WO2016159689A1 - Hybrid biological nutrient salts treatment system - Google Patents

Hybrid biological nutrient salts treatment system Download PDF

Info

Publication number
WO2016159689A1
WO2016159689A1 PCT/KR2016/003338 KR2016003338W WO2016159689A1 WO 2016159689 A1 WO2016159689 A1 WO 2016159689A1 KR 2016003338 W KR2016003338 W KR 2016003338W WO 2016159689 A1 WO2016159689 A1 WO 2016159689A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
nitrification
organic
reactor
processing system
Prior art date
Application number
PCT/KR2016/003338
Other languages
French (fr)
Korean (ko)
Inventor
이상일
강민구
류홍덕
김금용
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Publication of WO2016159689A1 publication Critical patent/WO2016159689A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Definitions

  • the present invention relates to a hybrid biological nutrient processing system, and more particularly, to a hybrid biological nutrient processing system for effectively removing nutrients even at a low temperature in winter according to the situation in Korea.
  • the nutrients contained in the wastewater are inorganic elements, but they flow into rivers, coastal seas, lakes (lakes and reservoirs), etc. to promote algae growth and cause eutrophication.
  • processes for treating nutrients such as nitrogen and phosphorus include physicochemical treatments and biological treatments.
  • nitrifying bacteria for example, Nitrosomonas & Nitrobacter
  • aerobic conditions ammonia is transformed into nitrate form
  • nitrate is denitrified.
  • Oxidized bacteria eg, Pseudomonas, Paracoccus denitrifiers
  • Pseudomonas, Paracoccus denitrifiers are used as electron acceptors instead of oxygen under anoxic conditions, converted to nitrogen gas, released into the atmosphere (denitrification) and removed.
  • wastewater is alternately maintained under anaerobic and aerobic conditions to release phosphorus from phosphorus-removing microorganisms (eg, Acinetobacter) under anaerobic conditions, and in subsequent aerobic conditions, the microorganisms overtake phosphorus.
  • phosphorus-removing microorganisms eg, Acinetobacter
  • the microorganisms overtake phosphorus.
  • the phosphorus in the wastewater is then removed by removing a certain amount of microorganisms.
  • the degree of ingestion of the phosphorus of the microorganism in the aerobic condition depends on the amount and type of organic matter introduced into the anaerobic condition, especially in the case of maintaining a pure anaerobic state and in the case of a large amount of organic acid salts such as acetate in pure anaerobic condition
  • the amount of phosphorus released is enhanced, and the intake of phosphorus in the subsequent exhaled state is improved, thereby increasing the throughput.
  • the biological nitrogen and phosphorus removal process properly arranges anaerobic-aerobic-anaerobic-aerobic reactors to induce organic oxidation and nitrification reactions and intake of microorganisms in the aerobic reactors according to the characteristics of each reactor, and anaerobic and anoxic reactors. Induces the release of phosphorus and the denitrification reaction which converts nitrate nitrogen into nitrogen gas and releases it into the atmosphere.
  • an aerobic reactor is disposed before the precipitation tank to improve the sludge settling property and suppress the release of phosphorus.
  • An example of such a method is the Ludzack-Ettinger process, which is designed so that the most common process can make the best use of denitrification of the influent sewage without introducing a separate organic source.
  • the aerobic and anaerobic tanks are divided into aberrations so that the anaerobic and aerobic tanks are not clearly distinguished.
  • the domestic sewage treatment technology has been advanced significantly at the same time to treat organic material, nitrogen and phosphorus, but most of these processes are performed at the same time in the reaction of the removal of organic matter and nitrification in one reactor, due to the inhibition of nitrification by organic matter Nitrogen treatment efficiency is not effectively performed in the low temperature winter or short hydraulic residence time (6-8 hours).
  • the process developed to overcome the denitrification deterioration due to the low C / N ratio and the reduction of nitrification efficiency caused by low temperature or short hydraulic residence time includes the Dephanox process developed in Italy. See FIG. 1).
  • anaerobic contacting tanks and separation tanks are used for the microorganisms to adsorb organic matter and induce the release of phosphorus in the anaerobic contacting tank, the organic matter and microorganisms adsorbed in the separation tank are separated into the subsequent denitrification tank and the nitrogen is not adsorbed.
  • the compound is nitrified in a separate reactor and sent to a subsequent denitrification tank for denitrification by the microorganisms that adsorb the organics.
  • the depanox process is a process in which denitrification and nitrification are carried out in separate sludges and reactors, and the phosphorus is excessively ingested by microorganisms in a subsequent aerobic reactor.
  • the Depanox process adopts an independent nitrification method in which nitrification is performed in a separate reaction tank, and nitrifying bacteria predominate because nitrifying bacteria are attached and grown by filling the medium and nitrification in the nitrification reaction tank. It can be effectively nitrification at low temperature or short hydraulic residence time.
  • the organic nitrogen and ammonia nitrogen flowing into the denitrification tank from the separation tank during the subsequent treatment after the nitrification process are discharged without being sufficiently decomposed or nitrified, and the single subsequent to the nitrification reactor. Since denitrification is performed only in the denitrification reactor, it has a disadvantage that high nitrogen removal efficiency cannot be expected.
  • the Depanox process including the Depanox process, is a two-stage sludge process that is somewhat complicated in structure and has two sedimentation basins, resulting in economic and operational aspects such as operational costs and maintenance of sedimentation basins.
  • the disadvantage is that it is inefficient in terms of.
  • the present invention can obtain a high nitrification efficiency even under a short hydraulic residence time and low temperature conditions, it is composed of a single settling basin can simplify the structure and greatly reduce the installation cost
  • the aim is to provide a nutrient processing system that can minimize operational problems.
  • the present invention in the nutrient processing system including an anaerobic reactor, an oxygen-free reactor and nitrification reaction tank, by minimizing the amount of organic matter flowing into the nitrification reaction tank to promote the growth of nitrification microorganisms in the nitrification reactor
  • one or more organic oxidizing tank is placed in front of the nitrification tank, to provide a hybrid biological nutrient processing system characterized in that the pre-treatment in one or more organic oxidizing tank prior to the nitrification tank treatment.
  • the present invention provides an anaerobic reaction tank for releasing phosphorus and adsorbing organic substances by using organic substances contained in the incoming wastewater;
  • An oxygen-free reaction tank for removing nitrogen by using an organic material contained in the wastewater introduced from the anaerobic reactor;
  • An organic material oxidizing tank for oxidizing the organic matter remaining after nitrogen removal in the anoxic reaction tank (partial nitrification reaction occurs due to adherent growth nitrification microorganisms in the organic oxidizing tank);
  • a nitrification reactor for nitrifying the ammonia nitrogen of the exhausted organic matter from the organic oxidation tank; It provides a hybrid biological nutrient processing system comprising a; and the final sedimentation tank for the solid-liquid separation of the sludge treated in the nitrification reaction tank to discharge the treated water from which the suspended matter is removed.
  • the inside of the nitrification tank may perform nitrification only by floating growth.
  • the inside of the nitrification tank may be filled with any one of a rotating disc and a fluidized bed attachment medium.
  • the nitrate may be denitrated by using an organic material introduced into the anoxic reaction tank by returning the nitrate and sludge nitrified in the nitrification tank to the anoxic reaction tank.
  • the nitrate transfer from the nitrification tank to the anoxic oxidation tank may use a metering pump.
  • the present invention provides an anaerobic reaction tank for releasing phosphorus and adsorbing organic substances by using organic substances contained in the incoming wastewater; An oxygen-free reaction tank for removing nitrogen by using an organic material contained in the wastewater introduced from the anaerobic reactor; An organic material oxidizing tank for oxidizing the organic material remaining after nitrogen removal in the anoxic reaction tank; And a nitrification reaction tank for nitrifying the ammonia nitrogen of the effluent with reduced organic matter from the organic oxidation tank, wherein the separator is provided in the organic oxidation tank, and any one of a rotating disc and a fluidized bed adhesion medium is attached to the nitrification reactor. It provides a hybrid biological nutrient processing system characterized in that the filling.
  • the separator may be in the form of a rod or disc.
  • the nitrates and sludges nitrified in the nitrification tank may be returned from the nitrification tank to the organic oxidizing tank, the organic oxidizing tank to the anoxic reaction tank, and the anoxic reactor to the anaerobic reactor.
  • the nitrate transfer from the nitrification reaction tank to the organic oxidation tank may use any one of a metering pump and a natural oil drop method.
  • the present invention minimizes the amount of organic matter introduced into the nitrification tank through the organic oxidizing tank to maximize the growth of the nitrifying microorganisms in competition with the organic oxidizing microorganisms, so that the temperature is low or short as in winter. It is expected that nitrification efficiency of more than 95% can be achieved even if the wastewater has to be treated under hydraulic residence time.
  • T-N total nitrogen
  • the process proposed in the present invention is simpler in structure than the two-stage sludge process (for example, the Dephanox process) that requires two or more sedimentation basins for independent nitrification. It can be installed to save a lot of installation cost, so it can be economically significant and minimize the problems that can be exposed to operation.
  • the two-stage sludge process for example, the Dephanox process
  • Figure 1 shows a schematic of the Dephanox process used in the prior art.
  • FIG. 2 shows a schematic diagram of an A2 / O process conventionally used.
  • Figure 3 is a conceptual diagram of a process for receiving less interference of the organic matter in the nitrification reaction of the nitrification reaction tank according to the present invention.
  • FIG. 4 is a schematic diagram of a hybrid biological nutrient processing system for performing nitrification only with suspended growth without using microbial adhesion media according to one embodiment of the present invention.
  • FIG. 5 is a system for improving the phosphorus treatment efficiency and uniformly adjusting the sludge concentration of the treatment system by returning the sludge from the final settling tank to the anaerobic reactor in the final settling tank according to the embodiment of the present invention and back to the anaerobic reactor.
  • FIG. 6 is a schematic diagram of a hybrid biological nutrient processing system applying a fixed microorganism attachment medium and a rotating disc method to a nitrification reaction tank according to an embodiment of the present invention.
  • Figure 7 is a schematic diagram of a hybrid biological nutrient processing system applying the fluidized bed adhesion medium to the nitrification reaction tank according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a hybrid biological nutrient processing system applying a separation membrane to a nitrification reaction tank according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a biological nutrient treatment system applying a separation membrane to an organic material oxidation tank according to an embodiment of the present invention and applying a rotating disc method to a nitrification reactor.
  • FIG 10 is a graph showing the removal efficiency of organic nitrogen and ammonia nitrogen of the nutrient processing system according to water temperature in one embodiment and one comparative example of the present invention.
  • FIG. 11 is a graph showing the ammonia nitrogen removal efficiency according to the winter temperature and the reaction tank water temperature of the nutrient processing system according to an embodiment and one comparative example of the present invention.
  • FIG. 12 illustrates microbial analysis results when the nutrient processing system according to one embodiment and one comparative example of the present invention is operated at a low temperature.
  • FIG. 13 shows the concentration of organics flowing into the nitrification tank (aerobic tank) in the nutrient processing system according to one embodiment and one comparative example of the present invention.
  • 15 is a graph showing the effect of organic influx on the nitrification reaction.
  • the present invention provides a nutrient processing system including an anaerobic reactor, an anoxic reactor, and a nitrification tank, in which a nitrification microorganism is grown in a nitrification tank so that the nitrification microorganisms can be grown and concentrated in a nitrification tank. It provides a hybrid biological nutrient processing system characterized in that the pre-treatment in one or more organic oxidizing tank prior to nitrification tank treatment by placing at least one organic oxidizing tank in the front end.
  • heterotrophs that oxidize organic matter when organic matter is introduced
  • autotrophs which are nitrifying microorganisms.
  • O 2 organic oxidative heterotrophic microorganisms
  • Both heterotrophs and autotrophs require O 2 to grow, and the heterotrophs that cover the exterior of the biofloc first consume the O 2 so that the interior of the biofloc is independent.
  • trophic microorganisms Autotroph
  • the hybrid biological nutrient treatment system as shown in Figures 4 to 7, anaerobic reactor (1), anoxic reactor (2), organic matter oxidation tank (4), nitrification reactor (5) And a final settling tank 6.
  • the hybrid biological nutrient treatment system is first introduced into the anaerobic reactor (1), the wastewater is introduced into the anaerobic reactor (2) when the inflow of wastewater, nitrification The nitrates and sludges returned from the reactor 5 remove the nitrate nitrogen and sludges in the wastewater.
  • the organic matter oxidizing tank 4 minimizes the amount of organic matter introduced into the nitrification reactor 5 by oxidizing and decomposing organic matter in the wastewater, so that the nitrifying microorganisms can be grown in the nitrification reaction vessel 5 to be concentrated and cultured.
  • the organic oxidizing tank (4) the organic material is oxidized, and the organic material load flowing into the nitrification reaction tank (5) is reduced, thereby reducing the growth of the organic oxidizing heterotrophic microorganism and smoothly by the nitrifying microorganisms, which are independent nutrients.
  • nitrification reaction can be induced, it is possible to create an environment favorable for the nitrification reaction in the nitrification reaction tank 5 arranged at the rear stage. This is because organic oxidizing microorganisms have an advantage over nitrifying microorganisms in competition between nitrifying microorganisms and organic oxidizing microorganisms, so that organic oxidizing microorganisms are controlled in subsequent nitrification reactors 5 by consuming organic matter in the organic oxidizing tank 4. will be.
  • the wastewater that has passed through the organic oxidizing tank 4 is transferred to the nitrification tank 5.
  • the nitrification reaction tank 5 may perform the nitrification reaction only by floating growth without using the microorganism attachment medium, or may be filled with the microorganism attachment medium. However, in order to concentrate the nitrifying microorganisms with relatively low growth in the nitrification tank, it is preferable to fill the microorganism attachment media. It is desirable to effectively induce nitrification through the growth of adhesion of microorganisms.
  • the fluid media 100 that is flowed by a brower for maintaining an aerobic state may be used, and the rotating disc 102 may be easily desorbed by a rotational force.
  • the shape and shape of the reactor can be varied according to the conditions of the site to be applied.
  • in order to minimize the land area of the wastewater treatment system may be configured in the form of a process that can be separated completely by applying the separation membrane 101 instead of the sedimentation tank.
  • the nitrates and sludges nitrated from the nitrification microorganisms attached to the medium of the nitrification reactor 5 are returned to the anoxic reactor 2 and the organic matter nitrate introduced into the anoxic reactor 2 from the anaerobic reactor 1. Denitrate.
  • the external organic carbon source 10 may be injected into the oxygen-free reactor 2 to maintain the treatment efficiency.
  • the injection position of the external organic carbon source 10 may be injected not only into the oxygen-free reactor 2 but also into another reactor depending on the situation.
  • dissolved oxygen is introduced into the anaerobic reactor 1 in which phosphorus is released during the phosphorus removal mechanism, thereby preventing the release of phosphorus. It acts as a factor and tends to reduce phosphorus removal efficiency. So, in order to prevent this when the membrane 101 is used in a normal activated sludge process, a stabilizing tank is provided at the rear of the membrane tank to reduce dissolved oxygen, and then the sludge is returned to the anaerobic reactor 1, but the present invention is used.
  • the sludge conveyed from the nitrification tank 5 to the organic oxidizing tank 4 and the organic oxidizing tank 4 to the anoxic reaction tank 2 is finally used.
  • the conditions such as whether the injection time of the air through the blower, suction and rest time, cleaning, etc. will vary depending on the material of the membrane 101 and the shape of the module.
  • the application of the separator 101 in relation to the illustrated embodiment may be diversified into an immersion type and a pressure type.
  • Sludge conveyance from the nitrification reaction tank (5) to the organic material oxidation tank (4) requires a higher dissolved oxygen amount than the conventional activated sludge process when the separation membrane (101) is applied, and when the internal transport method described above is applied, the organic oxidation tank ( In 4), sludge with sufficient dissolved oxygen is transferred to reduce the oxygen demand, thus reducing maintenance costs.
  • the internal transport from the nitrification reactor (5) to the organic matter oxidization tank (4) can be carried out using a metering pump, and the sludge can be transported in a natural flow method by using a water level rise by air injection depending on the site conditions. have.
  • Hybrid biological nutrient processing system by maximizing the growth of nitrifying microorganisms in competition with organic oxidizing microorganisms by minimizing the amount of organic matter flowing into the nitrification reactor through the organic oxidizing tank, low temperature as in winter High nitrification efficiency can be achieved even if the wastewater has to be treated at short or short hydraulic residence times, compared to a two-stage sludge process that requires two or more settling basins for independent nitrification. , Dephanox process), simple structure and single sedimentation basin can greatly reduce installation cost, which has great economic advantages and minimizes problems that can be revealed in operation.
  • Figure 5 shows a schematic diagram according to an embodiment of the present invention, the sludge concentration of the treatment system by uniformly conveying the sludge from the final settling tank to the anaerobic reactor and back to the anaerobic reactor.
  • a schematic diagram of a system that fits and improves phosphorus treatment efficiency is shown, and this process is not limited to FIG. 5 but is applicable to all of the systems of the present invention.
  • the influent water is discharged by being treated through an anaerobic reactor 200, an anoxic reactor 300, an aerobic reactor 400, and a secondary precipitation tank 500, and dissolved in the anoxic reactor 300.
  • Nitrogen nitrate and nitrite chemically bonded oxygen is introduced from the aerobic reactor (400), but the nitrogen removal process is performed by denitrification of nitrate nitrogen, and phosphorus released from the anaerobic reactor (200).
  • the aerobic reactor 400 is excessively absorbed to remove phosphorus through sludge disposal, and in the anaerobic reactor 200, the return sludge is conveyed from the secondary settling tank 500.
  • the aerobic reactor (400) which acts as a nitrification reactor in the A2 / O process, is divided into an organic material oxidizer, which focuses on organic matter oxidation, and a nitrification reactor, which enhances nitrification and microbial growth and nitrification reaction. I named it.
  • Wastewater treatment was performed by filling a rotating disc (RBC) in the aerobic reactor in the A2 / O2 process of Example 1. This process was named A2 / O2 with RBC process.
  • RBC rotating disc
  • the hydraulic retention time (HRT) of the process was 6 hours and the microbial retention time (SRT) was 12 days.
  • the temperature of the thermostat was operated at 7 ⁇ 20 °C during the experiment.
  • Quantitative pumps were used for supplying raw water and returning activated sludge from the anaerobic tank to internal recycle and from the final settling tank to the anaerobic contact tank.
  • the return sludge feed flow from the final settling tank to the anaerobic contacting tank was maintained at 1Q.
  • Endogenous circulation from the anoxic tank to the denitrification tank was operated at 1Q to improve the nitrogen removal efficiency.
  • the carrier used for the growth of microorganisms in the nitrification tank was fixed by using a polyethylene honeycomb-shaped filter medium having a diameter of 120 mm and a thickness of 25 mm and six pieces of stainless steel shaft having a diameter of 10 mm and a length of 300 mm.
  • RBC rpm was maintained at 2-3 rpm.
  • two disc type diffusers were used to operate the average DO concentration at 2-3 mg / L.
  • the MLSS concentration in each reactor was maintained at 3500-4500 mg / L and the VSS / TSS ratio was maintained at an average of about 75 ⁇ 5%.
  • TCOD cr 5220-COD-D, HACH
  • SCOD cr 5220-COD-D, HACH
  • NH 4 + -N Nessler method, HACH
  • NO 2 -- N 4500-NO 2 -- B, HACH
  • NO 3 -- N 4500-NO 3 -- B, HACH
  • PO 4 3- -P 4500-PE, HACH
  • TP TP
  • double TCOD cr , SCOD cr was measured according to Standard Methods (APHA, 2005) and HACH DR-4000
  • NH 4 + -N, TP was measured using the Nessler method and the HACH phospho Ver 3 method of the HACH manual, respectively.
  • TKN was measured using VELP (UDKCO30) manufactured in Milano, Italy.
  • SCOD cr NH 4 + -N were measured by filtration on GF / C filter paper (Whatmann) with a pore size of 1.2 ⁇ m, NO 2 -- N, NO 3 -- N is 0.45 ⁇ m pore size to prevent organic interference It was measured by filtration on membrane filter paper.
  • the A2 / O2 process in which an organic oxidizing tank is disposed in front of the nitrification tank and the A2 / O2 with RBC process in which a rotating disc (RBC) is filled in the nitrification tank in the A2 / O2 process are TKN.
  • removal efficiency of ammonia nitrogen showed more than 90% at 10 °C, low temperature below 10 °C
  • the hybrid biological nutrient processing system provides an environment capable of promoting the growth of nitrification microorganisms in the nitrification tank even at low temperatures in winter, thereby effectively performing nitrification by placing an organic oxidizing tank in front of the nitrification tank. Nitrogen removal can be performed more effectively than the method.
  • the hybrid biological nutrient treatment system according to the present invention was operated on a pilot scale to measure winter ammonia nitrogen treatment efficiency.
  • the pilot scale treatment capacity was 7 tons / day
  • the hydraulic residence time was 6 hours
  • the internal and sludge transport were operated at 1Q, respectively, and the treatment efficiency was observed according to the actual water temperature and the room temperature. .
  • 16S rRNA is an indicator indicating the presence of microorganisms
  • amoA is an indicator indicating the gene of the microorganisms on the path (oxidation) of ammonia oxidizing ammonia monoixgenase gene subunit A.
  • FIG 13 shows the concentration of organic material flowing into the nitrification tank (aerobic tank) of the hybrid biological nutrient treatment system according to the present invention.
  • the hybrid biological nutrient processing system by placing an organic oxidizing tank in front of the nitrification tank, the organic matter is removed from the organic oxidizing tank, thereby minimizing organic substances flowing into the nitrification tank, thereby minimizing organic matter in the nitrification tank even at a low temperature in winter.
  • the organic matter By promoting the growth of the nitrification can be effectively carried out nitrogen removal compared to the conventional method.
  • the temperature is indeed suspended in growth (method of growing in suspension without media in water) and adhesion growth (carrier in water). Method to attach and grow microorganisms) The following experiment was conducted to see how it affects nitrifying bacteria.
  • the experiment was carried out using concentrated cultured nitrifying bacteria while collecting activated sludge from C municipal sewage treatment plant and giving 2 L of tap water (18 L) and activated sludge (MLSS 1200 mg / L) in a 20 L reactor. .
  • NH 4 Cl was used as a substrate and NaHCO 3 was used as a buffer for the smooth growth of nitrifiers.
  • Activation energy (Ea) of Nitrosomonas in suspension growth and adhesion growth using sponge-like media was calculated using the concentrated nitrifier, and the results converted into graphs are shown in FIG. 14.
  • the suspended growth and adhesion growth nitrifiers had different activation energy values based on 11 and 8 ° C, respectively. This shows that the adhesion growth has the activity of suspended growth even at a temperature as low as 3 °C, indicating that it is more advantageous to attach the nitrifying microorganism at low temperature.
  • the activation energy of nitrifying bacteria attached to the media was about 1.6 times higher than that of suspended growth. This was influenced by the rate of substrate diffusion into cells. In the case of suspended growth, substrate diffusion into cells was faster than that of adherent growth nitride, and substrate decomposition could be easily progressed. The substrate diffusion rate was slower than that of suspended growth, suggesting that the substrate decomposition was relatively slow.
  • heterotrophs that oxidize organic matters is relatively greater than that of autotrophs, which are nitrifying microorganisms. do. Both heterotrophs and autotrophs require O 2 to grow. However, when organic material is injected at low temperature, heterotrophs covering the outside of the biofloc first consume O 2, and in the case of autotrophs located inside the biofloc, the contact with O 2 is difficult, resulting in nitrification. There is a vicious cycle in which growth slows down.
  • FIG. 15 shows that the nitrification efficiency is reduced to about 40% even when the amount of organic matter is increased by about 2 mg / L as a result of the effect of organic inflow on the nitrification reaction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Analytical Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The present invention relates to a hybrid biological nutrient salts treatment system, the system arranging one or more organic-matter oxidation tanks at the fore-end of a nitrification tank so that nutrient salts can be effectively removed, even at low winter temperatures, so as to meet actual conditions in Korea, and thereby carrying out a pre-treatment in the one or more organic-matter oxidation tanks prior to treatment in the nitrification tank. The present invention can minimize the amount of organic-matter that flows into the nitrification tank through the organic-matter oxidation tanks in order to maximize growth of nitrifying microorganisms in competition with organic-matter-oxidizing microorganisms. Thus, it is possible to achieve 95% or more nitrification efficiency, even in the case where, as during winter season, sewage/wastewater should be processed at low temperatures or during a short hydraulic retention time, and thus improved total nitrogen (T-N) treatment can be expected. In addition, compared to a conventional two-stage sludge process (for example, Dephanox process) that must comprise two or more settling ponds for independent nitrification, since the treatment system of the present invention has a simpler structure and comprises a single settling pond, it is possible to significantly reduce installation costs, thereby providing a huge economic advantage and, at the same time, enabling minimization of potential operational issues.

