WO2016020973A1 - Robot system - Google Patents

Robot system Download PDF

Info

Publication number
WO2016020973A1
WO2016020973A1 PCT/JP2014/070494 JP2014070494W WO2016020973A1 WO 2016020973 A1 WO2016020973 A1 WO 2016020973A1 JP 2014070494 W JP2014070494 W JP 2014070494W WO 2016020973 A1 WO2016020973 A1 WO 2016020973A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
robot
robot system
interval
screw tightening
Prior art date
Application number
PCT/JP2014/070494
Other languages
French (fr)
Japanese (ja)
Inventor
健一 元永
健 大川
健司 松藤
亮介 堤
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2016539708A priority Critical patent/JP6288277B2/en
Priority to PCT/JP2014/070494 priority patent/WO2016020973A1/en
Publication of WO2016020973A1 publication Critical patent/WO2016020973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors

Definitions

  • the disclosed embodiment relates to a robot system.
  • screw tightening devices such as nutrunners that automatically tighten screws.
  • screw tightening device that has a plurality of rotating shafts that rotate a screw and tightens the plurality of screws simultaneously.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a robot system capable of efficiently performing a screw tightening operation.
  • a robot system includes a robot, a plurality of screw tightening devices, an interval changing unit, and a controller.
  • the robot has a multi-joint.
  • the plurality of screw tightening devices are attached to the robot and rotate screws by a servo motor.
  • the said interval change part changes the space
  • the controller controls a servo motor of each of the robot and the plurality of screw fastening devices and a servo motor that drives the interval changing unit.
  • the screw tightening operation can be performed efficiently.
  • FIG. 1 is an explanatory diagram illustrating an overview of a robot system according to an embodiment.
  • FIG. 2 is a schematic perspective view of the robot.
  • FIG. 3A is a schematic perspective view of a screw fastening unit.
  • FIG. 3B is an operation explanatory diagram of the screw tightening unit.
  • FIG. 4A is an explanatory diagram (part 1) of the bit part attaching / detaching mechanism.
  • FIG. 4B is an explanatory diagram (part 2) of the bit part attaching / detaching mechanism.
  • FIG. 5A is an explanatory diagram (part 1) of the jig.
  • FIG. 5B is an explanatory diagram (part 2) of the jig.
  • FIG. 6 is a system configuration diagram of the robot system.
  • FIG. 7 is an explanatory diagram (part 1) of the screw tightening operation.
  • FIG. 8 is an explanatory diagram (part 2) of the screw tightening operation.
  • FIG. 1 is an explanatory diagram illustrating an overview of a robot system according to an embodiment.
  • an operation of tightening or loosening a screw is performed.
  • screws that are tightened and loosened by such a robot system include bolts and the like.
  • screw is used as a general term for a fastening member provided with a spiral groove such as a bolt.
  • the robot system 1 includes a robot 10, a plurality of screw tightening devices 21, 21, an interval changing unit 24, and a controller 50.
  • the robot 10 has a multi-joint.
  • the robot 10 is, for example, a single arm type.
  • the distal end portion (A portion) of the robot 10 is shown enlarged in the central portion and the lower portion in the drawing.
  • the plurality of screw fastening devices 21 and 21 are attached to the tip of the robot 10.
  • the plurality of screw tightening devices 21 and 21 rotate the bits attached to the front end side by the respective servo motors 221 and 221 and rotate the screws connected to the front end side of the bits, respectively.
  • the interval changing unit 24 is provided so as to connect the plurality of screw fastening devices 21, 21, and changes the interval D between the plurality of screw fastening devices 21, 21 by the servo motor 26.
  • the distance D between the plurality of screw fastening devices 21 and 21 is defined as the distance between the bits.
  • the controller 50 controls the operation of the robot 10.
  • the controller 50 drives and controls the servo motors 221 and 221 of the plurality of screw fastening devices 21 and 21 and the servo motor 26 of the interval changing unit 24.
  • the robot system 1 uses a plurality of screw tightening devices 21 and 21, a plurality of screws can be tightened simultaneously, and the time required for the screw tightening operation can be shortened. Moreover, various intervals between the screws can be accommodated by appropriately changing the interval D between the plurality of screw fastening devices 21, 21. With these two advantages, the screw tightening operation can be performed efficiently.
  • the controller 50 controls the servo motors 221 and 221 of the plurality of screw tightening devices 21 and 21 and the servo motor 26 of the interval changing unit 24, so that the screw tightening devices 21 and 21 and the interval changing unit are controlled.
  • the plurality of screw fastening devices 21 and 21 are arranged so that the rotation axis of the screw is perpendicular to the tip axis of the robot 10. Further, the center of gravity of the screw tightening devices 21 and 21 and the interval changing unit 24 is arranged so as to be near the extension line of the tip axis of the robot 10. Further, one of the plurality of screw fastening devices 21 and 21 is fixed, and the other is movable. Such a configuration will be described later with reference to FIGS. 3A and 3B.
  • the robot system 1 further includes a jig that rotatably holds a plurality of screws.
  • the configuration of the jig will be described later with reference to FIGS. 5A and 5B.
  • FIG. 2 is a schematic perspective view of the robot.
  • the robot 10 is a single-armed articulated robot.
  • the robot 10 includes a first arm unit 101, a second arm unit 102, a third arm unit 103, a fourth arm unit 104, a fifth arm unit 105, and a base unit 106. .
  • the first arm portion 101 is supported by a base portion 106 having a base end portion fixed to a floor surface or the like, and supports the second arm portion 102 at the tip end portion.
  • the second arm portion 102 is supported at the base end portion by the first arm portion 101 and supports the third arm portion 103 at the distal end portion.
  • the third arm portion 103 is supported at the base end portion by the second arm portion 102 and supports the fourth arm portion 104 at the tip end portion.
  • the fourth arm portion 104 is supported at the base end portion by the third arm portion 103 and supports the fifth arm portion 105 at the distal end portion.
  • the fifth arm portion 105 is supported at the base end portion by the fourth arm portion 104.
  • an actuator (not shown) is mounted on each joint portion, which is each connecting portion of the first arm portion 101 to the fifth arm portion 105.
  • the robot 10 can perform a multi-axis operation by driving the actuator.
  • the joint actuator that connects the first arm portion 101 and the second arm portion 102 rotates the second arm portion 102 about the axis S.
  • the joint actuator that connects the second arm portion 102 and the third arm portion 103 rotates the third arm portion 103 about the axis L.
  • the joint actuator that connects the third arm portion 103 and the fourth arm portion 104 rotates the fourth arm portion 104 about the axis U. Further, the joint actuator that connects the fourth arm unit 104 and the fifth arm unit 105 rotates the fifth arm unit 105 about the axis B.
  • the robot 10 includes individual actuators that rotate the third arm portion 103 around the axis E, the fourth arm portion 104 around the axis R, and the fifth arm portion 105 around the axis T, respectively.
  • the robot 10 has seven axes.
  • the robot 10 can perform various multi-axis operations combining these seven axes based on an operation instruction from the controller 50 (see FIG. 1).
  • the operation instruction from the controller 50 is output as, for example, a pulse signal for driving each actuator described above.
  • the distal end portion of the fifth arm portion 105 is a terminal movable portion of the robot 10.
  • a screw fastening unit is attached to the terminal movable part.
  • the screw tightening unit will be described with reference to FIGS. 3A and 3B.
  • FIG. 3A is a schematic perspective view of a screw tightening unit.
  • FIG. 3B is an operation explanatory diagram of the screw tightening unit.
  • the screw tightening unit 20 includes a plurality of screw tightening devices 21, 21 and an interval changing unit 24.
  • the screw fastening unit 20 includes, for example, two screw fastening devices 21 and 21.
  • the two screw fastening devices 21 and 21 have the same configuration. Accordingly, one of the two screw fastening devices 21 will be described.
  • the screw tightening device 21 is a so-called nutrunner that automatically tightens a screw (or loosens and removes the screw).
  • the screw tightening device 21 includes a drive unit 22 and a bit unit 23.
  • this screw fastening apparatus 21 can be used for any operation
  • the drive unit 22 includes a servo motor 221 serving as a rotational drive source that rotates a bit 231 described later, and a speed reducer 222.
  • Servo motor 221 and reduction gear 222 are arranged in series along the axis AX direction.
  • the drive unit 22 may further include a torque detector. By providing the torque detector, more accurate torque control is possible.
  • the bit portion 23 holds a bit 231 engaged with a screw to be tightened or loosened on the tip side.
  • the bit part 23 is attached to the drive part 22 at the end side.
  • the bit unit 23 when the rotational driving force output from the driving unit 22 is input, the bit 231 rotates around the axis AX by the input rotational driving force.
  • the interval changing unit 24 includes a base unit 25, a servo motor 26, and a ball screw 27.
  • the base portion 25 is formed in a substantially rectangular plate shape extending in a direction orthogonal to the axis AX of the screw fastening device 21.
  • the screw tightening unit 20 is attached to the tip of the robot 10 so that the axis AX of the screw tightening device 21, that is, the rotation axis of the screw of the screw tightening device 21 is perpendicular to the axis T.
  • the rotation point of the screw of the screw tightening device 21 is perpendicular to the axis T, so that the work point of the screw tightening device 21 can be brought close to the control point of the robot 10. This increases the screw tightening accuracy. Further, since the control point of the robot 10 and the work point of the screw tightening device 21 are close to each other, it is possible to suppress the blur on the tip side of the bit 231 and increase the rigidity.
  • Servo motor 26 is provided on the back side of base portion 25.
  • the servo motor 26 outputs a rotational driving force.
  • the rotational driving force output from the servo motor 26 is transmitted to a ball screw 27 described later via the power transmission unit 261.
  • the power transmission unit 261 includes a pair of pulleys arranged on the back side and the front side of the base unit 25, and a belt wound around the pulleys. With this configuration, the rotational driving force from the back side of the base portion 25 can be transmitted to the front side of the base portion 25.
  • the ball screw 27 is disposed on the front side of the base portion 25 along the longitudinal direction of the base portion 25. That is, the ball screw 27 is disposed so as to be perpendicular to the axis AX direction of the screw fastening device 21.
  • the two screw fastening devices 21 and 21 and the interval changing unit 24 are attached so that the center of gravity of the two screw fastening devices 21 and 21 and the distance changing unit 24 is near the extension line of the axis T.
  • the positioning accuracy of the screw tightening device 21 by the robot 10 can be increased, and the load of inertia (rotational moment of inertia) on the axis T can be reduced.
  • the ball screw 27 moves at least one of the two screw fastening devices 21 and 21 in the axial direction of itself (ball screw 27).
  • one of the two screw tightening devices 21 and 21 is fixed on the front side of the base portion 25 as a fixed side.
  • the other one moves along the axial direction of the ball screw 27 as a movable side.
  • the screw fastening device 21 on the right side in the drawing is the fixed side
  • the screw fastening device 21 on the left side in the drawing is the movable side
  • the initial position before the movement of the screw fastening device 21 on the movable side is indicated by a two-dot broken line.
  • the movable-side screw fastening device 21 is connected to the ball screw 27 on the front side of the base portion 25.
  • the ball screw 27 rotates around the axis by the rotational driving force output from the servomotor 26, so that the movable-side screw tightening device 21 is brought into and out of contact with the fixed-side screw tightening device 21. Move to do. Thereby, the space
  • the bit portion 23 is detachably attached to the drive portion 22.
  • the bit 231 can be appropriately replaced according to the size and type of the screw to be tightened or loosened.
