WO2016023399A1 - Matière active pour électrode négative, son procédé de préparation, et batterie au lithium-ion - Google Patents

Matière active pour électrode négative, son procédé de préparation, et batterie au lithium-ion Download PDF

Info

Publication number
WO2016023399A1
WO2016023399A1 PCT/CN2015/081508 CN2015081508W WO2016023399A1 WO 2016023399 A1 WO2016023399 A1 WO 2016023399A1 CN 2015081508 W CN2015081508 W CN 2015081508W WO 2016023399 A1 WO2016023399 A1 WO 2016023399A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
ion battery
manganese dioxide
negative electrode
electrode active
Prior art date
Application number
PCT/CN2015/081508
Other languages
English (en)
Chinese (zh)
Inventor
陈敬波
王要武
何向明
徐盛明
赵骁
方谋
李建军
王莉
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410396821.1A external-priority patent/CN104183822B/zh
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2016023399A1 publication Critical patent/WO2016023399A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery anode active material, a preparation method thereof and a lithium ion battery.
  • transition metal oxides transition metal oxides
  • TMX transition metal oxides and other transition metal compounds
  • metal manganese oxides such as MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 and the like are widely used in various types of electrochemical energy storage devices and have attracted wide interest.
  • Manganese oxides have numerous structures, and their electrochemical behavior is strongly dependent on oxidation states, nanostructures, and morphology. According to theoretical calculations, the theoretical lithium storage capacities of MnO, Mn 3 O 4 , Mn 2 O 3 , and MnO 2 are 755, 936, 1018, and 1232 mAh/g, respectively. Therefore, the specific capacity of MnO 2 is the highest.
  • MnO 2 has been widely used as a positive electrode material for primary lithium batteries in the field of batteries, and cannot be applied to secondary lithium ion batteries due to its low reversible capacity and poor cycle stability.
  • MnO 2 has a high theoretical specific capacity, and is rich in natural resources, there is a growing trend in the study as a lithium-ion battery anode material of MnO 2, however, is far MnO 2 electrochemical performance not satisfactory, The first reversible specific capacity is low, and it is even more unacceptable that the cycle performance is extremely poor, and the capacity decays rapidly after repeated cycles. Even researchers have doubted whether MnO 2 is electrochemically active and can be applied to secondary lithium-ion batteries.
  • the lithium ion battery anode active material has a high first reversible specific capacity and excellent cycle performance, and can be used for secondary Lithium Ion Battery.
  • a method for preparing a negative electrode active material comprising the steps of: mixing potassium permanganate with hydrogen chloride in water to form a solution; and hydrothermally reacting the solution in a hydrothermal kettle, wherein the solution in the hydrothermal kettle is high Potassium manganate, hydrogen chloride and water, the reaction temperature is 120 ° C ⁇ 160 ° C, the holding time is 0.5 hour ⁇ 2 hours, the manganese dioxide secondary ball, the manganese dioxide secondary ball from the plurality of manganese dioxide nanosheets composition.
  • An anode active material consisting of a manganese dioxide secondary sphere.
  • a lithium ion battery, the anode active material of the lithium ion battery being composed of a manganese dioxide secondary sphere.
  • the manganese dioxide secondary ball provided by the invention has simple preparation process and good electrical conductivity, and can be directly used as a negative active material of a lithium ion battery without being combined with a conductive material, and has a higher performance.
  • the reversible specific capacity and stable cycle performance show good application prospects.
  • the manganese dioxide secondary sphere is composed of a large amount of manganese dioxide nanosheets, and has a high bulk density as a negative electrode active material, which is advantageous for increasing the capacity-volume ratio of the battery.
  • FIG 3 is a graph showing electrochemical performance curves of a secondary ball of a negative active material MnO 2 synthesized according to an embodiment of the present invention.
  • the lithium ion battery negative active material provided by the present invention, a preparation method thereof and a lithium ion battery will be further described in detail below with reference to the accompanying drawings and specific embodiments.
  • Embodiments of the present invention provide a lithium ion anode active material, including manganese dioxide (MnO 2 ) secondary spheres.
  • MnO 2 manganese dioxide
  • the secondary sphere is composed of a plurality of petal MnO 2 nanosheets.
  • the MnO 2 secondary sphere has a diameter of about 1 ⁇ m to 5 ⁇ m, and the valve-shaped MnO 2 nanosheet has a thickness of about 8 nm to 10 nm.
  • the plurality of nanosheets are stacked together to form the MnO 2 secondary sphere, and the nanosheet extends from the center of the sphere to the outer surface of the secondary sphere, and a gap exists between the nanosheets, so that lithium ions can be easily penetrated from the outer surface to the second time.
