WO2016021766A1 - System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor - Google Patents

System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor Download PDF

Info

Publication number
WO2016021766A1
WO2016021766A1 PCT/KR2014/009458 KR2014009458W WO2016021766A1 WO 2016021766 A1 WO2016021766 A1 WO 2016021766A1 KR 2014009458 W KR2014009458 W KR 2014009458W WO 2016021766 A1 WO2016021766 A1 WO 2016021766A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
wastewater
sewage
anaerobic
aerobic
Prior art date
Application number
PCT/KR2014/009458
Other languages
French (fr)
Korean (ko)
Inventor
강동한
장영호
문희천
김미정
이기종
오조교
이정복
박헌웅
Original Assignee
경기도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기도 filed Critical 경기도
Publication of WO2016021766A1 publication Critical patent/WO2016021766A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Definitions

  • the present invention relates to an advanced sewage and wastewater treatment system and method using optimal microorganisms for each pollutant, and more particularly, to remove organic matter from sewage and wastewater introduced using a fixed carrier having a biofilm formed by microorganisms. And the BAF (Biological Aerated Filter) process to remove nitrogen through nitrification and denitrification and alternating exposure of microorganisms to anaerobic and aerobic conditions to induce phosphorus in excess in excess of what is needed for growth.
  • the present invention relates to an advanced sewage and wastewater treatment system and method for fusing A2O processes to remove nitrogen and effectively removing nitrogen and phosphorus from sewage and wastewater.
  • biological nitrogen removal methods using microorganisms include methods using activated sludge and methods using biofilm filters.
  • nitrogen in the reduced form is oxidized to the nitrate nitrogen form by the action of nitrifying bacteria, and the nitrogen is removed from the water body by exhausting it into the atmosphere with nitrogen gas using denitrifying bacteria.
  • the nitrification reaction is performed by AOB (Ammonia Oxidation Bacteria) or NOB (Nitrite Oxidation Bacteria) which produces bioenergy in the process of oxidizing ammonia nitrogen.
  • Oxidation of ammonia nitrogen to nitrite nitrogen was carried out by Nitrosomonas sp., Nitrococcus sp. And Nitrosospira sp. Nitrobacter sp., Nitrospira sp. Oxidizing the nitrite nitrogen to nitrate nitrogen. And Nitrocystis sp. It is made by nitrifying bacteria such as.
  • the nitrifying microorganism has a growth coefficient of aerobic heterotrophic bacteria as 0.05 to 0.10 gVSS / g N, which is about 10 times lower than 0.45 to 0.60 gVSS / g C.
  • SRT sludge retention
  • the nitrified nitrogen is converted into the nitrogen gas form through the denitrification reaction by the denitrification bacteria and discharged to the atmosphere as described above.
  • Nitrate nitrogen is an electron donor that loses electrons and is reduced to N 2.
  • Microorganisms using nitrate nitrogen as an electron acceptor and organics as carbon sources are Pseudomonas sp., Microscopics sp. And Acromobacter sp. And the like. Since the denitrification reaction requires an organic carbon source, sewage water, food waste water and organic waste water may be used. When methanol is used as an organic carbon source for denitrification, nitrogen is removed through the following path.
  • denitrification of 1 g of nitrate nitrogen takes 2.47 g of methanol, and in general, 4 to 5 g of BOD is required when sewage is used as an organic carbon source.
  • the biofilm is composed of a carrier that can be attached to the microorganism and a microorganism that grows attached to the carrier.
  • the bacteria forming the biofilm are relatively resistant to the toxicity and impacts such as load fluctuations compared to the floating growth microorganisms.
  • bacteria that adhere to and grow in biofilms are operated with a long SRT (microbial residence time) until they are detached and removed from the carrier, creating conditions that are very favorable for nitrification reactions.
  • the biofilm maintains both aerobic and anoxic states in one carrier even under aerobic conditions, so that the nitrification and denitrification reactions can be simultaneously performed.
  • FIG. 1 illustrates an upflow BAF process, which is a general form of BAF process using biofilms. As shown therein, nitrification and organic matter removal reactions are carried out in the aerobic state of the BAF process, and denitrification reactions mainly occur in the anoxic state.
  • the biological removal method using microorganisms is that the microorganism ingests phosphorus for growth, by exposing the microorganisms alternately to anaerobic and aerobic conditions so as to ingest excess phosphorus than necessary for growth in aerobic conditions. To induce. At this time, in the anaerobic state, organic matters such as VFAs (Volatile Fatty Acids) should be sufficient, and in the aerobic state, the organic matter should be removed and oxygen-rich.
  • VFAs Volatile Fatty Acids
  • the present invention is a novel sewage and wastewater advanced treatment system and method for efficiently removing nitrogen and phosphorus from sewage and wastewater by fusing the method using the biofilm filter and the method using activated sludge, that is, the BAF method and the A2O method. I would like to present.
  • Japanese Patent Application Laid-Open No. 2010-125361 (2010.06.10) relates to a wastewater treatment system and a purification system, and more specifically, includes an anaerobic tank, an aerobic tank, a floating separation tank, a contact aeration tank, a biological filtration tank, and the like.
  • the rare earth mineral filter medium is installed in the main body of the filtration tank, and a technique related to a wastewater treatment system capable of purifying livestock wastewater and the like in a simple and space-saving manner is proposed.
  • Japanese Laid-Open Patent Publication No. 1995-171594 (1995.07.11) relates to a denitrification dephosphorization method and apparatus for sewage, and more specifically, to a biofilm filtration tank at the end of a conventional A2O process consisting of an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation basin.
  • a technique for treating sewage and a method for treating sewage with high nitrogen and phosphorus which has a configuration in which a nitrogen-nitrate circulation line for circulating a part of the treated water obtained by the biofilm filtration tank to the denitrification is provided. Presenting.
  • Korean Patent No. 0398912 (September 06, 2003) relates to a method for simultaneously removing nitrogen and phosphorus from sewage, sewage, and wastewater. More specifically, a carrier is provided inside an anaerobic filter and aerobic biooxidation filter, respectively. , Nitrified water returned from the effluent is denitrated by an anaerobic filter, phosphorus is removed by aerobic biofiltration, and the denitrification reaction by denitrification bacteria is circulated by 0.2 to 3 times of the influent to the anoxic filter. A technique for the simultaneous removal of nitrogen and phosphorus in sewage and wastewater is presented.
  • the present invention in the advanced sewage and wastewater treatment system, the present invention is described in that the denitrification reaction is performed by combining the BAF process and the A / O process or circulating the treated water of the biooxidation filter.
  • the arrangement of the BAF process and the A / O process is different from the present invention, and also different from the present invention in that a technique related to piping, conveying technology, and separation inflow is not described.
  • the prior arts are not capable of 100% denitrification of NOx-N in BAF process effluent, so that it is difficult to remove nitrogen at a high rate and the C / N ratio of sewage has a high concentration of DO dissolved in BAF process effluent. As it is not used in aerobic dependent microorganisms, the denitrification rate is further lowered.
  • the prior art of introducing the influent sewage into the aerobic filter process is limited in that it does not allow high rate treatment of phosphorus by bio-P microorganisms by alternating anaerobic-aerobic conditions.
  • the prior art in which the influent sewage is introduced into the A2O process to treat phosphorus biologically and then the BAF process is disposed in a subsequent process is that most of the influent BOD is ingested by aerobic heterotrophic microorganisms, which generates a large amount of biological sludge, and nitrification-denitrification. There is a problem of excessive energy consumption due to an increase in the internal conveyance rate (typically 200%). In addition, in addition to the reaction time required for the A2O process, there is a limit in that a lot of sites are required when a subsequent BAF process is added.
  • the present inventors have confirmed that the oxidized NOx-N can be used for 100% denitrification by injecting NOx-N in the oxidized form in the BAF process into an oxygen-free tank in the A2O process and the BAF process. It was completed.
  • the present invention was created in order to solve the above problems, by fusing the BAF process using the biofilm filtration method and the A2O process consisting of anaerobic tank, anoxic tank, aerobic tank and sedimentation tank, containing organic matter, nitrogen and phosphorus in sewage and wastewater
  • the purpose is to provide an advanced sewage and wastewater treatment system and method for the effective removal of pollutants.
  • the present invention is to operate the advanced sewage and wastewater treatment system in which the two processes are fused, the sewage and wastewater altitude is configured to be divided into the sewage and wastewater flow in accordance with the nitrogen and phosphorus treatment rate to flow into each process It is an object of the present invention to provide a treatment system and a method thereof.
  • the nitrogen removal rate is increased by supplying the treated water of the BAF process including NOx-N and DO to an oxygen-free tank of the A2O process.
  • An object of the present invention is to provide an advanced sewage and wastewater treatment system and method for reducing the cost of oxygen injection.
  • the advanced wastewater and wastewater treatment system using an optimal microorganism includes an anoxic filtration membrane portion at the lower portion and an aerobic filtration membrane portion at the upper portion, while a part of the sewage and wastewater raw water is divided into the lower portion and flows upwardly.
  • Biofilm filtration tank 100 in which denitrification, nitrification and organic matter removal reaction are sequentially performed; It is arranged in the rear end of the biofilm filtration tank and a part of waste water Anaerobic tank in which split-inflow is performed and dephosphorization is performed; An anoxic tank disposed at the rear end of the anaerobic tank and treated with the anaerobic tank and treated water of the biofilm filtration tank to perform denitrification; An aerobic tank disposed at the rear end of the anoxic tank and treated with the anoxic tank to introduce nitrification; And a sedimentation tank separating the sludge and the symbolic water of the treated water treated in the aerobic tank to discharge the symbolic water to the final treated water.
  • 50 to 70% of the total volume flow of the sewage and wastewater introduced may be introduced into the biofilm filtration tank, and 30 to 50% of the total volume flow of the sewage and wastewater may be introduced into the anaerobic tank.
  • the flow rate returned from the nitrification unit to the anaerobic portion of the biofilm filtration tank may be operated at 50% to 150% of the volume flow rate of the treated water of the biofilm filtration tank.
  • part of the wastewater and wastewater is divided into an anaerobic filtration membrane portion of a biofilm filtration tank, and denitrification reaction using a carbon source in the influent is performed.
  • the flow rate returned to the anoxic tank among the treated water flowing out of the biofilm filtration tank may be operated at 50% to 150% of the volumetric flow rate of the biofilm filtration tank treated water.
  • the present invention relates to an advanced wastewater and wastewater treatment system and method using the optimum microorganism, and by fusing BAF process and A2O process, it is possible to process nitrogen with stable and high efficiency even in winter, and reduce waste sludge generation.
  • the cost of sewage and wastewater treatment including chemicals, chemicals, oxygen supply, sludge return pump installation and operating costs, can be saved.
  • FIG. 1 is an exemplary view for explaining the upflow BAF process which is a general form of a biofilm filtration tank using a biofilm.
  • FIG. 2 is an exemplary view for explaining the structure of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
  • Figure 3 is an exemplary view for explaining the site saving effect of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
  • Figure 4 is a flow chart for explaining the wastewater treatment method using the optimum microorganism according to an embodiment of the present invention.
  • BOD is a biological oxygen demand, and generally means an organic substance or an organic pollutant used in the art.
  • the present invention is a biofilm filtration tank 100 and an anaerobic tank 210, an anaerobic tank, including an anaerobic filtration membrane unit 110 and an aerobic filtration membrane unit 120 to remove organic matter and nitrogen by using denitrifying bacteria and nitrifying bacteria growing attached to the biofilm.
  • anaerobic tank including an anaerobic filtration membrane unit 110 and an aerobic filtration membrane unit 120 to remove organic matter and nitrogen by using denitrifying bacteria and nitrifying bacteria growing attached to the biofilm.
  • aerobic tank 230 and sedimentation tank 240 by fusing A2O process 200 to remove organic matter, nitrogen and phosphorus using suspended microorganisms, improve sewage and wastewater treatment function
  • the present invention relates to an advanced sewage and wastewater treatment system and method using microorganisms that can reduce the cost of wastewater treatment.
  • FIG. 2 is an exemplary view for explaining the structure of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
  • the advanced wastewater and wastewater treatment system using the optimum microorganism according to the present invention is a fusion of the A2O process 200 downstream of the BAF process 100.
  • the biofilm filtration tank 100 or BAF process comprises an anaerobic filtration membrane unit 110 and an aerobic filtration membrane unit 120, the A2O process 200 is anaerobic tank 210, anoxic tank 220, aerobic tank 230 And a sedimentation tank 240, and the sewage and wastewater is split into the BAF anaerobic tank 110 and the anaerobic tank 210. 2, oxygen is supplied to the exhalation filtration membrane unit 120 of the biofilm filtration tank as a blower.
  • the denitrification reaction is performed by denitrification bacteria that adhere to and grow on the fixed carrier of the anaerobic filtration membrane part 110.
  • the organic matter in sewage and wastewater is used as a carbon source, and the nitrogen is converted into a gas form in NOx-N and then into the air. To remove nitrogen.
  • the wastewater from which nitrogen and organic substances have been partially removed from the anoxic filtration membrane unit 110 is introduced into the aerobic filtration membrane unit 120.
  • the exhalation filtration membrane unit 120 is nitrified.
  • the nitrification reaction is performed by nitrifying bacteria that adhere to and grow on the fixed carrier of the aerobic filtration membrane unit 120, an anoxic filtration membrane unit 110 in which BOD is consumed, and an aerobic filtration membrane unit 120 in which ammonia nitrogen is converted to nitrate nitrogen.
  • the treated water flowing out of the biofilm filtration tank contains little BOD and NH 4 -N, and is rich in NOx-N and PO4-P, and the treated water of the biofilm filtration tank 100 Is again returned to the anaerobic filtration membrane unit 110 to remove nitrogen through denitrification.
  • the volume flow rate returned at this time is preferably 50% to 150% of the volumetric flow rate of the treated water of the biofilm filtration tank supplied to the oxygen-free tank 200 of the A2O process 200.
  • the return ratio is increased or decreased so that the NOx-N of the biofilm filter tank treated water is 15 mg / L or less, so that the denitrification reaction is completely performed when flowing into the anoxic tank of the A2O process.
  • the treated water of the biofilm filtration tank 100 supplied to the oxygen-free tank 220 of the A2O process 200 is again subjected to nitrogen removal through denitrification with the sewage and wastewater raw water split into the A2O process 200.
  • the anaerobic tank 210 In the anaerobic tank 210, 30 to 50% of the flow rate of wastewater is introduced. In the anaerobic tank 210, the phosphorus-removing microorganisms contained in the sludge returned from the settling tank 240 decomposes the polyphosphate while releasing electrons and carbon into solids such as PHA and PHB to release the phosphate to the water body.
  • the ratio of split flow into BAF process and A2O process is appropriate for A2O: BAF at 30% -50%: 50% -70%, respectively. If the fraction flows into the A2O process less than 30%, the amount of VFA (Volatile Fatty Acid) required for excess phosphorus ingestion by Bio-P microorganisms is insufficient, resulting in high phosphorus concentration in the effluent. Even though 100% of nitrogen is removed from BAF process, measures to further remove nitrogen contained in 50% of sewage flowing into A2O process are required. Therefore, in order to obtain the optimum effect of the present invention in general sewage, it is preferable to split the inflow of 30% -50% into the A2O process.
  • VFA Volatile Fatty Acid
  • the anaerobic tank 220 flows in the treated water of the biofilm filtration tank 100 supplied from the biofilm filtration tank 100 and naturally discharged sewage and wastewater from the anaerobic tank 210.
  • wastewater and wastewater introduced from the anaerobic tank 210 there are many organic matters, and the treated water introduced from the biofilm filtration tank 100 is rich in DO and NOx-N.
  • the denitrification reaction takes place using BOD contained in the raw sewage, which is divided and flowed in the anoxic tank 220, as a carbon source, and the organic matter in the sewage and wastewater is reduced, thereby removing organic matter in the subsequent aerobic tank 230. And it can minimize the amount of oxygen required for nitrification.
  • phosphorus removal is performed in wastewater by waste phosphorus microorganisms having accumulated high molecular materials such as PHA and PHB in the anaerobic tank 210.
  • the phosphorus-removing microorganisms accumulate excess polyphosphate (Poly Phosphate) in the body in the process of decomposing PHA and PHB synthesized in the body. Remove it.
  • Poly Phosphate excess polyphosphate
  • Waste sludge is removed from the sedimentation tank 240, and the remaining sludge and a part of the waste water are returned to the anaerobic tank 210 to maintain the concentration of microorganisms in the system, and the nitrified sewage / waste water from the aerobic tank 230 is maintained. It is supplied to the oxygen-free tank 220 again, to increase the nitrogen removal rate in the waste water.
  • FIG. 3 is an exemplary view for explaining the site saving effect of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
  • the advanced wastewater and wastewater treatment system using the optimum microorganism of the present invention the theoretical residence time when 70% to the BAF process and 30% of the wastewater raw water to the A2O process by split inflow, 6 hrs is equivalent to a 9.2 hr nitrogen and phosphorus treatment plant. Since the general A2O process is operated with an effective HRT of 8hr (the same HRT), the invention process can save more than 25% of the site.
  • the BAF process of the advanced sewage and wastewater treatment system of the present invention enables relatively high density of nitrifying bacteria to be accumulated compared to the suspended growth A2O process.
  • the occupancy rate of nitrifying bacteria in the suspended growth A2O method is 5-10%, but the BAF process filled with a fixed carrier can maintain the occupancy rate of 15% -20%.
  • Autotrophic nitrifying bacteria usually exhibit a growth rate of about 1/5 of the aerobic heterotrophic bacteria, and rapidly decrease activity below 12 ° C.
  • the BAF process was operated for 2 months with an effective reaction time of 2 hours at 7 °C water temperature using real life sewage, and the removal rate of inflow TKN (microbial intake and nitrification mechanism) was obtained at 95.5%.
  • the removal rate of influent TKN was obtained at 40.0%.
  • Example 1 Comparative Example 1, and Comparative Example 2 were carried out using inflow sewage from a sewage treatment plant (Yongdeok Lespia) located in Yongin, Gyeonggi-do.
  • a sewage treatment plant Yongdeok Lespia located in Yongin, Gyeonggi-do.
  • the sewage water was split and introduced at a ratio of 7: 3 for the BAF process and the A2O process, respectively, and the BAF process effluent was injected into an oxygen-free tank of the A2O process.
  • the A2O process was manufactured in the same size as the A2O process used in Example 1, and the internal conveyance and sludge conveyance ratios were applied in the same manner as in Example 1.
  • the sludge loss caused by the high concentration of MLSS occurred when operating with a short reaction time (HRT).
  • reaction time was operated with an effective reaction time of 2 hours.
  • Example 1 Comparative Example 1
  • Comparative Example 2 The operating conditions of Example 1, Comparative Example 1 and Comparative Example 2 are as follows.
  • Example 1 shows the results of comparative experiments on individual methods.
  • the removal rate of BOD and SS was similar to 96.4% or more.
  • the removal rate of reducing nitrogen, TKN was 96.9% in Example 1, 64.6% in the A2O alone process, Example 1 showed a high removal efficiency of 32.3%.
  • the phosphorus removal rate of the comparative example 1 and the comparative example 2 shows the very big difference.
  • the phosphorus removal rate was as low as 19.8%, whereas in Comparative Example 1, the phosphorus removal rate was very high as 94.6%. That is, the A2O process was relatively superior to the BAF process in terms of phosphorus removal, but the BAF process was found to be superior in terms of nitrogen removal.
  • Example 1 fuses the advantages of the A2O process and the BAF process, which is very high even under low temperature conditions. It was confirmed that nitrogen and phosphorus removal rates could be achieved.
  • Figure 4 is a flow chart for explaining the wastewater treatment method using the optimum microorganism according to an embodiment of the present invention.
  • the sewage and wastewater treatment method using the optimum microorganism according to the present invention first, the anaerobic filtration membrane portion of the biofilm filtration tank and the anaerobic tank of the A2O process Divided into and flows (S101).
  • the fractional inflow rate into the BAF process is appropriate in the range of 50% -70% .
  • the fractional inflow to the biofilm filtration tank is increased and the phosphorus removal rate is increased.
  • an operation to reduce the split flow is performed on the contrary.
  • Waste and raw water introduced into the biofilm filtration tank is denitrified by using a carbon source by denitrification bacteria in the anoxic filtration membrane to remove nitrogen (S102).
  • Waste water passing through the anoxic filtration membrane part is introduced into the aerobic filtration membrane part 120, and nitrification is performed by nitrifying bacteria in the aerobic filtration membrane part (S103).
  • Part of the treated water subjected to nitrification in the exhalation filtration membrane part is returned to the anoxic filtration membrane part to further denitrify the nitrogen oxide in the biofilm filtration tank, and part of the treated water is supplied to the anoxic tank of the A2O process (S104).
  • the phosphorus-removing microorganism releases the phosphate to the water through the process of synthesizing in vivo polymer materials such as PHA and PHB using carbon in the split-flow sewage and wastewater (S105).
  • S105 split-flow sewage and wastewater
  • sewage and wastewater flowing out of the anaerobic tank and the treated water of the biofilm filtration tank are introduced, and denitrification reaction is performed to remove nitrogen (S106).
  • nitrification is carried out again in the aerobic tank of the A2O process, and the phosphorus-removing microorganism that synthesizes PHA and PHB in the anaerobic tank decomposes the PHA and PHA, while accumulating excess polyphosphate in the body.
  • waste sludge is removed and the remaining sludge is returned to the anaerobic tank (S108).
  • biofilm filtration tank 110 anoxic filtration membrane part
  • anaerobic tank 220 anaerobic tank

