒は、後述する環状炭酸エステルである炭酸エチレンを含んでいる。なお、溶媒は、炭酸エチレンと共に、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。「他の材料」の詳細に関しては、後述する。非水溶媒(有機溶剤)である炭酸エチレンを含む電解液は、いわゆる非水電解液である。 The solvent contains ethylene carbonate which is a cyclic carbonate described later. In addition, the solvent may contain any 1 type or 2 or more types of other materials with ethylene carbonate. Details of “other materials” will be described later. An electrolytic solution containing ethylene carbonate which is a non-aqueous solvent (organic solvent) is a so-called non-aqueous electrolytic solution.
 電解質塩の種類は、特に限定されない。電解質塩の種類は、1種類だけでもよいし、2種類以上でもよい。中でも、電解質塩は、電極反応物質と同じ種類の金属元素を構成元素として含む金属塩であることが好ましい。電極反応が進行しやすくなるからである。 The type of electrolyte salt is not particularly limited. Only one type of electrolyte salt may be used, or two or more types may be used. Especially, it is preferable that electrolyte salt is a metal salt which contains the same kind of metal element as an electrode reactant as a structural element. This is because the electrode reaction easily proceeds.
 この「電極反応物質」とは、電解液が用いられた二次電池において、電極反応(充放電反応)を進行させるために用いられる物質である。例えば、リチウムイオン二次電池などにおいて用いられる電極反応物質は、リチウムである。これに伴い、電極反応物質としてリチウムが用いられるリチウムイオン二次電池などに電解液が用いられる場合には、電解質塩はリチウム塩であることが好ましい。 This “electrode reaction substance” is a substance used for advancing an electrode reaction (charge / discharge reaction) in a secondary battery using an electrolytic solution. For example, the electrode reactant used in a lithium ion secondary battery or the like is lithium. Accordingly, when the electrolyte is used in a lithium ion secondary battery in which lithium is used as the electrode reactant, the electrolyte salt is preferably a lithium salt.
[電解質塩と炭酸エチレンとの混合比]
 この電解液では、電解質塩を用いて電極反応を十分に進行させながら、電解液(主に、炭酸エチレン)の分解反応に起因するガス(主に、二酸化炭素)の発生を抑制するために、電解質塩と炭酸エチレンとの混合比が適正化されている。
[Mixing ratio of electrolyte salt and ethylene carbonate]
In this electrolytic solution, in order to suppress the generation of gas (mainly carbon dioxide) due to the decomposition reaction of the electrolytic solution (mainly ethylene carbonate) while sufficiently proceeding the electrode reaction using the electrolyte salt, The mixing ratio of the electrolyte salt and ethylene carbonate is optimized.
 具体的には、電解液中における電解質塩の含有量(いわゆる濃度:mol/kg)と、溶媒中における炭酸エチレンの含有量(いわゆる溶媒組成比:重量%)と、電解質塩のモル数M1に対する炭酸エチレンのモル数M2の比(いわゆるモル比)M2/M1とは、下記の3つの条件を同時に満たしている。 Specifically, the content of the electrolyte salt in the electrolytic solution (so-called concentration: mol / kg), the content of ethylene carbonate in the solvent (so-called solvent composition ratio: wt%), and the number of moles M1 of the electrolyte salt The ratio of the number of moles M2 of ethylene carbonate (so-called mole ratio) M2 / M1 satisfies the following three conditions simultaneously.
 第1に、モル比M2/M1は、2.4以下であり、好ましくは0.4~2.4である。 First, the molar ratio M2 / M1 is 2.4 or less, preferably 0.4 to 2.4.
 第2に、電解液中における電解質塩の含有量(mol/kg)は、0.8mol/kg~2.0mol/kgであり、好ましくは0.9mol/kg~1.5mol/kgである。言い替えれば、電解液中における電解質塩の含有量(重量%)は、12重量%~30重量%であり、好ましくは14重量%~23重量%である。 Second, the content (mol / kg) of the electrolyte salt in the electrolytic solution is 0.8 mol / kg to 2.0 mol / kg, preferably 0.9 mol / kg to 1.5 mol / kg. In other words, the content (% by weight) of the electrolyte salt in the electrolytic solution is 12% by weight to 30% by weight, preferably 14% by weight to 23% by weight.
 第3に、溶媒中における炭酸エチレンの含有量(重量%)は、10重量%~30重量%である。 Third, the content (% by weight) of ethylene carbonate in the solvent is 10% to 30% by weight.
 上記した3つの条件が同時に満たされているのは、上記したように、電解液が用いられた二次電池の使用時(充放電時)において、電解質塩を用いて電極反応(充放電反応)を十分に進行させながら、電解液の分解反応に起因するガスの発生が抑制されるからである。これにより、二次電池を繰り返して使用しても、放電容量が低下しにくくなると共に、その二次電池が膨れにくくなる。 The above three conditions are satisfied at the same time, as described above, when the secondary battery using the electrolytic solution is used (charging / discharging), using an electrolyte salt (charging / discharging reaction). It is because generation | occurrence | production of the gas resulting from the decomposition reaction of electrolyte solution is suppressed, making it fully advance. As a result, even if the secondary battery is used repeatedly, the discharge capacity is unlikely to decrease and the secondary battery is less likely to swell.
 特に、後述するラミネートフィルム型の二次電池(図1参照)は、外力に応じて変形しやすいフィルム状の外装部材40を用いているため、ガスの発生(内圧の上昇)に起因して膨らみやすい傾向にある。よって、ラミネートフィルム型の二次電池に用いられる電解液に関して上記した3つの条件が同時に満たされていれば、二次電池が本質的に膨れやすい場合においても、その二次電池が効果的に膨れにくくなる。 In particular, since a laminated film type secondary battery (see FIG. 1) described later uses a film-like exterior member 40 that easily deforms in response to an external force, it swells due to generation of gas (increase in internal pressure). It tends to be easy. Therefore, if the above three conditions regarding the electrolytic solution used in the laminated film type secondary battery are satisfied at the same time, even if the secondary battery is essentially swelled, the secondary battery effectively swells. It becomes difficult.
 なお、電解液の分解反応に起因するガスの発生を抑制するために、溶媒の一成分(炭酸エチレン)に着目しているのは、その炭酸エチレンがガスの発生に大きな影響を及ぼすからである。 In order to suppress the generation of gas due to the decomposition reaction of the electrolytic solution, attention is paid to one component (ethylene carbonate) of the solvent because the ethylene carbonate has a great influence on the generation of gas. .
 詳細には、電解液が二次電池に用いられた場合において、その二次電池の使用時(充放電時)においてガスを発生させる要因としては、複数の要因が考えられる。中でも、ガスの発生要因のうちの主要な要因は、溶媒の分解反応であり、特に、炭酸エチレンの酸化分解反応である。この炭酸エチレンは、電解質塩を溶解させるための高誘電率溶媒としての役割を果たすと共に、二次電池の初回の使用時において負極の表面に安定な被膜(SEI:Solid Electrolyte Interphase)を形成する役割を果たすため、電解液用の溶媒として広く用いられている。しかしながら、炭酸エチレンは、上記した有用な役割を果たす反面、二次電池に搭載されている部品(例えば、正極など)の材質との相性および充放電条件などによっては、主要なガスの発生源になる。そこで、炭酸エチレンの有用な役割に基づく利点を活用しながら、二次電池の使用時においてガスが発生することを抑制するためには、上記したように、溶媒の一成分である炭酸エチレンに着目する必要がある。 Specifically, when an electrolyte is used for a secondary battery, there are a plurality of factors that can cause gas generation when the secondary battery is used (charge / discharge). Among them, the main factor among the gas generation factors is the decomposition reaction of the solvent, and particularly the oxidative decomposition reaction of ethylene carbonate. The ethylene carbonate plays a role as a high dielectric constant solvent for dissolving the electrolyte salt, and also forms a stable coating (SEI: Solid Electrolyte Interphase) on the negative electrode surface when the secondary battery is used for the first time. Therefore, it is widely used as a solvent for electrolytic solutions. However, while ethylene carbonate plays a useful role as described above, depending on the compatibility with the material of the components (for example, positive electrode) mounted on the secondary battery and charge / discharge conditions, it is a major gas source. Become. Therefore, in order to suppress the generation of gas during use of the secondary battery while utilizing the advantages based on the useful role of ethylene carbonate, as described above, focus on ethylene carbonate, which is a component of the solvent. There is a need to.
 また、上記した3つの条件が同時に満たされていると二次電池が膨れにくくなるのは、電解液中において、電解質塩を構成するカチオンに対して炭酸エチレンが十分に溶媒和するため、その炭酸エチレンの電子状態が脱炭酸されにくい電子状態になるからであると考えられる。この「カチオン」とは、例えば、電解質塩がリチウム塩である場合には、リチウムイオンである。 In addition, when the above three conditions are satisfied at the same time, the secondary battery is less likely to swell because ethylene carbonate is sufficiently solvated with respect to the cation constituting the electrolyte salt in the electrolytic solution. This is thought to be because the electronic state of ethylene becomes an electronic state that is difficult to be decarboxylated. The “cation” is, for example, lithium ion when the electrolyte salt is a lithium salt.
 ここで、電解液中における電解質塩の含有量(mol/kg)を特定する手順は、例えば、以下の通りである。電解液中における電解質塩の含有量を特定するためには、例えば、遠心分離法および溶媒抽出法などのうちのいずれか1種類または2種類以上を用いて電解液を採取したのち、核磁気共鳴分光分析法(NMR)、原子吸光分析法(AAS)およびイオンクロマトグラフ法(IC)などのうちのいずれか1種類または2種類以上を用いて電解液を分析することにより、その電解液中における電解質塩の含有量を定量する。なお、溶媒抽出法を用いる場合には、電解液中に含まれている溶媒とは異なる種類の溶媒を用いることが好ましい。また、電解液を採取したのち、その電解液を取り扱う場合には、低粘度の溶媒が揮発することに注意する必要がある。 Here, the procedure for specifying the content (mol / kg) of the electrolyte salt in the electrolytic solution is, for example, as follows. In order to specify the content of the electrolyte salt in the electrolytic solution, for example, after collecting the electrolytic solution by using one or more of the centrifugal separation method and the solvent extraction method, nuclear magnetic resonance By analyzing the electrolyte using one or more of spectroscopic analysis (NMR), atomic absorption spectrometry (AAS), and ion chromatography (IC), etc., in the electrolyte Quantify the content of electrolyte salt. In addition, when using a solvent extraction method, it is preferable to use a different kind of solvent from the solvent contained in electrolyte solution. In addition, when the electrolytic solution is collected and then handled, it is necessary to be careful that the low-viscosity solvent volatilizes.
 溶媒中における炭酸エチレンの含有量(重量%)を特定する手順は、例えば、以下の通りである。溶媒中における炭酸エチレンの含有量を特定するためには、例えば、上記した電解質塩の含有量を特定する場合と同様の手順により、炭酸エチレンを含む電解液を採取したのち、ガスクロマトグラフ質量分析法(GC/MS)およびNMRなどのうちのいずれか1種類または2種類以上を用いて電解液を分析することにより、その電解液に含まれている各溶媒成分を定量する。この定量結果に基づいて、溶媒中における炭酸エチレンの含有量を特定する。 The procedure for specifying the content (% by weight) of ethylene carbonate in the solvent is, for example, as follows. In order to specify the content of ethylene carbonate in the solvent, for example, after collecting an electrolytic solution containing ethylene carbonate by the same procedure as in the case of specifying the content of the electrolyte salt described above, gas chromatography mass spectrometry Each solvent component contained in the electrolytic solution is quantified by analyzing the electrolytic solution using one or more of (GC / MS) and NMR. Based on this quantitative result, the content of ethylene carbonate in the solvent is specified.
 モル比M2/M1を特定する手順は、例えば、以下の通りである。モル比M2/M1を特定するためには、例えば、上記した電解質塩の含有量を特定する場合と同様の手順により、電解液を採取したのち、NMR、AAS、ICおよびGC/MSなどのうちのいずれか1種類または2種類以上を用いて電解液を分析することにより、その電解液に含まれている全成分の組成比を求める。この組成比に基づいて、電解液中における炭酸エチレンのモル濃度(mol/kg)と、電解液中における電解質塩のモル濃度(mol/kg)とを求めることにより、モル比M2/M1=炭酸エチレンのモル濃度/電解質塩のモル濃度を算出する。なお、電解液を分析する場合には、さらに、ガスクロマトグラフ法(GC)を用いてもよい。 The procedure for specifying the molar ratio M2 / M1 is, for example, as follows. In order to specify the molar ratio M2 / M1, for example, after collecting the electrolytic solution by the same procedure as the case of specifying the content of the electrolyte salt described above, the NMR, AAS, IC, GC / MS, etc. The composition ratio of all components contained in the electrolytic solution is obtained by analyzing the electrolytic solution using any one kind or two or more kinds. Based on this composition ratio, the molar ratio of ethylene carbonate in the electrolytic solution (mol / kg) and the molar concentration of the electrolyte salt in the electrolytic solution (mol / kg) are determined, whereby the molar ratio M2 / M1 = carbonic acid. The molar concentration of ethylene / the molar concentration of electrolyte salt is calculated. In addition, when analyzing electrolyte solution, you may use a gas chromatograph method (GC) further.
[溶媒の詳細]
 なお、溶媒は、上記したように、炭酸エチレンと共に、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Solvent details]
In addition, as above-mentioned, the solvent may contain any 1 type or 2 or more types of other materials with ethylene carbonate.
 具体的には、溶媒は、高粘度(高誘電率)溶媒と低粘度(低誘電率)溶媒とを一緒に含んでいることが好ましい。電解質塩の解離性およびイオンの移動度などが向上するからである。高粘度溶媒の種類は、1種類だけでもよいし、2種類以上でもよい。同様に、低粘度溶媒の種類は、1種類だけでもよいし、2種類以上でもよい。 Specifically, the solvent preferably contains a high viscosity (high dielectric constant) solvent and a low viscosity (low dielectric constant) solvent together. This is because the dissociation property of the electrolyte salt and the mobility of ions are improved. There may be only one kind of high viscosity solvent, or two or more kinds. Similarly, only one type of low-viscosity solvent may be used, or two or more types may be used.
 高粘度溶媒の種類は、特に限定されないが、例えば、環状炭酸エステルなどである。環状炭酸エステルは、上記した炭酸エチレンの他、炭酸プロピレンなどである。 The type of the high-viscosity solvent is not particularly limited, and examples thereof include cyclic carbonates. Examples of the cyclic carbonate include propylene carbonate in addition to the above-described ethylene carbonate.