  • the inside of the ball The MnO 2 secondary sphere is used as a negative electrode active material for a lithium ion battery negative-current charge and discharge cycle 100 times, and the reversible specific capacity (ie, charge specific capacity) is greater than 800 mAh/g.
  • the MnO 2 secondary sphere has good electrical conductivity and can be used alone as a negative active material for a lithium ion battery, and does not need to form a composite material with a conductive material such as graphene, conductive carbon black or carbon nanotubes.
  • Embodiments of the present invention provide a method for preparing a lithium ion negative electrode active material, which includes the following steps:
  • the solution is hydrothermally reacted in a hydrothermal kettle at a reaction temperature of 120 ° C to 160 ° C and a holding time of 0.5 h to 2 h to form a secondary sphere of MnO 2 .
  • potassium permanganate may be dissolved in water to be disposed as a potassium permanganate solution, and the potassium permanganate solution is mixed with a hydrochloric acid solution to form the solution, and the mass percentage of hydrochloric acid used is greater than 36%.
  • the solution consists only of potassium permanganate, HCl and water and does not contain other additives such as surfactants.
  • the molar ratio of potassium permanganate to HCl may be from 1:10 to 4:1.
  • the concentration of potassium permanganate in the solution is preferably from 0.01 mol/L to 1 mol/L.
  • step S2 the solution is placed in a hydrothermal reaction vessel, and the hydrothermal kettle is sealed and heated to 120 ° C to 160 ° C for hydrothermal reaction, and the incubation time is 0.5 h to 2 h at the reaction temperature.
  • the hydrothermal kettle was naturally cooled to room temperature, and the black precipitate in the hydrothermal kettle was collected, centrifuged with deionized water to remove impurity ions, and then dried in the air to obtain a MnO 2 secondary sphere.
  • the MnO 2 secondary sphere is obtained by one step synthesis by the hydrothermal reaction.
  • potassium permanganate and HCl can be redoxed to form MnO 2 having a quadratic spherical appearance.
  • the black precipitate prepared by the above method is centrifuged with deionized water to remove impurity ions, and then dried in air for XRD test, which is consistent with the standard XRD pattern of MnO 2 to prove the chemical composition of the synthesized product. It is MnO 2 .
  • SEM analysis of the above product revealed that a MnO 2 secondary sphere was formed, which consisted of a plurality of valvular nanosheets. The diameter of the secondary sphere is between 1 and 5 ⁇ m, and the thickness of the petal nanosheet is about 8 nm to 10 nm.
  • the plurality of nanosheets are stacked together to form the MnO 2 secondary sphere, and the nanosheet extends from the center of the sphere to the outer surface of the secondary sphere, and a gap exists between the nanosheets, so that lithium ions can be easily penetrated from the outer surface to the second time.
  • the inside of the ball The gap between the nanosheets is narrow (about 1 nm to 10 nm), and the nanosheets are densely packed, so that the entire sphere has a higher density, and the sphere is easy to obtain a higher bulk density, so the MnO 2 secondary sphere It is beneficial to increase the capacity to volume ratio of the battery.
  • the embodiment of the invention further provides a lithium ion battery, wherein the anode active material of the lithium ion battery is composed of the MnO 2 secondary sphere prepared by the above method, has a high first discharge specific capacity, and has stable cycle performance and capacity retention.
  • the ratio is higher, and the reversible specific capacity is greater than 800 mAh/g after 100 cycles of constant current charge and discharge.
  • the MnO 2 secondary ball is used as the negative electrode active material of the lithium ion battery to prepare the negative electrode pole piece.
  • the specific process is: mixing the MnO 2 secondary ball and the conductive agent acetylene black uniformly, and then adding the binder SBR/CMC to form a slurry. Evenly coated on copper foil, dried and then cut into negative pole pieces.
  • the mass ratio of MnO 2 , acetylene black, CMC:SBR is 75:15:5:5.
  • An EC/DMC/DEC) (1:1:1, v/v) solvent containing 1 mol/L LiPF 6 was used as an electrolyte, and lithium metal was used as a counter electrode to assemble a lithium ion battery.
  • the lithium ion battery is subjected to electrochemical cycle performance test, and the charge and discharge voltage ranges from 0.01 V to 3.0 V, and the current is 100 mA/g.
  • the first discharge specific capacity of the negative active material MnO 2 secondary sphere is about 1670 mAh/g
  • the first reversible specific capacity is as high as 1281 mAh/g
  • the reversible specific capacity of 852 mAh/g can still be obtained after 100 cycles.
  • the manganese dioxide secondary ball provided by the invention has simple preparation process and good electrical conductivity, can be directly used as a negative active material of a lithium ion battery without complexing with a conductive material, has a high reversible specific capacity, and has a circulation. The performance is stable and shows a good application prospect.
  • the manganese dioxide secondary sphere is composed of a large amount of manganese dioxide nanosheets, and has a high bulk density as a negative electrode active material, which is advantageous for increasing the capacity-volume ratio of the battery.

