WO2016017603A1 - 二酸化バナジウム含有粒子の製造方法、及び分散液 - Google Patents

二酸化バナジウム含有粒子の製造方法、及び分散液 Download PDF

Info

Publication number
WO2016017603A1
WO2016017603A1 PCT/JP2015/071302 JP2015071302W WO2016017603A1 WO 2016017603 A1 WO2016017603 A1 WO 2016017603A1 JP 2015071302 W JP2015071302 W JP 2015071302W WO 2016017603 A1 WO2016017603 A1 WO 2016017603A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
containing particles
vanadium
producing
particles
Prior art date
Application number
PCT/JP2015/071302
Other languages
English (en)
French (fr)
Inventor
貴志 鷲巣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US15/329,809 priority Critical patent/US20170260446A1/en
Priority to CN201580040197.4A priority patent/CN106536416A/zh
Priority to JP2016538348A priority patent/JPWO2016017603A1/ja
Publication of WO2016017603A1 publication Critical patent/WO2016017603A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure

Definitions

  • the present invention relates to a method for producing vanadium dioxide-containing particles and a dispersion. More specifically, the present invention relates to a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and transparency, and a dispersion.
  • Vanadium dioxide has attracted attention as a material exhibiting a thermochromic phenomenon in which optical properties such as transmittance and reflectance are reversibly changed by temperature change.
  • crystal phases such as A phase, B phase, C phase and R phase (so-called “rutile-type crystal phase”).
  • rutile-type crystal phase the crystal structure exhibiting thermochromic properties as described above is limited to the R phase.
  • the R phase does not exhibit thermochromic properties below the transition temperature and has a monoclinic structure, and is also called an M phase.
  • a hydrothermal synthesis method has been reported as a technique for producing such particles (see, for example, Patent Document 1).
  • thermochromic properties and transparency In order to obtain excellent thermochromic properties and transparency, it is necessary to make the particle size as uniform and small as possible, but it is difficult to prevent aggregation of particles.
  • the synthesized vanadium dioxide particles have excellent thermochromic properties, they are structurally unstable and are easily oxidized after the synthesis and converted into divanadium pentoxide (V 2 O 5 ) or the like. The thermochromic nature is lost.
  • Patent Documents 1 and 2 disclose a technique for preventing deterioration and aggregation of particles by surface-modifying the surface of vanadium dioxide particles.
  • vanadium dioxide is very unstable because particles are surface-modified after passing through a drying step.
  • Patent Document 3 discloses a technique for preventing particle deterioration by performing surface modification.
  • vanadium dioxide powder is dispersed again to perform surface modification, the particles are aggregated at the time of powdering. It is considered that the dispersion is insufficient.
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a method for producing vanadium dioxide-containing particles excellent in thermochromic properties and transparency, and a dispersion.
  • the present inventor manufactured vanadium dioxide-containing particles by hydrothermal reaction in the process of examining the cause of the above-mentioned problems, and the surface of the vanadium dioxide-containing particles was mixed with a solvent and vanadium dioxide-containing particles.
  • the inventors have found that a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and transparency can be provided by surface modification without separation, and the present invention has been achieved.
  • a method for producing vanadium dioxide-containing particles having thermochromic properties using a hydrothermal reaction A method for producing vanadium dioxide-containing particles, wherein the surface of the vanadium dioxide-containing particles is surface-modified without separating the solvent and the vanadium dioxide-containing particles.
  • Item 5 The method for producing vanadium dioxide-containing particles according to any one of Items 2 to 4, wherein the number of reactive groups in the surface modifier is 1 or 2.
  • a dispersion comprising vanadium dioxide-containing particles produced by the method for producing vanadium dioxide-containing particles according to any one of items 1 to 5.
  • the above-mentioned means of the present invention can provide a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and transparency, and a dispersion.
  • the vanadium dioxide-containing particles according to the present invention are produced by a hydrothermal reaction, and the surface of the vanadium dioxide-containing particles is modified without separating the solvent and the vanadium dioxide-containing particles, so that the particles are not aggregated.
  • the surface can be modified.
  • the deterioration of the particles is largely prevented, and the particle size is further reduced, compared with the surface modification performed by the above-described known method (see Patent Documents 1 to 3). It is thought that the diameter distribution can be narrowed.
  • the method for producing vanadium dioxide-containing particles of the present invention is a method for producing thermochromic vanadium dioxide-containing particles using a hydrothermal reaction, wherein the vanadium dioxide-containing particle surface is mixed with a solvent and vanadium dioxide-containing particles. It is characterized by surface modification without separation.
  • This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the method for producing vanadium dioxide-containing particles comprises a step of preparing a vanadium compound, a reducing agent, water and a surface modifier, and mixing the vanadium compound, the reducing agent, water and the surface modifier.
  • the step of producing the surface-modified vanadium dioxide-containing particles by hydrothermal reaction, in order, can be performed with a good surface modification because it does not go through a drying step, and the particles are larger than a certain size. It is preferable because the surface is covered with a coupling agent before it grows, and the particle size becomes smaller and the particle size distribution becomes narrower.
  • the manufacturing method of vanadium dioxide-containing particles includes a step of preparing a vanadium compound, a reducing agent and water, a step of mixing vanadium compound, a reducing agent and water, and manufacturing vanadium dioxide-containing particles by hydrothermal reaction.
  • the surface modification agent is mixed, and the surface modification of the surface of the vanadium dioxide-containing particles is performed in order, so that the surface modification can be performed without going through the particle drying step or the separation step. This is preferable because a good surface modification state can be obtained without deteriorating the particles.
  • the reaction temperature of the surface modification step can be freely selected, it is preferable because there are many surface modifiers that can be used.
  • the manufacturing method of vanadium dioxide-containing particles includes a step of preparing a vanadium compound, a reducing agent and water, a step of mixing vanadium compound, a reducing agent and water, and manufacturing vanadium dioxide-containing particles by hydrothermal reaction. After the reaction system is returned to room temperature, a step of replacing the solvent by ultrafiltration and a step of surface-modifying the surface of the vanadium dioxide-containing particles by mixing a surface modifier are sequentially provided. Substitution of the solvent is preferable because surface modification can be performed in a reaction system in which an organic solvent is mixed. Furthermore, since the residue can be removed, it is preferable because the surface modification reaction is hardly inhibited.
  • the number of reactive groups in the surface modifier is preferably 1 or 2 in order to suppress the reaction between the surface modifiers and prevent the formation of by-products.
  • vanadium dioxide-containing particles produced by the method for producing vanadium dioxide-containing particles of the present invention can be suitably used as a dispersion.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • thermochromic vanadium dioxide-containing particles comprises producing vanadium dioxide-containing particles by a hydrothermal reaction, and modifying the surface of the vanadium dioxide-containing particles without separating the solvent and vanadium dioxide-containing particles. It is characterized by that.
  • the normal temperature means within a temperature range of 20 to 30 ° C.
  • a vanadium compound, a reducing agent, and a surface modifier are mixed with water, and hydrothermal synthesis is performed within a range of 200 to 270 ° C. in an autoclave. At this time, hydrogen peroxide may be mixed. Since the reaction time varies depending on the temperature, it is determined by confirming the progress of the reaction. After the reaction, it is cooled to room temperature, and the resulting product is separated from the solvent by centrifugation or filtration. Thereafter, ethanol and water are added and dispersed again, and then the solvent and particles are separated to perform washing. After repeating the above process several times, the surface-modified vanadium dioxide-containing particles can be obtained by drying in a vacuum oven, for example, drying at 60 ° C. (24 hours).
  • the vanadium dioxide-containing particles may be dispersed in a predetermined solvent (dispersion medium) to form a dispersion.
  • the dispersion medium is not particularly limited, and any known dispersion medium can be used.
  • a vanadium compound and a reducing agent are mixed with water, and hydrothermal synthesis is performed in an autoclave within a range of 200 to 270 ° C.
  • hydrogen peroxide may be mixed. Since the reaction time varies depending on the temperature, it is determined by confirming the progress of the reaction.
  • a surface modifier is mixed, and the surface modification reaction is advanced by stirring at room temperature.
  • ultrafiltration may be used to replace the solvent, and after washing, the surface modifier may be added to proceed with the reaction.
  • the resulting product is separated from the solvent by centrifugation or filtration. Then, after adding ethanol and water and dispersing again, washing is performed by separating the solvent and particles.
  • the surface-modified vanadium dioxide-containing particles can be obtained by drying in a vacuum oven, for example, drying at 110 ° C. (1 hour).
  • the vanadium dioxide-containing particles may be dispersed in a predetermined solvent (dispersion medium) to form a dispersion.
  • the dispersion medium is not particularly limited, and any known dispersion medium can be used.
  • Ultrafiltration As the ultrafiltration, for example, filtration is performed at room temperature using a flow rate of 300 ml / min, a liquid pressure of 1 bar (0.1 MPa) using Vivaflow 50 (effective filtration area of 50 cm 2 , molecular weight cut-off of 5000) manufactured by Sartorius steady. be able to.
  • a wet heating method is preferable. If the wet heating method is used, the treatment can be performed from an aqueous dispersion state without gelation after synthesis.
  • the surface of the particle can be modified by adding 2 to 100 parts by mass of water and a surface modifier to 1 part by mass of the particle and heating at a predetermined temperature for a predetermined time from the water dispersion state of the particle. it can. At this time, if the amount of water is excessive, the water may be removed using an evaporator or the like before addition of the organic dispersion medium. If mixing of the surface modifier is insufficient, an organic solvent may be mixed with water.
  • the organic dispersion medium to be used is not particularly limited.
  • a dispersion medium such as methanol, ethanol, isopropyl alcohol, ethoxyethanol, dimethylformamide, acetone, ethyl acetate, tetrahydrofuran, benzene, toluene, hexane, xylene, and cyclohexane is necessary. Depending on the situation, it can be used alone or in combination of two or more.
  • isopropyl alcohol is preferably used as the dispersion medium.
  • the pH may be adjusted as necessary.
  • the pH of the reaction solution is preferably adjusted within the range of 9 to 12 (25 ° C.), more preferably within the range of 10 to 11 from the viewpoint of the stability of the dispersed particles.
  • the reagent for adjusting the pH ammonia, ammonium acetate, ammonium hydrogen carbonate, ammonium carbonate, trimethylamine, pyridine, aniline, and the like can be preferably used.
  • ammonia can be used because it can be easily removed by heating after particle formation. preferable.
  • the vanadium dioxide-containing particles according to the present invention are particles containing at least vanadium dioxide.
  • the vanadium dioxide-containing particles may contain components other than vanadium dioxide in the particles, or may be formed only from vanadium dioxide.
  • the vanadium dioxide-containing particles according to the present invention have transparency (transparency in the visible light region of a film to which vanadium dioxide-containing particles are added) and thermochromic properties.
