WO2016017326A1 - 無段変速機の制御装置 - Google Patents

無段変速機の制御装置 Download PDF

Info

Publication number
WO2016017326A1
WO2016017326A1 PCT/JP2015/068122 JP2015068122W WO2016017326A1 WO 2016017326 A1 WO2016017326 A1 WO 2016017326A1 JP 2015068122 W JP2015068122 W JP 2015068122W WO 2016017326 A1 WO2016017326 A1 WO 2016017326A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
speed sensor
rotation speed
vibration
continuously variable
Prior art date
Application number
PCT/JP2015/068122
Other languages
English (en)
French (fr)
Inventor
浩介 阿部
智之 諏訪部
晋 塚本
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020177001945A priority Critical patent/KR101895177B1/ko
Priority to JP2016538219A priority patent/JP6326498B2/ja
Priority to CN201580041320.4A priority patent/CN106574714B/zh
Priority to EP15828259.0A priority patent/EP3196513B1/en
Priority to US15/329,726 priority patent/US10006542B2/en
Publication of WO2016017326A1 publication Critical patent/WO2016017326A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H2059/405Rate of change of output shaft speed or vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member

Definitions

  • the present invention relates to a control device for a continuously variable transmission.
  • Patent Document 1 There is a technique described in Patent Document 1 for accurately determining a road surface state and hydraulically controlling a narrow pressure of a belt-type continuously variable transmission suitable for an actual road surface state. Specifically, the detected value of the rotational speed of the drive wheel is subjected to a band pass filter process, the value obtained by the process is totaled over time, and the road surface state is determined based on the total time integrated value. When the road surface state is determined to be a non-good road, the pinching pressure is set higher than when the road surface state is determined to be a good road.
  • the detection value is bandpass filtered to accurately determine the road surface condition, and the total time integration is performed. Therefore, it takes a long time to make the determination, and even if it is possible to determine an unsatisfactory road, the control to increase the clamping pressure is not in time. There was a risk of belt slippage. For example, on a road surface with uneven road surface friction coefficient (hereinafter referred to as ⁇ ), immediately after the drive wheel slips in the low ⁇ portion, the grip is applied in the high ⁇ portion and the torque input to the continuously variable transmission is Increase.
  • road surface with uneven road surface friction coefficient
  • An object of the present invention is to provide a control device for a continuously variable transmission capable of suppressing belt slip regardless of road surface conditions.
  • the control device for the continuously variable transmission of the present invention includes: A first rotation speed sensor for detecting the rotation speed of the drive wheel; A second rotational speed sensor for detecting the rotational speed of the driven wheel; A wheel speed difference detection unit that detects a wheel speed difference between the drive wheel and the driven wheel from a detection value of the first rotation speed sensor and a detection value of the second rotation sensor; When the wheel speed difference is greater than or equal to a first predetermined value, a narrow pressure increase unit that increases the narrow pressure when the belt of the continuously variable transmission is sandwiched between pulleys as compared to when the wheel speed difference is less than the first predetermined value When, Is provided.
  • the clamping pressure can be immediately increased when the driving wheel slips. Therefore, it is possible to prevent the belt from slipping due to an increase in the grip force of the drive wheel after the slip.
  • good road refers to a paved road paved with asphalt, concrete or the like
  • bad road refers to any unpaved road such as a gravel road or a kuriishi road.
  • obstacles such as large stones, timber, curbs, etc. and road depressions exist in the direction of travel, and the road surface is severely uneven, including road surfaces where sudden torque is input from the drive wheels to the transmission.
  • Sudden torque is a sudden large torque that is temporarily input from the drive wheel to the transmission when the vehicle climbs over an obstacle or when the drive wheel that slips after overcoming the obstacle comes into contact with the ground again. Point to.
  • FIG. 1 is a system diagram showing a configuration of a control device for a continuously variable transmission according to an embodiment.
  • a belt type continuously variable transmission (hereinafter referred to as “CVT”) 1 includes a primary pulley 2 and a secondary pulley 3 that are torque transmission members arranged so that their V-grooves are aligned with each other.
  • a belt 4 is stretched over the groove.
  • An engine 5 is arranged coaxially with the primary pulley 2, and a torque converter 6 having a lock-up clutch 6c and a forward / reverse switching mechanism 7 are provided between the engine 5 and the primary pulley 2 in this order from the engine 5 side. Yes.
  • the forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, and its sun gear is coupled to the engine 5 via the torque converter 6 and the carrier is coupled to the primary pulley 2.
  • the forward / reverse switching mechanism 7 further includes a forward clutch 7b that directly connects the sun gear and the carrier of the double pinion planetary gear set 7a, and a reverse brake 7c that fixes the ring gear.
  • the forward clutch 7b When the forward clutch 7b is engaged, the input rotation via the torque converter 6 from the engine 5 is transmitted to the primary pulley 2 as it is, and when the reverse brake 7c is engaged, the input rotation via the torque converter 6 from the engine 5 is reversed. Is transmitted to the primary pulley 2.
  • the rotation of the primary pulley 2 is transmitted to the secondary pulley 3 via the belt 4, and the rotation of the secondary pulley 3 is transmitted to the driving wheel (not shown) via the output shaft 8, the gear set 9 and the differential gear device 10.
  • one of the conical plates forming the V grooves of the primary pulley 2 and the secondary pulley 3 is fixed to the fixed conical plates 2a, 3a.
  • the other conical plates 2b and 3b are movable conical plates that can be displaced in the axial direction.
  • These movable conical plates 2b and 3b are directed toward the fixed conical plates 2a and 3a by supplying the primary pulley pressure Ppri and the secondary pulley pressure Psec created by using the line pressure as the original pressure to the primary pulley chamber 2c and the secondary pulley chamber 3c.