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The present invention relates to a system for sewage and wastewater treatment using optimum microorganisms and a method therefor and, more specifically, to a system for advanced sewage and wastewater treatment using optimum microorganisms and a method therefor, the method comprising: a BAF process configured of a BAF anoxic bath and a BAF aerobic bath; and an A2O process configured of an anaerobic bath, an anoxic bath, an aerobic bath, and a precipitating bath, wherein the treatment water in the BAF process is supplied to the anoxic bath for the A2O process in order to improve the nitrogen removal rate, and the raw water of the sewage and wastewater is allowed to divisionally flow into the BAF process and the A2O process in order to artificially control the nitrogen and phosphorous removal rates.

Description

오염물질별 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템 및 그 방법Advanced sewage and wastewater treatment system and method using optimum microorganism for each pollutant
본 발명은 오염물질별 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템 및 그 방법에 관한 것으로, 더욱 상세하게는, 미생물에 의한 생물막이 형성되어 있는 고정담체를 이용하여 유입되는 하 · 폐수 내 유기물을 제거하고 질산화와 탈질화 반응을 통해 질소를 제거하는 BAF(Biological Aerated Filter) 공정과 미생물을 혐기조건과 호기조건에 교대로 노출시켜 생장에 필요한 것보다 과량으로 인을 섭취하도록 유도함으로써 하 · 폐수 내 인을 제거하는 A2O 공정을 융합하여, 효과적으로 하 · 폐수 내 질소와 인을 제거할 수 있는 하 · 폐수 고도 처리 시스템 및 그 방법에 관한 것이다.The present invention relates to an advanced sewage and wastewater treatment system and method using optimal microorganisms for each pollutant, and more particularly, to remove organic matter from sewage and wastewater introduced using a fixed carrier having a biofilm formed by microorganisms. And the BAF (Biological Aerated Filter) process to remove nitrogen through nitrification and denitrification and alternating exposure of microorganisms to anaerobic and aerobic conditions to induce phosphorus in excess in excess of what is needed for growth. The present invention relates to an advanced sewage and wastewater treatment system and method for fusing A2O processes to remove nitrogen and effectively removing nitrogen and phosphorus from sewage and wastewater.
최근 급속한 산업화 및 대도시의 인구 집중화로 인해 환경오염이 심화되어 수질환경이 악화되거나 훼손되고 있고, 강, 하천 및 호수 등의 수자원으로 질소 및 인과 같은 영양염류가 유입되어 부영양화를 유발하고 있다.Recently, due to the rapid industrialization and concentration of large cities, environmental pollution is intensified and the water quality is worsened or damaged, and nutrients such as nitrogen and phosphorus are introduced into water resources such as rivers, rivers and lakes, causing eutrophication.
현재 상기와 같은 문제를 해결하기 위해 현재 하 · 폐수 처리과정에서 부영양화의 원인이 되는 질소와 인을 제거하는 기술이 개발 및 연구 중에 있으며, 그 중 미생물을 이용하는 방법은 질소와 인 제거 효과가 우수하고, 정수약품의 사용을 줄여 정수기능을 절감할 수 있는 등의 장점으로 인해 현재 가장 연구 및 개발이 활발한 분야이다. Currently, to solve the above problems, a technology for removing nitrogen and phosphorus, which causes eutrophication in sewage and wastewater treatment, is being developed and researched. Among them, the method using microorganisms is excellent in removing nitrogen and phosphorus. It is the most active field of research and development at present because of the advantage of reducing the water purification function by reducing the use of purified water.
현재 미생물을 이용한 생물학적 질소 제거 방법에는 활성슬러지를 이용하는 방법과 생물막여과지를 이용하는 방법이 있다.Currently, biological nitrogen removal methods using microorganisms include methods using activated sludge and methods using biofilm filters.
상기 활성슬러지 공정에서는 환원 형태의 질소를 질산화 박테리아의 작용에 의해 질산성 질소 형태로 산화시킨 후 이를 탈질 박테리아를 이용하여 질소 가스로 대기 중으로 배출함으로써 수체에서 질소를 제거한다. 보다 상세하게는, 암모니아성 질소를 산화하는 과정에서 생체에너지를 생산하는 AOB(Ammonia Oxidation Bacteria) 또는 NOB(Nitrite Oxidation Bacteria)에 의해 다음과 같은 질산화 반응이 이루어진다. In the activated sludge process, nitrogen in the reduced form is oxidized to the nitrate nitrogen form by the action of nitrifying bacteria, and the nitrogen is removed from the water body by exhausting it into the atmosphere with nitrogen gas using denitrifying bacteria. More specifically, the nitrification reaction is performed by AOB (Ammonia Oxidation Bacteria) or NOB (Nitrite Oxidation Bacteria) which produces bioenergy in the process of oxidizing ammonia nitrogen.
NH4 + + 2O2 → NO3 - + 2H+ + H2O NH 4 + + 2O 2 → NO 3 - + 2H + + H 2 O
상기와 같은 질산화 반응에서, 질소 1 mg/L의 산화에는 4.57 mg/L의 산소가 필요하며, 이때 7.14 mg/L(as CaCO3)의 알카리도가 소비된다. 암모니아성 질소의 아질산성 질소로의 산화는 Nitrosomonas sp., Nitrococcus sp. 및 Nitrosospira sp. 등의 질산화 미생물에 의해 이루어지고, 상기 아질산성 질소의 질산성 질소로의 산화에는 Nitrobacter sp., Nitrospira sp. 및 Nitrocystis sp. 등의 질산화 박테리아에 의해 이루어진다. 상기 질산화 미생물은 호기성 종속영양 박테리아의 증식계수가 0.45 ~ 0.60 gVSS/g C에 비해 0.05 ~ 0.10 gVSS/g N로서 10배 정도 낮아 질산화 반응을 유도하기 위해서는 유기물 산화에 비해 상대적으로 긴 SRT(슬러지체류시간)을 유지해야 한다. In the nitrification as described above, oxidation of 1 mg / L of nitrogen requires 4.57 mg / L of oxygen, at which time an alkalinity of 7.14 mg / L (as CaCO 3 ) is consumed. Oxidation of ammonia nitrogen to nitrite nitrogen was carried out by Nitrosomonas sp., Nitrococcus sp. And Nitrosospira sp. Nitrobacter sp., Nitrospira sp. Oxidizing the nitrite nitrogen to nitrate nitrogen. And Nitrocystis sp. It is made by nitrifying bacteria such as. The nitrifying microorganism has a growth coefficient of aerobic heterotrophic bacteria as 0.05 to 0.10 gVSS / g N, which is about 10 times lower than 0.45 to 0.60 gVSS / g C. In order to induce nitrification reaction, SRT (sludge retention) is longer than organic matter oxidation. Time).
상기와 같이 질산화된 질소는 상기한 바와 같이 탈질 박테리아에 의한 탈질화 반응을 통해 질소가스 형태로 변환되어 대기로 배출된다. 질산성 질소는 전자공여체로서 전자를 잃고 N2로 환원되며, 질산성 질소를 전자수용체, 유기물을 탄소원으로 이용하는 미생물로는 Pseudomonas sp., Microscopics sp. 및 Acromobacter sp. 등이 존재한다. 상기 탈질화 반응에는 유기탄소원이 필요하므로 하수 원수, 식품 폐수 및 유기성 폐수 등이 이용될 수 있고, 메탄올이 탈질반응의 유기탄소원으로 이용될 경우 아래의 경로로 질소를 제거하게 된다.As described above, the nitrified nitrogen is converted into the nitrogen gas form through the denitrification reaction by the denitrification bacteria and discharged to the atmosphere as described above. Nitrate nitrogen is an electron donor that loses electrons and is reduced to N 2. Microorganisms using nitrate nitrogen as an electron acceptor and organics as carbon sources are Pseudomonas sp., Microscopics sp. And Acromobacter sp. And the like. Since the denitrification reaction requires an organic carbon source, sewage water, food waste water and organic waste water may be used. When methanol is used as an organic carbon source for denitrification, nitrogen is removed through the following path.
NO3 - + 1.08CH3OH + 0.24H2CO3 → 0.06C5H7O2N + 0.47N2 + 1.68H2O + HCO3 - NO 3 - + 1.08CH 3 OH + 0.24H 2 CO 3 → 0.06C 5 H 7 O 2 N + 0.47N 2 + 1.68H 2 O + HCO 3 -
상기와 같은 탈질화 반응에서, 1g의 질산성 질소를 탈질할 때 2.47g의 메탄올이 소요되며 일반적으로 하수를 유기탄소원으로 이용할 경우 4 ~ 5g의 BOD가 필요하다.In the denitrification reaction as described above, denitrification of 1 g of nitrate nitrogen takes 2.47 g of methanol, and in general, 4 to 5 g of BOD is required when sewage is used as an organic carbon source.
또한, 상기 생물막을 이용한 공정을 통해 질소를 제거하는 방법이 있는데, 여기서 상기 생물막은 미생물이 부착할 수 있는 담체와 담체에 부착하여 성장하는 미생물로 구성된다. 일반적으로 생물막을 형성하는 박테리아는 독성에 대한 저항성 및 부하변동 등의 충격에 대한 내성 등이 부유성장 미생물에 비해 상대적으로 강하다. 또한 생물막에서 부착 성장하는 박테리아는 담체에서 탈리되어 제거될 때까지 긴 SRT(미생물 체류 시간)로 운전됨으로써 질산화 반응에 매우 유리한 조건을 형성한다. 생물막은 호기조건에서도 하나의 담체에서 호기상태와 무산소 상태를 동시에 유지하고 있어 질산화 반응과 탈질 반응이 동시에 진행되는 효과를 얻을 수 있다. 이를 통해 질산화된 하수를 탈질하기 위해 무산소조로 반송하는 유량을 줄임으로써 슬러지 반송 펌프의 동력비 및 반송 배관의 직경을 줄일 수 있는 장점이 있다. 도 1은 생물막을 이용하는 BAF 공법의 일반적인 형태인 상향류식 BAF 공정에 대해 도시한 것이다. 이에 도시되어 있는 바와 같이, BAF 공법의 호기 상태에서는 질산화와 유기물 제거 반응이 수행되고, 무산소 상태에서는 탈질화 반응이 주로 일어난다. In addition, there is a method for removing nitrogen through the process using the biofilm, wherein the biofilm is composed of a carrier that can be attached to the microorganism and a microorganism that grows attached to the carrier. In general, the bacteria forming the biofilm are relatively resistant to the toxicity and impacts such as load fluctuations compared to the floating growth microorganisms. In addition, bacteria that adhere to and grow in biofilms are operated with a long SRT (microbial residence time) until they are detached and removed from the carrier, creating conditions that are very favorable for nitrification reactions. The biofilm maintains both aerobic and anoxic states in one carrier even under aerobic conditions, so that the nitrification and denitrification reactions can be simultaneously performed. This has the advantage of reducing the power ratio of the sludge conveying pump and the diameter of the conveying pipe by reducing the flow rate conveyed to the anoxic tank to denitrify the nitrified sewage. 1 illustrates an upflow BAF process, which is a general form of BAF process using biofilms. As shown therein, nitrification and organic matter removal reactions are carried out in the aerobic state of the BAF process, and denitrification reactions mainly occur in the anoxic state.
한편, 미생물을 이용한 생물학적 인 제거 방법은, 미생물이 생장을 위해 인을 섭취하는 것을 이용하는 것으로서, 미생물을 혐기조건과 호기조건에 교대로 노출시킴으로써 호기조건에서 생장에 필요한 것보다 과량의 인을 섭취하도록 유도하는 것이다. 이때 혐기성 상태에서는 VFAs(Volatile Fatty Acids) 등과 같은 유기물이 충분하여야 하며 호기성 상태에서는 유기물이 제거되고 산소가 풍부한 상태여야 한다. 이러한 혐기-호기 조건 반복에 의한 생물학적 인 고도처리를 통해 하 · 폐수 내에서 인을 효율적으로 제거할 수 있다.On the other hand, the biological removal method using microorganisms is that the microorganism ingests phosphorus for growth, by exposing the microorganisms alternately to anaerobic and aerobic conditions so as to ingest excess phosphorus than necessary for growth in aerobic conditions. To induce. At this time, in the anaerobic state, organic matters such as VFAs (Volatile Fatty Acids) should be sufficient, and in the aerobic state, the organic matter should be removed and oxygen-rich. Such advanced anaerobic-aerobic biological treatment can efficiently remove phosphorus from sewage and wastewater.