  • the robot 10 (see FIG. 2) replaces the bit 231 by itself.
  • FIGS. 4A and 4B are explanatory views (cross-sectional views) of the bit portion attaching / detaching mechanism.
  • 4A shows the state before the bit portion 23 is attached
  • FIG. 4B shows the state after the bit portion 23 is attached.
  • the screw fastening device 21 includes an attachment / detachment unit 30.
  • the detachable part 30 includes a pair of air cylinders 301 and 301.
  • the pair of air cylinders 301 and 301 are disposed with a phase difference of 180 degrees on a concentric circle of the axis AX on the upper surface of the base 302 on the drive unit 22 side.
  • the telescopic rods 301a and 301a of each of the pair of air cylinders 301 and 301 pass through the base 302 and the tip side is disposed on the bit part 23 side.
  • the telescopic rods 301a and 301a are connected to the floating joints 303 and 303 on the bit part 23 side.
  • Floating joints 303 and 303 are connected to a flange portion 305 provided on the outer peripheral surface of a short cylindrical circular receiving portion 304.
  • the circular receiving portion 304 is provided so as to be expandable / contractable in the axis AX direction, and expands / contracts in the axis AX direction following the expansion / contraction of the expansion / contraction rods 301a, 301a.
  • the cylindrical portion 309 is inserted into the communication hole 308.
  • the cylindrical portion 309 is inserted with the output shaft 310 of the driving portion 22 in a state where the bit portion 23 is attached.
  • a tapered surface 311 is provided on the inner peripheral edge on the distal end side of the cylindrical portion 309 so as to increase the diameter.
  • a through hole 312 penetrating in the thickness direction is provided on the inner peripheral surface of the cylindrical portion 309.
  • a steel ball 313 is disposed in the through hole 312.
  • the opening diameter on the inner peripheral surface side of the through hole 312 is formed to be smaller than the diameter of the steel ball 313.
  • the steel ball 313 is in a state of being retracted into the space formed by the tapered surface 311 when the telescopic rods 301a and 301a are contracted.
  • a flange portion 314 is provided on the end surface of the bit portion 23 on the bit portion 23 side.
  • a circular convex portion 315 that can be fitted into the circular concave portion 306 on the drive unit 22 side is provided on the end side end surface of the flange portion 314.
  • a cylindrical portion 316 that can be fitted into the cylindrical portion 309 on the drive unit 22 side is provided on the end face of the circular convex portion 315.
  • a V-shaped groove 317 is provided on the outer peripheral surface of the cylindrical portion 316 on the end side.
  • a tapered surface 318 is provided on the side peripheral surface of the circular convex portion 315 so as to be inclined toward the terminal end surface.
  • the cylindrical portion 316 on the bit portion 23 side is fitted into the cylindrical portion 309 on the driving portion 22 side.
  • the output shaft 310 is inserted through the tube portion 316.
  • the output shaft 310 enters the inside of the housing 319 of the bit portion 23 through the inner peripheral surface of the cylindrical portion 316, and the distal end side is connected to the distal end side of the torque transmission shaft 320 that transmits the rotational driving force to the bit 231.
  • the steel ball 313 disposed in the through hole 312 is pushed out to the inner peripheral surface side of the cylindrical portion 309 by a predetermined dimension by the inner peripheral surface of the communication hole 308.
  • the steel ball 313 is restricted from protruding more than a predetermined dimension.
  • the steel ball 313 protruding by a predetermined dimension is fitted into a V-shaped groove 317 provided in the cylinder part 316 on the bit part 23 side.
  • the tapered surface 311 of the driving portion 22 side cylindrical portion 309 comes into contact with the tapered surface 318 of the bit portion 23 side cylindrical portion 316.
  • the bit part 23 is driven by the force by which the steel ball 313 pushes the V-shaped groove 317 and the force by which the tapered surface 311 of the driving part 22 side cylindrical part 309 presses the tapered surface 318 of the bit part 23 side cylindrical part 316. Locked to the part 22.
  • the bit part 23 is detachably attached to the drive part 22 by such a so-called coupler structure attaching / detaching mechanism. Further, it can be easily attached and detached by a simple operation.
  • the bit unit 23 can be attached and detached by the robot 10 (see FIG. 2).
  • the robot system 1 further includes a jig that holds a screw to be tightened in the screw hole.
  • a configuration example of the jig will be described with reference to FIGS. 5A and 5B.
  • 5A and 5B are explanatory diagrams of the jig. Specifically, FIG. 5A is a schematic perspective view of a jig, and FIG. 5B is a schematic cross-sectional view showing a screw mounting operation.
  • the jig 40 includes a first insertion hole 401, a second insertion hole 402, and a holding portion 403.
  • the 1st insertion hole 401 is provided in the surface corresponding to the workpiece
  • the screw 41 is inserted into the first insertion hole 401 from the head 41a.
  • the second insertion hole 402 is provided on the surface opposite to the surface corresponding to the workpiece W side. Further, the second insertion hole 402 is provided so as to penetrate through the first insertion hole 401. The distal end side of the screw tightening device 21 (see FIG. 3A) is inserted into the second insertion hole 402.
  • the first insertion hole 401 and the second insertion hole 402 are provided at positions corresponding to the screw holes 42 provided in the workpiece W. Therefore, the jig 40 is attached to the workpiece W, and holds the screw 41 while restricting the posture of the screw 41 at a position corresponding to the screw hole 42.
  • the jig 40 can hold the screw 41 in the first insertion hole 401 by the holding portion 403.
  • the holding portion 403 includes a communication hole 404, a protruding member 405, a biasing member 406, and a retaining member 407.
  • the communication hole 404 communicates from the outer peripheral surface of the jig 40 to the back side of the first insertion hole 401, that is, the inner peripheral surface on the second insertion hole 402 side.
  • the protruding member 405 is provided in the communication hole 404 so as to protrude by a predetermined dimension from the inner peripheral surface of the first insertion hole 401.
  • the protruding member 405 is urged toward the inner peripheral surface side of the first insertion hole 401 by the urging member 406. Further, a retaining member 407 that prevents the biasing member 406 from coming off is provided on the outer peripheral surface side of the jig 40 in the communication hole 404.
  • the screw 41 when the screw 41 is inserted into the first insertion hole 401, the head 41 a of the screw 41 is inserted into the protruding member 405 of the holding portion 403 on the back side of the first insertion hole 401. Is pressed. Thereby, the screw 41 can be easily attached to the jig 40. Further, the screw 41 can be accessed from the surface opposite to the surface corresponding to the workpiece W side of the jig 40. Furthermore, the screw 41 can be rotatably held. As a result, the screw 41 can move in the axial direction of itself (the screw 41) with respect to the jig 40.
  • FIG. 6 is a system configuration diagram of the robot system.
  • the controller 50 controls the robot 10 and the screw tightening unit 20.
  • the controller 50 is a so-called robot controller used for robot control, and drives and controls the actuators of the joints including the arms 101 to 105 (see FIG. 2) of the robot 10.
  • the controller 50 and the robot 10 are connected by a cable 51 or the like.
  • controller 50 and the screw fastening unit 20 are connected by a cable 51 or the like. Specifically, the controller 50 is connected to each of the servo motors 221 and 221 of the plurality (two) of screw fastening devices 21 and 21 and the servo motor 26 of the interval changing unit 24. The controller 50 drives and controls the servo motors 221 and 221 and the servo motor 26 as external axes of the robot 10.
  • a controller for screw tightening devices such as a nutrunner controller may be interposed between the controller 50 and the screw tightening devices 21 and 21.
  • the servo motor 26 of the interval changing unit 24 is driven to adjust the intervals between the plurality of screw tightening devices 21 and 21 to the intervals between the plurality of screw holes provided in the workpiece. Then, the robot 10 moves the plurality of screw tightening devices 21 and 21 to the positions of the screw holes, and performs the screw tightening operation.
  • the robot 10 can replace the bit unit 23 according to the size and type of screw to be tightened.
  • the attachment and detachment of the bit part 23 is performed by the controller 50 driving and controlling the pair of air cylinders 301 and 301 (see FIGS. 4A and 4B).
  • FIG. 7 only a plurality (two) of screw fastening devices 21 and 21 are shown for convenience of explanation.
  • the jig 40 (see FIGS. 5A and 5B) is omitted.
  • a distance D1 is set between the two screw fastening devices 21 and 21 according to the distance between the screw holes 42a and 42f arranged on one diagonal line of the workpiece W.
  • the screws 41 and 41 are simultaneously tightened into the screw holes 42a and 42f.
  • the screws 41 and 41 are simultaneously tightened into the screw holes 42 b and 42 e arranged on the other diagonal line of the workpiece W.
  • the interval between the screw holes 42a and 42f is equal to the interval between the screw holes 42b and 42e, the operation is performed with the two screw tightening devices 21 and 21 being set at the interval D1.
  • the screws 41 and 41 are simultaneously tightened into the screw holes 42 c and 42 d arranged in the midway position in the longitudinal direction of the workpiece W.
  • the operation is performed by changing the distance between the two screw fastening devices 21 and 21 to the distance D2 according to the distance between the screw holes 42c and 42d.
  • the time required for the screw tightening operation can be shortened. Further, by changing the interval between the two screw tightening devices 21 and 21 from the interval D1 corresponding to the screw holes 42a and 42f (42b and 42e) to the interval D2 corresponding to the screw holes 42c and 42d, other than equal arrangement It can also correspond to the screw holes.
  • FIG. 8 shows another example of screw tightening work.
  • a plurality (six) of screw holes 42g to 42l are non-uniformly arranged on a concentric circle.
  • a distance D3 is set between the two screw fastening devices 21 and 21 according to the distance between the screw holes 42g and 42j. Tighten the screws at the same time.
  • the screws are simultaneously tightened into the screw holes 42h and 42k.
  • the distance between the two screw fastening devices 21 and 21 is changed to a distance D4 according to the distance between the screw holes 42h and 42k.
  • the plurality of screws 41 and 41 can be tightened simultaneously, and the time required for the screw tightening operation can be shortened.
  • various intervals between the screws 41 and 41 can be dealt with.
  • controller 50 controls the servo motors 221 and 221 of the plurality of screw tightening devices 21 and 21 and the servo motor 26 of the interval changing unit 24, thereby individually controlling the screw tightening devices 21 and 21 and the interval changing unit 24. No control device is required. Further, the robot 10 can be controlled while changing the interval D between the plurality of screw fastening devices 21 and 21.
  • one of the plurality of screw fastening devices 21 and 21 is fixed and the other is movable.
  • all the plurality of screw fastening devices 21 and 21 are movable. , Each may be relatively moved.
  • the two screw tightening devices 21 and 21 are provided in the screw tightening unit 20, three or more screw tightening devices 21 may be provided.
  • the configuration in which the three screw tightening devices 21 are arranged in a triangular shape is effective when the screws 41 are tightened into a plurality of screw holes 42 arranged concentrically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

According to one embodiment of the present invention, a robot system is provided with a robot (10), a plurality of screw tightening devices (21), an interval changing section (24), and a controller (50). The robot (10) has multiple joints. The screw tightening devices (21) are attached to the robot (10), and rotate screws by means of respective servo motors (221). The interval changing section (24) changes intervals among the screw tightening devices by means of a servo motor (26). The controller (50) controls the robot (10), respective servo motors (221) of the screw tightening devices, and the servo motor (26) that drives the interval changing section.