  • the belt 4 is frictionally engaged with the conical plate to transmit power between the primary pulley 2 and the secondary pulley 3.
  • the width of the V groove of both pulleys 2 and 3 is changed by the differential pressure between the primary pulley pressure Ppri and the secondary pulley pressure Psec generated corresponding to the target gear ratio, and the belt 4 with respect to the pulleys 2 and 3 is changed.
  • the target gear ratio is realized by continuously changing the winding arc diameter.
  • the primary pulley pressure Ppri and the secondary pulley pressure Psec are controlled by the shift control hydraulic circuit 11 together with the engagement hydraulic pressure of the forward clutch 7b that is engaged when the forward travel range is selected and the reverse brake 7c that is engaged when the reverse travel range is selected.
  • the shift control hydraulic circuit 11 performs control in response to a signal from the transmission controller 12.
  • the transmission controller 12 includes a signal from a primary pulley rotation sensor 13 (corresponding to a third rotation speed sensor) that detects the rotation speed Npri of the primary pulley 2 and a secondary pulley rotation that detects the rotation speed Nsec of the secondary pulley 3.
  • a signal from the wheel speed sensor 21 (21F the front wheel speed sensor is a driving wheel, describes a wheel speed sensor for rear wheels is a driven wheel and 21R.), It is input.
  • the transmission controller 12 calculates the wheel speed difference between the front and rear from the signal of the wheel speed sensor 21F for the front wheel that is the driving wheel and the signal of the wheel speed sensor 21R for the rear wheel that is the driven wheel. Then, it is determined whether the road is bad. And when it determines with driving
  • the rough road detection time control process is a command for releasing the lockup clutch 6c and increasing the secondary pulley pressure Psec (hereinafter also referred to as the clamping pressure) to the rough road control pressure P1 to the shift control hydraulic circuit 11.
  • a command to lower the output torque of the engine 5 (fuel injection amount reduction command, intake air amount reduction) so that the torque capacity of the pulleys 2 and 3 is output and the torque capacity of the CVT 1 becomes smaller than the torque capacity of the pulley.
  • Command to the engine controller 19.
  • the clamping pressure can be immediately increased when the drive wheel slips, and the belt slip due to the increase in the grip force of the drive wheel after the slip is prevented. it can.
  • a narrow pressure sufficient to prevent the belt 4 from slipping is applied to the secondary pulley 3 even when a sudden torque is input, the torque capacity can be increased, and the input torque to the CVT 1 can be reduced. Can be effectively protected from.
  • FIG. 2 is a flowchart illustrating a rough road control process according to the embodiment.
  • step S1 bad road detection is performed. If the road is bad, the bad road detection flag is turned ON and the process proceeds to step S2. If the road is other than that, the control flow ends.
  • the rough road detection is performed when the wheel speed difference, which is the difference between the rotational speed of the driving wheel detected by the wheel speed sensor 21F and the rotational speed of the driven wheel detected by the wheel speed sensor 21R, is determined to be an input determination threshold value ( Judgment is made based on whether or not it corresponds to the first predetermined value. If the wheel speed difference is greater than or equal to the entry determination threshold, it is determined that the road is bad and the rough road detection flag is set to ON. If it is less than the entry determination threshold, the road is determined to be good and the bad road detection flag is set to OFF.
  • the wheel speed difference which is the difference between the rotational speed of the driving wheel detected by the wheel speed sensor 21F and the rotational speed of the driven wheel detected
  • step S2 rough road detection control is performed. Specifically, the lockup clutch 6c is released and the secondary pulley pressure Psec is increased to the rough road control pressure P1.
  • step S3 it is determined whether or not the wheel speed difference is equal to or smaller than a release determination threshold value (corresponding to a second predetermined value). If the wheel speed difference is equal to or smaller than the release determination threshold value, the process proceeds to step S5. move on.
  • the release determination threshold is set to a value smaller than the entry determination threshold. It should be noted that the presence or absence of an abnormality in the wheel speed sensor 21 (for example, an abnormality in the output value or disconnection) is constantly monitored by another routine (not shown), and when the wheel speed sensor 21 is abnormal, it is less than the release determination threshold. Determine and proceed to step S5. This is to avoid the situation where it is impossible to cancel the control when the rough road is detected when the wheel speed sensor 21 is abnormal. This is because the continuation of the control at the time of detecting the rough road causes deterioration of fuel consumption.
  • step S4 the release determination timer is reset, and the process returns to step S2 to continue the control when detecting a rough road.
  • the release determination timer is a timer that counts up when the wheel speed difference becomes equal to or less than the release determination threshold.
  • step S5 a vehicle speed vibration component is extracted from the wheel speed sensor 21R of the driven wheel, it is determined whether or not the vehicle speed vibration is equal to or less than a predetermined vibration value (corresponding to a third predetermined value), and the vehicle speed vibration is equal to or less than the predetermined vibration value. If so, the process proceeds to step S6. Otherwise, the process returns to step S4 to reset the release determination timer.
  • a predetermined vibration value corresponding to a third predetermined value
  • FIG. 3 is a control block diagram for performing vehicle speed vibration component extraction processing according to the embodiment.
  • the vehicle speed conversion unit 101 converts the vehicle speed from the wheel speed sensor pulse period input from the wheel speed sensor 21R. Since the calculation cycle of the controller is fixed, the vehicle speed can be converted from the number of pulses input within the calculation cycle.
