WO2016026190A1 - 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶 - Google Patents

石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶 Download PDF

Info

Publication number
WO2016026190A1
WO2016026190A1 PCT/CN2014/086589 CN2014086589W WO2016026190A1 WO 2016026190 A1 WO2016026190 A1 WO 2016026190A1 CN 2014086589 W CN2014086589 W CN 2014086589W WO 2016026190 A1 WO2016026190 A1 WO 2016026190A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
conductive polymer
epoxy resin
conductive
monomer
Prior art date
Application number
PCT/CN2014/086589
Other languages
English (en)
French (fr)
Inventor
张霞
李泳锐
陈雅惠
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/430,208 priority Critical patent/US20160244577A1/en
Publication of WO2016026190A1 publication Critical patent/WO2016026190A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a method for preparing a graphene conductive polymer conductive paste and the graphene conductive polymer conductive paste.
  • Conductive adhesive is an important bridge to realize the connection of micro-circuits. It is mainly composed of conductive materials, resin matrix, dispersant, curing agent and accelerator.
  • the commonly used fillers include: silver and gold balls, but conductive silver glue is expensive. The silver particles in the conductive paste are easily oxidized, so they are gradually replaced by gold balls.
  • the process of preparing conductive gold balls by electroless plating in the industry is complicated. The gold salts used in the gold plating process are mostly cyanide, and the toxicity is very large. Therefore, the new conductive filler with low price has become a research hotspot.
  • Graphene is a new type of carbon nanomaterial with excellent electrical and thermal conductivity. Using it as a conductive filler in a conductive paste will provide excellent conductivity to the conductive paste. Moreover, since the graphene is a sheet-like structure, the surface contact formed between the graphenes is more than that of the conductive particles formed by the point contact with the spherical conductive particles, and the probability of forming the conductive channels is higher. Graphene has good thermal conductivity, and the uniform dispersion of the graphene sheet in the conductive paste ensures the heat dissipation performance of the conductive paste. By utilizing this excellent thermal conductivity, the conductive adhesive is beneficial to the current in practical applications. The heat generated by the ohmic effect is dissipated, and the temperature of the conductive paste is lowered to prevent the conductive adhesive from failing.
  • Graphene itself has excellent mechanical strength and ductility. Therefore, when the conductive paste is used for bonding an object, the sheet structure and ductility of the graphene ensure the stability of bonding and electrical conductivity when the bond is damaged by a large external force. It can also play a reinforcing role in the bonding matrix to improve the bonding strength of the conductive adhesive.
  • Chinese patent CN102382606 uses graphene with excellent structure and excellent electrical conductivity as conductive filler to obtain high-performance conductive adhesive.
  • graphene is used as conductive filler, and stacking of graphene sheets will occur, and graphene high conductivity cannot be fully exerted.
  • Sexual advantages, and the surface modification of graphene with surfactants to increase the degree of dispersion of graphene in the conductive paste will affect the conductivity of graphene to some extent.
  • the filler content is too high and the cost is high.
  • Chinese patent CN102643625 uses a polystyrene-coated microparticle as a conductive filler to prepare a conductive paste and apply it to a liquid crystal display.
  • the results show that the particles coated with polyaniline have the function of conducting electric charges, which can effectively maintain the thickness of the box and also save cost.
  • the polyaniline polymer alone is used as the conductive filler, and the conductive paste produced has a large difference compared with the conductive property of the conductive gold ball conductive paste.
  • the object of the present invention is to provide a method for preparing a graphene conductive polymer conductive paste, which comprises graphene and a conductive polymer monomer as raw materials for in-situ polymerization to obtain a graphene conductive polymer composite material, and the graphene conductive material
  • the polymer composite material is used as a conductive filler, and is mixed with an epoxy resin, a curing agent and a promoter to obtain a novel graphene conductive polymer conductive adhesive, which overcomes the high cost of the conductive filler in the conventional conductive adhesive, and has a complicated preparation process and environment. Highly polluting shortcomings.
  • Another object of the present invention is to provide a graphene conductive polymer conductive paste, which is characterized in that the graphene conductive polymer composite material is used as a conductive filler, which can better overcome the phenomenon of re-stacking between graphene sheets, and the conductive adhesive
  • the conductivity can be greatly improved, and since the conductive filler has a special structure and a controllable size, the conductive adhesive has a great application prospect in ultra-fine circuit connection.
  • the present invention provides a method for preparing a graphene conductive polymer conductive paste, comprising the following steps:
  • Step 1 Providing a graphene powder and a conductive polymer monomer
  • Step 2 providing a solvent, adding the graphene powder to the solvent, and obtaining a graphene dispersion by stirring and sonication;
  • Step 3 adding the conductive polymer monomer to the graphene dispersion, and obtaining a mixture of uniformly dispersed graphene and a conductive polymer monomer by stirring and sonication;
  • Step 4 adding an initiator to the mixture of the graphene and the conductive polymer monomer, so that the conductive polymer monomer undergoes in-situ polymerization on the surface of the graphene to obtain a graphene conductive polymer composite preparation liquid;
  • Step 5 removing the solvent and impurities in the graphene conductive polymer composite preparation liquid by filtration and drying treatment to obtain a graphene conductive polymer composite material powder;
  • Step 6 weigh a certain proportion of epoxy resin, curing agent and accelerator, mix, stir until evenly dispersed to obtain epoxy resin glue system;
  • Step 7 Dispersing the graphene conductive polymer composite powder in the epoxy resin adhesive system to obtain a graphene conductive polymer conductive adhesive preparation material
  • Step 8 Defoaming the graphene conductive polymer conductive paste preparation material to obtain Graphene conductive polymer conductive paste.
  • the graphene powder has a layer number of less than 10, a size of 1 to 10 um, a conductivity of more than 1000 S/m, and the conductive polymer monomer is aniline, pyrrole or thiophene.
  • the initiator in the step 4 is ferric chloride, and the molar ratio of the ferric chloride to the pyrrole monomer is 2:1 to 1:3.
  • the initiator in the step 4 is ammonium persulfate, and the molar ratio of the ammonium persulfate to the aniline or thiophene monomer is 1:1. 4:1.
  • the solvent is a mixture of one or more of water, ethanol, ethylene glycol, acetone, chloroform, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide or toluene; the graphite
  • concentration of the olefin dispersion is from 0.01 mg/mL to 3 mg/mL.
  • the ratio of the graphene to the conductive polymer monomer, the mass ratio of graphene to conductive polymer monomer is 1:30 ⁇ 10:1;
  • the in-situ polymerization reaction is carried out at -15 to 5 ° C, and the reaction time is 1 to 24 hours.
  • the filtration treatment adopts ordinary filtration or vacuum filtration, and alternately washes with ethanol and water in the filtration process to remove impurities in the preparation liquid; the drying treatment uses freeze-drying or in 20 ⁇ Dry at 100 °C.
  • the epoxy resin is used in an amount of 80% by weight to 95% by weight of the epoxy resin adhesive system, and the curing agent is used in an amount of 1% by weight to 12% by weight of the epoxy resin adhesive system.
  • the amount of the accelerator is from 0.3% by weight to 5% by weight of the epoxy resin system;
  • the epoxy resin is bisphenol A epoxy resin E44, bisphenol A epoxy resin E51, bisphenol A epoxy resin E54, bisphenol A epoxy resin EPON826 or bisphenol A epoxy resin EPON828
  • the curing agent is hexahydrophthalic anhydride, tetrahydrophthalic anhydride, succinic acid hydrazide, adipic acid hydrazide, dicyandiamide or p-phenylenediamine;
  • the accelerator is two- Ethyl-tetramethylimidazole, imidazole, dimethylimidazole or triethylamine.
  • the mass ratio of the epoxy resin system to the graphene conductive polymer composite is 100:2-30.