Description

ロボットシステムRobot system
 開示の実施形態は、ロボットシステムに関する。 The disclosed embodiment relates to a robot system.
 従来、ネジを自動で締め付けるナットランナなどのネジ締め装置がある。また、ネジを回転させる回転軸を複数有しており、複数のネジを同時に締め付けるネジ締め装置も知られている。 Conventionally, there are screw tightening devices such as nutrunners that automatically tighten screws. There is also known a screw tightening device that has a plurality of rotating shafts that rotate a screw and tightens the plurality of screws simultaneously.
 そして、複数の回転軸の軸間距離を調整する機構を操作することで、軸間距離を所望の距離で固定するネジ締め装置も提案されている(たとえば、特許文献1参照)。 Also, a screw tightening device that fixes the inter-axis distance at a desired distance by operating a mechanism that adjusts the inter-axis distance of a plurality of rotating shafts has been proposed (for example, see Patent Document 1).
特開2008-149397号公報JP 2008-149397 A
 しかしながら、軸間距離を所望の距離で固定するネジ締め装置を多関節ロボットに取り付け、ネジ締め作業を自動化しようとする場合、かかる軸間距離を調整する操作などの作業が必要となる。このため、従来のネジ締め装置を用いてネジ締め作業を自動化しようとしても、ネジ締め作業を効率良く行いにくいという問題がある。 However, when a screw tightening device that fixes the distance between the axes at a desired distance is attached to the articulated robot and the screw tightening operation is to be automated, such operations as adjusting the distance between the axes are required. For this reason, even if it is going to automate a screw fastening operation | work using the conventional screw fastening apparatus, there exists a problem that it is difficult to perform a screw fastening operation | work efficiently.
 実施形態の一態様は、上記に鑑みてなされたものであって、ネジ締め作業を効率良く行うことができるロボットシステムを提供することを目的とする。 One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a robot system capable of efficiently performing a screw tightening operation.
 実施形態の一態様に係るロボットシステムは、ロボットと、複数のネジ締め装置と、間隔変更部と、コントローラとを備える。前記ロボットは、多関節を有する。前記複数のネジ締め装置は、前記ロボットに取り付けられ、サーボモータによってネジを回転させる。前記間隔変更部は、前記複数のネジ締め装置の間隔をサーボモータによって変更する。前記コントローラは、前記ロボットと前記複数のネジ締め装置の各々のサーボモータと前記間隔変更部を駆動するサーボモータとを制御する。 A robot system according to an aspect of the embodiment includes a robot, a plurality of screw tightening devices, an interval changing unit, and a controller. The robot has a multi-joint. The plurality of screw tightening devices are attached to the robot and rotate screws by a servo motor. The said interval change part changes the space | interval of these screw fastening apparatuses with a servomotor. The controller controls a servo motor of each of the robot and the plurality of screw fastening devices and a servo motor that drives the interval changing unit.
 実施形態の一態様によれば、ネジ締め作業を効率良く行うことができる。 According to one aspect of the embodiment, the screw tightening operation can be performed efficiently.
図1は、実施形態に係るロボットシステムの概要を示す説明図である。FIG. 1 is an explanatory diagram illustrating an overview of a robot system according to an embodiment. 図2は、ロボットの模式斜視図である。FIG. 2 is a schematic perspective view of the robot. 図3Aは、ネジ締めユニットの模式斜視図である。FIG. 3A is a schematic perspective view of a screw fastening unit. 図3Bは、ネジ締めユニットの動作説明図である。FIG. 3B is an operation explanatory diagram of the screw tightening unit. 図4Aは、ビット部着脱機構の説明図(その1)である。FIG. 4A is an explanatory diagram (part 1) of the bit part attaching / detaching mechanism. 図4Bは、ビット部着脱機構の説明図(その2)である。FIG. 4B is an explanatory diagram (part 2) of the bit part attaching / detaching mechanism. 図5Aは、治具の説明図(その1)である。FIG. 5A is an explanatory diagram (part 1) of the jig. 図5Bは、治具の説明図(その2)である。FIG. 5B is an explanatory diagram (part 2) of the jig. 図6は、ロボットシステムのシステム構成図である。FIG. 6 is a system configuration diagram of the robot system. 図7は、ネジ締め作業の説明図(その1)である。FIG. 7 is an explanatory diagram (part 1) of the screw tightening operation. 図8は、ネジ締め作業の説明図(その2)である。FIG. 8 is an explanatory diagram (part 2) of the screw tightening operation.
 以下、添付図面を参照して、本願の開示するロボットシステムの実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a robot system disclosed in the present application will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
 まず、図1を参照して実施形態に係るロボットシステムの概要について説明する。図1は、実施形態に係るロボットシステムの概要を示す説明図である。なお、以下で説明するロボットシステムでは、ネジを締めるまたは緩める作業を行う。 First, the outline of the robot system according to the embodiment will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating an overview of a robot system according to an embodiment. In the robot system described below, an operation of tightening or loosening a screw is performed.
 また、かかるロボットシステムによって締緩されるネジにはボルトなどを含む。以下では、「ネジ」という呼称をボルトなどのようならせん状の溝が設けられた締結部材の総称として用いる。 Also, screws that are tightened and loosened by such a robot system include bolts and the like. Hereinafter, the term “screw” is used as a general term for a fastening member provided with a spiral groove such as a bolt.
 図1に示すように、ロボットシステム1は、ロボット10と、複数のネジ締め装置21,21と、間隔変更部24と、コントローラ50とを備える。ロボット10は、多関節を有する。ロボット10は、たとえば、単腕型である。なお、図1では、ロボット10の先端部(A部)を図中の中央部および下部に拡大して示している。 As shown in FIG. 1, the robot system 1 includes a robot 10, a plurality of screw tightening devices 21, 21, an interval changing unit 24, and a controller 50. The robot 10 has a multi-joint. The robot 10 is, for example, a single arm type. In FIG. 1, the distal end portion (A portion) of the robot 10 is shown enlarged in the central portion and the lower portion in the drawing.
 複数のネジ締め装置21,21は、ロボット10の先端部に取り付けられる。複数のネジ締め装置21,21は、各々のサーボモータ221,221によって先端側に取り付けられたビットを回転させ、それぞれビットの先端側に接続されたネジを回転させる。 The plurality of screw fastening devices 21 and 21 are attached to the tip of the robot 10. The plurality of screw tightening devices 21 and 21 rotate the bits attached to the front end side by the respective servo motors 221 and 221 and rotate the screws connected to the front end side of the bits, respectively.
 間隔変更部24は、複数のネジ締め装置21,21を連結するように設けられ、サーボモータ26によって複数のネジ締め装置21,21の間隔Dを変更する。なお、以下では、複数のネジ締め装置21,21の間隔Dを、ビット間の距離と規定する。 The interval changing unit 24 is provided so as to connect the plurality of screw fastening devices 21, 21, and changes the interval D between the plurality of screw fastening devices 21, 21 by the servo motor 26. In the following, the distance D between the plurality of screw fastening devices 21 and 21 is defined as the distance between the bits.
 コントローラ50は、ロボット10の動作を制御する。また、コントローラ50は、複数のネジ締め装置21,21の各々のサーボモータ221,221および間隔変更部24のサーボモータ26を駆動制御する。 The controller 50 controls the operation of the robot 10. In addition, the controller 50 drives and controls the servo motors 221 and 221 of the plurality of screw fastening devices 21 and 21 and the servo motor 26 of the interval changing unit 24.
 ここで、従来のネジ締め装置を用いてネジ締め作業を自動で行う場合、ネジを受け取る工程、受け取ったネジを所定位置へと移動する工程、ネジを締める工程の少なくとも3つの工程が必要となる。このため、締め付けるネジの数が多い場合にはネジ締め作業に時間がかかるという問題があった。 Here, when the screw tightening operation is automatically performed using the conventional screw tightening device, at least three steps of receiving the screw, moving the received screw to a predetermined position, and tightening the screw are required. . For this reason, when there are many screws to fasten, there was a problem that it took time to tighten the screws.
 図1に示すように、ロボットシステム1では、複数のネジ締め装置21,21を用いるため、複数のネジを同時に締め付けることができ、ネジ締め作業にかかる時間を短縮することができる。また、複数のネジ締め装置21,21の間隔Dを適宜変更することで、ネジ間の様々な間隔にも対応することができる。かかる2つの利点によってネジ締め作業を効率良く行うことができる。 As shown in FIG. 1, since the robot system 1 uses a plurality of screw tightening devices 21 and 21, a plurality of screws can be tightened simultaneously, and the time required for the screw tightening operation can be shortened. Moreover, various intervals between the screws can be accommodated by appropriately changing the interval D between the plurality of screw fastening devices 21, 21. With these two advantages, the screw tightening operation can be performed efficiently.
 また、ロボットシステム1では、複数のネジ締め装置21,21のサーボモータ221,221および間隔変更部24のサーボモータ26の制御をコントローラ50が行うことで、ネジ締め装置21,21や間隔変更部24を個別に制御する制御装置が不要となる。また、複数のネジ締め装置21,21の間隔Dを変更しながらロボット10の制御が可能となる。 In the robot system 1, the controller 50 controls the servo motors 221 and 221 of the plurality of screw tightening devices 21 and 21 and the servo motor 26 of the interval changing unit 24, so that the screw tightening devices 21 and 21 and the interval changing unit are controlled. The control apparatus which controls 24 individually becomes unnecessary. Further, the robot 10 can be controlled while changing the interval D between the plurality of screw fastening devices 21 and 21.
 なお、実施形態に係るロボットシステム1では、複数のネジ締め装置21,21を、ネジの回転軸がロボット10の先端軸と垂直となるように配置した。また、ネジ締め装置21,21と間隔変更部24とをあわせた重心がロボット10の先端軸の延長線付近となるように配置した。さらに、複数のネジ締め装置21,21のうち1つを固定とし、その他を可動とすることとした。かかる構成については、図3Aおよび図3Bを用いて後述する。 In the robot system 1 according to the embodiment, the plurality of screw fastening devices 21 and 21 are arranged so that the rotation axis of the screw is perpendicular to the tip axis of the robot 10. Further, the center of gravity of the screw tightening devices 21 and 21 and the interval changing unit 24 is arranged so as to be near the extension line of the tip axis of the robot 10. Further, one of the plurality of screw fastening devices 21 and 21 is fixed, and the other is movable. Such a configuration will be described later with reference to FIGS. 3A and 3B.
 また、実施形態に係るロボットシステム1では、複数のネジを回転可能に保持する治具をさらに備えることとした。かかる治具の構成については、図5Aおよび図5Bを用いて後述する。 Moreover, the robot system 1 according to the embodiment further includes a jig that rotatably holds a plurality of screws. The configuration of the jig will be described later with reference to FIGS. 5A and 5B.
 次に、図2を参照してロボットの構成例について説明する。図2は、ロボットの模式斜視図である。図2に示すように、ロボット10は、単腕型の多関節ロボットである。具体的には、ロボット10は、第1アーム部101と、第2アーム部102と、第3アーム部103と、第4アーム部104と、第5アーム部105と、基台部106を備える。 Next, a configuration example of the robot will be described with reference to FIG. FIG. 2 is a schematic perspective view of the robot. As shown in FIG. 2, the robot 10 is a single-armed articulated robot. Specifically, the robot 10 includes a first arm unit 101, a second arm unit 102, a third arm unit 103, a fourth arm unit 104, a fifth arm unit 105, and a base unit 106. .
 図2に示すように、第1アーム部101は、基端部を床面などに固定された基台部106によって支持され、先端部において第2アーム部102を支持する。第2アーム部102は、基端部を第1アーム部101によって支持され、先端部において第3アーム部103を支持する。 As shown in FIG. 2, the first arm portion 101 is supported by a base portion 106 having a base end portion fixed to a floor surface or the like, and supports the second arm portion 102 at the tip end portion. The second arm portion 102 is supported at the base end portion by the first arm portion 101 and supports the third arm portion 103 at the distal end portion.
 第3アーム部103は、基端部を第2アーム部102によって支持され、先端部において第4アーム部104を支持する。第4アーム部104は、基端部を第3アーム部103によって支持され、先端部において第5アーム部105を支持する。 The third arm portion 103 is supported at the base end portion by the second arm portion 102 and supports the fourth arm portion 104 at the tip end portion. The fourth arm portion 104 is supported at the base end portion by the third arm portion 103 and supports the fifth arm portion 105 at the distal end portion.
 第5アーム部105は、基端部を第4アーム部104によって支持される。また、第1アーム部101~第5アーム部105の各連結部分である各関節部にはアクチュエータ(図示せず)が搭載される。ロボット10は、かかるアクチュエータの駆動によって多軸動作を行うことができる。 The fifth arm portion 105 is supported at the base end portion by the fourth arm portion 104. In addition, an actuator (not shown) is mounted on each joint portion, which is each connecting portion of the first arm portion 101 to the fifth arm portion 105. The robot 10 can perform a multi-axis operation by driving the actuator.