Description

[규칙 제91조에 의한 정정 28.04.2016] 하이브리드 생물학적 영양염류 처리 시스템[Revision 28.04.2016 by Rule 91] 생물학적 Hybrid Biological Nutrients Treatment System
본 발명은 하이브리드 생물학적 영양염류 처리 시스템에 관한 것으로, 더욱 상세하게는 우리나라의 실정에 맞게 겨울의 낮은 온도에서도 영양염류를 효과적으로 제거할 수 있도록 하는 하이브리드 생물학적 영양염류 처리 시스템에 관한 것이다.The present invention relates to a hybrid biological nutrient processing system, and more particularly, to a hybrid biological nutrient processing system for effectively removing nutrients even at a low temperature in winter according to the situation in Korea.
일반적으로, 폐수에 포함되어 있는 영양염류 자체는 무기성 원소이지만, 이들이 하천이나 연안바다, 호소(호수 및 저수지) 등으로 유입되어 조류의 성장을 촉진시켜 부영양화 현상을 발생시킨다.In general, the nutrients contained in the wastewater are inorganic elements, but they flow into rivers, coastal seas, lakes (lakes and reservoirs), etc. to promote algae growth and cause eutrophication.
또한, 폐수에 포함되어 있는 영양염류가 연안바다로 유입되었을 때 적조현상의 원인이 되며, 심하면 수저부에서 부패하고 악취가 발생하여 수질오염을 촉진시키는 원인으로 작용되므로, 영양염류는 하천이나 호소로 유입되기 전에 제거되어야 할 물질이다.In addition, when nutrients contained in waste water enter the coastal seas, it causes red tide, and if it is severe, it causes decay and odors at the bottom of the water to promote water pollution. The material to be removed before it is introduced.
우리나라의 경우 대부분의 하수처리 및 축산폐수 처리 방법은 대부분 활성슬러지법에 의존하고 있는 실정이다. 활성슬러지법에 의한 처리시 현탁 고형물질과 유기물은 쉽게 제거될 수 있으나 질소나 인과 같은 영양염류 물질의 처리는 현재의 기술로도 점점 강화되고 있는 법정 방류수 수질기준을 준수하기가 쉽지 않다.In Korea, most sewage treatment and livestock wastewater treatment methods rely on activated sludge. Suspended solids and organics can be easily removed by treatment with activated sludge, but the treatment of nutrients such as nitrogen and phosphorus is not easy to comply with the statutory effluent water quality standards, which are being strengthened by current technology.
일반적으로, 질소, 인과 같은 영양염류 처리를 위한 공정들로는 물리화학적인 처리 방법과 생물학적인 처리 방법이 있다.Generally, processes for treating nutrients such as nitrogen and phosphorus include physicochemical treatments and biological treatments.
우선, 물리화학적인 처리 방법에 있어서는 암모니아 탈기법, 선택적 흡착 방법을 이용하는 이온교환법, 소석회 및 응집제를 사용하여 인을 침전시키는 방법 및 질소와 인을 동시에 침전시키는 스트루바이트(Struvite) 형성의 침전법 등이 이용되고 있다. 그러나, 이와 같은 방법은 처리가 선택적으로 이루어지지만 온도, pH 등 여러 영향 인자들에 민감하고, 약품을 사용하기 때문에 처리 비용이 많이 소요되는 등의 단점이 있다. 또한, 약품 사용 및 운전상에 요구되는 환경이 특징적이어서 운영에 있어 숙달된 인원이 반드시 필요하다는 단점이 있으며, 유입수의 유입 농도가 변화할 경우 약품 주입량 등의 변화로 인해 유출수가 불안정하여 현장에서 사용을 꺼리고 있다.First, in the physicochemical treatment method, ammonia degassing method, ion exchange method using selective adsorption method, method of precipitation of phosphorus using slaked lime and flocculant and method of precipitation of struvite formation which simultaneously precipitates nitrogen and phosphorus Etc. are used. However, such a method has a disadvantage in that the treatment is selectively performed, but sensitive to various influence factors such as temperature and pH, and the treatment cost is high because the chemical is used. In addition, there is a disadvantage in that the environment required for the use of chemicals and operation is characteristic, and therefore, a skilled personnel is necessary for the operation.If the influent concentration of the influent changes, the effluent is unstable due to the change in the amount of chemical injection. Is reluctant.
한편, 생물학적 처리 방법에 있어서는 질소의 경우, 용존 상태에 있는 암모니아성 질소와 유기 질소를 호기성 조건에서 질산화균(예컨대, Nitrosomonas & Nitrobacter)에 의해 질산화(암모니아를 질산염 형태로 변형)시키고, 질산염을 탈질산화균(예컨대, Pseudomonas, Paracoccus denitrifiers)에 의해 무산소 조건에서 산소대신 전자수용체로서 이용하게 하고, 질소 기체로 변환하여 대기 중으로 방출(탈질산화)시켜 제거하고 있다.On the other hand, in the biological treatment method, in the case of nitrogen, ammonia nitrogen and organic nitrogen in the dissolved state are nitrified by nitrifying bacteria (for example, Nitrosomonas & Nitrobacter) under aerobic conditions (ammonia is transformed into nitrate form), and nitrate is denitrified. Oxidized bacteria (eg, Pseudomonas, Paracoccus denitrifiers) are used as electron acceptors instead of oxygen under anoxic conditions, converted to nitrogen gas, released into the atmosphere (denitrification) and removed.
인의 경우, 폐수를 교대로 혐기성 조건과 호기성 조건하에 유지시켜 혐기성 조건에서는 인 제거 미생물(예컨대, Acinetobacter)로부터 인을 방출(Release)시키고, 후속되는 호기성 조건에서는 미생물이 인을 과다 섭취(Luxury uptake)하도록 한 다음 미생물을 일정량씩 제거시키는 방식으로 폐수 중의 인을 제거한다. 상기 호기성 조건에서 미생물의 인을 과다 섭취하게 되는 정도는 혐기성 조건으로 유입되는 유기물의 양과 종류에 따라 다르며 특히, 순수한 혐기 상태의 유지와 유입되는 유기물이 초산염과 같은 유기산 염이 많을 경우 순수한 혐기 상태에서 인의 방출량이 증진되며, 후속된 호기 상태에서 인의 섭취도가 향상되어 처리율이 증진된다.In the case of phosphorus, wastewater is alternately maintained under anaerobic and aerobic conditions to release phosphorus from phosphorus-removing microorganisms (eg, Acinetobacter) under anaerobic conditions, and in subsequent aerobic conditions, the microorganisms overtake phosphorus. The phosphorus in the wastewater is then removed by removing a certain amount of microorganisms. The degree of ingestion of the phosphorus of the microorganism in the aerobic condition depends on the amount and type of organic matter introduced into the anaerobic condition, especially in the case of maintaining a pure anaerobic state and in the case of a large amount of organic acid salts such as acetate in pure anaerobic condition The amount of phosphorus released is enhanced, and the intake of phosphorus in the subsequent exhaled state is improved, thereby increasing the throughput.
따라서, 생물학적 질소 및 인의 제거 공정은 혐기성 - 호기성 - 혐기성 - 호기성 반응조를 적절히 분리 배치하여 각 반응조의 특성에 따라 호기성 반응조에서는 유기물 산화 및 질산화 반응과 미생물의 인을 섭취하도록 유도하고, 혐기성 및 무산소 반응조에서는 질산성 질소를 질소가스로 변형시켜 대기 중으로 방출시키는 탈질 반응과 인의 방출을 유도한다.Therefore, the biological nitrogen and phosphorus removal process properly arranges anaerobic-aerobic-anaerobic-aerobic reactors to induce organic oxidation and nitrification reactions and intake of microorganisms in the aerobic reactors according to the characteristics of each reactor, and anaerobic and anoxic reactors. Induces the release of phosphorus and the denitrification reaction which converts nitrate nitrogen into nitrogen gas and releases it into the atmosphere.
상기 전술한 일반적인 형태의 생물학적 영양염류의 처리공정에서는 슬러지의 침전성을 향상시키고, 인의 방출을 억제하기 위하여 침전조 전에 호기성 반응조를 배치시킨다. 이러한 방법의 예로서는, 가장 보편화된 공정이 별도의 유기원을 주입하지 않고 유입된 하수의 유기물을 탈질에 최대한 이용할 수 있도록 설계한 Ludzack-Ettinger 공정이 있다. 이 공정은 호기조와 무산소조가 수차로 구분되어 있어 무산소조와 호기조가 명확히 구분되어 있지 않다. 메탄올 대신 하수중의 유기물을 사용하는 것으로 호기조에서 암모니아가 산화되고 수차에 의해 운반되는 반송슬러지를 통해 질산염이 무산소조로 이송되어 탈질을 유도하는 방식이다. 하지만 상기 공정은 질소 제거 효율이 매우 낮다는 단점이 있다. In the above-described general process of treating biological nutrients, an aerobic reactor is disposed before the precipitation tank to improve the sludge settling property and suppress the release of phosphorus. An example of such a method is the Ludzack-Ettinger process, which is designed so that the most common process can make the best use of denitrification of the influent sewage without introducing a separate organic source. In this process, the aerobic and anaerobic tanks are divided into aberrations so that the anaerobic and aerobic tanks are not clearly distinguished. The use of organic matter in sewage instead of methanol is a method in which ammonia is oxidized in an aerobic tank and nitrate is transported to an oxygen-free tank through a conveying sludge carried by aberration to induce denitrification. However, the process has the disadvantage that the nitrogen removal efficiency is very low.
이러한 단점을 보완하기 위해 호기조에서 무산소조로 반송율을 높여 총질소 제거율을 약 90%까지 향상시켰다. 이후 Modifide Ludzack-Ettinger 공정 개념을 기본으로 A2/O 공정, 4단5단 Bardenpho 공정, University Cape town 등과 같은 공정이 개발되었다. 그러나, 상기의 공정은 부지가 넓은 외국의 실정에 맞게 제안된 공정이기 때문에 수리학적 체류간이 길어 우리나라와 같이 부지가 작고 C/N비가 낮은 하수특성과 여러 가지 제반사항에서 적용하는데 다소 어려움이 있다. 특히, 국내의 하수처리는 유기물, 질소 및 인을 동시에 처리하는 기술은 상당히 진보되어 있으나, 이들 공정의 대부분은 유기물 제거와 질산화 반응이 한 반응조에서 거의 동시에 이루어지고 있어, 유기물에 의한 질산화 저해로 인해 온도가 낮은 겨울철이나 짧은 수리학적 체류시간(6~8시간)에서는 질소 처리 효율이 효과적으로 수행되지 못하고 있는 실정이다.To compensate for these drawbacks, the rate of return from an aerobic tank to an anaerobic tank was increased to improve the total nitrogen removal rate by about 90%. Later, based on the Modifide Ludzack-Ettinger process concept, processes such as A2 / O process, 4-stage 5-stage Bardenpho process, and University Cape town were developed. However, since the above process is a process proposed for a foreign country with a large site, it is difficult to apply it in sewage characteristics and various matters that have a small site and low C / N ratio as in Korea due to a long hydraulic stay. In particular, the domestic sewage treatment technology has been advanced significantly at the same time to treat organic material, nitrogen and phosphorus, but most of these processes are performed at the same time in the reaction of the removal of organic matter and nitrification in one reactor, due to the inhibition of nitrification by organic matter Nitrogen treatment efficiency is not effectively performed in the low temperature winter or short hydraulic residence time (6-8 hours).
따라서, 기존 처리장의 수리학적 체류시간(6~8시간)에서 영양염류를 성공적으로 처리하기 위해서는 수리학적 체류시간이 짧은 경우에도 효과적으로 영양염류를 처리할 수 있는 공정 개발의 필요성이 절실하다고 할 수 있다. 게다가 온도가 낮은 겨울철이 있는 우리나라의 경우, 상기 시스템의 설계 변경이나 공정의 개선이 없이 바로 현장에 적용할 경우, 질산화 효율이 저하되어 궁극적으로는 시스템의 질소처리 효율이 감소되는 문제점이 있다. Therefore, in order to successfully treat nutrients in the hydraulic retention time (6-8 hours) of the existing treatment plant, it is necessary to develop a process that can effectively treat nutrients even if the hydraulic retention time is short. . In addition, in the case of Korea where the temperature is low in winter, when applied directly to the site without design change or process improvement of the system, there is a problem that the nitrification efficiency is lowered and ultimately the nitrogen treatment efficiency of the system is reduced.
위와 같이 낮은 C/N 비로 인한 탈질 저하와 온도가 낮거나 짧은 수리학적 체류시간에서 발생되는 질산화 효율 저하를 극복하기 위해 개발된 공정으로는 이탈리아에서 개발된 데파녹스(Dephanox) 공정을 들 수 있다(도 1 참조). 이 공정에서는, 혐기 접촉조 및 분리조를 이용하여 혐기 접촉조에서 미생물이 유기물을 흡착시키고 인의 방출을 유도하며, 분리조에서 흡착된 유기물과 미생물을 분리하여 후속된 탈질조로 유입시키고 흡착되지 않은 질소 화합물을 별개의 반응조에서 질산화시켜 후속된 탈질조로 보내 유기물을 흡착한 미생물에 의해 탈질시킨다. 즉, 데파녹스 공정은 탈질과 질산화가 별개의 슬러지 및 반응조에서 이루어지며 후속된 제2 호기성 반응조에서 미생물에 의해 인을 과잉 섭취하도록 하는 공정이다. 또한, 데파녹스 공정은 위에서 언급하였듯이 질산화가 별개의 반응조에서 이루어지는 독립 질산화(Independent nitrification) 방식을 채택하고 있고, 질산화 반응조에는 담, 매체를 충진하여 질화균을 부착성장시킴으로 인해 질화균을 우점화 시킬 수 있어 온도가 낮거나 짧은 수리학적 체류시간에서 효과적으로 질산화를 수행시킬 수 있는 장점을 가지고 있다.The process developed to overcome the denitrification deterioration due to the low C / N ratio and the reduction of nitrification efficiency caused by low temperature or short hydraulic residence time includes the Dephanox process developed in Italy. See FIG. 1). In this process, anaerobic contacting tanks and separation tanks are used for the microorganisms to adsorb organic matter and induce the release of phosphorus in the anaerobic contacting tank, the organic matter and microorganisms adsorbed in the separation tank are separated into the subsequent denitrification tank and the nitrogen is not adsorbed. The compound is nitrified in a separate reactor and sent to a subsequent denitrification tank for denitrification by the microorganisms that adsorb the organics. That is, the depanox process is a process in which denitrification and nitrification are carried out in separate sludges and reactors, and the phosphorus is excessively ingested by microorganisms in a subsequent aerobic reactor. In addition, as described above, the Depanox process adopts an independent nitrification method in which nitrification is performed in a separate reaction tank, and nitrifying bacteria predominate because nitrifying bacteria are attached and grown by filling the medium and nitrification in the nitrification reaction tank. It can be effectively nitrification at low temperature or short hydraulic residence time.