  • the invention also provides a graphene conductive polymer conductive adhesive prepared by the method for preparing the graphene conductive polymer conductive paste.
  • the invention has the beneficial effects that the preparation method of the graphene conductive polymer conductive adhesive of the invention and the graphene conductive polymer conductive adhesive use the graphene conductive polymer as the conductive filler, thereby solving the excessive content of the conductive filler in the traditional conductive adhesive, It is expensive, complicated in preparation process, and highly polluting to the environment.
  • the graphene conductive polymer is prepared by in-situ polymerization, so that the dispersion of the conductive polymer and the graphene is more uniform, and the stability of the graphene conductive polymer is obtained. High, conductivity is guaranteed.
  • the invention can also realize the control of the size of the graphene conductive polymer by adjusting the ratio of the raw materials of the graphene and the conductive polymer monomer in the preparation process of the graphene conductive polymer.
  • the graphene conductive polymer conductive adhesive prepared by the invention has the advantages of high electrical conductivity and environmental friendliness, and can be used for replacing the conductive gold glue or the conductive silver glue in the thin film transistor-liquid crystal display, and can also be applied to the ultra-fine circuit connection.
  • the graphene conductive polymer prepared by the invention can be made into a conductive ink after being dispersed in a certain solvent, and has potential commercial value in the field of flexible circuits.
  • FIG. 1 is a schematic flow chart of a method for preparing a graphene conductive polymer conductive paste of the present invention
  • FIG. 2 is a schematic view showing the microstructure of a graphene conductive polymer composite material prepared by the present invention
  • FIG. 3 is a schematic structural view of a graphene conductive polymer conductive paste applied to a thin film transistor-liquid crystal display according to the present invention
  • FIG. 4 is a schematic structural view of a graphene conductive polymer conductive paste applied to a thin film transistor-liquid crystal display according to the present invention
  • FIG. 5 is a schematic view showing the structure of a graphene conductive polymer conductive paste applied to a thin film transistor-liquid crystal display according to the present invention.
  • the present invention provides a method for preparing a graphene conductive polymer conductive paste, which comprises the following steps:
  • Step 1 Providing a graphene powder and a conductive polymer monomer
  • Step 2 providing a solvent, adding the graphene powder to the solvent, and obtaining a graphene dispersion by stirring, ultrasonic or the like;
  • Step 3 adding the conductive polymer monomer to the graphene dispersion, and obtaining a mixture of uniformly dispersed graphene and a conductive polymer monomer by stirring, ultrasonication or the like;
  • Step 4 adding an initiator to the mixture of the graphene and the conductive polymer monomer, so that the conductive polymer monomer undergoes in-situ polymerization on the surface of the graphene to obtain a graphene conductive polymer composite preparation liquid;
  • Step 5 removing the solvent and impurities in the graphene conductive polymer composite preparation liquid by filtration, drying, etc., to obtain a graphene conductive polymer composite material powder;
  • Step 6 weigh a certain proportion of epoxy resin, curing agent and accelerator, mix, stir until evenly dispersed to obtain epoxy resin glue system;
  • Step 7 Dispersing the graphene conductive polymer composite powder in the epoxy resin adhesive system to obtain a graphene conductive polymer conductive adhesive preparation material
  • Step 8 Defoaming the graphene conductive polymer conductive paste preparation material to obtain a graphene conductive polymer conductive paste.
  • the graphene powder has a layer number of less than 10, a size of 1 to 10 um, a conductivity of more than 1000 S/m, and the conductive polymer monomer is aniline, pyrrole or thiophene.
  • the initiator in the step 4 is ferric chloride, and the molar ratio of the ferric chloride to the pyrrole monomer is 2:1 to 1:3.
  • the initiator in the step 4 is ammonium persulfate, and the molar ratio of the ammonium persulfate to the aniline or thiophene monomer is 1:1. 4:1.
  • the solvent is a mixture of one or more of water, ethanol, ethylene glycol, acetone, chloroform, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide or toluene; the graphite
  • concentration of the olefin dispersion is from 0.01 mg/mL to 3 mg/mL.
  • the ratio of the graphene to the conductive polymer monomer, the mass ratio of graphene to conductive polymer monomer is 1:30 ⁇ 10:1;
  • the size control of the graphene conductive polymer can be achieved by adjusting the ratio of the graphene to the conductive polymer monomer.
  • the in-situ polymerization reaction is carried out at -15 to 5 ° C, and the reaction time is 1 to 24 hours.
  • the filtration treatment adopts ordinary filtration or vacuum filtration, and alternately washes with ethanol and water in the filtration process to remove impurities in the preparation liquid; the drying treatment uses freeze-drying or in 20 ⁇ Dry at 100 °C.
  • the epoxy resin is used in an amount of 80% by weight to 95% by weight of the epoxy resin adhesive system, and the curing agent is used in an amount of 1% by weight to 12% by weight of the epoxy resin adhesive system.
  • the amount of the accelerator is from 0.3% by weight to 5% by weight of the epoxy resin system;
  • the epoxy resin is bisphenol A epoxy resin E44, bisphenol A epoxy resin E51, bisphenol A epoxy resin E54, bisphenol A epoxy resin EPON826 or bisphenol A epoxy resin EPON828;
  • the curing agent is hexahydrophthalic anhydride, tetrahydrophthalic anhydride, succinic acid hydrazide, adipic acid hydrazide, dicyandiamide or p-phenylenediamine;
  • the accelerator is two Ethyl-tetramethylimidazole, imidazole, dimethylimidazole or triethylamine.
  • the mass ratio of the epoxy resin system to the graphene conductive polymer composite is 100:2-30.
  • the microstructure of the graphene conductive polymer composite powder prepared by the present invention is shown as follows: the conductive polymer 100 is dispersed on the surface of the graphene 200 or encapsulated by the graphene 200, and has a certain bond between the two. Role, the overall rendering of the three-dimensional network structure.
  • the graphene conductive polymer can be dispersed in a certain solvent to form a conductive ink, which has potential commercial value in the field of flexible circuits.
  • the method for preparing a graphene conductive polymer conductive paste of the present invention can be further described by the following three examples.
  • Step 1 Providing a graphene powder and a conductive polymer monomer.
  • the graphene powder has a layer number of less than 10, a size of 1 to 10 um, and an electrical conductivity of more than 1000 S/m.
  • the conductive polymer monomer is selected from an aniline monomer.
  • Step 2 The graphene powder was dispersed in a mixed solution of ethanol and water in a volume ratio of 1:1, and a graphene dispersion of 0.1 mg/mL was obtained by stirring, ultrasonication or the like.
  • Step 3 Adding an aniline monomer to the graphene dispersion, and obtaining a uniformly mixed mixture of graphene and aniline monomer by stirring, ultrasonication or the like.
  • the mass ratio of graphene to aniline monomer is 1:30.
  • Step 4 dissolving 1 mol/L HCl dissolved ammonium persulfate solution as an initiator, and dropping HCl dissolved ammonium persulfate solution into a mixture of graphene and aniline at -15 ° C, stirring for 24 hours, so that The aniline monomer is polymerized in situ on the surface of graphene to obtain a graphene polyaniline composite preparation liquid.
  • the molar ratio of ammonium persulfate to aniline monomer is 1:1.
  • Step 5 The graphene polyaniline composite preparation liquid is subjected to suction filtration through a 0.2 ⁇ m microporous membrane, and the filtration process is performed by using 90 mL of ethanol and 500 mL of deionized water, respectively, in three washings, and the ethanol washing and deionized water washing are alternately performed.
  • the filter cake is obtained, the filter cake is removed from the microporous membrane and placed in a small beaker, and an appropriate amount of water is added to the filter cake, frozen at 0 ° C, and then frozen in a freeze-drying box for 12 hours to obtain graphite. Ole polyaniline composite powder.
  • Step 6 The components were weighed according to the following mass ratio: bisphenol A type epoxy resin E44 (93%), hexahydrophthalic anhydride (6%), di-ethyl-tetramethylimidazole ( 1%), mixed, stirred until evenly dispersed to obtain an epoxy resin system.
  • Step 7 Add the graphene polyaniline composite powder to the epoxy resin system.
