WO2016017753A1 - コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム - Google Patents

コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム Download PDF

Info

Publication number
WO2016017753A1
WO2016017753A1 PCT/JP2015/071634 JP2015071634W WO2016017753A1 WO 2016017753 A1 WO2016017753 A1 WO 2016017753A1 JP 2015071634 W JP2015071634 W JP 2015071634W WO 2016017753 A1 WO2016017753 A1 WO 2016017753A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene homopolymer
mass
group
less
measured
Prior art date
Application number
PCT/JP2015/071634
Other languages
English (en)
French (fr)
Inventor
勝寿 太田
Original Assignee
三井化学株式会社
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 株式会社プライムポリマー filed Critical 三井化学株式会社
Priority to JP2016538432A priority Critical patent/JP6445562B2/ja
Priority to EP15826415.0A priority patent/EP3176214B1/en
Priority to KR1020167035698A priority patent/KR101854070B1/ko
Priority to CN201580041839.2A priority patent/CN106574091B/zh
Priority to SG11201609874QA priority patent/SG11201609874QA/en
Priority to US15/315,622 priority patent/US10800909B2/en
Publication of WO2016017753A1 publication Critical patent/WO2016017753A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a propylene homopolymer composition suitable for a capacitor film excellent in high-temperature voltage resistance, a method for producing the same, and a capacitor film obtained by stretching the propylene homopolymer composition.
  • Biaxially stretched polypropylene film has excellent mechanical properties, heat resistance, transparency, chemical stability, electrical properties, etc., so it can be used not only for packaging and tape applications, but also for electrical applications including capacitors and battery separators. Widely used in various fields.
  • stretched polypropylene films for capacitors are used not only as high-voltage capacitors, but also as capacitors for noise filters such as switching power supplies, converters and inverters, and smoothing capacitors.
  • Patent Document 1 discloses an ultrathin surface-roughened biaxially stretched polypropylene film excellent in voltage endurance obtained by a composition comprising two types of propylene homopolymers having different MFR (Melt Flow Rate).
  • Patent Documents 2 and 3 disclose propylene homopolymers obtained with a metallocene catalyst and having high stereoregularity and excellent voltage resistance.
  • Patent Document 4 discloses a biaxially stretched polypropylene film for a capacitor using a polypropylene raw resin having an adjusted Mw / Mn.
  • Patent Document 5 discloses a metal vapor deposition film for capacitors made of polypropylene having different mesopentad fractions.
  • Patent Document 6 discloses a biaxially stretched polypropylene film for a capacitor comprising a polypropylene resin having a molecular weight distribution of 5 to 10 and a polypropylene resin having a molecular weight distribution of 3 or less and a mesopentad fraction of 30 to 60% or less.
  • JP 2010-254794 A International Publication No. 2010/087328 JP 2012-209541 A International Publication No. 2012/099167 JP 2010-280795 A JP 2014-205799 A
  • Patent Document 1 is excellent in the handling property of the film at the time of capacitor processing, but the high-temperature withstand voltage property is insufficient.
  • the film of patent document 2 has high withstand voltage property, in patent document 2, the thin film biaxially stretched film is not obtained.
  • the thin film is obtained in patent document 3, the high temperature withstand voltage property is inadequate.
  • high temperature withstand voltage property is inadequate.
  • the technique described in Patent Document 5 has insufficient voltage resistance because it includes polypropylene having a low mesopentad fraction.
  • An object of the present invention is to provide a propylene homopolymer composition for a capacitor film, a method for producing the same, and a capacitor film, in which the production of a thin film is easy and the high-temperature withstand voltage resistance of the film is excellent.
  • the present invention includes the following matters.
  • a propylene homopolymer (A1) having the following characteristics (Ai) to (A-iii) is contained in an amount of 1% by mass to less than 50% by mass, and the following (Bi) to (B-ii):
  • the propylene homopolymer (B1) having the following characteristics is contained in an amount exceeding 50% by mass and 99% by mass or less (the total of the propylene homopolymer (A1) and the propylene homopolymer (B1) is 100% by mass);
  • the melt flow rate (MFR) is 1.0-10.0 g / 10 min,
  • (Ai) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.930 or more
  • A-ii) The half width of the elution peak measured by the temperature rising elution fractionation method (TREF) is less than 4.0 ° C.
  • A-iii) The molecular weight distribution Mw / Mn measured by GPC is less than 3.0.
  • Bi) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.950 or more
  • (B-ii) The molecular weight distribution Mw / Mn measured by GPC is 3.0 or more.
  • the propylene homopolymer (A2) having the following characteristics (Ai) to (A-ii) is 1% by mass to less than 50% by mass, and the following (Bi) to (B-iii):
  • the propylene homopolymer (B2) having the following characteristics is contained in an amount exceeding 50% by mass and 99% by mass or less (the total of the propylene homopolymer (A2) and the propylene homopolymer (B2) is 100% by mass).
  • the melt flow rate (MFR) is 1.0-10.0 g / 10 min
  • (Ai) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.930 or more
  • (A-ii) The half width of the elution peak measured by the temperature rising elution fractionation method (TREF) is less than 4.0 ° C.
  • (Bi) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.950 or more
  • B-ii) The molecular weight distribution Mw / Mn measured by GPC is 3.0 or more.
  • (B-iii) Half width of elution peak measured by temperature rising elution fractionation method (TREF) is 4.0 ° C. or more.
  • a method for producing a propylene homopolymer composition for a capacitor film comprising: (I) The melt flow rate (MFR) of the propylene homopolymer composition for the capacitor film is 1.0 to 10.0 g / 10 minutes, (Ii) The method for producing a propylene homopolymer composition for capacitor films, wherein the propylene homo
  • (Ai) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.930 or more
  • A-ii) The half width of the elution peak measured by the temperature rising elution fractionation method (TREF) is less than 4.0 ° C.
  • A-iii) The molecular weight distribution Mw / Mn measured by GPC is less than 3.0.
  • Bi) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.950 or more
  • (B-ii) The molecular weight distribution Mw / Mn measured by GPC is 3.0 or more.
  • a method for producing a propylene homopolymer composition for a capacitor film comprising: (I) The melt flow rate (MFR) of the propylene homopolymer composition for the capacitor film is 1.0 to 10.0 g / 10 minutes, (Ii) The method for producing a propylene homopolymer composition for capacitor films, wherein the propylene homopolymer composition
  • (Ai) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.930 or more
  • (A-ii) The half width of the elution peak measured by the temperature rising elution fractionation method (TREF) is less than 4.0 ° C.
  • (Bi) Mesopentad fraction (mmmm) measured by 13 C-NMR is 0.950 or more
  • B-ii) The molecular weight distribution Mw / Mn measured by GPC is 3.0 or more.
  • (B-iii) Half width of elution peak measured by temperature rising elution fractionation method (TREF) is 4.0 ° C. or more.
  • a propylene homopolymer composition for a capacitor film it is possible to provide a propylene homopolymer composition for a capacitor film, a method for producing the same, and a capacitor film, in which the production of a thin film is easy and the high-temperature voltage resistance of the film is excellent.
  • the propylene homopolymer composition for a capacitor film according to the present invention (hereinafter, also referred to as a propylene homopolymer composition) satisfies the above-mentioned requirements, so that it is easy to produce a thin film and the propylene homopolymer according to the present invention.
  • a film obtained from the combined composition has excellent high-temperature withstand voltage characteristics and is suitable as a capacitor film. As will be described later, in the present invention, particularly when the thickness of the capacitor film exceeds 4 ⁇ m, the high-temperature withstand voltage is particularly excellent.
  • Propylene homopolymer (B1) has a wide molecular weight distribution ((B-ii)).
  • the half-value width of the elution peak measured by TREF may be wide ((B-iii)).
  • the crystal structure of the capacitor film made of the composition containing propylene homopolymer (B1) exceeding 50% by mass is relatively non-uniform, the crystal size is large, and defects (for example, voids) that are the origin of dielectric breakdown The size of the amorphous part) is considered to be large.
  • the high molecular weight component contained in the propylene homopolymer (B1) becomes a nucleating agent and the crystallinity of the film is increased. In a relatively thick film, the influence on the withstand voltage due to defects becomes small, and the influence of the crystallinity of the entire film becomes larger than that, and the contribution to the withstand voltage is considered to be relatively increased.
  • the propylene homopolymer (A1) has a narrow half-value width of the elution peak measured by TREF ((A-ii)) and a narrow molecular weight distribution ((A-iii)). It is believed that the size is reduced and defects are reduced. Therefore, it is presumed that by blending less than 50% by mass of the propylene homopolymer (A1), the crystal structure is made uniform without impairing the crystallinity of the film, and the withstand voltage is increased.
  • propylene homopolymers (A1) and (A2) are collectively referred to as “propylene homopolymer (A)”, and the propylene homopolymers (B1) and (B2) are collectively referred to as “propylene homopolymer (B)”. ".
  • ⁇ Propylene homopolymer composition In the propylene homopolymer composition according to the present invention, when the total of the propylene homopolymer (A) and the propylene homopolymer (B) is 100% by mass, the propylene homopolymer (A) is 1 More than 50% by mass and more than 50% by mass and more than 50% by mass and containing 99% by mass or less of the propylene homopolymer (B).
  • the propylene homopolymer composition according to the present invention preferably contains 1 to 40% by mass of the propylene homopolymer (A) and 60 to 99% by mass of the propylene homopolymer (B).
  • the blend (A) is contained in an amount of 5 to 30% by mass and the propylene homopolymer (B) is contained in an amount of 70 to 95% by mass.
  • the propylene homopolymer (A) is contained in an amount of 10 to 25% by mass, More preferably, the blend (B) is contained in an amount of 75 to 90% by mass.
  • the propylene homopolymer composition according to the present invention has a melt flow rate (MFR, ASTM D1238, 230 ° C., 2.16 kg load) of 1.0 to 10.0 g / 10 min, preferably 1.5 to 8 It is 0.0 g / 10 minutes, more preferably 2.0 to 6.0 g / 10 minutes, and still more preferably 2.0 to 4.0 g / 10 minutes.
  • MFR melt flow rate
  • MFR can be set in the said range by changing suitably MFR and a compounding ratio of the said propylene homopolymer (A) and the said propylene homopolymer (B).
  • the propylene homopolymer composition according to the present invention has a chlorine content of 2 mass ppm or less (0 to 2 mass ppm), preferably 1.5 mass ppm or less, more preferably 1 mass ppm or less. .
  • the chlorine content is controlled within the above range by increasing the blending amount of the propylene homopolymer (A) obtained with the metallocene catalyst described later or by post-treating the propylene homopolymer (B). Can do.
  • the mesopentad fraction (mmmm) measured by 13 C-NMR of the propylene homopolymer composition according to the present invention is preferably 0.940 or more, and 0.945 or more and 0.995 or less. It is more preferable.
  • the mesopentad fraction (mmmm) is less than 0.940, the high-temperature withstand voltage resistance of the film may be lowered.
  • the mesopentad fraction (mmmm) exceeds 0.995, the stress at the time of stretching becomes high, and a film having a thin film thickness required for capacitor use cannot be obtained, or a film having a uniform film thickness distribution is obtained. It may not be obtained.
  • the propylene homopolymer (A1) has a mesopentad fraction (mmmm) measured by 13 C-NMR (nuclear magnetic resonance) of 0.930 or more, preferably 0.935 or more and 0.995 or less, More preferably, it is 0.940 or more and 0.995 or less, More preferably, it is 0.945 or more and 0.990 or less. If the mmmm is less than 0.930, a film having a desired voltage resistance cannot be obtained. In addition, when the mmmm exceeds 0.995, the stress at the time of stretching becomes high, and a film having a thin thickness necessary for capacitor use cannot be obtained, or a film having a uniform film thickness distribution may not be obtained. is there.
  • the propylene homopolymer (A1) has a half-value width of an elution peak in a curve (TREF elution curve) showing an elution component amount with respect to an elution temperature measured by a temperature rising elution fractionation method (TREF) using o-dichlorobenzene. It is lower than 4.0 ° C, preferably 2.0 ° C or higher and 3.8 ° C or lower, more preferably 2.5 ° C or higher and 3.6 ° C or lower, and further preferably 3.0 ° C or higher and 3.5 ° C or lower. It is below °C. When the half-value width of the elution peak is 4.0 ° C.
  • the high-temperature withstand voltage resistance of the film is lowered, and particularly when the film is thinned, the high-temperature withstand voltage resistance is greatly lowered. If the full width at half maximum, that is, the stereoregularity distribution is widened, the melting point distribution of the film is widened and the low melting point component is increased.
  • the propylene homopolymer (A1) preferably has a molecular weight distribution (Mw / Mn, value obtained by dividing the weight average molecular weight Mw by the number average molecular weight Mn) measured by gel permeation chromatography (GPC) is less than 3.0. Is 2.0 or more and less than 3.0, more preferably 2.3 or more and less than 3.0, still more preferably 2.5 or more and 2.8 or less.
  • the melt flow rate (MFR) of the propylene homopolymer (A) is not particularly limited, but is preferably 1 to 100 g / 10 minutes, more preferably 1 to 50 g / 10 minutes, and further preferably 2 to 30 g. / 10 minutes, particularly preferably 3 to 10 g / 10 minutes.
  • MFR melt flow rate
  • the MFR is less than 1 g / 10 minutes, gel may be generated inside the film.
  • the MFR exceeds 100 g / 10 min, the film productivity may decrease, for example, a film breakage may occur during stretching.
  • the proportion of the heterogeneous bond based on the 2,1-insertion and the heterogeneous bond based on the 1,3-insertion of the propylene monomer in all propylene structural units determined from the 13 C-NMR spectrum.
  • the sum of the proportions is preferably 0.2 mol% or less, more preferably 0.15 mol% or less, and still more preferably 0.1 mol% or less.
  • the sum exceeds 0.2 mol% the disorder of the crystal of the propylene homopolymer (A) increases, so that the crystal component contained in the obtained film decreases, and the high-temperature withstand voltage may decrease.
  • the chlorine content of the propylene homopolymer (A) is not particularly limited as long as the chlorine content of the propylene homopolymer composition is 2 mass ppm or less, but 2 mass ppm or less is preferable, and 1.5 mass ppm or less. Is more preferable and 1 mass ppm or less is still more preferable.
  • the propylene homopolymer (B1) has a mesopentad fraction (mmmm) measured by 13 C-NMR (nuclear magnetic resonance) of 0.950 or more, preferably 0.950 or more and 0.995 or less, More preferably, it is 0.955 or more and 0.995 or less, More preferably, it is 0.960 or more and 0.990 or less.
  • mmmm mesopentad fraction measured by 13 C-NMR (nuclear magnetic resonance) of 0.950 or more, preferably 0.950 or more and 0.995 or less, More preferably, it is 0.955 or more and 0.995 or less, More preferably, it is 0.960 or more and 0.990 or less.
  • the propylene homopolymer (B1) has a molecular weight distribution (Mw / Mn, a value obtained by dividing the weight average molecular weight Mw by the number average molecular weight Mn) measured by gel permeation chromatography (GPC) of 3.0 or more, preferably Is 3.0 or more and 12.0 or less, more preferably 3.5 or more and 12.0 or less, still more preferably 6.0 or more and 12.0 or less, and particularly preferably 8.0 or more and 12.0 or less. It is as follows. When the molecular weight distribution is less than 3.0, the high-temperature voltage resistance of the thin film is lowered.
  • the propylene homopolymer (B2) has a half-value width of an elution peak in a curve (TREF elution curve) showing an elution component amount with respect to an elution temperature measured by a temperature rising elution fractionation method (TREF) using o-dichlorobenzene.
  • a curve showing an elution component amount with respect to an elution temperature measured by a temperature rising elution fractionation method (TREF) using o-dichlorobenzene.
  • 4.0 ° C. or higher preferably 4.0 ° C. or higher and 6.0 ° C. or lower, more preferably 4.0 ° C. or higher and 5.5 ° C. or lower, more preferably 4.0 ° C. or higher and 4.5 ° C. or lower. It is below °C.
  • the stretchability becomes insufficient.
  • the half value width of this elution peak exceeds 6.0 degreeC, the high temperature withstand voltage property of a film may fall.
  • the melt flow rate (MFR) of the propylene homopolymer (B) is not particularly limited, but is preferably 0.5 to 10 g / 10 minutes, more preferably 1 to 7 g / 10 minutes, and still more preferably 1 .5-5 g / 10 min.
  • MFR melt flow rate
  • the MFR is less than 0.5, a gel may be generated on the film.
  • the MFR exceeds 10 g / 10 min, the productivity of the film may decrease.
  • the crystal size inside the film is not reduced at the time of stretching, and the effect of improving the high-temperature withstand voltage by the film stretching may be reduced.
  • the proportion of the heterogeneous bond based on the 2,1-insertion and the heterogeneous bond based on the 1,3-insertion of the propylene monomer in all propylene structural units determined from the 13 C-NMR spectrum is preferably 0.2 mol% or less, more preferably 0.15 mol% or less, and still more preferably 0.1 mol% or less.
  • the sum exceeds 0.2 mol% the disorder of the crystal of the propylene homopolymer (B) increases, so that the crystal component in the resulting film decreases, and the high-temperature withstand voltage may decrease.
  • the chlorine content of the propylene homopolymer (B) is not particularly limited as long as the chlorine content of the propylene homopolymer composition is 2 mass ppm or less, but 2 mass ppm or less is preferable, and 1.5 mass ppm or less. Is more preferable and 1 mass ppm or less is still more preferable.
  • the manufacturing method of the said propylene homopolymer (A) is not specifically limited, It is preferable to manufacture the said propylene homopolymer (A) using a metallocene catalyst from a viewpoint of a high voltage endurance.
  • a metallocene catalyst a polymerization catalyst containing a metallocene compound having a cyclopentadienyl skeleton in the molecule is preferably used.
  • Examples of the metallocene compound having a cyclopentadienyl skeleton in the molecule include a metallocene compound represented by the following formula [I] and a bridged metallocene compound represented by the following formula [II].
  • a metallocene compound represented by the following formula [II] is preferable as the metallocene compound.
  • M represents a titanium atom, a zirconium atom or a hafnium atom.
  • Q represents a halogen atom, a hydrocarbon group, an anionic ligand, or a neutral ligand capable of coordination with a lone electron pair.
  • Cp 1 and Cp 2 are a cyclopentadienyl group or a substituted cyclopentadienyl group capable of forming a sandwich structure with M.
  • Cp 1 and Cp 2 may be the same or different from each other.
  • j is an integer of 1 to 4, and when j is 2 or more, Qs may be the same or different from each other.
  • the substituted cyclopentadienyl group includes an indenyl group, a fluorenyl group, an azulenyl group, and a group in which these are substituted with one or more hydrocarbyl groups.
  • a part of the double bond of the unsaturated ring condensed to the dienyl group may be hydrogenated.
  • Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, —Ge— or the like.
  • Ra is a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a hydrogen atom, a halogen atom or a nitrogen atom having one or two bonded hydrocarbon groups. Nitrogen compound residue.
  • a crosslinkable metallocene compound represented by the following formula [III] As the polymerization catalyst containing the metallocene compound, a crosslinkable metallocene compound represented by the following formula [III], and a compound capable of reacting with an organometallic compound, an organoaluminum oxy compound and a metallocene compound to form an ion pair
  • a metallocene catalyst containing at least one compound selected from the group consisting of, and, if necessary, a particulate carrier is preferable.
  • R 1 to R 14 are each independently a hydrogen atom, a hydrocarbon group, or a silicon-containing group. R 1 to R 14 may be the same or different.
  • hydrocarbon group examples include methyl group, ethyl group, n-propyl group, allyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl group.
  • a linear hydrocarbon group such as n-decanyl group; isopropyl group, tert-butyl group, amyl group, 3-methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1-methyl Branched hydrocarbon groups such as -1-propylbutyl, 1,1-propylbutyl, 1,1-dimethyl-2-methylpropyl, 1-methyl-1-isopropyl-2-methylpropyl; cyclopentyl Cyclic saturated hydrocarbon groups such as cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornyl group, adamantyl group; phenyl group, tolyl group, naphthyl group, biphenyl A cyclic unsaturated hydrocarbon group such as a benzyl group, a cumyl group, a 1,1-diphenylethyl group or a triphenylmethyl
  • Examples of the silicon-containing group include a trimethylsilyl group, a triethylsilyl group, a dimethylphenylsilyl group, a diphenylmethylsilyl group, and a triphenylsilyl group.
  • R 5 to R 12 may be bonded to each other to form a ring.
  • Such substituted fluorenyl groups include benzofluorenyl group, dibenzofluorenyl group, octahydrodibenzofluorenyl group, octamethyloctahydrodibenzofluorenyl group, octamethyltetrahydrodicyclopentafluorenyl group, etc. Is mentioned.
  • R 1 , R 2 , R 3 and R 4 are preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 and R 4 are more preferably hydrocarbon groups having 1 to 20 carbon atoms. More preferably, R 1 and R 3 are hydrogen atoms, and R 2 and R 4 are linear or branched alkyl groups having 1 to 5 carbon atoms.
  • R 5 to R 12 are preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group having 1 to 20 carbon atoms include the aforementioned hydrocarbon groups.
  • R 7 and R 11 are not hydrogen atoms, and it is more preferable that R 6 , R 7 , R 10 and R 11 are not all hydrogen atoms.
  • Y is a Group 14 element, preferably carbon, silicon, or germanium, and more preferably carbon.
  • R 13 and R 14 are preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 20 carbon atoms. Specifically, R 13 and R 14 are preferably a methyl group, an ethyl group, a phenyl group, a tolyl group, or the like. R 13 and R 14 may be the same as or different from each other, and may be bonded to each other to form a ring. R 13 and R 14 may be bonded to the adjacent substituents of R 5 to R 12 or the adjacent substituents of R 1 to R 4 to form a ring.
  • M is a Group 4 transition metal, and is preferably a titanium atom, a zirconium atom or a hafnium atom.
  • Q is a halogen, a hydrocarbon group, an anionic ligand or a neutral ligand capable of coordinating with a lone electron pair.
  • j is an integer of 1 to 4, and when j is 2 or more, Qs may be the same or different from each other.
  • halogen examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group examples include the same hydrocarbon groups as described above.
  • anionic ligand examples include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
  • the neutral ligand capable of coordinating with the lone electron pair include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane.
  • organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane.
  • At least one Q is a halogen or an alkyl group.
  • crosslinkable metallocene compound represented by the formula [III] examples include compounds disclosed in International Publication No. 01/27124, International Publication No. 2014/050816, International Publication No. 2014/050817. I can do it.
  • preferred specific examples include [3- (1 ′, 1 ′, 4 ′, 4 ′, 7 ′, 7 ′, 10 ′, 10′-octamethyloctahydrodibenzo [b, h] fluorene-12 '-Yl) (3-methyl-5-tert-butyl-1,2,3,3a-tetrahydropentalene)] zirconium dichloride, [3- (1', 1 ', 4', 4 ', 7', 7 ′, 10 ′, 10′-octamethyloctahydrodibenzo [b, h] fluoren-12′-yl) (3-phenyl-5-tert-butyl-1,2,3,3a-tetrahydropen