 具体的には、第1アーム部101と第2アーム部102とを連結する関節部のアクチュエータは、第2アーム部102を軸Sまわりに回転させる。また、第2アーム部102と第3アーム部103とを連結する関節部のアクチュエータは、第3アーム部103を軸Lまわりに回転させる。 Specifically, the joint actuator that connects the first arm portion 101 and the second arm portion 102 rotates the second arm portion 102 about the axis S. In addition, the joint actuator that connects the second arm portion 102 and the third arm portion 103 rotates the third arm portion 103 about the axis L.
 また、第3アーム部103と第4アーム部104とを連結する関節部のアクチュエータは、第4アーム部104を軸Uまわりに回転させる。また、第4アーム部104と第5アーム部105とを連結する関節部のアクチュエータは、第5アーム部105を軸Bまわりに回転させる。 Also, the joint actuator that connects the third arm portion 103 and the fourth arm portion 104 rotates the fourth arm portion 104 about the axis U. Further, the joint actuator that connects the fourth arm unit 104 and the fifth arm unit 105 rotates the fifth arm unit 105 about the axis B.
 さらに、ロボット10は、第3アーム部103を軸Eまわり、第4アーム部104を軸Rまわり、第5アーム部105を軸Tまわりにそれぞれ回転させる個別のアクチュエータを備える。 Furthermore, the robot 10 includes individual actuators that rotate the third arm portion 103 around the axis E, the fourth arm portion 104 around the axis R, and the fifth arm portion 105 around the axis T, respectively.
 すなわち、ロボット10は、7軸を有する。ロボット10は、コントローラ50(図1参照)からの動作指示に基づき、かかる7軸を組み合わせた多様な多軸動作を行うことができる。なお、コントローラ50からの動作指示は、たとえば、上述した各アクチュエータを駆動するパルス信号として出力される。 That is, the robot 10 has seven axes. The robot 10 can perform various multi-axis operations combining these seven axes based on an operation instruction from the controller 50 (see FIG. 1). The operation instruction from the controller 50 is output as, for example, a pulse signal for driving each actuator described above.
 また、第5アーム部105の先端部は、ロボット10の終端可動部である。かかる終端可動部には、ネジ締めユニットが取り付けられる。次に、図3Aおよび図3Bを参照してネジ締めユニットについて説明する。 Further, the distal end portion of the fifth arm portion 105 is a terminal movable portion of the robot 10. A screw fastening unit is attached to the terminal movable part. Next, the screw tightening unit will be described with reference to FIGS. 3A and 3B.
 図3Aは、ネジ締めユニットの模式斜視図である。図3Bは、ネジ締めユニットの動作説明図である。図3Aに示すように、ネジ締めユニット20は、複数のネジ締め装置21,21と、間隔変更部24とを備える。 FIG. 3A is a schematic perspective view of a screw tightening unit. FIG. 3B is an operation explanatory diagram of the screw tightening unit. As shown in FIG. 3A, the screw tightening unit 20 includes a plurality of screw tightening devices 21, 21 and an interval changing unit 24.
 図3Aに示すように、ネジ締めユニット20は、たとえば、2つのネジ締め装置21,21を備える。なお、2つのネジ締め装置21,21は、いずれも同様の構成である。したがって、ネジ締め装置21については、2つのうち1つを説明する。また、ネジ締め装置21は、自動でネジを締め付ける(またはネジを緩めて取り外す)、いわゆるナットランナである。 As shown in FIG. 3A, the screw fastening unit 20 includes, for example, two screw fastening devices 21 and 21. The two screw fastening devices 21 and 21 have the same configuration. Accordingly, one of the two screw fastening devices 21 will be described. The screw tightening device 21 is a so-called nutrunner that automatically tightens a screw (or loosens and removes the screw).
 ネジ締め装置21は、駆動部22と、ビット部23とを備える。なお、かかるネジ締め装置21は、ネジを締めるまたは緩める作業のいずれにも用いることができる。駆動部22は、後述するビット231を回転させる回転駆動源となるサーボモータ221と、減速機222とを備える。 The screw tightening device 21 includes a drive unit 22 and a bit unit 23. In addition, this screw fastening apparatus 21 can be used for any operation | work which tightens or loosens a screw. The drive unit 22 includes a servo motor 221 serving as a rotational drive source that rotates a bit 231 described later, and a speed reducer 222.
 サーボモータ221および減速機222は、軸AX方向に沿って直列配置される。なお、駆動部22がトルク検出器をさらに備える構成としてもよい。トルク検出器を備えることで、より精度の高いトルク制御が可能となる。 Servo motor 221 and reduction gear 222 are arranged in series along the axis AX direction. The drive unit 22 may further include a torque detector. By providing the torque detector, more accurate torque control is possible.
 ビット部23は、締緩させるネジに係合されるビット231を先端側に保持する。また、ビット部23は、末端側が駆動部22に取り付けられる。ビット部23では、駆動部22から出力された回転駆動力が入力されると、入力された回転駆動力によってビット231が軸AXまわりに回転する。 The bit portion 23 holds a bit 231 engaged with a screw to be tightened or loosened on the tip side. The bit part 23 is attached to the drive part 22 at the end side. In the bit unit 23, when the rotational driving force output from the driving unit 22 is input, the bit 231 rotates around the axis AX by the input rotational driving force.
 図3Aに示すように、間隔変更部24は、ベース部25と、サーボモータ26と、ボールネジ27とを備える。ベース部25は、ネジ締め装置21の軸AXと直交する方向に延びた略矩形板状に形成される。 As shown in FIG. 3A, the interval changing unit 24 includes a base unit 25, a servo motor 26, and a ball screw 27. The base portion 25 is formed in a substantially rectangular plate shape extending in a direction orthogonal to the axis AX of the screw fastening device 21.
 ベース部25の正面側には、2つのネジ締め装置21,21を保持する保持部251,251が設けられる。また、ベース部25の背面側には、ネジ締めユニット20をロボット10(図2参照)の終端可動部、すなわち、第5アーム部105(図2参照)の先端部へと取り付ける取付部252が設けられる。 On the front side of the base portion 25, holding portions 251 and 251 for holding the two screw fastening devices 21 and 21 are provided. Further, on the back side of the base portion 25, there is an attachment portion 252 for attaching the screw fastening unit 20 to the terminal movable portion of the robot 10 (see FIG. 2), that is, the distal end portion of the fifth arm portion 105 (see FIG. 2). Provided.
 そして、ネジ締めユニット20は、ネジ締め装置21の軸AX、すなわち、ネジ締め装置21のネジの回転軸が軸Tに対して垂直となるようにロボット10の先端部に取り付けられる。 The screw tightening unit 20 is attached to the tip of the robot 10 so that the axis AX of the screw tightening device 21, that is, the rotation axis of the screw of the screw tightening device 21 is perpendicular to the axis T.
 ネジ締め装置21のネジの回転軸が軸Tに対して垂直となることで、ネジ締め装置21の作業点をロボット10の制御点へと近づけることができる。これにより、ネジ締め精度が高まる。また、ロボット10の制御点とネジ締め装置21の作業点とが近づくことで、ビット231先端側のブレを抑えることができ、剛性が高まる。 The rotation point of the screw of the screw tightening device 21 is perpendicular to the axis T, so that the work point of the screw tightening device 21 can be brought close to the control point of the robot 10. This increases the screw tightening accuracy. Further, since the control point of the robot 10 and the work point of the screw tightening device 21 are close to each other, it is possible to suppress the blur on the tip side of the bit 231 and increase the rigidity.
 サーボモータ26は、ベース部25の背面側に設けられる。サーボモータ26は、回転駆動力を出力する。サーボモータ26から出力された回転駆動力は、動力伝達部261を介して後述するボールネジ27へと伝達される。 Servo motor 26 is provided on the back side of base portion 25. The servo motor 26 outputs a rotational driving force. The rotational driving force output from the servo motor 26 is transmitted to a ball screw 27 described later via the power transmission unit 261.
 なお、図示しないが、動力伝達部261は、ベース部25の背面側および正面側に配置された一対のプーリと、プーリ間に掛け回されたベルトとを備える。かかる構成とすることで、ベース部25の背面側からの回転駆動力をベース部25の正面側へと伝達することができる。 Although not shown, the power transmission unit 261 includes a pair of pulleys arranged on the back side and the front side of the base unit 25, and a belt wound around the pulleys. With this configuration, the rotational driving force from the back side of the base portion 25 can be transmitted to the front side of the base portion 25.
 ボールネジ27は、ベース部25の正面側にベース部25の長手方向に沿って配置される。すなわち、ボールネジ27は、ネジ締め装置21の軸AX方向に対して垂直となるように配置される。 The ball screw 27 is disposed on the front side of the base portion 25 along the longitudinal direction of the base portion 25. That is, the ball screw 27 is disposed so as to be perpendicular to the axis AX direction of the screw fastening device 21.
 2つのネジ締め装置21,21および間隔変更部24は、各々をあわせた重心が軸Tの延長線付近となるように取り付けられる。これにより、ロボット10によるネジ締め装置21の位置決めの精度が高まるとともに、軸Tに対するイナーシャ(回転系慣性モーメント)の負荷を小さくすることができる。 The two screw fastening devices 21 and 21 and the interval changing unit 24 are attached so that the center of gravity of the two screw fastening devices 21 and 21 and the distance changing unit 24 is near the extension line of the axis T. As a result, the positioning accuracy of the screw tightening device 21 by the robot 10 can be increased, and the load of inertia (rotational moment of inertia) on the axis T can be reduced.
 また、ボールネジ27は、2つのネジ締め装置21,21の少なくともいずれかを自身(ボールネジ27)の軸方向へと移動させる。 Also, the ball screw 27 moves at least one of the two screw fastening devices 21 and 21 in the axial direction of itself (ball screw 27).
 図3Bに示すように、ネジ締めユニット20では、2つのネジ締め装置21,21のうち1つが固定側としてベース部25正面側にて位置固定される。また、他の1つは、可動側としてボールネジ27の軸方向に沿って移動する。 As shown in FIG. 3B, in the screw tightening unit 20, one of the two screw tightening devices 21 and 21 is fixed on the front side of the base portion 25 as a fixed side. The other one moves along the axial direction of the ball screw 27 as a movable side.
 このように、2つのネジ締め装置21,21のうち1つを固定側とし、他を可動側とすることで、2つのネジ締め装置21,21の双方にサーボモータ26のような駆動源を設ける必要がなくなり、間隔変更部24の簡素化および軽量化を図ることができる。これにより、ロボット10の可搬質量を小さくすることができる。 In this way, by setting one of the two screw tightening devices 21 and 21 as the fixed side and the other as the movable side, a drive source such as the servo motor 26 is provided to both of the two screw tightening devices 21 and 21. There is no need to provide it, and the interval changing unit 24 can be simplified and reduced in weight. Thereby, the loadable mass of the robot 10 can be reduced.
 なお、図3Bの例では、図中右側のネジ締め装置21を固定側とし、図中左側のネジ締め装置21を可動側としている。また、図3Bでは、可動側のネジ締め装置21の移動前の初期位置を二点破線で示している。 In the example of FIG. 3B, the screw fastening device 21 on the right side in the drawing is the fixed side, and the screw fastening device 21 on the left side in the drawing is the movable side. Moreover, in FIG. 3B, the initial position before the movement of the screw fastening device 21 on the movable side is indicated by a two-dot broken line.
 図3Bに示すように、可動側のネジ締め装置21は、ベース部25の正面側においてボールネジ27に連結される。そして、間隔変更部24では、ボールネジ27がサーボモータ26から出力された回転駆動力によって軸まわりに回転することで、可動側のネジ締め装置21を固定側のネジ締め装置21に対して接離するように移動させる。これにより、2つのネジ締め装置21,21の間隔Dを自由に変更することができる。 As shown in FIG. 3B, the movable-side screw fastening device 21 is connected to the ball screw 27 on the front side of the base portion 25. In the interval changing unit 24, the ball screw 27 rotates around the axis by the rotational driving force output from the servomotor 26, so that the movable-side screw tightening device 21 is brought into and out of contact with the fixed-side screw tightening device 21. Move to do. Thereby, the space | interval D of the two screw fastening apparatuses 21 and 21 can be changed freely.
 ここで、ネジ締め装置21では、駆動部22に対してビット部23が着脱自在に取り付けられる。着脱式のビット部23とすることで、ビット231を、締緩させるネジのサイズや種類などに応じて適宜交換することができる。また、この場合、ロボット10(図2参照)自らによってビット231を交換する。 Here, in the screw fastening device 21, the bit portion 23 is detachably attached to the drive portion 22. By using the detachable bit portion 23, the bit 231 can be appropriately replaced according to the size and type of the screw to be tightened or loosened. In this case, the robot 10 (see FIG. 2) replaces the bit 231 by itself.
 以下では、図4Aおよび図4Bを参照してビット部着脱機構について説明する。図4Aおよび図4Bは、ビット部着脱機構の説明図(断面図)である。なお、図4Aにはビット部23の装着前を示し、図4Bにはビット部23の装着後を示している。 Hereinafter, the bit part attaching / detaching mechanism will be described with reference to FIGS. 4A and 4B. 4A and 4B are explanatory views (cross-sectional views) of the bit portion attaching / detaching mechanism. 4A shows the state before the bit portion 23 is attached, and FIG. 4B shows the state after the bit portion 23 is attached.
 図4Aに示すように、ネジ締め装置21は、着脱部30を備える。着脱部30は、一対のエアシリンダ301,301を備える。一対のエアシリンダ301,301は、駆動部22側となるベース302上面において軸AXの同心円上に180度の位相差で配設される。 As shown in FIG. 4A, the screw fastening device 21 includes an attachment / detachment unit 30. The detachable part 30 includes a pair of air cylinders 301 and 301. The pair of air cylinders 301 and 301 are disposed with a phase difference of 180 degrees on a concentric circle of the axis AX on the upper surface of the base 302 on the drive unit 22 side.