  • the mass ratio of the epoxy resin system to the graphene polyaniline composite powder is 10:1.
  • the mixture was stirred until the dispersion was uniform, and a graphene polyaniline conductive rubber preparation material was obtained.
  • Step 8 The prepared graphene polyaniline conductive rubber preparation material is added to a defoaming machine, and is defoamed at a vacuum of 0.7 KPa at 500 rpm for 30 minutes to finally obtain a graphene polyaniline conductive paste.
  • Step 1 Providing a graphene powder and a conductive polymer monomer.
  • the graphene powder has a layer number of less than 10, a size of 1 to 10 um, and an electrical conductivity of more than 1000 S/m.
  • the conductive polymer monomer selects a pyrrole monomer.
  • Step 2 Disperse the graphene powder in isopropyl alcohol, and obtain a 0.1 mg/mL graphene dispersion by stirring, ultrasonication or the like.
  • Step 3 Adding a pyrrole monomer to the graphene dispersion, and obtaining a uniformly mixed mixture of graphene and pyrrole monomer by stirring, ultrasonication or the like.
  • the mass ratio of graphene to pyrrole monomer is 1:1.
  • Step 4 Configure a 0.4 mol/L ferric chloride solution as an initiator, and drop the ferric chloride solution into the mixture of graphene and pyrrole at -10 ° C, and stir for 24 h to make the pyrrole monomer. In-situ polymerization on the surface of graphene to obtain a graphene polypyrrole composite preparation liquid.
  • the molar ratio of ferric chloride to pyrrole monomer is 2:1.
  • Step 5 The graphene polypyrrole composite preparation liquid is subjected to suction filtration through a 0.2 ⁇ m microporous membrane, and the suction filtration process is performed in three separate washings using 90 mL of ethanol and 500 mL of deionized water, and the ethanol washing and the deionized water washing are alternately performed.
  • the filter cake was obtained, and the filter cake was peeled off from the microfiltration membrane and placed in a vacuum drying oven, and dried at 100 ° C for 12 hours to obtain a graphene polypyrrole composite material.
  • Step 6 The components were weighed according to the following mass ratio: bisphenol A type epoxy resin E51 (91%), tetrahydrophthalic anhydride (7%), dimethylimidazole (2%), mixed Stir until the dispersion is uniform to obtain an epoxy resin system.
  • Step 7 Add the graphene polypyrrole composite material to the epoxy resin system.
  • the mass ratio of the epoxy resin system to the graphene polypyrrole composite is 12:1.
  • the mixture was stirred until the dispersion was uniform, and a graphene polypyrrole conductive rubber preparation material was obtained.
  • Step 8 The prepared graphene polypyrrole conductive rubber preparation material is added to a defoaming machine, and is defoamed at a vacuum of 0.7 KPa at 500 rpm for 30 minutes to finally obtain a graphene polypyrrole conductive paste.
  • Step 1 Providing a graphene powder and a conductive polymer monomer.
  • the graphene powder has a layer number of less than 10, a size of 1 to 10 um, and an electrical conductivity of more than 1000 S/m.
  • the conductive polymer monomer selects a thiophene monomer.
  • Step 2 The graphene powder was dispersed in N-methylpyrrolidone (NMP), and a graphene dispersion of 0.1 mg/mL was obtained by stirring, ultrasonication or the like.
  • NMP N-methylpyrrolidone
  • Step 3 Adding a thiophene monomer to the graphene dispersion, and obtaining a uniformly dispersed mixture of graphene and a thiophene monomer by stirring, ultrasonication or the like.
  • the mass ratio of graphene to thiophene monomer is 10:1.
  • Step 4 dissolving 1 mol/L HCl dissolved ammonium persulfate solution as an initiator, and dropping HCl dissolved ammonium persulfate solution into a mixture of graphene and thiophene at 0 ° C, stirring for 24 h, so that thiophene
  • the monomer is polymerized in situ on the surface of the graphene to obtain a graphene polythiophene composite preparation liquid.
  • the molar ratio of ammonium persulfate to thiophene monomer is 3:1.
  • Step 5 The graphene polythiophene composite preparation liquid is subjected to suction filtration through a 0.2 ⁇ m microporous membrane, and the filtration process is performed by using 90 mL of ethanol and 500 mL of deionized water for washing in three portions, and the ethanol washing and deionized water washing are alternately performed.
  • the filter cake was obtained, and the filter cake was peeled off from the microporous membrane and placed in a vacuum drying oven, and dried at 80 ° C for 12 hours to obtain a graphene polythiophene composite material.
  • Step 6 The components are weighed according to the following mass ratio: bisphenol A type epoxy resin EPON826 (88%), hexahydrophthalic anhydride (9%), triethylamine (3%), mixed, Stir until the dispersion is uniform to obtain an epoxy resin system.
  • Step 7 Add the graphene polythiophene composite material to the epoxy resin system.
  • the mass ratio of the epoxy resin system to the graphene polythiophene composite is 8:1.
  • the mixture was stirred until the dispersion was uniform, and a graphene polythiophene conductive rubber preparation material was obtained.
  • Step 8 The prepared graphene polythiophene conductive rubber preparation material is added to a defoaming machine, and is defoamed at a vacuum of 0.7 KPa at 500 rpm for 30 minutes to finally obtain a graphene polythiophene conductive paste.
  • the graphene conductive polymer conductive adhesive prepared by the invention can be used in a thin film transistor-liquid crystal display (TFT-LCD) to replace the conductive gold glue or the conductive silver glue, and has great application prospect in the ultra-fine circuit connection.
  • TFT-LCD thin film transistor-liquid crystal display
  • the graphene conductive polymer conductive adhesive prepared by the invention can be used in a thin film transistor-liquid crystal display instead of a conductive gold paste or a conductive silver paste, and a TFT (Thin Film Transistor) substrate 1 is disposed opposite thereto.
  • An ITO electrode 3 is formed on the inner surface of the CF (Color Filter) substrate 2, and the TFT substrate 1 and the CF substrate 2 are pasted by the sealant 5
  • the graphene conductive polymer conductive paste 4 is applied between the TFT substrate 1 and the CF substrate 2 instead of the conductive gold paste or the conductive silver paste.
  • the graphene conductive polymer conductive paste prepared by the present invention can be applied to a thin circuit transistor-liquid crystal display to realize connection of a fine circuit, and the inner surface of the TFT substrate 1 and the CF substrate 2 disposed opposite thereto are formed with ITO.
  • the electrode 3, the TFT substrate 1 and the CF substrate 2 are bonded together by the sealant 5, and the graphene conductive polymer is used between the IC (Integrated circuit) chip 6 and the ITO (Indium tin oxide) electrode 3.
  • the conductive paste 4 is connected.
  • the graphene conductive polymer conductive paste prepared by the present invention can be applied to the connection of the fine circuit in the thin film transistor-liquid crystal display, and the ITO electrode is formed on the inner surface of the TFT substrate 1 and the CF substrate 2 disposed opposite thereto. 3.
  • the TFT substrate 9 is bonded to the CF substrate 2 via the sealant 5, and the IC chip 6 and the electronic component 8 are directly mounted on the flexible printed wiring board 7 by the graphene conductive polymer conductive paste 4.
  • the connection of the IC chip 6 to the ITO electrode 3 is achieved.
  • the method for preparing a graphene conductive polymer conductive paste of the present invention and the graphene conductive polymer conductive adhesive use a graphene conductive polymer as a conductive filler, thereby solving the problem that the content of the conductive filler in the conventional conductive adhesive is too high. It is expensive, complicated in preparation process, and highly polluting to the environment.
  • the preparation of the graphene conductive polymer adopts an in-situ polymerization method, so that the dispersion of the conductive polymer and the graphene is more uniform, the stability of the graphene conductive polymer is obtained, and the electrical conductivity is ensured.
  • the invention can also realize the control of the size of the graphene conductive polymer by adjusting the ratio of the raw materials of the graphene and the conductive polymer monomer in the preparation process of the graphene conductive polymer.
  • the graphene conductive polymer conductive adhesive prepared by the invention has the advantages of high electrical conductivity and environmental friendliness, and can be used for replacing the conductive gold glue or the conductive silver glue in the thin film transistor-liquid crystal display, and can also be applied to the ultra-fine circuit connection.
  • the graphene conductive polymer prepared by the invention can be made into a conductive ink after being dispersed in a certain solvent, and has potential commercial value in the field of flexible circuits.