  • the transmittance of the vanadium dioxide-containing particles according to the present invention is preferably as high as possible, but is preferably 70% or more.
  • the thermochromic property of the vanadium dioxide-containing particles is not particularly limited as long as optical properties such as transmittance and reflectance are reversibly changed due to temperature change.
  • the difference in transmittance at 25 ° C./50% RH and 85 ° C./85% RH is preferably 30% or more.
  • the transmittance of the vanadium dioxide-containing particles can be measured as the transmittance at a wavelength of 2000 nm using, for example, a spectrophotometer V-670 (manufactured by JASCO Corporation).
  • the particle diameter of the vanadium dioxide-containing particles according to the present invention is preferably 100 nm or less, and more preferably 50 nm or less, in order to obtain good transparency and thermochromic properties.
  • the particle size in this invention means the value of D50 measured with a laser diffraction type particle size distribution meter.
  • the vanadium compound according to the present invention is not particularly limited, and examples thereof include vanadium alkoxide, divanadium pentoxide, and ammonium vanadate.
  • the reducing agent according to the present invention is not particularly limited, and examples thereof include hydrazine or a hydrate thereof, sulfite, oxalic acid, sodium borohydride and the like.
  • Examples of the surface modifier according to the present invention include an organosilicon compound, an organotitanium compound, an organoaluminum compound, an organozirconia compound, a surfactant, and silicone oil.
  • the number of reactive groups in the surface modifier is preferably 1 or 2.
  • organosilicon compound (organic silicate compound) used as the surface modifier examples include hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane, trimethylsilyl chloride, methyltriethoxysilane, dimethyldiethoxysilane, and decyl.
  • SZ6187 made by Toray Dow Silicone
  • an organic silicate compound having a low molecular weight and high durability it is desirable to use an organic silicate compound having a low molecular weight and high durability, and it is preferable to use hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride.
  • Examples of the organic titanium compound include tetrabutyl titanate, tetraoctyl titanate, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctyl pyrophosphate) oxy Acetate titanate, as chelate compound, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetoacetate, titanium phosphate compound, titanium octylene glycolate, titanium ethyl acetoacetate, titanium lactate ammonium salt, titanium lactate, titanium triethanol Examples include aminates. Examples of commercially available products include Prenact TTS (manufactured by Ajinomoto Fine Techno), Prenact TTS44 (manufactured by Ajino
  • organoaluminum compound examples include aluminum isopropoxide and aluminum tert-butoxide.
  • organic zirconia compound examples include normal propyl zirconate, normal butyl zirconate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium tetraacetylacetonate and the like.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • hydrophobic group of the surfactant examples include an alkyl group, a silyl group having an alkyl group, and a fluoroalkyl group.
  • the alkyl group may have an aromatic ring as a substituent.
  • the surfactant only needs to have at least one hydrophilic group and one hydrophobic group as described above in the same molecule, and may have two or more groups.
  • myristyl diethanolamine 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2-hydroxytetra Decylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8 to 18 carbon atoms) benzyldimethylammonium chloride, ethylenebisalkyl (C8-18) Amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, perfluoroalkenyl, par Fluoroalkyl compounds and the like.
  • silicone oil examples include straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carrubinol-modified silicone oil, and methacryl-modified. Silicone oil, mercapto modified silicone oil, different functional group modified silicone oil, polyether modified silicone oil, methylstyryl modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil, higher fatty acid-containing modified silicone oil and fluorine modified silicone And modified silicone oil.
  • straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil
  • amino-modified silicone oil amino-modified silicone oil
  • epoxy-modified silicone oil epoxy-modified silicone oil
  • carboxyl-modified silicone oil carboxyl-modified silicone oil
  • carrubinol-modified silicone oil examples include methacryl-modified.
  • silicone oil examples include straight silicone oil such as dimethyl silicone oil,
  • the surface modifier may be appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water, or the like.
  • the number of carbon atoms in the organic functional group introduced by the surface modifier is preferably 1-6. Thereby, durability can be improved.
  • the amount of the surface modifier is preferably in the range of 0.1 to 30% by mass of the particle, and preferably 0.1 to 10% by mass from the viewpoint of durability. If the amount of the surface modifier is 30% by mass or less, the proportion of the organic portion is small and the durability is not deteriorated. If the amount is 0.1% by mass or more, the particle surface can be sufficiently surface modified. .
  • the obtained product was separated using centrifugation, ethanol was further added, and the mixture was stirred and centrifuged. This operation was further repeated in the order of water and ethanol to wash the product.
  • the washed product was dried in a vacuum oven at 60 ° C. for 24 hours to produce vanadium dioxide (VO 2 ).
  • aqueous ammonia (28% by mass, Wako Pure Chemical Industries) was added to a solution obtained by mixing 20 ml of ethanol and 5 ml of pure water to prepare a solution having a pH of 11.5.
  • 1 g of the prepared vanadium dioxide-containing particles and 0.3 g of methyltriethoxysilane (Tokyo Kasei Kogyo) were added and mixed with stirring at 30 ° C. for 4 hours.
  • the resulting suspension was sequentially filtered and washed to collect fine particles.
  • the collected fine particles were dried at 110 ° C. for 1 hour to obtain surface-modified vanadium dioxide-containing particles 101.
  • a solution prepared by mixing 0.03 g of methyltriethoxysilane (Tokyo Kasei Kogyo Co., Ltd.) into the prepared solution is a high-pressure reaction decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: Sanai Kagaku Co., Ltd. And heated at 100 ° C. for 8 hours, and then subjected to a hydrothermal reaction treatment at 270 ° C. for 24 hours.
  • the obtained product was separated using centrifugation, ethanol was further added, and the mixture was stirred and centrifuged. This operation was further repeated in the order of water and ethanol to wash the product and collect fine particles.
  • the collected fine particles were dried at 110 ° C. for 1 hour to obtain surface-modified vanadium dioxide-containing particles 102.
  • the prepared solution was placed in a high-pressure reactive decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: Sanai Kagaku Co., Ltd.), heated at 100 ° C. for 8 hours, and then 270 ° C. for 24 hours.
  • the hydrothermal reaction treatment was performed.
  • the obtained product was separated using centrifugation, ethanol was further added, and the mixture was stirred and centrifuged. This operation was further repeated in the order of water and ethanol to wash the product and collect fine particles.
  • the collected fine particles were dried at 110 ° C. for 1 hour to obtain surface-modified vanadium dioxide-containing particles 103.
  • the prepared solution was placed in a high-pressure reactive decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: Sanai Kagaku Co., Ltd.), heated at 100 ° C. for 8 hours, and then 270 ° C. for 24 hours.
  • the hydrothermal reaction treatment was performed.
  • the mixture was cooled to room temperature (25 ° C.), and filtered with a flow rate of 300 ml / min and a liquid pressure of 1 bar (0.1 MPa) using a Vivaflow 50 (effective filtration area of 50 cm 2 and a molecular weight cut off of 5000) manufactured by Sartorius steady. Cleaning was performed by performing.
  • methyltriethoxysilane (Tokyo Kasei Kogyo) was added to the dispersion after washing and stirred at 30 ° C. for 24 hours.
  • the obtained product was separated using centrifugation, ethanol was further added, and the mixture was stirred and centrifuged. This operation was further repeated in the order of water and ethanol to wash the product and collect fine particles.
  • the collected fine particles were dried at 110 ° C. for 1 hour to obtain surface-modified vanadium dioxide-containing particles 104.
  • Vanadium dioxide-containing particles 105 were produced in the same manner as in the production of vanadium dioxide-containing particles 102, except that methyltriethoxysilane was changed to dimethyldiethoxysilane (Tokyo Chemical Industry). .
  • vanadium dioxide-containing particles 106 were produced in the same manner except that methyltriethoxysilane was changed to dimethyldiethoxysilane (Tokyo Chemical Industry). .
  • a mixture of the prepared liquid mixture with 0.025 g of methyltriethoxysilane (Tokyo Kasei Kogyo Co., Ltd.) is used as a high-pressure reaction decomposition container, stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample container HUTc-50: Sanai Kagaku And heated at 100 ° C. for 8 hours, and then subjected to a hydrothermal reaction treatment at 270 ° C. for 48 hours.
  • the obtained product was separated using centrifugation, ethanol was further added, and the mixture was stirred and centrifuged. This operation was further repeated in the order of water and ethanol to wash the product and collect fine particles.
  • the collected fine particles were dried at 110 ° C. for 1 hour to obtain surface-modified vanadium dioxide-containing particles 107.
  • the prepared solution was placed in a high-pressure reactive decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: Sanai Kagaku Co., Ltd.), heated at 100 ° C. for 8 hours, and then 270 ° C. for 24 hours.
  • the hydrothermal reaction treatment was performed.
  • the mixture was cooled to room temperature (25 ° C.), and filtered with a flow rate of 300 ml / min and a liquid pressure of 1 bar (0.1 MPa) using a Vivaflow 50 (effective filtration area of 50 cm 2 and a molecular weight cut off of 5000) manufactured by Sartorius steady. Cleaning was performed by performing.
  • methyltriethoxysilane (Tokyo Kasei Kogyo) was added to the washed dispersion and stirred at 30 ° C. for 24 hours.
  • the obtained product was separated using centrifugation, ethanol was further added, and the mixture was stirred and centrifuged. This operation was further repeated in the order of water and ethanol to wash the product and collect fine particles.
  • the collected fine particles were dried at 110 ° C. for 1 hour to obtain surface-modified vanadium dioxide-containing particles 108.
  • Vanadium dioxide-containing particles 111 were produced in the same manner as in the production of the vanadium dioxide-containing particles 102, except that methyltriethoxysilane was changed to trimethylethoxysilane (Tokyo Chemical Industry).
  • Vanadium dioxide-containing particles 112 were produced in the same manner as in the production of vanadium dioxide-containing particles 104 except that methyltriethoxysilane was changed to trimethylethoxysilane (Tokyo Chemical Industry).
  • vanadium dioxide-containing particles 113 were similarly produced except that after heating at 100 ° C. for 8 hours, the hydrothermal reaction treatment conditions were set at 240 ° C. for 100 hours. Was made.
  • vanadium dioxide-containing particles 114 were produced in the same manner except that after heating at 100 ° C for 8 hours, the hydrothermal reaction treatment conditions were changed to 240 ° C for 56 hours. Was made.
  • vanadium dioxide-containing particles 115 to 118 In the preparation of vanadium dioxide-containing particles 102, methyltriethoxysilane was replaced with hexamethyldisilazane (Tokyo Chemical Industry), tetraisopropyl titanate (Tokyo Chemical Industry), and normal butyl zirco. Vanadium dioxide-containing particles 115 to 118 were produced in the same manner except that the salt was changed to aluminum isopropoxide (Tokyo Chemical Industry).
  • the vanadium dioxide-containing particles of the present invention have a smaller particle size after surface modification as compared with the vanadium dioxide-containing particles of the comparative example, and are transparent and thermostatic. It was confirmed that the chromic property was excellent. From the above, as a method for producing vanadium dioxide-containing particles, it is useful to produce vanadium dioxide-containing particles by a hydrothermal reaction and to modify the surface of the vanadium dioxide-containing particles without separating the solvent and vanadium dioxide-containing particles. I understand that.
  • the present invention can be particularly suitably used for providing a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明の課題は、サーモクロミック性及び透明性に優れた二酸化バナジウム含有粒子の製造方法を提供することである。 本発明の二酸化バナジウム含有粒子の製造方法は、水熱反応を用いた、サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法であって、二酸化バナジウム含有粒子表面を、溶媒と二酸化バナジウム含有粒子とを分離させることなく表面修飾することを特徴とする。