  • the high-pass filter 102 extracts and outputs only the high frequency side signal from the converted vehicle speed signal. The vehicle speed fluctuation when traveling on a good road varies only at a low frequency due to the influence of the inertia of the vehicle. Therefore, the signal on the high frequency side is considered as a vibration component.
  • the low-pass filter 103 smoothes the vehicle speed signal on the high frequency side. The frequency range in which a wheel can actually vibrate due to the influence of the inertia of the wheel is limited. Therefore, noise is removed by the low-pass filter 103, vibrations actually generated in the wheels are extracted, and vibration components are extracted.
  • the bad road determination is performed using the wheel speed difference in order to improve the response of the rough road detection. Therefore, if it is judged that the control at the time of rough road detection is ended using only the wheel speed difference, the control at the time of rough road detection is ended by the temporary convergence of the wheel speed difference even if it is actually a bad road. There is a risk. In this case, even if another rough road determination is immediately made, there is a problem of responsiveness of the hydraulic control to increase the clamping pressure, and there is a possibility that the clamping pressure cannot be increased before the belt slip occurs.
  • the vibration component is detected based on the sensor pulse period detected by the primary pulley rotation sensor 13. At this time, even if the gear ratio changes, the frequency of the change is extremely low, and therefore the influence can be eliminated by the low-pass filter. Then, it is determined whether or not the vibration of the primary pulley 2 is equal to or less than a predetermined vibration value (corresponding to a fourth predetermined value). If the vibration is equal to or less than the predetermined vibration value, the process proceeds to step S6. Otherwise, the process proceeds to step S4. Return and reset the release judgment timer. That is, when an abnormality occurs in the wheel speed sensor 21 and the detected wheel speed difference is increased regardless of the road surface state, the pinching pressure is increased by the rough road detection time control.
  • step S6 the cancellation determination timer is counted up.
  • step S7 it is determined whether or not the count value of the release determination timer is greater than or equal to a predetermined timer value. If the count value is greater than or equal to the predetermined timer value, the process proceeds to step S8. Otherwise, the process returns to step S2 and a rough road is detected. Continue control.
  • step S8 the rough road detection flag is turned OFF and the rough road detection control is released.
  • FIG. 4 is a time chart showing the rough road control process of the above embodiment.
  • the vehicle In the initial running state, the vehicle is running at a substantially constant speed, the rough road detection flag is OFF, and the release determination timer is counted up to a predetermined timer value. If the vehicle enters a rough road at time t1 and the wheel speed difference exceeds the release determination threshold, the release determination timer is reset. When the wheel speed difference becomes greater than the determination threshold value at time t2, the rough road detection flag is set from OFF to ON, and rough road detection control is performed. Thereby, a wheel speed difference goes to a convergence direction. As described above, since the rough road is detected based on the wheel speed difference, the quick rough road can be detected and the belt slip can be suppressed.
  • the release determination timer starts counting up.
  • the count-up of the release determination timer is reset, so that the rough road detection flag is maintained ON and the rough road detection time control is continued. In this way, since the rough road detection flag is set using the release determination timer, it is possible to suppress fluctuations in the clamping pressure associated with the operation / non-operation of the rough road detection control.
  • the vibration component is equal to or less than the predetermined vibration value, and the wheel speed difference is also below the release determination threshold value, so the count-up of the release determination timer is started.
  • the count value of the release determination timer is counted up to a predetermined timer value at time t6
  • the rough road detection flag is set from ON to OFF, and the rough road detection time control is ended.
  • Step S1 wheel speed difference detection unit
  • Step S1 wheel speed difference detection unit
  • Step S2 wheel speed difference increasing portion
  • Step S5 vibration detection unit
  • the clamping pressure can be immediately increased when the driving wheel slips. Therefore, it is possible to prevent the belt from slipping due to an increase in the grip force of the drive wheel after the slip.
  • the increased clamping pressure is reduced, so that it is possible to accurately determine that the road has been broken and the input torque increases rapidly.
  • the wheel speed difference and the vehicle speed vibration converge, the clamping pressure will drop to the clamping pressure corresponding to the good road. Can be suppressed.
  • step S8 is step S2 when the vibration detected from the primary pulley rotation sensor 13 is not more than a predetermined vibration value (fourth predetermined value) without using the detected wheel speed difference. To reduce the increased narrow pressure.
  • the wheel speed difference is not used for release determination, and only the vibration component of the primary pulley rotation sensor 13 is used for release determination.
  • the state can be returned to a low clamping pressure, and deterioration of fuel consumption can be suppressed.
  • step S1 When the acceleration of each wheel is calculated and the state where the acceleration is greater than the acceleration increase-side entry determination threshold value (fifth predetermined value), which is considered to have increased due to slip, continues for a predetermined time. (B) The acceleration of each wheel is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 無段変速機(1)の制御装置は、駆動輪の回転速度を検出する車輪速センサ(21F)と、従動輪の回転速度を検出する車輪速センサ(21R)と、変速機コントローラ(12)と、を備える。変速機コントローラ(12)は、駆動輪と従動輪との車輪速差が入り判定閾値以上になった場合に、走行中の路面が悪路であると判定し(S1)、無段変速機(1)の狭圧力を高くする(S2)。車輪速センサ(21R)の検出値に基づいて車速の振動を検出し、車輪速差が解除判定閾値以下(S3)であって、かつ、検出された振動が所定振動値以下(S5)である場合に、高くした狭圧力を低下させる(S8)。