  • the polymerization temperature tends to affect the stereoregularity of the obtained polymer. Since these metallocene compounds exhibit high stereospecificity in the polymerization of ⁇ -olefins having 3 or more carbon atoms, there is a tendency that high stereoregular olefin polymers can be obtained even under high polymerization temperature conditions. For this reason, it can be considered as a particularly preferable aspect in terms of process simplicity and manufacturing cost.
  • titanium derivatives and hafnium derivatives may be used. These may use 1 type and may use 2 or more types together.
  • the metallocene compound that can be used in the present invention is not limited to the above exemplified compounds.
  • an organometallic compound an organoaluminum oxy compound
  • a compound that reacts with a metallocene compound to form an ion pair used together with the crosslinkable metallocene compound represented by the formula [III].
  • the compounds disclosed in WO01 / 27124 and JP-A-11-315109 by the present applicant can be used without limitation.
  • a method for controlling the propylene homopolymer (A1) to satisfy the requirements (Ai) to (A-iii) at the same time, and the propylene homopolymer (A2) for the requirements (Ai) to (A-ii) As a method for controlling so as to satisfy the above simultaneously, for example, a method of appropriately setting a polymerization condition such as a polymerization temperature using a catalyst as described above can be mentioned.
  • the manufacturing method of the said propylene homopolymer (B) is not specifically limited, It is preferable to manufacture the said propylene homopolymer (B) using a Ziegler-Natta catalyst from a stretchable viewpoint.
  • the propylene homopolymer (B) is an organic metal containing a solid titanium catalyst component (I) and a metal atom selected from the group consisting of Group 1, Group 2 and Group 13 of the Periodic Table It is preferably obtained by polymerization in the presence of an olefin polymerization catalyst containing compound (II) and, if necessary, electron donor (III).
  • the solid titanium catalyst component (I) includes a titanium compound, a magnesium compound, a halogen, an electron donor (I), a cyclic ester compound (a) and a cyclic ester compound (b), and optionally an electron donation. It is preferable that the catalyst component (c) which is a body (I) is included. These compounds include, for example, compounds described in International Publication No. 2006/077945, International Publication No. 2006/077946, International Publication No. 2008/010459, International Publication No. 2009/069483, Japanese Patent Application Laid-Open No. 7-109314, and the like. Can be illustrated.
  • titanium compound examples include the following formula Ti (OR) g X 4-g The tetravalent titanium compound shown by these can be mentioned.
  • R is a hydrocarbon group
  • X is a halogen atom
  • g is 0 ⁇ g ⁇ 4.
  • titanium compound examples include titanium tetrahalides such as TiCl 4 and TiBr 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (On-C 4 H 9). ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , trihalogenated alkoxytitanium such as Ti (O—isoC 4 H 9 ) Br 3 ; Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Dihalogenated alkoxytitanium such as Cl 2 ; monohalogenated alkoxytitanium such as Ti (OCH 3 ) 3 Cl, Ti (On—C 4 H 9 ) 3 Cl, Ti (OC 2 H 5 ) 3 Br; Ti ( And tetraalkoxytitanium such as OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 4 H 9 ) 4 , and Ti (O-2-ethylhexyl) 4 .
  • the magnesium compound include magnesium halides such as magnesium chloride and magnesium bromide; alkoxymagnesium halides such as methoxymagnesium chloride, ethoxymagnesium chloride and phenoxymagnesium chloride; ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, Examples include alkoxymagnesium such as 2-ethylhexoxymagnesium; aryloxymagnesium such as phenoxymagnesium; and magnesium carboxylates such as magnesium stearate. These magnesium compounds may be used alone or in combination of two or more. These magnesium compounds may be complex compounds with other metals, double compounds, or mixtures with other metal compounds.
  • magnesium compound a magnesium compound containing halogen is preferable, magnesium halide is more preferable, and magnesium chloride is still more preferable.
  • alkoxymagnesium such as ethoxymagnesium is also preferably used.
  • the magnesium compound is obtained by contacting an organic magnesium compound derived from another substance, for example, an organic magnesium compound such as a Grignard reagent, with a halogenated titanium, a halogenated silicon, a halogenated alcohol, or the like. Also good.
  • an organic magnesium compound such as a Grignard reagent
  • halogen examples include X of Ti (OR) g X 4-g , which is an example of the titanium compound, and halogen of magnesium halide, which is an example of the magnesium compound. These halogens may be used alone or in combination of two or more.
  • Electrode (I) As the electron donor (I), a cyclic ester compound (a), a cyclic ester compound (b), and optionally a catalyst component (c) can be used.
  • cyclic ester compound (a) examples include compounds described in International Publication No. 2006/077945, International Publication No. 2009/069483, and the like.
  • the cyclic ester compound (a) is preferably a compound represented by the following formula (1a).
  • n is an integer of 5 to 10, preferably an integer of 5 to 7, and more preferably 6.
  • C a and C b represent a carbon atom.
  • a plurality of R 1 are each independently a monovalent hydrocarbon having 1 to 20, preferably 1 to 10, more preferably 2 to 8, more preferably 4 to 8, and particularly preferably 4 to 6 carbon atoms. It is a group.
  • the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a decyl group, and a dodecyl group.
  • n-butyl group, isobutyl group, hexyl group and octyl group are preferable, and n-butyl group and isobutyl group are from the viewpoint of producing a propylene block copolymer having a wide molecular weight distribution. More preferred.
  • a plurality of R are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group or a silicon-containing group. is there. At least one R is an atom or group other than a hydrogen atom.
  • the atom or group other than the hydrogen atom is preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • hydrocarbon group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, Examples thereof include an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group such as a cyclopentyl group, an n-hexyl group, a cyclohexyl group, a vinyl group, a phenyl group, and an octyl group.
  • the hydrocarbon group having 1 to 20 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group. Of these, an iso-butyl group and a sec-butyl group are more preferred.
  • Single bonds in the cyclic skeleton may be replaced by double bonds. That is, the C—C bond (when n is 6 to 10), the C a —C bond and the C b —C bond in the cyclic skeleton may be replaced with a double bond.
  • Examples of the compound represented by the formula (1a) include diisobutyl 3,6-dimethylcyclohexane-1,2-dicarboxylate, di-n-hexyl 3,6-dimethylcyclohexane-1,2-dicarboxylate, Di-n-octyl 6-dimethylcyclohexane-1,2-dicarboxylate, diisobutyl 3-methyl-6-ethylcyclohexane-1,2-dicarboxylate, di-n 3-methyl-6-ethylcyclohexane-1,2-dicarboxylate -Hexyl, di-n-octyl 3-methyl-6-ethylcyclohexane-1,2-dicarboxylate, diisobutyl 3-methyl-6-n-propylcyclohexane-1,2-dicarboxylate, 3-methyl-6-n- Propylcyclohexane-1,2-dicarboxylate di-n-hexyl, 3-methyl-6
  • the cyclic ester compound (a) having the diester structure as described above has isomers such as cis and trans, and any structure has an effect meeting the object of the present invention.
  • a higher rate is preferable because not only the effect of broadening the molecular weight distribution but also the activity and the stereoregularity of the resulting polymer tend to be higher.
  • the ratio of the trans form of the cis form and the trans form is preferably 51% or more, more preferably 55% or more, still more preferably 60% or more, and particularly preferably 65% or more.
  • the proportion of the trans isomer is 100% or less, preferably 90% or less, more preferably 85% or less, and still more preferably 79% or less.
  • cyclic ester compound (b) examples include compounds described in International Publication No. 2006/077946 and International Publication No. 2009/069483.
  • the cyclic ester compound (b) is preferably a compound having a cycloalkane-1,2-dicarboxylic acid diester structure or a cycloalkene-1,2-dicarboxylic acid diester structure represented by the following formula (2a).
  • n is an integer of 5 to 10, preferably an integer of 5 to 7, and more preferably 6.
  • C a and C b represent a carbon atom.
  • a plurality of R 1 are each independently a monovalent hydrocarbon having 1 to 20, preferably 1 to 10, more preferably 2 to 8, more preferably 4 to 8, and particularly preferably 4 to 6 carbon atoms. It is a group.
  • the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a decyl group, and a dodecyl group.
  • Tetradecyl group, hexadecyl group, octadecyl group, eicosyl group and the like are preferable, and n-butyl group and isobutyl group can produce a propylene-based block copolymer having a wide molecular weight distribution. To more preferable.
  • a single bond in the cyclic skeleton (excluding the C a -C a bond and the C a -C b bond, ie, the C—C a bond, the C—C b bond, and the C—C bond (when n is 6 to 10) )) May be replaced by a double bond.
  • the compound represented by the formula (2a) includes diisobutyl cyclohexane-1,2-dicarboxylate, dihexyl cyclohexane-1,2-dicarboxylate, diheptyl cyclohexane-1,2-dicarboxylate, cyclohexane Dioctyl-1,2-dicarboxylate and di-2-ethylhexyl cyclohexane-1,2-dicarboxylate are preferred. This is because not only the catalyst performance is high, but these compounds can be produced at a relatively low cost by utilizing the Diels Alder reaction.
  • the ratio of the trans form of the cis form and the trans form is preferably 51% or more, more preferably 55% or more, still more preferably 60% or more, and particularly preferably 65% or more.
  • the proportion of the trans isomer is 100% or less, preferably 90% or less, more preferably 85% or less, and still more preferably 79% or less. The reason for this is unknown, but it is presumed that the variation of the stereoisomer described later is in a region suitable for wide molecular weight distribution.
  • the purity of the trans isomer is preferably within the above range.
  • the purity of the trans isomer is less than 51%, the effect of wide molecular weight distribution, activity, stereospecificity and the like may be insufficient. Further, when the purity of the trans isomer exceeds 79%, the effect of wide molecular weight distribution may be insufficient.
  • the purity of the trans isomer is within the above range, it is advantageous in achieving both a high level of the effect of broadening the molecular weight distribution of the obtained polymer and the activity of the catalyst and the high stereoregularity of the obtained polymer. There are many things.
  • the cyclic ester compound (a) may be used alone or in combination of two or more. Moreover, the said cyclic ester compound (b) may be used independently, and may be used in combination of 2 or more type.
  • Ratio of the cyclic ester compound (a) to the total of the cyclic ester compound (a) and the cyclic ester compound (b) is preferably 10 mol% or more, more preferably 30 mol% or more, further preferably 40 mol% or more, and particularly preferably 50 mol% or more.
  • the proportion is preferably 99 mol% or less, more preferably 90 mol% or less, still more preferably 85 mol% or less, and particularly preferably 80 mol% or less.
  • the solid titanium catalyst component (I) is a propylene polymer having a very wide molecular weight distribution and high stereoregularity even when the content of the cyclic ester compound (a) in the solid titanium catalyst component (I) is low. Can be provided with high activity. The cause of this effect is unknown, but the present inventors presume as follows.
  • the cyclic ester compound (a) has a large number of steric structural variations that can be formed by the presence of the substituent R as compared with the cyclic ester compound (b). For this reason, the influence of the cyclic ester compound (a) is dominant on the molecular weight distribution, and it is considered that a propylene polymer having an extremely wide molecular weight distribution can be provided even if the ratio of the cyclic ester compound (a) is low. .
  • the cyclic ester compound (a) and the cyclic ester compound (b) have relatively similar structures, the basic performance such as activity and stereoregularity hardly affects the effects of the compounds ( When compounds having different structures are used, there are many examples in which the activity, stereoregularity, etc. change drastically, and the effect of one compound becomes dominant.
  • the cyclic hydrocarbon structure forms various three-dimensional structures such as a chair type and a boat type. Furthermore, when the cyclic hydrocarbon structure has a substituent, the possible three-dimensional variation is further increased. Further, of the carbon atoms forming the cyclic skeleton of the cyclic ester compounds, the bond between the ester group (COOR 1 group) carbon atom is bonded with an ester group (COOR 1 group) other carbon atoms bound If it is a single bond, the variation of the three-dimensional structure which can be taken spreads. The ability to take such a variety of three-dimensional structures leads to the formation of a variety of active species on the solid titanium catalyst component (I).
  • propylene polymers having various molecular weights can be produced at the same time, that is, a propylene-based block copolymer having a wide molecular weight distribution is produced. can do.
  • the cyclic ester compounds (a) and (b) may be formed in the process of preparing the solid titanium catalyst component (I). For example, when preparing the solid titanium catalyst component (I), a step in which the carboxylic anhydride or carboxylic acid dihalide corresponding to the cyclic ester compounds (a) and (b) substantially contacts with the corresponding alcohol. By providing, cyclic ester compound (a) and (b) can also be contained in solid titanium catalyst component (I).
  • Catalyst component (c) examples include ether compounds and polyvalent carboxylic acid esters described in JP-A-7-109314.
  • 1,3-diethers are preferable, 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2, 2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) 1, 3-dimethoxypropane is more preferred.
  • the polyvalent carboxylic acid ester is preferably an aromatic polycarboxylic acid ester, more preferably a phthalic acid ester.
  • the catalyst component (c) which is an electron donor component, has the effect of increasing the stereoregularity of the resulting polymer while maintaining high catalytic activity, the effect of controlling the composition distribution of the resulting copolymer, and catalyst particles.
  • the effect of the flocculant to control the particle shape and particle size is shown.
  • the cyclic ester compounds (a) and (b) are also considered to have an effect of controlling the molecular weight distribution.
  • the solid titanium catalyst component (I) includes the titanium compound, the magnesium compound, a halogen, and the electron donor (I).
  • the method is not particularly limited.
  • the solid titanium catalyst component (I) can be preferably prepared by the following methods (P-1) to (P-4).
  • P-1) A method of contacting a solid adduct containing a magnesium compound and a solubilizing component, an electron donor (I), and a titanium compound in a liquid state in a suspended state in the presence of an inert hydrocarbon solvent.
  • (P-2) a method of contacting a solid adduct containing a magnesium compound and a solubilizing component, an electron donor (I), and a titanium compound in a liquid state in a plurality of times
  • (P-3) A solid adduct containing a magnesium compound and a solubilizing component, an electron donor (I), and a liquid titanium compound are contacted in a suspended state in the presence of an inert hydrocarbon solvent, And a method of contacting in multiple times
  • (P-4) A method of contacting a magnesium compound in a liquid state containing a magnesium compound and a solubilizing component, a titanium compound in a liquid state, and the electron donor (I).
  • the temperature for preparing the solid titanium catalyst component (I) is preferably ⁇ 30 ° C. to 150 ° C., more preferably ⁇ 25 ° C. to 140 ° C., and further preferably ⁇ 25 to 130 ° C.
  • the solid titanium catalyst component (I) can also be prepared in the presence of a solvent, if necessary.
  • a solvent include polar aromatic hydrocarbons such as toluene, aliphatic hydrocarbons such as heptane, hexane, octane, decane, and cyclohexane, and alicyclic hydrocarbon compounds. Among these, aliphatic hydrocarbons are preferable as the solvent.
  • solubilized component a compound capable of solubilizing the magnesium compound in a temperature range of room temperature to about 300 ° C. is preferable.
  • Preferred examples of the compound include alcohols, aldehydes, amines, carboxylic acids, and mixtures thereof.
  • the alcohol examples include methanol, ethanol, propanol, butanol, isobutanol, ethylene glycol, 2-methylpentanol, 2-ethylbutanol, n-heptanol, n-octanol, 2-ethylhexanol, decanol,
  • Examples include aliphatic alcohols such as dodecanol; alicyclic alcohols such as cyclohexanol and methylcyclohexanol; aromatic alcohols such as benzyl alcohol and methylbenzyl alcohol; aliphatic alcohols having an alkoxy group such as n-butyl cellosolve, and the like.
  • aldehyde examples include aldehydes having 7 or more carbon atoms such as capric aldehyde and 2-ethylhexyl aldehyde.
  • amines having 6 or more carbon atoms such as heptylamine, octylamine, nonylamine, laurylamine, 2-ethylhexylamine.
  • carboxylic acid examples include organic carboxylic acids having 7 or more carbon atoms such as caprylic acid and 2-ethylhexanoic acid.
  • solubilizing component the alcohol is preferable, and ethanol, propanol, butanol, isobutanol, hexanol, 2-ethylhexanol, and decanol are more preferable.
  • solubilizing components may be used singly or in combination of two or more.
  • the amount of the magnesium compound and the solubilizing component used in preparing the solid adduct or the magnesium compound in the liquid state varies depending on the type, contact conditions, etc., but the magnesium compound is a unit volume of the solubilizing component. It is used in an amount of 0.1 to 20 mol / liter, preferably 0.5 to 5 mol / liter. Further, if necessary, a solvent inert to the solid adduct can be used in combination.
  • the solvent for example, hydrocarbon compounds such as heptane, hexane, octane and decane are preferably used.
  • the composition ratio between magnesium and the solubilizing component of the solid adduct or liquid magnesium compound obtained varies depending on the type of compound used, but cannot be specified unconditionally, but with respect to 1 mol of magnesium in the magnesium compound,
  • the amount of the solubilizing component is preferably 2.0 mol or more, more preferably 2.2 mol or more, further preferably 2.3 mol or more, particularly preferably 2.4 mol or more and 5.0 mol or less. It is.
  • the halogen / titanium (atomic ratio) (that is, the number of moles of halogen atoms / number of moles of titanium atoms) is preferably 2 to 100, and more preferably 4 to 90.
  • Cyclic ester compound (a) / titanium (molar ratio) ie, the number of moles of cyclic ester compound (a) / the number of moles of titanium atoms) and cyclic ester compound (b) / titanium (molar ratio) (ie, cyclic)
  • the number of moles of ester compound (b) / number of moles of titanium atoms is preferably 0.01 to 100, and more preferably 0.2 to 10.
  • the solubilizing component / titanium atom (molar ratio) is preferably 0 to 100, and more preferably 0 to 10.
  • the value (mol%) of 100 ⁇ cyclic ester compound (a) / (cyclic ester compound (a) + cyclic ester compound (b)) Is preferably 5 mol%, more preferably 25 mol%, still more preferably 40 mol%, and particularly preferably 50 mol%.
  • the upper limit of the value is preferably 99 mol%, more preferably 90 mol%, still more preferably 85 mol%, particularly preferably 80 mol%.
  • Magnesium / titanium (atomic ratio) (that is, the number of moles of magnesium atoms / the number of moles of titanium atoms) is preferably 2 to 100, and more preferably 4 to 50.
  • the contents of components other than the cyclic ester compounds (a) and (b), for example, the solubilizing component and the catalyst component (c) are based on 100% by mass of the cyclic ester compounds (a) and (b). Thus, it is preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the organometallic compound (II) is an organometallic compound containing a metal atom selected from the group consisting of Group 1, Group 2 and Group 13 of the periodic table.
  • a compound containing a Group 13 metal for example, an organoaluminum compound, a complex alkylated product of a Group 1 metal and aluminum, an organometallic compound of a Group 2 metal, etc. Can be used.
  • an organoaluminum compound is preferable.
  • the olefin polymerization catalyst may contain an electron donor (III) as necessary.
  • an electron donor (III) an organosilicon compound is preferable.
  • the organosilicon compound include a compound represented by the following formula (5).
  • R and R ′ are hydrocarbon groups, and n is an integer of 0 ⁇ n ⁇ 4.
  • vinyltriethoxysilane diphenyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, and dicyclopentyldimethoxysilane are preferable.
  • organosilicon compound a compound represented by the following formula (6) is also preferable.
  • R a is a hydrocarbon group having 1 to 6 carbon atoms, preferably an unsaturated or saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms, more preferably 2 to 6 carbon atoms.
  • saturated aliphatic hydrocarbon groups include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, and iso-pentyl group. , Cyclopentyl group, n-hexyl group, cyclohexyl group and the like.
  • Ra an ethyl group is preferable.
  • R b is a hydrocarbon group having 1 to 12 carbon atoms or a hydrogen atom, preferably an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms, or a hydrogen atom.
  • R b include a hydrogen atom, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, iso -Pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, octyl group and the like.
  • Rb is preferably an ethyl group.
  • R c is a hydrocarbon group having 1 to 12 carbon atoms or a hydrogen atom, and preferably an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms.
  • R c include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, and iso-pentyl group. , Cyclopentyl group, n-hexyl group, cyclohexyl group, octyl group and the like.
  • R c an ethyl group is preferable.
  • Specific examples of the compound represented by the formula (6) include dimethylaminotriethoxysilane, diethylaminotriethoxysilane, dimethylaminotrimethoxysilane, diethylaminotrimethoxysilane, diethylaminotri-n-propoxysilane, and di-n-propyl.
  • organosilicon compound is a compound represented by the following formula (7).
  • RNSi (OR a ) 3 (7)
  • RN is a cyclic amino group.
  • the cyclic amino group include a perhydroquinolino group, a perhydroisoquinolino group, a 1,2,3,4-tetrahydroquinolino group, a 1,2,3,4-tetrahydroisoquinolino group, and an octamethylene group.
  • imino group R a has the same meaning as in formula (6).
  • Specific examples of the compound represented by the formula (7) include (perhydroquinolino) triethoxysilane, (perhydroisoquinolino) triethoxysilane, and (1,2,3,4-tetrahydroquinolino). ) Triethoxysilane, (1,2,3,4-tetrahydroisoquinolino) triethoxysilane, octamethyleneiminotriethoxysilane and the like. These may use 1 type and may use 2 or more types together.
  • Various components such as an electron donor related to the solid titanium catalyst component may be used singly or in combination of two or more.
  • the propylene homopolymer (B) is preferably produced by performing main polymerization in the presence of a prepolymerization catalyst obtained by prepolymerizing propylene in the presence of the olefin polymerization catalyst.
  • the prepolymerization is performed by prepolymerizing propylene in an amount of preferably 0.1 to 1000 g, more preferably 0.3 to 500 g, and still more preferably 1 to 200 g per 1 g of the olefin polymerization catalyst.
  • a catalyst having a higher concentration than the catalyst concentration in the system in the main polymerization can be used.
  • the concentration of the solid titanium catalyst component (I) in the prepolymerization is preferably 0.001 to 200 mmol, more preferably 0.01 to 50 mmol, and more preferably 0.1 to 20 mmol in terms of titanium atom per liter of the solvent. Is more preferable.
  • the amount of the organometallic compound (II) in the prepolymerization is such that 0.1 to 1000 g, more preferably 0.3 to 500 g of polymer is formed per 1 g of the solid titanium catalyst component (I). I just need it.
  • the amount of the organometallic compound (II) is preferably 0.1 to 300 moles, more preferably 0.5 to 100 moles per mole of titanium atoms in the solid titanium catalyst component (I). 1 to 50 mol is more preferable.
  • the electron donor (III) or the like can be used as necessary.