그러나, 상기 데파녹스 공정의 이러한 장점에도 불구하고, 질산화 공정 이후 후속되는 처리 과정 중 분리조로부터 탈질조로 유입되는 유기 질소 및 암모니아성 질소가 충분히 분해 또는 질산화되지 못하고 방류되며, 질화 반응조에 후속되는 단일 탈질 반응조에서만 탈질이 이루어지기 때문에, 높은 질소 제거효율을 기대할 수 없는 단점을 가지고 있다.However, despite these advantages of the depanox process, the organic nitrogen and ammonia nitrogen flowing into the denitrification tank from the separation tank during the subsequent treatment after the nitrification process are discharged without being sufficiently decomposed or nitrified, and the single subsequent to the nitrification reactor. Since denitrification is performed only in the denitrification reactor, it has a disadvantage that high nitrogen removal efficiency cannot be expected.
게다가 상기의 데파녹스 공정을 비롯한 데파녹스 변형 공정들은 2단 슬러지 공정 형태로서 그 구조가 다소 복잡하고, 침전지가 두 개이기 때문에 실제 공정 운영에 있어서 운영비 및 침전지 유지 관리 문제 등 경제적인 측면과 관리 운영상의 측면에서 비효율적이라는 단점이 있다.In addition, the Depanox process, including the Depanox process, is a two-stage sludge process that is somewhat complicated in structure and has two sedimentation basins, resulting in economic and operational aspects such as operational costs and maintenance of sedimentation basins. The disadvantage is that it is inefficient in terms of.
따라서, 온도가 낮은 겨울철이나 수리학적 체류시간이 짧은 조건에서 보다 질산화가 효과적으로 이루어지면서도 구조적으로 간단하여 현장 운전에 있어서 문제를 최소화시킬 수 있는 폐수처리 시스템의 개발이 시급히 요구되고 있는 실정이다.Therefore, there is an urgent need for the development of a wastewater treatment system that can minimize the problems in the field operation due to its simple structure and simple nitrification more effectively in the cold winter or short hydraulic conditions.
상기와 같은 문제점을 해결하기 위해, 본 발명은 짧은 수리학적 체류시간과 낮은 온도조건하에서도 높은 질산화효율을 획득할 수 있고, 하나의 침전지로 구성되어 있어 구조가 간단하고 설치비용을 크게 절감할 수 있으며, 운영상 드러날 수 있는 문제를 최소화시킬 수 있는 영양염류 처리 시스템을 제공하는데 그 목적이 있다.In order to solve the above problems, the present invention can obtain a high nitrification efficiency even under a short hydraulic residence time and low temperature conditions, it is composed of a single settling basin can simplify the structure and greatly reduce the installation cost The aim is to provide a nutrient processing system that can minimize operational problems.
상기와 같은 목적을 달성하기 위해, 본 발명은 혐기성 반응조, 무산소 반응조 및 질산화 반응조를 포함하는 영양염류 처리 시스템에 있어서, 질산화 반응조로 유입되는 유기물의 양을 최소화하여 질산화 반응조에서 질산화 미생물이 성장이 촉진되어 농축 배양할 수 있도록, 질산화 반응조 전단에 하나 이상의 유기물 산화조를 배치하여, 질산화 반응조 처리 이전에 하나 이상의 유기물 산화조에서 전처리를 수행하는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템을 제공한다.In order to achieve the above object, the present invention in the nutrient processing system including an anaerobic reactor, an oxygen-free reactor and nitrification reaction tank, by minimizing the amount of organic matter flowing into the nitrification reaction tank to promote the growth of nitrification microorganisms in the nitrification reactor In order to be concentrated and cultured, one or more organic oxidizing tank is placed in front of the nitrification tank, to provide a hybrid biological nutrient processing system characterized in that the pre-treatment in one or more organic oxidizing tank prior to the nitrification tank treatment.
또한, 본 발명은 유입되는 폐수에 함유된 유기물을 이용하여 인의 방출 및 유기물을 흡착하는 혐기성 반응조; 상기 혐기성 반응조에서 유입되는 폐수에 함유된 유기물을 이용하여 질소를 제거하는 무산소 반응조; 상기 무산소 반응조에서 질소 제거 후 잔존하는 유기물을 산화시키는 유기물 산화조(유기물 산화조에서도 부착성장 질산화 미생물에 의한 부분적인 질산화 반응이 일어남); 상기 유기물 산화조로부터 유기물이 감소된 배출물의 암모니아성 질소를 질산화시키는 질산화 반응조; 및 상기 질산화 반응조에서 처리된 슬러지를 고액분리하여 부유물질이 제거된 처리수를 유출시키는 최종 침전조;를 포함하는 하이브리드 생물학적 영양염류 처리 시스템을 제공한다.In addition, the present invention provides an anaerobic reaction tank for releasing phosphorus and adsorbing organic substances by using organic substances contained in the incoming wastewater; An oxygen-free reaction tank for removing nitrogen by using an organic material contained in the wastewater introduced from the anaerobic reactor; An organic material oxidizing tank for oxidizing the organic matter remaining after nitrogen removal in the anoxic reaction tank (partial nitrification reaction occurs due to adherent growth nitrification microorganisms in the organic oxidizing tank); A nitrification reactor for nitrifying the ammonia nitrogen of the exhausted organic matter from the organic oxidation tank; It provides a hybrid biological nutrient processing system comprising a; and the final sedimentation tank for the solid-liquid separation of the sludge treated in the nitrification reaction tank to discharge the treated water from which the suspended matter is removed.
또한 바람직하게는, 상기 질산화 반응조의 내부는 부유성장으로만 질산화 반응을 수행할 수 있다.Also preferably, the inside of the nitrification tank may perform nitrification only by floating growth.
또한 바람직하게는, 상기 질산화 반응조의 내부는 회전원판 및 유동상 부착여재 중 어느 하나의 부착여재로 충 진될 수 있다.Also preferably, the inside of the nitrification tank may be filled with any one of a rotating disc and a fluidized bed attachment medium.
또한 바람직하게는, 질산화 반응조에서 질산화된 질산염 및 슬러지를 무산소 반응조로 반송시켜 상기 무산소 반응조로 유입되는 유기물을 이용하여 질산염을 탈질시킬 수 있다.Also, the nitrate may be denitrated by using an organic material introduced into the anoxic reaction tank by returning the nitrate and sludge nitrified in the nitrification tank to the anoxic reaction tank.
또한 바람직하게는, 상기 질산화 반응조에서 무산소 산화조로의 질산염 반송은 정량펌프를 이용할 수 있다.Also preferably, the nitrate transfer from the nitrification tank to the anoxic oxidation tank may use a metering pump.
또한, 본 발명은 유입되는 폐수에 함유된 유기물을 이용하여 인의 방출 및 유기물을 흡착하는 혐기성 반응조; 상기 혐기성 반응조에서 유입되는 폐수에 함유된 유기물을 이용하여 질소를 제거하는 무산소 반응조; 상기 무산소 반응조에서 질소 제거 후 잔존하는 유기물을 산화시키는 유기물 산화조; 및 상기 유기물 산화조로부터 유기물이 감소된 배출물의 암모니아성 질소를 질산화시키는 질산화 반응조;를 포함하며, 상기 유기물 산화조에 분리막이 구비되고, 질산화 반응조에 부착여재로서 회전원판 및 유동상 부착여재 중 어느 하나가 충진되어 있는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템을 제공한다.In addition, the present invention provides an anaerobic reaction tank for releasing phosphorus and adsorbing organic substances by using organic substances contained in the incoming wastewater; An oxygen-free reaction tank for removing nitrogen by using an organic material contained in the wastewater introduced from the anaerobic reactor; An organic material oxidizing tank for oxidizing the organic material remaining after nitrogen removal in the anoxic reaction tank; And a nitrification reaction tank for nitrifying the ammonia nitrogen of the effluent with reduced organic matter from the organic oxidation tank, wherein the separator is provided in the organic oxidation tank, and any one of a rotating disc and a fluidized bed adhesion medium is attached to the nitrification reactor. It provides a hybrid biological nutrient processing system characterized in that the filling.
또한 바람직하게는, 상기 분리막은 봉 또는 디스크 형태일 수 있다.Also preferably, the separator may be in the form of a rod or disc.
또한 바람직하게는, 질산화 반응조에서 질산화된 질산염 및 슬러지를 상기 질산화 반응조에서 유기물 산화조로, 유기물 산화조에서 무산소 반응조로, 무산소 반응조에서 혐기성 반응조로의 순서로 반송시킬 수 있다.Also preferably, the nitrates and sludges nitrified in the nitrification tank may be returned from the nitrification tank to the organic oxidizing tank, the organic oxidizing tank to the anoxic reaction tank, and the anoxic reactor to the anaerobic reactor.
또한 바람직하게는, 상기 질산화 반응조에서 유기물 산화조로의 질산염 반송은 정량펌프 및 자연유하 방식 중 어느 하나를 이용할 수 있다.Also preferably, the nitrate transfer from the nitrification reaction tank to the organic oxidation tank may use any one of a metering pump and a natural oil drop method.
이상에서 설명한 바와 같이, 본 발명은 유기물 산화조를 통해서 질산화 반응조로 유입되는 유기물의 양을 최소화시켜 유기물 산화 미생물과 경쟁 상태에 있는 질산화 미생물의 성장을 극대화 시켜줌으로써, 겨울철과 같이 온도가 낮거나 짧은 수리학적 체류시간에서 하, 폐수를 처리해야 하는 경우에도 95% 이상의 질산화 효율을 달성할 수 있을 것으로 기대된다.As described above, the present invention minimizes the amount of organic matter introduced into the nitrification tank through the organic oxidizing tank to maximize the growth of the nitrifying microorganisms in competition with the organic oxidizing microorganisms, so that the temperature is low or short as in winter. It is expected that nitrification efficiency of more than 95% can be achieved even if the wastewater has to be treated under hydraulic residence time.
또한, 이로 인해 본 발명의 폐수처리 시스템으로부터 보다 향상된 총 질소(T-N) 처리를 기대할 수 있다.In addition, this can result in improved total nitrogen (T-N) treatment from the wastewater treatment system of the present invention.
게다가, 본 발명에서 제안하는 공정은 기존에 독립질산화를 위해 침전지를 2개 이상으로 구성해야만 하는 2단 슬러지 공정에 비해(예를 들면, 데파녹스(Dephanox) 공정) 구조가 간단하고 하나의 침전지로 구성되어 있어 설치비용을 크게 절감할 수 있으므로 경제적으로 커다란 장점을 갖는 동시에 운영상 드러날 수 있는 문제를 최소화시킬 수 있다.In addition, the process proposed in the present invention is simpler in structure than the two-stage sludge process (for example, the Dephanox process) that requires two or more sedimentation basins for independent nitrification. It can be installed to save a lot of installation cost, so it can be economically significant and minimize the problems that can be exposed to operation.
그리고, 기존의 하수처리시설에 별도의 반응조 건설 없이 적용이 용이하며, 분리막을 사용할 경우 완벽한 고액분리로 인한 부유물질의 제거로 하수의 재이용에 적용될 수 있다.In addition, it is easy to apply to the existing sewage treatment facility without the construction of a separate reaction tank, and when the membrane is used, it can be applied to reuse of sewage by removing suspended solids due to complete solid-liquid separation.
도 1은 종래 사용되던 데파녹스(Dephanox) 공정의 개략도를 나타낸다.Figure 1 shows a schematic of the Dephanox process used in the prior art.
도 2는 종래 사용되는 A2/O 공정의 개략도를 나타낸다.2 shows a schematic diagram of an A2 / O process conventionally used.
도 3은 본 발명에 따른 질산화 반응조의 질산화 반응을 수행함에 있어서 유기물의 간섭을 적게 받기 위한 공정의 개념도이다. Figure 3 is a conceptual diagram of a process for receiving less interference of the organic matter in the nitrification reaction of the nitrification reaction tank according to the present invention.
도 4는 본 발명의 일 구현예에 따른 미생물 부착여재가 이용되지 않고 부유성장으로만 질산화 반응을 수행하는 하이브리드 생물학적 영양염류 처리 시스템의 개략도이다.4 is a schematic diagram of a hybrid biological nutrient processing system for performing nitrification only with suspended growth without using microbial adhesion media according to one embodiment of the present invention.
도 5는 본 발명의 일 구현예에 따른 최종침전조에서 무산소반응조로 슬러지를 반송하고 무산소반응조에서 다시 혐기성반응조로 슬러지 일부를 반송하여 처리시스템의 슬러지 농도를 균일하게 맞추고 인 처리효율을 향상시키는 시스템의 개략도이다.  5 is a system for improving the phosphorus treatment efficiency and uniformly adjusting the sludge concentration of the treatment system by returning the sludge from the final settling tank to the anaerobic reactor in the final settling tank according to the embodiment of the present invention and back to the anaerobic reactor. Schematic diagram.
도 6은 본 발명의 일 구현예에 따른 질산화 반응조에 고정형 미생물 부착여재 및 회전원판법을 적용한 하이브리드 생물학적 영양염류 처리 시스템의 개략도이다.6 is a schematic diagram of a hybrid biological nutrient processing system applying a fixed microorganism attachment medium and a rotating disc method to a nitrification reaction tank according to an embodiment of the present invention.
도 7은 본 발명의 일 구현예에 따른 질산화 반응조에 유동상 부착여재를 적용한 하이브리드 생물학적 영양염류 처리 시스템의 개략도이다.Figure 7 is a schematic diagram of a hybrid biological nutrient processing system applying the fluidized bed adhesion medium to the nitrification reaction tank according to an embodiment of the present invention.