Description

無段変速機の制御装置
 本発明は、無段変速機の制御装置に関する。
 路面状態を正確に判定し、実際の路面状態に適したベルト式無段変速機の狭圧力を油圧制御するものとして、特許文献1に記載の技術がある。具体的には、駆動輪の回転数の検出値にバンドパスフィルタ処理を施し、その処理によって得られた値を時間総積分し、その時間総積分値に基づいて路面状態を判定する。路面状態が非良路と判定された場合には、良路と判定された場合よりも挟圧力を高くする。
 しかしながら、路面状態を正確に判定するために検出値をバンドパスフィルタ処理し、時間総積分を行うため、判定に時間がかかり、非良路を判定できても挟圧力を高くする制御が間に合わず、ベルト滑りを生じるおそれがあった。例えば、路面摩擦係数(以下、μと記載する。)が斑な路面では、低μ部分で駆動輪がスリップした直後に、高μ部分でグリップし、無段変速機側に入力されるトルクが増大する。このような路面で非良路の判定に時間がかかると、油圧の応答遅れもあって狭圧力を高くする制御が間に合わず、ベルトとプーリとの間で滑りが生じるという問題がある。
特開2003-269591号公報
 本発明は、路面状況によらずベルト滑りを抑制可能な無段変速機の制御装置を提供することを目的とする。
 本発明の無段変速機の制御装置は、
 駆動輪の回転速度を検出する第1の回転速度センサと、
 従動輪の回転速度を検出する第2の回転速度センサと、
 前記第1の回転速度センサの検出値と前記第2の回転センサの検出値から前記駆動輪と前記従動輪との車輪速差を検出する車輪速差検出部と、
 前記車輪速差が第1の所定値以上になった場合、第1の所定値未満である場合に比べて、無段変速機のベルトをプーリによって挟み込むときの狭圧力を高くする狭圧力上昇部と、
 を備える。
 本発明では、駆動輪と従動輪との回転速度の車輪速差に基づいて悪路判定を行うため、駆動輪がスリップしたときに即座に挟圧力を高めることができる。よって、スリップ後の駆動輪のグリップ力増大に伴うベルト滑りを防止できる。
実施例の無段変速機の制御装置の構成を表すシステム図である。 実施例の悪路制御処理を表すフローチャートである。 実施例の車速振動成分抽出処理を行う制御ブロック図である。 実施例の悪路制御処理を表すタイムチャートである。
 以下、本発明の実施例を図面に基づいて説明する。本明細書において、「良路」とは、アスファルト、コンクリート等で舗装された舗装路を指し、「悪路」とは、砂利道、栗石路等の未舗装路全般を指す。悪路の中でも、特に、大きな石、木材、縁石等の障害物や路面陥没部位が進行方向上に存在し、路面の凹凸が激しく、駆動輪から変速機に突発トルクが入力される路面を含む。「突発トルク」とは、車両が障害物に乗り上げる際や、障害物を乗り越えた後に空転する駆動輪が再び接地する際等に駆動輪から変速機に一時的に入力される突発的な大トルクを指す。
 図1は実施例の無段変速機の制御装置の構成を表すシステム図である。ベルト式無段変速機(以下、「CVT」という。)1は、トルク伝達部材であるプライマリプーリ2およびセカンダリプーリ3が両者のV溝が整列するよう配設され、これらプーリ2,3のV溝にはベルト4が掛け渡されている。プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間には、エンジン5の側から順に、ロックアップクラッチ6cを備えたトルクコンバータ6、前後進切換え機構7が設けられている。
 前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6を介してエンジン5に結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤおよびキャリア間を直結する前進クラッチ7b、およびリングギヤを固定する後進ブレーキ7cを備える。そして、前進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転され、プライマリプーリ2へと伝達される。
 プライマリプーリ2の回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9およびディファレンシャルギヤ装置10を経て図示しない駆動輪へと伝達される。上記の動力伝達中にプライマリプーリ2およびセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2およびセカンダリプーリ3のV溝を形成する円錐板のうち一方を固定円錐板2a,3aとし、他方の円錐板2b,3bを軸線方向へ変位可能な可動円錐板としている。
 これら可動円錐板2b,3bは、ライン圧を元圧として作り出したプライマリプーリ圧Ppriおよびセカンダリプーリ圧Psecをプライマリプーリ室2cおよびセカンダリプーリ室3cに供給することにより固定円錐板2a,3aに向けて付勢され、これによりベルト4を円錐板に摩擦係合させてプライマリプーリ2およびセカンダリプーリ3間での動力伝達を行う。変速に際しては、目標変速比に対応させて発生させたプライマリプーリ圧Ppriおよびセカンダリプーリ圧Psec間の差圧により両プーリ2,3のV溝の幅を変化させ、プーリ2,3に対するベルト4の巻き掛け円弧径を連続的に変化させることで目標変速比を実現する。
 プライマリプーリ圧Ppriおよびセカンダリプーリ圧Psecは、前進走行レンジの選択時に締結する前進クラッチ7b、および後進走行レンジの選択時に締結する後進ブレーキ7cの締結油圧と共に、変速制御油圧回路11によって制御される。変速制御油圧回路11は変速機コントローラ12からの信号に応答して制御を行う。
 変速機コントローラ12には、プライマリプーリ2の回転速度Npriを検出するプライマリプーリ回転センサ13(第3の回転速度センサに相当)からの信号と、セカンダリプーリ3の回転速度Nsecを検出するセカンダリプーリ回転センサ14からの信号と、セカンダリプーリ圧Psecを検出するセカンダリプーリ圧センサ15からの信号と、アクセルペダルの操作量APOを検出するアクセル操作量センサ16からの信号と、セレクトレバー位置を検出するインヒビタスイッチ17からの選択レンジ信号と、CVT1の作動油温TMPを検出する油温センサ18からの信号と、エンジン5を制御するエンジンコントローラ19からの入力トルクTpに関連する信号(エンジン回転速度や燃料噴射時間)と、各輪の車輪速度を検出する車輪速センサ21(駆動輪である前輪の車輪速センサを21F,従動輪である後輪の車輪速センサを21Rと記載する。)からの信号と、が入力される。