 一対のエアシリンダ301,301の各々の伸縮ロッド301a,301aは、ベース302を貫通して先端側がビット部23側に配置される。伸縮ロッド301a,301aは、ビット部23側でフローティングジョイント303,303に連結される。 The telescopic rods 301a and 301a of each of the pair of air cylinders 301 and 301 pass through the base 302 and the tip side is disposed on the bit part 23 side. The telescopic rods 301a and 301a are connected to the floating joints 303 and 303 on the bit part 23 side.
 フローティングジョイント303,303は、短筒状の円形受部304の外周面に設けられたフランジ部305に連結される。円形受部304は、軸AX方向に伸縮可能に設けられ、伸縮ロッド301a,301aの伸縮に追従して軸AX方向に伸縮する。 Floating joints 303 and 303 are connected to a flange portion 305 provided on the outer peripheral surface of a short cylindrical circular receiving portion 304. The circular receiving portion 304 is provided so as to be expandable / contractable in the axis AX direction, and expands / contracts in the axis AX direction following the expansion / contraction of the expansion / contraction rods 301a, 301a.
 円形受部304には、先端側端面に円形凹部306が設けられる。円形凹部306の内周面は、拡径するように傾斜して設けられたテーパ面307を有する。また、円形受部304には、駆動部22側からビット部23側まで連通する連通穴308が設けられる。 The circular receiving part 304 is provided with a circular concave part 306 on the end face side end face. The inner peripheral surface of the circular recess 306 has a tapered surface 307 provided so as to be inclined so as to increase the diameter. Further, the circular receiving portion 304 is provided with a communication hole 308 that communicates from the drive portion 22 side to the bit portion 23 side.
 連通穴308には、筒部309が嵌入される。筒部309には、ビット部23の装着状態において駆動部22の出力軸310が挿通される。また、筒部309の先端側内周縁には、拡径するようにテーパ面311が設けられる。 The cylindrical portion 309 is inserted into the communication hole 308. The cylindrical portion 309 is inserted with the output shaft 310 of the driving portion 22 in a state where the bit portion 23 is attached. Further, a tapered surface 311 is provided on the inner peripheral edge on the distal end side of the cylindrical portion 309 so as to increase the diameter.
 筒部309の内周面には、厚さ方向に貫通する貫通穴312が設けられる。貫通穴312には、鋼球313が配設される。貫通穴312の内周面側の開口径は、鋼球313の径よりも小径に形成される。鋼球313は、伸縮ロッド301a,301aが縮んだ状態では、テーパ面311によって形成される空間に退避した状態にある。 A through hole 312 penetrating in the thickness direction is provided on the inner peripheral surface of the cylindrical portion 309. A steel ball 313 is disposed in the through hole 312. The opening diameter on the inner peripheral surface side of the through hole 312 is formed to be smaller than the diameter of the steel ball 313. The steel ball 313 is in a state of being retracted into the space formed by the tapered surface 311 when the telescopic rods 301a and 301a are contracted.
 一方、ビット部23側には、ビット部23の末端側端面にフランジ部314が設けられる。フランジ部314の末端側端面には、駆動部22側の円形凹部306に嵌入可能な円形凸部315が設けられる。 On the other hand, a flange portion 314 is provided on the end surface of the bit portion 23 on the bit portion 23 side. A circular convex portion 315 that can be fitted into the circular concave portion 306 on the drive unit 22 side is provided on the end side end surface of the flange portion 314.
 円形凸部315の末端側端面には、駆動部22側の筒部309に嵌入可能な筒部316が設けられる。筒部316の外周面には、末端側にV字溝317が設けられる。円形凸部315の側周面には、末端側端面に向けて縮径するように傾斜したテーパ面318が設けられる。 A cylindrical portion 316 that can be fitted into the cylindrical portion 309 on the drive unit 22 side is provided on the end face of the circular convex portion 315. A V-shaped groove 317 is provided on the outer peripheral surface of the cylindrical portion 316 on the end side. A tapered surface 318 is provided on the side peripheral surface of the circular convex portion 315 so as to be inclined toward the terminal end surface.
 ここで、図4Bに示すように、駆動部22にビット部23が取り付けられると、駆動部22側の筒部309にビット部23側の筒部316が嵌入された状態となる。筒部316には、出力軸310が挿通される。出力軸310は、筒部316の内周面を経て、ビット部23のハウジング319の内部に進入し、先端側がビット231に回転駆動力を伝達するトルク伝達軸320の末端側と連結される。 Here, as shown in FIG. 4B, when the bit portion 23 is attached to the driving portion 22, the cylindrical portion 316 on the bit portion 23 side is fitted into the cylindrical portion 309 on the driving portion 22 side. The output shaft 310 is inserted through the tube portion 316. The output shaft 310 enters the inside of the housing 319 of the bit portion 23 through the inner peripheral surface of the cylindrical portion 316, and the distal end side is connected to the distal end side of the torque transmission shaft 320 that transmits the rotational driving force to the bit 231.
 このとき、ビット部23側の筒部316が鋼球313の位置まで到達すると、エアシリンダ301,301の駆動によって伸縮ロッド301a,301aがビット部23側へと伸張する。 At this time, when the cylinder part 316 on the bit part 23 side reaches the position of the steel ball 313, the telescopic rods 301a and 301a extend to the bit part 23 side by driving the air cylinders 301 and 301.
 伸縮ロッド301a,301aが伸びた状態では、貫通穴312に配設される鋼球313が連通穴308の内周面によって筒部309の内周面側に所定寸法押し出される。なお、鋼球313は、貫通穴312の内周面側の径が鋼球313の径よりも小径であることから、所定寸法以上の突出が規制される。 In a state where the telescopic rods 301 a and 301 a are extended, the steel ball 313 disposed in the through hole 312 is pushed out to the inner peripheral surface side of the cylindrical portion 309 by a predetermined dimension by the inner peripheral surface of the communication hole 308. In addition, since the diameter of the inner peripheral surface side of the through hole 312 is smaller than the diameter of the steel ball 313, the steel ball 313 is restricted from protruding more than a predetermined dimension.
 所定寸法突出した鋼球313は、ビット部23側の筒部316に設けられたV字溝317に嵌り込む。鋼球313がV字溝317に嵌り込むと、駆動部22側筒部309のテーパ面311とビット部23側筒部316のテーパ面318とが当接する。 The steel ball 313 protruding by a predetermined dimension is fitted into a V-shaped groove 317 provided in the cylinder part 316 on the bit part 23 side. When the steel ball 313 is fitted into the V-shaped groove 317, the tapered surface 311 of the driving portion 22 side cylindrical portion 309 comes into contact with the tapered surface 318 of the bit portion 23 side cylindrical portion 316.
 これにより、鋼球313がV字溝317を押す力と、駆動部22側筒部309のテーパ面311がビット部23側筒部316のテーパ面318を押す力とで、ビット部23が駆動部22にロックされる。このようないわゆるカプラ構造の着脱機構によって、駆動部22に対してビット部23は着脱自在に取り付けられる。また、単純な動作によって容易に着脱が可能となる。そして、ロボット10(図2参照)自らによるビット部23の着脱が可能となる。 Thereby, the bit part 23 is driven by the force by which the steel ball 313 pushes the V-shaped groove 317 and the force by which the tapered surface 311 of the driving part 22 side cylindrical part 309 presses the tapered surface 318 of the bit part 23 side cylindrical part 316. Locked to the part 22. The bit part 23 is detachably attached to the drive part 22 by such a so-called coupler structure attaching / detaching mechanism. Further, it can be easily attached and detached by a simple operation. The bit unit 23 can be attached and detached by the robot 10 (see FIG. 2).
 また、ロボットシステム1は、ネジ孔に締め付けるネジを保持する治具をさらに備える。ここでは、図5Aおよび図5Bを参照して治具の構成例について説明する。図5Aおよび図5Bは、治具の説明図である。詳しくは、図5Aは、治具の模式斜視図であり、図5Bは、ネジ取付け動作を示す模式断面図である。 The robot system 1 further includes a jig that holds a screw to be tightened in the screw hole. Here, a configuration example of the jig will be described with reference to FIGS. 5A and 5B. 5A and 5B are explanatory diagrams of the jig. Specifically, FIG. 5A is a schematic perspective view of a jig, and FIG. 5B is a schematic cross-sectional view showing a screw mounting operation.
 図5Aに示すように、治具40は、第1の挿入孔401と、第2の挿入孔402と、保持部403とを備える。第1の挿入孔401は、ネジ締めの対象となるワークW側に対応する面に設けられる。第1の挿入孔401には、ネジ41が頭41aから挿入される。 As shown in FIG. 5A, the jig 40 includes a first insertion hole 401, a second insertion hole 402, and a holding portion 403. The 1st insertion hole 401 is provided in the surface corresponding to the workpiece | work W side used as the object of screw fastening. The screw 41 is inserted into the first insertion hole 401 from the head 41a.
 第2の挿入孔402は、ワークW側に対応する面とは反対側の面に設けられる。また、第2の挿入孔402は、第1の挿入孔401へ貫通するように設けられる。第2の挿入孔402には、ネジ締め装置21(図3A参照)の先端側が挿入される。 The second insertion hole 402 is provided on the surface opposite to the surface corresponding to the workpiece W side. Further, the second insertion hole 402 is provided so as to penetrate through the first insertion hole 401. The distal end side of the screw tightening device 21 (see FIG. 3A) is inserted into the second insertion hole 402.
 かかる治具40では、第1の挿入孔401および第2の挿入孔402がワークWに設けられたネジ孔42に対応する位置に設けられる。したがって、治具40は、ワークWに取り付けられることで、ネジ孔42に対応する位置でネジ41の姿勢を規制しつつネジ41を保持する。 In the jig 40, the first insertion hole 401 and the second insertion hole 402 are provided at positions corresponding to the screw holes 42 provided in the workpiece W. Therefore, the jig 40 is attached to the workpiece W, and holds the screw 41 while restricting the posture of the screw 41 at a position corresponding to the screw hole 42.
 すなわち、治具40では、複数のネジ41であってもネジ孔42に対して正しい姿勢でセットされる。これにより、ネジ締め作業におけるネジ締めエラーが少なくなり、作業速度を向上させることができる。 That is, in the jig 40, even a plurality of screws 41 are set in a correct posture with respect to the screw holes 42. Thereby, the screw tightening error in the screw tightening operation is reduced, and the work speed can be improved.
 また、治具40は、保持部403によって第1の挿入孔401にネジ41を保持することができる。図5Bに示すように、保持部403は、連通孔404と、突出部材405と、付勢部材406と、抜止部材407とを備える。 Also, the jig 40 can hold the screw 41 in the first insertion hole 401 by the holding portion 403. As shown in FIG. 5B, the holding portion 403 includes a communication hole 404, a protruding member 405, a biasing member 406, and a retaining member 407.
 図5Bに示すように、連通孔404は、治具40の外周面から第1の挿入孔401の奥側、すなわち、第2の挿入孔402側の内周面へと連通する。突出部材405は、第1の挿入孔401の内周面から所定寸法突出するように連通孔404に設けられる。 As shown in FIG. 5B, the communication hole 404 communicates from the outer peripheral surface of the jig 40 to the back side of the first insertion hole 401, that is, the inner peripheral surface on the second insertion hole 402 side. The protruding member 405 is provided in the communication hole 404 so as to protrude by a predetermined dimension from the inner peripheral surface of the first insertion hole 401.
 また、突出部材405は、付勢部材406によって第1の挿入孔401の内周面側に向けて付勢される。さらに、連通孔404における治具40の外周面側には、付勢部材406を抜け止めする抜止部材407が設けられる。 Further, the protruding member 405 is urged toward the inner peripheral surface side of the first insertion hole 401 by the urging member 406. Further, a retaining member 407 that prevents the biasing member 406 from coming off is provided on the outer peripheral surface side of the jig 40 in the communication hole 404.
 図5Bに示すように、治具40では、第1の挿入孔401にネジ41が挿入されると、第1の挿入孔401の奥側において保持部403の突出部材405にネジ41の頭41aが押圧される。これにより、治具40に対してネジ41を簡単に装着することができる。また、治具40のワークW側に対応する面とは反対側の面からネジ41へのアクセスが可能となる。さらに、ネジ41を回転可能に保持することができる。これにより、ネジ41は、治具40に対して自身(ネジ41)の軸方向に移動可能となる。 As shown in FIG. 5B, in the jig 40, when the screw 41 is inserted into the first insertion hole 401, the head 41 a of the screw 41 is inserted into the protruding member 405 of the holding portion 403 on the back side of the first insertion hole 401. Is pressed. Thereby, the screw 41 can be easily attached to the jig 40. Further, the screw 41 can be accessed from the surface opposite to the surface corresponding to the workpiece W side of the jig 40. Furthermore, the screw 41 can be rotatably held. As a result, the screw 41 can move in the axial direction of itself (the screw 41) with respect to the jig 40.