상기 혐기성 상태에서는, 가수분해와 발효 등을 통해 생성된 유기물을 종속영양균이 섭취하게 된다. 이때, 혐기성 상태에서는 전자 수용체로 사용될 수 있는 O2, NOx-N 등이 없으므로 전자와 탄소를 Polyhydroxyacetate(PHA), Polyhydroxybutyrate(PHB)와 같은 세포내 고형물로 축적하게 된다. 상기 PHA 및 PHB의 합성에는 활성효소(HSCoA : Acetyl coenzyme A)가 필요하며 여기에 필요한 에너지는 다중인산염(Poly Phosphate)의 분해로 얻어진다. 이러한 과정에서 인산염이 수체로 방출된다.In the anaerobic state, heterotrophs ingest the organic material produced through hydrolysis and fermentation. At this time, in the anaerobic state, since there is no O 2 , NOx-N which can be used as an electron acceptor, electrons and carbon accumulate as intracellular solids such as polyhydroxyacetate (PHA) and polyhydroxybutyrate (PHB). The synthesis of the PHA and PHB requires an active enzyme (HSCoA: Acetyl coenzyme A), the energy required for this is obtained by the decomposition of polyphosphate (Poly Phosphate). In this process, phosphate is released into the water body.
상기 호기성 상태에서는, 인제거 미생물이 O2 및 NOx-N 등 전자수용체가 풍부한 호기성 상태로 이동하게 되면 상기 혐기성 상태와 반대의 생화학적 반응이 진행된다. 즉, PHA와 PHB는 가수분해 되어 HSCoA를 생성하고, 방출된 전자는 O2 및 NOx-N 등의 전자수용체에 전달되어 ATP 합성에 이용된다. 이때, 일부의 ATP를 이용하여 에너지저장물질인 다중인산염을 과잉으로 합성함으로써 하 · 폐수 내에서 인을 처리하게 된다.In the aerobic state, when the phosphorus-removing microorganism moves to an aerobic state rich in electron acceptors such as O 2 and NOx-N, a biochemical reaction opposite to the anaerobic state proceeds. That is, PHA and PHB are hydrolyzed to produce HSCoA, and the released electrons are transferred to electron acceptors such as O 2 and NO x -N, and used for ATP synthesis. At this time, by using excessively synthesized polyphosphate, an energy storage material, using some ATP, phosphorus is treated in sewage and wastewater.
본 발명은 상기와 같은 생물막여과지를 이용한 방법과 활성슬러지를 이용한 방법, 즉 BAF 공법과 A2O 공법을 융합하여 효과적으로 하 · 폐수 내 질소와 인을 제거할 수 있는 새로운 하 · 폐수 고도 처리 시스템 및 그 방법을 제시하고자 한다.The present invention is a novel sewage and wastewater advanced treatment system and method for efficiently removing nitrogen and phosphorus from sewage and wastewater by fusing the method using the biofilm filter and the method using activated sludge, that is, the BAF method and the A2O method. I would like to present.
다음으로 본 발명의 기술이 속하는 분야에 존재하는 선행기술에 대하여 간략하게 설명하고, 이어서 본 발명이 상기 선행기술에 비하여 차별적으로 이루고자 하는 기술적 사항에 대하여 설명하도록 한다.Next, the prior art existing in the art to which the present invention belongs will be briefly described, and then the technical matters to be made differently from the prior art by the present invention will be described.
먼저, 일본공개특허 제2010-125361호(2010.06.10)는 배수 처리 시스템 및 정화 시스템에 관한 것으로, 보다 구체적으로는, 혐기조, 호기조, 부상 분리조, 접촉 폭기조 및 생물 여과조 등으로 구성되며, 상기 여과조 본체에 희토류 광물 여과재가 설치되어 있어 간편하고 공간 절약적으로 축산 폐수 등을 정화 처리할 수 있는 배수 처리 시스템에 관한 기술을 제시하고 있다.First, Japanese Patent Application Laid-Open No. 2010-125361 (2010.06.10) relates to a wastewater treatment system and a purification system, and more specifically, includes an anaerobic tank, an aerobic tank, a floating separation tank, a contact aeration tank, a biological filtration tank, and the like. The rare earth mineral filter medium is installed in the main body of the filtration tank, and a technique related to a wastewater treatment system capable of purifying livestock wastewater and the like in a simple and space-saving manner is proposed.
또한, 일본공개특허 제1995-171594호(1995.07.11)는 하수의 탈질 탈인 방법 및 장치에 관한 것으로, 보다 구체적으로는, 혐기조, 탈질조, 호기조 및 침전지로 이루어진 종래의 A2O 공정 후단에 생물막 여과조를 접속한 구성을 가지며, 상기 생물막 여과조에 의해 얻어진 처리수의 일부를 상기 탈질소로 순환하는 질소화액 순환 라인을 설치할 수 있는, 질소와 인을 고도 처리할 수 있는 하수의 처리 방법 및 장치에 관한 기술을 제시하고 있다.Further, Japanese Laid-Open Patent Publication No. 1995-171594 (1995.07.11) relates to a denitrification dephosphorization method and apparatus for sewage, and more specifically, to a biofilm filtration tank at the end of a conventional A2O process consisting of an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation basin. A technique for treating sewage and a method for treating sewage with high nitrogen and phosphorus, which has a configuration in which a nitrogen-nitrate circulation line for circulating a part of the treated water obtained by the biofilm filtration tank to the denitrification is provided. Presenting.
또한, 한국등록특허 제0398912호(2003.09.06)는 하수 및 오, 폐수의 질소, 인 동시 제거방법에 관한 것으로, 보다 구체적으로는, 무산소여상과 호기성 생물산화여과지의 내부에 각각 담체를 구비하여, 유출수중 반송된 질산화수가 무산소여상에 의하여 탈질되고, 호기성생물산화여과지에 의해 인이 제거되며, 생물산화여과지의 처리수를 무산소여상으로 유입수 대비 0.2 ~ 3배로 순환시켜서 탈질균에 의한 탈질반응이 이루어지는, 하 · 폐수 내 질소와 인을 동시에 제거하는 방법에 관한 기술을 제시하고 있다.In addition, Korean Patent No. 0398912 (September 06, 2003) relates to a method for simultaneously removing nitrogen and phosphorus from sewage, sewage, and wastewater. More specifically, a carrier is provided inside an anaerobic filter and aerobic biooxidation filter, respectively. , Nitrified water returned from the effluent is denitrated by an anaerobic filter, phosphorus is removed by aerobic biofiltration, and the denitrification reaction by denitrification bacteria is circulated by 0.2 to 3 times of the influent to the anoxic filter. A technique for the simultaneous removal of nitrogen and phosphorus in sewage and wastewater is presented.
상기 선행기술들은 하 · 폐수 고도 처리 시스템에 있어서, BAF 공정과 A/O 공정을 융합하여 운영하거나 또는 생물산화여과지의 처리수를 순환시켜서 탈질반응이 이루어지도록 하는 기술이 기재되어 있다는 점에서 본 발명과 일부 유사점이 있지만, BAF 공정과 A/O 공정의 배열이 본 발명과 상이하고, 또한 배관, 반송 기술 및 분리 유입과 관련된 기술은 기재되어 있지 않다는 점에서 본 발명과는 차이점이 있다. In the above prior art, in the advanced sewage and wastewater treatment system, the present invention is described in that the denitrification reaction is performed by combining the BAF process and the A / O process or circulating the treated water of the biooxidation filter. Although there are some similarities with the above, the arrangement of the BAF process and the A / O process is different from the present invention, and also different from the present invention in that a technique related to piping, conveying technology, and separation inflow is not described.
상기 선행기술들은 BAF 공정 유출수내 NOx-N의 100% 탈질이 불가능하여 고율의 질소 제거가 어렵고 C/N비율이 낮은 하수의 경우 BAF 공정 유출수에 용존된 고농도의 DO가 내부 반송되어 BOD가 탈질미생물에 이용되지 못하고 호기성종속미생물에 이용됨으로써 탈질율이 더욱 낮아지는 문제가 발생한다. The prior arts are not capable of 100% denitrification of NOx-N in BAF process effluent, so that it is difficult to remove nitrogen at a high rate and the C / N ratio of sewage has a high concentration of DO dissolved in BAF process effluent. As it is not used in aerobic dependent microorganisms, the denitrification rate is further lowered.
유입하수를 전량 호기성 여상 공정으로 유입하는 선행기술은 혐기-호기 조건을 교대로 반복함으로써 bio-P 미생물에 의한 인의 고율 처리를 할 수 없다는 점에서 한계가 있다. The prior art of introducing the influent sewage into the aerobic filter process is limited in that it does not allow high rate treatment of phosphorus by bio-P microorganisms by alternating anaerobic-aerobic conditions.
반면 유입하수를 전량 A2O 공정에 유입하여 인을 생물학적으로 처리한 후 후속 공정에 BAF 공정을 배치하는 선행 기술은 유입 BOD의 대부분이 호기성 종속영양 미생물에 섭취되어 생물 슬러지가 다량 발생되고, 질산화-탈질화를 위한 내부 반송율 증가(통상 200%)에 의한 에너지 과다 소비의 문제가 있다. 또한, A2O 공정에 요구되는 반응시간에 더하여 후속 BAF 공정이 추가될 경우 많은 부지가 필요하게 되는 한계가 있다. On the other hand, the prior art in which the influent sewage is introduced into the A2O process to treat phosphorus biologically and then the BAF process is disposed in a subsequent process is that most of the influent BOD is ingested by aerobic heterotrophic microorganisms, which generates a large amount of biological sludge, and nitrification-denitrification. There is a problem of excessive energy consumption due to an increase in the internal conveyance rate (typically 200%). In addition, in addition to the reaction time required for the A2O process, there is a limit in that a lot of sites are required when a subsequent BAF process is added.
이에, 본 발명자들은 BAF 공정에서 산화된 형태의 NOx-N을 BAF 공정과 유기적으로 설치된 A2O 공정의 무산소조에 주입함으로써 산화된 NOx-N을 100% 탈질 반응에 이용할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have confirmed that the oxidized NOx-N can be used for 100% denitrification by injecting NOx-N in the oxidized form in the BAF process into an oxygen-free tank in the A2O process and the BAF process. It was completed.
본 발명은 상기된 과제를 해결하기 위해 창작된 것으로, 생물막 여과 방식을 사용하는 BAF 공정과 혐기조, 무산소조, 호기조 및 침전조로 구성되는 A2O 공정을 융합하여, 하 · 폐수 내의 유기물, 질소 및 인을 포함한 오염물질을 효과적으로 제거하는 하 · 폐수 고도 처리 시스템 및 그 방법을 제공하는 데 그 목적이 있다.The present invention was created in order to solve the above problems, by fusing the BAF process using the biofilm filtration method and the A2O process consisting of anaerobic tank, anoxic tank, aerobic tank and sedimentation tank, containing organic matter, nitrogen and phosphorus in sewage and wastewater The purpose is to provide an advanced sewage and wastewater treatment system and method for the effective removal of pollutants.
또한, 본 발명은 상기 두 공정이 융합되어 있는 하 · 폐수 고도 처리 시스템을 운용하는 데 있어서, 질소와 인 처리율에 따라 유입되는 하 · 폐수를 분할하여 각 공정에 유입할 수 있도록 구성한 하 · 폐수 고도 처리 시스템 및 그 방법을 제공하는 데 그 목적이 있다.In addition, the present invention is to operate the advanced sewage and wastewater treatment system in which the two processes are fused, the sewage and wastewater altitude is configured to be divided into the sewage and wastewater flow in accordance with the nitrogen and phosphorus treatment rate to flow into each process It is an object of the present invention to provide a treatment system and a method thereof.
또한, 본 발명은 상기 두 공정이 융합되어 있는 하 · 폐수 고도 처리 시스템을 운용하는 데 있어서, NOx-N 및 DO가 포함된 BAF 공정의 처리수를 A2O 공정의 무산소조로 공급함으로써, 질소 제거율을 높이고 산소 주입 비용을 절감할 수 있는 하 · 폐수 고도 처리 시스템 및 그 방법을 제공하는 데 그 목적이 있다.In addition, in the present invention, in the operation of an advanced wastewater and wastewater treatment system in which the two processes are fused, the nitrogen removal rate is increased by supplying the treated water of the BAF process including NOx-N and DO to an oxygen-free tank of the A2O process. An object of the present invention is to provide an advanced sewage and wastewater treatment system and method for reducing the cost of oxygen injection.