 低粘度溶媒の種類は、特に限定されないが、例えば、鎖状炭酸エステルおよび鎖状カルボン酸エステルなどである。この低粘度溶媒は、鎖状炭酸エステルだけを含んでいてもよいし、鎖状カルボン酸エステルだけを含んでいてもよいし、鎖状炭酸エステルおよび鎖状カルボン酸エステルの双方を含んでいてもよい。 The kind of the low-viscosity solvent is not particularly limited, and examples thereof include a chain carbonate ester and a chain carboxylate ester. This low-viscosity solvent may contain only a chain carbonate ester, may contain only a chain carboxylate ester, or may contain both a chain carbonate ester and a chain carboxylate ester. Good.
 鎖状炭酸エステルは、例えば、炭酸ジエチルおよび炭酸エチルメチルなどである。鎖状カルボン酸エステルは、例えば、プロピオン酸エチルおよびプロピオン酸プロピルなどである。 Examples of the chain carbonate include diethyl carbonate and ethyl methyl carbonate. Examples of the chain carboxylic acid ester include ethyl propionate and propyl propionate.
 なお、環状炭酸エステルは、上記した炭酸エチレンと共に、炭酸プロピレンを含んでいることが好ましい。電解液の分解反応に起因するガスの発生がより抑制されるからである。 In addition, it is preferable that the cyclic carbonate contains propylene carbonate together with the above-described ethylene carbonate. This is because the generation of gas due to the decomposition reaction of the electrolytic solution is further suppressed.
 ここで、溶媒は、炭酸エチレンと共に炭酸プロピレンを含んでいてもよいし、炭酸エチレンと共に炭酸プロピレンを含んでいなくてもよい。溶媒が炭酸エチレンと共に炭酸プロピレンを含んでいる場合、その溶媒中における炭酸プロピレンの含有量(重量%)は、特に限定されないが、中でも、30重量%以下であることが好ましい。なお、溶媒中における炭酸プロピレンの含有量の下限値は、特に限定されないが、例えば、0.01重量%である。電解液の分解反応に起因するガスの発生が十分に抑制されるからである。 Here, the solvent may contain propylene carbonate together with ethylene carbonate, or may not contain propylene carbonate together with ethylene carbonate. When the solvent contains propylene carbonate together with ethylene carbonate, the content (% by weight) of propylene carbonate in the solvent is not particularly limited, but is preferably 30% by weight or less. In addition, the lower limit of the content of propylene carbonate in the solvent is not particularly limited, but is 0.01% by weight, for example. It is because generation | occurrence | production of the gas resulting from the decomposition reaction of electrolyte solution is fully suppressed.
 なお、電解液は、上記した溶媒と共に、他の溶媒のうちのいずれか1種類または2種類以上を含んでいてもよい。他の溶媒は、例えば、非水溶媒(有機溶剤)などの溶媒のうちのいずれか1種類または2種類以上である。 In addition, the electrolyte solution may contain any one type or two or more types of other solvents together with the above-described solvent. The other solvent is, for example, any one kind or two or more kinds of solvents such as a non-aqueous solvent (organic solvent).
 他の溶媒は、例えば、ラクトンおよびニトリル(モノニトリル)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。 Other solvents are, for example, lactone and nitrile (mononitrile). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
 ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。ニトリルは、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。 Examples of lactones include γ-butyrolactone and γ-valerolactone. Nitriles are, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
 また、他の溶媒は、例えば、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。 Other solvents include, for example, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N -Methyl oxazolidinone, N, N'-dimethylimidazolidinone, sulfolane, trimethyl phosphate and dimethyl sulfoxide may be used. This is because similar advantages can be obtained.
 さらに、他の溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジニトリル化合物およびジイソシアネート化合物などでもよい。電解液の化学的安定性がより向上するからである。 Furthermore, other solvents may be unsaturated cyclic carbonates, halogenated carbonates, sulfonates, acid anhydrides, dinitrile compounds, diisocyanate compounds, and the like. This is because the chemical stability of the electrolytic solution is further improved.
 不飽和環状炭酸エステルは、1個または2個以上の炭素間不飽和結合(炭素間二重結合)を含む環状炭酸エステルであり、例えば、下記の式(1)~式(3)のそれぞれで表される化合物などである。全溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 An unsaturated cyclic carbonate is a cyclic carbonate containing one or more carbon-carbon unsaturated bonds (carbon-carbon double bonds). For example, each of the following formulas (1) to (3): And the like. The content of the unsaturated cyclic carbonate in the total solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
Figure JPOXMLDOC01-appb-C000001
(R11およびR12のそれぞれは、水素基およびアルキル基のうちのいずれかである。R13~R16のそれぞれは、水素基、アルキル基、ビニル基およびアリル基のうちのいずれかであり、R13~R16のうちの少なくとも1つは、ビニル基およびアリル基のうちのいずれかである。R17は、>CR171R172で表される基であり、R171およびR172のそれぞれは、水素基およびアルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000001
(Each of R11 and R12 is any one of a hydrogen group and an alkyl group. Each of R13 to R16 is any one of a hydrogen group, an alkyl group, a vinyl group, and an allyl group. R17 is a group represented by> CR171R172, and each of R171 and R172 is any one of a hydrogen group and an alkyl group. )
 式(1)に示した化合物は、炭酸ビニレン型の化合物である。R11およびR12のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。アルキル基の種類は、特に限定されないが、例えば、メチル基、エチル基およびプロピル基などである。炭酸ビニレン型の化合物の具体例は、炭酸ビニレン(1,3-ジオキソール-2-オン)、炭酸メチルビニレン(4-メチル-1,3-ジオキソール-2-オン)、炭酸エチルビニレン(4-エチル-1,3-ジオキソール-2-オン)、4,5-ジメチル-1,3-ジオキソール-2-オン、4,5-ジエチル-1,3-ジオキソール-2-オン、4-フルオロ-1,3-ジオキソール-2-オンおよび4-トリフルオロメチル-1,3-ジオキソール-2-オンなどである。 The compound represented by the formula (1) is a vinylene carbonate type compound. Each of R11 and R12 may be the same type of group or different types of groups. The type of the alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, and a propyl group. Specific examples of vinylene carbonate type compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethyl vinylene carbonate (4-ethyl). -1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1, Such as 3-dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
 式(2)に示した化合物は、炭酸ビニルエチレン型の化合物である。R13~R16のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。もちろん、R13~R16のうちの一部が互いに同じ種類の基でもよい。炭酸ビニルエチレン型の化合物の具体例は、炭酸ビニルエチレン(4-ビニル-1,3-ジオキソラン-2-オン)、4-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4-エチル-4-ビニル-1,3-ジオキソラン-2-オン、4-n-プロピル-4-ビニル-1,3-ジオキソラン-2-オン、5-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4,4-ジビニル-1,3-ジオキソラン-2-オンおよび4,5-ジビニル-1,3-ジオキソラン-2-オンなどである。 The compound represented by the formula (2) is a vinyl ethylene carbonate type compound. Each of R13 to R16 may be the same type of group, or may be a different type of group. Of course, some of R13 to R16 may be the same type of group. Specific examples of vinyl ethylene carbonate type compounds include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, 4- Ethyl-4-vinyl-1,3-dioxolane-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolane- 2-one, 4,4-divinyl-1,3-dioxolan-2-one and 4,5-divinyl-1,3-dioxolan-2-one.
 式(3)に示した化合物は、炭酸メチレンエチレン型の化合物である。R171およびR172のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。炭酸メチレンエチレン型の化合物の具体例は、炭酸メチレンエチレン(4-メチレン-1,3-ジオキソラン-2-オン)、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オンおよび4,4-ジエチル-5-メチレン-1,3-ジオキソラン-2-オンなどである。 The compound represented by the formula (3) is a methylene ethylene carbonate type compound. Each of R171 and R172 may be the same type of group or different types of groups. Specific examples of methylene ethylene carbonate type compounds include methylene ethylene carbonate (4-methylene-1,3-dioxolan-2-one), 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one and 4,4-diethyl-5-methylene-1,3-dioxolan-2-one and the like.
 この他、不飽和環状炭酸エステルは、ベンゼン環を有する炭酸カテコール(カテコールカーボネート)などでもよい。 In addition, the unsaturated cyclic carbonate may be catechol carbonate having a benzene ring (catechol carbonate).
 ハロゲン化炭酸エステルは、1個または2個以上のハロゲンを構成元素として含む環状または鎖状の炭酸エステルであり、例えば、下記の式(4)および式(5)のそれぞれで表される化合物である。溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 The halogenated carbonate is a cyclic or chain carbonate containing one or two or more halogens as a constituent element. For example, the halogenated carbonate is a compound represented by each of the following formulas (4) and (5). is there. The content of the halogenated carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
Figure JPOXMLDOC01-appb-C000002
(R18~R21のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかであり、R18~R21のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。R22~R27のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかであり、R22~R27のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000002
(Each of R18 to R21 is any one of a hydrogen group, a halogen group, an alkyl group, and a halogenated alkyl group, and at least one of R18 to R21 is a halogen group or a halogenated alkyl group. Each of R22 to R27 is any one of a hydrogen group, a halogen group, an alkyl group, and a halogenated alkyl group, and at least one of R22 to R27 is a halogen group and an alkyl halide. Any of the groups.)
 式(4)に示した化合物は、環状ハロゲン化炭酸エステルである。R18~R21のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。もちろん、R18~R21のうちの一部が互いに同じ種類の基でもよい。 The compound represented by the formula (4) is a cyclic halogenated carbonate. Each of R18 to R21 may be the same type of group, or may be a group different from each other. Of course, some of R18 to R21 may be the same type of group.
 ハロゲン基の種類は、特に限定されないが、例えば、フッ素基、塩素基、臭素基およびヨウ素基などであり、中でも、フッ素基が好ましい。 The type of the halogen group is not particularly limited, and examples thereof include a fluorine group, a chlorine group, a bromine group, and an iodine group. Among them, a fluorine group is preferable.
 アルキル基に関する詳細は、上記した通りである。ハロゲン化アルキル基とは、アルキル基のうちの1個または2個以上の水素基がハロゲン基により置換(ハロゲン化)された基である。ハロゲン基に関する詳細は、上記した通りである。ただし、ハロゲン化アルキル基に含まれるハロゲン基の種類は、1種類だけでもよいし、2種類以上でもよい。 Details regarding the alkyl group are as described above. The halogenated alkyl group is a group in which one or two or more hydrogen groups in an alkyl group are substituted (halogenated) with a halogen group. The details regarding the halogen group are as described above. However, the number of halogen groups contained in the halogenated alkyl group may be one or two or more.
 環状ハロゲン化炭酸エステルの具体例は、下記の式(4-1)~式(4-21)のそれぞれで表される化合物などであり、それらの化合物には、幾何異性体も含まれる。中でも、式(4-1)に示した4-フルオロ-1,3-ジオキソラン-2-オンおよび式(4-3)に示した4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが好ましい。なお、4,5-ジフルオロ-1,3-ジオキソラン-2-オンとしては、シス異性体よりもトランス異性体が好ましい。容易に入手できると共に、高い効果が得られるからである。 Specific examples of the cyclic halogenated carbonate are compounds represented by the following formulas (4-1) to (4-21), and the compounds include geometric isomers. Among them, 4-fluoro-1,3-dioxolan-2-one represented by the formula (4-1), 4,5-difluoro-1,3-dioxolan-2-one represented by the formula (4-3), etc. Is preferred. In addition, as 4,5-difluoro-1,3-dioxolan-2-one, a trans isomer is preferable to a cis isomer. This is because it can be easily obtained and a high effect can be obtained.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(5)に示した化合物は、鎖状ハロゲン化炭酸エステルである。R22~R27のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。もちろん、R22~R27の一部が互いに同じ種類の基でもよい。 The compound represented by the formula (5) is a chain halogenated carbonate. Each of R22 to R27 may be the same type of group, or may be a different type of group. Of course, a part of R22 to R27 may be the same type of group.
 鎖状ハロゲン化炭酸エステルの具体例は、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。 Specific examples of the chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
 スルホン酸エステルは、例えば、モノスルホン酸エステルおよびジスルホン酸エステルを含む。溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 Sulfonic acid esters include, for example, monosulfonic acid esters and disulfonic acid esters. The content of the sulfonic acid ester in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
 モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。環状モノスルホン酸エステルの具体例は、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどのスルトンである。鎖状モノスルホン酸エステルの具体例は、環状モノスルホン酸エステルが途中で切断された化合物などである。 The monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester. Specific examples of cyclic monosulfonic acid esters are sultone such as 1,3-propane sultone and 1,3-propene sultone. Specific examples of the chain monosulfonic acid ester include a compound in which a cyclic monosulfonic acid ester is cleaved on the way.
 ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。環状ジスルホン酸エステルの具体例は、下記の式(6-1)~式(6-3)のそれぞれで表される化合物などである。鎖状ジスルホン酸エステルの具体例は、環状ジスルホン酸エステルが途中で切断された化合物などである。 The disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester. Specific examples of the cyclic disulfonic acid ester include compounds represented by the following formulas (6-1) to (6-3). Specific examples of the chain disulfonic acid ester include a compound in which a cyclic disulfonic acid ester is cleaved on the way.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride. The content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
 カルボン酸無水物の具体例は、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物の具体例は、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物の具体例は、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。 Specific examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride. Specific examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride. Specific examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
 ジニトリル化合物は、例えば、NC-C2m-CN(mは、1以上の整数である。)で表される化合物である。このジニトリル化合物は、例えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)およびアジポニトリル(NC-C-CN)などである。この他、ジニトリル化合物は、例えば、NC-R1-CN(R1は、アリーレン基である。)で表される化合物でもよい。このジニトリル化合物は、例えば、フタロニトリル(NC-C-CN)などである。溶媒中におけるジニトリル化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The dinitrile compound is, for example, a compound represented by NC—C m H 2m —CN (m is an integer of 1 or more). Examples of the dinitrile compound include succinonitrile (NC—C 2 H 4 —CN), glutaronitrile (NC—C 3 H 6 —CN), and adiponitrile (NC—C 4 H 8 —CN). In addition, the dinitrile compound may be, for example, a compound represented by NC-R1-CN (R1 is an arylene group). This dinitrile compound is, for example, phthalonitrile (NC—C 6 H 4 —CN). The content of the dinitrile compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
 ジイソシアネート化合物は、例えば、OCN-C2n-NCO(nは1以上の整数である。)で表される化合物である。溶媒中におけるジイソシアネート化合物の含有量は、特に限定されないが、例えば、0.1重量%~10重量%である。ジイソシアネート化合物の具体例は、OCN-C12-NCOなどである。 The diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more). The content of the diisocyanate compound in the solvent is not particularly limited, and is, for example, 0.1% by weight to 10% by weight. Specific examples of the diisocyanate compound include OCN—C 6 H 12 —NCO.
[電解質塩の詳細]
 電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。
[Details of electrolyte salt]
The electrolyte salt includes, for example, any one or more of lithium salts. However, the electrolyte salt may contain a salt other than the lithium salt, for example.
 リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。 The type of the lithium salt is not particularly limited. For example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ) , Lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), dilithium hexafluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl) and lithium bromide (LiBr).