도 8은 본 발명의 일 구현예에 따른 질산화 반응조에 분리막을 적용한 하이브리드 생물학적 영양염류 처리 시스템의 개략도이다.8 is a schematic diagram of a hybrid biological nutrient processing system applying a separation membrane to a nitrification reaction tank according to an embodiment of the present invention.
도 9는 본 발명의 일 구현예에 따른 유기물 산화조에 분리막을 적용하고 질산화 반응조에 회전원판법을 적용한 생물학적 영양염류 처리 시스템의 개략도이다.9 is a schematic diagram of a biological nutrient treatment system applying a separation membrane to an organic material oxidation tank according to an embodiment of the present invention and applying a rotating disc method to a nitrification reactor.
도 10은 본 발명의 일 실시예 및 일 비교예에 수온과 따른 영양염류 처리 시스템의 유기 질소 및 암모니아성 질소의 제거 효율을 나타낸 그래프이다.10 is a graph showing the removal efficiency of organic nitrogen and ammonia nitrogen of the nutrient processing system according to water temperature in one embodiment and one comparative example of the present invention.
도 11은 본 발명의 일 실시예 및 일 비교예에 따른 영양염류 처리 시스템의 겨울철 실내온도와 반응조 수온에 따른 암모니아성 질소 제거효율을 나타낸 그래프이다.11 is a graph showing the ammonia nitrogen removal efficiency according to the winter temperature and the reaction tank water temperature of the nutrient processing system according to an embodiment and one comparative example of the present invention.
도 12는 본 발명의 일 실시예 및 일 비교예에 따른 영양염류 처리 시스템을 저온에서 운전할 때의 미생물 분석결과를 도시한 것이다.12 illustrates microbial analysis results when the nutrient processing system according to one embodiment and one comparative example of the present invention is operated at a low temperature.
도 13은 본 발명의 일 실시예 및 일 비교예에 따른 영양염류 처리 시스템에서의 질산화 반응조(호기조)에 유입되는 유기물의 농도를 도시한 것이다.FIG. 13 shows the concentration of organics flowing into the nitrification tank (aerobic tank) in the nutrient processing system according to one embodiment and one comparative example of the present invention.
도 14는 온도가 부유성장 및 부착성장 질산화 박테리아에 미치는 영향을 나타내는 그래프이다.14 is a graph showing the effect of temperature on suspended growth and adherent growth nitrifying bacteria.
도 15는 유기물 유입이 질산화 반응에 미치는 영향을 나타내는 그래프이다.15 is a graph showing the effect of organic influx on the nitrification reaction.
이하, 본 발명을 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.
본 발명은 혐기성 반응조, 무산소 반응조 및 질산화 반응조를 포함하는 영양염류 처리 시스템에 있어서, 질산화 반응조로 유입되는 유기물의 양을 최소화하여 질산화 반응조에서 질산화 미생물이 성장이 촉진되어 농축 배양할 수 있도록, 질산화 반응조 전단에 하나 이상의 유기물 산화조를 배치하여 질산화 반응조 처리 이전에 하나 이상의 유기물 산화조에서 전처리를 수행하는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템을 제공한다.The present invention provides a nutrient processing system including an anaerobic reactor, an anoxic reactor, and a nitrification tank, in which a nitrification microorganism is grown in a nitrification tank so that the nitrification microorganisms can be grown and concentrated in a nitrification tank. It provides a hybrid biological nutrient processing system characterized in that the pre-treatment in one or more organic oxidizing tank prior to nitrification tank treatment by placing at least one organic oxidizing tank in the front end.
일반적으로, 온도가 낮을 경우, 유기물이 유입되면 유기물을 산화하는 종속영양미생물(Heterotroph)의 성장이 질산화미생물인 독립영양미생물(Autotroph)보다 상대적으로 커서 이들이 같이 있는 바이오 플록(Bio Floc) 형태에서 주로 외부표면에서 유기물산화 종속 영양미생물이 위치하게 된다. 이때 종속영양미생물(Heterotroph)과 독립영양미생물(Autotroph) 둘 다 성장을 위해서는 O2를 필요로 하는데, 바이오 플록 외부를 덮은 종속영양미생물(Heterotroph)이 먼저 O2를 소모함으로써 바이오 플록 안쪽에 위치한 독립영양미생물(Autotroph)의 경우에는 O2와의 접촉이 어려워 질산화 반응을 못하게 되어 성장이 저하되는 악순환이 반복된다. 이를 뒷받침하기 위해, 유기물 유입이 질산화 반응에 미치는 영향을 알아보기 위해 실험한 결과, 도 14에 나타낸 바와 같이, 유기물의 양이 2 mg/L 정도 증가하여도 질산화 효율이 40%정도로 저하되는 되는 것을 알 수 있었다. 따라서, 10℃ 이하의 낮은 온도에서도 원활한 질산화 반응을 수행하기 위해서는 질산화 반응조에서 유기물에 대한 영향을 최소로 하는 것이 필요하며, 이를 위해 도 3에 나타낸 바와 같이, 질산화 반응조 앞에 유기물의 간섭을 배제하기 위해 하나 이상의 유기물 산화조를 배치하여 유기물에 대하여 전처리를 수행하는 것이 바람직하다.In general, when the temperature is low, the growth of heterotrophs that oxidize organic matter when organic matter is introduced is relatively larger than that of autotrophs, which are nitrifying microorganisms. At the outer surface, organic oxidative heterotrophic microorganisms are located. Both heterotrophs and autotrophs require O 2 to grow, and the heterotrophs that cover the exterior of the biofloc first consume the O 2 so that the interior of the biofloc is independent. In the case of trophic microorganisms (Autotroph) it is difficult to contact with O 2 and the nitrification reaction is prevented, so the vicious cycle of growth decreases. In order to support this, as a result of experiments to investigate the effect of organic inflow on the nitrification reaction, as shown in Figure 14, even if the amount of organic matter is increased by about 2 mg / L that the nitrification efficiency is reduced to about 40% Could know. Therefore, in order to perform smooth nitrification even at a low temperature of 10 ° C. or less, it is necessary to minimize the influence on organic matter in the nitrification reaction tank. For this purpose, as shown in FIG. It is preferable to arrange one or more organic oxidizing baths to perform pretreatment on the organics.
본 발명의 일 구현예에 있어서, 상기 하이브리드 생물학적 영양염류 처리 시스템은 도 4 내지 7에 나타낸 바와 같이, 혐기성 반응조(1), 무산소 반응조(2), 유기물 산화조(4), 질산화 반응조(5) 및 최종 침전조(6)를 포함하는 구성으로 이루어질 수 있다.In one embodiment of the present invention, the hybrid biological nutrient treatment system, as shown in Figures 4 to 7, anaerobic reactor (1), anoxic reactor (2), organic matter oxidation tank (4), nitrification reactor (5) And a final settling tank 6.
상기한 바와 같은 구조 및 구성에 의하여, 상기 하이브리드 생물학적 영양염류 처리 시스템은 폐수의 유입 시, 먼저 폐수가 혐기성 반응조(1)로 유입되고, 유입된 폐수는 무산소 반응조(2)로 유입되는데, 이때 질산화 반응조(5)에서 반송된 질산염 및 슬러지로 인해 폐수 내의 질산성 질소 및 슬러지를 제거하게 된다.By the structure and configuration as described above, the hybrid biological nutrient treatment system is first introduced into the anaerobic reactor (1), the wastewater is introduced into the anaerobic reactor (2) when the inflow of wastewater, nitrification The nitrates and sludges returned from the reactor 5 remove the nitrate nitrogen and sludges in the wastewater.
다음으로, 유기물 산화조(4)는 폐수 내의 유기물을 산화시켜 분해함으로써 질산화 반응조(5)로 유입되는 유기물의 양을 최소화하여 질산화 반응조(5)에서 질산화 미생물이 성장이 촉진되어 농축 배양할 수 있는 환경을 제공한다. 구체적으로, 상기 유기물 산화조(4)에서는 유기물의 산화가 이루어지고, 질산화 반응조(5)로 유입되는 유기물 부하를 줄여 유기물 산화 종속영양미생물의 성장을 작게하여 원활하게 독립영양미생물인 질산화 미생물에 의한 질산화 반응을 유도할 수 있는 것을 특징으로 하고 있으므로, 후단에 배치되는 질산화 반응조(5)에서의 질산화 반응에 유리한 환경을 조성할 수 있다. 이것은 질산화 미생물과 유기물 산화 미생물이 경쟁관계에 있어서 유기물 산화 미생물이 질산화 미생물보다 우위에 있기 때문에 상기 유기물 산화조(4)에서 유기물을 소비하여 후속된 질산화 반응조(5)에서 유기물 산화 미생물이 조절되게 하려는 것이다.Next, the organic matter oxidizing tank 4 minimizes the amount of organic matter introduced into the nitrification reactor 5 by oxidizing and decomposing organic matter in the wastewater, so that the nitrifying microorganisms can be grown in the nitrification reaction vessel 5 to be concentrated and cultured. Provide an environment. Specifically, in the organic oxidizing tank (4), the organic material is oxidized, and the organic material load flowing into the nitrification reaction tank (5) is reduced, thereby reducing the growth of the organic oxidizing heterotrophic microorganism and smoothly by the nitrifying microorganisms, which are independent nutrients. Since the nitrification reaction can be induced, it is possible to create an environment favorable for the nitrification reaction in the nitrification reaction tank 5 arranged at the rear stage. This is because organic oxidizing microorganisms have an advantage over nitrifying microorganisms in competition between nitrifying microorganisms and organic oxidizing microorganisms, so that organic oxidizing microorganisms are controlled in subsequent nitrification reactors 5 by consuming organic matter in the organic oxidizing tank 4. will be.
상기 유기물 산화조(4)를 거친 폐수는 질산화 반응조(5)로 이동된다. 상기 질산화 반응조(5)는 미생물 부착여재가 이용되지 않고 부유성장으로만 질산화 반응을 수행할 수도 있고, 미생물 부착여재가 충진되어 있을 수도 있다. 그러나, 성장이 상대적으로 낮은 질산화미생물을 질산화조에 농축시키기 위해서는 미생물 부착여재를 충진시키는 것이 좋다. 미생물의 부착성장을 통해서 효과적으로 질산화 반응을 유도하는 것이 바람직하다. 이때, 질산화 미생물이 상대적으로 농축되는 상기 미생물 부착여재로서 호기성 상태를 유지하기 위한 브로워에 의해 유동되는 유동성 여재(100)를 사용할 수 있고, 회전력에 의해 이물질의 탈착이 용이한 회전원판(102)을 적용할 수 있으며, 이때 반응조의 모양과 형태는 적용될 현장의 여건에 따라 그 형태가 다양화될 수 있다. 또한, 상기 폐수처리 시스템의 부지면적을 최소화할 수 있도록 침전조 대신 분리막(101)을 적용하여 완벽한 고액분리를 할 수 있는 공정의 형태로 구성할 수 있다.The wastewater that has passed through the organic oxidizing tank 4 is transferred to the nitrification tank 5. The nitrification reaction tank 5 may perform the nitrification reaction only by floating growth without using the microorganism attachment medium, or may be filled with the microorganism attachment medium. However, in order to concentrate the nitrifying microorganisms with relatively low growth in the nitrification tank, it is preferable to fill the microorganism attachment media. It is desirable to effectively induce nitrification through the growth of adhesion of microorganisms. In this case, as the microorganism adhesion medium in which nitrifying microorganisms are relatively concentrated, the fluid media 100 that is flowed by a brower for maintaining an aerobic state may be used, and the rotating disc 102 may be easily desorbed by a rotational force. In this case, the shape and shape of the reactor can be varied according to the conditions of the site to be applied. In addition, in order to minimize the land area of the wastewater treatment system may be configured in the form of a process that can be separated completely by applying the separation membrane 101 instead of the sedimentation tank.
이렇게 상기 질산화 반응조(5)의 여재에 부착성장된 질산화 미생물로부터 질산화된 질산염 및 슬러지는 상기 무산소 반응조(2)로 반송되어 상기 혐기성 반응조(1)로부터 상기 무산소 반응조(2)로 유입되는 유기물의 질산염을 탈질시킨다.The nitrates and sludges nitrated from the nitrification microorganisms attached to the medium of the nitrification reactor 5 are returned to the anoxic reactor 2 and the organic matter nitrate introduced into the anoxic reactor 2 from the anaerobic reactor 1. Denitrate.
유입되는 폐수의 유기물 함량이 적을 경우, 처리 효율을 유지하기 위해서 무산소 반응조(2)에 외부유기탄소원(10)을 주입시킬 수 있다. 외부유기탄소원(10)의 주입 위치는 무산소 반응조(2) 뿐만 아니라 상황에 따라서 다른 반응조에도 주입시킬 수 있다.When the amount of organic matter in the wastewater is low, the external organic carbon source 10 may be injected into the oxygen-free reactor 2 to maintain the treatment efficiency. The injection position of the external organic carbon source 10 may be injected not only into the oxygen-free reactor 2 but also into another reactor depending on the situation.
본 발명의 일 구현예에 있어서, 도 8 및 도 9와 같이 본 발명에 분리막(101)을 사용할 경우, 인의 제거기작 중 인의 방출이 일어나는 혐기성 반응조(1)에 용존산소가 유입되면서 인의 방출에 방해요소로 작용해 인의 제거효율이 감소되는 경향이 나타난다. 그래서 보통의 활성슬러지 공정에 분리막(101)을 사용할 경우 이를 방지하기 위해 분리막조 후단에 안정화조를 두어 용존산소를 저감시킨 후 혐기성 반응조(1)로 슬러지를 반송시키는 방법을 사용하고 있으나, 본 발명에서는 하나의 반응조를 추가하기 보다는 슬러지 반송을 질산화 반응조(5)에서 유기물 산화조(4)로 다시 유기물 산화조(4)에서 무산소 반응조(2)로 이송시킨 후, 용존산소가 저감된 슬러지를 최종적으로 무산소 반응조(2)에서 혐기성 반응조(1)로 이송시킨다. 또한, 분리막(101)이 적용될 경우 브러워를 통한 공기의 주입시간 여부, 흡입과 휴지시간, 세정 등의 조건은 분리막(101)의 재질과 모듈의 형태에 따라서 그 범위가 다양할 것이다. 그리고, 도시된 실시예와 관련하여 분리막(101)의 적용은 침지식과 가압식 형태로 다양화될 수 있다.In one embodiment of the present invention, when the separation membrane 101 is used in the present invention as shown in Figs. 8 and 9, dissolved oxygen is introduced into the anaerobic reactor 1 in which phosphorus is released during the phosphorus removal mechanism, thereby preventing the release of phosphorus. It acts as a factor and tends to reduce phosphorus removal efficiency. So, in order to prevent this when the membrane 101 is used in a normal activated sludge process, a stabilizing tank is provided at the rear of the membrane tank to reduce dissolved oxygen, and then the sludge is returned to the anaerobic reactor 1, but the present invention is used. Rather than adding a single reactor, the sludge conveyed from the nitrification tank 5 to the organic oxidizing tank 4 and the organic oxidizing tank 4 to the anoxic reaction tank 2 is finally used. In the anaerobic reactor 1 to the anaerobic reactor 1. In addition, when the separation membrane 101 is applied, the conditions such as whether the injection time of the air through the blower, suction and rest time, cleaning, etc. will vary depending on the material of the membrane 101 and the shape of the module. In addition, the application of the separator 101 in relation to the illustrated embodiment may be diversified into an immersion type and a pressure type.