 変速機コントローラ12は、駆動輪である前輪の車輪速センサ21Fの信号と、従動輪である後輪の車輪速センサ21Rの信号とから、前後の車輪速差を算出し、車輪速差の大きさから悪路走行を判定する。そして、悪路走行と判定された場合は、変速機コントローラ12は、悪路検知時制御処理を実行する。悪路検知時制御処理とは、ロックアップクラッチ6cを解除すると共に、セカンダリプーリ圧Psec(以下、挟圧力とも記載する。)を悪路制御用圧力P1まで高くする指令を変速制御油圧回路11に出力してプーリ2,3のトルク容量を高め、さらに、CVT1への入力トルクがプーリのトルク容量よりも小さくなるよう、エンジン5の出力トルクを下げる指令(燃料噴射量減指令、吸入空気量減指令等)をエンジンコントローラ19に出力するものである。このように、車輪速センサ信号に基づいて悪路判定を行うため、駆動輪がスリップしたときに即座に挟圧力を高めることができ、スリップ後の駆動輪のグリップ力増大に伴うベルト滑りを防止できる。これにより、突発トルクの入力があってもベルト4が滑らないだけの狭圧力をセカンダリプーリ3に与え、そのトルク容量を増大させるとともに、CVT1への入力トルクを下げることができ、CVT1を突発トルクから有効に保護することができる。
 図2は実施例の悪路制御処理を表すフローチャートである。
 ステップS1では、悪路検知を行い、悪路の場合は悪路検知フラグをONとすると共に、ステップS2に進み、それ以外の良路の場合は本制御フローを終了する。ここで、悪路検知は、車輪速センサ21Fにより検出された駆動輪の回転速度と、車輪速センサ21Rにより検出された従動輪の回転速度との差である車輪速差が、入り判定閾値(第1の所定値に相当)以上か否かに基づいて判断する。車輪速差が入り判定閾値以上の場合は悪路と判定して悪路検知フラグをONとし、入り判定閾値未満の場合は良路と判定して悪路検知フラグはOFFとする。
 ステップS2では、悪路検知時制御を実施する。具体的には、ロックアップクラッチ6cを解除すると共に、セカンダリプーリ圧Psecを悪路制御用圧力P1まで高くする。
 ステップS3では、車輪速差が解除判定閾値(第2の所定値に相当)以下か否かを判定し、解除判定閾値以下の場合はステップS5に進み、解除判定閾値より大きいときはステップS4に進む。解除判定閾値は、入り判定閾値よりも小さな値に設定される。
 尚、図示せぬ他のルーチンによって車輪速センサ21の異常(例えば出力値の異常や断線など)の有無が常時監視されており、車輪速センサ21の異常時は、解除判定閾値以下であると判定してステップS5に進む。車輪速センサ21の異常時に悪路検知時制御の解除ができなくなることを回避するためである。悪路検知時制御の継続は燃費の悪化を招くからである。
 ステップS4では、解除判定タイマをリセットし、ステップS2に戻って悪路検知時制御を継続する。ここで、解除判定タイマとは、車輪速差が解除判定閾値以下となったときにカウントアップを行うタイマである。車輪速差が解除判定閾値以下の状態が所定時間継続しているときに解除を許可することで、判定に伴うハンチングを抑制する。
 ステップS5では、従動輪の車輪速センサ21Rから車速振動成分を抽出し、車速振動が所定振動値(第3の所定値に相当)以下か否かを判定し、車速振動が所定振動値以下の場合はステップS6に進み、それ以外の場合はステップS4に戻って解除判定タイマをリセットする。
 ここで、車速振動成分の抽出について説明する。図3は実施例の車速振動成分抽出処理を行う制御ブロック図である。車速換算部101では、車輪速センサ21Rから入力される車輪速センサパルス周期から車速に換算する。コントローラの演算周期は決まっているため、演算周期内に入力されるパルス数から車速に換算できる。次に、ハイパスフィルタ102では、換算された車速信号のうち、高周波数側の信号のみを抽出して出力する。良路を走行しているときの車速変動は、車両のイナーシャの影響によって低周波数でしか変動しない。よって、高周波数側の信号は振動成分と考えられる。次に、ローパスフィルタ103では、高周波数側の車速信号の平滑化を行う。車輪は、車輪のイナーシャの影響によって実際に振動できる周波数領域は限られている。そこで、ローパスフィルタ103によりノイズを除去し、実際に車輪で生じている振動を抽出し、振動成分を抽出する。
 実施例の悪路制御処理では、悪路検知の応答性を向上するために車輪速差を用いて悪路判定を行っている。よって、仮に車輪速差のみを用いて悪路検知時制御を終了する判断を行うと、実際には悪路であっても一時的な車輪速差の収束で悪路検知時制御を終了してしまう恐れがある。この場合、再度の悪路判定が即座に行われたとしても、挟圧力を高めるには油圧制御の応答性の問題があり、ベルト滑りが発生する前に挟圧力を高められないおそれがある。これに対し、上記実施例では、悪路検知時制御の終了判断を、車輪速差に加えて、車速の振動成分を考慮して行うため、不用意に悪路検知時制御が終了することを回避できる。
 尚、車輪速センサ21の異常時には、プライマリプーリ回転センサ13により検出されたセンサパルス周期に基づいて振動成分を検出する。このとき、変速比が変化したとしても、その変化の周波数は極めて低いため、ローパスフィルタにより影響を排除できる。そして、プライマリプーリ2の振動が所定振動値(第4の所定値に相当)以下か否かを判定し、振動が所定振動値以下の場合はステップS6に進み、それ以外の場合はステップS4に戻って解除判定タイマをリセットする。すなわち、車輪速センサ21に異常が生じ、路面の状態にかかわらず検出される車輪速差が大きくなると、悪路検知時制御によって挟圧力が大きくなる。そうすると、挟圧力を通常状態の低挟圧力に戻すことができず、燃費悪化を招くおそれがある。そこで、車輪速センサ21の異常時には、車輪速差を解除判定に用いず、プライマリプーリ回転センサ13の振動成分のみを解除判定に用いるため、路面状態が良路となった場合に挟圧力を通常状態の低挟圧力に戻すことができ、燃費の悪化を抑制できる。