Abstract

提供一种石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶,该方法采用石墨烯导电聚合物作为导电填料,解决了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点。所述石墨烯导电聚合物的制备采用了原位聚合的方法,使得导电聚合物与石墨烯的分散更为均匀,制得石墨烯导电聚合物的稳定性高,电导率得到保证。还可以在石墨烯导电聚合物的制备过程中,通过对石墨烯与导电聚合物单体的原料配比的调整,实现对石墨烯导电聚合物的尺寸的控制。制得的石墨烯导电聚合物导电胶具有电导率高、环境友好等优点,可用于薄膜晶体管液晶显示器中取代导电金胶或导电银胶,也可应用于超细电路连接中。

Description

石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶。
背景技术
导电胶是实现微细电路连接的一个重要桥梁,主要由导电材料、树脂基体、分散剂、固化剂、促进剂等组成,目前常用的填料包括:银、金球,但导电银胶价格昂贵,而且导电胶中银粒子易被氧化,因而逐渐被金球替代,但工业上采用化学镀方法制备导电金球的工艺复杂,镀金过程中使用的金盐大多是氰化物,毒性非常大。因而价格低廉的新型导电填料成为研究热点。
石墨烯是一种新型的碳纳米材料,具有优异的导电、导热性能。将其作为导电胶中的导电填料,将为导电胶提供优异的导电性。而且,由于石墨烯是片状结构,与球状的导电粒子之间通过点接触形成导电通道相比,石墨烯之间形成的面接触更多,形成的导电通道的概率更高。石墨烯具有良好的导热性,通过石墨烯片层在导电胶中的均匀分散,保证了该导电胶的散热性能,利用这种优异的导热性,有利于导电胶在实际应用中及时将电流的欧姆效应产生的热量散去,降低导电胶温度,防止导电胶失效。
石墨烯本身具有优异的机械强度和延展性。因此,使用该导电胶用于粘结物体时,当粘结处受到较大外力破坏时,石墨烯的片状结构和延展性保证粘结和导电性的稳定。在粘结基体中还能起到补强作用,改善导电胶的粘结强度。
中国专利CN102382606以结构独特、导电性能优异的石墨烯为导电填料,制得高性能导电胶,但单纯以石墨烯为导电填料,石墨烯片层之间会发生堆叠,不能充分发挥石墨烯高导电性的优势,而且为增加石墨烯在导电胶中的分散程度而用表面活性剂对石墨烯进行表面改性,会一定程度影响石墨烯的导电性。除此之外,还存在填料含量过高、成本较高的问题。
目前,将石墨烯作为导电填料用在导电胶和其它复合材料中的研究已广泛报道。
中国专利CN102643625以包覆了聚苯胺的微粒为导电填料,制得一种导电胶,并将其应用于液晶显示器中。结果显示,包覆了聚苯胺的微粒本身有传导电荷的作用,可有效维持盒厚,也可有效节省成本。但单独使用聚苯胺聚合物为导电填料,所制得的导电胶与导电金球导电胶的导电性能相比仍有较大的差距。
发明内容
本发明的目的在于提供一种石墨烯导电聚合物导电胶的制备方法,以石墨烯和导电聚合物单体为原料进行原位聚合,制得石墨烯导电聚合物复合材料,将该石墨烯导电聚合物复合材料作为导电填料,与环氧树脂、固化剂、促进剂混合,制得一种新型石墨烯导电聚合物导电胶,克服了传统导电胶中导电填料价格昂贵、制备工艺复杂、对环境污染性高等缺点。
本发明的另一目的在于提供一种石墨烯导电聚合物导电胶,以石墨烯导电聚合物复合材料作为导电填料,能够较好克服石墨烯片层之间重新堆叠的现象,同时该导电胶的导电性能够得到较大提高,且由于导电填料的结构特殊、尺寸可控,因此该导电胶在超细电路连接中有着巨大的应用前景。
为实现上述目的,本发明提供一种石墨烯导电聚合物导电胶的制备方法,包括如下步骤:
步骤1、提供石墨烯粉末和导电聚合物单体;
步骤2、提供溶剂,将所述石墨烯粉末加入所述溶剂中,通过搅拌和超声处理得到石墨烯分散液;
步骤3、将所述导电聚合物单体加入所述石墨烯分散液中,通过搅拌和超声处理得到分散均匀的石墨烯与导电聚合物单体的混合液;
步骤4、向所述石墨烯与导电聚合物单体的混合液中投入引发剂,使得导电聚合物单体在石墨烯表面发生原位聚合反应,得到石墨烯导电聚合物复合材料预备液;
步骤5、通过过滤和干燥处理,除去所述石墨烯导电聚合物复合材料预备液中的溶剂和杂质,得到石墨烯导电聚合物复合材料粉末;
步骤6、称取一定比例的环氧树脂、固化剂和促进剂,混合,搅拌至分散均匀,得到环氧树脂胶体系;
步骤7、将所述石墨烯导电聚合物复合材料粉末分散于所述环氧树脂胶体系中,得到石墨烯导电聚合物导电胶预备材料;
步骤8、对所述石墨烯导电聚合物导电胶预备材料进行脱泡处理,得到 石墨烯导电聚合物导电胶。
所述步骤1中,所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m,所述导电聚合物单体是苯胺、吡咯或噻吩。
当所述步骤1中的导电聚合物单体为吡咯时,所述步骤4中的引发剂为氯化铁,所述氯化铁与吡咯单体的摩尔比为2:1~1:3。
当所述步骤1中的导电聚合物单体为苯胺或噻吩时,所述步骤4中的引发剂为过硫酸铵,所述过硫酸铵与苯胺或噻吩单体的摩尔比为1:1~4:1。
所述步骤2中,所述溶剂为水、乙醇、乙二醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或甲苯中的一种或多种的混合物;所述石墨烯分散液的浓度为0.01mg/mL~3mg/mL。
所述步骤3中,所述石墨烯与导电聚合物单体的混合液中,石墨烯与导电聚合物单体的质量比为1:30~10:1;
所述步骤4中,所述原位聚合反应在-15~5℃下进行,反应时间为1~24h。
所述步骤5中,所述过滤处理采用普通过滤或减压抽滤,在过滤过程中使用乙醇和水反复交替洗涤,以去除预备液中的杂质;所述干燥处理使用冷冻干燥或在20~100℃下干燥。
所述步骤6中,所述环氧树脂的用量占所述环氧树脂胶体系的80wt%~95wt%,所述固化剂的用量占所述环氧树脂胶体系的1wt%~12wt%,所述促进剂的用量占所述环氧树脂胶体系的0.3wt%~5wt%;
所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828;所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
所述步骤7中,所述环氧树脂体系与石墨烯导电聚合物复合材料的质量比为100:2~30。