상기 질산화 반응조(5)에서 유기물 산화조(4)로의 슬러지 반송은 분리막(101) 적용시 기존 활성슬러지 공정보다 높은 용존산소량이 요구되는데, 상기에서 기술한 내부반송 방법을 적용할 경우 유기물 산화조(4)에서 용존산소가 충분한 슬러지가 이송되어 산소요구량을 줄여 유지관리비를 절감할 수 있다.Sludge conveyance from the nitrification reaction tank (5) to the organic material oxidation tank (4) requires a higher dissolved oxygen amount than the conventional activated sludge process when the separation membrane (101) is applied, and when the internal transport method described above is applied, the organic oxidation tank ( In 4), sludge with sufficient dissolved oxygen is transferred to reduce the oxygen demand, thus reducing maintenance costs.
질산화 반응조(5)에서 유기물 산화조(4)로의 내부반송은 정량펌프를 이용하여 반송을 할 수 있으며, 현장 여건에 따라 공기주입에 의한 수위상승을 이용하여 자연유하 방식으로도 슬러지를 이송시킬 수 있다.The internal transport from the nitrification reactor (5) to the organic matter oxidization tank (4) can be carried out using a metering pump, and the sludge can be transported in a natural flow method by using a water level rise by air injection depending on the site conditions. have.
본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템은 유기물 산화조를 통해서 질산화 반응조로 유입되는 유기물의 양을 최소화시켜 유기물 산화 미생물과 경쟁 상태에 있는 질산화 미생물의 성장을 극대화 시켜줌으로써, 겨울철과 같이 온도가 낮거나 짧은 수리학적 체류시간에서 하, 폐수를 처리해야 하는 경우에도 높은 질산화 효율을 달성할 수 있으며, 기존에 독립질산화를 위해 침전지를 2개 이상으로 구성해야만 하는 2단 슬러지 공정에 비해(예를 들면, 데파녹스(Dephanox) 공정), 구조가 간단하고 하나의 침전지로 구성되어 있어 설치비용을 크게 절감할 수 있으므로 경제적으로 커다란 장점을 갖는 동시에 운영상 드러날 수 있는 문제를 최소화시킬 수 있고, 기존의 하수처리시설에 별도의 반응조 건설 없이 적용이 용이하며, 분리막을 사용할 경우 완벽한 고액분리로 인한 부유물질의 제거로 하수의 재이용에 적용될 수 있으므로, 종래 하수처리 시스템을 대신하여 유용하게 사용될 수 있다.Hybrid biological nutrient processing system according to the present invention by maximizing the growth of nitrifying microorganisms in competition with organic oxidizing microorganisms by minimizing the amount of organic matter flowing into the nitrification reactor through the organic oxidizing tank, low temperature as in winter High nitrification efficiency can be achieved even if the wastewater has to be treated at short or short hydraulic residence times, compared to a two-stage sludge process that requires two or more settling basins for independent nitrification. , Dephanox process), simple structure and single sedimentation basin can greatly reduce installation cost, which has great economic advantages and minimizes problems that can be revealed in operation. It is easy to apply without the construction of a separate reactor in the facility, and it uses a separator If it can be applied to the reuse of sewage by removing the suspended solids due to complete solid-liquid separation, it can be usefully used in place of the conventional sewage treatment system.
또한 부가적으로 도 5는 본 발명의 일 구현예에 의한 모식도를 나타낸 것으로, 최종 침전조에서 무산소반응조로 슬러지를 반송하고 무산소반응조에서 다시 혐기성반응조로 슬러지 일부를 반송하여 처리시스템의 슬러지 농도를 균일하게 맞추고 인 처리효율을 향상 시키는 시스템의 개략도를 나타낸 것으로 이러한 공정은 도 5에만 국한되는 것이 아니라 본 발명의 시스템에 모두 적용 가능하다. In addition, Figure 5 shows a schematic diagram according to an embodiment of the present invention, the sludge concentration of the treatment system by uniformly conveying the sludge from the final settling tank to the anaerobic reactor and back to the anaerobic reactor. A schematic diagram of a system that fits and improves phosphorus treatment efficiency is shown, and this process is not limited to FIG. 5 but is applicable to all of the systems of the present invention.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited to these examples.
<비교예> 종래의 A2/O공정Comparative Example Conventional A2 / O Process
도 2에 도시된 바와 같이,유입수를 혐기성 반응조(200), 무산소 반응조(300), 호기성 반응조(400), 2차 침전조(500)를 통하여 처리하여 방류하는 것으로, 상기 무산소 반응조(300)에서는 용존산소가 없지만 호기성 반응조(400)로부터 질산화된 질산염과 아질산염 형태의 화학적으로 결합된 산소가 유입되어 질산성 질소의 탈질이 이루어지도록 함으로서 질소제거 공정이 이루어지고, 상기 혐기성 반응조(200)에서 방출된 인이 후단의 호기성 반응조(400)에서 과잉흡수되어 슬러지 폐기를 통하여 인 제거가 이루어짐과 함께 아울러 상기 혐기성 반응조(200)에서는 2차 침전조(500)로부터 반송슬러지가 반송되어 유입되도록 하였다.As shown in FIG. 2, the influent water is discharged by being treated through an anaerobic reactor 200, an anoxic reactor 300, an aerobic reactor 400, and a secondary precipitation tank 500, and dissolved in the anoxic reactor 300. Nitrogen nitrate and nitrite chemically bonded oxygen is introduced from the aerobic reactor (400), but the nitrogen removal process is performed by denitrification of nitrate nitrogen, and phosphorus released from the anaerobic reactor (200). In the latter stage, the aerobic reactor 400 is excessively absorbed to remove phosphorus through sludge disposal, and in the anaerobic reactor 200, the return sludge is conveyed from the secondary settling tank 500.
<실시예 1> 본 발명에 따른 A2/O2 공정Example 1 A2 / O2 Process According to the Present Invention
A2/O 공정에서 질산화 반응조의 역할을 하는 호기성 반응조(400)를 나누어앞단에 유기물산화를 주목적으로 하는 유기물 산화조와 질산화 미생물 성장과 질산화 반응을 향상시키는 질산화 반응조로 구성하였으며 이 공정을 A2/O2 공정이라 이름붙였다.The aerobic reactor (400), which acts as a nitrification reactor in the A2 / O process, is divided into an organic material oxidizer, which focuses on organic matter oxidation, and a nitrification reactor, which enhances nitrification and microbial growth and nitrification reaction. I named it.
<실시예 2> 본 발명에 따른 A2/O2 with RBC 공정Example 2 A2 / O2 with RBC process according to the present invention
상기 실시예 1의 A2/O2 공정의 호기성 반응조에 회전원판(RBC)를 충진시켜 폐수처리를 수행하였다. 이 공정을 A2/O2 with RBC 공정이라 이름붙였다.Wastewater treatment was performed by filling a rotating disc (RBC) in the aerobic reactor in the A2 / O2 process of Example 1. This process was named A2 / O2 with RBC process.
<실험예 1> 온도에 따른 유기질소(TKN)와 암모니아성 질소의 처리효율 측정Experimental Example 1 Measurement of Treatment Efficiency of Organic Nitrogen (TKN) and Ammonia Nitrogen According to Temperature
본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템의 유용성을 증명하기 위해서, 고도처리공법으로서 가장 보편적으로 적용되고 있는 A2/O공정과, 본 발명에 따라 질산화 반응조(호기성 반응조) 전단에 유기물 산화조가 설치된 실시예 1 및 2의 공정을 이용하여 온도에 대한 하수처리효율에 대한 비교 실험을 진행하였다. In order to prove the usefulness of the hybrid biological nutrient processing system according to the present invention, the A2 / O process which is most commonly applied as an advanced treatment method, and the organic oxidizing tank installed in front of the nitrification tank (aerobic reactor) according to the present invention A comparative experiment on sewage treatment efficiency against temperature was conducted using the processes of Examples 1 and 2.
초기 처리효율의 안정화를 위한 순응기간은 약 30일 정도가 필요하였으며 약 360일간의 공정의 운전으로 처리효율을 평가하였다. 공정의 수리학적체류시간(Hydraulic Retention Time, HRT)은 6 시간으로 하였으며, 미생물 체류시간(Sludge Retention Time, SRT)은 12 일로 유지하였다. 실험기간 중 항온조의 온도는 7~20℃에서 운영하였다. 원수의 공급과 무산소조에서 호기조로 행해지는 내부순환(Internal Recycle)과 최종침전조에서 혐기성 접촉조로의 슬러지반송(Return Activated Sludge)을 위하여 정량펌프를 이용하였다. 최종침전조에서 혐기성 접촉조로의 반송슬러지 이송유량은 1Q로 유지하였다. 질소제거효율의 향상을 위한 무산소조에서 탈질조로의 내분순환은 1Q로 운전하였다. 또한 질산화조에서 미생물의 부착성장을 위해 사용된 담체는 폴리에틸렌재질의 벌집구조형태의 여재를 지름 120 mm, 두께 25 mm 6개를 지름 10 mm 길이 300 mm인 스테인리스 축에 고정하여 사용하였다. RBC의 분당 회전수는 2~3 rpm을 유지하였다. 호기조건을 원활하게 유지하기 위해서 두 개의 디스크 타입의 산기관을 사용하여 평균 DO 농도를 2~3 mg/L로 운영하였다. 각 반응조의 MLSS의 농도는 3500~4500 mg/L를 유지하였으며 VSS/TSS 비는 평균 약 75 ± 5 % 정도로 안정적으로 유지되었다. It took about 30 days for the acclimatization period to stabilize the initial processing efficiency and evaluated the processing efficiency by operating the process for 360 days. The hydraulic retention time (HRT) of the process was 6 hours and the microbial retention time (SRT) was 12 days. The temperature of the thermostat was operated at 7 ~ 20 ℃ during the experiment. Quantitative pumps were used for supplying raw water and returning activated sludge from the anaerobic tank to internal recycle and from the final settling tank to the anaerobic contact tank. The return sludge feed flow from the final settling tank to the anaerobic contacting tank was maintained at 1Q. Endogenous circulation from the anoxic tank to the denitrification tank was operated at 1Q to improve the nitrogen removal efficiency. In addition, the carrier used for the growth of microorganisms in the nitrification tank was fixed by using a polyethylene honeycomb-shaped filter medium having a diameter of 120 mm and a thickness of 25 mm and six pieces of stainless steel shaft having a diameter of 10 mm and a length of 300 mm. RBC rpm was maintained at 2-3 rpm. In order to maintain aerobic conditions, two disc type diffusers were used to operate the average DO concentration at 2-3 mg / L. The MLSS concentration in each reactor was maintained at 3500-4500 mg / L and the VSS / TSS ratio was maintained at an average of about 75 ± 5%.
본 연구에서 분석한 주요 항목은 TCODcr(5220-COD-D, HACH), SCODcr(5220-COD-D, HACH), NH4 +-N (Nessler 법, HACH), NO2 --N(4500-NO2 --B, HACH), NO3 --N(4500-NO3 --B,HACH), PO4 3--P(4500-P-E, HACH), T-P 등이었으며 이중 TCODcr, SCODcr은 Standard Methods(APHA, 2005)와 HACH DR-4000에 준하여 측정하였으며, NH4 +-N, TP는 각각 HACH manual의 Nessler 법 및 HACH phospho Ver 3 방법을 이용하여 측정하였다. 또한 TKN은 Italy Milano에서 제조된 VELP(UDKCO30)를 이용하여 측정하였다. SCODcr, NH4 +-N는 공극 크기가 1.2㎛인 GF/C 여과지(Whatmann)에 여과하여 측정하였으며, NO2 --N, NO3 --N은 유기물 간섭을 막기 위하여 공극크기가 0.45㎛인 막(membrane) 여과지에 여과하여 측정하였다.The main items analyzed in this study were TCOD cr (5220-COD-D, HACH), SCOD cr (5220-COD-D, HACH), NH 4 + -N (Nessler method, HACH), NO 2 -- N ( 4500-NO 2 -- B, HACH), NO 3 -- N (4500-NO 3 -- B, HACH), PO 4 3- -P (4500-PE, HACH), TP, etc., double TCOD cr , SCOD cr was measured according to Standard Methods (APHA, 2005) and HACH DR-4000, and NH 4 + -N, TP was measured using the Nessler method and the HACH phospho Ver 3 method of the HACH manual, respectively. In addition, TKN was measured using VELP (UDKCO30) manufactured in Milano, Italy. SCOD cr , NH 4 + -N were measured by filtration on GF / C filter paper (Whatmann) with a pore size of 1.2㎛, NO 2 -- N, NO 3 -- N is 0.45㎛ pore size to prevent organic interference It was measured by filtration on membrane filter paper.
결과를 도 10에 나타내었다.The results are shown in FIG.
도 10에 나타낸 바와 같이, 본 발명에 따라 질산화 반응조 앞단에 유기물 산화조를 배치시킨 A2/O2 공정 및 A2/O2 공정의 질산화 반응조에 회전원판(RBC)을 충진시킨 A2/O2 with RBC 공정은 TKN(Total Kjeldahl Nitrogen; 유기성 질소<org-N> 및 암모니아성 질소<NH4-N>의 총합) 및 암모니아성 질소 제거에 있어서 10℃에서도 90%이상의 제거효율을 나타냈고, 10 ℃ 이하의 낮은 온도에서도 기존의 단일 슬러지 공정인 A2/O 공정에 비해 월등히 높은 질소 제거 효율을 나타냈다. 특히, 온도가 7-8 ℃가 되었을 때 질소 제거의 경향성이 매우 두드러짐을 관찰할 수 있었다.As shown in FIG. 10, according to the present invention, the A2 / O2 process in which an organic oxidizing tank is disposed in front of the nitrification tank and the A2 / O2 with RBC process in which a rotating disc (RBC) is filled in the nitrification tank in the A2 / O2 process are TKN. (Total Kjeldahl Nitrogen; total of organic nitrogen <org-N> and ammonia nitrogen <NH 4 -N>) and removal efficiency of ammonia nitrogen showed more than 90% at 10 ℃, low temperature below 10 ℃ Also showed much higher nitrogen removal efficiency than the conventional single sludge A2 / O process. In particular, it was observed that the tendency of nitrogen removal was very noticeable when the temperature reached 7-8 ° C.