  • the amount of these components is preferably 0.1 to 50 mol, more preferably 0.5 to 30 mol, and further preferably 1 to 10 mol per mol of titanium atom in the solid titanium catalyst component (I). preferable.
  • the prepolymerization can be performed, for example, under mild conditions by adding propylene and the catalyst component to an inert hydrocarbon medium.
  • the inert hydrocarbon medium include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, methylcyclopentane, cyclohexane, cycloheptane, And alicyclic hydrocarbons such as methylcycloheptane and cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene; and mixtures thereof.
  • aliphatic hydrocarbons are preferred.
  • prepolymerization can be carried out using propylene itself as a solvent, or it can be prepolymerized in a substantially solvent-free state. In this case, it is preferable to perform preliminary polymerization continuously.
  • the prepolymerization temperature is preferably ⁇ 20 to 100 ° C., more preferably ⁇ 20 to 80 ° C., and further preferably 0 to 40 ° C.
  • the main polymerization is a step of producing a propylene homopolymer (B).
  • the prepolymerization and the main polymerization can be carried out by any of a liquid polymerization method such as a bulk polymerization method, a solution polymerization and a suspension polymerization, and a gas phase polymerization method.
  • a liquid polymerization method such as a bulk polymerization method, a solution polymerization and a suspension polymerization, and a gas phase polymerization method.
  • liquid phase polymerization such as bulk polymerization and suspension polymerization or gas phase polymerization is preferable.
  • an inert hydrocarbon used at the time of the above-mentioned prepolymerization can be used as a reaction solvent.
  • Propylene which is liquid at the reaction temperature and pressure can also be used.
  • the amount of the solid titanium catalyst component (I) is preferably 0.0001 to 0.5 mmol, preferably 0.005 to 0.1 mmol in terms of titanium atom per liter of the polymerization volume. More preferred.
  • the amount of the organometallic compound (II) is preferably 1 to 2000 moles, more preferably 5 to 500 moles per mole of titanium atoms in the prepolymerization catalyst component in the polymerization system.
  • the electron donor (III) is preferably 0.001 to 50 moles relative to 1 mole of the organometallic compound (II), and 0.01 to 30 moles are more preferred, and 0.05 to 20 moles are even more preferred.
  • the molecular weight of the obtained polymer can be adjusted (lowered), and a polymer having a high melt flow rate (MFR) can be obtained. Since the amount of hydrogen necessary for adjusting the molecular weight varies depending on the type of production process used, pressure, and temperature, the range cannot be determined in general. Therefore, it is preferable to determine the amount of hydrogen in consideration of pressure and temperature so as to obtain a propylene homopolymer (B) having a target range of MFR.
  • the polymerization temperature of propylene is preferably 20 to 200 ° C, more preferably 30 to 100 ° C, and still more preferably 50 to 90 ° C.
  • the pressure gauge pressure is preferably from normal pressure to 100 kgf / cm 2 (9.8 MPa), more preferably from 2 to 50 kgf / cm 2 (0.20 to 4.9 MPa).
  • the propylene homopolymer (B) is used as a raw material for the capacitor film, when the amount of polymer produced per unit amount of catalyst is small, the catalyst residue can be removed by post-treatment. Even when the amount of polymer produced is large due to the high activity of the catalyst, it is preferable to carry out post-treatment to remove the catalyst residue.
  • Examples of the post-treatment method include a method of washing the obtained propylene homopolymer (B) with liquid propylene, butane, hexane, heptane or the like. At this time, water, an alcohol compound, a ketone compound, an ether compound, an ester compound, an amine compound, an organic acid compound, an inorganic acid compound, etc. are added to solubilize and easily extract catalyst components such as titanium and magnesium. Also good. It is also preferable to wash with a polar compound such as water or alcohol. By performing such post-treatment, the chlorine content in the resulting propylene homopolymer (B) can be reduced.
  • the propylene homopolymer (A) in powder form or pellet form, the propylene homopolymer (B), and other additives as required are used. , Dry blending, Henschel mixer and the like. Further, these raw materials may be melt-kneaded in advance with a single-screw or twin-screw kneader, a kneader or the like.
  • the other additives include stabilizers such as antioxidants and chlorine absorbents, lubricants, plasticizers, flame retardants, and antistatic agents. These additives can be added as long as the effects of the present invention are not impaired.
  • the capacitor film according to the present invention comprises the propylene homopolymer composition according to the present invention.
  • the thickness of the capacitor film according to the present invention is 1 to 50 ⁇ m, preferably 1.5 to 30 ⁇ m, more preferably 2 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m, and particularly preferably more than 4 ⁇ m. 15 ⁇ m or less.
  • the thickness is less than 1 ⁇ m, film breakage tends to occur, and the productivity of the film decreases.
  • the thickness exceeds 50 ⁇ m the capacitor cannot be miniaturized and the electric capacity is small.
  • the capacitor film according to the present invention is a film having a thickness exceeding 4 ⁇ m, a remarkable effect of being excellent in high-temperature withstand voltage can be obtained.
  • the propylene homopolymer composition is stretched at a stretched plane ratio (longitudinal ⁇ horizontal plane ratio) of 30 to 80 times, preferably 35 to 75 times, more preferably 35 to 70.
  • the stretched plane magnification is 30 times or more, the crystal size inside the film is reduced, and a film having higher dielectric breakdown strength can be obtained.
  • the withstand voltage of capacitor films tends to decrease as the operating temperature increases and the film becomes thinner.
  • the capacitor film according to the present invention uses a propylene homopolymer composition satisfying certain requirements, the voltage resistance of the thin film according to the present invention is high even when the use temperature is high. .
  • the high-temperature withstand voltage of the capacitor film according to the present invention is preferably 0.90 kV or more, and more preferably 1.0 kV or more in a film having a thickness of 5.0 ⁇ m, for example.
  • the high temperature withstand voltage is the value of the withstand voltage (BDV) obtained by the measurement method in the examples described later, and the temperature is set to 120 ° C.
  • the capacitor film according to the present invention is preferably used as a capacitor separator film disposed between electrodes of a capacitor. That is, the present invention includes the use of the capacitor film according to the present invention as a capacitor separator film.
  • the capacitor film according to the present invention can be obtained, for example, by producing a raw sheet and then stretching it.
  • each raw material is melt-kneaded in advance to produce a propylene homopolymer composition, which can be used as a raw material.
  • a propylene homopolymer (A) and a propylene homopolymer (B) are dry blended, and if necessary, various antioxidants (Irganox 1010 (trade name, manufactured by BASF), BHT (dibutylhydroxytoluene) , Irgafos 168 (trade name, manufactured by BASF, etc.), and those further added with various additives such as calcium stearate can also be used.
  • antioxidants Irganox 1010 (trade name, manufactured by BASF)
  • BHT dibutylhydroxytoluene
  • Irgafos 168 trade name, manufactured by BASF, etc.
  • the propylene homopolymer composition is supplied from a hopper to an extruder, heated and melted at 170 to 300 ° C., preferably 200 to 260 ° C., and melt extruded from a T die. Thereafter, this is cooled and solidified with a metal chill roll at 70 to 120 ° C. to obtain an unstretched raw sheet.
  • the thickness of the original sheet is not particularly limited, but is preferably 60 to 800 ⁇ m, and more preferably 80 to 400 ⁇ m. When the thickness of the original fabric sheet is less than 60 ⁇ m, it may break during stretching. On the other hand, if the thickness exceeds 800 ⁇ m, a thin film cannot be obtained, which may not be suitable as a capacitor film.
  • a capacitor film can be produced by stretching the raw sheet.
  • the stretching method include a uniaxial stretching method and a biaxial stretching method, but a biaxial stretching method is preferable.
  • the biaxial stretching method the film is uniaxially stretched in the machine direction and then stretched in the direction perpendicular to the machine direction, and the simultaneous biaxial stretching method in which the machine direction and the direction perpendicular to the machine direction are simultaneously stretched.
  • Examples thereof include an axial stretching method.
  • a sequential biaxial stretching method such as a tenter method or a tubular film method, or a simultaneous biaxial stretching method can be used.
  • the tenter method for example, the following method can be used.
  • the molten sheet melt-extruded from the T die is solidified by a cooling roll, and the sheet is preheated as necessary and then introduced into the stretching zone.
  • the sheet is stretched 3 to 9 times in the machine direction (longitudinal direction) at a temperature of 120 to 160 ° C. and stretched in a direction perpendicular to the machine direction (lateral direction) at a temperature of 150 to 190 ° C. and 5 to 11 times.
  • the total draw ratio is 30 to 80 times, preferably 35 to 75 times, more preferably 35 to 70 times, and still more preferably 35 to 50 times. If necessary, it can be heat-set at 160 to 190 ° C. with respect to the biaxially stretched film. Thereby, a film with improved thermal dimensional stability, wear resistance, and the like can be obtained.
  • melt flow rate The melt flow rate (MFR) was measured under the conditions of 230 ° C. and 2.16 kg load according to ASTM D1238.
  • the mesopentad fraction (mmmm) of the propylene homopolymer is This is a value determined by the assignment shown in Zamelli et al., Macromolecules, 8, 687 (1975), and was measured by 13 C-NMR under the following conditions.
  • the mesopentad fraction is a value represented by the following formula.
  • ⁇ Measurement conditions Equipment Temperature rising elution fractionator TREF200 + type (trade name, manufactured by Polymer ChAR) Eluent o-dichlorobenzene (300ppm containing BHT) Sample concentration 0.40% (w / v) Injection volume 0.3 mL.
  • Mw / Mn Mw / Mn of the propylene homopolymer was calculated by measuring under the following conditions and analyzing the obtained chromatogram.
  • the molecular weight was calculated by the universal calibration method, and the value in terms of polystyrene was calculated.
  • the baseline of the GPC chromatogram is based on the retention time at which the elution curve rises, and the retention time corresponding to a molecular weight of 1000 as the end point.
  • Liquid chromatograph ALC / GPC 150-C Plus type (trade name, differential refractometer detector integrated type, manufactured by Waters) Column: GMH6-HT (trade name, manufactured by Tosoh Corp.) x 2 and GMH6-HTL (trade name, manufactured by Tosoh Corp.) x 2 are connected in series.
  • Mobile phase medium o-dichlorobenzene Flow rate: 1. 0 mL / min Measurement temperature: 140 ° C Sample concentration: 0.10% (W / W) Sample solution volume: 500 ⁇ L.
  • Chlorine content 0.8 g of a sample was burned at 400 to 900 ° C. under a stream of argon / oxygen using a combustion apparatus manufactured by Mitsubishi Kasei. Thereafter, the combustion gas is captured with ultrapure water, and the concentrated sample solution is used as a DIONEX-DX300 type ion chromatograph (trade name, manufactured by Nippon Dioneck Co., Ltd.) and an anion column AS4A-SC (trade name, Dioneck). The chlorine content was determined by measurement using
  • Reference examples 1-4 BDV of the obtained stretched film was measured according to JIS-C2330.
  • the measurement temperature was set to 120 ° C.
  • Three levels of original film having a thickness of 120 ⁇ m, 150 ⁇ m and 170 ⁇ m are stretched by sequential biaxial stretching (stretching surface ratio: 45 times) of 5 times in the machine direction (machine direction) ⁇ 9 times in the transverse direction, and a thickness of 2.5 to 4
  • Three-level films were prepared in the range of 0.0 ⁇ m, and the withstand voltage of each film was measured.
  • the dielectric breakdown voltage [kV] at a thickness of 3 ⁇ m was calculated from each withstand voltage and the film thickness by the least square method.
  • the temperature was raised to 110 ° C. over 1 hour, and the reaction was carried out for 4 hours. After completion of the reaction, it was cooled to room temperature. After cooling, the supernatant toluene was extracted and replaced with fresh toluene until the replacement rate reached 95%.
  • prepolymerized catalyst was resuspended in purified heptane and adjusted with heptane so that the solid catalyst component concentration would be 1 g / L.
  • This prepolymerized catalyst contained 3 g of polyethylene per 1 g of the solid catalyst component.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 1000 L, and further polymerized.
  • propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L, and further polymerization was performed.
  • propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%.
  • Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G. Furthermore, the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L, and further polymerization was carried out. To the polymerization vessel, propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%. Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.9 MPa / G. Finally, the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 L, and further polymerization was performed.
  • PP1 propylene homopolymer obtained as described above are shown in Table 1 below. PP1 does not include a propylene / ethylene copolymer.
  • the internal temperature was raised to 47 ° C., 1.1 L of a 15 mass% triisobutylaluminum / toluene diluted solution (manufactured by Nippon Alkyl Aluminum) was inserted, and 2.0 L of toluene was further added. .
  • the internal temperature was raised to 50 ° C., and 5.2 L of 20% by mass methylaluminoxane (hereinafter referred to as MAO) / toluene diluent (manufactured by Albemare) was inserted in four portions, and 2.0 L of toluene was further added. It was. Then, it mixed for 30 minutes, stirring at 100 rpm of stirring rotation, hold
  • the internal temperature was raised to 95-98 ° C. in 45 minutes, and a supporting reaction was performed for 4 hours. After completion of the reaction, the internal temperature was lowered to 55 to 65 ° C., stirring was stopped, and the mixture was allowed to stand for 84 minutes. Thereafter, 32.0 L of the supernatant was extracted, 51.0 L of toluene was newly added, and the internal temperature was raised to 55 to 65 ° C. while stirring. When the internal temperature was stabilized at a predetermined temperature, stirring was stopped and the mixture was allowed to stand for 134 minutes.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerization was performed.
  • Propylene was supplied to the polymerization vessel at 15.9 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.47 mol%.
  • Polymerization was performed at a polymerization temperature of 68.9 ° C. and a pressure of 2.86 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • Propylene was supplied to the polymerization vessel at 7.6 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.61 mol%.
  • Polymerization was performed at a polymerization temperature of 67.4 ° C. and a pressure of 2.78 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • propylene was supplied at 22.1 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.60 mol%.
  • Polymerization was performed at a polymerization temperature of 65.4 ° C. and a pressure of 2.72 MPa / G.
  • This solid adduct is suspended in decane, and 23 mmol of the above solid adduct converted to magnesium atom is introduced into 100 ml of titanium tetrachloride maintained at ⁇ 20 ° C. with stirring, and the mixture is mixed. Got. The mixture was heated to 80 ° C. over 5 hours, and when it reached 80 ° C., diisobutyl 3,6-dimethylcyclohexane-1,2-dicarboxylate (cis isomer, trans isomer mixture) was converted into a solid adduct. Was added in an amount of 0.085 mol per 1 mol of magnesium atom, and the temperature was raised to 110 ° C. in 40 minutes.
  • cyclohexane 1,2-dicarboxylate diisobutyl (cis isomer, trans isomer mixture) was further added in an amount of 0.0625 mol with respect to 1 mol of magnesium atom in the solid adduct, and the temperature was adjusted. These were reacted by holding at 110 ° C. with stirring for 90 minutes.
  • the solid part was collected by hot filtration, and the solid part was resuspended in 100 ml of titanium tetrachloride, and then heated to 110 ° C. and stirred for 45 minutes. These were allowed to react by holding. After completion of the reaction for 45 minutes, the solid part was again collected by hot filtration, and washed sufficiently with decane and heptane at 100 ° C. until no free titanium compound was detected in the washing solution.
  • the solid titanium catalyst component ( ⁇ -1) prepared by the above operation was stored as a decane suspension, but a part of this was dried for the purpose of examining the catalyst composition.
  • the composition of the solid titanium catalyst component ( ⁇ -1) thus obtained was 3.2% by mass of titanium, 17% by mass of magnesium, 57% by mass of chlorine, and diisobutyl 3,6-dimethylcyclohexane 1,2-dicarboxylate.
  • the content was 10.6% by mass, 8.9% by mass of cyclohexane 1,2-dicarboxylate diisobutyl and 0.6% by mass of the ethyl alcohol residue.
  • This prepolymerization catalyst contained 6 g of polypropylene per 1 g of the transition metal catalyst component.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • propylene was supplied at 29 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 1.8 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C. and a pressure of 3.1 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • Propylene was supplied to the polymerization vessel at 23 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 1.5 mol%.
  • Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 3.1 MPa / G.
  • the obtained slurry was deactivated, and then sent to a liquid propylene washing tank to wash the polypropylene powder.
  • the solid titanium catalyst component thus prepared was stored as a hexane slurry. A portion of this hexane slurry was dried and the catalyst composition was examined.
  • the solid titanium catalyst component contained 2% by mass of titanium, 57% by mass of chlorine, 21% by mass of magnesium and 20% by mass of DIBP. It was.
  • prepolymerization catalyst 120 g of solid titanium catalyst component prepared in (1) above 20.5 mL of triethylaluminum and 120 L of heptane were placed in an autoclave equipped with a stirrer with an internal volume of 200 L, while maintaining the internal temperature at 5 ° C. 720g was added and reacted with stirring for 60 minutes. After completion of the polymerization, the solid component was precipitated, and the supernatant was removed and washed with heptane twice.
  • the obtained prepolymerized catalyst was resuspended in purified heptane to obtain a slurry of a prepolymerized catalyst having a solid titanium catalyst component concentration of 1 g / L.
  • This prepolymerized catalyst contained 6 g of a propylene homopolymer per 1 g of the solid titanium catalyst component.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerization was performed. 30 kg / hour of propylene and hydrogen were supplied to the polymerization reactor so that the hydrogen concentration in the gas phase was 1.3 mol%. Polymerization was performed at a polymerization temperature of 71 ° C. and a pressure of 3.0 MPa / G. The obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized. 46 kg / hour of propylene and hydrogen were supplied to the polymerization reactor so that the hydrogen concentration in the gas phase was 1.3 mol%.
  • Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G. After the obtained slurry was deactivated, it was sent to a liquid propylene washing tank to wash the propylene homopolymer powder.
  • the slurry was gas-solid separated, introduced into a conical dryer, and vacuum dried at 80 ° C. Next, 35.9 grams of pure water and 0.63 liter of propylene oxide were added to 100 kg of this product, and after dechlorination treatment at 90 ° C. for 2 hours, vacuum drying was performed at 80 ° C. A homopolymer was obtained.
  • the obtained prepolymerization catalyst was resuspended in purified heptane and adjusted with heptane so that the concentration of the solid catalyst component was 1 g / L.
  • This prepolymerized catalyst contained 3 g of polyethylene per 1 g of the solid catalyst component.
  • An internal volume 58L jacketed circulation tubular polymerizer is 30 kg / hour of propylene, 5 NL / hour of hydrogen, 2.6 g / hour of the catalyst slurry produced in the above (3) as a solid catalyst component, triethyl Aluminum was continuously supplied at a rate of 1.0 ml / hour, and polymerization was performed in a full liquid state without a gas phase.
  • the temperature of the tubular polymerizer was 30 ° C., and the pressure was 2.6 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 1000 L, and further polymerized.
  • propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
  • Polymerization was performed at a polymerization temperature of 60 ° C. and a pressure of 2.5 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
  • Polymerization was performed at a polymerization temperature of 59 ° C. and a pressure of 2.5 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
  • Polymerization was performed at a polymerization temperature of 58 ° C. and a pressure of 2.5 MPa / G.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
  • PP5 propylene homopolymer obtained as described above are shown in Table 1 below. PP5 does not include a propylene / ethylene copolymer.
  • Examples 1 to 8 Preparation of propylene homopolymer composition
  • Each propylene homopolymer was blended in the ratio shown in Table 2. Further, 0.2 parts by mass of 3,5-di-tert-butyl-4-hydroxytoluene as an antioxidant and tetrakis [methylene-3 (3,3) as an antioxidant with respect to 100 parts by mass of a propylene homopolymer.
  • 5-Di-tert-butyl-4-hydroxyphenyl) propionate 0.2 parts by mass of methane and 0.01 parts by mass of calcium stearate as a neutralizer were dry blended.
  • the propylene homopolymer composition was pelletized by melt-kneading at a resin temperature of 230 ° C.
  • the obtained raw sheet was cut into 85 mm ⁇ 85 mm and biaxially stretched under the following conditions to obtain a film having a thickness of more than 4.0 ⁇ m and 6.0 ⁇ m or less.
  • the film for high temperature withstand voltage was produced by stretching raw sheets having different thicknesses at a temperature located at the center of the stretchable temperature range obtained above.
  • the withstand voltage (BDV) of the obtained film was measured according to the method described above. The results are shown in Table 2.
  • Drawing device KAROIV (trade name, manufactured by Bruckner) Preheating temperature: 145 to 160 ° C Preheating time: 60 seconds Stretch ratio: Sequential biaxial stretching of 5 times in the longitudinal direction (machine direction) x 7 times in the transverse direction (stretching surface ratio: 35 times) Stretching speed: 6 m / min.
  • KAROIV trade name, manufactured by Bruckner
  • Preheating temperature 145 to 160 ° C
  • Preheating time 60 seconds
  • Stretch ratio Sequential biaxial stretching of 5 times in the longitudinal direction (machine direction) x 7 times in the transverse direction (stretching surface ratio: 35 times) Stretching speed: 6 m / min.
  • the film thickness was adjusted by the preheating temperature.
  • Drawing device KAROIV (trade name, manufactured by Bruckner) Preheating temperature: 145 to 160 ° C Preheating time: 60 seconds Stretch ratio: Sequential biaxial stretching of 5 times in the longitudinal direction (machine direction) x 9 times in the transverse direction (stretching surface ratio: 45 times) Stretching speed: 6 m / min.
  • KAROIV trade name, manufactured by Bruckner
  • Preheating temperature 145 to 160 ° C
  • Preheating time 60 seconds
  • Stretch ratio Sequential biaxial stretching of 5 times in the longitudinal direction (machine direction) x 9 times in the transverse direction (stretching surface ratio: 45 times) Stretching speed: 6 m / min.
  • the capacitor film obtained from the propylene homopolymer composition according to the present invention is excellent in high-temperature voltage resistance, the industrial value of the propylene homopolymer composition and capacitor film according to the present invention is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 薄膜フィルムの製造が容易であり、フィルムの高温耐電圧性に優れたコンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルムを提供する。所定の特性を有するプロピレン単独重合体(A1)を1質量%以上50質量%未満、所定の特性を有するプロピレン単独重合体(B1)を50質量%を超えて99質量%以下含み、(i)メルトフローレート(MFR)が1.0~10.0g/10分であり、(ii)塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物。