本发明还提供一种采用所述石墨烯导电聚合物导电胶的制备方法制备的石墨烯导电聚合物导电胶。
本发明的有益效果:本发明石墨烯导电聚合物导电胶的制备方法及石墨烯导电聚合物导电胶,采用石墨烯导电聚合物作为导电填料,解决了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点。所述石墨烯导电聚合物的制备采用了原位聚合的方法,使得导电聚合物与石墨烯的分散更为均匀,制得石墨烯导电聚合物的稳定性 高,电导率得到保证。本发明还可以在所述石墨烯导电聚合物的制备过程中,通过对石墨烯与导电聚合物单体的原料配比的调整,实现对石墨烯导电聚合物的尺寸的控制。本发明制得的石墨烯导电聚合物导电胶具有电导率高、环境友好等优点,可用于薄膜晶体管-液晶显示器中取代导电金胶或导电银胶,也可应用于超细电路连接中。本发明制得的石墨烯导电聚合物分散于一定溶剂后,还可以制成导电油墨,在柔性电路领域有着潜在的商业价值。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明石墨烯导电聚合物导电胶的制备方法的示意流程图;
图2为本发明制得的石墨烯导电聚合物复合材料的微观结构示意图;
图3为本发明石墨烯导电聚合物导电胶应用于薄膜晶体管-液晶显示器的结构示意图;
图4为本发明石墨烯导电聚合物导电胶应用于薄膜晶体管-液晶显示器的结构示意图;
图5为本发明石墨烯导电聚合物导电胶应用于薄膜晶体管-液晶显示器的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种石墨烯导电聚合物导电胶制备方法,其包括以下步骤:
步骤1、提供石墨烯粉末和导电聚合物单体;
步骤2、提供溶剂,将所述石墨烯粉末加入所述溶剂中,通过搅拌、超声等方法得到石墨烯分散液;
步骤3、将所述导电聚合物单体加入所述石墨烯分散液中,通过搅拌、超声等方法得到分散均匀的石墨烯与导电聚合物单体的混合液;
步骤4、向所述石墨烯与导电聚合物单体的混合液中投入引发剂,使得导电聚合物单体在石墨烯表面发生原位聚合反应,得到石墨烯导电聚合物复合材料预备液;
步骤5、通过过滤、干燥等处理,除去所述石墨烯导电聚合物复合材料预备液中的溶剂和杂质,得到石墨烯导电聚合物复合材料粉末;
步骤6、称取一定比例的环氧树脂、固化剂和促进剂,混合,搅拌至分散均匀,得到环氧树脂胶体系;
步骤7、将所述石墨烯导电聚合物复合材料粉末分散于所述环氧树脂胶体系中,得到石墨烯导电聚合物导电胶预备材料;
步骤8、对所述石墨烯导电聚合物导电胶预备材料进行脱泡处理,得到石墨烯导电聚合物导电胶。
所述步骤1中,所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m,所述导电聚合物单体是苯胺、吡咯或噻吩。
当所述步骤1中的导电聚合物单体为吡咯时,所述步骤4中的引发剂为氯化铁,所述氯化铁与吡咯单体的摩尔比为2:1~1:3。
当所述步骤1中的导电聚合物单体为苯胺或噻吩时,所述步骤4中的引发剂为过硫酸铵,所述过硫酸铵与苯胺或噻吩单体的摩尔比为1:1~4:1。
所述步骤2中,所述溶剂为水、乙醇、乙二醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或甲苯中的一种或多种的混合物;所述石墨烯分散液的浓度为0.01mg/mL~3mg/mL。
所述步骤3中,所述石墨烯与导电聚合物单体的混合液中,石墨烯与导电聚合物单体的质量比为1:30~10:1;
通过对石墨烯与导电聚合物单体的配比的调整,可实现石墨烯导电聚合物的尺寸的控制。
所述步骤4中,所述原位聚合反应在-15~5℃下进行,反应时间为1~24h。
所述步骤5中,所述过滤处理采用普通过滤或减压抽滤,在过滤过程中使用乙醇和水反复交替洗涤,以去除预备液中的杂质;所述干燥处理使用冷冻干燥或在20~100℃下干燥。
所述步骤6中,所述环氧树脂的用量占所述环氧树脂胶体系的80wt%~95wt%,所述固化剂的用量占所述环氧树脂胶体系的1wt%~12wt%,所述促进剂的用量占所述环氧树脂胶体系的0.3wt%~5wt%;
所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂 EPON828;所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
所述步骤7中,所述环氧树脂体系与石墨烯导电聚合物复合材料的质量比为100:2~30。
如图2所示,本发明制备的石墨烯导电聚合物复合材料粉末的微观结构显示为:导电聚合物100分散于石墨烯200表面或被石墨烯200所包裹,二者之间具有一定键连作用,整体上呈现三维网络结构。
除应用于制备导电胶之外,还可以将该石墨烯导电聚合物分散于一定溶剂中,制成导电油墨,在柔性电路领域有着潜在的商业价值。
本发明的石墨烯导电聚合物导电胶制备方法可进一步通过以下3个实施例进行描述。
本发明石墨烯导电聚合物导电胶制备方法的第一实施例,包括如下步骤:
步骤1、提供石墨烯粉末和导电聚合物单体。
所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m。所述导电聚合物单体选用苯胺单体。
步骤2、将石墨烯粉末分散于体积比为1:1的乙醇与水的混合溶液中,并通过搅拌、超声等方法得到0.1mg/mL的石墨烯分散液。
步骤3、将苯胺单体加入所述石墨烯分散液中,并通过搅拌、超声等方法得到分散均匀的石墨烯与苯胺单体的混合液。优选的,石墨烯与苯胺单体的质量比为1:30。
步骤4、配置1mol/L HCl溶解的过硫酸铵溶液作为引发剂,并在-15℃下,将HCl溶解的过硫酸铵溶液逐滴滴入石墨烯与苯胺的混合液中,搅拌24h,使得苯胺单体在石墨烯表面发生原位聚合,得到石墨烯聚苯胺复合材料预备液。优选的,过硫酸铵与苯胺单体的摩尔比为1:1。
步骤5、将石墨烯聚苯胺复合材料预备液通过0.2um的微孔滤膜进行抽滤,抽滤过程使用90mL乙醇和500mL去离子水各自分三次洗涤,所述乙醇洗涤与去离子水洗涤交替进行,得到滤饼,将滤饼从微孔滤膜上揭下并放入小烧杯中,加入适量的水没过滤饼,在0℃下冷冻后,再放入冷冻干燥箱中冷冻12h,得到石墨烯聚苯胺复合材料粉末。
步骤6、将各组分按照如下质量比进行称量:双酚A型环氧树脂E44(93%)、六氢邻苯二甲酸酐(6%)、二-乙基-四甲基咪唑(1%),混合,搅拌至分散均匀,获得环氧树脂胶体系。