이는 유기물 산화조에서 유기물이 제거되어 질산화 반응조로 유입되는 유기물을 최소화시킴으로써 질산화 반응조에서 질산화 미생물의 성장을 촉진하였고, 이로 인해 낮은 온도에서도 효과적으로 질산화가 진행되었기 때문인 것으로 판단된다.This is because the organic matter is removed from the organic oxidation tank to minimize the organic matter flowing into the nitrification tank to promote the growth of nitrifying microorganisms in the nitrification tank, which is believed to be because the nitrification proceeded effectively even at low temperatures.
따라서, 본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템은 질산화 반응조 앞단에 유기물 산화조를 배치시킴으로써 겨울철의 낮은 온도에서도 질산화 반응조에서 질산화 미생물의 성장을 촉진시킬 수 있는 환경을 제공하여 효과적으로 질산화를 수행함으로써 종래 방법에 비해 질소 제거를 효과적으로 수행할 수 있다.Therefore, the hybrid biological nutrient processing system according to the present invention provides an environment capable of promoting the growth of nitrification microorganisms in the nitrification tank even at low temperatures in winter, thereby effectively performing nitrification by placing an organic oxidizing tank in front of the nitrification tank. Nitrogen removal can be performed more effectively than the method.
< 실험예 2> 겨울철 온도에서 파일럿규모(Pilot-scale)의 암모니아성 질소의 처리효율 측정 <Experimental Example 2> Measurement of ammonium nitrogen removal efficiency in the pilot scale (Pilot-scale) in the winter temperature
본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템을 파일럿(Pilot) 규모로 운전하여 겨울철 암모니아성 질소처리효율을 측정하였다.The hybrid biological nutrient treatment system according to the present invention was operated on a pilot scale to measure winter ammonia nitrogen treatment efficiency.
구체적으로, 파일럿 규모의 처리용량은 7톤/일 규모였으며, 수리학적 체류시간을 6시간으로 하였고, 내부반송과 슬러지반송은 각각 1Q로 운전하였고, 실제 수온과 실내 온도에 따라서 처리효율을 관찰했다.Specifically, the pilot scale treatment capacity was 7 tons / day, the hydraulic residence time was 6 hours, and the internal and sludge transport were operated at 1Q, respectively, and the treatment efficiency was observed according to the actual water temperature and the room temperature. .
결과를 도 11에 나타내었다.The results are shown in FIG.
도 11에 나타낸 바와 같이, 실내온도가 -10 ℃이하로 떨어졌어도 반응조의 수온은 10℃이하로 떨어지지 않았으며, 암모니아성 질소의 처리효율은 약 95% 이상 유지되었고, 이는 앞서 실시한 실험예 1의 결과와도 일치하였다. 결론적으로 본 발명에서 제안하고 있는 공정의 경우 10℃에서는 완벽하게 질산화 반응을 수행할 수 있어 기존 공정보다도 겨울철 질소처리에 있어 유리하다고 판단된다. As shown in FIG. 11, even though the room temperature dropped below -10 ° C., the water temperature of the reactor did not drop below 10 ° C., and the treatment efficiency of ammonia nitrogen was maintained at about 95% or more. The results were in agreement with. In conclusion, in the case of the process proposed in the present invention, the nitrification can be performed perfectly at 10 ° C., and thus it is judged to be advantageous in winter nitrogen treatment than the existing process.
<실험예 3> 질산화 반응조의 미생물의 양 분석Experimental Example 3 Analysis of Microorganisms in Nitrification Tank
본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템을 운전한 후의 질산화 반응조 내의 미생물의 종류 및 양을 분석하여 도 12에 나타내었다. 여기서 16S rRNA는 미생물의 존재 여부를 나타내는 지표이고 amoA는 ammonia monoixgenase gene subunit A로 암모니아를 산화시키는 경로(pathway)에 관한 미생물의 유전자를 나타내는 지표이다. 12 shows the types and amounts of microorganisms in the nitrification reactor after operating the hybrid biological nutrient treatment system according to the present invention. Wherein 16S rRNA is an indicator indicating the presence of microorganisms and amoA is an indicator indicating the gene of the microorganisms on the path (oxidation) of ammonia oxidizing ammonia monoixgenase gene subunit A.
분석결과 도 12에 나타낸 바와 같이, 담체를 이용한 A2/O2 with RBC의 경우 다른 16S rRNA 대비 amoA의 비가 9%로 나타났으며, A2/O2는 3%, A2/O는 4%로 관찰되었다. 이는 담체를 이용한 부착성장의 경우가 부유성장보다 질산화 미생물의 수가 약 3배정도 많다는 것을 의미하여, 본 발명에서 제안한 유기물산화조를 질산화반응조 전단에 두어 유기물에 대한 질산화효율을 최소화하는 공정이 낮은 온도에서 암모니아성 질소의 처리에 있어 유리하다는 것을 증명하는 결과이다. As shown in FIG. 12, in the case of A2 / O2 with RBC using a carrier, the ratio of amoA was 9% compared to that of other 16S rRNA, and A2 / O2 was 3% and A2 / O was 4%. This means that the growth of adhesion using carriers is about three times more than the growth of suspended solids, and the process of minimizing the nitrification efficiency of organic materials by placing the organic oxidation tank proposed in the present invention in front of the nitrification tank is performed at low temperature. The results prove to be advantageous for the treatment of ammoniacal nitrogen.
<실험예 4> 질산화 반응조로 유입되는 유기물의 양 분석Experimental Example 4 Analysis of the Amount of Organics Inflowed into the Nitrification Reactor
본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템의 질산화 반응조(호기조)로 유입되는 유기물의 농도를 분석하여 도 13에 나타내었다. 13 shows the concentration of organic material flowing into the nitrification tank (aerobic tank) of the hybrid biological nutrient treatment system according to the present invention.
도 13에 나타낸 바와 같이, 본 발명에 따라 유기물 산화조를 질산화 반응조 전단에 두는 경우(A2/O2), 유기물 산화조를 설치하지 않은 공정(A2/O)에 비해 호기조로 유입되는 유기물의 양이 절반 이하로 낮아짐을 알 수 있다.As shown in FIG. 13, when the organic oxidizing tank is placed in front of the nitrification tank according to the present invention (A2 / O2), the amount of organic matter flowing into the aerobic tank is lower than that of the organic oxidizing tank (A2 / O). It can be seen that the lower half.
따라서, 본 발명에 따른 하이브리드 생물학적 영양염류 처리 시스템은 질산화 반응조 앞단에 유기물 산화조를 배치시킴으로써 유기물 산화조에서 유기물이 제거되어 질산화 반응조로 유입되는 유기물을 최소화시킴으로써 겨울철의 낮은 온도에서도 질산화 반응조에서 질산화 미생물의 성장이 촉진되어 효과적으로 질산화를 수행함으로써 종래 방법에 비해 질소 제거를 효과적으로 수행할 수 있다.Therefore, in the hybrid biological nutrient processing system according to the present invention, by placing an organic oxidizing tank in front of the nitrification tank, the organic matter is removed from the organic oxidizing tank, thereby minimizing organic substances flowing into the nitrification tank, thereby minimizing organic matter in the nitrification tank even at a low temperature in winter. By promoting the growth of the nitrification can be effectively carried out nitrogen removal compared to the conventional method.
<실험예 5> 온도가 질산화 박테리아에 미치는 영향Experimental Example 5 Effect of Temperature on Nitrifying Bacteria
본 발명에 따른 영양염류 처리 시스템에 있어서, 겨울철 낮은 온도에서 원활한 질소처리를 위해 온도가 과연 부유성장(수중에 메디아(media) 없이 부유 상태로 성장을 하는 방식) 및 부착성장(수중에 담체류를 넣어서 미생물이 부착하여 성장할 수 있도록 하는 방식) 질산화 박테리아에 어떠한 영향을 미치는지 알아보기 위하여 다음과 같은 실험을 수행하였다. In the nutrient processing system according to the present invention, in order to smoothly process nitrogen at low temperatures in winter, the temperature is indeed suspended in growth (method of growing in suspension without media in water) and adhesion growth (carrier in water). Method to attach and grow microorganisms) The following experiment was conducted to see how it affects nitrifying bacteria.
구체적으로, C시 하수처리장으로부터 활성슬러지를 채취하여 20 L 반응기에 수돗물(18L)과 활성슬러지(MLSS 1200 mg/L) 2 L를 혼합하여 포기하면서 농축 배양된 질산화균을 이용하여 실험을 실시하였다. 질산화균의 원활한 성장을 위해 기질로는 NH4Cl을 사용하였고 완충액으로는 NaHCO3를 이용하였다.Specifically, the experiment was carried out using concentrated cultured nitrifying bacteria while collecting activated sludge from C municipal sewage treatment plant and giving 2 L of tap water (18 L) and activated sludge (MLSS 1200 mg / L) in a 20 L reactor. . NH 4 Cl was used as a substrate and NaHCO 3 was used as a buffer for the smooth growth of nitrifiers.
농축질화균을 이용하여 부유성장과 스폰지형 메디아를 이용한 부착성장에서의 Nitrosomonas의 활성화 에너지(Ea)을 계산하여, 그래프로 환산한 결과를 도 14에 나타내었다. Activation energy (Ea) of Nitrosomonas in suspension growth and adhesion growth using sponge-like media was calculated using the concentrated nitrifier, and the results converted into graphs are shown in FIG. 14.
도 14에 나타낸 바와 같이, 부유성장의 경우 4-11℃의 Ea값은 169.5 KJ/mol이며, 11-34℃의 Ea값은 20.4 KJ/mol이었다. 하지만 부착 성장의 경우 8℃이상에서는 32 KJ/mol, 8℃이하에서는 283 KJ/mol이었다. As shown in Fig. 14, in the case of suspended growth, the Ea value at 4-11 ° C was 169.5 KJ / mol, and the Ea value at 11-34 ° C was 20.4 KJ / mol. However, adhesion growth was 32 KJ / mol above 8 ℃ and 283 KJ / mol below 8 ℃.
결론적으로 부유성장 및 부착성장 질산화균은 각각 11, 8℃를 기준으로 하여 활성화 에너지 값에 차이가 있음을 알 수 있다. 이는 부착성장이 3℃정도 낮은 온도에서도 부유성장의 활성도를 갖고 있는 것으로 보여주고 있어, 낮은 온도에서는 질산화 미생물을 부착성장시킴이 보다 유리함을 나타내고 있다. In conclusion, it can be seen that the suspended growth and adhesion growth nitrifiers had different activation energy values based on 11 and 8 ° C, respectively. This shows that the adhesion growth has the activity of suspended growth even at a temperature as low as 3 ℃, indicating that it is more advantageous to attach the nitrifying microorganism at low temperature.
또한, 비교적 미생물의 활동성이 좋은 조건(10℃이상)에서는 활성화 에너지가 낮아 반응에 요구되는 에너지를 쉽게 충당할 수 있어 반응이 쉽게 이루어지나, 활동성이 좋지 않은 조건(10℃이하)에서는 활성화 에너지가 높아 같은 에너지 생성 조건에서 반응 느려짐을 나타내고 있다. In addition, under relatively good conditions of activity of microorganisms (above 10 ° C.), activation energy is low to easily cover the energy required for the reaction. High, indicating slow reaction under the same energy generation conditions.
또한, 메디아에 질산화균을 부착성장시킨 것의 활성화 에너지가 부유성장 보다 약 1.6배 높음이 관찰되었다. 이는 세포로의 기질 확산율에 영향을 받은 것으로 부유성장인 경우는 부착성장 질화균에 비해 세포로의 기질확산이 보다 빨리 진행되어 기질의 분해가 쉽게 진행될 수 있으나, 메디아에 부착한 경우는 물질전달에 있어 부유성장보다 기질확산율이 느려 기질 분해가 상대적으로 느리게 진행되었기 때문인 것으로 사료된다. In addition, it was observed that the activation energy of nitrifying bacteria attached to the media was about 1.6 times higher than that of suspended growth. This was influenced by the rate of substrate diffusion into cells. In the case of suspended growth, substrate diffusion into cells was faster than that of adherent growth nitride, and substrate decomposition could be easily progressed. The substrate diffusion rate was slower than that of suspended growth, suggesting that the substrate decomposition was relatively slow.
<실험예 6> 유기물 유입이 질산화 반응에 미치는 영향Experimental Example 6 Effect of Organic Matter Influence on Nitrification
온도가 낮을 경우 유기물이 유입되면 유기물을 산화하는 종속영양미생물(Heterotroph)의 성장이 질산화미생물인 독립영양미생물(Autotroph)보다 상대적으로 커서 이들이 같이 있는 바이오 플록(Bio Floc) 형태에서 외부표면에 위치하게 된다. 이때 종속영양미생물(Heterotroph)과 독립영양미생물(Autotroph) 둘 다 성장을 위해서는 O2를 반드시 필요로 하게 된다. 하지만 낮은 온도에서 유기물이 주입될 경우 바이오 플록 외부를 덮은 종속영양미생물(Heterotroph)이 먼저 O2를 소모하여 바이오 플록 안쪽에 위치한 독립영양미생물(Autotroph)의 경우에는 O2와의 접촉이 어려워 질산화 반응을 못하게 되어 성장이 저하되는 악순환이 반복된다. At low temperatures, the growth of heterotrophs that oxidize organic matters is relatively greater than that of autotrophs, which are nitrifying microorganisms. do. Both heterotrophs and autotrophs require O 2 to grow. However, when organic material is injected at low temperature, heterotrophs covering the outside of the biofloc first consume O 2, and in the case of autotrophs located inside the biofloc, the contact with O 2 is difficult, resulting in nitrification. There is a vicious cycle in which growth slows down.
도 15는 유기물 유입이 질산화 반응에 미치는 영향에 관한 결과로 유기물의 양이 2 mg/L 정도 증가하여도 질산화 효율이 40%정도로 저하되는 되는 것을 관찰할 수 있었다. FIG. 15 shows that the nitrification efficiency is reduced to about 40% even when the amount of organic matter is increased by about 2 mg / L as a result of the effect of organic inflow on the nitrification reaction.
따라서, 질산화 반응을 효율적으로 하기 위해서는 유기물에 대한 영향을 최소로 하고, 질산화 미생물을 부착성장시켜 그 경쟁을 최소화하는 것이 유리하다고 판단된다.Therefore, in order to efficiently perform nitrification reaction, it is considered advantageous to minimize the effect on organic matter and to minimize the competition by attaching and growing nitrifying microorganisms.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (10)