본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템은, 하부에 무산소 여과막부, 상부에 호기 여과막부를 포함하며, 하 · 폐수 원수의 일부가 하부로 분할유입되어 상향류로 흐르면서 탈질과 질산화 및 유기물 제거반응이 순차적으로 수행되는 생물막 여과조(100); 상기 생물막 여과조 후단에 배치되고 하 · 폐수 원수의 일부가 분할유입되어 탈인이 수행되는 혐기조; 상기 혐기조 후단에 배치되고 상기 혐기조에서 처리된 처리수와 상기 생물막 여과조의 처리수가 유입되어 탈질이 수행되는 무산소조; 상기 무산소조 후단에 배치되어 상기 무산소조에서 처리된 처리수가 유입되어 질산화가 수행되는 호기조; 상기 호기조에서 처리된 처리수의 슬러지와 상징수를 분리하여 상징수를 상기 최종 처리수로 배출시키는 침전조를 포함한다.The advanced wastewater and wastewater treatment system using an optimal microorganism according to an embodiment of the present invention includes an anoxic filtration membrane portion at the lower portion and an aerobic filtration membrane portion at the upper portion, while a part of the sewage and wastewater raw water is divided into the lower portion and flows upwardly. Biofilm filtration tank 100 in which denitrification, nitrification and organic matter removal reaction are sequentially performed; It is arranged in the rear end of the biofilm filtration tank and a part of waste water Anaerobic tank in which split-inflow is performed and dephosphorization is performed; An anoxic tank disposed at the rear end of the anaerobic tank and treated with the anaerobic tank and treated water of the biofilm filtration tank to perform denitrification; An aerobic tank disposed at the rear end of the anoxic tank and treated with the anoxic tank to introduce nitrification; And a sedimentation tank separating the sludge and the symbolic water of the treated water treated in the aerobic tank to discharge the symbolic water to the final treated water.
도입되는 상기 하 · 폐수 원수 총 부피유량에 대하여 50~70%가 상기 생물막 여과조로 도입되고, 상기 하 · 폐수 원수 총 부피유량에 대하여 30~50%는 혐기조로 분할 유입될 수 있으며, 상기 생물막 여과조의 질산화부에서 생물막 여과조의 무산소부로 반송되는 유량은 상기 생물막 여과조의 처리수 부피유량의 50% ~ 150%로 운영될 수 있다. 50 to 70% of the total volume flow of the sewage and wastewater introduced may be introduced into the biofilm filtration tank, and 30 to 50% of the total volume flow of the sewage and wastewater may be introduced into the anaerobic tank. The flow rate returned from the nitrification unit to the anaerobic portion of the biofilm filtration tank may be operated at 50% to 150% of the volume flow rate of the treated water of the biofilm filtration tank.
또한, 본 발명의 또 다른 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 처리 방법은, 하 · 폐수 원수의 일부가 생물막 여과조의 무산소 여과막부로 분할유입되어, 유입수 내 탄소원을 이용한 탈질화 반응이 이루어진 후 호기 여과막부로 유입되는 단계; 상기 호기 여과막부에서 질산화 반응이 이루어진 후 방출되는 생물막 여과조의 처리수가 혐기조, 무산소조, 호기조, 침전조가 순차적으로 연결된 A2O 공정의 무산소조로 공급되는 단계; 하 · 폐수 원수의 일부가 상기 A2O 공정의 혐기조로 분할유입되는 단계; 상기 혐기조 후단에 배치되는 무산소조로 상기 혐기조에서 처리된 처리수가 유입되는 단계; 상기 무산소조 후단에 배치되는 호기조로 상기 무산소조에서 처리된 처리수가 유입되는 단계; 상기 호기조의 후단에 배치되는 침전전로 상기 호기조에서 처리된 처리수가 유입되는 단계; 상기 침전조에서 슬러지와 상징수를 분리하여 상징수를 상기 최종 처리수로 배출시키는 단계를 포함한다.In addition, in the wastewater and wastewater treatment method using an optimal microorganism according to another embodiment of the present invention, part of the wastewater and wastewater is divided into an anaerobic filtration membrane portion of a biofilm filtration tank, and denitrification reaction using a carbon source in the influent is performed. Flowing into the aerobic filtration membrane; Supplying the treated water of the biofilm filtration tank discharged after the nitrification reaction in the aerobic filtration membrane part to an anaerobic tank of an A2O process in which anaerobic tank, anoxic tank, aerobic tank, and precipitation tank are sequentially connected; Part of sewage and wastewater Into the anaerobic tank of the A2O process Split inflow step; Introducing the treated water treated in the anaerobic tank into an anaerobic tank disposed at the rear end of the anaerobic tank; Introducing the treated water treated in the anaerobic tank into an aerobic tank disposed at the rear end of the anaerobic tank; A step of introducing the treated water treated in the exhalation tank into a precipitation converter disposed at a rear end of the exhalation tank; Separating the sludge and the symbolic water from the settling tank and discharging the symbolic water to the final treated water.
상기 생물막 여과조에서 유출되는 처리수 중, 상기 무산소조로 반송되는 유량은 상기 생물막 여과조 처리수 부피유량의 50% ~ 150%로 운전 될 수 있다. The flow rate returned to the anoxic tank among the treated water flowing out of the biofilm filtration tank may be operated at 50% to 150% of the volumetric flow rate of the biofilm filtration tank treated water.
본 발명은 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템 및 그 방법에 관한 것으로, BAF 공정과 A2O 공정을 융합함으로서, 동절기에도 안정적 및 고효율로 질소를 처리할 수 있고, 폐 슬러지 발생량을 절감할 수 있으며, 약품비용, 산소 공급비용, 슬러지 반송 펌프 설치비 및 운전비용을 포함한 하 · 폐수 처리 비용을 절약할 수 있는 효과가 있다.The present invention relates to an advanced wastewater and wastewater treatment system and method using the optimum microorganism, and by fusing BAF process and A2O process, it is possible to process nitrogen with stable and high efficiency even in winter, and reduce waste sludge generation. The cost of sewage and wastewater treatment, including chemicals, chemicals, oxygen supply, sludge return pump installation and operating costs, can be saved.
도 1은 생물막을 이용하는 생물막 여과조의 일반적인 형태인 상향류식 BAF 공정에 대해 설명하기 위한 예시도이다.1 is an exemplary view for explaining the upflow BAF process which is a general form of a biofilm filtration tank using a biofilm.
도 2는 본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템의 구조에 대해 설명하기 위한 예시도이다.2 is an exemplary view for explaining the structure of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템의 부지 절감 효과에 대해 설명하기 위한 예시도이다.Figure 3 is an exemplary view for explaining the site saving effect of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 처리 방법에 대해 설명하기 위한 흐름도이다.Figure 4 is a flow chart for explaining the wastewater treatment method using the optimum microorganism according to an embodiment of the present invention.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 또한, 본원 명세서 전체에서, BOD는 생물학적 산소 요구량으로, 통상적으로 당해분야에서 사용하는 유기성 물질 혹은 유기성 오염물질 등을 의미한다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. In addition, throughout the present specification, BOD is a biological oxygen demand, and generally means an organic substance or an organic pollutant used in the art.
이하, 첨부된 도면을 참조하여 본 발명에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템 및 그 방법의 일 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of an advanced sewage and wastewater treatment system and method using the optimum microorganism according to the present invention.
본 발명은 생물막에 부착 성장하는 탈질 박테리아 및 질산화 박테리아를 이용하여 유기물 및 질소를 제거하는 무산소 여과막부(110) 및 호기 여과막부(120)를 포함하는 생물막 여과조(100)와 혐기조(210), 무산소조(220), 호기조(230) 및 침전조(240)로 구성되며 부유 미생물을 .이용하여 유기물, 질소 및 인을 제거하는 A2O 공정(200)을 융합함으로써, 하 · 폐수 처리 기능을 향상시키고, 하 · 폐수 처리에 소모되는 비용을 절감할 수 있는 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템 및 그 방법에 관한 것이다.The present invention is a biofilm filtration tank 100 and an anaerobic tank 210, an anaerobic tank, including an anaerobic filtration membrane unit 110 and an aerobic filtration membrane unit 120 to remove organic matter and nitrogen by using denitrifying bacteria and nitrifying bacteria growing attached to the biofilm. (220), aerobic tank 230 and sedimentation tank 240, by fusing A2O process 200 to remove organic matter, nitrogen and phosphorus using suspended microorganisms, improve sewage and wastewater treatment function, The present invention relates to an advanced sewage and wastewater treatment system and method using microorganisms that can reduce the cost of wastewater treatment.
도 2는 본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템의 구조에 대해 설명하기 위한 예시도이다.2 is an exemplary view for explaining the structure of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
도 2에 도시되어 있는 바와 같이, 본 발명에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템은, BAF 공정(100)의 하류에 A2O 공정(200)을 융합한 것이다.As shown in FIG. 2, the advanced wastewater and wastewater treatment system using the optimum microorganism according to the present invention is a fusion of the A2O process 200 downstream of the BAF process 100.
상기 생물막 여과조(100) 혹은 BAF 공정은 무산소 여과막부(110) 및 호기 여과막부(120)를 포함하여 구성되고, 상기 A2O 공정(200)은 혐기조(210), 무산소조(220), 호기조(230) 및 침전조(240)를 포함하여 구성되며, 하 · 폐수 원수는 상기 BAF 무산소조(110)와 혐기조(210)로 분할 유입된다. 도 2의 는 송풍기로서 생물막 여과조의 호기 여과막부(120)로 산소를 공급한다.The biofilm filtration tank 100 or BAF process comprises an anaerobic filtration membrane unit 110 and an aerobic filtration membrane unit 120, the A2O process 200 is anaerobic tank 210, anoxic tank 220, aerobic tank 230 And a sedimentation tank 240, and the sewage and wastewater is split into the BAF anaerobic tank 110 and the anaerobic tank 210. 2, oxygen is supplied to the exhalation filtration membrane unit 120 of the biofilm filtration tank as a blower.
상기 무산소 여과막부(110)에는 하 · 폐수 원수 유량의 50 ~ 70%가 분할 유입되어 탈질화 반응이 이루어진다. 상기 탈질화 반응은 무산소 여과막부(110)의 고정담체에 부착 생장하는 탈질화 박테리아에 의해 이루어지며, 하 · 폐수 내 유기물을 탄소원으로 하여, NOx-N에서 질소를 가스형태로 변환한 후 공기 중으로 배출시켜 질소를 제거한다. 상기 무산소 여과막부(110)에서 질소 및 유기물이 일부 제거된 하 · 폐수는 상기 호기 여과막부(120)로 유입된다. 50 to 70% of the flow rate of sewage and wastewater flows into the anoxic filtration membrane part 110 in a denitrification reaction. The denitrification reaction is performed by denitrification bacteria that adhere to and grow on the fixed carrier of the anaerobic filtration membrane part 110. The organic matter in sewage and wastewater is used as a carbon source, and the nitrogen is converted into a gas form in NOx-N and then into the air. To remove nitrogen. The wastewater from which nitrogen and organic substances have been partially removed from the anoxic filtration membrane unit 110 is introduced into the aerobic filtration membrane unit 120.