 次に、図6を参照してロボットシステムのシステム構成について説明する。図6は、ロボットシステムのシステム構成図である。図6に示すように、ロボットシステム1では、コントローラ50が、ロボット10を制御するとともにネジ締めユニット20を制御する。 Next, the system configuration of the robot system will be described with reference to FIG. FIG. 6 is a system configuration diagram of the robot system. As shown in FIG. 6, in the robot system 1, the controller 50 controls the robot 10 and the screw tightening unit 20.
 図6に示すように、コントローラ50は、ロボット制御に用いる、いわゆるロボットコントローラであり、ロボット10の各アーム部101~105(図2参照)を含む各関節部のアクチュエータを駆動制御する。コントローラ50とロボット10とは、ケーブル51などによって接続される。 As shown in FIG. 6, the controller 50 is a so-called robot controller used for robot control, and drives and controls the actuators of the joints including the arms 101 to 105 (see FIG. 2) of the robot 10. The controller 50 and the robot 10 are connected by a cable 51 or the like.
 また、コントローラ50とネジ締めユニット20とは、ケーブル51などによって接続される。具体的には、コントローラ50は、複数(2つ)のネジ締め装置21,21の各々のサーボモータ221,221および間隔変更部24のサーボモータ26と接続される。そして、コントローラ50は、サーボモータ221,221およびサーボモータ26をロボット10の外部軸として駆動制御する。 Further, the controller 50 and the screw fastening unit 20 are connected by a cable 51 or the like. Specifically, the controller 50 is connected to each of the servo motors 221 and 221 of the plurality (two) of screw fastening devices 21 and 21 and the servo motor 26 of the interval changing unit 24. The controller 50 drives and controls the servo motors 221 and 221 and the servo motor 26 as external axes of the robot 10.
 なお、ネジ締め装置21,21がトルク検出器を備える場合には、コントローラ50とネジ締め装置21,21との間にナットランナコントローラなどのネジ締め装置専用コントローラを介在させた構成としてもよい。コントローラ50の制御系統にネジ締め装置専用コントローラをさらに備えることで、高トルクが必要なネジ締め作業終期の精密制御が可能となる。 When the screw tightening devices 21 and 21 are provided with a torque detector, a controller for screw tightening devices such as a nutrunner controller may be interposed between the controller 50 and the screw tightening devices 21 and 21. By further providing a controller for the screw tightening device in the control system of the controller 50, it becomes possible to perform precise control at the end of the screw tightening operation requiring high torque.
 かかるロボットシステム1では、ネジ締め作業において、間隔変更部24のサーボモータ26を駆動し、複数のネジ締め装置21,21の間隔をワークに設けられた複数のネジ孔の間隔にあわせる。そして、ロボット10が複数のネジ締め装置21,21をそれぞれネジ孔の位置へと移動させ、ネジ締め作業を行う。 In the robot system 1, in the screw tightening operation, the servo motor 26 of the interval changing unit 24 is driven to adjust the intervals between the plurality of screw tightening devices 21 and 21 to the intervals between the plurality of screw holes provided in the workpiece. Then, the robot 10 moves the plurality of screw tightening devices 21 and 21 to the positions of the screw holes, and performs the screw tightening operation.
 なお、ロボットシステム1では、ロボット10が、締め付けるネジのサイズや種類などに応じてビット部23を交換することができる。ビット部23の着脱は、コントローラ50が一対のエアシリンダ301,301(図4Aおよび図4B参照)を駆動制御して行う。 In the robot system 1, the robot 10 can replace the bit unit 23 according to the size and type of screw to be tightened. The attachment and detachment of the bit part 23 is performed by the controller 50 driving and controlling the pair of air cylinders 301 and 301 (see FIGS. 4A and 4B).
 次に、図7および図8を参照してロボットシステムにおけるネジ締め作業例を説明する。図7および図8は、ネジ締め作業の説明図である。図7の例では、略矩形のワークWに6つのネジ孔42a~42fが設けられている。なお、このうち4つ(ネジ孔42a,42b,42e,42f)はワークの四隅近傍に配置され、残りの2つ(ネジ孔42c,42d)はワークWの長手方向の中途位置に配置されている。 Next, an example of screw tightening work in the robot system will be described with reference to FIG. 7 and FIG. 7 and 8 are explanatory diagrams of the screw tightening operation. In the example of FIG. 7, six screw holes 42a to 42f are provided in a substantially rectangular workpiece W. Of these, four (screw holes 42a, 42b, 42e, 42f) are arranged in the vicinity of the four corners of the workpiece, and the remaining two (screw holes 42c, 42d) are arranged at midway positions in the longitudinal direction of the workpiece W. Yes.
 また、図7では、説明の便宜上、複数(2つ)のネジ締め装置21,21のみを示している。また、図7では、治具40(図5Aおよび図5B参照)を省略している。 In FIG. 7, only a plurality (two) of screw fastening devices 21 and 21 are shown for convenience of explanation. In FIG. 7, the jig 40 (see FIGS. 5A and 5B) is omitted.
 この作業例では、まず、図7の上部に示すように、ワークWの一方の対角線上に配置されたネジ孔42a,42fの間隔に応じて2つのネジ締め装置21,21の間を間隔D1に設定し、ネジ孔42a,42fに対してネジ41,41を同時に締め付ける。 In this working example, first, as shown in the upper part of FIG. 7, a distance D1 is set between the two screw fastening devices 21 and 21 according to the distance between the screw holes 42a and 42f arranged on one diagonal line of the workpiece W. The screws 41 and 41 are simultaneously tightened into the screw holes 42a and 42f.
 次に、図7の中央に示すように、ワークWの他方の対角線上に配置されたネジ孔42b,42eに対してネジ41,41を同時に締め付ける。このとき、ネジ孔42a,42fの間隔とネジ孔42b,42eの間隔とは等しいため、2つのネジ締め装置21,21を間隔D1としたまま作業を行う。 Next, as shown in the center of FIG. 7, the screws 41 and 41 are simultaneously tightened into the screw holes 42 b and 42 e arranged on the other diagonal line of the workpiece W. At this time, since the interval between the screw holes 42a and 42f is equal to the interval between the screw holes 42b and 42e, the operation is performed with the two screw tightening devices 21 and 21 being set at the interval D1.
 最後に、図7の下部に示すように、ワークWの長手方向の中途位置に配置されたネジ孔42c,42dに対してネジ41,41を同時に締め付ける。このとき、ネジ孔42c,42dの間隔に応じて2つのネジ締め装置21,21の間を間隔D2に変更して作業を行う。 Finally, as shown in the lower part of FIG. 7, the screws 41 and 41 are simultaneously tightened into the screw holes 42 c and 42 d arranged in the midway position in the longitudinal direction of the workpiece W. At this time, the operation is performed by changing the distance between the two screw fastening devices 21 and 21 to the distance D2 according to the distance between the screw holes 42c and 42d.
 このように、複数のネジ孔42a~42fに対して複数のネジ41を同時に締め付けることで、ネジ締め作業にかかる時間を短縮することができる。また、2つのネジ締め装置21,21の間を、ネジ孔42a,42f(42b,42e)に応じた間隔D1からネジ孔42c,42dに応じた間隔D2へと変更することで、均等配置以外のネジ孔にも対応することができる。 Thus, by simultaneously tightening the plurality of screws 41 in the plurality of screw holes 42a to 42f, the time required for the screw tightening operation can be shortened. Further, by changing the interval between the two screw tightening devices 21 and 21 from the interval D1 corresponding to the screw holes 42a and 42f (42b and 42e) to the interval D2 corresponding to the screw holes 42c and 42d, other than equal arrangement It can also correspond to the screw holes.
 なお、図7の例では、対角線上に配置されたネジ孔42a,42f(42b,42e)から順にネジ41を締め付ける作業例を説明したが、たとえば、ネジ孔42a,42b、ネジ孔42c,42d、ネジ孔42e,42fの順にネジ41を締め付けてもよい。この場合のネジ締め作業は、2つのネジ締め装置21,21の間隔を間隔D2としたまま行うことができる。 In the example of FIG. 7, the example of the operation of tightening the screw 41 in order from the screw holes 42a and 42f (42b and 42e) arranged on the diagonal line has been described, but for example, the screw holes 42a and 42b and the screw holes 42c and 42d. The screw 41 may be tightened in the order of the screw holes 42e and 42f. The screw tightening operation in this case can be performed while keeping the distance between the two screw tightening devices 21 and 21 as the distance D2.
 また、図8には他のネジ締め作業例を示している。図8の例では、同心円上に複数(6つ)のネジ孔42g~42lが不均等配置されている。この作業例では、まず、図8の上部に示すように、ネジ孔42g,42jの間隔に応じて2つのネジ締め装置21,21の間を間隔D3に設定し、ネジ孔42g,42jに対して同時にネジを締め付ける。 FIG. 8 shows another example of screw tightening work. In the example of FIG. 8, a plurality (six) of screw holes 42g to 42l are non-uniformly arranged on a concentric circle. In this working example, first, as shown in the upper part of FIG. 8, a distance D3 is set between the two screw fastening devices 21 and 21 according to the distance between the screw holes 42g and 42j. Tighten the screws at the same time.
 次に、図8の中央に示すように、ネジ孔42h,42kに対してネジを同時に締め付ける。このとき、ネジ孔42h,42kの間隔に応じて2つのネジ締め装置21,21の間を間隔D4に変更する。 Next, as shown in the center of FIG. 8, the screws are simultaneously tightened into the screw holes 42h and 42k. At this time, the distance between the two screw fastening devices 21 and 21 is changed to a distance D4 according to the distance between the screw holes 42h and 42k.
 最後に、図8の下部に示すように、ネジ孔42i,42lに対してネジを同時に締め付ける。このとき、ネジ孔42i,42lの間隔に応じて2つのネジ締め装置21,21の間を間隔D5に変更する。このように、不均等配置されたネジ孔42g~42lであっても、ネジ締め装置21,21の間隔を適宜変更することで対応可能となる。 Finally, as shown in the lower part of FIG. 8, the screws are simultaneously tightened into the screw holes 42i and 42l. At this time, the interval between the two screw fastening devices 21 and 21 is changed to the interval D5 according to the interval between the screw holes 42i and 42l. Thus, even if the screw holes 42g to 42l are unevenly arranged, it can be dealt with by appropriately changing the interval between the screw fastening devices 21 and 21.
 実施形態に係るロボットシステム1によれば、複数のネジ締め装置21,21を用いることで、複数のネジ41,41を同時に締め付けることができ、ネジ締め作業にかかる時間を短縮することができる。また、複数のネジ締め装置21,21の間隔Dを適宜変更することで、ネジ41,41間の様々な間隔にも対応することができる。かかる2つの利点によってネジ締め作業を効率良く行うことができる。 According to the robot system 1 according to the embodiment, by using the plurality of screw tightening devices 21 and 21, the plurality of screws 41 and 41 can be tightened simultaneously, and the time required for the screw tightening operation can be shortened. In addition, by appropriately changing the interval D between the plurality of screw fastening devices 21 and 21, various intervals between the screws 41 and 41 can be dealt with. With these two advantages, the screw tightening operation can be performed efficiently.
 また、複数のネジ締め装置21,21のサーボモータ221,221および間隔変更部24のサーボモータ26の制御をコントローラ50が行うことで、ネジ締め装置21,21や間隔変更部24を個別に制御する制御装置が不要となる。また、複数のネジ締め装置21,21の間隔Dを変更しながらロボット10を制御することができる。 Further, the controller 50 controls the servo motors 221 and 221 of the plurality of screw tightening devices 21 and 21 and the servo motor 26 of the interval changing unit 24, thereby individually controlling the screw tightening devices 21 and 21 and the interval changing unit 24. No control device is required. Further, the robot 10 can be controlled while changing the interval D between the plurality of screw fastening devices 21 and 21.
 なお、上述した実施形態に係るロボットシステム1では、複数のネジ締め装置21,21のうち1つを固定とし、他を可動としたが、たとえば、複数のネジ締め装置21,21をすべて可動とし、各々を相対移動させる構成としてもよい。 In the robot system 1 according to the above-described embodiment, one of the plurality of screw fastening devices 21 and 21 is fixed and the other is movable. For example, all the plurality of screw fastening devices 21 and 21 are movable. , Each may be relatively moved.
 また、ネジ締めユニット20に2つのネジ締め装置21,21を設けたが、3つ以上のネジ締め装置21を設ける構成としてもよい。たとえば、3つのネジ締め装置21を三角配置した構成とすることで、同心円上に複数配置されたネジ孔42にネジ41を締め付ける場合などに有効なものとなる。 In addition, although the two screw tightening devices 21 and 21 are provided in the screw tightening unit 20, three or more screw tightening devices 21 may be provided. For example, the configuration in which the three screw tightening devices 21 are arranged in a triangular shape is effective when the screws 41 are tightened into a plurality of screw holes 42 arranged concentrically.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
   1  ロボットシステム
  10  ロボット
  20  ネジ締めユニット
  21  ネジ締め装置
  22  駆動部
  23  ビット部
  24  間隔変更部
  26  (間隔変更部の)サーボモータ
  27  ボールネジ
  40  治具
  41  ネジ
  42  ネジ孔
  50  コントローラ
 221  (ネジ締め装置の)サーボモータ
 231  ビット
 401  第1の挿入孔
 402  第2の挿入孔
 403  保持部
   W  ワーク
DESCRIPTION OF SYMBOLS 1 Robot system 10 Robot 20 Screw tightening unit 21 Screw tightening device 22 Drive part 23 Bit part 24 Space | interval change part 26 (Spacing change part) Servo motor 27 Ball screw 40 Jig 41 Screw 42 Screw hole 50 Controller 221 (Screw tightening apparatus ) Servo motor 231 Bit 401 First insertion hole 402 Second insertion hole 403 Holding part W Workpiece