  1. 혐기성 반응조, 무산소 반응조 및 질산화 반응조를 포함하는 영양염류 처리 시스템에 있어서, 질산화 반응조로 유입되는 유기물의 양을 최소화하여 질산화 반응조에서 질산화 미생물이 성장이 촉진되어 농축 배양할 수 있도록, 질산화 반응조 전단에 하나 이상의 유기물 산화조를 배치하여, 질산화 반응조 처리 이전에 하나 이상의 유기물 산화조에서 전처리를 수행하는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.In a nutrient processing system including an anaerobic reactor, an anoxic reactor, and a nitrification reactor, at the front of the nitrification reactor, the nitrification microorganisms can be grown and concentrated in the nitrification reactor by minimizing the amount of organic matter introduced into the nitrification reactor. A hybrid biological nutrient processing system, wherein the organic oxidizing tank is disposed, and pretreatment is performed in at least one organic oxidizing tank before the nitrification tank treatment.
  2. 유입되는 폐수에 함유된 유기물을 이용하여 인의 방출 및 유기물을 흡착하는 혐기성 반응조(1); 상기 혐기성 반응조에서 유입되는 폐수에 함유된 유기물을 이용하여 질소를 제거하는 무산소 반응조(2); 상기 무산소 반응조에서 질소 제거 후 잔존하는 유기물을 주로 산화시키는 유기물 산화조(4); 상기 유기물 산화조로부터 유기물이 감소된 배출물의 암모니아성 질소를 질산화를 주목적으로 하는 질산화 반응조(5); 및 상기 질산화 반응조에서 처리된 슬러지를 고액분리하여 부유물질이 제거된 처리수를 유출시키는 최종 침전조(6);를 포함하는 하이브리드 생물학적 영양염류 처리 시스템.An anaerobic reactor (1) for releasing phosphorus and adsorbing organic substances by using organic substances contained in the incoming wastewater; An oxygen-free reaction tank (2) for removing nitrogen by using an organic material contained in the wastewater introduced from the anaerobic reactor; An organic material oxidizing tank (4) which mainly oxidizes the remaining organic materials after nitrogen removal in the anoxic reaction tank; A nitrification reaction tank (5) aiming at nitrifying the ammonia nitrogen of the exhausted organic matter from the organic oxidation tank; And a final sedimentation tank (6) for solid-liquid separation of the sludge treated in the nitrification reactor to discharge the treated water from which the suspended solids have been removed.
  3. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 질산화 반응조의 내부는 부유성장으로만 질산화 반응을 수행하는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.The interior of the nitrification tank is a hybrid biological nutrient processing system, characterized in that to perform the nitrification reaction only in the floating growth.
  4. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 질산화 반응조의 내부는 회전원판, 고정상 및 유동상 부착여재 중 어느 하나의 부착여재로 충진되는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.The interior of the nitrification tank is a hybrid biological nutrient processing system, characterized in that the filling of any one of the rotating disk, the fixed bed and the fluidized bed adhesion medium.
  5. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    질산화 반응조에서 질산화된 질산염 및 슬러지를 무산소 반응조로 반송시켜 상기 무산소 반응조로 유입되는 유기물의 질산염을 탈질시키는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.Hybrid nutrient processing system, characterized in that the nitrified nitrate and sludge in the nitrification tank is returned to the anoxic reactor to denitrate the organic nitrate flowing into the anoxic reactor.
  6. 제5항에 있어서,The method of claim 5,
    반송슬러지를 무산소 반응조(2)로 주입하고 무산소반응조 슬러지 일부를 혐기조 반응조로 유입하여 인처리 효율을 증진 시키는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.Hybrid biological nutrient processing system, characterized in that the returning sludge is injected into the anaerobic reactor (2) and a portion of the anaerobic reactor sludge is introduced into the anaerobic reactor to improve the phosphorus treatment efficiency.
  7. 유입되는 폐수에 함유된 유기물을 이용하여 인의 방출 및 유기물을 흡착하는 혐기성 반응조(1); 상기 혐기성 반응조에서 유입되는 폐수에 함유된 유기물을 이용하여 질소를 제거하는 무산소 반응조(2); 상기 무산소 반응조에서 질소 제거 후 잔존하는 유기물을 산화시키는 유기물 산화조(4); 및 상기 유기물 산화조로부터 유기물이 감소된 배출물의 암모니아성 질소를 질산화시키는 질산화 반응조(5);를 포함하며, 상기 유기물 산화조에 분리막이 구비되고, 질산화 반응조에 부착여재로서 회전원판(102) 및 유동상 부착여재(100) 중 어느 하나가 충진되어 있는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.An anaerobic reactor (1) for releasing phosphorus and adsorbing organic substances by using organic substances contained in the incoming wastewater; An oxygen-free reaction tank (2) for removing nitrogen by using an organic material contained in the wastewater introduced from the anaerobic reactor; An organic material oxidizing tank (4) for oxidizing the organic material remaining after nitrogen removal in the anoxic reaction tank; And a nitrification reaction tank (5) for nitrifying the ammonia nitrogen of the discharged organic matters from the organic oxidation tank, wherein the organic oxidation tank is provided with a separator, and the rotating disc (102) and the flow medium are attached to the nitrification reaction tank. Hybrid biological nutrient processing system, characterized in that any one of the phase attachment medium (100) is filled.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 분리막은 봉 또는 디스크 형태인 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.The separation membrane is a hybrid biological nutrient processing system, characterized in that the rod or disk form.
  9. 제7항에 있어서,The method of claim 7, wherein
    질산화 반응조에서 질산화된 질산염 및 슬러지를 상기 질산화 반응조(5)에서 유기물 산화조(4)로, 유기물 산화조(4)에서 무산소 반응조(2)로, 무산소 반응조(2)에서 혐기성 반응조(1)로의 순서로 반송시키는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.Nitrified nitrates and sludges from the nitrification tank are converted from the nitrification tank (5) to the organic oxidizing tank (4), from the organic oxidizing tank (4) to the anoxic reactor (2), and from the anoxic reactor (2) to the anaerobic reactor (1). Hybrid biological nutrient processing system, characterized in that the return in order.
  10. 제9항에 있어서,The method of claim 9,
    상기 질산화 반응조에서 유기물 산화조로의 질산염 반송은 정량펌프 및 자연유하 방식 중 어느 하나를 이용하는 것을 특징으로 하는 하이브리드 생물학적 영양염류 처리 시스템.The nitrate transfer from the nitrification tank to the organic oxidizing tank is a hybrid biological nutrient processing system, characterized in that using any one of a metering pump and a natural load method.
PCT/KR2016/003338 2015-03-31 2016-03-31 Hybrid biological nutrient salts treatment system WO2016159689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0044721 2015-03-31
KR1020150044721A KR20160116647A (en) 2015-03-31 2015-03-31 Hybid nutrient salt removal system