Description

コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム
 本発明は、高温耐電圧性に優れたコンデンサフィルムに適したプロピレン単独重合体組成物およびその製造方法、並びにこれを延伸して得られるコンデンサフィルムに関する。
 二軸延伸ポリプロピレンフィルムは、機械的特性、耐熱性、透明性、化学的安定性、電気特性等に優れるため、包装用途、テープ用途だけでなく、コンデンサ、電池用セパレータをはじめとする電気用途の様々な分野で幅広く利用されている。特に、コンデンサ用延伸ポリプロピレンフィルムは、高電圧コンデンサだけでなく、スイッチング電源、コンバータ、インバータなどのノイズフィルタ用コンデンサ、平滑コンデンサとしても用いられている。
 これらの用途では、コンデンサの小型化、高容量化が要求されている。また、ハイブリッドカー、電気自動車用途のように高出力化でコンデンサを使用する場合には、トランジスター、コンデンサ等の回路に大電流が流れて使用温度が高くなるため、コンデンサの高温下での耐電圧性も求められている。
 コンデンサの小型化、高容量化のためにはフィルムを薄くすることが有効である。しかしながら、フィルムを薄くすると耐電圧が著しく低下し、コンデンサ使用時にコンデンサフィルムが低い電圧下で絶縁破壊する。他方、フィルム加工面からは、薄膜フィルムの加工時にフィルム破断が起こりやすくなり、生産性が著しく低下する。
 特許文献1には、MFR(Melt Flow Rate)の異なる2種のプロピレン単独重合体からなる組成物により得られる耐電圧性の優れた極薄粗面化二軸延伸ポリプロピレンフィルムが開示されている。特許文献2及び3には、メタロセン触媒で得られた、立体規則性の高い、耐電圧性の優れたプロピレン単独重合体が開示されている。特許文献4には、Mw/Mnを調整したポリプロピレン原料樹脂を用いるコンデンサ用2軸延伸ポリプロピレンフィルムが開示されている。特許文献5には、メソペンタッド分率の異なるポリプロピレンからなるコンデンサ用金属蒸着フィルムが開示されている。特許文献6には、分子量分布5~10のポリプロピレン樹脂と分子量分布3以下でメソペンタッド分率が30~60%以下のポリプロピレン樹脂からなるコンデンサ用二軸延伸ポリプロピレンフィルムが開示されている。
特開2010-254794号公報 国際公開第2010/087328号 特開2012-209541号公報 国際公開第2012/099167号 特開2010-280795号公報 特開2014-205799号公報
 しかしながら、特許文献1に記載のフィルムは、コンデンサ加工時のフィルムのハンドリング性に優れているが、高温耐電圧性が不十分である。また、特許文献2に記載のフィルムは、耐電圧性は高いが、特許文献2では薄膜二軸延伸フィルムは得られていない。また、特許文献3では薄膜フィルムは得られているが、高温耐電圧性が不十分である。また、特許文献4では高温耐電圧性が不十分である。また、特許文献5の記載の技術では、メソペンタッド分率の低いポリプロピレンが含まれるため耐電圧性が不十分である。また、特許文献6の記載の技術では、メソペンタッド分率が60%のポリプロピレン樹脂が含まれるとフィルムの延伸性は改良されるが、耐電圧が低下するため高温耐電圧性が不十分である。したがって、薄膜フィルムの製造が容易であり、かつフィルムの高温耐電圧性に優れたコンデンサフィルム用プロピレン単独重合体組成物およびコンデンサフィルムの開発が望まれている。
 本発明は、薄膜フィルムの製造が容易であり、フィルムの高温耐電圧性に優れたコンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルムを提供することを目的とする。
 本発明は以下の事項を含む。
 [1]以下の(A-i)~(A-iii)の特性を有するプロピレン単独重合体(A1)を1質量%以上50質量%未満、以下の(B-i)~(B-ii)の特性を有するプロピレン単独重合体(B1)を50質量%を超えて99質量%以下含み(前記プロピレン単独重合体(A1)と前記プロピレン単独重合体(B1)との合計は100質量%)、
(i)メルトフローレート(MFR)が1.0~10.0g/10分であり、
(ii)塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物。
(A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
(A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
(A-iii)GPCにより測定した分子量分布Mw/Mnが3.0未満である、
(B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
(B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である。
 [2]以下の(A-i)~(A-ii)の特性を有するプロピレン単独重合体(A2)を1質量%以上50質量%未満、以下の(B-i)~(B-iii)の特性を有するプロピレン単独重合体(B2)を50質量%を超えて99質量%以下含み(前記プロピレン単独重合体(A2)と前記プロピレン単独重合体(B2)との合計は100質量%)、
(i)メルトフローレート(MFR)が1.0~10.0g/10分であり、
(ii)塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物。
(A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
(A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
(B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
(B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である、
(B-iii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃以上である。
 [3]前記プロピレン単独重合体(A1)または前記プロピレン単独重合体(A2)がメタロセン触媒を用いて製造される[1]または[2]に記載のコンデンサフィルム用プロピレン単独重合体組成物。
 [4]前記プロピレン単独重合体(B1)または前記プロピレン単独重合体(B2)がチーグラ・ナッタ触媒を用いて製造される[1]~[3]のいずれかに記載のコンデンサフィルム用プロピレン単独重合体組成物。
 [5][1]~[4]のいずれかに記載のコンデンサフィルム用プロピレン単独重合体組成物からなる、厚みが1~50μmであるコンデンサフィルム。
 [6]厚みが4μmを超えて50μm以下である[5]に記載のコンデンサフィルム。
 [7][1]~[4]のいずれかに記載のコンデンサフィルム用プロピレン単独重合体組成物を延伸面倍率(縦×横の面倍率)30~80倍で延伸して得られるコンデンサフィルム。
 [8]コンデンサセパレータフィルムである[5]~[7]のいずれかに記載のコンデンサフィルム。
 [9]メタロセン触媒を用いて、以下の(A-i)~(A-iii)の特性を有するプロピレン単独重合体(A1)を製造する工程と、
 チーグラ・ナッタ触媒を用いて、以下の(B-i)~(B-ii)の特性を有するプロピレン単独重合体(B1)を製造する工程と、
 1質量%以上50質量%未満の前記プロピレン単独重合体(A1)と、50質量%を超えて99質量%以下の前記プロピレン単独重合体(B1)と(前記プロピレン単独重合体(A1)と前記プロピレン単独重合体(B1)との合計は100質量%)を混合する工程と、
を含むコンデンサフィルム用プロピレン単独重合体組成物の製造方法であって、
(i)前記コンデンサフィルム用プロピレン単独重合体組成物のメルトフローレート(MFR)が1.0~10.0g/10分であり、
(ii)前記コンデンサフィルム用プロピレン単独重合体組成物の塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物の製造方法。
(A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
(A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
(A-iii)GPCにより測定した分子量分布Mw/Mnが3.0未満である、
(B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
(B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である。
 [10]メタロセン触媒を用いて、以下の(A-i)~(A-ii)の特性を有するプロピレン単独重合体(A2)を製造する工程と、
 チーグラ・ナッタ触媒を用いて、以下の(B-i)~(B-iii)の特性を有するプロピレン単独重合体(B2)を製造する工程と、
 1質量%以上50質量%未満の前記プロピレン単独重合体(A2)と、50質量%を超えて99質量%以下の前記プロピレン単独重合体(B2)と(前記プロピレン単独重合体(A2)と前記プロピレン単独重合体(B2)との合計は100質量%)を混合する工程と、
を含むコンデンサフィルム用プロピレン単独重合体組成物の製造方法であって、
(i)前記コンデンサフィルム用プロピレン単独重合体組成物のメルトフローレート(MFR)が1.0~10.0g/10分であり、
(ii)前記コンデンサフィルム用プロピレン単独重合体組成物の塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物の製造方法。
(A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
(A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
(B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
(B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である、
(B-iii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃以上である。
 本発明によれば、薄膜フィルムの製造が容易であり、フィルムの高温耐電圧性に優れたコンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルムを提供することができる。
 本発明に係るコンデンサフィルム用プロピレン単独重合体組成物(以下、プロピレン単独重合体組成物とも示す)は、上記要件を満たすため、薄膜フィルムの製造が容易であり、かつ本発明に係るプロピレン単独重合体組成物から得られるフィルムは高温耐電圧性に優れており、コンデンサフィルムとして好適である。後述するように、本発明では特に該コンデンサフィルムの厚みが4μmを超える場合、高温耐電圧性に特に優れる。
 プロピレン単独重合体(B1)は分子量分布が広い((B-ii))。また、TREFで測定した溶出ピークの半値幅が広い場合もある((B-iii))。このために50質量%を超えるプロピレン単独重合体(B1)を含む組成物からなるコンデンサフィルムの結晶構造は比較的不均一であり、結晶サイズも大きく、絶縁破壊の起点となる欠陥(例えば、ボイド、非晶部のサイズ)は多いと考えられる。一方で、プロピレン単独重合体(B1)に含まれる高分子量成分が核剤となり、フィルムの結晶化度が高くなることが期待される。比較的厚いフィルムでは欠陥による耐電圧性への影響が小さくなり、それよりもフィルム全体の結晶化度の影響が大きくなり、耐電圧性への寄与が相対的に高まると考えられる。
 一方、プロピレン単独重合体(A1)はTREFで測定した溶出ピークの半値幅が狭く((A-ii))、分子量分布も狭いため((A-iii))、結晶構造が均一化され、結晶サイズが小さくなり、欠陥が減少すると考えられる。したがって、50質量%未満のプロピレン単独重合体(A1)を配合することにより、フィルムの結晶化度を損なうことなく、結晶構造の均一化が図られ、耐電圧が高くなると推定される。
 以下、本発明の詳細について説明する。なお、前記プロピレン単独重合体(A1)および(A2)をまとめて「プロピレン単独重合体(A)」、前記プロピレン単独重合体(B1)および(B2)をまとめて「プロピレン単独重合体(B)」とも示す。
 <プロピレン単独重合体組成物>
 本発明に係るプロピレン単独重合体組成物は、前記プロピレン単独重合体(A)と前記プロピレン単独重合体(B)との合計を100質量%とするとき、前記プロピレン単独重合体(A)を1質量%以上50質量%未満、前記プロピレン単独重合体(B)を50質量%を超えて99質量%以下含む。本発明に係るプロピレン単独重合体組成物は、前記プロピレン単独重合体(A)を1~40質量%、前記プロピレン単独重合体(B)を60~99質量%含むことが好ましく、前記プロピレン単独重合体(A)を5~30質量%、前記プロピレン単独重合体(B)を70~95質量%含むことがより好ましく、前記プロピレン単独重合体(A)を10~25質量%、前記プロピレン単独重合体(B)を75~90質量%含むことがさらに好ましい。
 前記プロピレン単独重合体(A)の割合が1質量%未満の場合、プロピレン単独重合体(A)を含有する効果がなくなり、プロピレン単独重合体(B)単独とほぼ等しい物性を示す。また、前記プロピレン単独重合体(A)の割合が50質量%以上である場合、延伸性が低下し、高温耐電圧性が低下する。
 前記プロピレン単独重合体(A)の割合が50質量%以上であると高温耐電圧性等が低下する理由は明確ではないが、以下のように考えられる。「山北隆征、有安富雄、電気学会論文誌A,110巻、11号、817~823頁、平成2年」には、非晶よりも球晶の絶縁破壊電圧が大きいことが報告されており、これは結晶化度が高いほど耐電圧性が高いことを示している。一方、前記プロピレン単独重合体(A)は分子量分布が狭いために高分子量成分が少なく、フィルム成形時の延伸過程における配向結晶化が不十分である。そのため、フィルムの結晶化度が小さくなり、結果として耐電圧性が低下したと推察される。
 [要件(i)]
 本発明に係るプロピレン単独重合体組成物は、メルトフローレート(MFR、ASTM D1238、230℃、2.16kg荷重)が1.0~10.0g/10分であり、好ましくは1.5~8.0g/10分であり、より好ましくは2.0~6.0g/10分であり、さらに好ましくは2.0~4.0g/10分である。
 MFRが1.0g/10分未満の場合、押出機での原反成形が困難であり、また延伸時にチャック外れ等が生じ、所望のフィルムが得られない。また、MFRが10.0g/10分を超えると、延伸時にフィルム破断が多発する等、フィルムの生産性が大幅に低下する。なお、MFRは、前記プロピレン単独重合体(A)及び前記プロピレン単独重合体(B)のMFR及び配合比を適宜変更することにより、上記範囲内に設定することができる。
 [要件(ii)]
 本発明に係るプロピレン単独重合体組成物は、塩素含有量が2質量ppm以下(0~2質量ppm)であり、好ましくは1.5質量ppm以下であり、より好ましくは1質量ppm以下である。塩素含有量が2質量ppmを超えると、得られるフィルムの耐電圧性が低下するだけでなく、長期的なコンデンサ特性も低下する。コンデンサ使用時においてフィルム内部の塩素イオン近傍の電界が局所的に増大し、そこから絶縁破壊が生じやすくなるために耐電圧性が低下すると解される。塩素含有量は、後述するメタロセン触媒で得られるプロピレン単独重合体(A)の配合量を増加させたり、プロピレン単独重合体(B)を後処理したりすることにより、上記範囲内に制御することができる。
 また、本発明に係るプロピレン単独重合体組成物の、13C-NMRで測定されるメソペンタッド分率(mmmm)は、0.940以上であることが好ましく、0.945以上0.995以下であることがより好ましい。該メソペンタッド分率(mmmm)が0.940未満では、フィルムの高温耐電圧性が低下する場合がある。一方、該メソペンタッド分率(mmmm)が0.995を超えると、延伸時の応力が高くなり、コンデンサ用途に必要な薄さのフィルムが得られない場合や、均一な膜厚分布を有するフィルムが得られない場合がある。
 <プロピレン単独重合体(A1)>
 [要件(A-i)]
 前記プロピレン単独重合体(A1)は、13C-NMR(核磁気共鳴)で測定したメソペンタッド分率(mmmm)が、0.930以上であり、好ましくは0.935以上0.995以下であり、より好ましくは0.940以上0.995以下であり、さらに好ましくは0.945以上0.990以下である。該mmmmが0.930未満では所望の耐電圧性を有するフィルムが得られない。なお、該mmmmが0.995を超えると、延伸時の応力が高くなり、コンデンサ用途に必要な薄さのフィルムが得られない場合や、均一な膜厚分布を有するフィルムが得られない場合がある。
 [要件(A-ii)]
 前記プロピレン単独重合体(A1)は、o-ジクロロベンゼンを用いた昇温溶離分別法(TREF)により測定した溶出温度に対する溶出成分量を示す曲線(TREF溶出曲線)において、溶出ピークの半値幅が4.0℃未満であり、好ましくは2.0℃以上3.8℃以下であり、より好ましくは2.5℃以上3.6℃以下であり、さらに好ましくは3.0℃以上3.5℃以下である。該溶出ピークの半値幅が4.0℃以上の場合、フィルムの高温耐電圧性が低下し、特にフィルムが薄くなると大幅に高温耐電圧性が低下する。半値幅、すなわち立体規則性分布が広くなると、フィルムの融点分布が広くなり低融点成分が増加するため、結果的に高温下の結晶化度が低下すると推察される。
 [要件(A-iii)]
 前記プロピレン単独重合体(A1)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した分子量分布(Mw/Mn、重量平均分子量Mwを数平均分子量Mnで除した値)が3.0未満であり、好ましくは2.0以上3.0未満であり、より好ましくは2.3以上3.0未満であり、更に好ましくは2.5以上2.8以下である。
 <プロピレン単独重合体(A2)>
 [要件(A-i)及び要件(A-ii)]
 要件(A-i)及び要件(A-ii)については、前記プロピレン単独重合体(A1)と同様である。
 <プロピレン単独重合体(A)>
 前記プロピレン単独重合体(A)のメルトフローレート(MFR)は特に限定されないが、好ましくは1~100g/10分であり、より好ましくは1~50g/10分であり、更に好ましくは2~30g/10分であり、特に好ましくは3~10g/10分である。該MFRが1g/10分未満の場合には、フィルム内部にゲルが発生する場合がある。また、該MFRが100g/10分を超える場合には、延伸時にフィルム破断が発生する等、フィルムの生産性が低下する場合がある。
 前記プロピレン単独重合体(A)の、13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入に基づく異種結合の割合および1,3-挿入に基づく異種結合の割合の和は、好ましくは0.2mol%以下であり、より好ましくは0.15mol%以下であり、さらに好ましくは0.1mol%以下である。該和が0.2mol%を超えると、プロピレン単独重合体(A)の結晶の乱れが多くなるため、得られるフィルムに含まれる結晶成分が少なくなり、高温耐電圧性が低下する場合がある。
 前記プロピレン単独重合体(A)の塩素含有量は、プロピレン単独重合体組成物の塩素含有量が2質量ppm以下であれば特に限定されないが、2質量ppm以下が好ましく、1.5質量ppm以下がより好ましく、1質量ppm以下が更に好ましい。
 <プロピレン単独重合体(B1)>
 [要件(B-i)]
 前記プロピレン単独重合体(B1)は、13C-NMR(核磁気共鳴)で測定したメソペンタッド分率(mmmm)が、0.950以上であり、好ましくは0.950以上0.995以下であり、より好ましくは0.955以上0.995以下であり、更に好ましくは0.960以上0.990以下である。該mmmmが0.950未満では所望の耐電圧性を有するフィルムが得られない。なお、該mmmmが0.995を超えると、延伸時の応力が高くなり、コンデンサ用途に必要な薄さのフィルムが得られない場合や、均一な膜厚分布を有するフィルムが得られない場合がある。
 [要件(B-ii)]
 前記プロピレン単独重合体(B1)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した分子量分布(Mw/Mn、重量平均分子量Mwを数平均分子量Mnで除した値)が3.0以上であり、好ましくは3.0以上12.0以下であり、より好ましくは3.5以上12.0以下であり、更に好ましくは6.0以上12.0以下であり、特に好ましくは8.0以上12.0以下である。該分子量分布が3.0未満の場合、薄膜フィルムの高温耐電圧性が低下する。
 <プロピレン単独重合体(B2)>
 [要件(B-i)及び要件(B-ii)]
 要件(B-i)及び要件(B-ii)については、前記プロピレン単独重合体(B1)と同様である。
 [要件(B-iii)]
 前記プロピレン単独重合体(B2)は、o-ジクロロベンゼンを用いた昇温溶離分別法(TREF)により測定した溶出温度に対する溶出成分量を示す曲線(TREF溶出曲線)において、溶出ピークの半値幅が4.0℃以上であり、好ましくは4.0℃以上6.0℃以下であり、より好ましくは4.0℃以上5.5℃以下であり、さらに好ましくは4.0℃以上4.5℃以下である。該溶出ピークの半値幅が4.0℃未満である場合、延伸性が不十分となる。なお、該溶出ピークの半値幅が6.0℃を超えると、フィルムの高温耐電圧性が低下する場合がある。
 <プロピレン単独重合体(B)>
 前記プロピレン単独重合体(B)のメルトフローレート(MFR)に特に限定されないが、好ましくは0.5~10g/10分であり、より好ましくは1~7g/10分であり、更に好ましくは1.5~5g/10分である。該MFRが0.5未満の場合には、フィルムにゲルが発生する場合がある。一方、該MFRが10g/10分を超える場合、フィルムの生産性が低下する場合がある。また、延伸時にフィルム内部の結晶サイズが小さくならず、フィルム延伸による高温耐電圧性の向上効果が小さくなる場合がある。
 前記プロピレン単独重合体(B)の、13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入に基づく異種結合の割合および1,3-挿入に基づく異種結合の割合の和は、好ましくは0.2mol%以下であり、より好ましくは0.15mol%以下であり、更に好ましくは0.1mol%以下である。該和が0.2mol%を超えると、プロピレン単独重合体(B)の結晶の乱れが多くなるため、得られるフィルムにおける結晶成分が少なくなり、高温耐電圧性が低下する場合がある。
 前記プロピレン単独重合体(B)の塩素含有量は、プロピレン単独重合体組成物の塩素含有量が2質量ppm以下であれば特に限定されないが、2質量ppm以下が好ましく、1.5質量ppm以下がより好ましく、1質量ppm以下が更に好ましい。
 <プロピレン単独重合体(A)の製造方法>
 前記プロピレン単独重合体(A)の製造方法は特に限定されないが、高温耐電圧性の観点から前記プロピレン単独重合体(A)を、メタロセン触媒を用いて製造することが好ましい。該メタロセン触媒としては、シクロペンタジエニル骨格を分子内に有するメタロセン化合物を含む重合触媒が好ましく用いられる。
 シクロペンタジエニル骨格を分子内に有するメタロセン化合物としては、下記式[I]で表されるメタロセン化合物、および下記式[II]で表される架橋型メタロセン化合物を例示することができる。これらの中でも、該メタロセン化合物としては下記式[II]で表される架橋型メタロセン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 前記式[I]および[II]において、Mはチタン原子、ジルコニウム原子またはハフニウム原子を示す。Qはハロゲン原子、炭化水素基、アニオン配位子、または孤立電子対で配位可能な中性配位子を示す。CpおよびCpはMと共にサンドイッチ構造を形成することができるシクロペンタジエニル基または置換シクロペンタジエニル基である。CpとCpは互いに同一でも異なっていてもよい。jは1~4の整数であり、jが2以上の時、Qは互いに同一でも異なっていてもよい。
 前記置換シクロペンタジエニル基は、インデニル基、フルオレニル基、アズレニル基およびこれらが一つ以上のハイドロカルビル基で置換された基を包含し、インデニル基、フルオレニル基、アズレニル基の場合はシクペンタジエニル基に縮合する不飽和環の二重結合の一部は水添されていてもよい。
 前記式[II]において、Yは、炭素数1~20の2価の炭化水素基、炭素数1~20の2価のハロゲン化炭化水素基、2価のケイ素含有基、-Ge-等の2価のゲルマニウム含有基、-Sn-等の2価のスズ含有基、-O-、-CO-、-S-、-SO-、-SO-、-N(Ra)-、-P(Ra)-、-P(O)(Ra)-、-B(Ra)-または-Al(Ra)-を示す。Raは、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、水素原子、ハロゲン原子または窒素原子に炭素数1~20の炭化水素基が1個または2個結合した窒素化合物残基である。
 前記メタロセン化合物を含む重合触媒としては、下記式[III]で表される架橋性メタロセン化合物、並びに、有機金属化合物、有機アルミニウムオキシ化合物およびメタロセン化合物と反応してイオン対を形成することができる化合物からなる群から選択される少なくとも1種以上の化合物、さらに必要に応じて粒子状担体、を含むメタロセン触媒が好ましい。