Description

二酸化バナジウム含有粒子の製造方法、及び分散液
 本発明は、二酸化バナジウム含有粒子の製造方法、及び分散液に関する。より詳しくは、サーモクロミック性及び透明性に優れた二酸化バナジウム含有粒子の製造方法、及び分散液に関する。
 二酸化バナジウム(VO)は、温度変化によって透過率や反射率等の光学特性が可逆的に変化するサーモクロミック現象を示す材料として注目されている。
 二酸化バナジウムの結晶構造には、A相、B相、C相及びR相(いわゆる「ルチル型の結晶相」)など、いくつかの結晶相の多形が存在する。この中でも、前述のようなサーモクロミック性を示す結晶構造は、R相に限られる。このR相は、転移温度以下ではサーモクロミック性を示さず、単斜晶系(monoclinic)の構造を有するため、M相とも呼ばれている。
 このような粒子を作製する技術として、水熱合成法が報告されている(例えば、特許文献1参照。)。
 優れたサーモクロミック性と透明性とを得るためには、できるだけ粒径は均一で、かつ小さくする必要があるが、粒子の凝集を防ぐことは困難である。
 また、合成された二酸化バナジウム粒子は優れたサーモクロミック性を有しているものの、構造上不安定であり、合成後に簡単に酸化されて五酸化二バナジウム(V)等に変化してしまい、サーモクロミック性を失ってしまう。
 特許文献1及び2には、二酸化バナジウム粒子表面を表面修飾することで、粒子の劣化や凝集を防ぐ技術が開示されている。しかし、当該特許文献1及び2に開示されているような、一般的な湿式の表面修飾方法では、粒子は乾燥工程を経た後に表面修飾されていることから二酸化バナジウムは非常に不安定で、その結果、表面修飾が行われる前にすでに劣化が進行していたり、凝集が発生していたりと、十分な表面修飾が行えない。
 また、特許文献3にも、表面修飾を行うことで粒子の劣化を防ぐ技術が開示されているが、二酸化バナジウム紛体を再度分散して表面修飾を行っているため、紛体時に粒子が凝集しており、分散が不十分であることが考えられる。
 また、上記特許文献等に開示されているように、一度乾燥工程を経た粒子を表面修飾した場合、その粒子が崩れると表面修飾されていない部分が露出してしまい、サーモクロミック性を十分に発揮することができないという問題があった。
特開2011-178825号公報 特開2010-31235号公報 特開2013-75806号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、サーモクロミック性及び透明性に優れた二酸化バナジウム含有粒子の製造方法、及び分散液を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、二酸化バナジウム含有粒子を水熱反応によって製造し、二酸化バナジウム含有粒子表面を、溶媒と二酸化バナジウム含有粒子とを分離させることなく表面修飾することにより、サーモクロミック性及び透明性に優れた二酸化バナジウム含有粒子の製造方法を提供できることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.水熱反応を用いた、サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法であって、
 前記二酸化バナジウム含有粒子表面を、溶媒と前記二酸化バナジウム含有粒子とを分離させることなく表面修飾することを特徴とする二酸化バナジウム含有粒子の製造方法。
 2.バナジウム化合物、還元剤、水及び表面修飾剤を準備する工程と、
 前記バナジウム化合物、前記還元剤、前記水及び前記表面修飾剤を混合して、水熱反応により、表面修飾された前記二酸化バナジウム含有粒子を製造する工程と、
を順に備えることを特徴とする第1項に記載の二酸化バナジウム含有粒子の製造方法。
 3.バナジウム化合物、還元剤及び水を準備する工程と、
 前記バナジウム化合物、前記還元剤及び前記水を混合して、水熱反応により、前記二酸化バナジウム含有粒子を製造する工程と、
 反応系を常温に戻した後、表面修飾剤を混合して、前記二酸化バナジウム含有粒子表面を表面修飾する工程と、
を順に備えることを特徴とする第1項に記載の二酸化バナジウム含有粒子の製造方法。
 4.バナジウム化合物、還元剤及び水を準備する工程と、
 前記バナジウム化合物、前記還元剤及び前記水を混合して、水熱反応により、前記二酸化バナジウム含有粒子を製造する工程と、
 反応系を常温に戻した後、限外濾過により溶媒を置換する工程と、
 表面修飾剤を混合して、前記二酸化バナジウム含有粒子表面を表面修飾する工程と、
を順に備えることを特徴とする第1項に記載の二酸化バナジウム含有粒子の製造方法。
 5.前記表面修飾剤の反応性基の数が、1又は2であることを特徴とする第2項から第4項までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。
 6.第1項から第5項までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法により製造された二酸化バナジウム含有粒子を含むことを特徴とする分散液。
 本発明の上記手段により、サーモクロミック性及び透明性に優れた二酸化バナジウム含有粒子の製造方法、及び分散液を提供することができる。
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
 本発明に係る二酸化バナジウム含有粒子は、水熱反応によって製造されており、二酸化バナジウム含有粒子表面を溶媒と二酸化バナジウム含有粒子とを分離させることなく表面修飾しているので、粒子を凝集させることなく、表面修飾することが可能となる。
 これにより、前述した公知の手法(特許文献1~3参照。)で行った表面修飾よりも、粒子の劣化(二酸化バナジウムの酸化)を大幅に防止し、また、粒径を小さくし、更に粒径分布を狭めることが可能となったものと考えられる。
 本発明の二酸化バナジウム含有粒子の製造方法は、水熱反応を用いた、サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法であって、二酸化バナジウム含有粒子表面を、溶媒と二酸化バナジウム含有粒子とを分離させることなく表面修飾することを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、二酸化バナジウム含有粒子の製造方法が、バナジウム化合物、還元剤、水及び表面修飾剤を準備する工程と、バナジウム化合物、還元剤、水及び表面修飾剤を混合して、水熱反応により、表面修飾された二酸化バナジウム含有粒子を製造する工程と、を順に備えることが、乾燥工程を経ないので良好な表面修飾を行うことができ、また、粒子がある一定以上の大きさに成長するまでにカップリング剤で表面を覆い、これにより粒径が小さくなり、粒径分布も狭くなることから好ましい。
 また、二酸化バナジウム含有粒子の製造方法が、バナジウム化合物、還元剤及び水を準備する工程と、バナジウム化合物、還元剤及び水を混合して、水熱反応により、二酸化バナジウム含有粒子を製造する工程と、反応系を常温に戻した後、表面修飾剤を混合して、二酸化バナジウム含有粒子表面を表面修飾する工程と、を順に備えることが、粒子の乾燥工程や分離工程を経ることなく表面修飾が行えるので、粒子が劣化することなく良好な表面修飾状態を得ることができることから好ましい。さらに、表面修飾工程の反応温度などを自由に選択できるため、使用できる表面修飾剤が多いことから好ましい。
 また、二酸化バナジウム含有粒子の製造方法が、バナジウム化合物、還元剤及び水を準備する工程と、バナジウム化合物、還元剤及び水を混合して、水熱反応により、二酸化バナジウム含有粒子を製造する工程と、反応系を常温に戻した後、限外濾過により溶媒を置換する工程と、表面修飾剤を混合して、二酸化バナジウム含有粒子表面を表面修飾する工程と、を順に備えることが、反応後の溶媒を置換することで有機溶媒を混合した反応系で表面修飾することができることから好ましい。さらに、残存物の除去も行えるので、表面修飾反応が阻害されにくくなることから好ましい。
 また、表面修飾剤間のみの反応を抑制し、副生成物の生成を防ぐことから、表面修飾剤の反応性基の数が1又は2であることが好ましい。