 中でも、リチウム塩は、六フッ化リン酸リチウムおよび四フッ化ホウ酸リチウムであることが好ましく、六フッ化リン酸リチウムであることがより好ましい。電解液が用いられた二次電池において、内部抵抗が低下するからである。 Among these, the lithium salt is preferably lithium hexafluorophosphate and lithium tetrafluoroborate, and more preferably lithium hexafluorophosphate. This is because the internal resistance is reduced in the secondary battery using the electrolytic solution.
 なお、電解液は、上記した電解質塩と共に、他の電解質塩のうちのいずれか1種類または2種類以上を含んでいてもよい。 In addition, the electrolyte solution may contain any one kind or two or more kinds of other electrolyte salts together with the above-described electrolyte salt.
 他の電解質塩は、例えば、下記の式(7)~式(9)のそれぞれで表される化合物などである。R41およびR43のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。R51~R53のそれぞれは、互いに同じ種類の基でもよいし、互いに種類の異なる基でもよい。もちろん、R51~R53のうちの一部が互いに同じ種類の基でもよい。R61およびR62のそれぞれは、互いに同じ種類の基でもよいし、互いに異なる種類の基でもよい。 Other electrolyte salts are, for example, compounds represented by the following formulas (7) to (9). Each of R41 and R43 may be the same type of group or different types of groups. Each of R51 to R53 may be the same type of group, or may be a group different from each other. Of course, some of R51 to R53 may be the same type of group. Each of R61 and R62 may be the same type of group or different types of groups.
Figure JPOXMLDOC01-appb-C000005
(X41は、長周期型周期表における1族元素および2族元素、ならびにアルミニウム(Al)のうちのいずれかである。M41は、遷移金属、ならびに長周期型周期表における13族元素、14族元素および15族元素のうちのいずれかである。R41は、ハロゲン基である。Y41は、-C(=O)-R42-C(=O)-、-C(=O)-CR43-および-C(=O)-C(=O)-のうちのいずれかである。ただし、R42は、アルキレン基、ハロゲン化アルキレン基、アリーレン基およびハロゲン化アリーレン基のうちのいずれかである。R43は、アルキル基、ハロゲン化アルキル基、アリール基およびハロゲン化アリール基のうちのいずれかである。a4は1~4の整数であり、b4は0、2または4の整数であり、c4、d4、m4およびn4のそれぞれは1~3の整数である。)
Figure JPOXMLDOC01-appb-C000005
(X41 is one of Group 1 and Group 2 elements in the long-period periodic table, and aluminum (Al). M41 is a transition metal, and Group 13 element and Group 14 in the long-period periodic table. And any one of elements and Group 15. R41 is a halogen group, Y41 is —C (═O) —R42—C (═O) —, —C (═O) —CR43 2 —. And -C (= O) -C (= O)-, wherein R42 is any one of an alkylene group, a halogenated alkylene group, an arylene group, and a halogenated arylene group. R43 is any one of an alkyl group, a halogenated alkyl group, an aryl group, and a halogenated aryl group, a4 is an integer of 1 to 4, b4 is an integer of 0, 2 or 4, and c4 d4, each of m4 and n4 is an integer of 1-3.)
Figure JPOXMLDOC01-appb-C000006
(X51は、長周期型周期表における1族元素および2族元素のうちのいずれかである。M51は、遷移金属、ならびに長周期型周期表における13族元素、14族元素および15族元素のうちのいずれかである。Y51は、-C(=O)-(CR51b5-C(=O)-、-R53C-(CR52c5-C(=O)-、-R53C-(CR52c5-CR53-、-R53C-(CR52c5-S(=O)-、-S(=O)-(CR52d5-S(=O)-および-C(=O)-(CR52d5-S(=O)-のうちのいずれかである。R51およびR53のそれぞれは、水素基、アルキル基、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。ただし、R51のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかであり、R53のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。R52は、水素基、アルキル基、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。a5、e5およびn5のそれぞれは1または2の整数であり、b5およびd5のそれぞれは1~4の整数であり、c5は0~4の整数であり、f5およびm5のそれぞれは1~3の整数である。)
Figure JPOXMLDOC01-appb-C000006
(X51 is one of Group 1 and Group 2 elements in the long-period periodic table. M51 is a transition metal, and Group 13 element, Group 14 element and Group 15 element in the long-period periodic table. .Y51 is either out is, -C (= O) - ( CR51 2) b5 -C (= O) -, - R53 2 C- (CR52 2) c5 -C (= O) -, - R53 2 C- (CR52 2) c5 -CR53 2 -, - R53 2 C- (CR52 2) c5 -S (= O) 2 -, - S (= O) 2 - (CR52 2) d5 -S (= O ) 2 — and —C (═O) — (CR52 2 ) d5 —S (═O) 2 —, wherein each of R51 and R53 is a hydrogen group, an alkyl group, a halogen group and a halogenated group. Any of the alkyl groups, provided that at least one of R51 is It is either a halogen group or a halogenated alkyl group, and at least one of R53 is any one of a halogen group and a halogenated alkyl group, and R52 is a hydrogen group, an alkyl group, or a halogen group. Each of a5, e5 and n5 is an integer of 1 or 2, each of b5 and d5 is an integer of 1 to 4, and c5 is an integer of 0 to 4 And each of f5 and m5 is an integer of 1 to 3.)
Figure JPOXMLDOC01-appb-C000007
(X61は、長周期型周期表における1族元素および2族元素のうちのいずれかである。M61は、遷移金属、ならびに長周期型周期表における13族元素、14族元素および15族元素のうちのいずれかである。Rfは、フッ素化アルキル基およびフッ素化アリール基のうちのいずれかであり、フッ素化アルキル基およびフッ素化アリール基のそれぞれの炭素数は、1~10である。Y61は、-C(=O)-(CR61d6-C(=O)-、-R62C-(CR61d6-C(=O)-、-R62C-(CR61d6-CR62-、-R62C-(CR61d6-S(=O)-、-S(=O)-(CR61e6-S(=O)-および-C(=O)-(CR61e6-S(=O)-のうちのいずれかである。ただし、R61は、水素基、アルキル基、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。R62は、水素基、アルキル基、ハロゲン基およびハロゲン化アルキル基のうちのいずれかであり、R62のうちの少なくとも1つは、ハロゲン基およびハロゲン化アルキル基のうちのいずれかである。a6、f6およびn6のそれぞれは1または2の整数であり、b6、c6およびe6のそれぞれは1~4の整数であり、d6は0~4の整数であり、g6およびm6のそれぞれは1~3の整数である。)
Figure JPOXMLDOC01-appb-C000007
(X61 is one of Group 1 and Group 2 elements in the long-period periodic table. M61 is a transition metal, and Group 13 element, Group 14 element and Group 15 element in the long-period periodic table. Rf is either a fluorinated alkyl group or a fluorinated aryl group, and each of the fluorinated alkyl group and the fluorinated aryl group has 1 to 10 carbon atoms. is, -C (= O) - ( CR61 2) d6 -C (= O) -, - R62 2 C- (CR61 2) d6 -C (= O) -, - R62 2 C- (CR61 2) d6 -CR62 2 -, - R62 2 C- (CR61 2) d6 -S (= O) 2 -, - S (= O) 2 - (CR61 2) e6 -S (= O) 2 - and -C (= O) - (CR61 2) e6 -S (= O) 2 - der any of R61 is any one of a hydrogen group, an alkyl group, a halogen group, and a halogenated alkyl group, and R62 is any one of a hydrogen group, an alkyl group, a halogen group, and a halogenated alkyl group. , R62 is any one of a halogen group and a halogenated alkyl group, each of a6, f6 and n6 is an integer of 1 or 2, and each of b6, c6 and e6 is 1 D6 is an integer from 0 to 4, and each of g6 and m6 is an integer from 1 to 3.)
 なお、1族元素とは、水素(H)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)およびフランシウム(Fr)である。2族元素とは、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)およびラジウム(Ra)である。13族元素とは、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)およびタリウム(Tl)である。14族元素とは、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)および鉛(Pb)である。15族元素とは、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)およびビスマス(Bi)である。 The Group 1 elements are hydrogen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Group 2 elements are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). Group 13 elements are boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl). Group 14 elements are carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb). Group 15 elements are nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi).
 式(7)に示した化合物の具体例は、下記の式(7-1)~式(7-6)のそれぞれで表される化合物などである。式(8)に示した化合物の具体例は、下記の式(8-1)~式(8-8)のそれぞれで表される化合物などである。式(9)に示した化合物の具体例は、下記の式(9-1)で表される化合物などである。 Specific examples of the compound represented by the formula (7) include compounds represented by the following formulas (7-1) to (7-6). Specific examples of the compound represented by the formula (8) include compounds represented by the following formulas (8-1) to (8-8). Specific examples of the compound represented by the formula (9) include a compound represented by the following formula (9-1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、他の電解質塩は、下記の式(10)~式(12)のそれぞれで表される化合物などでもよい。mおよびnのそれぞれは、互いに同じ値でもよいし、互いに異なる値でもよい。また、p、qおよびrのそれぞれは、互いに同じ値でもよいし、互いに異なる値でもよい。もちろん、p、qおよびrのうちの一部が互いに同じ値でもよい。 Further, the other electrolyte salt may be a compound represented by each of the following formulas (10) to (12). Each of m and n may be the same value or different values. Further, each of p, q, and r may be the same value or different values. Of course, some of p, q and r may have the same value.
 LiN(C2m+1SO)(C2n+1 SO) …(10)
(mおよびnのそれぞれは、1以上の整数である。)
LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) ... (10)
(Each of m and n is an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000011
(R71は、炭素数=2~4である直鎖状または分岐状のパーフルオロアルキレン基である。)
Figure JPOXMLDOC01-appb-C000011
(R71 is a linear or branched perfluoroalkylene group having 2 to 4 carbon atoms.)
 LiC(C2p+1SO)(C2q+1SO)(C2r+1SO) …(12)
(p、qおよびrのそれぞれは、1以上の整数である。)
LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (12)
(Each of p, q and r is an integer of 1 or more.)
 式(10)に示した化合物は、鎖状イミド化合物である。鎖状イミド化合物の具体例は、ビス(フルオロスルホニル)イミドリチウム(LiN(SOF))、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CSO)、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CFSO)(CSO))、(トリフルオロメタンスルホニル)(ヘプタフルオロプロパンスルホニル)イミドリチウム(LiN(CFSO)(CSO))および(トリフルオロメタンスルホニル)(ノナフルオロブタンスルホニル)イミドリチウム(LiN(CFSO)(CSO))などである。 The compound shown in Formula (10) is a chain imide compound. Specific examples of the chain imide compound include bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), bis (pentafluoroethane (Sulfonyl) imidolithium (LiN (C 2 F 5 SO 2 ) 2 ), (trifluoromethanesulfonyl) (pentafluoroethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 )), (trifluoro Lomethanesulfonyl) (heptafluoropropanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) (C 3 F 7 SO 2 )) and (trifluoromethanesulfonyl) (nonafluorobutanesulfonyl) imide lithium (LiN (CF 3 SO 2 )) (C 4 F 9 SO 2 )).
 式(11)に示した化合物は、環状イミド化合物である。環状イミド化合物の具体例は、下記の式(11-1)~式(11-4)のそれぞれで表される化合物などである。 The compound shown in Formula (11) is a cyclic imide compound. Specific examples of the cyclic imide compound include compounds represented by the following formulas (11-1) to (11-4).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(12)に示した化合物は、鎖状メチド化合物である。鎖状メチド化合物の具体例は、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)などである。 The compound represented by the formula (12) is a chain methide compound. Specific examples of the chain methide compound include lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ).
 さらに、他の電解質塩は、例えば、ジフルオロリン酸リチウム(LiPF)およびフルオロリン酸リチウム(LiPFO)などのリンフッ素含有塩でもよい。 Furthermore, other electrolyte salts may be phosphorous fluorine-containing salts such as lithium difluorophosphate (LiPF 2 O 2 ) and lithium fluorophosphate (Li 2 PFO 3 ).
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.8mol/kg~2.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。ここで説明する「電解質塩」とは、上記した電解質塩の含有量および他の電解質塩の含有量の総和である。 The content of the electrolyte salt is not particularly limited, but among them, it is preferably 0.8 mol / kg to 2.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained. The “electrolyte salt” described here is the sum of the contents of the above-described electrolyte salt and other electrolyte salts.
[製造方法]
 この電解液は、例えば、以下の手順により製造される。
[Production method]
This electrolytic solution is manufactured, for example, by the following procedure.
 電解液を製造する場合には、例えば、炭酸エチレンを含む溶媒に電解質塩を加えたのち、その溶媒を撹拌することにより、その溶媒中において電解質塩を溶解または分散させる。この場合には、電解質塩および炭酸エチレンのそれぞれの混合比などを調整することにより、電解液中における電解質塩の含有量(mol/kg)、溶媒中における炭酸エチレンの含有量(重量%)およびモル比M2/M1のそれぞれに関して、上記した3つの条件が同時に満たされるようにする。これにより、溶媒(炭酸エチレン)および電解質塩を含む電解液が完成する。 When producing an electrolytic solution, for example, after adding an electrolyte salt to a solvent containing ethylene carbonate, the solvent is stirred to dissolve or disperse the electrolyte salt in the solvent. In this case, the content of the electrolyte salt in the electrolytic solution (mol / kg), the content of ethylene carbonate in the solvent (wt%) and the mixing ratio of the electrolyte salt and ethylene carbonate are adjusted. For each of the molar ratios M2 / M1, the above three conditions are satisfied simultaneously. Thereby, the electrolyte solution containing a solvent (ethylene carbonate) and an electrolyte salt is completed.
[作用および効果]
 この電解液によれば、溶媒が炭酸エチレンを含んでおり、電解液中における電解質塩の含有量、溶媒中における炭酸エチレンの含有量およびモル比M2/M1のそれぞれに関して上記した3つの条件が同時に満たされている。この場合には、上記したように、電解質塩と炭酸エチレンとの混合比が適正化されるため、電解質塩を用いて電極反応を十分に進行させながら、電解液の分解反応に起因するガスの発生が抑制される。よって、電解液を用いた二次電池において、放電容量が低下しにくくなると共に二次電池が膨れにくくなるため、優れた電池特性を得ることができる。
[Action and effect]
According to this electrolytic solution, the solvent contains ethylene carbonate, and the above three conditions regarding the content of the electrolyte salt in the electrolytic solution, the content of ethylene carbonate in the solvent, and the molar ratio M2 / M1 are the same. be satisfied. In this case, as described above, since the mixing ratio of the electrolyte salt and ethylene carbonate is optimized, the electrode reaction using the electrolyte salt is sufficiently advanced, and the gas caused by the decomposition reaction of the electrolytic solution is reduced. Occurrence is suppressed. Therefore, in the secondary battery using the electrolytic solution, the discharge capacity is hardly reduced and the secondary battery is less likely to swell, so that excellent battery characteristics can be obtained.