상기 호기 여과막부(120)에서는 질산화 반응이 이루어진다. 상기 질산화 반응은 호기 여과막부(120)의 고정담체에 부착 생장하는 질산화 박테리아에 의해 이루어지며, BOD가 소비되는 무산소 여과막부(110), 암모니아성 질소가 질산성 질소로 변환되는 호기 여과막부(120)를 포함하는 생물막 여과조에 의해서, 생물막 여과조로부터 유출되는 처리수는 BOD와 NH4-N를 거의 포함하고 있지 않고, NOx-N 및 PO4-P가 풍부한 상태이며, 생물막 여과조(100)의 처리수는 다시 무산소 여과막부(110)로 반송되어 탈질화를 통한 질소 제거가 수행된다. 이때 반송되는 부피유량은, 상기 A2O 공정(200)의 무산소조(200)으로 공급되는 생물막 여과조의 처리수 부피유량의 50% ~ 150%가 바람직하다. 반송비율은 생물막 여과조 처리수의 NOx-N이 15 mg/L 이하가 되어 A2O 공정의 무산소조로 유입시 탈질 반응이 완전하게 이루어지도록 그 비율을 증감한다. A2O 공정(200)의 무산소조(220)로 공급되는 생물막 여과조(100)의 처리수는 상기 A2O 공정(200)으로 분할 유입된 하 · 폐수 원수와 함께 탈질화 반응을 통한 질소 제거가 다시 이루어진다.The exhalation filtration membrane unit 120 is nitrified. The nitrification reaction is performed by nitrifying bacteria that adhere to and grow on the fixed carrier of the aerobic filtration membrane unit 120, an anoxic filtration membrane unit 110 in which BOD is consumed, and an aerobic filtration membrane unit 120 in which ammonia nitrogen is converted to nitrate nitrogen. By the biofilm filtration tank containing), the treated water flowing out of the biofilm filtration tank contains little BOD and NH 4 -N, and is rich in NOx-N and PO4-P, and the treated water of the biofilm filtration tank 100 Is again returned to the anaerobic filtration membrane unit 110 to remove nitrogen through denitrification. The volume flow rate returned at this time is preferably 50% to 150% of the volumetric flow rate of the treated water of the biofilm filtration tank supplied to the oxygen-free tank 200 of the A2O process 200. The return ratio is increased or decreased so that the NOx-N of the biofilm filter tank treated water is 15 mg / L or less, so that the denitrification reaction is completely performed when flowing into the anoxic tank of the A2O process. The treated water of the biofilm filtration tank 100 supplied to the oxygen-free tank 220 of the A2O process 200 is again subjected to nitrogen removal through denitrification with the sewage and wastewater raw water split into the A2O process 200.
상기 혐기조(210)에서는 하 · 폐수 원수 유량의 30 ~ 50%가 유입된다. 상기 혐기조(210)에서는 상기 침전조(240)에서 반송된 슬러지에 포함되어 있는 인제거 미생물이 전자와 탄소를 PHA 및 PHB와 같은 세포 내 고형물로 축적하면서 다중인산염을 분해하여 인산염을 수체로 방출한다.  In the anaerobic tank 210, 30 to 50% of the flow rate of wastewater is introduced. In the anaerobic tank 210, the phosphorus-removing microorganisms contained in the sludge returned from the settling tank 240 decomposes the polyphosphate while releasing electrons and carbon into solids such as PHA and PHB to release the phosphate to the water body.
일반생활하수의 경우 BAF 공정과 A2O 공정으로 분할 유입하는 비율은 A2O:BAF에 대해 각각 30%-50% : 50%-70%의 비율이 적정하다. A2O 공정으로 분할 유입되는 비율이 30% 미만일 경우 Bio-P 미생물에 의한 인 과잉섭취에 필요한 VFA(Volatile Fatty Acid)의 량이 부족하여 방류수에 인 농도가 높게 되고 만약 50% 이상을 주입하게 되면 인 제거율은 향상되나 BAF 공정에서 질소를 100% 제거하더라도 A2O 공정으로 유입된 50%의 하수에 포함된 질소의 추가 제거를 위한 대책이 요구되게 된다. 따라서 일반 하수에서 본 발명의 최적 효과를 얻기 위해서는 30%-50%의 유입하수를 A2O 공정으로 분할 유입하는 것이 바람직하다. In the case of general household sewage, the ratio of split flow into BAF process and A2O process is appropriate for A2O: BAF at 30% -50%: 50% -70%, respectively. If the fraction flows into the A2O process less than 30%, the amount of VFA (Volatile Fatty Acid) required for excess phosphorus ingestion by Bio-P microorganisms is insufficient, resulting in high phosphorus concentration in the effluent. Even though 100% of nitrogen is removed from BAF process, measures to further remove nitrogen contained in 50% of sewage flowing into A2O process are required. Therefore, in order to obtain the optimum effect of the present invention in general sewage, it is preferable to split the inflow of 30% -50% into the A2O process.
상기 무산소조(220)에는 상기 생물막 여과조(100)으로부터 공급받은 생물막 여과조(100)의 처리수와 상기 혐기조(210)로부터 자연 유하된 하 · 폐수가 유입된다. 상기 혐기조(210)로부터 유입된 하 · 폐수 내에는 유기물이 많고, 상기 생물막 여과조(100)로부터 유입된 처리수는 DO와 NOx-N가 풍부하다. 이와 같은 과정을 통해, 무산소조(220)에서 분할되어 유입되는 원하수에 포함되어 있는 BOD를 탄소원으로 하여, 탈질화 반응이 일어나며, 하 · 폐수 내 유기물이 감소되어 후속되는 호기조(230)에서 유기물 제거 및 질산화에 필요한 산소량을 최소화 할 수 있다.The anaerobic tank 220 flows in the treated water of the biofilm filtration tank 100 supplied from the biofilm filtration tank 100 and naturally discharged sewage and wastewater from the anaerobic tank 210. In the wastewater and wastewater introduced from the anaerobic tank 210, there are many organic matters, and the treated water introduced from the biofilm filtration tank 100 is rich in DO and NOx-N. Through this process, the denitrification reaction takes place using BOD contained in the raw sewage, which is divided and flowed in the anoxic tank 220, as a carbon source, and the organic matter in the sewage and wastewater is reduced, thereby removing organic matter in the subsequent aerobic tank 230. And it can minimize the amount of oxygen required for nitrification.
상기 호기조(230)에서는 상기 혐기조(210)에서 PHA 및 PHB 등의 고분자 물질을 축적한 인 제거 미생물에 의한 하 · 폐수 내 인 제거가 이루어진다. 상기 인 제거 미생물은 체내에 합성한 PHA와 PHB 등을 분해하는 과정에서 과량의 다중인산염(Poly Phosphate)을 체내에 축적하게 되고, 이렇게 인을 과량으로 섭취한 미생물을 폐기함으로써 하 · 폐수 내에서 인을 제거한다. In the aerobic tank 230, phosphorus removal is performed in wastewater by waste phosphorus microorganisms having accumulated high molecular materials such as PHA and PHB in the anaerobic tank 210. The phosphorus-removing microorganisms accumulate excess polyphosphate (Poly Phosphate) in the body in the process of decomposing PHA and PHB synthesized in the body. Remove it.
상기 침전조(240)에서 폐슬러지는 제거하고, 남은 슬러지와 하 · 폐수의 일부를 상기 혐기조(210)로 반송함으로써, 시스템 내 미생물의 농도를 유지하고 상기 호기조(230)에서 질산화된 하 · 폐수가 다시 상기 무산소조(220)로 공급되도록 하여, 하 · 폐수 내 질소 제거율을 높인다. Waste sludge is removed from the sedimentation tank 240, and the remaining sludge and a part of the waste water are returned to the anaerobic tank 210 to maintain the concentration of microorganisms in the system, and the nitrified sewage / waste water from the aerobic tank 230 is maintained. It is supplied to the oxygen-free tank 220 again, to increase the nitrogen removal rate in the waste water.
상기와 같은 본 발명의 하 · 폐수 시스템은 기존의 생물학적 질소 및 인을 제거하는 하 · 폐수 시스템에 비해 소요되는 부지를 절감할 수 있다. 도 3은 본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템의 부지 절감 효과에 대해 설명하기 위한 예시도이다. The sewage and wastewater system of the present invention as described above can reduce the site required compared to the sewage and wastewater system to remove the biological nitrogen and phosphorus. Figure 3 is an exemplary view for explaining the site saving effect of the sewage and wastewater advanced treatment system using the optimum microorganism according to an embodiment of the present invention.
도 3에 도시되어 있는 바와 같이, 본 발명의 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템은, 분할 유입으로 BAF 공정에 70%, A2O 공정에 30%의 하 · 폐수 원수를 공급할 경우, 이론 체류시간 6hr으로 9.2hr의 질소 및 인 처리 시설에 해당하는 효과가 있다. 일반적인 A2O 공정이 8hr의 유효 HRT(이론 HRT 동일)로 운전되고 있으므로 발명 공정은 25%이상 부지 절감이 가능하다.As shown in Figure 3, the advanced wastewater and wastewater treatment system using the optimum microorganism of the present invention, the theoretical residence time when 70% to the BAF process and 30% of the wastewater raw water to the A2O process by split inflow, 6 hrs is equivalent to a 9.2 hr nitrogen and phosphorus treatment plant. Since the general A2O process is operated with an effective HRT of 8hr (the same HRT), the invention process can save more than 25% of the site.
또한, 본 발명의 하 · 폐수 고도 처리 시스템의 BAF 공정은 부유 성장 A2O 공정에 비해 상대적으로 고밀도의 질산화 박테리아 집적이 가능하다. 통상 부유 성장 A2O 공법의 질산화 박테리아 점유율은 5-10%이나 고정 담체를 충진한 BAF 공정은 15%-20%의 질산화 박테리아 점유율을 유지할 수 있다. 독립영양성인 질산화 박테리아는 호기성 종속영양 박테리아에 비해 통상 1/5 정도의 성장 속도를 나타내며 12℃ 이하에서는 급격한 활동성 저하가 일어난다. In addition, the BAF process of the advanced sewage and wastewater treatment system of the present invention enables relatively high density of nitrifying bacteria to be accumulated compared to the suspended growth A2O process. Normally, the occupancy rate of nitrifying bacteria in the suspended growth A2O method is 5-10%, but the BAF process filled with a fixed carrier can maintain the occupancy rate of 15% -20%. Autotrophic nitrifying bacteria usually exhibit a growth rate of about 1/5 of the aerobic heterotrophic bacteria, and rapidly decrease activity below 12 ° C.
따라서 수온이 12℃이하인 경우 질산화 박테리아 개체수를 증가시켜 저 수온에 의한 활동성 저하를 완충하는 것이 필요하다. Therefore, when the water temperature is less than 12 ℃ it is necessary to increase the number of nitrifying bacteria population to buffer the degradation of activity due to low water temperature.
실제 생활하수를 이용하여 7℃ 수온 조건에서 유효 반응시간 2시간으로 BAF 공정을 2개월간 운전하였으며, 유입 TKN의 제거율(미생물 섭취 및 질산화 기작)을 95.5%로 얻을 수 있었다. 반면 부유 성장 A2O 공정에서는 유입 TKN의 제거율은 40.0%로 얻을 수 있었다. The BAF process was operated for 2 months with an effective reaction time of 2 hours at 7 ℃ water temperature using real life sewage, and the removal rate of inflow TKN (microbial intake and nitrification mechanism) was obtained at 95.5%. On the other hand, in the floating-growth A2O process, the removal rate of influent TKN was obtained at 40.0%.
또한, 인 제거에 있어 인 제거 미생물을 이용하기 때문에 별도의 화학적 인 처리 시설이 필요하지 않다. 초고율의 인제거가 필요한 상수원 상류 지역과 같은 특수한 상황에서는 생물학적 인 제거 후 부분적인 화학처리를 함으로써 응집제, 알카리제 등의 약품비용을 절감할 수 있다.In addition, since phosphorus removal microorganisms are used to remove phosphorus, a separate chemical treatment facility is not required. In special situations, such as upstream water sources where ultra-high phosphorus removal is required, chemical costs of coagulants, alkalis, etc. can be reduced by partial chemical treatment after biological removal.