 また、本発明の二酸化バナジウム含有粒子の製造方法により製造された二酸化バナジウム含有粒子は、分散液として好適に利用され得る。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
≪二酸化バナジウム含有粒子の製造方法≫
 本発明のサーモクロミック性を有する二酸化バナジウム含有粒子の製造方法は、二酸化バナジウム含有粒子を水熱反応によって製造し、二酸化バナジウム含有粒子表面を溶媒と二酸化バナジウム含有粒子とを分離させることなく表面修飾することを特徴とする。
 二酸化バナジウム含有粒子の製造工程において、粒子表面を表面修飾する前に、濾過、遠心分離、乾燥等を行ってしまうと粒子が凝集してしまう。
 このように一旦、粒子が凝集してしまうと、再度溶媒中に分散することは困難であり、実質的な粒径が大きくなってしまい、透過率の低下やサーモクロミック性の低下が発生する。また、凝集して粒子間が密着している部位には表面修飾が行えないため、劣化防止の処理ができず、耐久性の低下も発生する。
 すなわち、本発明おいて、「二酸化バナジウム含有粒子表面を溶媒と二酸化バナジウム含有粒子とを分離させることなく」とは、乾燥等の工程を経ることなく、二酸化バナジウム含有粒子表面を表面修飾することを意味する。
 以下、水熱反応による合成(以下、水熱合成ともいう。)と同時に表面修飾する場合と、水熱反応による合成後に表面修飾する場合とに分けて説明する。
 なお、本発明において、常温とは20~30℃の温度範囲内をいう。
<水熱合成時に表面修飾>
 本発明のサーモクロミック性を有する二酸化バナジウム含有粒子、すなわち、ルチル型二酸化バナジウム含有粒子の製造方法について説明する。
 本発明では、バナジウム化合物を水熱反応下で、還元及び表面修飾することで、表面修飾されたルチル型二酸化バナジウム含有粒子を合成する。
 より詳しくは、バナジウム化合物、還元剤及び表面修飾剤を水に混合し、オートクレーブ中、200~270℃の範囲内で水熱合成を行う。このとき、過酸化水素を混合してもよい。
 反応時間は、温度によって異なるため、反応進行の具合を確認して決める。
 反応後は常温まで冷却し、得られた生成物を遠心分離や濾過で溶媒と分離する。
 その後、エタノールや水を加えて再度分散させてから、溶媒と粒子とを分離することで洗浄を行う。
 上記工程を数回繰り返した後、真空オーブン中で乾燥、例えば、60℃(24時間)で乾燥することで、表面修飾された二酸化バナジウム含有粒子を得ることができる。
 二酸化バナジウム含有粒子は、所定の溶媒(分散媒)中に分散させて、分散液としてもよい。分散媒としては、特に限定されるものではなく、公知のものと使用することができる。
<水熱合成後に表面修飾>
 本発明のサーモクロミック性を有する二酸化バナジウム含有粒子、すなわち、ルチル型二酸化バナジウム含有粒子の製造方法について説明する。
 本発明では、バナジウム化合物を水熱反応下で還元することで、ルチル型二酸化バナジウム含有粒子を合成する。
 より詳しくは、バナジウム化合物及び還元剤を水に混合し、オートクレーブ中、200~270℃の範囲内で水熱合成を行う。このとき、過酸化水素を混合してもよい。
 反応時間は、温度によって異なるため、反応進行の具合を確認して決める。
 反応後は常温まで冷却し、表面修飾剤を混合し、常温下で撹拌することで表面修飾反応を進める。この際、限外濾過を用いて、溶媒の置換を行い、洗浄を行ってから表面修飾剤を添加し、反応を進めてもよい。
 得られた生成物を遠心分離や濾過で溶媒と分離する。
 その後、エタノールや水を加えて再度分散してから、溶媒と粒子とを分離することで洗浄を行う。
 上記工程を数回繰り返した後、真空オーブン中で乾燥、例えば、110℃(1時間)で乾燥することで、表面修飾された二酸化バナジウム含有粒子を得ることができる。
 二酸化バナジウム含有粒子は、所定の溶媒(分散媒)中に分散させて、分散液としてもよい。分散媒としては、特に限定されるものではなく、公知のものと使用することができる。
(限外濾過)
 限外濾過としては、例えば、Sartorius stedim社製、ビバフロー50(有効濾過面積50cm、分画分子量5000)を用いて、流速300ml/min、液圧1bar(0.1MPa)、常温で濾過を行うことができる。
<表面修飾>
 表面修飾剤を用いた表面修飾の方法としては、湿式加熱法が好ましい。湿式加熱法を用いれば、合成後にゲル化させずに、水分散状態から処理を行うことができる。
 この場合、粒子の水分散状態から、粒子1質量部に対して2~100質量部の水と、表面修飾剤を添加し、所定温度で所定時間加熱することで粒子表面を表面修飾することができる。
 このとき、水の量が過剰であれば有機分散媒添加前にエバポレーター等を用いて水を除去してもよい。
 表面修飾剤の混合が不十分であれば、水に有機溶媒を混合してもよい。用いる有機分散媒は特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール、エトキシエタノール、ジメチルフォルムアミド、アセトン、酢酸エチル、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、キシレン、シクロヘキサン等の分散媒を、必要に応じて、単独で又は2種類以上混合して、使い分けて用いることが可能である。当該分散媒としては、イソプロピルアルコールを用いるのが好ましい。
 また、表面修飾反応を進めるために、必要に応じて、pHを調整してもよい。反応溶液のpHは、9~12の範囲内(25℃)に調整することが好ましく、分散粒子の安定性の面から、より好ましくは10~11の範囲内に調整することが好ましい。pHを調整する試薬としては、アンモニア、酢酸アンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、トリメチルアミン、ピリジン、アニリン等を好ましく用いることができるが、粒子形成後に加熱により容易に取り除けることから、アンモニアを用いるのが好ましい。
≪二酸化バナジウム粒子≫
 本発明に係る二酸化バナジウム含有粒子とは、少なくとも二酸化バナジウムを含む粒子である。二酸化バナジウム含有粒子は、該粒子中に二酸化バナジウム以外の成分を含んでいてもよいし、二酸化バナジウムのみから形成されていてもよい。
 また、本発明に係る二酸化バナジウム含有粒子は、透明性(二酸化バナジウム含有粒子を添加したフィルムの可視光領域における透明性)とサーモクロミック性とを有している。
 本発明に係る二酸化バナジウム含有粒子の透過率は、高いほど好ましいが、70%以上であることが好ましい。
 また、二酸化バナジウム含有粒子が有するサーモクロミック性としては、温度変化によって透過率や反射率等の光学特性が可逆的に変化すれば特に限定されるものではない。例えば、25℃/50%RH及び85℃/85%RHにおける透過率の差が30%以上であることが好ましい。
 二酸化バナジウム含有粒子の透過率は、例えば、分光光度計V-670(日本分光株式会社製)を用いて、波長2000nmにおける透過率として測定することができる。
 また、本発明に係る二酸化バナジウム含有粒子の粒径としては、良好な透明性とサーモクロミック性とを得るため、100nm以下であることが好ましく、50nm以下であることがより好ましい。
 なお、本発明における粒径とは、レーザー回折式粒度分布計で測定されるD50の値をいう。
≪バナジウム化合物≫
 本発明に係るバナジウム化合物としては、特に限定されないが、バナジウムアルコキシド、五酸化二バナジウム、バナジウム酸アンモニウムなどが挙げられる。
≪還元剤≫
 本発明に係る還元剤としては、特に限定されないが、ヒドラジン又はその水和物、亜硫酸塩、シュウ酸、水素化ホウ素ナトリウムなどが挙げられる。
≪表面修飾剤≫
 本発明に係る表面修飾剤としては、例えば、有機ケイ素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニア化合物、界面活性剤、シリコーンオイル等が挙げられる。
 表面修飾剤の反応性基の数は、1又は2であることが好ましい。