 ステップS6では、解除判定タイマをカウントアップする。
 ステップS7では、解除判定タイマのカウント値が所定タイマ値以上か以下か否かを判定し、所定タイマ値以上の場合はステップS8に進み、それ以外の場合はステップS2に戻って悪路検知時制御を継続する。
 ステップS8では、悪路検知フラグをOFFするとともに、悪路検知時制御を解除する。
 図4は上記実施例の悪路制御処理を表すタイムチャートである。尚、最初の走行状態は、略一定速度で走行しており、悪路検知フラグはOFFであり、解除判定タイマは所定タイマ値までカウントされている状態である。
 時刻t1において、車両が悪路に入り、車輪速差が解除判定閾値を越えると、解除判定タイマがリセットされる。
 時刻t2において、車輪速差が入り判定閾値以上となると、悪路検知フラグがOFFからONにセットされ、悪路検知時制御が実施される。これにより、車輪速差は収束方向に向かう。このように、車輪速差に基づいて悪路検知が行われるため、素早い悪路検知が可能となり、ベルト滑りを抑制できる。
 時刻t3において、車輪速差が解除判定閾値を下回り、かつ、振動成分が所定振動値以下であるため、解除判定タイマのカウントアップが開始される。
 時刻t4において、車輪速差が再度解除判定閾値を上回ると、解除判定タイマのカウントアップはリセットされるため、悪路検知フラグはONのまま維持され、悪路検知時制御が継続される。このように、解除判定タイマを用いて悪路検知フラグをセットするため、悪路検知制御の作動・非作動に伴う挟圧力の変動を抑制できる。
 時刻t5において、悪路から良路へと移行し、振動成分が所定振動値以下となり、かつ、車輪速差も解除判定閾値を下回っているため、解除判定タイマのカウントアップが開始される。そして、時刻t6において、解除判定タイマのカウント値が所定タイマ値までカウントされると、悪路検知フラグがONからOFFに設定され、悪路検知時制御が終了する。このように、悪路検知制御の解除時には、車輪速差だけでなく、振動成分の低下を併せて判断することで、より安定的に解除判定を達成できる。
 以上説明したように、上記実施例にあっては下記に列挙する作用効果が得られる。
 (1)駆動輪の回転速度を検出する車輪速センサ21F(第1の回転速度センサ)と、
 従動輪の回転速度を検出する車輪速センサ21R(第2の回転速度センサ)と、
 車輪速センサ21Fの検出値と車輪速センサ21Rの検出値から駆動輪と従動輪との車輪速差を検出するステップS1(車輪速差検出部)と、
 車輪速差が入り判定閾値(第1の所定値)以上になった場合、走行中の路面が悪路であると判定するステップS1(悪路判定部)と、
 悪路と判定した場合、悪路と判定しない場合に比べて、無段変速機のベルトを油圧制御されたプーリによって挟み込むときの狭圧力を高くするステップS2(狭圧力上昇部)と、
 車輪速センサ21R(第1の回転速度センサと第2の回転速度センサの少なくとも一方)の検出値に基づいて車速の振動を検出するステップS5(振動検出部)と、
 検出された車輪速差が解除判定閾値(第2の所定値)以下であって、かつ、検出された振動が所定振動値(第3の所定値)以下である場合に、ステップS2(狭圧力上昇部)により高くした狭圧力を低下させるステップS8(上昇解除部)と、
 を備えた。
 すなわち、駆動輪と従動輪との車輪速差に基づいて悪路判定を行うため、駆動輪がスリップしたときに即座に挟圧力を高めることができる。よって、スリップ後の駆動輪のグリップ力増大に伴うベルト滑りを防止できる。
 また、車輪速差と車速の振動とがそれぞれ所定値以下となってから、高めた挟圧力を低下させるため、悪路を脱したことを正確に判定することができ、急激に入力トルクが増大するような悪路を走行している状態にもかかわらず挟圧力を低下させることを回避でき、ベルト滑りを防止できる。
 更に、車輪速差と車速の振動が収束すれば挟圧力が良路に応じた挟圧力に低下するため、良路に戻っても無駄に挟圧力が高い状態で走行する時間を短縮でき、燃費の悪化を抑制できる。
 (2)エンジン5(動力源)側に接続されたプライマリプーリ2の回転速度を検出するプライマリプーリ回転センサ13(第3の回転速度センサ)と、車輪速センサ21Fまたは車輪速センサ21Rの少なくとも一方の異常を検出するセンサ異常検出部と、を有し、ステップS5(振動検出部)は、プライマリプーリ回転センサ13の検出値からプライマリプーリ2の回転速度の振動を検出し、車輪速センサ21の異常を検出した場合、ステップS8は、検出された車輪速差を用いずに、プライマリプーリ回転センサ13から検出された振動が所定振動値(第4の所定値)以下である場合に、ステップS2により高くした狭圧力を低下させる。
 よって、車輪速センサ21の異常時には、車輪速差を解除判定に用いず、プライマリプーリ回転センサ13の振動成分のみを解除判定に用いるため、路面状態が良路となった場合に挟圧力を通常状態の低挟圧力に戻すことができ、燃費の悪化を抑制できる。
 以上、本発明を一実施例に基づいて説明したが、上記構成に限らず本発明を適用できる。
 上記実施例では、前輪駆動車両に適用した例を示したが、本発明は、4輪駆動車に適用することもできる。この場合、全てが駆動輪であるため、十分な車輪速差が生じないおそれがある。そこで、ステップS1の悪路判定において、
 (a)各輪の加速度を算出し、加速度がスリップにより上昇したと考えられる加速度上昇側入り判定閾値(第5の所定値)より大きい状態が所定時間継続した場合
 (b)各輪の加速度を算出し、加速度が障害物により低下したと考えられる加速度下降側入り判定閾値(第6の所定値)より小さい状態が所定時間継続した場合
の二つの条件をOR条件として導入すればよい。加速度下降側入り判定閾値は、加速度上昇側入り判定閾値よりも小さな値である。この場合、前後輪の車輪速差が入り判定閾値以上となった場合も含めた3つの条件のうち、いずれかが成立すれば悪路と判定することで、効果的に悪路検知を行える。
 尚、4輪駆動車で上記条件により悪路判定した後、悪路検知制御を解除するにあたっては、車輪速差と車速振動の条件によって悪路検知制御を解除すればよい。これにより、良路に復帰した場合や、悪路であると誤判定した場合に素早く挟圧力を低下できるため、燃費の悪化を抑制できる。