Claims (10)

  1.  多関節のロボットと、
     前記ロボットに取り付けられ、サーボモータによってネジを回転させる複数のネジ締め装置と、
     前記複数のネジ締め装置の間隔をサーボモータによって変更する間隔変更部と、
     前記ロボットと前記複数のネジ締め装置の各々のサーボモータと前記間隔変更部を駆動するサーボモータとを制御するコントローラと
     を備えることを特徴とするロボットシステム。
    With articulated robots,
    A plurality of screw tightening devices attached to the robot and rotating screws by a servo motor;
    An interval changing unit for changing an interval between the plurality of screw fastening devices by a servo motor;
    A robot system comprising: a controller for controlling the servo motor of each of the robot and the plurality of screw tightening devices and a servo motor for driving the interval changing unit.
  2.  前記ネジ締め装置は、
     前記複数のネジ締め装置のネジの回転軸が前記ロボットの先端軸と垂直となるように前記ロボットの先端部に取り付けられること
     を特徴とする請求項1に記載のロボットシステム。
    The screw tightening device is:
    The robot system according to claim 1, wherein the robot is attached to a distal end portion of the robot such that a rotation axis of a screw of the plurality of screw tightening devices is perpendicular to a distal end axis of the robot.
  3.  前記ネジ締め装置および前記間隔変更部は、
     前記ネジ締め装置と前記間隔変更部とをあわせた重心が前記ロボットの先端軸の延長線付近となるように前記ロボットに取り付けられること
     を特徴とする請求項1または2に記載のロボットシステム。
    The screw tightening device and the interval changing unit are:
    3. The robot system according to claim 1, wherein the robot system is attached to the robot such that a center of gravity of the screw tightening device and the interval changing unit is in the vicinity of an extension line of a tip axis of the robot.
  4.  前記複数のネジ締め装置は、
     そのうちの一つが前記間隔変更部に固定され、その他が前記間隔の向きに直動すること
     を特徴とする請求項1、2または3に記載のロボットシステム。
    The plurality of screw fastening devices include:
    4. The robot system according to claim 1, wherein one of them is fixed to the interval changing unit, and the other is linearly moved in the direction of the interval.
  5.  ネジ締めの対象となるワークに対して着脱可能であり、前記ワークに設けられたネジ孔に対応する位置で前記ネジの姿勢を規制しつつ該ネジを保持する治具
     をさらに備えることを特徴とする請求項1~4のいずれか一つに記載のロボットシステム。
    A jig that can be attached to and detached from a workpiece to be screwed, and that holds the screw while restricting the posture of the screw at a position corresponding to a screw hole provided in the workpiece; The robot system according to any one of claims 1 to 4.
  6.  前記治具は、
     前記ワーク側に対応する面に設けられ、前記ネジを頭から挿入する第1の挿入孔と、
     前記第1の挿入孔から挿入された前記ネジを保持する保持部と、
     前記ワーク側に対応する面とは反対側の面に前記第1の挿入孔へ貫通するように設けられ、前記ネジ締め装置の先端が挿入される第2の挿入孔と
     を備えることを特徴とする請求項5に記載のロボットシステム。
    The jig is
    A first insertion hole provided on a surface corresponding to the workpiece side, and inserting the screw from the head;
    A holding portion for holding the screw inserted from the first insertion hole;
    A second insertion hole, which is provided on a surface opposite to the surface corresponding to the workpiece side so as to penetrate the first insertion hole, and into which a tip of the screw tightening device is inserted. The robot system according to claim 5.
  7.  前記保持部は、
     前記第1の挿入孔の奥側における周面に設けられ、前記ネジの頭を側方から押圧することによって前記ネジを保持すること
     を特徴とする請求項6に記載のロボットシステム。
    The holding part is
    The robot system according to claim 6, wherein the robot system is provided on a peripheral surface on the back side of the first insertion hole, and holds the screw by pressing the head of the screw from the side.
  8.  前記ネジ締め装置の各々は、
     着脱式のビット部を備え、
     前記コントローラは、
     予め記憶された作業手順に基づき、前記ビット部の交換を前記ロボットに行わせること
     を特徴とする請求項1~7のいずれか一つに記載のロボットシステム。
    Each of the screw fastening devices
    With a detachable bit part,
    The controller is
    The robot system according to any one of claims 1 to 7, wherein the robot is configured to exchange the bit unit based on a work procedure stored in advance.
  9.  前記コントローラは、
     予め記憶された作業手順に基づき、前記複数のネジ締め装置のネジの回転軸の間隔を適宜変更し、ネジ締めの対象となるワークに対して2つのネジを同時に締め付ける動作を前記ロボットおよび前記ネジ締め装置に行わせること
     を特徴とする請求項1~8のいずれか一つに記載のロボットシステム。
    The controller is
    Based on the work procedure stored in advance, the robot and the screw are operated by simultaneously changing the interval between the rotation axes of the screws of the plurality of screw tightening devices and simultaneously tightening the two screws to the workpiece to be screwed. The robot system according to any one of claims 1 to 8, wherein the robot system is caused to perform the tightening device.
  10.  ネジ締めを行うワークと、
     前記ワークに着脱可能に装着され、予め複数のネジを回転可能に保持する治具と、
     前記複数のネジを各々回転させる複数のネジ締め装置と、
     前記治具に保持されて姿勢が規制されている前記複数のネジに対応する間隔に応じて前記複数のネジ締め装置の間隔を変更する間隔変更部と、
     前記ネジ締め装置と前記間隔変更部とを保持するロボットと、
     前記ネジ締め装置と前記間隔変更部と前記ロボットとを制御するコントローラと
     を備えることを特徴とするロボットシステム。
    The workpiece to be tightened,
    A jig that is detachably attached to the workpiece, and holds a plurality of screws rotatably in advance;
    A plurality of screw fastening devices for respectively rotating the plurality of screws;
    An interval changing unit that changes an interval between the plurality of screw fastening devices according to an interval corresponding to the plurality of screws that are held by the jig and whose posture is regulated;
    A robot that holds the screw tightening device and the interval changing unit;
    A robot system comprising: a controller for controlling the screw tightening device, the interval changing unit, and the robot.
PCT/JP2014/070494 2014-08-04 2014-08-04 Robot system WO2016020973A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016539708A JP6288277B2 (en) 2014-08-04 2014-08-04 Robot system
PCT/JP2014/070494 WO2016020973A1 (en) 2014-08-04 2014-08-04 Robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070494 WO2016020973A1 (en) 2014-08-04 2014-08-04 Robot system