 表面修飾剤として用いられる有機ケイ素化合物(有機シリケート化合物)としては、例えば、ヘキサメチルジシラザン、トリメチルエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン、トリメチルシリルクロライド、メチルトリエトキシシラン、ジメチルジエトキシシラン、デシルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。また、市販のものとしては、例えば、SZ6187(東レ・ダウシリコーン社製)等を好適に用いることができる。
 この中でも、分子量が小さく、高い耐久性を示す有機シリケート化合物を用いることが望ましく、ヘキサメチルジシラザン、テトラエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルシリルクロライドを用いることが好ましい。
 有機チタン化合物としては、例えば、テトラブチルチタネート、テトラオクチルチタネート、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート及びビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート、キレート化合物として、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、リン酸チタン化合物、チタンオクチレンギリコレート、チタンエチルアセトアセテート、チタンラクテートアンモニウム塩、チタンラクテート、チタントリエタノールアミネート等が挙げられる。また、市販のものとしては、例えば、プレンアクトTTS(味の素ファインテクノ社製)、プレンアクトTTS44(味の素ファインテクノ社製)等が挙げられる。
 有機アルミニウム化合物としては、例えば、アルミニウムイソプロポキシド、アルミニウムtert-ブトキシド等が挙げられる。
 有機ジルコニア化合物としては、例えば、ノルマルプロピルジルコネート、ノルマルブチルジルコネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムテトラアセチルアセトネート等が挙げられる。
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基等が挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。
 界面活性剤の疎水基としては、具体的にはアルキル基、アルキル基を有するシリル基、フルオロアルキル基等が挙げられる。ここで、アルキル基は、置換基として芳香環を有していてもよい。
 界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。
 このような界面活性剤としては、より具体的には、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、パーフルオロアルケニル、パーフルオロアルキル化合物等が挙げられる。
 シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイルや、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイル及びフッ素変性シリコーン等の変性シリコーンオイルが挙げられる。
 上記表面修飾剤は、例えば、ヘキサン、トルエン、メタノール、エタノール、アセトン、水等で適宜希釈して用いられてもよい。
 また、上記表面修飾剤によって導入される有機官能基中の炭素原子数は、1~6であることが好ましい。これにより耐久性を向上させることができる。
 表面修飾剤の量としては、粒子の0.1~30質量%の範囲内とすることが好ましく、耐久性の観点から、0.1~10質量%とすることが好ましい。表面修飾剤の量が30質量%以下であれば、有機部位の割合が小さく耐久性を劣化させることがなく、0.1質量%以上であれば、粒子表面を十分に表面修飾することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
≪二酸化バナジウム含有粒子の作製≫
(1)二酸化バナジウム含有粒子101の作製
 特許文献1の実施例4に記載の手法を参考にして、粒子を作製した。
 具体的には、純水15gに、メタバナジン酸アンモニウム(NHVO、和光純薬)0.6gを混合して常温(25℃)で15分間撹拌した。
 次いで、ヒドラジン一水和物(N・HO、特級、和光純薬)の5質量%水溶液をゆっくり滴下し、pH値(25℃)が9.0の溶液を調製した。
 調製した溶液を高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で8時間加熱後、270℃24時間の水熱反応処理を行った。
 得られた生成物を、遠心分離を用いて分離し、更にエタノールを加えて撹拌、遠心分離を行った。
 この操作を、更に水、エタノールの順に繰り返すことで生成物の洗浄を行った。
 洗浄後の生成物を真空オーブン中で60℃、24時間乾燥を行い、二酸化バナジウム(VO)を生成した。
 次に、エタノール20mlと純水5mlとを混合した溶液にアンモニア水(28質量%、和光純薬)を加え、pH11.5の溶液を作製した。この溶液に、作製した二酸化バナジウム含有粒子1gとメチルトリエトキシシラン(東京化成工業)0.3gとを加え、30℃で4時間撹拌混合した。
 得られた懸濁液に、濾過、洗浄を順次行い、微粒子を回収した。
 回収した微粒子に110℃で1時間乾燥処理し、表面修飾された二酸化バナジウム含有粒子101を得た。
(2)二酸化バナジウム含有粒子102の作製
 純水15gに、メタバナジン酸アンモニウム(NHVO、和光純薬)0.6gを混合して常温(25℃)で15分撹拌した。
 次いで、ヒドラジン一水和物(N・HO、特級、和光純薬)の5質量%水溶液をゆっくり滴下し、pH値(25℃)が9.0の溶液を調製した。
 調製した溶液にメチルトリエトキシシラン(東京化成工業)0.03gを混合したものを、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で8時間加熱後、270℃24時間の水熱反応処理を行った。
 得られた生成物を、遠心分離を用いて分離し、更にエタノールを加えて撹拌、遠心分離を行った。
 この操作を、更に水、エタノールの順に繰り返すことで生成物の洗浄を行い、微粒子を回収した。
 回収した微粒子を110℃で1時間乾燥処理し、表面修飾された二酸化バナジウム含有粒子102を得た。
(3)二酸化バナジウム含有粒子103の作製
 純水15gに、メタバナジン酸アンモニウム(NHVO、和光純薬)0.6gを混合して常温(25℃)で15分撹拌した。
 次いで、ヒドラジン一水和物(N・HO、特級、和光純薬)の5質量%水溶液をゆっくり滴下し、pH値(25℃)が9.0の溶液を調製した。
 調製した溶液を高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で8時間加熱後、270℃24時間の水熱反応処理を行った。
 反応後、常温(25℃)まで冷却し、メチルトリエトキシシラン(東京化成工業)0.03gを加えて、30℃で24時間撹拌した。
 得られた生成物を、遠心分離を用いて分離し、更にエタノールを加えて撹拌、遠心分離を行った。
 この操作を、更に水、エタノールの順に繰り返すことで生成物の洗浄を行い、微粒子を回収した。
 回収した微粒子を110℃で1時間乾燥処理し、表面修飾された二酸化バナジウム含有粒子103を得た。
(4)二酸化バナジウム含有粒子104の作製
 純水15gに、メタバナジン酸アンモニウム(NHVO、和光純薬)0.6gを混合して常温(25℃)で15分撹拌した。
 次いで、ヒドラジン一水和物(N・HO、特級、和光純薬)の5質量%水溶液をゆっくり滴下し、pH値(25℃)が9.0の溶液を調製した。
 調製した溶液を高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で8時間加熱後、270℃24時間の水熱反応処理を行った。
 反応後、常温(25℃)まで冷却したところで、Sartorius stedim社製 ビバフロー50(有効濾過面積50cm、分画分子量5000)を用いて、流速300ml/min、液圧1bar(0.1MPa)で濾過を行うことで、洗浄を行った。