Figure JPOXMLDOC01-appb-C000002
 前記式[III]において、RからR14は、それぞれ独立して、水素原子、炭化水素基又はケイ素含有基である。RからR14はそれぞれ同一でもよく、異なっていてもよい。
 前記炭化水素基としては、メチル基、エチル基、n-プロピル基、アリル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状炭化水素基;イソプロピル基、tert-ブチル基、アミル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基などの分岐状炭化水素基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状飽和炭化水素基;フェニル基、トリル基、ナフチル基、ビフェニル基、フェナントリル基、アントラセニル基などの環状不飽和炭化水素基;ベンジル基、クミル基、1,1-ジフェニルエチル基、トリフェニルメチル基などの環状不飽和炭化水素基で置換され飽和炭化水素基;メトキシ基、エトキシ基、フェノキシ基、フリル基、N-メチルアミノ基、N,N-ジメチルアミノ基、N-フェニルアミノ基、ピリル基、チエニル基などのヘテロ原子含有炭化水素基等が挙げられる。
 前記ケイ素含有基としては、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基等が挙げられる。
 また、RからR12の隣接した置換基は互いに結合して環を形成してもよい。
 このような置換フルオレニル基としては、ベンゾフルオレニル基、ジベンゾフルオレニル基、オクタヒドロジベンゾフルオレニル基、オクタメチルオクタヒドロジベンゾフルオレニル基、オクタメチルテトラヒドロジシクロペンタフルオレニル基等が挙げられる。
 R、R、R及びRは、水素原子または炭素数1~20の炭化水素基であることが好ましい。RおよびRは炭素数1~20の炭化水素基であることがより好ましい。RおよびRが水素原子であり、RおよびRが炭素数1~5の直鎖状または分岐状アルキル基であることがさらに好ましい。
 RからR12は、水素原子または炭素数1~20の炭化水素基であることが好ましい。炭素数1~20の炭化水素基としては、前述の炭化水素基を例示することができる。また、R及びR11が共に水素原子ではないことが好ましく、R、R、R10及びR11が全て水素原子ではないことがより好ましい。
 Yは第14族元素であり、炭素、ケイ素、ゲルマニウムが好ましく、炭素がより好ましい。
 R13、R14は炭素数1~20の炭化水素基であることが好ましく、炭素数1~3のアルキル基または炭素数6~20のアリール基であることがより好ましい。R13、R14としては、具体的にはメチル基、エチル基、フェニル基、トリル基等が好ましい。R13、R14は相互に同一でも異なっていてもよく、互いに結合して環を形成していてもよい。また、R13、R14は、RからR12の隣接した置換基、またはRからRの隣接した置換基と互いに結合して環を形成していてもよい。
 Mは第4族遷移金属であり、チタン原子、ジルコニウム原子またはハフニウム原子であることが好ましい。
 Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子である。jは1~4の整数であり、jが2以上の時、Qは互いに同一でも異なっていてもよい。
 前記ハロゲンの具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。前記炭化水素基の具体例としては前述と同様の炭化水素基が挙げられる。
 前記アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシなどのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基等が挙げられる。
 前記孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル類等が挙げられる。
 Qは少なくとも1つがハロゲンまたはアルキル基であることが好ましい。
 前記式[III]で示される架橋性メタロセン化合物は、例えば、国際公開第01/27124号、国際公開第2014/050816号、国際公開第2014/050817号に開示されている化合物を例示することが出来る。これらの中でも好ましい具体例としては、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(3-メチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(3-フェニル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1-メチル-3-フェニル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1-フェニル-3-メチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1-p-トリル-3-メチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,3-ジメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,3-ジフェニル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,3-ジフェニル-1-メチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,3-ジ(p-トリル)-1-メチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1-ジメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1-ジメチル-3-フェニル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1,3-トリメチル-5-トリメチルシリル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1,3-トリメチル-5-エチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1,3-トリエチル-2-メチル5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1,3,5-テトラメチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド等を挙げることが出来る。上記のメタロセン化合物を用いたオレフィンの重合では、重合温度が得られる重合体の立体規則性に影響を与える傾向がある。これらのメタロセン化合物は、炭素数3以上のα-オレフィンの重合において高い立体特異性を示すので、高い重合温度条件でも高い立体規則性のオレフィン重合体を与えることが出来る傾向がある。このため、プロセスの簡便性や製造コストなどの面で特に好ましい態様と考えることが出来る。
 これらのチタン誘導体、ハフニウム誘導体を用いてもよい。これらは一種を用いてもよく、二種以上を併用してもよい。ただし、本発明で用いることができるメタロセン化合物は、上記例示化合物に何ら限定されるものではない。
 なお、上記化合物の命名に用いた位置番号について、[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、[1-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(5-tert-ブチル-1-メチル-3-iso-プロピル-1,2,3,4-テトラヒドロペンタレン)]ジルコニウムジクロライド、および[8-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(2-(1-アダマンチル)-8-メチル-3,3b,4,5,6,7,7a,8-オクタヒドロシクロペンタ[a]インデン)]ジルコニウムジクロライド、を例にとり、それぞれ下記式[IV]、[VI]、および[VII]に示す。なお、式[VI]および[VII]については、光学異性体の一つについて示す。また、光学異性体については特に言及していないが、本発明の趣旨を逸脱しない範囲で、全ての異性体を包含する。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 前記式[III]で表される架橋性メタロセン化合物とともに用いられる、有機金属化合物、有機アルミニウムオキシ化合物、およびメタロセン化合物と反応してイオン対を形成する化合物からなる群から選択される少なくとも1種の化合物(共触媒)、さらに必要に応じて用いられる粒子状担体については、本出願人によるWO01/27124や、特開平11-315109号公報に開示された化合物を制限無く使用することができる。
 プロピレン単独重合体(A1)が前記要件(A-i)~(A-iii)を同時に満たすように制御する方法、プロピレン単独重合体(A2)が前記要件(A-i)~(A-ii)を同時に満たすように制御する方法としては、例えば、上述のような触媒を用いて、重合温度等の重合条件を適宜設定する方法が挙げられる。
 具体例としては、触媒として[8-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(2-(1-アダマンチル)-8-メチル-3,3b,4,5,6,7,7a,8-オクタヒドロシクロペンタ[a]インデン)]ジルコニウムジクロライドを用い、重合温度を50~90℃とし、好ましくは60~80℃とし、原料とともに水素を供給し、該水素の供給量を0.03~0.3mol%とし、好ましくは0.06~0.21mol%、より好ましくは0.07~0.18mol%とする方法が挙げられる。
 なお、後述する本願実施例においては、メタロセン化合物としての[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド、又は[8-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレン-12’-イル)(2-(1-アダマンチル)-8-メチル-3,3b,4,5,6,7,7a,8-オクタヒドロシクロペンタ[a]インデン)]ジルコニウムジクロライド、共触媒としての、メチルアルミノキサンがシリカ担体に担持された固体触媒とトリエチルアルミニウムの共存下で前重合を実施し、続いて多段階からなる本重合を実施することによって本発明に係るプロピレン単独重合体が製造されたが、本発明は該条件に何ら制約されるものではない。
 <プロピレン単独重合体(B)の製造方法>
 前記プロピレン単独重合体(B)の製造方法は特に限定されないが、延伸性の観点から前記プロピレン単独重合体(B)を、チーグラ・ナッタ触媒を用いて製造することが好ましい。例えば、前記プロピレン単独重合体(B)は、固体状チタン触媒成分(I)と、周期律表の第1族、第2族および第13族からなる群から選択される金属原子を含む有機金属化合物(II)と、必要に応じて電子供与体(III)とを含むオレフィン重合用触媒の存在下に重合して得られたものであることが好ましい。以下、該オレフィン重合用触媒の各成分について詳細に説明する。
 <固体状チタン触媒成分(I)>
 前記固体状チタン触媒成分(I)は、チタン化合物と、マグネシウム化合物と、ハロゲンと、電子供与体(I)である、環状エステル化合物(a)および環状エステル化合物(b)と、任意で電子供与体(I)である触媒成分(c)とを含むことが好ましい。これらの化合物は、例えば国際公開第2006/077945号、国際公開第2006/077946号、国際公開第2008/010459号、国際公開第2009/069483号、特開平7-109314号公報等に記載の化合物を例示することが出来る。
 <チタン化合物>
 前記チタン化合物としては、例えば下記式
  Ti(OR)4-g
で示される4価のチタン化合物を挙げることができる。
 前記式において、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4である。
 チタン化合物としては、具体的には、TiCl、TiBrなどのテトラハロゲン化チタン;Ti(OCH)Cl、Ti(OC)Cl、Ti(O-n-C)Cl、Ti(OC)Br、Ti(O-isoC)Brなどのトリハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCClなどのジハロゲン化アルコキシチタン;Ti(OCHCl、Ti(O-n-CCl、Ti(OCBrなどのモノハロゲン化アルコキシチタン;Ti(OCH、Ti(OC、Ti(OC、Ti(O-2-エチルヘキシル)などのテトラアルコキシチタンなどが挙げられる。これらの中でも、チタン化合物としては、テトラハロゲン化チタンが好ましく、四塩化チタンがより好ましい。これらのチタン化合物は単独で用いても2種以上を組み合わせて用いてもよい。
 <マグネシウム化合物>
 前記マグネシウム化合物としては、具体的には、塩化マグネシウム、臭化マグネシウムなどのハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、フェノキシ塩化マグネシウムなどのアルコキシマグネシウムハライド;エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、2-エチルヘキソキシマグネシウムなどのアルコキシマグネシウム;フェノキシマグネシウムなどのアリーロキシマグネシウム;ステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩などが挙げられる。これらのマグネシウム化合物は単独で用いても、2種以上を組み合わせて用いてもよい。またこれらのマグネシウム化合物は、他の金属との錯化合物、複化合物または他の金属化合物との混合物であってもよい。
 これらの中でも、マグネシウム化合物としては、ハロゲンを含有するマグネシウム化合物が好ましく、ハロゲン化マグネシウムがより好ましく、塩化マグネシウムが更に好ましい。また、エトキシマグネシウムのようなアルコキシマグネシウムも好ましく用いられる。また、該マグネシウム化合物は、他の物質から誘導されたもの、例えばグリニャール試薬のような有機マグネシウム化合物と、ハロゲン化チタン、ハロゲン化ケイ素、ハロゲン化アルコールなどとを接触させて得られるものであってもよい。例えば、アルコキシマグネシウムとテトラアルコキシチタンとを組み合わせる場合は、ハロゲン化剤として四塩化珪素などを反応させ、ハロゲン化マグネシウムとすることが好ましい。
 <ハロゲン>
 前記ハロゲンは、前記チタン化合物の一例であるTi(OR)4-gのX、前記マグネシウム化合物の一例であるハロゲン化マグネシウムのハロゲン等が挙げられる。これらのハロゲンは一種を用いてもよく、二種以上を併用してもよい。
 <電子供与体(I)>
 前記電子供与体(I)としては、環状エステル化合物(a)および環状エステル化合物(b)と、任意で触媒成分(c)とを用いることができる。
 <環状エステル化合物(a)>
 環状エステル化合物(a)は、例えば、国際公開第2006/077945号や国際公開第2009/069483号などに記載されている化合物を例示することが出来る。
 前記環状エステル化合物(a)としては、下記式(1a)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000006
 前記式(1a)において、nは5~10の整数、好ましくは5~7の整数、より好ましくは6である。また、CおよびCは、炭素原子を表す。
 複数個あるRは、それぞれ独立に、炭素数が1~20、好ましくは1~10、より好ましくは2~8、さらに好ましくは4~8、特に好ましくは4~6の1価の炭化水素基である。該炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基などが挙げられる。これらの中でも該炭化水素基としては、n-ブチル基、イソブチル基、ヘキシル基、オクチル基が好ましく、n-ブチル基、イソブチル基が、分子量分布の広いプロピレン系ブロック共重合体を製造できる観点からより好ましい。
 複数個あるRは、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基またはケイ素含有基の原子または基である。また、少なくとも1つのRは水素原子以外の原子または基である。該水素原子以外の原子または基としては、炭素数1~20の炭化水素基が好ましい。該炭素数1~20の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、ビニル基、フェニル基、オクチル基などの、炭素数1~20の脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基が挙げられる。これらの中でも、該炭素数1~20の炭化水素基としては、炭素数1~20の脂肪族炭化水素基が好ましく、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基がより好ましい。
 環状骨格中の単結合(ただしC-C結合およびC-C結合を除く)は、二重結合に置き換えられていてもよい。すなわち、環状骨格中のC-C結合(nが6~10の場合)、C-C結合およびC-C結合は、二重結合に置き換えられていてもよい。
 前記式(1a)で表される化合物としては、特に、3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジイソブチル、3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジn-ヘキシル、3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジn-オクチル、3-メチル-6-エチルシクロヘキサン-1,2-ジカルボン酸ジイソブチル、3-メチル-6-エチルシクロヘキサン-1,2-ジカルボン酸ジn-ヘキシル、3-メチル-6-エチルシクロヘキサン-1,2-ジカルボン酸ジn-オクチル、3-メチル-6-n-プロピルシクロヘキサン-1,2-ジカルボン酸ジイソブチル、3-メチル-6-n-プロピルシクロヘキサン-1,2-ジカルボン酸ジn-ヘキシル、3-メチル-6-n-プロピルシクロヘキサン-1,2-ジカルボン酸ジn-オクチル、3,6-ジエチルシクロヘキサン-1,2-ジカルボン酸ジイソブチル、3,6-ジエチルシクロヘキサン-1,2-ジカルボン酸ジn-ヘキシル、3,6-ジエチルシクロヘキサン-1,2-ジカルボン酸ジn-オクチルが好ましい。これらの化合物はDiels Alder反応を利用して製造できる。
 上記のようなジエステル構造を有する環状エステル化合物(a)には、シス、トランス等の異性体が存在し、どの構造であっても本発明の目的に合致する効果を有するが、トランス体の含有率が高い方が、分子量分布を広げる効果だけでなく、活性や得られる重合体の立体規則性がより高い傾向があるため好ましい。シス体およびトランス体のうちのトランス体の割合は、51%以上が好ましく、55%以上がより好ましく、60%以上が更に好ましく、65%以上が特に好ましい。該トランス体の割合は、100%以下であり、90%以下が好ましく、85%以下がより好ましく、79%以下が更に好ましい。
 <環状エステル化合物(b)>
 環状エステル化合物(b)は、例えば、国際公開第2006/077946号、国際公開第2009/069483号に記載の化合物を例示することが出来る。
 前記環状エステル化合物(b)としては、下記式(2a)で表されるシクロアルカン-1,2-ジカルボン酸ジエステル構造またはシクロアルケン-1,2-ジカルボン酸ジエステル構造を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 前記式(2a)において、nは5~10の整数、好ましくは5~7の整数、より好ましくは6である。また、CおよびCは、炭素原子を表す。
 複数個あるRは、それぞれ独立に、炭素数が1~20、好ましくは1~10、より好ましくは2~8、さらに好ましくは4~8、特に好ましくは4~6の1価の炭化水素基である。該炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基などが挙げられる。これらの中でも、該炭化水素基としては、n-ブチル基、イソブチル基、ヘキシル基、オクチル基が好ましく、n-ブチル基、イソブチル基が、分子量分布の広いプロピレン系ブロック共重合体を製造できる観点からより好ましい。
 環状骨格中の単結合(ただしC-C結合およびC-C結合を除く。すなわち、C-C結合、C-C結合およびC-C結合(nが6~10の場合))は、二重結合に置き換えられていてもよい。
 これらの中でも、前記式(2a)で表される化合物としては、シクロヘキサン-1,2-ジカルボン酸ジイソブチル、シクロヘキサン-1,2-ジカルボン酸ジヘキシル、シクロヘキサン-1,2-ジカルボン酸ジへプチル、シクロヘキサン-1,2-ジカルボン酸ジオクチル、シクロヘキサン-1,2-ジカルボン酸ジ2-エチルヘキシルが好ましい。触媒性能が高いだけでなく、これらの化合物がDiels Alder反応を利用して比較的安価に製造できるためである。
 上記のようなジエステル構造を有する環状エステル化合物(b)には、シス、トランス等の異性体が存在するが、どの構造であっても本発明の目的に合致する効果を有する。シス体およびトランス体のうちのトランス体の割合は、51%以上が好ましく、55%以上がより好ましく、60%以上が更に好ましく、65%以上が特に好ましい。該トランス体の割合は、100%以下であり、90%以下が好ましく、85%以下がより好ましく、79%以下が更に好ましい。この理由は不明であるが、後述する立体異性体のバリエーションが、広分子量分布化に適した領域にあると推測される。
 特に、前記式(2a)においてn=6であるシクロヘキサン-1,2-ジカルボン酸ジエステルの場合、該トランス体の純度は前記範囲内であることが好ましい。該トランス体の純度が51%未満である場合、広分子量分布化の効果、活性、立体特異性等が不充分となることがある。また、該トランス体の純度が79%を超えると広分子量分布化の効果が不充分となることがある。一方、該トランス体の純度が前記範囲内であれば、得られる重合体の分子量分布を広げる効果と、触媒の活性や得られる重合体の高い立体規則性とを高いレベルで両立する上で有利なことが多い。
 前記環状エステル化合物(a)は単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記環状エステル化合物(b)は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記環状エステル化合物(a)と前記環状エステル化合物(b)との合計に対する前記環状エステル化合物(a)の割合(環状エステル化合物(a)/(環状エステル化合物(a)+環状エステル化合物(b))×100(モル%))は、10モル%以上が好ましく、30モル%以上がより好ましく、40モル%以上がさらに好ましく、50モル%以上が特に好ましい。該割合は、99モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましく、80モル%以下が特に好ましい。
 前記固体状チタン触媒成分(I)は、固体状チタン触媒成分(I)中の環状エステル化合物(a)の含有量が低くても、極めて分子量分布が広く、高い立体規則性を有するプロピレン重合体を高い活性で与えることができる。この効果の要因は不明であるが、本発明者らは以下のように推測している。
 環状エステル化合物(a)は置換基Rの存在により環状エステル化合物(b)に比して形成し得る立体構造のバリエーションが極めて多い。このため、分子量分布については環状エステル化合物(a)の影響が支配的になり、前記環状エステル化合物(a)の割合が低くても極めて広い分子量分布のプロピレン重合体を与えることができると考えられる。一方、環状エステル化合物(a)と環状エステル化合物(b)とは比較的構造が似ているため、活性、立体規則性などの基本性能に対しては互いの化合物の効果に影響を与え難い(構造が異なる化合物を用いた場合、活性や立体規則性等が激変することや、一方の化合物の効果が支配的になる例が多くある)。
 また、環状炭化水素構造は、イス型、舟型など多彩な立体構造を形成することが知られている。さらに、環状炭化水素構造が置換基を有すると、取りうる立体構造のバリエーションはさらに増大する。また、環状エステル化合物の環状骨格を形成する炭素原子のうちの、エステル基(COOR基)が結合した炭素原子とエステル基(COOR基)が結合した他の炭素原子との間の結合が単結合であれば、取りうる立体構造のバリエーションが広がる。この多彩な立体構造を取りうることが、固体状チタン触媒成分(I)上に多彩な活性種を形成することに繋がる。その結果、固体状チタン触媒成分(I)を用いてプロピレンの重合を行うと、多様な分子量のプロピレン重合体を一度に製造することができる、即ち分子量分布の広いプロピレン系ブロック共重合体を製造することができる。
 前記環状エステル化合物(a)および(b)は、固体状チタン触媒成分(I)を調製する過程で形成されてもよい。例えば、固体状チタン触媒成分(I)を調製する際に、環状エステル化合物(a)および(b)に対応する無水カルボン酸やカルボン酸ジハライドと、対応するアルコールとが実質的に接触する工程を設けることで、環状エステル化合物(a)および(b)を固体状チタン触媒成分(I)中に含有させることもできる。
 <触媒成分(c)>
 前記触媒成分(c)としては、例えば特開平7-109314号公報等に記載のエーテル化合物や、多価カルボン酸エステル等を例示することが出来る。