步骤7、将石墨烯聚苯胺复合材料粉末加入到环氧树脂体系中。优选的,环氧树脂体系与石墨烯聚苯胺复合材料粉末的质量比为10:1。混合搅拌至分散均匀,获得石墨烯聚苯胺导电胶预备材料。
步骤8、将制得的石墨烯聚苯胺导电胶预备材料加入脱泡机,在0.7KPa真空度,500rpm转速下,脱泡处理30min,最终得到石墨烯聚苯胺导电胶。
本发明石墨烯导电聚合物导电胶制备方法的第二实施例,包括如下步骤:
步骤1、提供石墨烯粉末和导电聚合物单体。
所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m。所述导电聚合物单体选择吡咯单体。
步骤2、将石墨烯粉末分散于异丙醇中,并通过搅拌、超声等方法得到0.1mg/mL石墨烯分散液。
步骤3、将吡咯单体加入所述石墨烯分散液中,并通过搅拌、超声等方法得到分散均匀的石墨烯与吡咯单体的混合液。优选的,石墨烯与吡咯单体的质量比为1:1。
步骤4、配置0.4mol/L氯化铁醇溶液作为引发剂,并在-10℃下,将氯化铁醇溶液逐滴滴入石墨烯与吡咯的混合液中,搅拌24h,使得吡咯单体在石墨烯表面发生原位聚合,得到石墨烯聚吡咯复合材料预备液。优选的,氯化铁与吡咯单体的摩尔比为2:1。
步骤5、将石墨烯聚吡咯复合材料预备液通过0.2um的微孔滤膜进行抽滤,抽滤过程使用90mL乙醇和500mL去离子水各自分三次洗涤,所述乙醇洗涤与去离子水洗涤交替进行,得到滤饼,将滤饼从微孔滤膜上揭下并放入真空干燥箱中,在100℃下干燥12h,得到石墨烯聚吡咯复合材料。
步骤6、将各组分按照如下质量比进行称量:双酚A型环氧树脂E51(91%)、四氢邻苯二甲酸酐(7%)、二甲基咪唑(2%),混合,搅拌至分散均匀,获得环氧树脂胶体系。
步骤7、将石墨烯聚吡咯复合材料加入到环氧树脂体系中。优选的,环氧树脂体系与石墨烯聚吡咯复合材料的质量比为12:1。混合搅拌至分散均匀,获得石墨烯聚吡咯导电胶预备材料。
步骤8、将制得的石墨烯聚吡咯导电胶预备材料加入脱泡机,在0.7KPa真空度,500rpm转速下,脱泡处理30min,最终得到石墨烯聚吡咯导电胶。
本发明石墨烯导电聚合物导电胶制备方法的第三实施例,包括如下步骤:
步骤1、提供石墨烯粉末和导电聚合物单体。
所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m。所述导电聚合物单体选择噻吩单体。
步骤2、将石墨烯粉末分散于N-甲基吡咯烷酮(NMP)中,并通过搅拌、超声等方法得到0.1mg/mL的石墨烯分散液。
步骤3、将噻吩单体加入所述石墨烯分散液中,并通过搅拌、超声等方法得到分散均匀的石墨烯与噻吩单体的混合液。优选的,石墨烯与噻吩单体的质量比为10:1。
步骤4、配置1mol/L HCl溶解的过硫酸铵溶液作为引发剂,并在0℃下,将HCl溶解的过硫酸铵溶液逐滴滴入石墨烯与噻吩的混合液中,搅拌24h,使得噻吩单体在石墨烯表面发生原位聚合,得到石墨烯聚噻吩复合材料预备液。优选的,过硫酸铵与噻吩单体的摩尔比为3:1。
步骤5、将石墨烯聚噻吩复合材料预备液通过0.2um的微孔滤膜进行抽滤,抽滤过程使用90mL乙醇和500mL去离子水各自分三次洗涤,所述乙醇洗涤与去离子水洗涤交替进行,得到滤饼,将滤饼从微孔滤膜上揭下并放入真空干燥箱中,在80℃下干燥12h,得到石墨烯聚噻吩复合材料。
步骤6、将各组分按照如下质量比进行称量:双酚A型环氧树脂EPON826(88%)、六氢邻苯二甲酸酐(9%)、三乙胺(3%),混合,搅拌至分散均匀,获得环氧树脂胶体系。
步骤7、将石墨烯聚噻吩复合材料加入到环氧树脂体系中。优选的,环氧树脂体系与石墨烯聚噻吩复合材料的质量比为8:1。混合搅拌至分散均匀,获得石墨烯聚噻吩导电胶预备材料。
步骤8、将制得的石墨烯聚噻吩导电胶预备材料加入脱泡机,在0.7KPa真空度,500rpm转速下,脱泡处理30min,最终得到石墨烯聚噻吩导电胶。
以上所述实施例仅为本发明的几种实施方式,本发明还可通过配比、组分等条件的变形和改进得到类似的石墨烯导电聚合物导电胶,在不脱离本发明构思的前提下,这些改变和变形都属于本发明后附的权利要求的保护范围。
本发明制得的石墨烯导电聚合物导电胶可用于薄膜晶体管-液晶显示器(TFT-LCD)中取代导电金胶或导电银胶,在超细电路连接中也有着巨大的应用前景。
如图3所示,本发明制备的石墨烯导电聚合物导电胶可代替导电金胶或导电银胶应用于薄膜晶体管-液晶显示器中,TFT(Thin Film Transistor,薄膜晶体管)基板1及与其相对设置的CF(Color Filter,彩色滤光片)基板2的内表面均形成有ITO电极3,TFT基板1与CF基板2之间通过框胶5贴 合,所述石墨烯导电聚合物导电胶4应用在TFT基板1与CF基板2之间以代替导电金胶或导电银胶。
如图4所示,本发明制备的石墨烯导电聚合物导电胶可应用于薄膜晶体管-液晶显示器中实现微细电路的连接,TFT基板1及与其相对设置的CF基板2的内表面均形成有ITO电极3,TFT基板1与CF基板2之间通过框胶5贴合,IC(Integrated circuit,集成电路)芯片6与ITO(Indium tin oxide,氧化铟锡)电极3之间采用石墨烯导电聚合物导电胶4连接。
如图5所示,本发明制备的石墨烯导电聚合物导电胶可应用于薄膜晶体管-液晶显示器中微细电路的连接,TFT基板1及与其相对设置的CF基板2的内表面均形成有ITO电极3,TFT基板1与CF基板2之间通过框胶5贴合,通过石墨烯导电聚合物导电胶4将IC芯片6及电子元件8直接搭载在挠性印制线路板7上的铜箔9上,实现IC芯片6与ITO电极3的连接。
综上所述,本发明石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶,采用石墨烯导电聚合物作为导电填料,解决了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点。所述石墨烯导电聚合物的制备采用了原位聚合的方法,使得导电聚合物与石墨烯的分散更为均匀,制得石墨烯导电聚合物的稳定性高,电导率得到保证。本发明还可以在所述石墨烯导电聚合物的制备过程中,通过对石墨烯与导电聚合物单体的原料配比的调整,实现对石墨烯导电聚合物的尺寸的控制。本发明制得的石墨烯导电聚合物导电胶具有电导率高、环境友好等优点,可用于薄膜晶体管-液晶显示器中取代导电金胶或导电银胶,也可应用于超细电路连接中。本发明制得的石墨烯导电聚合物分散于一定溶剂后,还可以制成导电油墨,在柔性电路领域有着潜在的商业价值。