 洗浄後の分散液に、メチルトリエトキシシラン(東京化成工業)0.03gを加えて、30℃で24時間撹拌した。
 得られた生成物を、遠心分離を用いて分離し、更にエタノールを加えて撹拌、遠心分離を行った。
 この操作を、更に水、エタノールの順に繰り返すことで生成物の洗浄を行い、微粒子を回収した。
 回収した微粒子を110℃で1時間乾燥処理し、表面修飾された二酸化バナジウム含有粒子104を得た。
(5)二酸化バナジウム含有粒子105の作製
 二酸化バナジウム含有粒子102の作製において、メチルトリエトキシシランをジメチルジエトキシシラン(東京化成工業)に変更した以外は同様にして、二酸化バナジウム含有粒子105を作製した。
(6)二酸化バナジウム含有粒子106の作製
 二酸化バナジウム含有粒子104の作製において、メチルトリエトキシシランをジメチルジエトキシシラン(東京化成工業)に変更した以外は同様にして、二酸化バナジウム含有粒子106を作製した。
(7)二酸化バナジウム含有粒子107の作製
 35質量%の過酸化水素水(和光純薬社製)2mlと純水20mlとを混合した水溶液に、五酸化二バナジウム(V)(V、特級、和光純薬)0.5gを加え、30℃で4時間撹拌後、ヒドラジン一水和物(N・HO、和光純薬社製、特級)の5質量%水溶液をゆっくり滴下し、pH値(25℃)が4.2の溶液を調製した。
 調整した混合液にメチルトリエトキシシラン(東京化成工業)0.025gを混合したものを、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で8時間加熱後、270℃48時間の水熱反応処理を行った。
 得られた生成物を、遠心分離を用いて分離し、更にエタノールを加えて撹拌、遠心分離を行った。
 この操作を、更に水、エタノールの順に繰り返すことで生成物の洗浄を行い、微粒子を回収した。
 回収した微粒子を110℃で1時間乾燥処理し、表面修飾された二酸化バナジウム含有粒子107を得た。
(8)二酸化バナジウム含有粒子108の作製
 35質量%の過酸化水素水(和光純薬社製)2mlと純水20mlとを混合した水溶液に、五酸化二バナジウム(V)(V、特級、和光純薬)0.5gを加え、30℃で4時間撹拌後、ヒドラジン一水和物(N・HO、和光純薬社製、特級)の5質量%水溶液をゆっくり滴下し、pH値(25℃)が4.2の溶液を調製した。
 調製した溶液を高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で8時間加熱後、270℃24時間の水熱反応処理を行った。
 反応後、常温(25℃)まで冷却したところで、Sartorius stedim社製 ビバフロー50(有効濾過面積50cm、分画分子量5000)を用いて、流速300ml/min、液圧1bar(0.1MPa)で濾過を行うことで、洗浄を行った。
 洗浄後の分散液に、メチルトリエトキシシラン(東京化成工業)0.025gを加えて、30℃で24時間撹拌を行った。
 得られた生成物を、遠心分離を用いて分離し、更にエタノールを加えて撹拌、遠心分離を行った。
 この操作を、更に水、エタノールの順に繰り返すことで生成物の洗浄を行い、微粒子を回収した。
 回収した微粒子を110℃で1時間乾燥処理を行うことで、表面修飾された二酸化バナジウム含有粒子108を得た。
(9)二酸化バナジウム含有粒子109の作製
 二酸化バナジウム含有粒子107の作製において、100℃で8時間加熱後、水熱反応処理条件を220℃120時間とした以外は同様にして、二酸化バナジウム含有粒子109を作製した。
(10)二酸化バナジウム含有粒子110の作製
 二酸化バナジウム含有粒子108の作製において、100℃で8時間加熱後、水熱反応処理条件を220℃72時間とした以外は同様にして、二酸化バナジウム含有粒子110を作製した。
(11)二酸化バナジウム含有粒子111の作製
 二酸化バナジウム含有粒子102の作製において、メチルトリエトキシシランをトリメチルエトキシシラン(東京化成工業)に変更した以外は同様にして、二酸化バナジウム含有粒子111を作製した。
(12)二酸化バナジウム含有粒子112の作製
 二酸化バナジウム含有粒子104の作製において、メチルトリエトキシシランをトリメチルエトキシシラン(東京化成工業)に変更した以外は同様にして、二酸化バナジウム含有粒子112を作製した。
(13)二酸化バナジウム含有粒子113の作製
 二酸化バナジウム含有粒子107の作製において、100℃で8時間加熱後、水熱反応処理条件を240℃100時間とした以外は同様にして、二酸化バナジウム含有粒子113を作製した。
(14)二酸化バナジウム含有粒子114の作製
 二酸化バナジウム含有粒子108の作製において、100℃で8時間加熱後、水熱反応処理条件を240℃56時間とした以外は同様にして、二酸化バナジウム含有粒子114を作製した。
(15)二酸化バナジウム含有粒子115~118の作製
 二酸化バナジウム含有粒子102の作製において、メチルトリエトキシシランを、それぞれヘキサメチルジシラザン(東京化成工業)、テトライソプロピルチタネート(東京化成工業)、ノルマルブチルジルコネート、アルミニウムイソプロポキシド(東京化成工業)に変更した以外は同様にして、二酸化バナジウム含有粒子115~118を作製した。
(16)二酸化バナジウム含有粒子119~122の作製
 二酸化バナジウム含有粒子104の作製において、メチルトリエトキシシランを、それぞれヘキサメチルジシラザン(東京化成工業)、テトライソプロピルチタネート(東京化成工業)、ノルマルブチルジルコネート、アルミニウムイソプロポキシド(東京化成工業)に変更した以外は同様にして、二酸化バナジウム含有粒子119~122を作製した。
≪二酸化バナジウム含有粒子の評価≫
(1)生成物の同定
(粒子状態)
 作製した各二酸化バナジウム含有粒子について、走査型電子顕微鏡(Scanning Electron Microscope:SEM)(JEOL社製)で二酸化バナジウム含有粒子の形状を観察し、粒子が生成していることを確認した。
(結晶構造)
 作製した各二酸化バナジウム含有粒子について、X線回折装置(リガク社製)を用いて測定を行い、既知のルチル型結晶層からなる二酸化バナジウム結晶のプロファイルと比較することで同定した。
(2)粒径分布測定
 作製した各二酸化バナジウム含有粒子を、それぞれ1質量%の濃度で水に混合し、超音波で15分間分散して測定用サンプルを作製した。
 作製した測定用サンプルについて、島津製作所製のレーザー回折式粒度分布測定装置を用いて、各二酸化バナジウム含有粒子の粒径D50を測定した。測定値は、個数基準値を使用した。
 測定結果を表1及び2に示す。
(3)透過率差の測定(劣化測定)
 作製した各二酸化バナジウム含有粒子を、ポリビニルアルコール中に10質量%となるように混合し、厚さ50μmの測定用フィルムを作製した。
 各測定用フィルムを25℃/50%RHに24時間保存し、その後、85℃/85%RHに24時間保存した。これを10回繰り返し、サーモクロミック性の評価を行った。
 具体的には、25℃/50%RH、85℃/50%RHにおける波長2000nmでのそれぞれの透過率を測定し、算出される透過率差を下記評価基準に従って評価した。測定は、分光光度計V-670(日本分光株式会社製)に温調ユニット(日本分光株式会社製)を取り付けて行った。
 評価結果を表1及び2に示す。
 ◎:40%以上
 ○:20%以上40%未満
 ×:20%未満
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(4)まとめ
 表1及び2に示されているように、本発明の二酸化バナジウム含有粒子は、比較例の二酸化バナジウム含有粒子と比較して、表面修飾後の粒径が小さく、透明性及びサーモクロミック性に優れていること確認された。
 以上から、二酸化バナジウム含有粒子の製造方法として、二酸化バナジウム含有粒子を水熱反応によって製造し、二酸化バナジウム含有粒子表面を溶媒と二酸化バナジウム含有粒子とを分離させることなく表面修飾することが有用であることがわかる。
 本発明は、サーモクロミック性及び透明性に優れた二酸化バナジウム含有粒子の製造方法を提供することに、特に好適に利用することができる。