 これらの中でも、複数の原子を介して2個以上のエーテル結合を有する化合物(c1)として、1,3-ジエーテル類が好ましく、2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)1,3-ジメトキシプロパンがより好ましい。
 また、これら化合物の中でも、前記多価カルボン酸エステルとしては、芳香族ポリカルボン酸エステルが好ましく、フタル酸エステルがより好ましい。
 電子供与体成分である触媒成分(c)は、高い触媒活性を維持したまま、得られる重合体の立体規則性を高める効果や、得られる共重合体の組成分布を制御する効果や、触媒粒子の粒形や粒径を制御する凝集剤効果などを示す。また、前記環状エステル化合物(a)および(b)は、さらに分子量分布を制御する効果をも有すると考えられる。
 <固体状チタン触媒成分(I)の調製方法>
 前記固体状チタン触媒成分(I)を調製する方法としては、前記固体状チタン触媒成分(I)が前記チタン化合物と、前記マグネシウム化合物と、ハロゲンと、前記電子供与体(I)とを含めばその方法は特に限定されない。例えば下記(P-1)~(P-4)の方法により、前記固体状チタン触媒成分(I)を好ましく調製することができる。
(P-1)マグネシウム化合物および可溶化成分を含む固体状付加物と、電子供与体(I)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸濁状態で接触させる方法、
(P-2)マグネシウム化合物および可溶化成分を含む固体状付加物と、電子供与体(I)と、液状状態のチタン化合物とを、複数回に分けて接触させる方法、
(P-3)マグネシウム化合物および可溶化成分を含む固体状付加物と、電子供与体(I)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸濁状態で接触させ、且つ複数回に分けて接触させる方法、
(P-4)マグネシウム化合物および可溶化成分を含む液状状態のマグネシウム化合物と、液状状態のチタン化合物と、電子供与体(I)とを接触させる方法。
 固体状チタン触媒成分(I)を調製する際の温度は、-30℃~150℃が好ましく、-25℃~140℃がより好ましく、-25~130℃が更に好ましい。
 また、固体状チタン触媒成分(I)は、必要に応じて溶媒の存在下で調製することもできる。該溶媒としては、極性を有するトルエンなどの芳香族炭化水素、ヘプタン、ヘキサン、オクタン、デカン、シクロヘキサンなどの脂肪族炭化水素、脂環族炭化水素化合物が挙げられる。これらの中でも該溶媒としては、脂肪族炭化水素が好ましい。
 これらの条件で製造された固体状チタン触媒成分(I)を用いてプロピレンの重合反応を行うと、広い分子量分布の重合体が得られる。さらに、高い触媒活性を示し、得られる重合体の立体規則性が高い。
 <可溶化成分>
 前記可溶化成分としては、室温~300℃程度の温度範囲で前記マグネシウム化合物を可溶化できる化合物が好ましい。該化合物としては、例えばアルコール、アルデヒド、アミン、カルボン酸およびこれらの混合物などが好ましい。
 前記アルコールとしては、具体的には、メタノール、エタノール、プロパノール、ブタノール、イソブタノール、エチレングリコール、2-メチルペンタノール、2-エチルブタノール、n-ヘプタノール、n-オクタノール、2-エチルヘキサノール、デカノール、ドデカノールなどの脂肪族アルコール;シクロヘキサノール、メチルシクロヘキサノールなどの脂環族アルコール;ベンジルアルコール、メチルベンジルアルコールなどの芳香族アルコール;n-ブチルセルソルブなどのアルコキシ基を有する脂肪族アルコールなどが挙げられる。
 前記アルデヒドとしては、カプリックアルデヒド、2-エチルヘキシルアルデヒドなどの炭素数7以上のアルデヒドが挙げられる。
 前記アミンとしては、ヘプチルアミン、オクチルアミン、ノニルアミン、ラウリルアミン、2-エチルヘキシルアミンなどの炭素数6以上のアミンが挙げられる。
 前記カルボン酸としては、カプリル酸、2-エチルヘキサノイック酸などの炭素数7以上の有機カルボン酸が挙げられる。
 これらの中でも、前記可溶化成分としては、前記アルコールが好ましく、エタノール、プロパノール、ブタノール、イソブタノール、ヘキサノール、2-エチルヘキサノール、デカノールがより好ましい。これらの可溶化成分は一種を用いてもよく、二種以上を併用してもよい。
 前記固体状付加物や前記液状状態のマグネシウム化合物を調製する際のマグネシウム化合物および可溶化成分の使用量については、その種類、接触条件などによっても異なるが、マグネシウム化合物は、可溶化成分の単位容積あたり、0.1~20モル/リットル、好ましくは0.5~5モル/リットルの量で用いられる。また、必要に応じて前記固体状付加物に対して不活性な溶媒を併用することもできる。該溶媒としては、例えばヘプタン、ヘキサン、オクタン、デカンなどの炭化水素化合物が好ましく用いられる。
 得られる固体状付加物や液状状態のマグネシウム化合物のマグネシウムと可溶化成分との組成比は、用いる化合物の種類によっても異なるため一概には規定できないが、マグネシウム化合物中のマグネシウム1モルに対して、可溶化成分の量が、好ましくは2.0モル以上、より好ましくは2.2モル以上、さらに好ましくは2.3モル以上、特に好ましくは2.4モル以上、5.0モル以下の範囲内である。
 前記固体状チタン触媒成分(I)において、ハロゲン/チタン(原子比)(すなわち、ハロゲン原子のモル数/チタン原子のモル数)は、2~100が好ましく、4~90がより好ましい。環状エステル化合物(a)/チタン(モル比)(すなわち、環状エステル化合物(a)のモル数/チタン原子のモル数)、および、環状エステル化合物(b)/チタン(モル比)(すなわち、環状エステル化合物(b)のモル数/チタン原子のモル数)は、0.01~100が好ましく、0.2~10がより好ましい。可溶化成分/チタン原子(モル比)は、0~100が好ましく、0~10がより好ましい。
 環状エステル化合物(a)と環状エステル化合物(b)との好ましい比率としては、100×環状エステル化合物(a)/(環状エステル化合物(a)+環状エステル化合物(b))の値(モル%)の下限が、好ましくは5モル%、より好ましくは25モル%、さらに好ましくは40モル%であり、特に好ましくは50モル%である。該値の上限は好ましくは99モル%、より好ましくは90モル%、さらに好ましくは85モル%、特に好ましくは80モル%である。
 マグネシウム/チタン(原子比)(すなわち、マグネシウム原子のモル数/チタン原子のモル数)は、2~100が好ましく、4~50がより好ましい。
 前記環状エステル化合物(a)および(b)以外に含まれても良い成分、例えば可溶化成分および触媒成分(c)の含有量は、環状エステル化合物(a)および(b)100質量%に対して、好ましくは20質量%以下であり、より好ましくは10質量%以下である。
 <有機金属化合物(II)>
 有機金属化合物(II)は、周期表の第1族、第2族および第13族からなる群から選択される金属原子を含む有機金属化合物である。有機金属化合物(II)としては、具体的には、第13族金属を含む化合物、例えば、有機アルミニウム化合物、第1族金属とアルミニウムとの錯アルキル化物、第2族金属の有機金属化合物などを用いることができる。これらの中でも、有機金属化合物(II)としては、有機アルミニウム化合物が好ましい。
 <電子供与体(III)>
 前記オレフィン重合用触媒は、必要に応じて電子供与体(III)を含んでもよい。該電子供与体(III)としては、有機ケイ素化合物が好ましい。該有機ケイ素化合物としては、例えば下記式(5)で表される化合物が挙げられる。
  RSi(OR’)4-n  (5)
 前記式(5)において、RおよびR’は炭化水素基であり、nは0<n<4の整数である。
 これらの中でも、前記式(5)で示される化合物としては、ビニルトリエトキシシラン、ジフェニルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジシクロペンチルジメトキシシランが好ましい。
 また、前記有機ケイ素化合物としては、下記式(6)で表される化合物も好ましい。
  Si(OR(NR)  (6)
 前記式(6)において、Rは炭素数1~6の炭化水素基であり、好ましくは炭素数1~6の不飽和または飽和脂肪族炭化水素基であり、より好ましくは炭素数2~6の飽和脂肪族炭化水素基である。Rとしては、具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。これらの中でも、Rとしてはエチル基が好ましい。
 前記式(6)において、Rは炭素数1~12の炭化水素基または水素原子であり、好ましくは炭素数1~12の不飽和または飽和脂肪族炭化水素基、あるいは水素原子である。Rとしては、具体的には、水素原子、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基等が挙げられる。これらの中でも、Rとしてはエチル基が好ましい。
 前記式(6)において、Rは炭素数1~12の炭化水素基または水素原子であり、好ましくは炭素数1~12の不飽和または飽和脂肪族炭化水素基である。Rとしては、具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基等が挙げられる。これらの中でも、Rとしてはエチル基が好ましい。
 前記式(6)で表される化合物の具体例としては、ジメチルアミノトリエトキシシラン、ジエチルアミノトリエトキシシラン、ジメチルアミノトリメトキシシラン、ジエチルアミノトリメトキシシラン、ジエチルアミノトリn-プロポキシシラン、ジ-n-プロピルアミノトリエトキシシラン、メチル-n-プロピルアミノトリエトキシシラン、t-ブチルアミノトリエトキシシラン、エチル-n-プロピルアミノトリエトキシシラン、エチル-iso-プロピルアミノトリエトキシシラン、メチルエチルアミノトリエトキシシラン等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 また、前記有機ケイ素化合物の他の例としては、下記式(7)で表される化合物が挙げられる。
  RNSi(OR  (7)
 前記式(7)において、RNは環状アミノ基である。該環状アミノ基としては、例えば、パーヒドロキノリノ基、パーヒドロイソキノリノ基、1,2,3,4-テトラヒドロキノリノ基、1,2,3,4-テトラヒドロイソキノリノ基、オクタメチレンイミノ基等が挙げられる。Rは、前記式(6)と同義である。
 前記式(7)で表される化合物としては、具体的には、(パーヒドロキノリノ)トリエトキシシラン、(パーヒドロイソキノリノ)トリエトキシシラン、(1,2,3,4-テトラヒドロキノリノ)トリエトキシシラン、(1,2,3,4-テトラヒドロイソキノリノ)トリエトキシシラン、オクタメチレンイミノトリエトキシシラン等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 前記固体状チタン触媒成分に係る電子供与体などの各種成分は、それぞれ一種を用いてもよく、二種以上組み合わせて用いることもできる。
 <プロピレン単独重合体(B)の製造条件>
 前記プロピレン単独重合体(B)は、前記オレフィン重合用触媒の存在下にプロピレンを予備重合させて得られる予備重合触媒の存在下、本重合を行うことで製造されることが好ましい。該予備重合は、オレフィン重合用触媒1g当り好ましくは0.1~1000g、より好ましくは0.3~500g、さらに好ましくは1~200gの量でプロピレンを予備重合させることにより行われる。
 予備重合では、本重合における系内の触媒濃度よりも高い濃度の触媒を用いることができる。予備重合における前記固体状チタン触媒成分(I)の濃度は、溶媒1リットル当り、チタン原子換算で0.001~200ミリモルが好ましく、0.01~50ミリモルがより好ましく、0.1~20ミリモルが更に好ましい。
 予備重合における前記有機金属化合物(II)の量は、固体状チタン触媒成分(I)1g当り好ましくは0.1~1000g、より好ましくは0.3~500gの重合体が生成するような量であればよい。具体的には、前記有機金属化合物(II)の量は、固体状チタン触媒成分(I)中のチタン原子1モル当り、0.1~300モルが好ましく、0.5~100モルがより好ましく、1~50モルが更に好ましい。
 予備重合では、必要に応じて前記電子供与体(III)等を用いることができる。この際これらの成分の量は、前記固体状チタン触媒成分(I)中のチタン原子1モル当り0.1~50モルが好ましく、0.5~30モルがより好ましく、1~10モルが更に好ましい。
 予備重合は、例えば不活性炭化水素媒体にプロピレンおよび前記触媒成分を加え、温和な条件下にて行うことができる。該不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロヘプタン、シクロオクタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素;およびこれらの混合物などが挙げられる。これらの不活性炭化水素媒体中でも、脂肪族炭化水素が好ましい。このように不活性炭化水素媒体を用いる場合、予備重合はバッチ式で行うことが好ましい。
 一方、プロピレン自体を溶媒として予備重合を行うこともでき、また実質的に溶媒のない状態で予備重合することもできる。この場合には、予備重合を連続的に行うことが好ましい。予備重合の温度は、-20~100℃が好ましく、-20~80℃がより好ましく、0~40℃が更に好ましい。
 次に、前記予備重合を経由した後に、または前記予備重合を経由することなく実施される本重合について説明する。前記本重合は、プロピレン単独重合体(B)を製造する工程である。
 予備重合および本重合は、バルク重合法、溶解重合、懸濁重合などの液相重合法、気相重合法のいずれにおいても実施できる。これらの中でも、バルク重合、懸濁重合などの液相重合または気相重合法が好ましい。
 本重合がスラリー重合の反応形態を採る場合、反応溶媒としては、上述の予備重合時に用いられる不活性炭化水素を用いることができる。また、反応温度・圧力において液体であるプロピレンを用いることもできる。
 本重合においては、前記固体状チタン触媒成分(I)の量は、重合容積1リットル当り、チタン原子に換算して0.0001~0.5ミリモルが好ましく、0.005~0.1ミリモルがより好ましい。また、前記有機金属化合物(II)の量は、重合系中の予備重合触媒成分中のチタン原子1モルに対し、1~2000モルが好ましく、5~500モルがより好ましい。また、前記電子供与体(III)を使用する場合、前記電子供与体(III)の量は、前記有機金属化合物(II)1モルに対して0.001~50モルが好ましく、0.01~30モルがより好ましく、0.05~20モルが更に好ましい。
 本重合を水素の存在下に行えば、得られる重合体の分子量を調節する(下げる)ことができ、メルトフローレート(MFR)の大きい重合体が得られる。分子量を調整するために必要な水素量は、使用する製造プロセスの種類、圧力、温度によって異なるため、一概に範囲を決定することはできない。それゆえ、目標とする範囲のMFRを有するプロピレン単独重合体(B)が得られるように、圧力、温度を考慮して水素量を決定することが好ましい。
 本重合において、プロピレンの重合温度は20~200℃が好ましく、30~100℃がより好ましく、50~90℃が更に好ましい。圧力(ゲージ圧)は、常圧~100kgf/cm(9.8MPa)が好ましく、2~50kgf/cm(0.20~4.9MPa)がより好ましい。
 プロピレン単独重合体(B)はコンデンサフィルムの原料として使用されるため、触媒単位量当たりのポリマー生成量が少ない場合には、後処理を行って触媒残渣を除去することができる。なお、触媒の活性が高いためにポリマーの生成量が多い場合でも、後処理を行って触媒残渣を除去することが好ましい。
 前記後処理の方法としては、得られたプロピレン単独重合体(B)を液状のプロピレン、ブタン、ヘキサン、ヘプタンなどで洗浄する方法が挙げられる。このとき、水、アルコール化合物、ケトン化合物、エーテル化合物、エステル化合物、アミン化合物、有機酸化合物、無機酸化合物などを添加して、チタンやマグネシウムなどの触媒成分を可溶化し、抽出しやすくしてもよい。また、水、アルコールなどの極性化合物で洗浄することも好ましい。このような後処理を行うことにより、得られるプロピレン単独重合体(B)中の塩素含有量を少なくすることができる。
 <プロピレン単独重合体組成物の調製方法>
 本発明に係るプロピレン単独重合体組成物の調製方法としては、パウダー状またはペレット状の前記プロピレン単独重合体(A)、前記プロピレン単独重合体(B)、および必要に応じてその他の添加剤を、ドライブレンド、ヘンシェルミキサー等で混合する方法が挙げられる。また、予め単軸または二軸混練機、ニーダ等によってこれらの原料を溶融混練してもよい。該その他の添加剤としては、酸化防止剤、塩素吸収剤等の安定剤、滑剤、可塑剤、難燃化剤、帯電防止剤などが挙げられる。これらの添加剤は、本発明の効果を損なわない範囲で添加することができる。
 <コンデンサフィルム>
 本発明に係るコンデンサフィルムは、本発明に係るプロピレン単独重合体組成物からなる。本発明に係るコンデンサフィルムの厚さは1~50μmであり、好ましくは1.5~30μmであり、より好ましくは2~20μmであり、更に好ましくは2~15μmであり、特に好ましくは4μmを超えて15μm以下である。厚さが1μm未満では、フィルム破断が起きやすく、フィルムの生産性が低下する。一方、厚さが50μmを超えると、コンデンサが小型化できず、また電気容量も小さい。特に、本発明に係るコンデンサフィルムが、厚さが4μmを超えるフィルムの場合には、高温耐電圧性に優れる顕著な効果が得られる。
 また、本発明に係るコンデンサフィルムは、前記プロピレン単独重合体組成物を、延伸面倍率(縦×横の面倍率)30~80倍で、好ましくは35~75倍で、より好ましくは35~70倍で、更に好ましくは35~50倍で延伸して得られるフィルムである。該延伸面倍率が30倍以上であることにより、フィルム内部の結晶サイズが小さくなり、より高い絶縁破壊強度を有するフィルムを得ることができる。
 通常、コンデンサフィルムは、使用温度が上がるほど、またフィルムが薄いほど耐電圧は下がる傾向にある。しかしながら、本発明に係るコンデンサフィルムは、一定の要件を満足したプロピレン単独重合体組成物を用いていることにより、使用温度が高い場合でも本発明に係る薄膜フィルムの耐電圧性は高い特徴を有する。
 本発明に係るコンデンサフィルムの高温耐電圧は、例えば厚さ5.0μmのフィルムにおいて、0.90kV以上であることが好ましく、1.0kV以上であることがより好ましい。ここで高温耐電圧は、後述する実施例における測定方法で得られる耐電圧(BDV)の値であり、温度は120℃に設定している。
 本発明に係るコンデンサフィルムは、コンデンサの電極間に配置されるコンデンサセパレータフィルムとして用いられることが好ましい。すなわち、本発明は、本発明に係るコンデンサフィルムのコンデンサセパレータフィルムとしての使用を含む。
 <コンデンサフィルムの製造方法>
 本発明に係るコンデンサフィルムは、例えば原反シートを製造した後、これを延伸することによって得られる。
 原反シートの製造方法としては、例えば以下の方法を採用することができる。前述したように、予め各原料を溶融混練してプロピレン単独重合体組成物を製造し、これを原料として用いることもできる。また、プロピレン単独重合体(A)とプロピレン単独重合体(B)とをドライブレンドし、必要に応じて、各種酸化防止剤(イルガノックス1010(商品名、BASF製)、BHT(ジブチルヒドロキシトルエン)、イルガフォス168(商品名、BASF製)など)、ステアリン酸カルシウムなどの各種添加剤をさらに添加したものを用いることもできる。
 前記プロピレン単独重合体組成物をホッパーから押出機に供給し、170~300℃、好ましくは200~260℃で加熱溶融してTダイから溶融押出する。その後、これを70~120℃の金属製チルロールで冷却固化させて、未延伸の原反シートが得られる。該原反シートの厚みは特に限定されないが、60~800μmが好ましく、80~400μmがより好ましい。原反シートの厚みが60μm未満である場合、延伸時に破断する場合がある。また、該厚みが800μmを超えると、薄膜のフィルムを得ることができないため、コンデンサ用フィルムとして適さない場合がある。
 前記原反シートを延伸することで、コンデンサフィルムを作製することができる。延伸方法としては、一軸延伸法、二軸延伸法が挙げられるが、二軸延伸法が好ましい。二軸延伸法としては、フィルムに対して機械方向へ一軸延伸を行い、次いで機械方向に対して直角方向へ延伸する逐次二軸延伸法、機械方向とそれに対して直角方向へ同時に延伸する同時二軸延伸法などが挙げられる。具体的には、テンター法、チューブラーフィルム法などの逐次二軸延伸法、同時二軸延伸法を用いることができる。
 テンター法では、例えば以下の方法により行うことができる。Tダイから溶融押出された溶融シートを冷却ロールで固化させ、該シートを必要により予熱した後延伸ゾーンに導入する。次いで、該シートを機械方向(縦方向)に120~160℃の温度で3~9倍延伸し、機械方向の直角方向(横方向)に150~190℃の温度で5~11倍で延伸する。合計の延伸面倍率は、30~80倍、好ましくは35~75倍、より好ましくは35~70倍、更に好ましくは35~50倍である。また、必要に応じて、二軸延伸されたフィルムに対して160~190℃で熱固定することも出来る。これにより、熱寸法安定性、耐摩耗性などがより向上したフィルムを得ることができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例で用いたプロピレン単独重合体及びプロピレン単独重合体組成物の諸特性は次のようにして測定した。
 (1)メルトフローレート(MFR)
 メルトフローレート(MFR)は、ASTM D1238に準拠して、230℃、2.16kg荷重の条件下で測定した。
 (2)メソペンタッド分率(mmmm)
 プロピレン単独重合体のメソペンタッド分率(mmmm)は、A.ZambelliらのMacromolecules,8,687(1975)に示された帰属により定められた値であり、13C-NMRにより、下記条件で測定した。なお、メソペンタッド分率は以下の式で表される値である。
  メソペンタッド分率=(21.7ppmでのピーク面積)/(19~23ppmでのピーク面積)
 <測定条件>
  種類 JNM-Lambada400(商品名、日本電子(株)製)
  分解能 400MHz
  測定温度 125℃
  溶媒 1,2,4-トリクロロベンゼン/重水素化ベンゼン=7/4(質量比)
  パルス幅 7.8μsec
  パルス間隔 5sec
  積算回数 2000回
  シフト基準 TMS=0ppm
  モード シングルパルスブロードバンドデカップリング。
 (3)溶出ピークの半値幅
 試料を160℃でo-ジクロロベンゼン(300ppm BHT含有)に60分間撹拌して溶解し、その後、95℃で45分間静置した。これを95℃のTREFカラムに導入した後、0.5℃/分の降温速度でー20℃まで冷却し、その後140℃まで1.0℃/分の昇温速度で140℃まで昇温し、溶出曲線を得た。得られた溶出曲線から得られた溶出ピークの高さの半分に位置する温度幅を算出し、その値を溶出ピークの半値幅とした。測定条件は以下の通りである。
 <測定条件>
  装置 昇温溶出分別装置 TREF200+型(商品名、Polymer ChAR 社製)
  溶離液 o-ジクロロベンゼン(300ppm BHT含有)
  試料濃度 0.40%(w/v)
  注入量 0.3mL。
 (4)分子量分布(Mw/Mn)
 以下の条件で測定し、得られたクロマトグラムを解析することによってプロピレン単独重合体のMw/Mnを算出した。分子量の算出はユニバーサルキャリブレーション法により行い、ポリスチレン換算の値を算出した。GPCクロマトグラムのベースラインは、溶出曲線の立ち上がる保持時間を起点とし、分子量1000に相当する保持時間を終点とした。
 <測定条件>
  液体クロマトグラフ:ALC/GPC 150-C Plus型(商品名、示差屈折計検出器一体型、Waters製)
  カラム:GMH6-HT(商品名、東ソー(株)製)×2本及びGMH6-HTL(商品名、東ソー(株)製)×2本を直列接続
  移動相媒体:o-ジクロロベンゼン
  流速:1.0mL/分
  測定温度:140℃
  サンプル濃度:0.10%(W/W)
  サンプル溶液量:500μL。
 (5)塩素含有量
 試料0.8gを、三菱化成社製燃焼装置を用いてアルゴン/酸素気流下で、400~900℃で燃焼した。その後、燃焼ガスを超純水で捕捉し、濃縮後の試料液を、DIONEX-DX300型イオンクロマト装置(商品名、日本ダイオネック(株)製)および陰イオンカラムAS4A-SC(商品名、ダイオネック社製)を用いて測定して塩素含有量を求めた。
 (6)2,1-挿入および1,3-挿入に基づく異種結合の割合
 13C-NMRを用いて、特開平7-145212号公報に記載された方法に従って、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入の割合、1,3-挿入の割合を測定した。
 (7)耐電圧(BDV)
 ・実施例1~8および比較例1~10
 得られたフィルムのBDVをJIS-C2330に準拠して測定した。測定温度は120℃に設定した。厚み150μm、175μm、200μmの原反フィルムを縦方向(機械方向)5倍×横方向7倍の逐次二軸延伸(延伸面倍率:35倍)で延伸し、厚み4.0μmを超えて6.0μm以下の範囲で3水準のフィルムを作製し、各フィルムの耐電圧を測定した。各耐電圧とフィルム厚みから最小二乗法により厚み5.0μmのときの絶縁破壊電圧[kV]を算出した。
 ・参考例1~4