Abstract

L'invention concerne un procédé de préparation d'une matière active pour électrode négative. Le procédé comprend les étapes suivantes : mélange de permanganate de potassium et de chlorure d'hydrogène dans de l'eau pour former une solution ; et réalisation d'une réaction hydrothermale de la solution dans une cuve hydrothermale pour générer des billes secondaires de dioxyde de manganèse, la solution dans la cuve hydrothermale consistant en permanganate de potassium, chlorure d'hydrogène et eau, la température de la réaction étant de 120 °C à 160 °C, et la durée de conservation de la chaleur étant de 0,5 heure à 2 heures. La présente invention concerne aussi une batterie au lithium-ion. La matière active de l'électrode négative de la batterie au lithium-ion consiste en les billes secondaires de dioxyde de manganèse.
PCT/CN2015/081508 2014-08-13 2015-06-16 Matière active pour électrode négative, son procédé de préparation, et batterie au lithium-ion WO2016023399A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410396821.1A CN104183822B (zh) 2014-08-13 负极活性材料及其制备方法以及锂离子电池
CN201410396821.1 2014-08-13

Publications (1)

Publication Number Publication Date
WO2016023399A1 true WO2016023399A1 (fr) 2016-02-18

Family

ID=51964704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081508 WO2016023399A1 (fr) 2014-08-13 2015-06-16 Matière active pour électrode négative, son procédé de préparation, et batterie au lithium-ion

Country Status (1)

Country Link
WO (1) WO2016023399A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573033A (zh) * 2022-03-25 2022-06-03 南京信息工程大学 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池
CN115020660A (zh) * 2022-04-18 2022-09-06 湖北大学 一种PQ-MnO2复合电极材料及其制备方法和应用
CN115448368A (zh) * 2022-10-17 2022-12-09 燕山大学 一种能够借助电荷转移储钠的层状二氧化锰制备方法及其应用
CN116943638A (zh) * 2023-08-07 2023-10-27 陕西积健环保科技有限公司 一种烟气脱硝催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144918A (ja) * 1993-06-08 1995-06-06 Agency Of Ind Science & Technol α−二酸化マンガンの製造法
CN101597086A (zh) * 2009-06-26 2009-12-09 海南大学 低温酸溶液中制备不同晶型纳米二氧化锰的方法
CN101698512A (zh) * 2009-10-23 2010-04-28 济南大学 一种采用微波水热法制备不同晶型与形貌纳米二氧化锰的方法
CN101844814A (zh) * 2010-05-31 2010-09-29 陕西师范大学 二氧化锰空心多面体的制备方法
US8493711B2 (en) * 2008-01-17 2013-07-23 Fraser W. SEYMOUR Monolithic electrode, related material, process for production, and use thereof
CN103682303A (zh) * 2013-11-11 2014-03-26 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料及其制备方法以及锂离子电池
CN104183822A (zh) * 2014-08-13 2014-12-03 江苏华东锂电技术研究院有限公司 负极活性材料及其制备方法以及锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144918A (ja) * 1993-06-08 1995-06-06 Agency Of Ind Science & Technol α−二酸化マンガンの製造法
US8493711B2 (en) * 2008-01-17 2013-07-23 Fraser W. SEYMOUR Monolithic electrode, related material, process for production, and use thereof
CN101597086A (zh) * 2009-06-26 2009-12-09 海南大学 低温酸溶液中制备不同晶型纳米二氧化锰的方法
CN101698512A (zh) * 2009-10-23 2010-04-28 济南大学 一种采用微波水热法制备不同晶型与形貌纳米二氧化锰的方法
CN101844814A (zh) * 2010-05-31 2010-09-29 陕西师范大学 二氧化锰空心多面体的制备方法
CN103682303A (zh) * 2013-11-11 2014-03-26 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料及其制备方法以及锂离子电池
CN104183822A (zh) * 2014-08-13 2014-12-03 江苏华东锂电技术研究院有限公司 负极活性材料及其制备方法以及锂离子电池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573033A (zh) * 2022-03-25 2022-06-03 南京信息工程大学 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池
CN115020660A (zh) * 2022-04-18 2022-09-06 湖北大学 一种PQ-MnO2复合电极材料及其制备方法和应用
CN115020660B (zh) * 2022-04-18 2023-11-24 湖北大学 一种PQ-MnO2复合电极材料及其制备方法和应用
CN115448368A (zh) * 2022-10-17 2022-12-09 燕山大学 一种能够借助电荷转移储钠的层状二氧化锰制备方法及其应用
CN115448368B (zh) * 2022-10-17 2023-09-05 燕山大学 一种能够借助电荷转移储钠的层状二氧化锰制备方法及其应用
CN116943638A (zh) * 2023-08-07 2023-10-27 陕西积健环保科技有限公司 一种烟气脱硝催化剂及其制备方法