 特に、溶媒が環状炭酸エステルと鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの一方または双方とを含んでおり、環状炭酸エステルが炭酸エチレンを含んでおり、鎖状炭酸エステルが炭酸ジエチルなどを含んでおり、鎖状カルボン酸エステルがプロピオン酸エチルなどを含んでいれば、電解液の分解反応に起因するガスの発生が十分に抑制されるため、より高い効果を得ることができる。 In particular, the solvent contains a cyclic carbonate and one or both of a chain carbonate ester and a chain carboxylate ester, the cyclic carbonate ester contains ethylene carbonate, the chain carbonate ester contains diethyl carbonate and the like. In addition, if the chain carboxylic acid ester contains ethyl propionate or the like, the generation of gas due to the decomposition reaction of the electrolytic solution is sufficiently suppressed, so that a higher effect can be obtained.
 また、溶媒が炭酸プロピレンを含んでおり、溶媒中における炭酸プロピレンの含有量が30重量%以下であれば、二次電池がより膨れにくくなるため、より高い効果を得ることができる。 Further, if the solvent contains propylene carbonate and the content of propylene carbonate in the solvent is 30% by weight or less, the secondary battery is less likely to swell, and thus a higher effect can be obtained.
 また、電解質塩がリチウム塩を含んでいれば、電解質塩を構成するカチオン(リチウムイオン)に対して炭酸エチレンが溶媒和しやすくなる。これにより、二次電池がより膨れにくくなるため、より高い効果を得ることができる。 Also, if the electrolyte salt contains a lithium salt, ethylene carbonate is likely to be solvated with the cations (lithium ions) constituting the electrolyte salt. Thereby, since a secondary battery becomes difficult to swell more, a higher effect can be acquired.
<2.二次電池>
 次に、上記した電解液を用いた二次電池に関して説明する。
<2. Secondary battery>
Next, a secondary battery using the above electrolytic solution will be described.
 図1は、二次電池の断面構成を表しており、図2は、図1に示した巻回電極体30のうちの一部の断面構成を拡大している。なお、図1では、巻回電極体30と外装部材40とが互いに離間された状態を示している。 FIG. 1 shows a cross-sectional configuration of the secondary battery, and FIG. 2 shows an enlarged cross-sectional configuration of a part of the spirally wound electrode body 30 shown in FIG. FIG. 1 shows a state where the wound electrode body 30 and the exterior member 40 are separated from each other.
 ここで説明する二次電池は、例えば、電極反応物質であるリチウムの吸蔵放出により負極22の容量が得られるリチウムイオン二次電池である。 The secondary battery described here is, for example, a lithium ion secondary battery in which the capacity of the negative electrode 22 can be obtained by occlusion and release of lithium as an electrode reactant.
[全体構成]
 この二次電池は、いわゆるラミネートフィルム型の電池構造を有するリチウムイオン二次電池である。すなわち、例えば、図1に示したように、ラミネートフィルム型の二次電池では、フィルム状の外装部材40の内部に、電池素子である巻回電極体30が収納されている。
[overall structure]
This secondary battery is a lithium ion secondary battery having a so-called laminate film type battery structure. That is, for example, as shown in FIG. 1, in a laminated film type secondary battery, a wound electrode body 30, which is a battery element, is accommodated inside a film-shaped exterior member 40.
 この巻回電極体30では、例えば、セパレータ35を介して正極33と負極34とが積層されたのち、その正極33、負極34およびセパレータ35が巻回されている。この巻回電極体30には、液状の電解質である電解液が含浸されている。すなわち、フィルム状の外装部材40の内部に収納されている巻回電極体30は、正極33、負極34および電解液を含んでいる。 In this wound electrode body 30, for example, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34, and the separator 35 are wound. The wound electrode body 30 is impregnated with an electrolytic solution that is a liquid electrolyte. That is, the wound electrode body 30 housed in the film-shaped exterior member 40 includes the positive electrode 33, the negative electrode 34, and the electrolytic solution.
 正極33には、正極リード31が取り付けられていると共に、負極34には、負極リード32が取り付けられている。巻回電極体30の最外周部は、保護テープにより保護されている。 A positive electrode lead 31 is attached to the positive electrode 33, and a negative electrode lead 32 is attached to the negative electrode 34. The outermost periphery of the wound electrode body 30 is protected by a protective tape.
 正極リード31および負極リード32のそれぞれは、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウム(Al)などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極リード32は、例えば、銅(Cu)、ニッケル(Ni)およびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。これらの導電性材料は、例えば、薄板状または網目状である。 Each of the positive electrode lead 31 and the negative electrode lead 32 is led out in the same direction from the inside of the exterior member 40 to the outside, for example. The positive electrode lead 31 includes, for example, any one type or two or more types of conductive materials such as aluminum (Al). The negative electrode lead 32 includes any one type or two or more types of conductive materials such as copper (Cu), nickel (Ni), and stainless steel. These conductive materials have, for example, a thin plate shape or a mesh shape.
 外装部材40は、例えば、図1に示した矢印Rの方向に折り畳み可能な1枚のフィルムであり、その外装部材40の一部には、巻回電極体30を収納するための窪みが設けられている。この外装部材40は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。二次電池の製造工程では、融着層同士が巻回電極体30を介して対向するように外装部材40が折り畳まれたのち、その融着層の外周縁部同士が融着される。ただし、外装部材40は、2枚のラミネートフィルムが接着剤などを介して貼り合わされたものでもよい。融着層は、例えば、ポリエチレンおよびポリプロピレンなどのうちのいずれか1種類または2種類以上のフィルムである。金属層は、例えば、アルミニウム箔などのうちのいずれか1種類または2種類以上である。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのうちのいずれか1種類または2種類以上のフィルムである。 The exterior member 40 is, for example, one film that can be folded in the direction of the arrow R shown in FIG. 1, and a recess for accommodating the wound electrode body 30 is provided in a part of the exterior member 40. It has been. The exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the secondary battery, after the exterior member 40 is folded so that the fusion layers face each other with the wound electrode body 30 therebetween, the outer peripheral edges of the fusion layers are fused. However, the exterior member 40 may be one in which two laminated films are bonded together with an adhesive or the like. The fusion layer is, for example, any one kind or two or more kinds of films such as polyethylene and polypropylene. The metal layer is, for example, one or more of aluminum foils. The surface protective layer is, for example, any one film or two or more films selected from nylon and polyethylene terephthalate.
 中でも、外装部材40は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムでもよいし、金属フィルムでもよい。 Especially, it is preferable that the exterior member 40 is an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order. However, the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
 外装部材40と正極リード31との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。また、外装部材40と負極リード32との間には、例えば、上記した密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32の双方に対して密着性を有する材料を含んでいる。この密着性を有する材料は、例えば、ポリオレフィン樹脂などであり、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどのうちのいずれか1種類または2種類以上である。 For example, an adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 in order to prevent intrusion of outside air. Further, for example, the adhesion film 41 described above is inserted between the exterior member 40 and the negative electrode lead 32. The adhesion film 41 includes a material having adhesion to both the positive electrode lead 31 and the negative electrode lead 32. The material having this adhesion is, for example, a polyolefin resin, and more specifically, any one or more of polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
[正極]
 正極33は、例えば、図2に示したように、正極集電体33Aと、その正極集電体33Aの両面に設けられた正極活物質層33Bとを含んでいる。ただし、正極活物質層33Bは、正極集電体33Aの片面だけに設けられていてもよい。
[Positive electrode]
For example, as shown in FIG. 2, the positive electrode 33 includes a positive electrode current collector 33A and positive electrode active material layers 33B provided on both surfaces of the positive electrode current collector 33A. However, the positive electrode active material layer 33B may be provided only on one surface of the positive electrode current collector 33A.
 正極集電体33Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、アルミニウム、ニッケルおよびステンレスなどの金属材料である。この正極集電体33Aは、単層でもよいし、多層でもよい。 The positive electrode current collector 33A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as aluminum, nickel, and stainless steel. The positive electrode current collector 33A may be a single layer or a multilayer.
 正極活物質層33Bは、正極活物質として、リチウムを吸蔵放出可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層33Bは、正極活物質に加えて、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material layer 33B contains any one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material. However, the positive electrode active material layer 33B may include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent in addition to the positive electrode active material.
 正極材料は、リチウム含有化合物であることが好ましく、より具体的には、リチウム含有複合酸化物およびリチウム含有リン酸化合物のうちのいずれか一方または双方であることが好ましい。高いエネルギー密度が得られるからである。 The positive electrode material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
 リチウム含有複合酸化物は、リチウムと1または2以上の他元素(リチウム以外の元素)とを構成元素として含む酸化物であり、例えば、層状岩塩型およびスピネル型などのうちのいずれかの結晶構造を有している。リチウム含有リン酸化合物は、リチウムと1または2以上の他元素とを構成元素として含むリン酸化合物であり、例えば、オリビン型などの結晶構造を有している。 The lithium-containing composite oxide is an oxide containing lithium and one or more other elements (elements other than lithium) as constituent elements. For example, the crystal structure of any one of a layered rock salt type and a spinel type have. The lithium-containing phosphate compound is a phosphate compound containing lithium and one or more other elements as constituent elements, and has, for example, an olivine type crystal structure.
 他元素の種類は、任意の元素のうちのいずれか1種類または2種類以上であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素のうちのいずれか1種類または2種類以上であることが好ましい。より具体的には、他元素は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)のうちのいずれか1種類または2種類以上の金属元素を含んでいることがより好ましい。高い電圧が得られるからである。 The type of other element is not particularly limited as long as it is any one or more of arbitrary elements. Among them, the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, it is more preferable that the other elements include one or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). preferable. This is because a high voltage can be obtained.
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(21)~式(23)のそれぞれで表される化合物などである。 Examples of the lithium-containing composite oxide having a layered rock salt type crystal structure include compounds represented by the following formulas (21) to (23).
 LiMn(1-b-c) NiM11(2-d)  ・・・(21)
(M11は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (1-bc) Ni b M11 c O (2-d) F e ··· (21)
(M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ≦ a ≦ 1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5, (b + c) <1, −0.1 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.1 are satisfied. However, the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.)
 LiNi(1-b) M12(2-c)  ・・・(22)
(M12は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Ni (1-b) M12 b O (2-c) F d (22)
(M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0.005 ≦ b ≦ 0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.)
 LiCo(1-b) M13(2-c)  ・・・(23)
(M13は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Co (1-b) M13 b O (2-c) F d (23)
(M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0 ≦ b <0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a is the value of the fully discharged state.)
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(24)で表される化合物などでもよい。この化合物は、ニッケルを構成元素として含んでいると共に、そのニッケルの含有割合が相対的に大きいリチウムニッケル含有複合酸化物である。 The lithium-containing composite oxide having a layered rock salt type crystal structure may be, for example, a compound represented by the following formula (24). This compound is a lithium nickel-containing composite oxide containing nickel as a constituent element and having a relatively high nickel content.
 LiCoNi1-y-z b-a  ・・・(24)
(Mは、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ストロンチウム(Sr)、セシウム(Cs)、バリウム(Ba)、インジウム(In)およびアンチモン(Sb)のうちの少なくとも1種である。Xは、ハロゲン元素である。x、y、z、aおよびbは、0.8<x≦1.2、0≦y≦1.0、0.5≦z≦1.0、0≦a≦1.0、1.8≦b≦2.2およびy<zを満たす。
Li x Co y Ni z M 1 -yz O ba X e ··· (24)
(M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb), and X is a halogen element, x, y, z , A and b are 0.8 <x ≦ 1.2, 0 ≦ y ≦ 1.0, 0.5 ≦ z ≦ 1.0, 0 ≦ a ≦ 1.0, 1.8 ≦ b ≦ 2. 2 and y <z are satisfied.
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。 Specific examples of the lithium-containing composite oxide having a layered rock salt type crystal structure are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2. LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。 When the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements, the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(25)で表される化合物などである。 The lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (25).
 LiMn(2-b) M14 ・・・(25)
(M14は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (2-b) M14 b O c F d (25)
(M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9. ≦ a ≦ 1.1, 0 ≦ b ≦ 0.6, 3.7 ≦ c ≦ 4.1 and 0 ≦ d ≦ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。 Specific examples of the lithium-containing composite oxide having a spinel crystal structure include LiMn 2 O 4 .
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(26)で表される化合物などである。 Examples of the lithium-containing phosphate compound having an olivine type crystal structure include a compound represented by the following formula (26).
 LiM15PO ・・・(26)
(M15は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a M15PO 4 (26)
(M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ≦ a ≦ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
 なお、リチウム含有複合酸化物は、下記の式(27)で表される化合物などでもよい。 The lithium-containing composite oxide may be a compound represented by the following formula (27).
 (LiMnO(LiMnO1-x  ・・・(27)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
(Li 2 MnO 3 ) x (LiMnO 2 ) 1-x (27)
(X satisfies 0 ≦ x ≦ 1, where the composition of lithium varies depending on the charge / discharge state, and x is the value of the complete discharge state.)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などのうちのいずれか1種類または2種類以上でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。ただし、正極材料は、上記以外の他の材料でもよい。 In addition, the positive electrode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene. However, the positive electrode material may be a material other than the above.
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。 The positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. Examples of the polymer compound include polyvinylidene fluoride and polyimide.
 正極導電剤は、例えば、炭素材料などのうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、導電性を有する材料であれば、金属材料および導電性高分子などでもよい。 The positive electrode conductive agent includes, for example, one or more of carbon materials. Examples of the carbon material include graphite, carbon black, acetylene black, and ketjen black. However, the positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
[負極]
 負極34は、例えば、図2に示したように、負極集電体34Aと、その負極集電体34Aの両面に設けられた負極活物質層34Bとを含んでいる。ただし、負極活物質層34Bは、負極集電体34Aの片面だけに設けられていてもよい。
[Negative electrode]
For example, as shown in FIG. 2, the negative electrode 34 includes a negative electrode current collector 34A and negative electrode active material layers 34B provided on both surfaces of the negative electrode current collector 34A. However, the negative electrode active material layer 34B may be provided only on one surface of the negative electrode current collector 34A.
 負極集電体34Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、銅、アルミニウム、ニッケルおよびステンレスなどの金属材料である。この負極集電体34Aは、単層でもよいし、多層でもよい。 The negative electrode current collector 34A includes, for example, any one type or two or more types of conductive materials. Although the kind of electrically conductive material is not specifically limited, For example, they are metal materials, such as copper, aluminum, nickel, and stainless steel. The negative electrode current collector 34A may be a single layer or a multilayer.