Publications (1)

Publication Number Publication Date
WO2016159689A1 true WO2016159689A1 (en) 2016-10-06

Family

ID=57006244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003338 WO2016159689A1 (en) 2015-03-31 2016-03-31 Hybrid biological nutrient salts treatment system

Country Status (2)

Country Link
KR (1) KR20160116647A (en)
WO (1) WO2016159689A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546669A (en) * 2015-02-17 2018-09-18 中国海洋大学 The production method of the cold-resistant ammonia oxidizing bacteria of salt tolerant and application
CN111233166A (en) * 2020-01-19 2020-06-05 重庆理工大学 Method for biofilm formation of biofilm reactor by using microbial inoculum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990068630A (en) * 1999-06-02 1999-09-06 박태주 Nutrient removal process for fixed biofilm
KR100639824B1 (en) * 2005-02-05 2006-10-30 (주)도심엔지니어링 종합건축사사무소 System and method for advanced treatment of nitrogen and phosphorus using microorganism and separation membrane
KR100992321B1 (en) * 2009-09-29 2010-11-05 김성기 Wastewater treatment apparatus with membrane module
KR20130035387A (en) * 2011-09-30 2013-04-09 주식회사 블루뱅크 Wastewater treatment apparatus using granule sludge and method for treating wastewater using the same
KR101390748B1 (en) * 2012-05-14 2014-04-30 주식회사 에코니티 Sewage and wastewater treatment apparatus for removal of nitrogen and phosphorus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739390A (en) 2004-08-27 2006-03-01 株式会社日本生物科学研究所 Mineral preparation, raw material for the preparation, and methods for producing the mineral preparation and the raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990068630A (en) * 1999-06-02 1999-09-06 박태주 Nutrient removal process for fixed biofilm
KR100639824B1 (en) * 2005-02-05 2006-10-30 (주)도심엔지니어링 종합건축사사무소 System and method for advanced treatment of nitrogen and phosphorus using microorganism and separation membrane
KR100992321B1 (en) * 2009-09-29 2010-11-05 김성기 Wastewater treatment apparatus with membrane module
KR20130035387A (en) * 2011-09-30 2013-04-09 주식회사 블루뱅크 Wastewater treatment apparatus using granule sludge and method for treating wastewater using the same
KR101390748B1 (en) * 2012-05-14 2014-04-30 주식회사 에코니티 Sewage and wastewater treatment apparatus for removal of nitrogen and phosphorus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546669A (en) * 2015-02-17 2018-09-18 中国海洋大学 The production method of the cold-resistant ammonia oxidizing bacteria of salt tolerant and application
CN108546669B (en) * 2015-02-17 2022-01-28 中国海洋大学 Production method and application of salt-tolerant and cold-tolerant ammonia oxidizing bacteria
CN111233166A (en) * 2020-01-19 2020-06-05 重庆理工大学 Method for biofilm formation of biofilm reactor by using microbial inoculum

Also Published As

Publication number Publication date
KR20160116647A (en) 2016-10-10

Similar Documents

Publication Publication Date Title
WO2018221924A1 (en) Sewage treatment system based on anaerobic ammonium oxidation method in water treatment process in sewage treatment plant
WO2016021766A1 (en) System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor
KR100821659B1 (en) E-mbr system
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
WO2022108140A1 (en) Partial nitritation using sequencing batch reactor with filter media and wastewater treatment device and system for shortcut nitrogen removal using same
KR100643775B1 (en) Treatment hybrid process for remove nutrient using floating microorganism
WO2016159689A1 (en) Hybrid biological nutrient salts treatment system
KR20190035277A (en) Sewage treatment system using granule
KR101938484B1 (en) Hybid nutrient salt removal system
KR101932611B1 (en) Advanced water treatment system using Heat-Recovery system for Prevention of Microorganism Activation Reduction by temperature difference of water treatment step
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100240801B1 (en) Method for purifying wastewater
KR20010028550A (en) Treatment method for livestock waste water including highly concentrated organic, nitrogen and phosphate
KR101006735B1 (en) Apparatus for treating for sewage using dpaos and method thereof
WO2014129759A1 (en) Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same
KR20110023436A (en) Advanced sewage treatment system by mbr using snd
KR100321679B1 (en) Advanced wastewater treatment method
KR100640940B1 (en) Continual system for processing waste water
KR20020087799A (en) Method for advanced wastewater treatment using multi-sbr system
KR19990065434A (en) Wastewater Purification Method
KR200202247Y1 (en) Apparatus for removing nutrients of sewage and industrial waste water
KR100420647B1 (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor
KR20110113448A (en) A hybrid process reactor for a simultaneous removal of ammonia and organics and method of wastewater treatment
KR100364623B1 (en) A method for simultaneous removal of nitrogen and phosphorus in the sewage and waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773470

Country of ref document: EP

Kind code of ref document: A1