Claims (6)

  1.  水熱反応を用いた、サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法であって、
     前記二酸化バナジウム含有粒子表面を、溶媒と前記二酸化バナジウム含有粒子とを分離させることなく表面修飾することを特徴とする二酸化バナジウム含有粒子の製造方法。
  2.  バナジウム化合物、還元剤、水及び表面修飾剤を準備する工程と、
     前記バナジウム化合物、前記還元剤、前記水及び前記表面修飾剤を混合して、水熱反応により、表面修飾された前記二酸化バナジウム含有粒子を製造する工程と、
    を順に備えることを特徴とする請求項1に記載の二酸化バナジウム含有粒子の製造方法。
  3.  バナジウム化合物、還元剤及び水を準備する工程と、
     前記バナジウム化合物、前記還元剤及び前記水を混合して、水熱反応により、前記二酸化バナジウム含有粒子を製造する工程と、
     反応系を常温に戻した後、表面修飾剤を混合して、前記二酸化バナジウム含有粒子表面を表面修飾する工程と、
    を順に備えることを特徴とする請求項1に記載の二酸化バナジウム含有粒子の製造方法。
  4.  バナジウム化合物、還元剤及び水を準備する工程と、
     前記バナジウム化合物、前記還元剤及び前記水を混合して、水熱反応により、前記二酸化バナジウム含有粒子を製造する工程と、
     反応系を常温に戻した後、限外濾過により溶媒を置換する工程と、
     表面修飾剤を混合して、前記二酸化バナジウム含有粒子表面を表面修飾する工程と、
    を順に備えることを特徴とする請求項1に記載の二酸化バナジウム含有粒子の製造方法。
  5.  前記表面修飾剤の反応性基の数が、1又は2であることを特徴とする請求項2から請求項4までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。
  6.  請求項1から請求項5までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法により製造された二酸化バナジウム含有粒子を含むことを特徴とする分散液。
PCT/JP2015/071302 2014-07-30 2015-07-28 二酸化バナジウム含有粒子の製造方法、及び分散液 WO2016017603A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/329,809 US20170260446A1 (en) 2014-07-30 2015-07-28 Method for producing vanadium dioxide-containing particle and dispersion
CN201580040197.4A CN106536416A (zh) 2014-07-30 2015-07-28 含有二氧化钒的粒子的制造方法及分散液
JP2016538348A JPWO2016017603A1 (ja) 2014-07-30 2015-07-28 二酸化バナジウム含有粒子の製造方法、及び分散液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154406 2014-07-30
JP2014-154406 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017603A1 true WO2016017603A1 (ja) 2016-02-04