또한, BAF 공정에서 유출된 NOx-N, DO를 A2O 공정의 무산소조에 주입하여 BOD 제거에 활용함으로써, BOD 산화를 위한 산소 주입 비용의 절감이 가능하고, 일반적인 A2O 공정은 탈질을 위한 내부 반송 과정에서 전체 유입 하수량의 1배에서 3배의 유량을 반송하므로, 반송 펌프 가동에너지 소비량이 많은 반면, 본 발명에서는 BAF 공정으로 하 · 폐수의 50 ~ 70%를 주입하므로 내부 반송율을 A2O와 동일하게 1배에서 3배를 실시하더라도 반송에 소요되는 에너지는 A2O 공정에서 소요되는 것의 50~70%만 소요되므로 일반적 A2O 공법에 비해 30-50% 절감할 수 있다. 특히, BAF 공정의 처리수를 A2O 공정의 무산소조에 주입하는 것은 내부 반송의 효과는 달성하고 펌핑 에너지는 소요되지 않는 장점이 있다.In addition, by injecting NOx-N and DO from BAF process into an oxygen-free tank of A2O process to remove BOD, it is possible to reduce oxygen injection cost for BOD oxidation, and general A2O process is carried out during internal return process for denitrification. Since the flow rate is 1 to 3 times the total amount of inflow sewage, the transfer pump consumes a lot of energy while the present invention injects 50 to 70% of the wastewater and wastewater in the BAF process, so the internal return rate is 1 times the same as A2O. Even if 3 times is carried out at, the energy required for return takes only 50 ~ 70% of what is needed in A2O process, which can reduce 30-50% compared to general A2O method. In particular, injecting the treated water of the BAF process into the oxygen-free tank of the A2O process has the advantage of achieving the effect of the internal conveyance and does not require pumping energy.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명이 하기 실시예에 의해 한정되지 않음은 명백하다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but it is obvious that the present invention is not limited by the following Examples.
실시예 1과 비교예 1 및 비교예2는 실제 생활하수인 경기도 용인시 소재 하수처리장(영덕레스피아)의 유입 하수를 이용하여 실시하였다. Example 1, Comparative Example 1, and Comparative Example 2 were carried out using inflow sewage from a sewage treatment plant (Yongdeok Lespia) located in Yongin, Gyeonggi-do.
<실시예 1> <Example 1>
도 2와 동일한 실험용 반응기에 대하여, 하수원수는 BAF 공정과 A2O공정에 대해 각각 7:3의 비율로 분할유입되었으며, BAF 공정 유출수는 A2O 공정의 무산소조에 주입하였다. For the same experimental reactor as in Fig. 2, the sewage water was split and introduced at a ratio of 7: 3 for the BAF process and the A2O process, respectively, and the BAF process effluent was injected into an oxygen-free tank of the A2O process.
<비교예 1-A2O공정 단독> <Comparative Example 1-A2O process alone>
A2O 공정은 실시예 1에 사용된 A2O 공정과 동일한 크기로 제작되었으며, 내부반송 및 슬러지 반송비율은 실시예 1과 동일하게 적용하였다. 반면 A2O 단독 공법에서는 짧은 반응시간(HRT)으로 운전할 때 고농도 MLSS에 의한 슬러지 유실 문제가 발생되어 슬러지 폐기량을 증가시켜 SRT를 5d로 운전하였다.  The A2O process was manufactured in the same size as the A2O process used in Example 1, and the internal conveyance and sludge conveyance ratios were applied in the same manner as in Example 1. On the other hand, in the A2O alone method, the sludge loss caused by the high concentration of MLSS occurred when operating with a short reaction time (HRT).
<비교예 2-BAF 단독> Comparative Example 2-BAF alone
BAF 공정의 질산화 효율을 검증하기 위해 유효 반응시간 2시간으로 운전하였으며 PE 재질의 직경 2-4mm의 부유성 담체를 충진하여 실험하였다. In order to verify the nitrification efficiency of the BAF process, the reaction time was operated with an effective reaction time of 2 hours.
실시예 1, 비교예 1 및 비교예 2의 운전 조건은 다음 표와 같다. The operating conditions of Example 1, Comparative Example 1 and Comparative Example 2 are as follows.
표 1
Figure PCTKR2014009458-appb-T000001
Table 1
Figure PCTKR2014009458-appb-T000001
아래 표는 개별 공법에 대한 비교 실험 결과이다. 실시예 1과 비교예 1에서 BOD, SS 제거율은 96.4% 이상으로 비슷하게 나타났다. 반면, 환원성 질소인 TKN의 제거율은 실시예 1에서 96.9%, A2O 단독 공정에서 64.6%로 나타나 실시예 1이 32.3% 높은 제거효율을 나타내었다. The table below shows the results of comparative experiments on individual methods. In Example 1 and Comparative Example 1, the removal rate of BOD and SS was similar to 96.4% or more. On the other hand, the removal rate of reducing nitrogen, TKN was 96.9% in Example 1, 64.6% in the A2O alone process, Example 1 showed a high removal efficiency of 32.3%.
비교예 1과 비교예 2의 호기상태의 반응시간이 2.5hr으로 동일함에도 불구하고, 실시예 1의 TKN 제거율이 월등히 높은 것은 BAF 공정의 장점인 고밀도 질산화 박테리아 배양에 의한 것으로 판단된다. Although the reaction time in the aerobic state of Comparative Example 1 and Comparative Example 2 is the same as 2.5hr, the TKN removal rate of Example 1 is considerably high due to the high density nitrifying bacteria culture which is an advantage of the BAF process.
반면 비교예 1과 비교예 2의 인 제거율은 매우 큰 차이를 나타내고 있다. 비교예 2에서 인 제거율이 19.8%로 낮은 것에 비해 비교예 1에서는 94.6%로 매우 높은 인 제거율이 나타났다. 즉, A2O 공정은 인 제거에 있어 BAF 공정에 비해 상대적으로 우수하였으나 질소 제거 측면에서는 BAF 공정이 우수한 것으로 나타났는데 실시예 1은 이러한 A2O 공정의 장점과 BAF 공정의 장점을 융합함으로써 저수온 조건에서도 매우 높은 질소, 인 제거율을 달성할 수 있다는 것을 확인하였다.On the other hand, the phosphorus removal rate of the comparative example 1 and the comparative example 2 shows the very big difference. In Comparative Example 2, the phosphorus removal rate was as low as 19.8%, whereas in Comparative Example 1, the phosphorus removal rate was very high as 94.6%. That is, the A2O process was relatively superior to the BAF process in terms of phosphorus removal, but the BAF process was found to be superior in terms of nitrogen removal. Example 1 fuses the advantages of the A2O process and the BAF process, which is very high even under low temperature conditions. It was confirmed that nitrogen and phosphorus removal rates could be achieved.
표 2
구 분 <실시예 1> 본 발명 <비교예 1> A20 단독 <비교예 2> BAF 단독
유입 방류 처리율 유입 방류 처리율 유입 방류 처리율
BOD 287.5 3.6 98.7 269.1 6.8 97.5 291.5 3.7 98.7
SS 206.5 4.1 98.0 198 7.1 96.4 184 2.6 98.6
T-N 48.2 11.4 76.3 46.8 23.2 50.4 49.5 18.2 63.2
TKN 46.8 1.45 96.9 43.5 15.4 64.6 47.2 1.5 96.8
T-P 6.72 0.18 97.3 6.25 0.34 94.6 6.36 5.1 19.8
TABLE 2
division Example 1 Invention <Comparative Example 1> A20 alone <Comparative Example 2> BAF alone
inflow Discharge Throughput inflow Discharge Throughput inflow Discharge Throughput
BOD 287.5 3.6 98.7 269.1 6.8 97.5 291.5 3.7 98.7
SS 206.5 4.1 98.0 198 7.1 96.4 184 2.6 98.6
TN 48.2 11.4 76.3 46.8 23.2 50.4 49.5 18.2 63.2
TKN 46.8 1.45 96.9 43.5 15.4 64.6 47.2 1.5 96.8
TP 6.72 0.18 97.3 6.25 0.34 94.6 6.36 5.1 19.8
도 4는 본 발명의 일 실시예에 따른 최적 미생물을 이용한 하 · 폐수 처리 방법에 대해 설명하기 위한 흐름도이다.Figure 4 is a flow chart for explaining the wastewater treatment method using the optimum microorganism according to an embodiment of the present invention.
도 4에 도시되어 있는 바와 같이, 본 발명에 따른 최적 미생물을 이용한 하 · 폐수 처리 방법은, 먼저 하 · 폐수 고도 처리 시스템에 유입되는 하 · 폐수 원수를 생물막 여과조의 무산소 여과막부와 A2O 공정의 혐기조로 분할하여 유입한다(S101). 일반 생활하수에 있어 BAF 공정으로의 분할 유입 비율은 50%-70%의 범위가 적당하며, 유입원수의 성상에 따라 질소 제거율을 증가시켜야 할 조건에서는 생물막 여과조로의 분할유입량을 높이고, 인 제거율을 향상시켜야 할 조건에서는 반대로 분할 유입량을 줄이는 운전을 실시한다. As shown in Figure 4, the sewage and wastewater treatment method using the optimum microorganism according to the present invention, first, the anaerobic filtration membrane portion of the biofilm filtration tank and the anaerobic tank of the A2O process Divided into and flows (S101). For general household sewage, the fractional inflow rate into the BAF process is appropriate in the range of 50% -70% .In the condition where the nitrogen removal rate should be increased according to the characteristics of the inflow water, the fractional inflow to the biofilm filtration tank is increased and the phosphorus removal rate is increased. In the case of conditions that need to be improved, an operation to reduce the split flow is performed on the contrary.
상기 생물막 여과조로 유입된 하 · 폐수 원수는 상기 무산소 여과막부 내의 탈질화 박테리아에 의해 탄소원을 이용하여 탈질화 반응이 이루어짐으로써 질소가 제거된다(S102). 상기 무산소 여과막부를 거친 하 · 폐수는 호기 여과막부(120)로 유입되고, 상기 호기 여과막부 내의 질산화 박테리아에 의해 질산화 반응이 이루어진다(S103). 상기 호기 여과막부에서 질산화가 수행된 처리수의 일부는 상기 무산소 여과막부로 반송하여 생물막 여과조에서 질산화 질소가 추가적으로 탈질 되도록 하고, 일부는 A2O 공정의 무산소조로 공급한다(S104). Waste and raw water introduced into the biofilm filtration tank is denitrified by using a carbon source by denitrification bacteria in the anoxic filtration membrane to remove nitrogen (S102). Waste water passing through the anoxic filtration membrane part is introduced into the aerobic filtration membrane part 120, and nitrification is performed by nitrifying bacteria in the aerobic filtration membrane part (S103). Part of the treated water subjected to nitrification in the exhalation filtration membrane part is returned to the anoxic filtration membrane part to further denitrify the nitrogen oxide in the biofilm filtration tank, and part of the treated water is supplied to the anoxic tank of the A2O process (S104).
상기 A2O 공정의 혐기조에서는 인제거 미생물이 상기 분할 유입된 하 · 폐수 내 탄소를 이용하여 PHA 및 PHB 등의 생체 내 고분자 물질을 합성하는 과정을 통해 인산염을 수체로 방출한다(S105). A2O 공정의 무산소조에는 상기 혐기조에서 유출되는 하 · 폐수와 상기 생물막 여과조의 처리수가 유입되고, 탈질화 방응이 수행되어 질소를 제거한다(S106). 그 후, A2O 공정의 호기조에서는 다시 질산화 반응이 이루어지며, 상기 혐기조에서 PHA 및 PHB 등의 고분자 물질을 합성한 인제거 미생물은 상기 PHA 및 PHA 등을 분해하면서 과량의 다중인산염을 체내에 축적하여 하 · 폐수 내 인을 제거한다(S107). A2O 공정의 침전조(240)에서는 폐슬러지를 제거하고, 남은 슬러지를 상기 혐기조로 반송한다(S108). In the anaerobic tank of the A2O process, the phosphorus-removing microorganism releases the phosphate to the water through the process of synthesizing in vivo polymer materials such as PHA and PHB using carbon in the split-flow sewage and wastewater (S105). In the anoxic tank of the A2O process, sewage and wastewater flowing out of the anaerobic tank and the treated water of the biofilm filtration tank are introduced, and denitrification reaction is performed to remove nitrogen (S106). Thereafter, nitrification is carried out again in the aerobic tank of the A2O process, and the phosphorus-removing microorganism that synthesizes PHA and PHB in the anaerobic tank decomposes the PHA and PHA, while accumulating excess polyphosphate in the body. Remove phosphorus in waste water (S107). In the settling tank 240 of the A2O process, waste sludge is removed and the remaining sludge is returned to the anaerobic tank (S108).
이상으로 본 발명은 첨부된 도면에 도시된 실시예를 참조하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술에 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 것을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.The present invention has been described above with reference to the embodiments illustrated in the accompanying drawings, which are merely exemplary, and various modifications and equivalent other embodiments may be made by those skilled in the art to which the present invention pertains. Will understand. Therefore, the technical protection scope of the present invention will be defined by the claims below.
[부호의 설명][Description of the code]
100 : 생물막 여과조 110 : 무산소 여과막부100 biofilm filtration tank 110 anoxic filtration membrane part
120 : 호기 여과막부 200 : A2O 공정120: aerobic filtration membrane 200: A2O process
210 : 혐기조 220 : 무산소조210: anaerobic tank 220: anaerobic tank
230 : 호기조 240 : 침전조       230: aerobic tank 240: sedimentation tank