 得られた延伸フィルムのBDVをJIS-C2330に準拠して測定した。測定温度は120℃に設定した。厚み120μm、150μm、170μmの3水準の原反フィルムを縦方向(機械方向)5倍×横方向9倍の逐次二軸延伸(延伸面倍率:45倍)で延伸し、厚み2.5~4.0μmの範囲で3水準のフィルムを作製し、各フィルムの耐電圧を測定した。各耐電圧とフィルムの厚みから最小二乗法により厚み3μmのときの絶縁破壊電圧[kV]を算出した。
 <プロピレン単独重合体の製造例>
 [製造例1](プロピレン単独重合体(PP1)の製造)
 (1)固体触媒担体の製造
 1L枝付フラスコにSiO(商品名:サンスフェアH121、AGCエスアイテック製)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液し、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10質量%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、新たなトルエンで置換率が95%になるまで置換を行った。
 (2)固体触媒の製造(担体への金属触媒成分の担持)
 グローブボックス内にて、5L4つ口フラスコに[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られた[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド/MAO/SiO/トルエンスラリーに対し、n-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
 (3)前重合触媒の製造
 前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温を15~20℃に保ち、エチレンを303g挿入し、180分間攪拌しながら反応させた。
 重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度が1g/Lとなるように、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
 (4)本重合
 内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した前重合触媒スラリーを固体触媒成分として3.2g/時間、トリエチルアルミニウムを1.0ml/時間連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は3.1MPa/Gであった。
 得られたスラリーを内容量1000Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを50kg/時間、水素を気相部の水素濃度が0.10mol%になるように供給した。重合温度70℃、圧力3.0MPa/Gで重合を行った。次いで得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを15kg/時間、水素を気相部の水素濃度が0.10mol%になるように供給した。重合温度69℃、圧力2.9MPa/Gで重合を行った。更に得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを12kg/時間、水素を気相部の水素濃度が0.10mol%になるように供給した。重合温度68℃、圧力2.9MPa/Gで重合を行った。最後に得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを13kg/時間、水素を気相部の水素濃度が0.10mol%になるように供給した。重合温度67℃、圧力2.9MPa/Gで重合を行い、40kg/時間でスラリーが得られた。
 得られたスラリーを気化後、気固分離を行い、コニカル乾燥機に導入して80℃で真空乾燥を行った。
 以上のようにして得られたプロピレン単独重合体(PP1)の特性を下記表1に示す。なお、PP1にはプロピレン・エチレン共重合体は含まれない。
 [製造例2](プロピレン単独重合体(PP2)の製造)
 (1)固体触媒担体の製造
 充分に窒素置換した内容積70Lの攪拌機付き耐圧容器に窒素雰囲気下、常温にて脱水処理したトルエン31.6Lを挿入し、さらにSiO(商品名:サンスフェアH122、AGCエスアイテック製)1500gをトルエン8.0Lに希釈した混合液を挿入した。撹拌回転数100rpmで撹拌しながら内温を47℃に昇温し、15質量%トリイソブチルアルミニウム/トルエン希釈溶液(日本アルキルアルミ社製)を1.1L挿入し、更にトルエン2.0Lを加えた。次に、内温を50℃に昇温し、20質量%メチルアルミノキサン(以下、MAO)/トルエン希釈液(アルベマーレ社製)5.2Lを4分割して挿入し、更にトルエン2.0Lを加えた。その後、内温を50℃に保持しながら撹拌回転数100rpmで撹拌しながら30分間混合した。
 その後、45分間で内温を95~98℃まで昇温し、4時間担持反応を行った。反応終了後、内温を55~65℃まで降温し、撹拌を止め84分間静置した。その後、上澄み液を32.0L抜出し、新たにトルエン51.0Lを加え、撹拌しながら内温を55~65℃まで昇温した。内温が所定温度に安定したところで撹拌を止め、134分間静置した。その後、上澄み液を51.0L抜出し、新たにトルエン7.0Lを加え室温まで降温することで、MAO/SiO/トルエンスラリー25.7Lを得た。
 (2)固体触媒の製造(担体への金属触媒成分の担持)
 充分に窒素置換した内容積20Lの攪拌機付き耐圧容器に窒素雰囲気下、常温にて前記(1)で調製したMAO/SiO/トルエンスラリー9.8L(固体成分として864g)を加え、更にn-ヘプタンを2.2L加えた。その後、撹拌回転数130rpmで撹拌しながら内温を35℃に昇温し、界面活性剤(商品名:アデカプルロニックL-71、ADEKA製)17.5gをn-ヘプタン1.0Lに希釈した溶液を挿入し、45分間撹拌混合した。その後、214分間静置し上澄み液を9.7L抜出し、新たにn-ヘプタン8.0Lを加え、撹拌回転数100rpmで撹拌しながら内温を35℃に保持し、続いて177分間静置した。その後、n-ヘプタン7.0Lを加え、予めトルエン3.0Lに希釈しておいた下記式[VIII]で示される異性体混合物13.5gを挿入し、撹拌回転数130rpmで撹拌しながら内温35℃で60分間、錯体担持反応を行った。続いて、トリイソブチルアルミニウム/トルエン溶液を0.94L加え、内温35℃で60分間撹拌した。
Figure JPOXMLDOC01-appb-C000008
 その後、撹拌を停止して31分間静置し、上澄み液を10.9L抜出し、n-ヘプタンを8.0L加え、内温35℃にて撹拌回転数100rpmで撹拌した後に、23分間静置した。続いて、上澄み液を8.0L抜出し、n-ヘプタンを9.0L加えて撹拌回転数130rpmにて撹拌しながら常温まで降温した。その結果、スラリー量が12.3リットルの固体触媒スラリーを得た。
 (3)前重合触媒の製造
 充分に窒素置換した内容積270Lの攪拌機付き耐圧容器に窒素雰囲気下、n-ヘプタンを43.4L挿入し、前記(2)で調製した固体触媒スラリーを11.8L(固体触媒成分で841g)加え、更にn-ヘプタンを28.0L加えた。その後、撹拌回転数を150rpmとして内温35℃まで昇温した。続いて、トリイソブチルアルミニウム/トルエン溶液を0.90L挿入し30分間撹拌混合した。
 次に、内温35℃に保ち、エチレンを2780g挿入し、360分間攪拌しながら反応させた。重合終了後、未反応エチレンを窒素で置換し固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を1回行った。得られた前重合触媒をn-ヘプタンに再懸濁して、固体触媒成分濃度が4.9g/L、スラリー量が171Lとなるように調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
 (4)本重合
 内容量70Lの攪拌機付きベッセル重合器にプロピレンを116.9kg/時間、水素を気相部の水素濃度が0.61mol%になるように供給した。前記(3)で製造した前重合触媒スラリーを固体触媒成分として1.2g/時間、トリエチルアルミニウムを8.7ml/時間、界面活性剤(商品名:アデカプルロニックL-72、ADEKA製)を0.4g/時間連続的に供給した。重合温度は70.0℃、圧力は2.94MPa/Gであった。得られたスラリーを内容量1000Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを15.9kg/時間、水素を気相部の水素濃度が0.47mol%になるように供給した。重合温度68.9℃、圧力2.86MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを7.6kg/時間、水素を気相部の水素濃度が0.61mol%になるように供給した。重合温度67.4℃、圧力2.78MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを22.1kg/時間、水素を気相部の水素濃度が0.60mol%になるように供給した。重合温度65.4℃、圧力2.72MPa/Gで重合を行った。
 得られたスラリーを気化後、気固分離を行い、プロピレン重合体を得た。プロピレン重合体は、62kg/時間で得られた。プロピレン重合体に対し、80℃で真空乾燥を行った。
 以上のようにして得られたプロピレン単独重合体(PP2)の特性を下記表1に示す。なお、PP2にはプロピレン・エチレン共重合体は含まれない。
 [製造例3](プロピレン単独重合体(PP3)の製造)
 (1)固体触媒の製造
 内容積2リットルの高速撹拌装置(商品名:TKホモミクサーM型、特殊機化工業製)を充分窒素置換した後、この装置に精製デカン700ml、市販塩化マグネシウム10g、エタノール24.2gおよびレオドールSP-S20(商品名、花王(株)製、ソルビタンジステアレート)3gを入れた。この懸濁液を撹拌しながら反応系を昇温し、懸濁液を120℃にて800rpmで30分撹拌した。次いで、この懸濁液を、沈殿物が生じないように高速撹拌しながら、内径5mmのテフロン(登録商標)製チューブを用いて、予め-10℃に冷却された精製デカン1リットルを張り込んである2リットルのガラスフラスコ(攪拌機付)に移した。移液により生成した固体を濾過し、精製n-ヘプタンで充分洗浄することにより、塩化マグネシウム1モルに対してエタノールが2.8モル配位した固体状付加物を得た。
 この固体状付加物をデカンで懸濁状にして、マグネシウム原子に換算して23mmolの上記固体状付加物を、-20℃に保持した四塩化チタン100ml中に、攪拌下、導入して混合液を得た。この混合液を5時間かけて80℃に昇温し、80℃に達したところで、3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物)を、固体状付加物のマグネシウム原子1モルに対して0.085モルの割合の量で添加し、40分間で110℃まで昇温した。110℃に到達したところで更にシクロヘキサン1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物)を固体状付加物のマグネシウム原子1モルに対して0.0625モルの割合の量で添加し、温度を110℃で90分間攪拌しながら保持することによりこれらを反応させた。
 90分間の反応終了後、熱濾過にて固体部を採取し、この固体部を100mlの四塩化チタンにて再懸濁させた後、昇温して110℃に達したところで、45分間撹拌しながら保持することによりこれらを反応させた。45分間の反応終了後、再び熱濾過にて固体部を採取し、100℃のデカンおよびヘプタンで、洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
 以上の操作によって調製した固体状チタン触媒成分(α-1)はデカン懸濁液として保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。このようにして得られた固体状チタン触媒成分(α-1)の組成はチタン3.2質量%、マグネシウム17質量%、塩素57質量%、3,6-ジメチルシクロヘキサン1,2-ジカルボン酸ジイソブチル10.6質量%、シクロヘキサン1,2-ジカルボン酸ジイソブチル8.9質量%およびエチルアルコール残基0.6質量%であった。
 (2)前重合触媒の製造
 前記(1)で調製した固体触媒成分150g、トリエチルアルミニウム74.4mL、ヘプタン75Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温10~18℃に保ち、プロピレンを900g挿入し、60分間攪拌しながら反応させた。この前重合触媒は遷移金属触媒成分1g当りポリプロピレンを6g含んでいた。
 (3)本重合
 内容量1000Lの攪拌器付きベッセル重合器に、プロピレンを132kg/時間、上記前重合触媒スラリーを遷移金属触媒成分として1.4g/時間、トリエチルアルミニウムを8.4mL/時間、ジシクロペンチルジメトキシシランを16.2mL/時間連続的に供給し、水素を気相部の水素濃度が2.5mol%になるように供給した。重合温度74℃、圧力3.2MPa/Gで重合を行った。
 得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを29kg/時間、水素を気相部の水素濃度が1.8mol%になるように供給した。重合温度71℃、圧力3.1MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを23kg/時間、水素を気相部の水素濃度が1.5mol%になるように供給した。重合温度69℃、圧力3.1MPa/Gで重合を行った。得られたスラリーを失活後、液体プロピレンによる洗浄槽に送液し、ポリプロピレンパウダーを洗浄した。
 得られたスラリーを気化後、気固分離を行い、プロピレン重合体を得た。得られたプロピレン重合体をコニカル乾燥機に導入して、80℃で真空乾燥を行った。次いで生成物100キログラムに対し、純水60グラムとプロピレンオキサイド0.54リットルを添加して、90℃で2時間脱塩素処理を行った後に80℃にて真空乾燥を行い、ポリプロピレンパウダーを得た。
 以上のようにして得られたプロピレン単独重合体(PP3)の特性を下記表1に示す。
 [製造例4](プロピレン単独重合体(PP4)の製造)
 (1)固体状チタン触媒成分の調製
 無水塩化マグネシウム952g、デカン4420mLおよび2-エチルヘキシルアルコール3906gを、130℃で2時間加熱して均一溶液とした。この溶液中に無水フタル酸213gを添加し、130℃でさらに1時間攪拌混合を行って無水フタル酸を溶解させた。得られた均一溶液を23℃まで冷却した後、この均一溶液750mLを、-20℃に保持された四塩化チタン2000mL中に1時間かけて滴下した。滴下後、得られた混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)52.2gを加え、同温度で2時間加熱した。次いで、熱時濾過にて固体部を採取し、この固体部を2750mLの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。加熱終了後、再び熱時濾過にて固体部を採取し、110℃のデカンおよびヘキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。このようにして調製された固体状チタン触媒成分を、ヘキサンスラリーとして保存した。このヘキサンスラリーの一部を乾燥して触媒組成を調べたところ、固体状チタン触媒成分は、チタンを2質量%、塩素を57質量%、マグネシウムを21質量%およびDIBPを20質量%含有していた。
 (2)前重合触媒の製造
 前記(1)で調製した固体状チタン触媒成分120g、トリエチルアルミニウム20.5mLおよびヘプタン120Lを内容量200Lの攪拌機付きオートクレーブに入れ、内温5℃に保ちながら、プロピレンを720g加え、60分間攪拌して反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。
 得られた前重合触媒を精製ヘプタンに再懸濁して、固体状チタン触媒成分濃度が1g/Lの前重合触媒のスラリーを得た。この前重合触媒は固体状チタン触媒成分1g当たり、プロピレン単独重合体を6g含んでいた。
 (3)本重合
 内容量100Lの攪拌器付きベッセル重合器に、プロピレンを110kg/時間、前記(2)で調製した前重合触媒のスラリーを9.8g/時間、トリエチルアルミニウムを5.8mL/時間およびジシクロペンチルジメトキシシランを2.6mL/時間、連続的に供給し、水素を、気相部の水素濃度が0.9mol%になるように供給した。重合温度73℃および圧力3.2MPa/Gで重合を行った。
 得られたスラリーを内容量1000Lの攪拌機付きベッセル重合器に送り、さらに重合を行った。プロピレンを30kg/時間および水素を、気相部の水素濃度が1.3mol%になるように重合器に供給した。重合温度71℃および圧力3.0MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器に送り、さらに重合を行った。プロピレンを46kg/時間および水素を、気相部の水素濃度が1.3mol%になるように重合器に供給した。重合温度69℃、圧力2.9MPa/Gで重合を行った。得られたスラリーを失活させた後、液体プロピレンによる洗浄槽に送り、プロピレン単独重合体パウダーを洗浄した。
 このスラリーを気化させた後、気固分離し、コニカル乾燥機に導入して、80℃で真空乾燥した。次いで、この生成物100キログラムに対し、純水35.9グラムおよびプロピレンオキサイド0.63リットルを加え、90℃で2時間脱塩素処理を行った後、80℃で真空乾燥を行うことで、プロピレン単独重合体を得た。
 以上のようにして得られたプロピレン単独重合体(PP4)の特性を下記表1に示す。
 [製造例5](プロピレン単独重合体(PP5)の製造)
 (1)固体触媒担体の製造
 1L枝付フラスコにSiO(商品名:サンスフェアH121、AGCエスアイテック製)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液し、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10質量%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、新たなトルエンで置換率が95%になるまで置換を行った。
 (2)固体触媒の製造(担体への金属触媒成分の担持)
 グローブボックス内にて、5L4つ口フラスコに(フェニル)(メチル)メチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(1,1,3,6,8,8-ヘキサメチル-1H,8H-ジシクロペンタ[b,h]フルオレニル)ジルコニウムジクロリドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。
 得られた(フェニル)(メチル)メチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(1,1,3,6,8,8-ヘキサメチル-1H,8H-ジシクロペンタ[b,h]フルオレニル)ジルコニウムジクロリド/MAO/SiO/トルエンスラリーに対し、n-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
 (3)前重合触媒の製造
 前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温を15~20℃に保ち、エチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。
 得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度が1g/Lとなるように、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
 (4)本重合
 内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として2.6g/時間、トリエチルアルミニウムを1.0ml/時間連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は2.6MPa/Gであった。
 得られたスラリーを内容量1000Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを50kg/時間、水素を気相部の水素濃度が0.19mol%になるように供給した。重合温度60℃、圧力2.5MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを15kg/時間、水素を気相部の水素濃度が0.19mol%になるように供給した。重合温度59℃、圧力2.5MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを12kg/時間、水素を気相部の水素濃度が0.19mol%になるように供給した。重合温度58℃、圧力2.5MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを13kg/時間、水素を気相部の水素濃度が0.19mol%になるように供給した。重合温度57℃、圧力2.4MPa/Gで重合を行った。
 得られたスラリーを気化後、気固分離を行い、生成物を40kg/時間で得た後、80℃で真空乾燥を行うことにより、プロピレン単独重合体を得た。
 以上のようにして得られたプロピレン単独重合体(PP5)の特性を下記表1に示す。なお、PP5にはプロピレン・エチレン共重合体は含まれない。
 [実施例1~8]
 〔プロピレン単独重合体組成物の調製〕
 表2に示す割合で、各プロピレン単独重合体を配合した。さらに、プロピレン単独重合体100質量部に対して、酸化防止剤として3,5-ジ-tert-ブチル-4-ヒドロキシトルエンを0.2質量部、酸化防止剤としてテトラキス[メチレン-3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンを0.2質量部、中和剤としてステアリン酸カルシウムを0.01質量部配合してドライブレンドした。その後、単軸押出機を用いて、樹脂温度230℃で溶融混練してプロピレン単独重合体組成物のペレット化を行った。造粒機にはGMZ50-32(商品名、(株)ジーエムエンジニアリング製、L/D=32、50mmφ単軸)を使用した。
 〔原反シートの成形〕
 得られたプロピレン単独重合体組成物のペレットを25mmφのTダイシート成形機((株)プラスチック工学研究所製)で230℃に溶融後、押し出し、80℃に保持された1個の冷却ロールにより、引張り速度1.0m/分で冷却し、厚み150、175、200μmの原反シートを得た。
 〔フィルムの作製〕
 得られた原反シートを85mm×85mmにカットし、下記の条件で二軸延伸し、厚さが4.0μmを超えて6.0μm以下のフィルムを得た。
 高温耐電圧用のフィルムは、前記で得られた延伸可能な温度範囲の中央に位置する温度にて、厚みの異なる原反シートを延伸して作製した。得られたフィルムについて前記の方法に従い耐電圧(BDV)を測定した。結果を表2に示す。
 <延伸条件>
  延伸装置:KAROIV(商品名、ブルックナー社製)
  予熱温度:145~160℃
  予熱時間:60秒
  延伸倍率:縦方向(機械方向)5倍×横方向7倍の逐次二軸延伸(延伸面倍率:35倍)
  延伸速度:6m/分。
 フィルムの厚みは予熱温度によって調節した。
 [比較例1~10]
 プロピレン単独重合体組成物の構成を表3に示すように変更した以外は、実施例1と同様にしてフィルムを得た。得られたフィルムの耐電圧を上記方法により測定した。結果を表3に示す。
 実施例1~8では、いずれも耐電圧(BDV)が1.80kV以上と高く、高温耐電圧性が優れていた。一方、比較例1~10では実施例と比較して高温耐電圧性に劣っていた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 [参考例1~4]
 プロピレン単独重合体組成物の構成を表4に示すように変更した以外は、実施例1と同様にしてプロピレン単独重合体組成物のペレットを得た。
 〔原反シートの成形〕
 得られたプロピレン単独重合体組成物のペレットを25mmφのTダイシート成形機((株)プラスチック工学研究所製)で230℃に溶融後、押し出し、80℃に保持された1個の冷却ロールにより、引張り速度1.0m/分で冷却し、厚み120、150、170μmの原反シートを得た。
 〔フィルムの作製〕
 得られた原反シートを85mm×85mmにカットし、下記の条件で二軸延伸し、厚さ2.5~4.0μmのフィルムを得た。結果を表4に示す。
 <延伸条件>
  延伸装置:KAROIV(商品名、ブルックナー社製)
  予熱温度:145~160℃
  予熱時間:60秒
  延伸倍率:縦方向(機械方向)5倍×横方向9倍の逐次二軸延伸(延伸面倍率:45倍)
  延伸速度:6m/分。
 参考例1~4では、実施例と比較してフィルムの高温耐電圧性が劣っていた。フィルムが薄いためであると考えられる。
Figure JPOXMLDOC01-appb-T000012
 この出願は、2014年7月31日に出願された日本出願特願2014-156141を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明に係るプロピレン単独重合体組成物から得られるコンデンサフィルムは、高温耐電圧性に優れているため、本発明に係るプロピレン単独重合体組成物及びコンデンサフィルムの工業的価値は極めて高い。