Family

ID=55217503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071302 WO2016017603A1 (ja) 2014-07-30 2015-07-28 二酸化バナジウム含有粒子の製造方法、及び分散液

Country Status (4)

Country Link
US (1) US20170260446A1 (ja)
JP (1) JPWO2016017603A1 (ja)
CN (1) CN106536416A (ja)
WO (1) WO2016017603A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158103A1 (ja) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
JP2016190938A (ja) * 2015-03-31 2016-11-10 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
JP2018141116A (ja) * 2017-02-28 2018-09-13 御国色素株式会社 二酸化バナジウム粒子含有組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249488B (zh) * 2016-10-31 2019-11-15 京东方科技集团股份有限公司 一种显示面板及其制备方法
CN112125337A (zh) * 2020-10-16 2020-12-25 成都先进金属材料产业技术研究院有限公司 以五价钒醇盐为原料制备纳米二氧化钒的方法
CN114672169A (zh) * 2022-03-22 2022-06-28 湖南航天三丰科工有限公司 一种温感变色剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830511A (zh) * 2010-05-18 2010-09-15 中国科学院上海硅酸盐研究所 金红石相二氧化钒空心球的制备方法及应用
CN102502824A (zh) * 2011-11-15 2012-06-20 武汉大学 一种二氧化钒及其掺杂粉体的制备方法
US20130101848A1 (en) * 2011-09-29 2013-04-25 Sarbajit Banerjee Doped Nanoparticles and Methods of Making and Using Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544388A (zh) * 2008-03-26 2009-09-30 南京理工大学 改性片状纳米氢氧化镁的制备方法
CN103717535B (zh) * 2011-06-03 2016-02-10 日产化学工业株式会社 含有二氧化硅-二氧化锡复合氧化物被覆二氧化钛的金属氧化物粒子
CN102502742B (zh) * 2011-11-07 2014-07-02 河南煤业化工集团研究院有限责任公司 一种拜尔法铝酸钠溶液制备高白氢氧化铝微粉的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830511A (zh) * 2010-05-18 2010-09-15 中国科学院上海硅酸盐研究所 金红石相二氧化钒空心球的制备方法及应用
US20130101848A1 (en) * 2011-09-29 2013-04-25 Sarbajit Banerjee Doped Nanoparticles and Methods of Making and Using Same
CN102502824A (zh) * 2011-11-15 2012-06-20 武汉大学 一种二氧化钒及其掺杂粉体的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R. LI ET AL.: "V02(B) nanospheres: Hydrothermal synthesis and electrochemical properties", MATERIALS RESEARCH BULLETIN, vol. 45, no. 6, June 2010 (2010-06-01), pages 688 - 692, XP027007086 *
W. CHEN ET AL.: "Synthesis and characterization of novel vanadium dioxide nanorods", SOLID STATE COMMUNICATIONS, vol. 132, no. 8, November 2004 (2004-11-01), pages 513 - 516, XP004603639, DOI: doi:10.1016/j.ssc.2004.09.013 *
Y. ZHANG ET AL.: "Direct fabrication of organic carbon coated V02(B) (VO2 (B) @C) core-shell structured nanobelts by one step hydrothermal route and its formation mechanism", APPLIED SURFACE SCIENCE, vol. 263, 15 December 2012 (2012-12-15), pages 124 - 131 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158103A1 (ja) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
JP2016190938A (ja) * 2015-03-31 2016-11-10 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
JP2018141116A (ja) * 2017-02-28 2018-09-13 御国色素株式会社 二酸化バナジウム粒子含有組成物

Also Published As

Publication number Publication date
US20170260446A1 (en) 2017-09-14
CN106536416A (zh) 2017-03-22
JPWO2016017603A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016017603A1 (ja) 二酸化バナジウム含有粒子の製造方法、及び分散液
EP2366667B1 (en) Titanium oxide sol manufacturing method
Redel et al. Nanoparticle films and photonic crystal multilayers from colloidally stable, size-controllable zinc and iron oxide nanoparticles
US11059036B2 (en) Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface
TW201617287A (zh) 氧化鋯粒子之有機溶媒分散體及其製造方法
WO2011145385A1 (ja) 可視光応答型酸化チタン系微粒子分散液及びその製造方法
JP5642787B2 (ja) ナノメータ寸法と制御された形状を有する二酸化チタンの生成方法
TW201641429A (zh) 氧化鈦粒子的有機溶劑分散體的製造方法
JP4933941B2 (ja) チタン酸ナノシートの製造方法
US20100056365A1 (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained thereby
EP2041031A2 (de) Stabile suspensionen von kristallinen tio2-partikeln aus hydrothermal behandelten sol-gel-vorstufenpulvern
KR100708812B1 (ko) 아나타제형 이산화티탄 광촉매 제조방법
JP2008247712A (ja) チタン酸ナノシート分散液の製造方法
WO2016152865A1 (ja) 二酸化バナジウム含有粒子の製造方法
JP6300313B2 (ja) ルチル型酸化チタンゾル及びその製造方法
JP4928134B2 (ja) 層状チタン酸ナノシート分散液
JP4504177B2 (ja) 層状チタン酸ナノシートの製造方法
JP5768411B2 (ja) チタン酸ランタン粒子の製造方法
JP6336315B2 (ja) 有機無機ハイブリッド材料の製造方法及びエポキシ樹脂組成物
JP5889261B2 (ja) 酸化ジルコニウム−酸化チタン複合ゾル及びその製造方法
JP2010235368A (ja) ジルコニア粒子及びその製造方法、並びにジルコニア粒子を含有する分散液
JP6076019B2 (ja) アルカリ性ルチル型酸化チタンゾル
JP2016166294A (ja) 酸化バナジウム含有粒子の製造方法及び酸化バナジウム含有粒子
WO2016158920A1 (ja) 二酸化バナジウム含有微粒子の製造方法、二酸化バナジウム含有微粒子及び分散液
JP2007099537A (ja) 層状チタン酸ナノシート分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538348

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329809

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827163

Country of ref document: EP

Kind code of ref document: A1