Claims (7)

  1.  駆動輪の回転速度を検出する第1の回転速度センサと、
     従動輪の回転速度を検出する第2の回転速度センサと、
     前記第1の回転速度センサの検出値と前記第2の回転センサの検出値から前記駆動輪と前記従動輪との車輪速差を検出する車輪速差検出部と、
     前記車輪速差が第1の所定値以上になった場合、第1の所定値未満である場合に比べて、無段変速機のベルトをプーリによって挟み込むときの狭圧力を高くする狭圧力上昇部と、
     を備えた無段変速機の制御装置。
  2.  前記車輪速差が前記第1の所定値以上になった場合、走行中の路面が悪路であると判定する悪路判定部を備えた、請求項1に記載の無段変速機の制御装置。
  3.  前記第1の回転速度センサと前記第2の回転速度センサの少なくとも一方の検出値に基づいて車速の振動を検出する振動検出部と、
     前記検出された車輪速差が第2の所定値以下であって、かつ、検出された振動が第3の所定値以下である場合に、前記狭圧力上昇部により高くした狭圧力を低下させる上昇解除部と、
     をさらに備えた、請求項1または2に記載の無段変速機の制御装置。
  4.  請求項3に記載の無段変速機の制御装置において、
     動力源側に接続されたプライマリプーリの回転速度を検出する第3の回転速度センサと、
     前記第1の回転速度センサまたは前記第2の回転速度センサの少なくとも一方の異常を検出するセンサ異常検出部と、
     を有し、
     前記振動検出部は、前記第3の回転速度センサの検出値からプライマリプーリの回転速度の振動を検出し、
     前記第1または第2の回転数センサの異常を検出した場合、前記上昇解除部は、検出された車輪速差を用いずに、前記第3の回転速度センサから検出された振動が第4の所定値以下である場合に、前記狭圧力上昇部により高くした狭圧力を低下させる、無段変速機の制御装置。
  5.  前輪側駆動輪の回転速度を検出する第1の回転速度センサと、
     後輪側駆動輪の回転速度を検出する第2の回転速度センサと、
     前記第1または第2の回転速度センサの検出値から駆動輪の加速度を検出する加速度検出部と、
     前記第1の回転速度センサの検出値と前記第2の回転速度センサの検出値から前記前輪側駆動輪と前記後輪側駆動輪との車輪速差を検出する車輪速差検出部と、
     前記車輪速差が第1の所定値以上になった場合、または、前記駆動輪の加速度が第5の所定値以上、または、前記駆動輪の加速度が前記第5の所定値よりも小さな第6の所定値以下のいずれかの場合、いずれにも該当しない場合に比べて、無段変速機のベルトをプーリによって挟み込むときの狭圧力を高くする狭圧力上昇部と、
     を備えた無段変速機の制御装置。
  6.  前記第1の回転速度センサと前記第2の回転速度センサの少なくとも一方の検出値に基づいて車速の振動を検出する振動検出部と、
     前記検出された車輪速差が第2の所定値以下であって、かつ、検出された振動が第3の所定値以下である場合に、前記狭圧力上昇部により高くした狭圧力を低下させる上昇解除部と、
     をさらに備えた、請求項5に記載の無段変速機の制御装置。
  7.  請求項6に記載の無段変速機の制御装置において、
     動力源側に接続されたプライマリプーリの回転速度を検出する第3の回転速度センサと、
     前記第1の回転速度センサまたは前記第2の回転速度センサの少なくとも一方の異常を検出するセンサ異常検出部と、
     を有し、
     前記振動検出部は、前記第3の回転速度センサの検出値からプライマリプーリの回転速度の振動を検出し、
     前記第1または第2の回転数センサの異常を検出した場合、前記上昇解除部は、検出された車輪速差を用いずに、前記第3の回転速度センサから検出された振動が第4の所定値以下である場合に、前記狭圧力上昇部により高くした狭圧力を低下させる、無段変速機の制御装置。
PCT/JP2015/068122 2014-07-30 2015-06-24 無段変速機の制御装置 WO2016017326A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177001945A KR101895177B1 (ko) 2014-07-30 2015-06-24 무단 변속기의 제어 장치
JP2016538219A JP6326498B2 (ja) 2014-07-30 2015-06-24 無段変速機の制御装置
CN201580041320.4A CN106574714B (zh) 2014-07-30 2015-06-24 无级变速器的控制装置
EP15828259.0A EP3196513B1 (en) 2014-07-30 2015-06-24 Controller for continuously variable transmission
US15/329,726 US10006542B2 (en) 2014-07-30 2015-06-24 Controller for continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154368 2014-07-30
JP2014-154368 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017326A1 true WO2016017326A1 (ja) 2016-02-04

Family

ID=55217231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068122 WO2016017326A1 (ja) 2014-07-30 2015-06-24 無段変速機の制御装置