 負極集電体34Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体34Aに対する負極活物質層34Bの密着性が向上するからである。この場合には、少なくとも負極活物質層34Bと対向する領域において、負極集電体34Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法により負極集電体34Aの表面に微粒子が形成されるため、その負極集電体34Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。 The surface of the negative electrode current collector 34A is preferably roughened. This is because the adhesion of the negative electrode active material layer 34B to the negative electrode current collector 34A is improved by a so-called anchor effect. In this case, the surface of the negative electrode current collector 34A only needs to be roughened at least in a region facing the negative electrode active material layer 34B. The roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, fine particles are formed on the surface of the negative electrode current collector 34A by an electrolysis method in an electrolytic bath, so that the surface of the negative electrode current collector 34A is provided with irregularities. A copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
 負極活物質層34Bは、負極活物質として、リチウムを吸蔵放出可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層34Bは、負極活物質に加えて、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The negative electrode active material layer 34B includes one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material. However, the negative electrode active material layer 34B may include any one kind or two or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent in addition to the negative electrode active material.
 充電途中において意図せずにリチウム金属が負極34に析出することを防止するために、負極材料の充電可能な容量は、正極33の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵放出可能である負極材料の電気化学当量は、正極33の電気化学当量よりも大きいことが好ましい。 In order to prevent unintentional deposition of lithium metal on the negative electrode 34 during charging, the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 33. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 33.
 負極材料は、例えば、炭素材料のうちのいずれか1種類または2種類以上である。リチウムの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層34Bの導電性が向上するからである。 The negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 34B is improved.
 炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素における(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛における(002)面の面間隔は、0.34nm以下であることが好ましい。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類には、ピッチコークス、ニードルコークスおよび石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。 Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite. However, the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less. More specifically, examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks. The cokes include pitch coke, needle coke, petroleum coke and the like. The organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon. The shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
 また、負極材料は、例えば、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料(金属系材料)である。高いエネルギー密度が得られるからである。 Further, the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
 金属系材料は、単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。この金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。 The metal-based material may be any of a simple substance, an alloy, and a compound, or may be two or more of them, or may be a material having at least a part of one or two or more of them. . However, the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements. The alloy may contain a nonmetallic element. The structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
 上記した金属元素および半金属元素は、例えば、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上である。具体的には、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。 The metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
 中でも、ケイ素およびスズのうちの一方または双方が好ましい。リチウムを吸蔵放出する能力が優れているため、著しく高いエネルギー密度が得られるからである。 Among these, one or both of silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
 ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、ケイ素の単体、合金および化合物のうちのいずれでもよいし、スズの単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ここで説明する単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)を意味しており、必ずしも純度100%を意味しているわけではない。 The material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy, and a compound of silicon, or any of a simple substance, an alloy, and a compound of tin. These may be two or more types, or may be a material having at least a part of one or two or more of them. The simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more. The compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon. In addition, the compound of silicon may contain any 1 type or 2 types or more of the series of elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
 ケイ素の合金およびケイ素の化合物のそれぞれの具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。なお、SiOにおけるvは、0.2<v<1.4でもよい。 Specific examples of silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 <v ≦ 2), and LiSiO. Note that v in SiO v may be 0.2 <v <1.4.
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of tin, for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more. The tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin. In addition, the compound of tin may contain any 1 type in the series of elements demonstrated regarding the alloy of tin, or 2 or more types as structural elements other than tin, for example.
 スズの合金およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。 Specific examples of the tin alloy and the tin compound include SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
 特に、スズを構成元素として含む材料は、例えば、第1構成元素であるスズと共に第2構成元素および第3構成元素を含む材料(Sn含有材料)であることが好ましい。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上を含んでいる。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンなどのうちのいずれか1種類または2種類以上を含んでいる。Sn含有材料が第2および第3構成元素を含んでいることで、高い電池容量および優れたサイクル特性などが得られるからである。 Particularly, the material containing tin as a constituent element is preferably, for example, a material (Sn-containing material) containing a second constituent element and a third constituent element together with tin which is the first constituent element. The second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included. The third constituent element includes, for example, one or more of boron, carbon, aluminum, phosphorus, and the like. This is because, when the Sn-containing material contains the second and third constituent elements, a high battery capacity and excellent cycle characteristics can be obtained.
 中でも、Sn含有材料は、スズとコバルトと炭素とを構成元素として含む材料(SnCoC含有材料)であることが好ましい。このSnCoC含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。 In particular, the Sn-containing material is preferably a material (SnCoC-containing material) containing tin, cobalt, and carbon as constituent elements. In this SnCoC-containing material, for example, the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
 SnCoC含有材料は、スズとコバルトと炭素とを含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応可能な反応相であるため、その反応相の存在により優れた特性が得られる。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。リチウムがより円滑に吸蔵放出されると共に、電解液との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を含んでいる場合もある。 The SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a reaction phase capable of reacting with lithium, excellent characteristics can be obtained due to the presence of the reaction phase. The half-width (diffraction angle 2θ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuKα ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred. This is because lithium is occluded and released more smoothly and the reactivity with the electrolytic solution is reduced. In addition, the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
 X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応するものであるか否かは、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°~50°の間に見られる。このような反応相は、例えば、上記した各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化しているものと考えられる。 Whether a diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium can be easily determined by comparing X-ray diffraction charts before and after electrochemical reaction with lithium. . For example, if the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it corresponds to a reaction phase capable of reacting with lithium. In this case, for example, a diffraction peak of a low crystalline or amorphous reaction phase is observed between 2θ = 20 ° and 50 °. Such a reaction phase contains, for example, each of the above-described constituent elements, and is considered to be low crystallized or amorphous mainly due to the presence of carbon.
 SnCoC含有材料では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に現れる。なお、金原子の4f軌道(Au4f)のピークは、84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面に表面汚染炭素が存在しているため、その表面汚染炭素のC1sのピークを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られる。このため、例えば、市販のソフトウエアを用いて解析することで、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。 In the SnCoC-containing material, it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed. The bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS). In a commercially available apparatus, for example, Al—Kα ray or Mg—Kα ray is used as the soft X-ray. When at least a part of carbon is bonded to a metal element, a metalloid element, or the like, the peak of the synthetic wave of carbon 1s orbital (C1s) appears in a region lower than 284.5 eV. It is assumed that the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV. At this time, since surface-contaminated carbon is usually present on the surface of the substance, the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference. In the XPS measurement, the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
 このSnCoC含有材料は、構成元素がスズ、コバルトおよび炭素だけである材料(SnCoC)に限られない。このSnCoC含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。 This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon. This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon One kind or two or more kinds may be included as constituent elements.
 SnCoC含有材料の他、スズとコバルトと鉄と炭素とを構成元素として含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。なお、SnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料の物性と同様である。 In addition to SnCoC-containing materials, materials containing tin, cobalt, iron and carbon as constituent elements (SnCoFeC-containing materials) are also preferable. The composition of the SnCoFeC-containing material is arbitrary. For example, when the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%. The content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass. Further, when the iron content is set to be large, the carbon content is 11.9% to 29.7% by mass, and the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4 mass% to 48.5 mass%, and the ratio of cobalt and iron content (Co / (Co + Fe)) is 9.9 mass% to 79.5 mass%. This is because a high energy density can be obtained in such a composition range. Note that the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
 この他、負極材料は、例えば、金属酸化物および高分子化合物などのうちのいずれか1種類または2種類以上でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。 In addition, the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
 中でも、負極材料は、以下の理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。 Among these, the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
 金属系材料、特に、ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張収縮しにくいという利点を有する。よって、炭素材料および金属系材料の双方を用いることで、高い理論容量(言い替えれば電池容量)を得つつ、充放電時の膨張収縮が抑制される。 Metal materials, in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging. On the other hand, the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using both a carbon material and a metal-based material, expansion and contraction during charging and discharging are suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
 負極活物質層34Bは、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上の方法により形成されている。塗布法とは、例えば、粒子(粉末)状の負極活物質を負極結着剤などと混合したのち、その混合物を有機溶剤などに分散させてから負極集電体34Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などである。より具体的には、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法とは、溶融状態または半溶融状態の負極活物質を負極集電体34Aに噴き付ける方法である。焼成法とは、例えば、塗布法を用いて、有機溶剤などに分散された混合物を負極集電体34Aに塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。この焼成法としては、例えば、雰囲気焼成法、反応焼成法およびホットプレス焼成法などを用いることができる。 The negative electrode active material layer 34B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method). The coating method is, for example, a method in which a particle (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 34A. Examples of the vapor phase method include a physical deposition method and a chemical deposition method. More specifically, for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method. Examples of the liquid phase method include an electrolytic plating method and an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 34A. The firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 34A using a coating method, and then heat-treated at a temperature higher than the melting point of the negative electrode binder or the like. As the firing method, for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be used.
 この二次電池では、上記したように、充電途中において負極34にリチウムが意図せずに析出することを防止するために、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きくなっている。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、その完全充電時の開回路電圧が4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られる。 In this secondary battery, as described above, in order to prevent unintentional precipitation of lithium on the negative electrode 34 during charging, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is , Greater than the electrochemical equivalent of the positive electrode. In addition, when the open circuit voltage at the time of full charge (that is, the battery voltage) is 4.25 V or higher, the same positive electrode active material is used compared to the case where the open circuit voltage at the time of full charge is 4.20 V. However, since the amount of lithium released per unit mass increases, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
 完全充電時の開回路電圧(充電終止電圧)は、特に限定されないが、上記したように、4.2V以上であることが好ましい。中でも、完全充電時の開回路電圧は、4.25V以上であることが好ましく、4.35V以上であることがより好ましい。完全充電時の開回路電圧を著しく高くしても、上記した電解質塩と炭酸エチレンとの混合比の適正化に基づく利点が得られるため、優れた電池特性が得られるからである。なお、放電終止電圧は、特に限定されないが、例えば、3.0V以下である。 The open circuit voltage (charge end voltage) at the time of full charge is not particularly limited, but is preferably 4.2 V or more as described above. Especially, it is preferable that it is 4.25V or more at the time of complete charge, and it is more preferable that it is 4.35V or more. This is because even if the open circuit voltage at the time of full charge is remarkably increased, an advantage based on the optimization of the mixing ratio of the electrolyte salt and ethylene carbonate can be obtained, so that excellent battery characteristics can be obtained. In addition, although the discharge end voltage is not specifically limited, For example, it is 3.0 V or less.
[セパレータ]
 セパレータ35は、例えば、図2に示したように、正極33と負極34との間に配置されている。このセパレータ35は、正極33と負極34とを隔離すると共に、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる。
[Separator]
For example, as illustrated in FIG. 2, the separator 35 is disposed between the positive electrode 33 and the negative electrode 34. The separator 35 separates the positive electrode 33 and the negative electrode 34 and allows lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes.
 このセパレータ35は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上であり、2種類以上の多孔質膜の積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。 The separator 35 is, for example, one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more kinds of porous films. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
 特に、セパレータ35は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極33および負極34のそれぞれに対するセパレータ35の密着性が向上するため、巻回電極体30の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に、電池膨れが抑制される。 In particular, the separator 35 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 35 to each of the positive electrode 33 and the negative electrode 34 is improved, so that the distortion of the wound electrode body 30 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is not easily increased even if charging and discharging are repeated, and the battery swelling is also suppressed. Is done.
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子化合物は、ポリフッ化ビニリデン以外でもよい。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。この高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。無機粒子の種類は、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。 The polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer compound may be other than polyvinylidene fluoride. When forming this polymer compound layer, for example, after applying a solution in which the polymer compound is dissolved in an organic solvent or the like to the substrate layer, the substrate layer is dried. In addition, after immersing a base material layer in a solution, the base material layer may be dried. This polymer compound layer may contain any one kind or two or more kinds of insulating particles such as inorganic particles. Examples of the inorganic particles include aluminum oxide and aluminum nitride.
[電解液]
 電解液は、上記した本技術の電解液と同様の構成を有している。すなわち、電解液では、溶媒が炭酸エチレンを含んでいると共に、電解質塩と炭酸エチレンとの混合比が適正化されている。すなわち、電解液中における電解質塩の含有量、溶媒中における炭酸エチレンの含有量およびモル比M2/M1のそれぞれに関して、上記した3つの条件が同時に満たされている。
[Electrolyte]
The electrolytic solution has the same configuration as the electrolytic solution of the present technology described above. That is, in the electrolytic solution, the solvent contains ethylene carbonate, and the mixing ratio of the electrolyte salt and ethylene carbonate is optimized. That is, the above three conditions are simultaneously satisfied with respect to the content of the electrolyte salt in the electrolytic solution, the content of ethylene carbonate in the solvent, and the molar ratio M2 / M1.
 なお、液状の電解質である電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。この電解質層は、例えば、正極33および負極34のうちの一方または双方の表面に形成される。また、電解質層は、電解液と、その電解液を保持する高分子化合物とを含んでいる。電解液の構成は、上記した通りである。 An electrolyte layer that is a gel electrolyte may be used instead of the electrolyte that is a liquid electrolyte. For example, the electrolyte layer is formed on the surface of one or both of the positive electrode 33 and the negative electrode 34. The electrolyte layer includes an electrolytic solution and a polymer compound that holds the electrolytic solution. The configuration of the electrolytic solution is as described above.
 高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイドおよびポリプロピレンオキサイドなどのうちのいずれか1種類または2種類以上を含んでいる。この他、高分子化合物は、共重合体でもよい。この共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。 The polymer compound contains, for example, one or more of polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, and polypropylene oxide. In addition, the polymer compound may be a copolymer. This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
[動作]
 この二次電池は、例えば、以下のように動作する。
[Operation]
This secondary battery operates as follows, for example.
 充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。 At the time of charging, lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36. On the other hand, during discharge, lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
[製造方法]
 この二次電池は、例えば、以下の手順により製造される。
[Production method]
This secondary battery is manufactured by the following procedure, for example.
 正極33を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーとする。続いて、正極集電体33Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成する。続いて、必要に応じて正極活物質層33Bを加熱しながら、ロールプレス機などを用いて正極活物質層33Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。 When the positive electrode 33 is manufactured, first, a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, a positive electrode mixture slurry is obtained by dispersing the positive electrode mixture in an organic solvent or the like. Subsequently, after the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 33A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 33B. Subsequently, the positive electrode active material layer 33B is compression-molded using a roll press or the like while heating the positive electrode active material layer 33B as necessary. In this case, compression molding may be repeated a plurality of times.
 負極34を作製する場合には、上記した正極33と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成する。具体的には、負極活物質と、負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散させることにより、ペースト状の負極合剤スラリーとする。続いて、負極集電体34Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層34Bを形成する。最後に、ロールプレス機などを用いて負極活物質層34Bを圧縮成型する。 When producing the negative electrode 34, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A by the same procedure as that of the positive electrode 33 described above. Specifically, a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like. A negative electrode mixture slurry. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 34A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 34B. Finally, the negative electrode active material layer 34B is compression molded using a roll press or the like.