Also Published As

Publication number Publication date
CN104183822A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2016023398A1 (fr) Matériau actif d'électrode négative, son procédé de préparation et batterie au lithium-ion
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
CN102208631B (zh) 超长单晶v2o5纳米线/石墨烯正极材料及制备方法
Jin et al. Hierarchical MnCo2O4 constructed by mesoporous nanosheets@ polypyrrole composites as anodes for lithium ion batteries
CN105355908B (zh) 锂离子电池复合负极材料及其制备方法、使用该材料的负极和锂离子电池
Lu et al. Cobalt-doped Zn 2 GeO 4 nanorods assembled into hollow spheres as high-performance anode materials for lithium-ion batteries
WO2015067136A1 (fr) Matériau actif pour électrode négative de batterie au lithium-ion, procédé de préparation pour celui-ci, et batterie au lithium-ion
CN110233256B (zh) 一种复合纳米材料及其制备方法
WO2020143531A1 (fr) Matériau actif d'électrode positive et son procédé de préparation, batterie au sodium-ion et dispositif comprenant une batterie au sodium-ion
CN107895779B (zh) 一种高容量钾离子电池负极材料及其制备方法和应用
TW201206712A (en) Process for encapsulating metals and metal oxides with graphene and the use of these materials
CN109616614A (zh) 负极极片和使用其的电化学装置和电子装置
WO2021088354A1 (fr) Ferrite de nickel noyau-enveloppe et son procédé de préparation, matériau de ferrite de nickel @c, son procédé de préparation et son utilisation
CN110165171B (zh) 一种原位自组装纳米花状二硫化钴/rGO复合材料及其制备方法和应用
WO2023097983A1 (fr) Matériau composite blanc de prusse, son procédé de préparation et son utilisation
CN103594693A (zh) 一种二氧化钛/铌钛氧化物复合材料及其制备和应用
Cai et al. Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries
WO2016023399A1 (fr) Matière active pour électrode négative, son procédé de préparation, et batterie au lithium-ion
WO2015070706A1 (fr) Pâte d'électrode, électrode négative, et batterie lithium-ion l'utilisant
CN109244458A (zh) 三维网状多孔石墨烯/磷酸铁锂复合正极材料及制备方法
Sen et al. Nano dimensionality: a way towards better Li-ion storage
CN115611323A (zh) 一种正极材料及其制备方法、正极极片和钠离子电池
CN113436901A (zh) 一种镍钴锰三元金属硫化物中空结构材料及其制备和应用
Zhao et al. Cathode materials for aqueous zinc-ion batteries and prospect of self-supporting electrodes: A review
CN105742619B (zh) 一种无定型锰氧化物包覆铁氧化物锂/钠离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832568

Country of ref document: EP

Kind code of ref document: A1