Claims (8)

  1. 하부에 무산소 여과막부, 상부에 호기 여과막부를 포함하며, 하 · 폐수 원수의 일부가 하부로 분할유입되어 상향류로 흐르면서 탈질과 질산화 및 유기물 제거반응이 순차적으로 수행되는 생물막 여과조(100); A biofilm filtration tank 100 including an anoxic filtration membrane portion at a lower portion and an aerobic filtration membrane portion at an upper portion thereof, in which a part of the wastewater raw water is divided into the lower portion and flows upwardly, and denitrification, nitrification and organic matter removal reaction are sequentially performed;
    상기 생물막 여과조 후단에 배치되고 하 · 폐수 원수의 일부가 분할유입되어 탈인이 수행되는 혐기조;An anaerobic tank disposed at the rear end of the biofilm filtration tank and de-phosphorization is performed by dividing inflow of a part of wastewater and raw water;
    상기 혐기조 후단에 배치되고 상기 혐기조에서 처리된 처리수와 상기 생물막 여과조의 처리수가 유입되어 탈질이 수행되는 무산소조;An anoxic tank disposed at the rear end of the anaerobic tank and treated with the anaerobic tank and treated water of the biofilm filtration tank to perform denitrification;
    상기 무산소조 후단에 배치되어 상기 무산소조에서 처리된 처리수가 유입되어 질산화가 수행되는 호기조;An aerobic tank disposed at the rear end of the anoxic tank and treated with the anoxic tank to introduce nitrification;
    상기 호기조에서 처리된 처리수의 슬러지와 상징수를 분리하여 상징수를 상기 최종 처리수로 배출시키는 침전조를 포함하는 하 · 폐수 고도 처리 시스템.Sewage and wastewater advanced treatment system comprising a sedimentation tank for separating the sludge and the symbol water of the treated water treated in the aerobic tank to discharge the symbol water to the final treated water.
  2. 제1항에 있어서,The method of claim 1,
    도입되는 상기 하 · 폐수 원수 총 부피유량에 대하여 50~70%가 상기 생물막 여과조로 도입되고, 상기 하 · 폐수 원수 총 부피유량에 대하여 30~50%는 혐기조로 분할 유입되는 하 · 폐수 고도 처리 시스템.50 to 70% of the total volume flow of the sewage and wastewater introduced is introduced into the biofilm filtration tank, and 30 to 50% of the total volume flow of the sewage and wastewater is introduced into the anaerobic tank. .
  3. 제1항에 있어서,The method of claim 1,
    상기 생물막 여과조에서 유출되는 처리수 중, 상기 무산소조로 유입되는 상기 생물막 여과조의 처리수 부피유량의 50% ~ 150%가 상기 무산소 여과막으로 반송되는 하 · 폐수 고도 처리 시스템.Sewage and wastewater advanced treatment system in which 50% to 150% of the volume flow rate of the treated water of the biofilm filtration tank flowing into the anoxic tank is returned to the anoxic filtration membrane among the treated water flowing out of the biofilm filtration tank.
  4. 제1항에 있어서,The method of claim 1,
    상기 침전조의 슬러지 중 일부가 혐기조(210)로 반송되는 하 · 폐수 고도 처리 시스템.Part of the sludge of the sedimentation tank sewage and wastewater advanced treatment system is returned to the anaerobic tank (210).
  5. 하 · 폐수 원수의 일부가 생물막 여과조의 무산소 여과막부로 분할유입되어, 유입수 내 탄소원을 이용한 탈질화 반응이 이루어진 후 호기 여과막부로 유입되는 단계;Part of the sewage and wastewater raw water is divided into the anaerobic filtration membrane portion of the biofilm filtration tank, the denitrification reaction using a carbon source in the influent water is introduced into the aerobic filtration membrane portion;
    상기 호기 여과막부에서 질산화 반응이 이루어진 후 방출되는 생물막 여과조의 처리수가 혐기조, 무산소조, 호기조, 침전조가 순차적으로 연결된 A2O 공정의 무산소조로 공급되는 단계; Supplying the treated water of the biofilm filtration tank discharged after the nitrification reaction in the aerobic filtration membrane part to an anaerobic tank of an A2O process in which anaerobic tank, anoxic tank, aerobic tank, and precipitation tank are sequentially connected;
    하 · 폐수 원수의 일부가 상기 A2O 공정의 혐기조로 분할유입되는 단계;Part of sewage and wastewater Into the anaerobic tank of the A2O process Split inflow step;
    상기 혐기조 후단에 배치되는 무산소조로 상기 혐기조에서 처리된 처리수가 유입되는 단계;Introducing the treated water treated in the anaerobic tank into an anaerobic tank disposed at the rear end of the anaerobic tank;
    상기 무산소조 후단에 배치되는 호기조로 상기 무산소조에서 처리된 처리수가 유입되는 단계;Introducing the treated water treated in the anaerobic tank into an aerobic tank disposed at the rear end of the anaerobic tank;
    상기 호기조의 후단에 배치되는 침전전로 상기 호기조에서 처리된 처리수가 유입되는 단계;A step of introducing the treated water treated in the exhalation tank into a precipitation converter disposed at a rear end of the exhalation tank;
    상기 침전조에서 슬러지와 상징수를 분리하여 상징수를 상기 최종 처리수로 배출시키는 단계를 포함하는 하 · 폐수 고도 처리 방법.Separation of sludge and supernatant in the sedimentation tank to discharge the supernatant to the final treated water.
  6. 제5항에 있어서,The method of claim 5,
    도입되는 상기 하 · 폐수 원수 총 부피유량에 대하여 50~70%가 상기 생물막 여과조로 도입되고, 상기 하 · 폐수 원수 총 부피유량에 대하여 30~50%는 혐기조로 분할 유입되는 하 · 폐수 고도 처리 방법.50 to 70% of the total volume flow of the sewage / wastewater introduced into the biofilm filtration tank, and 30 to 50% of the total volume flow of the sewage / wastewater into the anaerobic tank is divided into the anaerobic tank. .
  7. 제5항에 있어서,The method of claim 5,
    상기 생물막 여과조에서 유출되는 처리수 중, 상기 무산소조로 유입되는 상기 생물막 여과조의 처리수 부피유량의 50% ~ 150%가 상기 무산소 여과막으로 반송되는 하·폐수 고도 처리 방법.An advanced treatment method for wastewater and wastewater in which 50% to 150% of the volumetric flow rate of the treated water of the biofilm filtration tank flowing into the anoxic tank is returned to the anoxic filtration membrane among the treated water flowing out of the biofilm filtration tank.
  8. 제5항에 있어서,The method of claim 5,
    상기 침전조의 슬러지 중 일부가 혐기조(210)로 반송되는 하·폐수 고도 처리 방법.Part of the sludge of the sedimentation tank advanced wastewater, wastewater treatment method is returned to the anaerobic tank (210).
PCT/KR2014/009458 2014-08-06 2014-10-08 System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor WO2016021766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0100969 2014-08-06
KR1020140100969A KR101613995B1 (en) 2014-08-06 2014-08-06 System for advanced wastewater treatment using optimal micro-organism of pollutants and the method thereof