 二次電池を組み立てる場合には、最初に、溶接法などを用いて正極集電体33Aに正極リード31を取り付けると共に、溶接法などを用いて負極集電体34Aに負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層したのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回電極体30の前駆体である巻回体を作製する。続いて、巻回体の最外周部に保護テープを貼り付ける。続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部を接着させることにより、袋状の外装部材40の内部に巻回体を収納する。最後に、袋状の外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40を密封する。これにより、巻回体に電解液が含浸されるため、巻回電極体30が作製されると共に、その巻回電極体30が外装部材40の内部に封入される。この場合には、正極リード31と外装部材40との間に密着フィルム41を挿入すると共に、負極リード32と外装部材40との間に密着フィルム41を挿入する。 When assembling the secondary battery, first, the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34 and the separator 35 are wound to produce a wound body that is a precursor of the wound electrode body 30. To do. Then, a protective tape is affixed on the outermost peripheral part of a wound body. Subsequently, after folding the exterior member 40 so as to sandwich the wound body, the remaining outer peripheral edge portion excluding the outer peripheral edge portion of one side of the exterior member 40 is adhered by using a heat sealing method or the like. The wound body is housed inside the bag-shaped exterior member 40. Finally, after injecting the electrolyte into the bag-shaped exterior member 40, the exterior member 40 is sealed using a thermal fusion method or the like. Thereby, since the wound body is impregnated with the electrolytic solution, the wound electrode body 30 is manufactured and the wound electrode body 30 is enclosed in the exterior member 40. In this case, the adhesion film 41 is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 41 is inserted between the negative electrode lead 32 and the exterior member 40.
 これにより、ラミネートフィルム型の二次電池が完成する。 This completes the laminated film type secondary battery.
 なお、ゲル状の電解質層を用いる場合には、最初に、電解液と、高分子化合物と、有機溶剤などとを混合することにより、前駆溶液を調製する。続いて、正極33の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、電解質層を形成する。また、負極34の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、電解質層を形成する。なお、巻回体を作製する場合には、セパレータ35を介して、電解質層が形成された正極33と電解質層が形成された負極34とを積層したのち、その正極33、負極34、セパレータ35および電解質層を巻回させる。 When using a gel electrolyte layer, first, a precursor solution is prepared by mixing an electrolytic solution, a polymer compound, an organic solvent, and the like. Subsequently, after applying the precursor solution to the surface of the positive electrode 33, the precursor solution is dried to form an electrolyte layer. Moreover, after apply | coating a precursor solution to the surface of the negative electrode 34, the electrolyte solution is formed by drying the precursor solution. In the case of producing a wound body, the positive electrode 33 on which the electrolyte layer is formed and the negative electrode 34 on which the electrolyte layer is formed are stacked via the separator 35, and then the positive electrode 33, the negative electrode 34, and the separator 35 are stacked. And winding the electrolyte layer.
[作用および効果]
 このラミネートフィルム型のリチウムイオン二次電池によれば、電解液が本技術の電解液と同様の構成を有している。これにより、上記したように、電解質塩を用いて充放電反応を十分に進行させながら、電解液の分解反応に起因するガスの発生が抑制される。よって、二次電池を繰り返して使用しても、放電容量が低下しにくくなると共に二次電池が膨れにくくなるため、優れた電池特性を得ることができる。
[Action and effect]
According to this laminated film type lithium ion secondary battery, the electrolyte has the same configuration as the electrolyte of the present technology. Thereby, as mentioned above, generation | occurrence | production of the gas resulting from the decomposition reaction of electrolyte solution is suppressed, making charge / discharge reaction fully advance using electrolyte salt. Therefore, even if the secondary battery is repeatedly used, the discharge capacity is hardly reduced and the secondary battery is hardly swelled, so that excellent battery characteristics can be obtained.
 特に、正極活物質が式(24)に示したリチウムニッケル含有複合酸化物を含んでいる場合、そのリチウムニッケル含有複合酸化物が電解液の分解反応を進行させやすい性質を有しているため、上記したガスの発生に起因する膨れが顕在化しやすい傾向にある。よって、上記した電解液の構成(電解質塩と炭酸エチレンとの混合比の適正化)に基づく利点を利用することにより、その二次電池の膨れを効果的に抑制することができる。 In particular, when the positive electrode active material contains the lithium nickel-containing composite oxide represented by the formula (24), the lithium nickel-containing composite oxide has a property that facilitates the decomposition reaction of the electrolytic solution. There is a tendency that blisters resulting from the generation of the gas described above are easily manifested. Therefore, by utilizing the advantage based on the above-described configuration of the electrolytic solution (optimization of the mixing ratio of the electrolyte salt and ethylene carbonate), the swelling of the secondary battery can be effectively suppressed.
 また、柔軟性を有するフィルム状の外装部材40を用いたラミネートフィルム型の二次電池は、上記したガスの発生に起因する膨れが顕在化しやすい傾向にある。よって、上記した電解液の構成に基づく利点を利用することにより、その二次電池の膨れを効果的に抑制することができる。 Further, in the laminated film type secondary battery using the flexible film-shaped exterior member 40, the swelling due to the generation of the gas tends to be manifested. Therefore, by utilizing the advantage based on the configuration of the electrolytic solution described above, it is possible to effectively suppress the swelling of the secondary battery.
 ラミネートフィルム型のリチウムイオン二次電池に関する他の作用および効果は、本技術の電解液に関する作用および効果と同様である。 Other actions and effects related to the laminated film type lithium ion secondary battery are the same as the actions and effects related to the electrolyte solution of the present technology.
<3.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
<3. Applications of secondary batteries>
Next, application examples of the above-described secondary battery will be described.
 二次電池の用途は、その二次電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。 Secondary batteries can be used in machines, equipment, instruments, devices and systems (aggregates of multiple equipment) that can be used as a power source for driving or a power storage source for power storage. If there is, it will not be specifically limited. The secondary battery used as a power source may be a main power source or an auxiliary power source. The main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. The auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary. When a secondary battery is used as an auxiliary power source, the type of main power source is not limited to the secondary battery.
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記以外の用途でもよい。 The usage of the secondary battery is, for example, as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable living device such as an electric shaver. Storage devices such as backup power supplies and memory cards. Electric tools such as electric drills and electric saws. It is a battery pack that is mounted on a notebook computer or the like as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, the secondary battery may be used for other purposes.
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。これらの用途では優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源である。この電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用することが可能である。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。 Among them, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. This is because excellent battery characteristics are required for these applications, and therefore the performance can be effectively improved by using the secondary battery of the present technology. The battery pack is a power source using a secondary battery. As will be described later, this battery pack may use a single battery or an assembled battery. An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above. The power storage system is a system that uses a secondary battery as a power storage source. For example, in a household power storage system, power is stored in a secondary battery, which is a power storage source, and thus it is possible to use household electrical appliances or the like using the power. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source. An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する適用例の構成は、あくまで一例であるため、その適用例の構成は、適宜変更可能である。 Here, some application examples of the secondary battery will be specifically described. In addition, since the structure of the application example demonstrated below is an example to the last, the structure of the application example can be changed suitably.
<3-1.電池パック(単電池)>
 図3は、単電池を用いた電池パックの斜視構成を表している。図4は、図3に示した電池パックのブロック構成を表している。なお、図3では、電池パックが分解された状態を示している。
<3-1. Battery pack (single cell)>
FIG. 3 shows a perspective configuration of a battery pack using single cells. FIG. 4 shows a block configuration of the battery pack shown in FIG. FIG. 3 shows a state where the battery pack is disassembled.
 ここで説明する電池パックは、1つの本技術の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図3に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。 The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery of the present technology, and is mounted on, for example, an electronic device typified by a smartphone. For example, as shown in FIG. 3, the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 that is connected to the power supply 111. A positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:Protection・Circuit・Module )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により保護されている。このラベル120が貼り付けられることにより、回路基板116および絶縁シート121などは固定されている。 A pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111. A protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 116. The circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115. The circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power source 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
 また、電池パックは、例えば、図4に示したように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC素子123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続されることが可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出する。 Further, the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG. The circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127. The temperature detector 124 detects the temperature using a temperature detection terminal (so-called T terminal) 126.
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御する。この制御部121は、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。 The controller 121 controls the operation of the entire battery pack (including the usage state of the power supply 111). The control unit 121 includes, for example, a central processing unit (CPU) and a memory.
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させることにより、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 cuts off the charging current by cutting the switch unit 122.
 一方、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させることにより、放電電流を遮断する。 On the other hand, for example, when the battery voltage reaches the overdischarge detection voltage, the control unit 121 disconnects the switch unit 122 so that no discharge current flows in the current path of the power supply 111. For example, when a large current flows during discharge, the control unit 121 cuts off the discharge current by cutting the switch unit 122.
 なお、過充電検出電圧は、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態、すなわち電源111と外部機器との接続の有無を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。 The switch unit 122 switches the usage state of the power source 111, that is, whether or not the power source 111 is connected to an external device, in accordance with an instruction from the control unit 121. The switch unit 122 includes, for example, a charge control switch and a discharge control switch. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor. The charge / discharge current is detected based on, for example, the ON resistance of the switch unit 122.
 温度検出部124は、電源111の温度を測定すると共に、その温度の測定結果を制御部121に出力する。この温度検出部124は、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124により測定される温度の測定結果は、異常発熱時において制御部121が充放電制御を行う場合、残容量の算出時において制御部121が補正処理を行う場合などに用いられる。 The temperature detection unit 124 measures the temperature of the power supply 111 and outputs the temperature measurement result to the control unit 121. The temperature detection unit 124 includes a temperature detection element such as a thermistor, for example. The temperature measurement result measured by the temperature detection unit 124 is used when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
 なお、回路基板116は、PTC素子123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。 Note that the circuit board 116 may not include the PTC element 123. In this case, a PTC element may be attached to the circuit board 116 separately.
<3-2.電池パック(組電池)>
 図5は、組電池を用いた電池パックのブロック構成を表している。
<3-2. Battery Pack (Battery)>
FIG. 5 shows a block configuration of a battery pack using an assembled battery.
 この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などを含んでいる。 This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60. A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive terminal 71 and a negative terminal 72. The housing 60 includes, for example, a plastic material.
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御する。この制御部61は、例えば、CPUなどを含んでいる。電源62は、2種類以上の本技術の二次電池を含む組電池であり、その2種類以上の二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。 The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62). The control unit 61 includes, for example, a CPU. The power source 62 is an assembled battery including two or more types of secondary batteries of the present technology, and the connection type of the two or more types of secondary batteries may be in series, in parallel, or a mixture of both. . For example, the power source 62 includes six secondary batteries connected in two parallel three series.
 スイッチ部63は、制御部61の指示に応じて、電源62の使用状態、すなわち電源62と外部機器との接続の有無を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。 The switch unit 63 switches the usage state of the power source 62, that is, whether or not the power source 62 is connected to an external device, in accordance with an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
 電流測定部64は、電流検出抵抗70を用いて電流を測定すると共に、その電流の測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度の測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合、残容量の算出時において制御部61が補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部61に供給する。 The current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result of the current to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the temperature measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the secondary battery in the power source 62 and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
 スイッチ制御部67は、電流測定部64および電圧検出部66のそれぞれから入力される信号に応じて、スイッチ部63の動作を制御する。 The switch control unit 67 controls the operation of the switch unit 63 according to signals input from the current measurement unit 64 and the voltage detection unit 66, respectively.
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部63(充電制御スイッチ)を切断することにより、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電だけが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れると、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62. As a result, the power source 62 can only discharge through the discharging diode. For example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部63(放電制御スイッチ)を切断することにより、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電だけが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れると、放電電流を遮断する。 Further, for example, when the battery voltage reaches the overdischarge detection voltage, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62. As a result, the power source 62 can only be charged via the charging diode. For example, when a large current flows during discharge, the switch control unit 67 interrupts the discharge current.
 なお、過充電検出電圧は、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどを含んでいる。このメモリ68には、例えば、制御部61により演算された数値、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握できる。 The memory 68 includes, for example, an EEPROM which is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61, information on the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state), and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
 温度検出素子69は、電源62の温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度検出素子69は、例えば、サーミスタなどを含んでいる。 The temperature detection element 69 measures the temperature of the power supply 62 and outputs the temperature measurement result to the control unit 61. The temperature detection element 69 includes, for example, a thermistor.
 正極端子71および負極端子72のそれぞれは、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62は、正極端子71および負極端子72を介して充放電される。 Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (eg, a notebook personal computer) that is operated using a battery pack, an external device (eg, a charger) that is used to charge the battery pack, and the like. It is a terminal to be connected. The power source 62 is charged and discharged via the positive terminal 71 and the negative terminal 72.
<3-3.電動車両>
 図6は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。
<3-3. Electric vehicle>
FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
 この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。 This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン75およびモータ77のうちのいずれか一方を駆動源として用いて走行することが可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合には、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して、エンジン75の駆動力(回転力)が前輪86および後輪88に伝達される。なお、エンジン75の回転力が発電機79に伝達されるため、その回転力を利用して発電機79が交流電力を発生すると共に、その交流電力がインバータ83を介して直流電力に変換されるため、その直流電力が電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合には、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換されるため、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86および後輪88に伝達される。 This electric vehicle can travel using, for example, one of the engine 75 and the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, for example, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential device 78, the transmission 80, and the clutch 81 which are driving units. The Since the rotational force of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational force, and the AC power is converted to DC power via inverter 83. Therefore, the DC power is accumulated in the power source 76. On the other hand, in the case where the motor 77 serving as the conversion unit is used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and therefore the motor is utilized using the AC power. 77 is driven. The driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheels 86 and the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達されるため、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換されるため、その直流回生電力は電源76に蓄積されることが好ましい。 When the electric vehicle decelerates via the braking mechanism, the resistance force at the time of deceleration is transmitted as a rotational force to the motor 77. Therefore, the motor 77 may generate AC power using the rotational force. Good. Since this AC power is converted into DC power via the inverter 82, the DC regenerative power is preferably stored in the power source 76.
 制御部74は、電動車両全体の動作を制御する。この制御部74は、例えば、CPUなどを含んでいる。電源76は、1または2種類以上の本技術の二次電池を含んでいる。この電源76は、外部電源と接続されていると共に、その外部電源から電力供給を受けることにより、電力を蓄積させてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。 The control unit 74 controls the operation of the entire electric vehicle. The control unit 74 includes, for example, a CPU. The power source 76 includes one or more types of secondary batteries of the present technology. The power source 76 may be connected to an external power source, and may store power by receiving power supply from the external power source. The various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the throttle valve opening (throttle opening). The various sensors 84 include, for example, any one or more of speed sensors, acceleration sensors, engine speed sensors, and the like.
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle has been described as an example, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
<3-4.電力貯蔵システム>
 図7は、電力貯蔵システムのブロック構成を表している。
<3-4. Power storage system>
FIG. 7 shows a block configuration of the power storage system.
 この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。 This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building.
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続されることが可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続されることが可能である。 Here, for example, the power source 91 is connected to an electric device 94 installed in the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89. The power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and also connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
 なお、電気機器94は、例えば、1または2種類以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上を含んでいる。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上を含んでいる。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上を含んでいる。 Note that the electric device 94 includes, for example, one or more kinds of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater. The private power generator 95 includes, for example, any one type or two or more types among a solar power generator and a wind power generator. The electric vehicle 96 includes, for example, any one or more of an electric vehicle, an electric motorcycle, and a hybrid vehicle. The centralized power system 97 includes, for example, any one or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御する。この制御部90は、例えば、CPUなどを含んでいる。電源91は、1または2種類以上の本技術の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信することが可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における電力の需要と供給とのバランスを制御することにより、高効率で安定したエネルギー供給を可能とする。 The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91). The control unit 90 includes, for example, a CPU. The power source 91 includes one or more types of secondary batteries of the present technology. The smart meter 92 is, for example, a network-compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Accordingly, the smart meter 92 enables highly efficient and stable energy supply, for example, by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、その電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93. Thus, electric power is accumulated in the power source 91. The electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged. Become. In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
 電源91に蓄積された電力は、必要に応じて使用することが可能である。このため、例えば、電気使用料が安い深夜において、集中型電力系統97から電源91に電力を蓄積しておき、電気使用料が高い日中において、その電源91に蓄積された電力を用いることができる。 The power stored in the power source 91 can be used as necessary. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
<3-5.電動工具>
 図8は、電動工具のブロック構成を表している。
<3-5. Electric tool>
FIG. 8 shows a block configuration of the electric power tool.
 ここで説明する電動工具は、例えば、電動ドリルである。この電動工具は、例えば、工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。 The electric tool described here is, for example, an electric drill. This electric tool includes, for example, a control unit 99 and a power source 100 inside a tool body 98. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
 工具本体98は、例えば、プラスチック材料などを含んでいる。制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御する。この制御部99は、例えば、CPUなどを含んでいる。電源100は、1または2種類以上の本技術の二次電池を含んでいる。この制御部99は、動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。 The tool main body 98 includes, for example, a plastic material. The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100). The control unit 99 includes, for example, a CPU. The power supply 100 includes one or more types of secondary batteries of the present technology. The control unit 99 supplies power from the power supply 100 to the drill unit 101 in accordance with the operation of the operation switch.
 本技術の実施例に関して説明する。 An example of this technology will be described.
(実験例1~13)
 以下の手順により、図1および図2に示したラミネートフィルム型のリチウムイオン二次電池を作製した。
(Experimental Examples 1 to 13)
The laminate film type lithium ion secondary battery shown in FIGS. 1 and 2 was produced by the following procedure.
 正極33を作製する場合には、最初に、正極活物質(LiNiO,メジアン径D50=13μm)94質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(アセチレンブラック)3質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体33A(20μm厚の帯状アルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成した。最後に、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。 When producing the positive electrode 33, first, 94 parts by mass of a positive electrode active material (LiNiO 2 , median diameter D50 = 13 μm), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and a positive electrode conductive agent (acetylene black) ) 3 parts by mass was mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 33A (20 μm-thick striped aluminum foil) using a coating apparatus, and then the positive electrode mixture slurry was dried, whereby the positive electrode active material layer 33B was formed. Formed. Finally, the positive electrode active material layer 33B was compression molded using a roll press.
 負極34を作製する場合には、最初に、負極活物質(黒鉛,メジアン径D50=20μm)95質量部と、負極結着剤(ポリフッ化ビニリデン)5質量部とを混合することにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体34A(15μm厚の帯状銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層34Bを形成した。最後に、ロールプレス機を用いて負極活物質層34Bを圧縮成型した。 When preparing the negative electrode 34, first, 95 parts by mass of the negative electrode active material (graphite, median diameter D50 = 20 μm) and 5 parts by mass of the negative electrode binder (polyvinylidene fluoride) are mixed to form a negative electrode compound. An agent was used. Subsequently, the negative electrode mixture was added to an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector 34A (15 μm thick strip copper foil) using a coating apparatus, and then the negative electrode mixture slurry was dried, whereby the negative electrode active material layer 34B was formed. Formed. Finally, the negative electrode active material layer 34B was compression molded using a roll press.
 電解液を調製する場合には、溶媒に電解質塩(LiPF)を加えたのち、その溶媒を撹拌した。溶媒組成(溶媒中における各成分の含有量:重量%)、電解液中における電解質塩の含有量(mol/kg)およびモル比M2/M1のそれぞれは、表1に示した通りである。この場合には、電解質塩の添加量(電解液中における電解質塩の含有量)および溶媒中における炭酸エチレンの含有量のそれぞれを変更することにより、モル比M2/M1を変化させた。 When preparing an electrolytic solution, an electrolyte salt (LiPF 6 ) was added to the solvent, and then the solvent was stirred. Each of the solvent composition (content of each component in the solvent: wt%), the content of the electrolyte salt in the electrolytic solution (mol / kg), and the molar ratio M2 / M1 is as shown in Table 1. In this case, the molar ratio M2 / M1 was changed by changing the amount of electrolyte salt added (the amount of electrolyte salt in the electrolytic solution) and the content of ethylene carbonate in the solvent.
 ここでは、溶媒として、5種類の非水溶媒を用いた。具体的には、環状炭酸エステルである炭酸エチレン(EC)および炭酸プロピレン(PC)を用いた。鎖状炭酸エステルである炭酸ジエチル(DEC)および炭酸エチルメチル(EMC)を用いた。鎖状カルボン酸エステルであるプロピオン酸プロピル(PRP)を用いた。 Here, five types of nonaqueous solvents were used as the solvent. Specifically, cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) were used. The chain carbonates diethyl carbonate (DEC) and ethyl methyl carbonate (EMC) were used. The chain carboxylic acid ester propyl propionate (PRP) was used.
 二次電池を組み立てる場合には、最初に、正極集電体33Aにアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aに銅製の負極リード32を溶接した。続いて、セパレータ35(20μm厚の微多孔性ポリエチレン延伸フィルム)を介して正極33と負極34とを積層させることにより、積層体を得た。続いて、積層体を長手方向に巻回させたのち、その積層体の最外周部に保護テープを貼り付けることにより、巻回体を作製した。続いて、巻回体を挟むように外装部材40を折り畳んだのち、その外装部材40のうちの3辺の外周縁部同士を熱融着した。この外装部材40は、25μm厚のナイロンフィルムと、40μm厚のアルミニウム箔と、30μm厚のポリプロピレンフィルムとが外側からこの順に積層されたアルミラミネートフィルムである。この場合には、正極リード31と外装部材40との間に密着フィルム41を挿入すると共に、負極リード32と外装部材40との間に密着フィルム41を挿入した。最後に、外装部材40の内部に電解液を注入することにより、その電解液を巻回体に含浸させたのち、減圧環境中において外装部材40の残りの1辺の外周縁部同士を熱融着した。これにより、巻回電極体30が作製されると共に、外装部材40の内部に巻回電極体30が封入されたため、ラミネートフィルム型のリチウムイオン二次電池が完成した。 When assembling the secondary battery, first, the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A. Then, the laminated body was obtained by laminating | stacking the positive electrode 33 and the negative electrode 34 through the separator 35 (20-micrometer-thick microporous polyethylene stretched film). Then, after winding a laminated body to a longitudinal direction, the wound body was produced by sticking a protective tape on the outermost periphery part of the laminated body. Subsequently, after folding the exterior member 40 so as to sandwich the wound body, the outer peripheral edge portions of three sides of the exterior member 40 were heat-sealed. The exterior member 40 is an aluminum laminated film in which a 25 μm thick nylon film, a 40 μm thick aluminum foil, and a 30 μm thick polypropylene film are laminated in this order from the outside. In this case, the adhesion film 41 was inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 41 was inserted between the negative electrode lead 32 and the exterior member 40. Finally, the electrolytic solution is injected into the exterior member 40 to impregnate the wound body with the electrolytic solution, and then the outer peripheral edge portions of the remaining one side of the exterior member 40 are thermally melted in a reduced pressure environment. I wore it. Thus, the spirally wound electrode body 30 was produced and the spirally wound electrode body 30 was enclosed in the exterior member 40, so that a laminate film type lithium ion secondary battery was completed.
 二次電池の電池特性を評価するために、その二次電池の膨れ特性およびサイクル特性を調べたところ、表1に示した結果が得られた。 In order to evaluate the battery characteristics of the secondary battery, the swelling characteristics and cycle characteristics of the secondary battery were examined, and the results shown in Table 1 were obtained.
 膨れ特性を調べる場合には、連続充電試験(フロート試験)を行うことにより、厚さ変化率(%)を算出した。具体的には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=25℃)において二次電池を充放電させた。続いて、同環境中において二次電池を充電させたのち、その充電状態の二次電池の厚さ(連続充電前の厚さ)を測定した。続いて、高温環境中(温度=60℃)において二次電池を連続充電(充電時間=240時間)させたのち、常温環境中(温度=25℃)において充電状態の二次電池の厚さ(連続充電後の厚さ)を測定した。最後に、厚さ変化率(%)=[(連続充電後の厚さ-連続充電前の厚さ)/連続充電前の厚さ]×100を算出した。 When investigating the swelling characteristics, the thickness change rate (%) was calculated by conducting a continuous charge test (float test). Specifically, first, in order to stabilize the state of the secondary battery, the secondary battery was charged and discharged in a normal temperature environment (temperature = 25 ° C.). Subsequently, after charging the secondary battery in the same environment, the thickness of the secondary battery in the charged state (thickness before continuous charging) was measured. Subsequently, after the secondary battery is continuously charged (charging time = 240 hours) in a high temperature environment (temperature = 60 ° C.), the thickness of the secondary battery charged in the normal temperature environment (temperature = 25 ° C.) ( The thickness after continuous charging) was measured. Finally, thickness change rate (%) = [(thickness after continuous charging−thickness before continuous charging) / thickness before continuous charging] × 100 was calculated.
 なお、充電時には、0.2Cの電流で電圧が4.3Vに到達するまで定電流充電したのち、4.3Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電圧が2.5Vに到達するまで定電流放電した。連続充電時には、上記した低電圧充電を行った。「0.2C」とは、電池容量(理論容量)を5時間で放電しきる電流値であると共に、「0.05C」とは、電池容量を20時間で放電しきる電流値である。 At the time of charging, constant current charging was performed until the voltage reached 4.3 V at a current of 0.2 C, and then constant voltage charging was performed until the current reached 0.05 C at a voltage of 4.3 V. During discharging, constant current discharging was performed at a current of 0.2 C until the voltage reached 2.5V. At the time of continuous charging, the above-described low voltage charging was performed. “0.2 C” is a current value at which the battery capacity (theoretical capacity) can be discharged in 5 hours, and “0.05 C” is a current value at which the battery capacity can be discharged in 20 hours.
 サイクル特性を調べる場合には、サイクル試験を行うことにより、容量維持率(%)を算出した。具体的には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=25℃)において二次電池を充放電(1サイクル)させた。続いて、同環境中(温度=25℃)において二次電池を充放電(1サイクル)させることにより、2サイクル目の放電容量を測定した。続いて、同環境中において二次電池を充放電(500サイクル)させることにより、501サイクル目の放電容量を測定した。最後に、容量維持率(%)=(501サイクル目の放電容量/1サイクル目の放電容量)×100を算出した。 When examining the cycle characteristics, the capacity retention rate (%) was calculated by performing a cycle test. Specifically, first, in order to stabilize the state of the secondary battery, the secondary battery was charged and discharged (one cycle) in a normal temperature environment (temperature = 25 ° C.). Subsequently, the secondary battery was charged and discharged (one cycle) in the same environment (temperature = 25 ° C.) to measure the discharge capacity at the second cycle. Subsequently, the secondary battery was charged and discharged (500 cycles) in the same environment to measure the discharge capacity at the 501st cycle. Finally, capacity retention ratio (%) = (discharge capacity at the 501st cycle / discharge capacity at the first cycle) × 100 was calculated.
 なお、充電時には、1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、5Cの電流で電圧が2.5Vに到達するまで定電流放電した。「1C」とは、電池容量(理論容量)を1時間で放電しきる電流値であると共に、「5C」とは、電池容量を0.2時間で放電しきる電流値である。 At the time of charging, constant current charging was performed until the voltage reached 4.2V at a current of 1C, and then constant voltage charging was performed until the current reached 0.05C at a voltage of 4.2V. During discharging, constant current discharging was performed at a current of 5 C until the voltage reached 2.5V. “1C” is a current value at which the battery capacity (theoretical capacity) can be discharged in one hour, and “5C” is a current value at which the battery capacity can be discharged in 0.2 hours.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 厚さ変化率および容量維持率のそれぞれは、炭酸エチレンの含有量、電解質塩の含有量およびモル比M2/M1に応じて変動した。 The thickness change rate and the capacity retention rate varied depending on the ethylene carbonate content, the electrolyte salt content, and the molar ratio M2 / M1.
 この場合には、炭酸エチレンの含有量が10重量%~30重量%、電解質塩の含有量が0.8mol/kg~2.0mol/kg、モル比M2/M1が0.4~2.4という3つの条件が同時に満たされていると(実験例1~10)、その3つの条件が同時に満されていない場合(実験例11~13)と比較して、厚さ変化率が著しく減少したと共に、容量維持率が著しく増加した。 In this case, the ethylene carbonate content is 10 wt% to 30 wt%, the electrolyte salt content is 0.8 mol / kg to 2.0 mol / kg, and the molar ratio M2 / M1 is 0.4 to 2.4. When the three conditions are satisfied at the same time (Experimental Examples 1 to 10), the rate of change in thickness is significantly reduced compared to the case where the three conditions are not satisfied at the same time (Experimental Examples 11 to 13). At the same time, the capacity retention rate increased significantly.
 特に、溶媒が炭酸プロピレンを含んでいると、その溶媒が炭酸プロピレンを含んでいない場合と比較して、高い容量維持率が維持されたまま、厚さ変化率がより減少した。 In particular, when the solvent contains propylene carbonate, the rate of change in thickness is further reduced while maintaining a high capacity retention rate as compared with the case where the solvent does not contain propylene carbonate.
 表1に示した結果から、溶媒が炭酸エチレンを含んでおり、溶媒中における炭酸エチレンの含有量、電解液中における電解質塩の含有量およびモル比M2/M1に関して上記した3つの条件が同時に満たされていると、膨れ特性およびサイクル特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。 From the results shown in Table 1, the solvent contains ethylene carbonate, and the above three conditions regarding the content of ethylene carbonate in the solvent, the content of electrolyte salt in the electrolytic solution, and the molar ratio M2 / M1 are simultaneously satisfied. As a result, both the swollenness characteristics and the cycle characteristics were improved. Therefore, excellent battery characteristics were obtained in the secondary battery.
 以上、一実施形態および実施例を挙げながら本技術を説明したが、本技術は、一実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。 As described above, the present technology has been described with reference to one embodiment and an example. However, the present technology is not limited to the aspect described in the one embodiment and the example, and various modifications are possible.
 具体的には、電池素子が巻回構造を有する場合に関して説明したが、本技術の二次電池において電池素子が有する構造は、特に限定されない。具体的には、電池素子は、例えば、積層構造などの他の構造を有していてもよい。 Specifically, although the case where the battery element has a winding structure has been described, the structure of the battery element in the secondary battery of the present technology is not particularly limited. Specifically, the battery element may have another structure such as a laminated structure.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 正極と、
 負極と、
 (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
 を備えた、二次電池。
(2)
 前記正極は、正極活物質を含み、
 前記正極活物質は、下記の式(24)で表される化合物を含む、
 上記(1)に記載の二次電池。
 LiCoNi1-y-z b-a  ・・・(24)
(Mは、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ストロンチウム(Sr)、セシウム(Cs)、バリウム(Ba)、インジウム(In)およびアンチモン(Sb)のうちの少なくとも1種である。Xは、ハロゲン元素である。x、y、z、aおよびbは、0.8<x≦1.2、0≦y≦1.0、0.5≦z≦1.0、0≦a≦1.0、1.8≦b≦2.2およびy<zを満たす。
(3)
 前記溶媒は、環状炭酸エステルと、鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの少なくとも一方とを含み、
 前記環状炭酸エステルは、前記炭酸エチレンを含み、
 前記鎖状炭酸エステルは、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも一方を含み、
 前記鎖状カルボン酸エステルは、プロピオン酸エチルおよびプロピオン酸プロピルのうちの少なくとも一方を含む、
 上記(1)または(2)に記載の二次電池。
(4)
 前記環状炭酸エステルは、さらに、炭酸プロピレンを含み、
 前記溶媒中における前記炭酸プロピレンの含有量は、30重量%以下である、
 上記(3)に記載の二次電池。
(5)
 前記電解質塩は、リチウム塩のうちの少なくとも1種を含む、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 前記正極、前記負極および前記電解液のそれぞれは、フィルム状の外装部材の内部に収納されている、
 上記(1)ないし(5)のいずれかに記載の二次電池。
(7)
 リチウムイオン二次電池である、
 上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 (A)溶媒および電解質塩を含むと共に、前記溶媒は炭酸エチレンを含み、
 (B)前記電解質塩の含有量は0.8mol/kg以上2.0mol/kg以下であり、
 (C)前記溶媒中における前記炭酸エチレンの含有量は10重量%以上30重量%以下であり、
 (D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1は0.4以上2.4以下である、
 二次電池用電解液。
(9)
 上記(1)ないし(7)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(10)
 上記(1)ないし(7)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(11)
 上記(1)ないし(7)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(12)
 上記(1)ないし(7)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(13)
 上記(1)ないし(7)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。
In addition, this technique can also take the following structures.
(1)
A positive electrode;
A negative electrode,
(A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. A secondary battery comprising the following electrolyte solution.
(2)
The positive electrode includes a positive electrode active material,
The positive electrode active material includes a compound represented by the following formula (24):
The secondary battery as described in said (1).
Li x Co y Ni z M 1 -yz O ba X a ··· (24)
(M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb), and X is a halogen element, x, y, z , A and b are 0.8 <x ≦ 1.2, 0 ≦ y ≦ 1.0, 0.5 ≦ z ≦ 1.0, 0 ≦ a ≦ 1.0, 1.8 ≦ b ≦ 2. 2 and y <z are satisfied.
(3)
The solvent includes a cyclic carbonate and at least one of a chain carbonate ester and a chain carboxylate ester,
The cyclic carbonate includes the ethylene carbonate,
The chain carbonate includes at least one of diethyl carbonate and ethyl methyl carbonate,
The chain carboxylic acid ester includes at least one of ethyl propionate and propyl propionate.
The secondary battery according to (1) or (2) above.
(4)
The cyclic carbonate further contains propylene carbonate,
The content of the propylene carbonate in the solvent is 30% by weight or less.
The secondary battery as described in (3) above.
(5)
The electrolyte salt includes at least one lithium salt,
The secondary battery according to any one of (1) to (4) above.
(6)
Each of the positive electrode, the negative electrode, and the electrolytic solution is housed in a film-shaped exterior member.
The secondary battery according to any one of (1) to (5) above.
(7)
A lithium ion secondary battery,
The secondary battery according to any one of (1) to (6) above.
(8)
(A) includes a solvent and an electrolyte salt, and the solvent includes ethylene carbonate;
(B) The content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less,
(C) The content of the ethylene carbonate in the solvent is 10 wt% or more and 30 wt% or less,
(D) The ratio M2 / M1 of the number of moles M2 of ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4 or less.
Secondary battery electrolyte.
(9)
The secondary battery according to any one of the above (1) to (7);
A control unit for controlling the operation of the secondary battery;
A battery pack comprising: a switch unit that switches the operation of the secondary battery in accordance with an instruction from the control unit.
(10)
The secondary battery according to any one of the above (1) to (7);
A conversion unit that converts electric power supplied from the secondary battery into driving force;
A drive unit that is driven according to the drive force;
An electric vehicle comprising: a control unit that controls the operation of the secondary battery.
(11)
The secondary battery according to any one of the above (1) to (7);
One or more electric devices supplied with electric power from the secondary battery;
And a control unit that controls power supply from the secondary battery to the electrical device.
(12)
The secondary battery according to any one of the above (1) to (7);
A power tool comprising: a movable part to which electric power is supplied from the secondary battery.
(13)
An electronic device comprising the secondary battery according to any one of (1) to (7) as a power supply source.
 本出願は、日本国特許庁において2017年1月19日に出願された日本特許出願番号第2017-007426号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2017-007426 filed on January 19, 2017 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. Is understood to be included.

Claims (13)

  1.  正極と、
     負極と、
     (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
     を備えた、二次電池。
    A positive electrode;
    A negative electrode,
    (A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. A secondary battery comprising the following electrolyte solution.
  2.  前記正極は、正極活物質を含み、
     前記正極活物質は、下記の式(24)で表される化合物を含む、
     請求項1記載の二次電池。
     LiCoNi1-y-z b-a  ・・・(24)
    (Mは、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ストロンチウム(Sr)、セシウム(Cs)、バリウム(Ba)、インジウム(In)およびアンチモン(Sb)のうちの少なくとも1種である。Xは、ハロゲン元素である。x、y、z、aおよびbは、0.8<x≦1.2、0≦y≦1.0、0.5≦z≦1.0、0≦a≦1.0、1.8≦b≦2.2およびy<zを満たす。
    The positive electrode includes a positive electrode active material,
    The positive electrode active material includes a compound represented by the following formula (24):
    The secondary battery according to claim 1.
    Li x Co y Ni z M 1 -yz O ba X a ··· (24)
    (M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb), and X is a halogen element, x, y, z , A and b are 0.8 <x ≦ 1.2, 0 ≦ y ≦ 1.0, 0.5 ≦ z ≦ 1.0, 0 ≦ a ≦ 1.0, 1.8 ≦ b ≦ 2. 2 and y <z are satisfied.
  3.  前記溶媒は、環状炭酸エステルと、鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの少なくとも一方とを含み、
     前記環状炭酸エステルは、前記炭酸エチレンを含み、
     前記鎖状炭酸エステルは、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも一方を含み、
     前記鎖状カルボン酸エステルは、プロピオン酸エチルおよびプロピオン酸プロピルのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    The solvent includes a cyclic carbonate and at least one of a chain carbonate ester and a chain carboxylate ester,
    The cyclic carbonate includes the ethylene carbonate,
    The chain carbonate includes at least one of diethyl carbonate and ethyl methyl carbonate,
    The chain carboxylic acid ester includes at least one of ethyl propionate and propyl propionate.
    The secondary battery according to claim 1.
  4.  前記環状炭酸エステルは、さらに、炭酸プロピレンを含み、
     前記溶媒中における前記炭酸プロピレンの含有量は、30重量%以下である、
     請求項3記載の二次電池。
    The cyclic carbonate further contains propylene carbonate,
    The content of the propylene carbonate in the solvent is 30% by weight or less.
    The secondary battery according to claim 3.
  5.  前記電解質塩は、リチウム塩のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
    The electrolyte salt includes at least one lithium salt,
    The secondary battery according to claim 1.
  6.  前記正極、前記負極および前記電解液のそれぞれは、フィルム状の外装部材の内部に収納されている、
     請求項1記載の二次電池。
    Each of the positive electrode, the negative electrode, and the electrolytic solution is housed in a film-shaped exterior member.
    The secondary battery according to claim 1.
  7.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
    A lithium ion secondary battery,
    The secondary battery according to claim 1.
  8.  (A)溶媒および電解質塩を含むと共に、前記溶媒は炭酸エチレンを含み、
     (B)前記電解質塩の含有量は0.8mol/kg以上2.0mol/kg以下であり、
     (C)前記溶媒中における前記炭酸エチレンの含有量は10重量%以上30重量%以下であり、
     (D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1は0.4以上2.4以下である、
     二次電池用電解液。
    (A) includes a solvent and an electrolyte salt, and the solvent includes ethylene carbonate;
    (B) The content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less,
    (C) The content of the ethylene carbonate in the solvent is 10 wt% or more and 30 wt% or less,
    (D) The ratio M2 / M1 of the number of moles M2 of ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4 or less.
    Secondary battery electrolyte.
  9.  二次電池と、
     前記二次電池の動作を制御する制御部と、
     前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
     を備えた、電池パック。
    A secondary battery,
    A control unit for controlling the operation of the secondary battery;
    A switch unit for switching the operation of the secondary battery according to an instruction from the control unit,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    (A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. A battery pack comprising the following electrolyte solution.
  10.  二次電池と、
     前記二次電池から供給された電力を駆動力に変換する変換部と、
     前記駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
     を備えた、電動車両。
    A secondary battery,
    A conversion unit that converts electric power supplied from the secondary battery into driving force;
    A drive unit that is driven according to the drive force;
    A control unit for controlling the operation of the secondary battery,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    (A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. An electric vehicle comprising the following electrolyte solution.
  11.  二次電池と、
     前記二次電池から電力を供給される1または2以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
     を備えた、電力貯蔵システム。
    A secondary battery,
    One or more electric devices supplied with electric power from the secondary battery;
    A control unit for controlling power supply from the secondary battery to the electrical device,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    (A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. An electric power storage system comprising:
  12.  二次電池と、
     前記二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
     を備えた、電動工具。
    A secondary battery,
    A movable part to which power is supplied from the secondary battery,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    (A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. An electric tool comprising the following electrolyte solution.
  13.  二次電池を電力供給源として備え、
     前記二次電池は、
     正極と、
     負極と、
     (A)溶媒および電解質塩を含むと共に、前記溶媒が炭酸エチレンを含み、(B)前記電解質塩の含有量が0.8mol/kg以上2.0mol/kg以下であり、(C)前記溶媒中における前記炭酸エチレンの含有量が10重量%以上30重量%以下であり、(D)前記電解質塩のモル数M1に対する前記炭酸エチレンのモル数M2の比M2/M1が0.4以上2.4以下である、電解液と
     を備えた、電子機器。
    A secondary battery is provided as a power supply source,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    (A) a solvent and an electrolyte salt, the solvent contains ethylene carbonate, (B) a content of the electrolyte salt is 0.8 mol / kg or more and 2.0 mol / kg or less, and (C) in the solvent The content of the ethylene carbonate in is 10 wt% or more and 30 wt% or less, and (D) the ratio M2 / M1 of the number of moles M2 of the ethylene carbonate to the number of moles M1 of the electrolyte salt is 0.4 or more and 2.4. An electronic device comprising the following electrolyte solution.
PCT/JP2017/035571 2017-01-19 2017-09-29 Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device WO2018135043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017007426A JP2018116863A (en) 2017-01-19 2017-01-19 Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic apparatus
JP2017-007426 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018135043A1 true WO2018135043A1 (en) 2018-07-26

Family

ID=62908053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035571 WO2018135043A1 (en) 2017-01-19 2017-09-29 Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Country Status (2)

Country Link
JP (1) JP2018116863A (en)
WO (1) WO2018135043A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016422A (en) * 2006-06-07 2008-01-24 Sony Corp Electrolyte and battery using the same, electrolyte for square battery, and square battery using the same
WO2009072664A1 (en) * 2007-12-06 2009-06-11 Sumitomo Chemical Company, Limited Rechargeable battery with nonaqueous electrolyte
JP2009218057A (en) * 2008-03-10 2009-09-24 Sony Corp Electrolytic solution and secondary battery
JP2011187169A (en) * 2010-03-04 2011-09-22 Nec Energy Devices Ltd Secondary battery and manufacturing method therefor
JP2013131374A (en) * 2011-12-21 2013-07-04 Panasonic Corp Compound device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016422A (en) * 2006-06-07 2008-01-24 Sony Corp Electrolyte and battery using the same, electrolyte for square battery, and square battery using the same
WO2009072664A1 (en) * 2007-12-06 2009-06-11 Sumitomo Chemical Company, Limited Rechargeable battery with nonaqueous electrolyte
JP2009218057A (en) * 2008-03-10 2009-09-24 Sony Corp Electrolytic solution and secondary battery
JP2011187169A (en) * 2010-03-04 2011-09-22 Nec Energy Devices Ltd Secondary battery and manufacturing method therefor
JP2013131374A (en) * 2011-12-21 2013-07-04 Panasonic Corp Compound device

Also Published As

Publication number Publication date
JP2018116863A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6131877B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2015103288A (en) Secondary battery, battery pack, electrically driven vehicle and electric power storage system
WO2018047499A1 (en) Electrolyte solution for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device
JP6520956B2 (en) Electrolyte solution for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
JP6593307B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
CN107210488B (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
WO2019021885A1 (en) Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device
JP6831462B2 (en) Bipolar lithium-ion secondary batteries and their battery packs, electric vehicles, power storage systems, power tools and electronics
WO2016056361A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric power tool and electronic apparatus equipment
WO2016129383A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
WO2018146866A1 (en) Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP6687814B2 (en) Method for manufacturing lithium-ion secondary battery
WO2018088090A1 (en) Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2015186517A1 (en) Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
WO2018150625A1 (en) Electrolytic solution for secondary batteries, secondary battery, battery pack, electric-powered vehicle, electric power storage system, electric power tool, and electronic device
WO2018179526A1 (en) Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
WO2018083933A1 (en) Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle and electronic device
JP6131868B2 (en) Nonaqueous electrolyte for lithium secondary battery, lithium secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6740928B2 (en) Electrolyte for lithium-ion secondary battery, lithium-ion secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment
JP6593345B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6350109B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2018135043A1 (en) Electrolyte solution for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP2016081645A (en) Electrolytic solution for secondary battery, secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892111

Country of ref document: EP

Kind code of ref document: A1