Country Status (6)

Country Link
US (1) US10006542B2 (ja)
EP (1) EP3196513B1 (ja)
JP (1) JP6326498B2 (ja)
KR (1) KR101895177B1 (ja)
CN (1) CN106574714B (ja)
WO (1) WO2016017326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001901A (ja) * 2016-06-30 2018-01-11 アイシン精機株式会社 走行支援装置
JP2018115731A (ja) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 車両の制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316967B2 (en) * 2015-03-20 2019-06-11 Jatco Ltd Control device for continuously variable transmission
US10641391B2 (en) * 2018-04-23 2020-05-05 GM Global Technology Operations LLC System and method for CVT clamp control based on oncoming conditions in a vehicle propulsion system
JP7155725B2 (ja) * 2018-08-06 2022-10-19 トヨタ自動車株式会社 車両用駆動装置の制御装置
CN109854693A (zh) * 2018-12-30 2019-06-07 芜湖万里扬变速器有限公司 适于电动汽车的无级变速***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269591A (ja) * 2002-03-14 2003-09-25 Toyota Motor Corp 路面状態検出装置および無段変速機の制御装置
JP2005083435A (ja) * 2003-09-05 2005-03-31 Toyota Motor Corp 車両用路面状態判定装置
JP2005114088A (ja) * 2003-10-09 2005-04-28 Honda Motor Co Ltd 無段変速機の制御装置
JP2006220259A (ja) * 2005-02-14 2006-08-24 Fujitsu Ten Ltd 無段変速機制御装置及びその制御方法
JP2007162796A (ja) * 2005-12-13 2007-06-28 Jatco Ltd 路面状態判定装置および無段変速機
JP2013148110A (ja) * 2012-01-17 2013-08-01 Toyota Motor Corp 変速機の異常判定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191820A (ja) 2000-01-06 2001-07-17 Mazda Motor Corp 自動車の挙動制御装置
JP4066711B2 (ja) * 2002-05-16 2008-03-26 トヨタ自動車株式会社 無段変速機の制御装置
KR100541912B1 (ko) * 2002-09-05 2006-01-10 쟈트코 가부시키가이샤 V 벨트식 무단 변속기
US7739019B2 (en) * 2004-12-20 2010-06-15 Gm Global Technology Operations, Inc. Rough road detection
JP4736831B2 (ja) * 2006-02-08 2011-07-27 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP2010209947A (ja) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd 自動変速機の制御装置
JP5309174B2 (ja) * 2011-03-23 2013-10-09 ジヤトコ株式会社 無段変速機の制御装置
JP5297493B2 (ja) * 2011-04-11 2013-09-25 本田技研工業株式会社 ベルト式無段変速機の制御装置
JP5646067B2 (ja) * 2011-08-31 2014-12-24 ジヤトコ株式会社 車両制御装置、及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269591A (ja) * 2002-03-14 2003-09-25 Toyota Motor Corp 路面状態検出装置および無段変速機の制御装置
JP2005083435A (ja) * 2003-09-05 2005-03-31 Toyota Motor Corp 車両用路面状態判定装置
JP2005114088A (ja) * 2003-10-09 2005-04-28 Honda Motor Co Ltd 無段変速機の制御装置
JP2006220259A (ja) * 2005-02-14 2006-08-24 Fujitsu Ten Ltd 無段変速機制御装置及びその制御方法
JP2007162796A (ja) * 2005-12-13 2007-06-28 Jatco Ltd 路面状態判定装置および無段変速機
JP2013148110A (ja) * 2012-01-17 2013-08-01 Toyota Motor Corp 変速機の異常判定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001901A (ja) * 2016-06-30 2018-01-11 アイシン精機株式会社 走行支援装置
JP2018115731A (ja) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
EP3196513B1 (en) 2018-10-10
US10006542B2 (en) 2018-06-26
JP6326498B2 (ja) 2018-05-16
EP3196513A4 (en) 2017-08-16
EP3196513A1 (en) 2017-07-26
JPWO2016017326A1 (ja) 2017-04-27
CN106574714A (zh) 2017-04-19
KR20170020906A (ko) 2017-02-24
US20170219096A1 (en) 2017-08-03
CN106574714B (zh) 2018-10-02
KR101895177B1 (ko) 2018-09-04

Similar Documents

Publication Publication Date Title
JP6326498B2 (ja) 無段変速機の制御装置
JP6340135B2 (ja) 無段変速機の制御装置
US10378644B2 (en) Control device for automatic transmission for vehicle
KR102532321B1 (ko) 무단변속기 차량의 풀리 제어방법
JP4395137B2 (ja) 車両のトルク制御装置
JP5937627B2 (ja) 惰性走行制御装置及び惰性走行制御方法
US20160230886A1 (en) Control device for continuously variable transmission
JP6213502B2 (ja) 車両の制御装置
JP7124346B2 (ja) 車両用動力伝達装置の制御装置
KR101818896B1 (ko) 차량 제어 장치 및 차량의 제어 방법
JP2007162796A (ja) 路面状態判定装置および無段変速機
JP2008045607A (ja) 無段変速機用制御装置
KR102458756B1 (ko) 무단변속기 차량의 제어방법 및 제어장치
JP2017048706A (ja) 車両用駆動制御装置及び車両用駆動制御装置の制御方法
JP2016183760A (ja) 車両用自動変速機の制御装置
JP2014134273A (ja) 車両用無段変速機の変速制御装置
JP2019011840A (ja) 車両制御装置および車両制御方法
JP2019143664A (ja) ベルト式無段変速機の制御装置
JP2020193700A (ja) 車両の制御装置及び車両の制御方法
JP2017171254A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828259

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016538219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001945

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329726

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015828259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015828259

Country of ref document: EP