Claims (11)

  1. 一种石墨烯导电聚合物导电胶的制备方法,包括如下步骤:
    步骤1、提供石墨烯粉末和导电聚合物单体;
    步骤2、提供溶剂,将所述石墨烯粉末加入所述溶剂中,通过搅拌和超声处理得到石墨烯分散液;
    步骤3、将所述导电聚合物单体加入所述石墨烯分散液中,通过搅拌和超声处理得到分散均匀的石墨烯与导电聚合物单体的混合液;
    步骤4、向所述石墨烯与导电聚合物单体的混合液中投入引发剂,使得导电聚合物单体在石墨烯表面发生原位聚合反应,得到石墨烯导电聚合物复合材料预备液;
    步骤5、通过过滤和干燥处理,除去所述石墨烯导电聚合物复合材料预备液中的溶剂和杂质,得到石墨烯导电聚合物复合材料粉末;
    步骤6、称取一定比例的环氧树脂、固化剂和促进剂,混合,搅拌至分散均匀,得到环氧树脂胶体系;
    步骤7、将所述石墨烯导电聚合物复合材料粉末分散于所述环氧树脂胶体系中,得到石墨烯导电聚合物导电胶预备材料;
    步骤8、对所述石墨烯导电聚合物导电胶预备材料进行脱泡处理,得到石墨烯导电聚合物导电胶。
  2. 如权利要求1所述的石墨烯导电聚合物导电胶的制备方法,其中,所述步骤1中,所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m,所述导电聚合物单体是苯胺、吡咯或噻吩。
  3. 如权利要求2所述的石墨烯导电聚合物导电胶的制备方法,其中,当所述步骤1中的导电聚合物单体为吡咯时,所述步骤4中的引发剂为氯化铁,所述氯化铁与吡咯单体的摩尔比为2:1~1:3。
  4. 如权利要求2所述的石墨烯导电聚合物导电胶的制备方法,其中,当所述步骤1中的导电聚合物单体为苯胺或噻吩时,所述步骤4中的引发剂为过硫酸铵,所述过硫酸铵与苯胺或噻吩单体的摩尔比为1:1~4:1。
  5. 如权利要求1所述的石墨烯导电聚合物导电胶的制备方法,其中,所述步骤2中,所述溶剂为水、乙醇、乙二醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或甲苯中的一种或多种的混合物;所述石墨烯分散液的浓度为0.01mg/mL~3mg/mL。
  6. 如权利要求1所述的石墨烯导电聚合物导电胶的制备方法,其中, 所述步骤3中,所述石墨烯与导电聚合物单体的混合液中,石墨烯与导电聚合物单体的质量比为1:30~10:1;
    所述步骤4中,所述原位聚合反应在-15~5℃下进行,反应时间为1~24h。
  7. 如权利要求1所述的石墨烯导电聚合物导电胶的制备方法,其中,所述步骤5中,所述过滤处理采用普通过滤或减压抽滤,在过滤过程中使用乙醇和水反复交替洗涤,以去除预备液中的杂质;所述干燥处理使用冷冻干燥或在20~100℃下干燥。
  8. 如权利要求1所述的石墨烯导电聚合物导电胶的制备方法,其中,所述步骤6中,所述环氧树脂的用量占所述环氧树脂胶体系的80wt%~95wt%,所述固化剂的用量占所述环氧树脂胶体系的1wt%~12wt%,所述促进剂的用量占所述环氧树脂胶体系的0.3wt%~5wt%;
    所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828;所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
  9. 如权利要求1所述的石墨烯导电聚合物导电胶的制备方法,其中,所述步骤7中,所述环氧树脂体系与石墨烯导电聚合物复合材料的质量比为100:2~30。
  10. 一种采用如权利要求1所述的石墨烯导电聚合物导电胶的制备方法制备的石墨烯导电聚合物导电胶。
  11. 一种石墨烯导电聚合物导电胶的制备方法,包括如下步骤:
    步骤1、提供石墨烯粉末和导电聚合物单体;
    步骤2、提供溶剂,将所述石墨烯粉末加入所述溶剂中,通过搅拌和超声处理得到石墨烯分散液;
    步骤3、将所述导电聚合物单体加入所述石墨烯分散液中,通过搅拌和超声处理得到分散均匀的石墨烯与导电聚合物单体的混合液;
    步骤4、向所述石墨烯与导电聚合物单体的混合液中投入引发剂,使得导电聚合物单体在石墨烯表面发生原位聚合反应,得到石墨烯导电聚合物复合材料预备液;
    步骤5、通过过滤和干燥处理,除去所述石墨烯导电聚合物复合材料预备液中的溶剂和杂质,得到石墨烯导电聚合物复合材料粉末;
    步骤6、称取一定比例的环氧树脂、固化剂和促进剂,混合,搅拌至分 散均匀,得到环氧树脂胶体系;
    步骤7、将所述石墨烯导电聚合物复合材料粉末分散于所述环氧树脂胶体系中,得到石墨烯导电聚合物导电胶预备材料;
    步骤8、对所述石墨烯导电聚合物导电胶预备材料进行脱泡处理,得到石墨烯导电聚合物导电胶;
    其中,所述步骤1中,所述石墨烯粉末的层数小于10,尺寸为1~10um,电导率大于1000S/m,所述导电聚合物单体是苯胺、吡咯或噻吩;
    其中,当所述步骤1中的导电聚合物单体为吡咯时,所述步骤4中的引发剂为氯化铁,所述氯化铁与吡咯单体的摩尔比为2:1~1:3;
    其中,当所述步骤1中的导电聚合物单体为苯胺或噻吩时,所述步骤4中的引发剂为过硫酸铵,所述过硫酸铵与苯胺或噻吩单体的摩尔比为1:1~4:1;
    其中,所述步骤2中,所述溶剂为水、乙醇、乙二醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或甲苯中的一种或多种的混合物;所述石墨烯分散液的浓度为0.01mg/mL~3mg/mL;
    其中,所述步骤3中,所述石墨烯与导电聚合物单体的混合液中,石墨烯与导电聚合物单体的质量比为1:30~10:1;所述步骤4中所述原位聚合反应在-15~5℃下进行,反应时间为1~24h;
    其中,所述步骤5中,所述过滤处理采用普通过滤或减压抽滤,在过滤过程中使用乙醇和水反复交替洗涤,以去除预备液中的杂质;所述干燥处理使用冷冻干燥或在20~100℃下干燥;
    其中,所述步骤6中,所述环氧树脂的用量占所述环氧树脂胶体系的80wt%~95wt%,所述固化剂的用量占所述环氧树脂胶体系的1wt%~12wt%,所述促进剂的用量占所述环氧树脂胶体系的0.3wt%~5wt%;所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828;所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺;
    其中,所述步骤7中,所述环氧树脂体系与石墨烯导电聚合物复合材料的质量比为100:2~30。
PCT/CN2014/086589 2014-08-21 2014-09-16 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶 WO2016026190A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/430,208 US20160244577A1 (en) 2014-08-21 2014-09-16 Graphene polymer conductive film and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410415955.3 2014-08-21
CN201410415955.3A CN104178074B (zh) 2014-08-21 2014-08-21 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶

Publications (1)

Publication Number Publication Date
WO2016026190A1 true WO2016026190A1 (zh) 2016-02-25

Family

ID=51959431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086589 WO2016026190A1 (zh) 2014-08-21 2014-09-16 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶

Country Status (3)