Publications (1)

Publication Number Publication Date
WO2016021766A1 true WO2016021766A1 (en) 2016-02-11

Family

ID=55264016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009458 WO2016021766A1 (en) 2014-08-06 2014-10-08 System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor

Country Status (2)

Country Link
KR (1) KR101613995B1 (en)
WO (1) WO2016021766A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585226A (en) * 2016-03-04 2016-05-18 云南大学 AAONAO continuous flow two-sludge denitrification advanced nitrogen removal and dephosphorization device and technology based on online control
CN105859056A (en) * 2016-06-17 2016-08-17 云南今业生态建设集团有限公司 Rubber wastewater treatment process
CN107311400A (en) * 2017-08-07 2017-11-03 湖南艾布鲁环保科技有限公司 A kind of integrated apparatus of agricultural non-point source pollution agricultural wastewater processing
CN107777775A (en) * 2017-12-12 2018-03-09 辽宁工业大学 It is a kind of that there is the sewage disposal system for denitrogenating phosphorus function
CN108439598A (en) * 2018-05-02 2018-08-24 长沙中联重科环境产业有限公司 Integrated sewage treating apparatus
CN108640443A (en) * 2018-07-12 2018-10-12 成都中恒逸安环保科技有限公司 The night soil-treatment lavatory that can be recycled
WO2020199363A1 (en) * 2019-03-29 2020-10-08 云南合续环境科技有限公司 Device for deep dephosphorization and denitrification of sewage treatment
CN112374696A (en) * 2020-11-09 2021-02-19 河北先河正合环境科技有限公司 System and method for treating sewage by multistage multi-point water inflow enhanced denitrification
CN112551801A (en) * 2020-11-01 2021-03-26 湖南强宇环保科技有限公司 Breeding wastewater treatment method and system based on combined advanced oxidation technology
CN112875979A (en) * 2020-12-31 2021-06-01 南京化工园博瑞德水务有限公司 Biodegradation device for wastewater containing hydroxyethyl cellulose and addition product thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810019B (en) * 2017-02-09 2020-07-21 山东建筑大学 Enhanced phosphorus removal and sludge reduction type sewage treatment process
CN109665632B (en) * 2019-02-25 2021-08-10 张强 Process for rapidly degrading high-concentration eutrophic sewage
CN110981111A (en) * 2019-12-26 2020-04-10 广东石油化工学院 Pig farm wastewater treatment method
KR102283672B1 (en) * 2020-11-26 2021-08-03 한종산업개발 주식회사 Sewage, wastewater advanced treatment system using steel slag as water treatment filtration material
CN114044612A (en) * 2021-11-23 2022-02-15 中化学朗正环保科技有限公司 Integrated sewage treatment system and treatment method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060054266A (en) * 2006-05-01 2006-05-22 임광희 Package type-multistage reactor combining the upperpart of aerobic fluidized biofilm process and thelower part of anoxic process
CN101921040A (en) * 2010-06-11 2010-12-22 北京工业大学 Device and method for processing C/N urban household wastewater by A2O-BAF (Biological Aerated Filter) process
KR20120089495A (en) * 2010-11-17 2012-08-13 안대희 Wastewater Treatment Apparatus Using Biofilm and Aerobic Granule Sludge and Method for Treating Wastewater Using the Same
WO2013005913A1 (en) * 2011-07-05 2013-01-10 대웅이엔에스 (주) Composite microorganism reactor, and apparatus and method for water treatment using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060054266A (en) * 2006-05-01 2006-05-22 임광희 Package type-multistage reactor combining the upperpart of aerobic fluidized biofilm process and thelower part of anoxic process
CN101921040A (en) * 2010-06-11 2010-12-22 北京工业大学 Device and method for processing C/N urban household wastewater by A2O-BAF (Biological Aerated Filter) process
KR20120089495A (en) * 2010-11-17 2012-08-13 안대희 Wastewater Treatment Apparatus Using Biofilm and Aerobic Granule Sludge and Method for Treating Wastewater Using the Same
WO2013005913A1 (en) * 2011-07-05 2013-01-10 대웅이엔에스 (주) Composite microorganism reactor, and apparatus and method for water treatment using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585226B (en) * 2016-03-04 2018-02-06 云南大学 A kind of AAONAO continuous flow double sludge denitrification advanced nitrogen dephosphorization apparatus and technique based on On-line Control
CN105585226A (en) * 2016-03-04 2016-05-18 云南大学 AAONAO continuous flow two-sludge denitrification advanced nitrogen removal and dephosphorization device and technology based on online control
CN105859056B (en) * 2016-06-17 2018-10-09 云南今业生态建设集团有限公司 A kind for the treatment of process of Rubber Industrial Wastewater
CN105859056A (en) * 2016-06-17 2016-08-17 云南今业生态建设集团有限公司 Rubber wastewater treatment process
CN107311400A (en) * 2017-08-07 2017-11-03 湖南艾布鲁环保科技有限公司 A kind of integrated apparatus of agricultural non-point source pollution agricultural wastewater processing
CN107777775A (en) * 2017-12-12 2018-03-09 辽宁工业大学 It is a kind of that there is the sewage disposal system for denitrogenating phosphorus function
CN107777775B (en) * 2017-12-12 2021-03-23 辽宁工业大学 Sewage treatment system with nitrogen and phosphorus removal function
CN108439598A (en) * 2018-05-02 2018-08-24 长沙中联重科环境产业有限公司 Integrated sewage treating apparatus
CN108640443A (en) * 2018-07-12 2018-10-12 成都中恒逸安环保科技有限公司 The night soil-treatment lavatory that can be recycled
WO2020199363A1 (en) * 2019-03-29 2020-10-08 云南合续环境科技有限公司 Device for deep dephosphorization and denitrification of sewage treatment
CN112551801A (en) * 2020-11-01 2021-03-26 湖南强宇环保科技有限公司 Breeding wastewater treatment method and system based on combined advanced oxidation technology
CN112374696A (en) * 2020-11-09 2021-02-19 河北先河正合环境科技有限公司 System and method for treating sewage by multistage multi-point water inflow enhanced denitrification
CN112875979A (en) * 2020-12-31 2021-06-01 南京化工园博瑞德水务有限公司 Biodegradation device for wastewater containing hydroxyethyl cellulose and addition product thereof

Also Published As

Publication number Publication date
KR101613995B1 (en) 2016-05-02
KR20160017818A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2016021766A1 (en) System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor
KR101336988B1 (en) Wastewater Treatment Apparatus Using Granule Sludge and Method for Treating Wastewater Using the Same
WO2012067453A2 (en) Apparatus and method for treating sewage/wastewater using biofilms and aerobic granular sludge
KR100415252B1 (en) Biological Nitrogen Removal from Nitrogen-Rich Wastewaters by Partial Nitrification and Anaerobic Ammonium Oxidation
WO2018221924A1 (en) Sewage treatment system based on anaerobic ammonium oxidation method in water treatment process in sewage treatment plant
CN102753489B (en) The anoxic biological phosphate-eliminating simultaneously carried out and nitrogen and recovered energy
WO2019117668A1 (en) Apparatus and method for partially nitrifying ammonia in ammonia-containing sewage/wastewater
WO2021002693A1 (en) Method for removing nitrogen and phosphorus from sewage and wastewater through improvement of reaction tank shape and return method in existing biological nitrogen and phosphorus removal process and combination with anaerobic ammonium oxidation process (anammox)
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
WO2016003017A1 (en) Sewage/wastewater treatment apparatus using microalgae
WO2016003002A1 (en) Energy-saving sewage/wastewater treatment apparatus using microalgae
WO2017052167A1 (en) Wastewater treatment apparatus adopting biofiltration process for pretreatment of shortened nitrogen removal process
KR100414417B1 (en) The method and device of sewage wastewater treatment using the Bio-membrane Channel type Reactor composing Aerobic/Anaerobic conditions
CN112225397A (en) Sewage treatment system and method based on double-sludge denitrification dephosphorization and biological filter tower
WO2021002699A1 (en) Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox)
KR100729655B1 (en) Waste-water treatment apparatus and method using membrane bio-reactor with compatible anoxic/anaerobic zone
KR102057374B1 (en) Sewage treatment system using granule
CN112830634A (en) High-concentration wastewater COD and N synchronous degradation process in same tank
WO2012099283A1 (en) Sewage treatment apparatus
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
WO2016159689A1 (en) Hybrid biological nutrient salts treatment system
KR20110023436A (en) Advanced sewage treatment system by mbr using snd
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR100321679B1 (en) Advanced wastewater treatment method
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 06-06-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 14899281

Country of ref document: EP

Kind code of ref document: A1