Publications (1)

Publication Number Publication Date
WO2016020973A1 true WO2016020973A1 (en) 2016-02-11

Family

ID=55263279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070494 WO2016020973A1 (en) 2014-08-04 2014-08-04 Robot system

Country Status (2)

Country Link
JP (1) JP6288277B2 (en)
WO (1) WO2016020973A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106003086A (en) * 2016-06-30 2016-10-12 苏州塞默机械有限公司 Working method for joint robot for assembly
TWI629135B (en) * 2016-07-21 2018-07-11 台達電子工業股份有限公司 Automatic screw tightening module and robot manipulator employing same
CN108817932A (en) * 2018-09-03 2018-11-16 苏州福斯特万电子科技有限公司 A kind of more material path automatic locking screw machines
JP2019005879A (en) * 2017-06-28 2019-01-17 ファナック株式会社 Tool switching and holding device, and robot system
CN109352682A (en) * 2018-12-11 2019-02-19 广西玉柴机器股份有限公司 One kind can quickly connect robot and variable bit tightens shaft device
CN112218742A (en) * 2018-07-05 2021-01-12 株式会社富士 Vertical articulated robot and working device
CN112792551A (en) * 2021-01-05 2021-05-14 宁波照澜新材料科技有限公司 Intelligent assembly robot for valve manufacturing
CN115446584A (en) * 2022-09-28 2022-12-09 国网天津市电力公司建设分公司 Bolt connection integrated tool based on robot and connection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394421B1 (en) * 2021-09-01 2022-05-06 주식회사 시스템알앤디 Two-point automatic fastening system using automatic variable axis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135437A (en) * 1987-11-18 1989-05-29 Komatsu Ltd Screw tightening hand
JPH06246486A (en) * 1993-03-03 1994-09-06 Mazda Motor Corp Hand for welding parts transfer
JP2001293628A (en) * 2000-04-13 2001-10-23 Mitsubishi Heavy Ind Ltd Automatic tool exchanger
US20050005412A1 (en) * 2003-07-09 2005-01-13 Ford Motor Company Multi-spindle positioning apparatus
JP3142013U (en) * 2008-03-17 2008-05-29 立身 斎藤 Automatic fastening device
JP2014091166A (en) * 2012-10-31 2014-05-19 Nitto Seiko Co Ltd Screw-tightening device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135437A (en) * 1987-11-18 1989-05-29 Komatsu Ltd Screw tightening hand
JPH06246486A (en) * 1993-03-03 1994-09-06 Mazda Motor Corp Hand for welding parts transfer
JP2001293628A (en) * 2000-04-13 2001-10-23 Mitsubishi Heavy Ind Ltd Automatic tool exchanger
US20050005412A1 (en) * 2003-07-09 2005-01-13 Ford Motor Company Multi-spindle positioning apparatus
JP3142013U (en) * 2008-03-17 2008-05-29 立身 斎藤 Automatic fastening device
JP2014091166A (en) * 2012-10-31 2014-05-19 Nitto Seiko Co Ltd Screw-tightening device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106003086A (en) * 2016-06-30 2016-10-12 苏州塞默机械有限公司 Working method for joint robot for assembly
TWI629135B (en) * 2016-07-21 2018-07-11 台達電子工業股份有限公司 Automatic screw tightening module and robot manipulator employing same
JP2019005879A (en) * 2017-06-28 2019-01-17 ファナック株式会社 Tool switching and holding device, and robot system
US10562141B2 (en) 2017-06-28 2020-02-18 Fanuc Corporation Tool switching/holding device and robot system
CN112218742A (en) * 2018-07-05 2021-01-12 株式会社富士 Vertical articulated robot and working device
CN108817932A (en) * 2018-09-03 2018-11-16 苏州福斯特万电子科技有限公司 A kind of more material path automatic locking screw machines
CN109352682A (en) * 2018-12-11 2019-02-19 广西玉柴机器股份有限公司 One kind can quickly connect robot and variable bit tightens shaft device
CN112792551A (en) * 2021-01-05 2021-05-14 宁波照澜新材料科技有限公司 Intelligent assembly robot for valve manufacturing
CN115446584A (en) * 2022-09-28 2022-12-09 国网天津市电力公司建设分公司 Bolt connection integrated tool based on robot and connection method
CN115446584B (en) * 2022-09-28 2024-02-20 国网天津市电力公司建设分公司 Robot-based bolt connection integrated tool and connection method

Also Published As

Publication number Publication date
JP6288277B2 (en) 2018-03-07
JPWO2016020973A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6288277B2 (en) Robot system
US8109173B2 (en) Parallel robot provided with wrist section having three degrees of freedom
EP3197644B1 (en) Automatically positionable joints and transfer tooling assemblies including automatically positionable joints
JP7093342B2 (en) Robot-assisted surface processing machine
JP3640087B2 (en) Machine Tools
WO2017041645A1 (en) Flexible unit and flexible wrist for precision assembly of industrial robots
JP4557146B2 (en) Fastening device
JP5741617B2 (en) Robot equipment
US11292140B2 (en) Gripping device for gripping workpiece
JP2008142824A (en) Method and device for attaching/detaching member
WO2017208903A1 (en) Working device using parallel link mechanism
JP6176976B2 (en) Screw tightening system and article manufacturing method
JP6241539B2 (en) Screw tightening system and screw tightening method
JP4822558B2 (en) Home position return method of parallel mechanism
WO2015140938A1 (en) Screw-tightening device and screw-tightening system
JP2018069354A (en) Link type multi-joint robot
US20180178394A1 (en) Tool driving module and robot manipulator employing same
JP3090257B2 (en) Machining center
JPH03256686A (en) Work tool automatic exchange device and using method thereof
WO2023136176A1 (en) Rotary machine holding device
KR102347437B1 (en) Robot griper having fastening function
US20210299855A1 (en) Robot and robot system having the same
JPS61214985A (en) Industrial robot
JP6572845B2 (en) Vehicle assembly equipment
JP2021016915A (en) Fastening auxiliary device, robot, and control method of fastening auxiliary device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899283

Country of ref document: EP

Kind code of ref document: A1