Country Link
US (1) US20160244577A1 (zh)
CN (1) CN104178074B (zh)
WO (1) WO2016026190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944389A (zh) * 2020-08-19 2020-11-17 福州大学 一种聚对苯二胺-石墨烯改性环氧树脂防腐涂料的制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146995B (zh) * 2015-03-27 2019-02-22 国家电网公司 一种半导电聚烯烃浆料的制备方法
CN104808398B (zh) * 2015-05-22 2018-06-05 京东方科技集团股份有限公司 一种显示面板及其制作方法、以及显示装置
TWI611445B (zh) * 2015-09-01 2018-01-11 Hua Qing Xiu 石墨烯應用於鍵盤按鍵之接點表面及其結構
CN106548895A (zh) * 2015-09-18 2017-03-29 志康实业股份有限公司 防水及抗氧化的非金属高分子导电材料及其电路开关结构
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
CN106833442B (zh) * 2017-02-24 2019-03-12 京东方科技集团股份有限公司 封框胶、液晶面板、液晶显示器及其制备方法
CN107686688A (zh) * 2017-09-23 2018-02-13 南京林业大学 石墨烯/聚吡咯/炭黑导电油墨及制备方法和柔性纸基书写导电线路
CN108485263A (zh) * 2018-04-06 2018-09-04 菏泽学院 一种导电、透明高分子材料及其制备方法
CN109081917B (zh) * 2018-10-10 2020-11-10 上海交通大学 一种二维聚苯环桥接吡咯及其制备方法
CN110734727A (zh) * 2018-10-23 2020-01-31 嘉兴学院 一种聚苯胺改性鳞片状碳粉的导电胶的制备方法
CN109651927A (zh) * 2018-12-26 2019-04-19 中国科学院宁波材料技术与工程研究所 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用
US11059948B2 (en) * 2019-05-24 2021-07-13 The Florida International University Board Of Trustees Shape memory-based self-healing polymer composite reinforced with graphene foam
CN110818926A (zh) * 2019-10-21 2020-02-21 深圳市超导新材料有限公司 一种石墨烯/聚合物复合导电薄膜及其制备方法
CN111334230A (zh) * 2020-04-15 2020-06-26 徐文忠 导电碳胶的制备方法
CN112430394B (zh) * 2020-11-27 2022-03-11 福州大学 一种导电增强型聚吡咯/石墨烯/明胶复合柔性电极材料及其制备方法
CN113201168B (zh) * 2021-05-12 2023-09-08 江苏省特种设备安全监督检验研究院 一种芳纶/石墨烯/导电高分子气凝胶复合压力传感材料的制备方法
CN113999560A (zh) * 2021-11-15 2022-02-01 童文娟 一种涂料用半导电屏蔽材料及其制备方法
CN114058155B (zh) * 2021-12-23 2024-02-06 广东格瑞新材料股份有限公司 一种高导热的液晶高分子材料及其制备方法
CN114775090A (zh) * 2022-05-17 2022-07-22 凯盛家纺股份有限公司 一种石墨烯改性防静电面料的制备方法
CN116092723B (zh) * 2023-01-10 2023-11-03 厦门凯纳石墨烯技术股份有限公司 一种高分散高导电石墨烯复合导电浆料、制备方法及应用
CN116253875B (zh) * 2023-05-15 2023-08-01 上海科进生物技术有限公司 一种改性聚苯胺类导电高分子、导电塑料及其制备方法
CN117285847A (zh) * 2023-09-08 2023-12-26 浙江永通新材料股份有限公司 一种水性聚丙烯薄膜涂覆用涂层及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382606A (zh) * 2011-09-19 2012-03-21 常州合润新材料科技有限公司 一种填充石墨烯各向同性高性能导电胶及其制备方法
CN102604533A (zh) * 2012-03-14 2012-07-25 哈尔滨工程大学 一种基于聚苯胺与石墨烯复合材料的防腐涂料及制备方法
US20120228560A1 (en) * 2009-11-05 2012-09-13 Duk San Tekopia Co., Ltd. Conductive adhesive, method for manufacturing the same, and electronic device including the same
CN102746808A (zh) * 2012-07-27 2012-10-24 清华大学深圳研究生院 一种高导电率石墨烯导电胶及其制备方法
JP2013091783A (ja) * 2011-10-06 2013-05-16 Showa Denko Kk 導電性樹脂組成物及びこれを用いた導電性塗料並びに導電性接着剤
CN103144388A (zh) * 2013-03-21 2013-06-12 四川农业大学 一种聚苯胺/二氧化钛/石墨烯导电复合膜的制备方法及其应用
CN103484920A (zh) * 2013-09-06 2014-01-01 沈阳理工大学 一种石墨烯/聚苯胺复合阳极制备的方法
CN103666363A (zh) * 2012-09-10 2014-03-26 珠海方正科技高密电子有限公司 一种含有导电高分子的导电胶及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796361B2 (en) * 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
CN102433098B (zh) * 2011-09-19 2013-10-30 常州合润新材料科技有限公司 一种填充石墨烯各向同性高性能导热胶粘剂及制备方法
KR20130086902A (ko) * 2012-01-26 2013-08-05 도레이첨단소재 주식회사 도전성 난연 접착제 및 이를 이용한 전자파 차폐필름
CN102862976A (zh) * 2012-08-25 2013-01-09 华南理工大学 一种功能化石墨烯及其复合材料的制备方法
US9734954B2 (en) * 2012-09-24 2017-08-15 Nanyang Technological University Conducting polymer/graphene-based material composites, and methods for preparing the composites
CN103194165B (zh) * 2013-04-26 2014-08-20 中国电子科技集团公司第三十八研究所 一种含有石墨烯的高导热导电胶制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228560A1 (en) * 2009-11-05 2012-09-13 Duk San Tekopia Co., Ltd. Conductive adhesive, method for manufacturing the same, and electronic device including the same
CN102382606A (zh) * 2011-09-19 2012-03-21 常州合润新材料科技有限公司 一种填充石墨烯各向同性高性能导电胶及其制备方法
JP2013091783A (ja) * 2011-10-06 2013-05-16 Showa Denko Kk 導電性樹脂組成物及びこれを用いた導電性塗料並びに導電性接着剤
CN102604533A (zh) * 2012-03-14 2012-07-25 哈尔滨工程大学 一种基于聚苯胺与石墨烯复合材料的防腐涂料及制备方法
CN102746808A (zh) * 2012-07-27 2012-10-24 清华大学深圳研究生院 一种高导电率石墨烯导电胶及其制备方法
CN103666363A (zh) * 2012-09-10 2014-03-26 珠海方正科技高密电子有限公司 一种含有导电高分子的导电胶及其制备方法
CN103144388A (zh) * 2013-03-21 2013-06-12 四川农业大学 一种聚苯胺/二氧化钛/石墨烯导电复合膜的制备方法及其应用
CN103484920A (zh) * 2013-09-06 2014-01-01 沈阳理工大学 一种石墨烯/聚苯胺复合阳极制备的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944389A (zh) * 2020-08-19 2020-11-17 福州大学 一种聚对苯二胺-石墨烯改性环氧树脂防腐涂料的制备方法

Also Published As

Publication number Publication date
CN104178074B (zh) 2015-12-02
US20160244577A1 (en) 2016-08-25
CN104178074A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2016026190A1 (zh) 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
JP6691961B2 (ja) 導電性球状カーボンナノチューブの製造方法及び導電性球状カーボンナノチューブシール剤の製造方法
WO2018228407A1 (zh) 一种石墨烯/金属纳米带复合导电油墨及其制备方法和应用
CN107573645B (zh) 一种内置式高介电常数柔性树脂复合材料及其制备方法和应用
WO2014146534A1 (zh) 透明碳纳米管高分子复合导电墨水及其制备方法
KR101401574B1 (ko) 하이브리드 필러를 이용한 전도성 접착제 및 이의 제조방법
CN107342117B (zh) 各向异性导电膜及其制作方法
WO2016008187A1 (zh) 导电胶的制备方法及导电胶
CN104637570A (zh) 柔性透明导电薄膜及其制备方法
JP2010109334A (ja) 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
WO2020151346A1 (zh) 一种复合导电银浆及其制备方法
WO2016169190A1 (zh) 导电胶组合物及其制备方法、封框胶、以及显示面板
CN104211962A (zh) 一种高介电聚酰亚胺复合材料及其制备方法
CN106520008B (zh) 碳纳米管导电球及其制备方法与导电胶及其制备方法
US20210317327A1 (en) Graphene-based conductive ink and preparation thereof
Cui et al. Using a functional epoxy, micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes to prepare high performance electrically conductive adhesives
WO2021012452A1 (zh) 异方性导电胶膜、显示面板及显示面板的制作方法
CN106008921A (zh) 一种松香基多元胺导电环氧固化剂及其制备方法和应用
WO2021142752A1 (zh) 一种有机硅树脂导电胶及其制备方法和应用
TW201731965A (zh) 樹脂組成物、接合體及半導體裝置
CN112509729A (zh) 一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管柔性透明导电薄膜及其制备方法
CN101604555A (zh) 磁定向碳纳米管复合薄膜隐身材料的制备方法
CN113421698A (zh) 一种可牢固焊接的柔性导电薄膜及其制备方法和应用
Li et al. Nano-conductive adhesives for nano-electronics interconnection
CN110205088A (zh) 一种石墨烯复合耐高温水性导电胶及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14430208

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900136

Country of ref document: EP

Kind code of ref document: A1