Claims (10)

  1.  以下の(A-i)~(A-iii)の特性を有するプロピレン単独重合体(A1)を1質量%以上50質量%未満、以下の(B-i)~(B-ii)の特性を有するプロピレン単独重合体(B1)を50質量%を超えて99質量%以下含み(前記プロピレン単独重合体(A1)と前記プロピレン単独重合体(B1)との合計は100質量%)、
    (i)メルトフローレート(MFR)が1.0~10.0g/10分であり、
    (ii)塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物。
    (A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
    (A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
    (A-iii)GPCにより測定した分子量分布Mw/Mnが3.0未満である、
    (B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
    (B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である。
  2.  以下の(A-i)~(A-ii)の特性を有するプロピレン単独重合体(A2)を1質量%以上50質量%未満、以下の(B-i)~(B-iii)の特性を有するプロピレン単独重合体(B2)を50質量%を超えて99質量%以下含み(前記プロピレン単独重合体(A2)と前記プロピレン単独重合体(B2)との合計は100質量%)、
    (i)メルトフローレート(MFR)が1.0~10.0g/10分であり、
    (ii)塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物。
    (A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
    (A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
    (B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
    (B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である、
    (B-iii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃以上である。
  3.  前記プロピレン単独重合体(A1)または前記プロピレン単独重合体(A2)がメタロセン触媒を用いて製造される請求項1または2に記載のコンデンサフィルム用プロピレン単独重合体組成物。
  4.  前記プロピレン単独重合体(B1)または前記プロピレン単独重合体(B2)がチーグラ・ナッタ触媒を用いて製造される請求項1~3のいずれかに記載のコンデンサフィルム用プロピレン単独重合体組成物。
  5.  請求項1~4のいずれかに記載のコンデンサフィルム用プロピレン単独重合体組成物からなる、厚みが1~50μmであるコンデンサフィルム。
  6.  厚みが4μmを超えて50μm以下である請求項5に記載のコンデンサフィルム。
  7.  請求項1~4のいずれかに記載のコンデンサフィルム用プロピレン単独重合体組成物を延伸面倍率(縦×横の面倍率)30~80倍で延伸して得られるコンデンサフィルム。
  8.  コンデンサセパレータフィルムである請求項5~7のいずれかに記載のコンデンサフィルム。
  9.  メタロセン触媒を用いて、以下の(A-i)~(A-iii)の特性を有するプロピレン単独重合体(A1)を製造する工程と、
     チーグラ・ナッタ触媒を用いて、以下の(B-i)~(B-ii)の特性を有するプロピレン単独重合体(B1)を製造する工程と、
     1質量%以上50質量%未満の前記プロピレン単独重合体(A1)と、50質量%を超えて99質量%以下の前記プロピレン単独重合体(B1)と(前記プロピレン単独重合体(A1)と前記プロピレン単独重合体(B1)との合計は100質量%)を混合する工程と、
    を含むコンデンサフィルム用プロピレン単独重合体組成物の製造方法であって、
    (i)前記コンデンサフィルム用プロピレン単独重合体組成物のメルトフローレート(MFR)が1.0~10.0g/10分であり、
    (ii)前記コンデンサフィルム用プロピレン単独重合体組成物の塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物の製造方法。
    (A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
    (A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
    (A-iii)GPCにより測定した分子量分布Mw/Mnが3.0未満である、
    (B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
    (B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である。
  10.  メタロセン触媒を用いて、以下の(A-i)~(A-ii)の特性を有するプロピレン単独重合体(A2)を製造する工程と、
     チーグラ・ナッタ触媒を用いて、以下の(B-i)~(B-iii)の特性を有するプロピレン単独重合体(B2)を製造する工程と、
     1質量%以上50質量%未満の前記プロピレン単独重合体(A2)と、50質量%を超えて99質量%以下の前記プロピレン単独重合体(B2)と(前記プロピレン単独重合体(A2)と前記プロピレン単独重合体(B2)との合計は100質量%)を混合する工程と、
    を含むコンデンサフィルム用プロピレン単独重合体組成物の製造方法であって、
    (i)前記コンデンサフィルム用プロピレン単独重合体組成物のメルトフローレート(MFR)が1.0~10.0g/10分であり、
    (ii)前記コンデンサフィルム用プロピレン単独重合体組成物の塩素含有量が2質量ppm以下であることを特徴とするコンデンサフィルム用プロピレン単独重合体組成物の製造方法。
    (A-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.930以上である、
    (A-ii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃未満である、
    (B-i)13C-NMRで測定したメソペンタッド分率(mmmm)が0.950以上である、
    (B-ii)GPCにより測定した分子量分布Mw/Mnが3.0以上である、
    (B-iii)昇温溶離分別法(TREF)で測定した溶出ピークの半値幅が4.0℃以上である。
PCT/JP2015/071634 2014-07-31 2015-07-30 コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム WO2016017753A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016538432A JP6445562B2 (ja) 2014-07-31 2015-07-30 コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム
EP15826415.0A EP3176214B1 (en) 2014-07-31 2015-07-30 Propylene homopolymer composition for capacitor film, method for producing same, and capacitor film
KR1020167035698A KR101854070B1 (ko) 2014-07-31 2015-07-30 콘덴서 필름용 프로필렌 단독중합체 조성물 및 그의 제조 방법, 및 콘덴서 필름
CN201580041839.2A CN106574091B (zh) 2014-07-31 2015-07-30 电容器膜用丙烯均聚物组合物及其制造方法、以及电容器膜
SG11201609874QA SG11201609874QA (en) 2014-07-31 2015-07-30 Propylene homopolymer composition for capacitor film, method for producing same, and capacitor film
US15/315,622 US10800909B2 (en) 2014-07-31 2015-07-30 Propylene homopolymer composition for capacitor film, method for producing the same, and capacitor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156141 2014-07-31
JP2014156141 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017753A1 true WO2016017753A1 (ja) 2016-02-04

Family

ID=55217650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071634 WO2016017753A1 (ja) 2014-07-31 2015-07-30 コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム

Country Status (7)

Country Link
US (1) US10800909B2 (ja)
EP (1) EP3176214B1 (ja)
JP (1) JP6445562B2 (ja)
KR (1) KR101854070B1 (ja)
CN (1) CN106574091B (ja)
SG (1) SG11201609874QA (ja)
WO (1) WO2016017753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116997A4 (en) * 2020-03-06 2024-03-06 Prime Polymer Co., Ltd. MULTI-LAYER POLYPROPYLENE LAYER FOR CAPACITOR

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004418A1 (ja) * 2017-06-30 2019-01-03 三井化学株式会社 プロピレン系重合体、その製造方法、プロピレン系樹脂組成物および成形体
US20220016570A1 (en) 2018-12-17 2022-01-20 Nitto Denko Corporation Selectively permeable polymeric membrane
US20220305446A1 (en) 2019-06-18 2022-09-29 Nitto Denko Corporation Selectively permeable polymeric membrane

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248133A (ja) * 1993-02-24 1994-09-06 Mitsui Toatsu Chem Inc ポリプロピレン組成物およびその製造方法
JP2002348423A (ja) * 2001-03-22 2002-12-04 Sumitomo Chem Co Ltd 延伸フィルム用ポリプロピレン系樹脂組成物、その樹脂組成物の製造方法および延伸フィルム
WO2009060944A1 (ja) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー
JP2010254868A (ja) * 2009-04-28 2010-11-11 Oji Paper Co Ltd コンデンサー用二軸延伸ポリプロピレンフィルムおよびその金属蒸着フィルム
JP2010254794A (ja) * 2009-04-24 2010-11-11 Oji Paper Co Ltd 微細粗面化ポリプロピレンフィルムおよびその製造方法
JP2010280795A (ja) * 2009-06-04 2010-12-16 Oji Paper Co Ltd コンデンサー用二軸延伸ポリプロピレンフィルム、その金属蒸着フィルム及びキャスト原反シート
JP2011148896A (ja) * 2010-01-21 2011-08-04 Oji Paper Co Ltd コンデンサー用ポリプロピレンフィルム、その製法及び金属化フィルム
US20120329951A1 (en) * 2009-12-30 2012-12-27 Borealis Ag Bopp-film
JP2014194010A (ja) * 2013-02-28 2014-10-09 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂組成物、そのシートおよびそのフィルム
JP2014205799A (ja) * 2013-04-15 2014-10-30 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084208A (en) * 1993-02-26 2000-07-04 Canon Kabushiki Kaisha Image heating device which prevents temperature rise in non-paper feeding portion, and heater
EP0942013B1 (en) * 1997-08-05 2004-02-04 Mitsui Chemicals, Inc. Polypropylene resin composition and use thereof
JP3817041B2 (ja) * 1997-08-27 2006-08-30 出光興産株式会社 ポリプロピレン系樹脂組成物及びそのフィルム
JP2001040147A (ja) 1999-07-30 2001-02-13 Nippon Polyolefin Kk ポリオレフィン系樹脂組成物からなる延伸物並びに二軸延伸フィルム
KR100733187B1 (ko) * 1999-10-26 2007-06-27 이데미쓰 고산 가부시키가이샤 폴리프로필렌계 필름 및 다층 적층체
EP1894715B8 (de) * 2006-08-31 2010-11-10 Treofan Germany GmbH & Co.KG Biaxial orientierte Elektroisolierfolie
US8859084B2 (en) 2008-01-29 2014-10-14 Fina Technology, Inc. Modifiers for oriented polypropylene
EP2374840B1 (en) 2009-01-07 2013-08-28 Prime Polymer Co., Ltd. Polypropylene resin composition for microporous film formation
US8901240B2 (en) * 2009-01-07 2014-12-02 Mitsui Chemicals Inc. Polypropylene resin composition for use in formation of microporous membrane
KR101356883B1 (ko) 2009-01-27 2014-01-28 가부시키가이샤 프라임 폴리머 콘덴서용 프로필렌 단독중합체
EP2410539B1 (en) * 2009-03-17 2019-02-20 Prime Polymer Co., Ltd. Polypropylene for film capacitor, polypropylene sheet for film capacitor, methods for producing same, and uses of same
JP5617655B2 (ja) 2011-01-19 2014-11-05 王子ホールディングス株式会社 コンデンサー用ポリプロピレンフィルム
JP5974524B2 (ja) 2011-03-17 2016-08-23 東レ株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
WO2013105552A1 (ja) * 2012-01-11 2013-07-18 王子ホールディングス株式会社 コンデンサー用2軸延伸ポリプロピレンフィルム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248133A (ja) * 1993-02-24 1994-09-06 Mitsui Toatsu Chem Inc ポリプロピレン組成物およびその製造方法
JP2002348423A (ja) * 2001-03-22 2002-12-04 Sumitomo Chem Co Ltd 延伸フィルム用ポリプロピレン系樹脂組成物、その樹脂組成物の製造方法および延伸フィルム
WO2009060944A1 (ja) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー
JP2010254794A (ja) * 2009-04-24 2010-11-11 Oji Paper Co Ltd 微細粗面化ポリプロピレンフィルムおよびその製造方法
JP2010254868A (ja) * 2009-04-28 2010-11-11 Oji Paper Co Ltd コンデンサー用二軸延伸ポリプロピレンフィルムおよびその金属蒸着フィルム
JP2010280795A (ja) * 2009-06-04 2010-12-16 Oji Paper Co Ltd コンデンサー用二軸延伸ポリプロピレンフィルム、その金属蒸着フィルム及びキャスト原反シート
US20120329951A1 (en) * 2009-12-30 2012-12-27 Borealis Ag Bopp-film
JP2011148896A (ja) * 2010-01-21 2011-08-04 Oji Paper Co Ltd コンデンサー用ポリプロピレンフィルム、その製法及び金属化フィルム
JP2014194010A (ja) * 2013-02-28 2014-10-09 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂組成物、そのシートおよびそのフィルム
JP2014205799A (ja) * 2013-04-15 2014-10-30 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116997A4 (en) * 2020-03-06 2024-03-06 Prime Polymer Co., Ltd. MULTI-LAYER POLYPROPYLENE LAYER FOR CAPACITOR

Also Published As

Publication number Publication date
US20170190891A1 (en) 2017-07-06
CN106574091A (zh) 2017-04-19
KR20170012350A (ko) 2017-02-02
CN106574091B (zh) 2019-04-02
EP3176214A4 (en) 2018-04-18
JP6445562B2 (ja) 2018-12-26
EP3176214A1 (en) 2017-06-07
SG11201609874QA (en) 2017-02-27
KR101854070B1 (ko) 2018-05-02
US10800909B2 (en) 2020-10-13
JPWO2016017753A1 (ja) 2017-06-01
EP3176214B1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP5159215B2 (ja) ポリプロピレン樹脂からなるキャパシタフィルム用原反シート、キャパシタフィルム及びそれらの製造方法
TWI605084B (zh) 微多孔薄膜用聚丙烯
JP6445562B2 (ja) コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム
JP6445561B2 (ja) コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム
US8288495B2 (en) Propylene homopolymer for capacitors
JP2006057010A (ja) プロピレン系ランダム共重合体及びその用途
JP7182644B2 (ja) 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
CN103764693B (zh) 具有低灰分含量的基于丙烯的聚合物及方法
JP7207997B2 (ja) プロピレン系重合体を含む延伸フィルム
JP7241532B2 (ja) コンデンサフィルムおよびその製造方法
WO2021176930A1 (ja) コンデンサ用多層ポリプロピレンフィルム
JP2006274114A (ja) 押出コーティング用ポリプロピレン樹脂組成物
JP2006328300A (ja) ポリプロピレン樹脂、並びに該樹脂の高透明シートへの応用
JP4327043B2 (ja) プロピレン系重合体およびシュリンクフィルムへの応用
JP7345257B2 (ja) プロピレン重合体組成物からなる微多孔フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538432

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015826415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15315622

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020167035698

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE