WO2016017309A1 - 電圧検出装置 - Google Patents

電圧検出装置 Download PDF

Info

Publication number
WO2016017309A1
WO2016017309A1 PCT/JP2015/067388 JP2015067388W WO2016017309A1 WO 2016017309 A1 WO2016017309 A1 WO 2016017309A1 JP 2015067388 W JP2015067388 W JP 2015067388W WO 2016017309 A1 WO2016017309 A1 WO 2016017309A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit unit
test pattern
resistor
voltage
detection device
Prior art date
Application number
PCT/JP2015/067388
Other languages
English (en)
French (fr)
Inventor
浩明 五十嵐
雅好 柏原
龍也 畑山
光一 八幡
坂本 英之
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201580041216.5A priority Critical patent/CN106796255B/zh
Priority to JP2016538213A priority patent/JP6415566B2/ja
Priority to DE112015002196.5T priority patent/DE112015002196B4/de
Priority to US15/312,085 priority patent/US9964579B2/en
Publication of WO2016017309A1 publication Critical patent/WO2016017309A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Definitions

  • the present invention relates to a voltage detection device, and more particularly to a device for detecting a DC high voltage.
  • the power converter is a function for converting DC power supplied from a DC power source into AC power for supplying an AC electric load such as a rotating electrical machine, or for supplying AC power generated by the rotating electrical machine to a DC power source. It has a power conversion function for converting to DC power.
  • the power conversion device has an inverter circuit having a switching element, and the switching element repeats a conduction operation and a cutoff operation to change from DC power to AC power or from AC power to DC power. Perform power conversion.
  • the power control command is calculated by a low-voltage control circuit that is insulated from the high-voltage system to be controlled.
  • voltage dividers are connected in series in multiple stages and converted to a voltage that can be measured by a low-voltage control circuit. If the resistance value changes due to deterioration of the resistor due to surge, etc., the voltage after voltage division also changes, and accurate measurement cannot be performed. If accurate DC high voltage detection is not possible, there is a concern that motor control may become unstable or cause a failure of the power module or the capacitor module. Therefore, it is desirable to have an abnormality diagnosis function for the voltage divider.
  • the problem to be solved by the present invention is to improve the reliability by diagnosing the state of the voltage divider while performing normal measurement.
  • a voltage detection device includes a first resistor for dividing a voltage of a detection unit into a first divided voltage value, and the first divided voltage value as a second divided voltage value.
  • a test pattern insertion circuit unit configured by a second resistor and a switching element for dividing the voltage into a voltage, and the test pattern insertion circuit unit is connected to a connection point having the same potential as the first voltage division value, The state of the first resistor is detected based on the second divided voltage value when the switching element is conducted.
  • the state of the voltage divider can be diagnosed and the reliability can be improved.
  • test pattern insertion circuit 510 It is a circuit block diagram of the voltage detection apparatus provided with the test pattern insertion circuit 510 which concerns on this embodiment. It is a circuit block diagram of the voltage detection apparatus provided with the test pattern insertion circuit 510 which concerns on other embodiment. It is a circuit block diagram of the voltage detection apparatus provided with the test pattern insertion circuit 510 which concerns on other embodiment. It is a circuit block diagram of the voltage detection apparatus provided with the test pattern insertion circuit 510 which concerns on other embodiment. It is a circuit block diagram of the voltage detection apparatus provided with the test pattern insertion circuit 510 which concerns on other embodiment. In the test pattern insertion circuit 510 according to the present embodiment, the test pattern insertion circuit 510 is provided in parallel with the case potential side of the first resistor 500.
  • the test pattern insertion circuit 510 is provided in series on the case potential side of the first resistor 500.
  • FIG. 10 is a fifth waveform diagram when the test pattern insertion circuits 510 and 511 are driven. It is a first waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • FIG. 10 is a second waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • FIG. 10 is a third waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • FIG. 10 is a fourth waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • FIG. 1 is a circuit block diagram of a voltage detection apparatus including a test pattern insertion circuit 510 according to the present embodiment.
  • the DC power source 10 is connected to the DC side of the power converter, and supplies power when the power converter drives an AC electrical load, and is charged via the power converter when the AC electrical load generates power.
  • the shut-off device 11 is inserted between the DC power source 10 and the power converter, and shuts off the DC power source 10 and the power converter when the system is stopped or abnormal.
  • the capacitor module 70 is connected to the DC side of the power converter, and smoothes the DC voltage fluctuation generated by the operation of the power converter.
  • the detection target potential (positive electrode) 12 is the positive electrode potential of the DC high voltage portion of the inverter.
  • the first divided voltage value 610 is a voltage obtained by dividing the detection target potential 12 by the first resistor 500.
  • a first divided voltage value 610 shown in FIG. 1 indicates a voltage in a state where the switching element 530 is not conductive.
  • the second divided voltage value 620 is a voltage obtained by dividing the detection target potential 12 by the first resistor 500 and the second resistor 520.
  • the second divided voltage value 620 shown in FIG. 1 indicates a voltage in a state where the switching element 530 is conductive.
  • the case potential 14 is a (chassis) potential that serves as a reference for a control circuit (not shown) that is an arithmetic unit constituted by a microcomputer or the like.
  • the first resistor 500 is a voltage dividing resistor for dividing the detection target potential 12 to the first divided value 610 with the case potential 14 as a reference.
  • the second resistor 520 forms a combined voltage dividing resistor with the first resistor 500 when diagnosing the first resistor 500.
  • the second resistor 520 is a resistor for dividing the detection target potential 12 to the second divided value 620 with the case potential 14 as a reference by forming a combined voltage dividing resistor with the first resistor 500.
  • the switching element 530 is a switch for synthesizing the first resistor 500 and the second resistor 520 by conducting when the first resistor 500 is diagnosed.
  • the test pattern insertion circuit 510 includes a second resistor 520 and a switching element 530.
  • the test pattern insertion circuit 510 synthesizes the first resistor 500 and the second resistor 520 by conducting the switching element 530 when diagnosing the first resistor 500.
  • the test pattern insertion circuit 510 is a circuit for generating a second divided voltage value 620 by combining the first resistor 500 and the second resistor 520.
  • the detection target potential (negative electrode) 13 the first resistor 501, the test pattern insertion circuit 511, the second resistor 521, the switching element 531, the first divided voltage value 611, and the second divided voltage value 621.
  • the buffer 40 is a voltage follower that supplies the first divided voltage value 610 or the second divided voltage value 620 on the positive electrode side as the divided voltage 60 on the positive electrode side to the arithmetic circuit 42 and the microcomputer 45.
  • the buffer 41 is a voltage follower that supplies the first divided voltage value 611 or the second divided voltage value 621 on the negative electrode side to the arithmetic circuit 42 and the arithmetic circuit 43 as the divided voltage 61 on the negative electrode side.
  • the arithmetic circuit 43 inverts the negative-side divided voltage 61 that is a negative voltage with respect to the case potential 14 with respect to the case potential 14, and outputs a negative voltage inversion detection signal 63.
  • the calculation circuit 42 calculates the divided voltage 62 between the positive and negative electrodes of the DC high voltage by taking the difference between the divided voltage 60 on the positive electrode side and the divided voltage 61 on the negative electrode side.
  • the arithmetic circuit 44 performs overvoltage determination of the divided voltage 62 between the positive and negative electrodes with respect to a preset overvoltage threshold, and outputs an overvoltage detection signal 64.
  • the divided voltage 60 on the DC high voltage positive side is directly input to the A / D conversion port to the microcomputer 45, or the calculation result of the calculation circuit 42, that is, the divided voltage 62 between the positive and negative electrodes is input to the A / D conversion port.
  • the calculation result of the calculation circuit 43, that is, the negative voltage inversion detection signal 63 is input to the A / D conversion port.
  • the microcomputer 45 generates a control signal for power conversion based on each input calculation result, and detects a leak to the DC high voltage case.
  • the overvoltage detection signal 64 which is the calculation result of the calculation circuit 44, is input to the general-purpose digital port to the microcomputer 45, and the microcomputer 45 adjusts the control signal so as to stop the power conversion operation when it is determined as overvoltage. To do.
  • microcomputer 45 issues a command to switch the conduction state between the switching element 530 and the switching element 531 from a general-purpose digital output port (not shown).
  • FIG. 6A shows a configuration having a test pattern insertion circuit 510 in parallel with the case potential side of the first resistor 500 in the test pattern insertion circuit 510 according to the present embodiment.
  • the first resistor 500 is a voltage dividing resistor for dividing the detection target potential 12 to a first divided value 610 with the reference potential 14 as a reference.
  • the first divided voltage value 610 is input to an A / D converter built in the microcomputer 45 that controls the motor, and is used as a control constant for controlling the motor.
  • the test pattern insertion circuit 510 includes a second resistor 520 and a switching element 530.
  • the test pattern insertion circuit 510 synthesizes the first resistor 500 and the second resistor 520 by making the switching element 530 conductive, and sets the second divided voltage value 620. Generate.
  • the switching element 530 When the switching element 530 is not conducted, only the first resistor 500 serves as a resistor that divides the detection target potential 12, and the divided voltage becomes the first divided value 610.
  • a state in which the switching element 530 is conductive is referred to as a diagnostic state
  • a state in which the switching element 530 is not conductive is referred to as a non-diagnostic state.
  • the ratio between the first divided voltage value 610 and the second divided voltage value 620 in a normal state can be uniquely calculated from the resistance value of the first resistor 500 and the resistance value of the second resistor 520.
  • the ratio of the first divided voltage value 610 and the second divided voltage value 620 when an abnormality occurs in the resistance value of the first resistor 500 is the ratio of the first divided voltage value 610 and the second divided voltage value 620 in the normal state. Is a different value (see Equations 1 and 2).
  • Equation 1 When switching element 530 is non-conductive: R2 / (R1 + R2) (Equation 2) When switching element 530 is conducting: (R2 // R3) / (R1 + R2 // R3)
  • the first partial pressure value 610 and the second partial pressure value 620 are input to the A / D converter of the microcomputer, and the ratio is calculated. When this ratio is different from the ratio determined by the resistance value of the first resistor 500 and the resistance value of the second resistor 520, the first resistor 500 can be diagnosed as abnormal.
  • the second partial pressure value 620 may be estimated based on the first partial pressure value 610 and compared with the measured second partial pressure value 620.
  • the buffer circuit unit 40 shown in FIG. 1 is a circuit for separating the voltage dividing circuit composed of the first resistor 500 and the second resistor 520 from the arithmetic circuit 40 and the microcomputer 45 in the subsequent stage. Assuming that the input impedance of the buffer circuit unit 40 is negligibly large compared to the resistance value of the voltage dividing circuit, the divided voltage value can be obtained only with the circuit constants before the buffer circuit unit 40 regardless of the circuit at the subsequent stage of the buffer circuit unit 40. Can be calculated. By arranging the test pattern insertion circuit 510 in the previous stage of the buffer circuit unit 40, a combined resistance of the first resistor 500 and the second resistor 520 is formed, and the resistance value abnormality of the first resistor 500 is detected by the above-described method. Diagnosis is possible.
  • the divided voltage 62 between the positive and negative electrodes of the DC high voltage is used as a parameter for driving the AC electric load, and the divided voltage 60 and the negative voltage inversion detection signal 63 on the DC high voltage positive side are supplied to the DC high voltage case. Used for diagnostic purposes such as leak detection.
  • a method of diagnosing the state of the voltage divider without affecting the divided voltage 60 between the positive electrode and the negative electrode will be described.
  • Equation 4 the ratio K1 between the DC high voltage 10 and the divided voltage 60 on the positive electrode side
  • Equation 5 the ratio K2 between the DC high voltage 10 and the divided voltage 61 on the negative electrode side
  • the switching element 530 when the switching element 530 is turned off and the switching element 531 is turned on, the ratio between the DC high voltage 10 and the divided voltage 60 on the positive side becomes K2, and the DC high voltage 10 and the divided voltage on the negative side.
  • the ratio of 61 is K1.
  • the microcomputer 45 can diagnose whether the fluctuation of the divided voltage 60 on the positive electrode side by switching the state of the switching element 530 conforms to the ratio.
  • the first resistor 500 is diagnosed.
  • the second resistor can be realized by observing the voltage fluctuation of the negative side inversion detection signal 63 due to the switching of the state of the switching element 531.
  • K0 K1 + K2 under the conditions of R1 >> R2 and R1 >> R3, but strictly different. Depending on the conditions used, it is necessary to pay attention to the correlation between the DC high voltage 10 and the case potential 14.
  • FIG. 8 is a first waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • the upper waveform in FIG. 8 is the waveform of the divided voltage 60 on the positive electrode side shown in FIG. 1, and the normal divided value here is a voltage value when the switching element 530 is in a conductive state.
  • the middle waveform in FIG. 8 is the waveform of the divided voltage 61 on the negative electrode side shown in FIG. 1, and the normal divided value here is a voltage value when the switching element 531 is in a conductive state.
  • the lower waveform in FIG. 8 shows a waveform obtained by synthesizing the upper waveform in FIG. 8 and the middle waveform.
  • the arithmetic circuit 42 none 44 and the microcomputer 45 are circuits that detect an overvoltage by comparing a voltage measured by the voltage detection circuit with a predetermined arbitrary overvoltage detection threshold value.
  • the measured voltage reaches the overvoltage detection level even if the actual voltage (normal voltage division value) does not reach the overvoltage detection level. Can be made. Thereby, it is possible to confirm whether or not the overvoltage detection circuit is operating normally without actually setting the overvoltage state.
  • FIG. 9 is a second waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • the first test pattern circuit unit is a circuit that is connected to a circuit that divides the voltage between the positive electrode of the DC high voltage and the reference potential and changes the divided value of the positive detection circuit.
  • the second test pattern circuit unit is a circuit that is connected to a circuit that divides the potential between the negative electrode of the DC high voltage and the reference potential, and changes the divided value of the negative electrode side detection circuit.
  • the second test pattern circuit unit is configured to increase the absolute value of the partial pressure value of the negative electrode side detection circuit. Change.
  • the resistance value of the first test pattern circuit and the resistance value of the second test pattern circuit so that the amount of change is the same, the differential between the positive side detection result and the negative side detection result when the test pattern is inserted
  • the calculation value is the same as before the test pattern is inserted, enabling diagnosis without affecting the differential calculation result.
  • FIG. 10 is a third waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • FIG. 11 is a fourth waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • a test is performed from the second test pattern circuit after a time corresponding to the operation delay from when the test pattern insertion from the first test pattern circuit is reflected in the divided voltage value.
  • the time corresponding to the operation delay from when the test pattern release of the second test pattern circuit is reflected in the divided voltage value is 1 Release the test pattern from the test pattern circuit.
  • the output of the insertion circuit that acts to increase the absolute value of the divided voltage changes before the output of the insertion circuit that works to reduce the absolute value of the divided voltage changes completely, and the differential operation value Can be prevented from becoming a high value, and erroneous detection of overvoltage detection due to test pattern insertion can be prevented.
  • FIG. 2 is a circuit block diagram of a voltage detection apparatus including a test pattern insertion circuit 510 according to another embodiment. Since the structure which attached
  • the filter circuit 46 removes the high frequency component generated by the test pattern insertion circuit 510 from the divided voltage 60 on the positive electrode side, and supplies it to the microcomputer 45.
  • the filter circuit 47 transmits the fluctuation caused by the test pattern insertion circuit 510 from the divided voltage 60 on the positive electrode side, removes components having a higher frequency than that, and supplies it to the microcomputer 45.
  • the filter circuit 48 removes the high frequency component generated by the test pattern insertion circuit 610 from the negative voltage inversion detection signal 63 and supplies it to the microcomputer 45.
  • the filter circuit 49 transmits the fluctuation caused by the test pattern insertion circuit 610 from the negative voltage inversion detection signal 63, removes a component having a higher frequency than that, and supplies it to the microcomputer 45.
  • FIG. 7 is a fifth waveform diagram when the test pattern insertion circuits 510 and 511 are driven.
  • the first filter circuit 46 is a filter circuit that sets a filter constant that attenuates the pulse inserted from the test pattern insertion circuit 510 to a state where the pulse is not detected by the microcomputer 45 (or the arithmetic circuits 42 to 44).
  • the second filter circuit 47 is a filter circuit in which a filter constant is set that transmits the pulse inserted from the test pattern insertion circuit 510 in a state where the pulse can be detected by a microcomputer (or arithmetic circuit) at the subsequent stage.
  • FIG. 3 is a circuit block diagram of a voltage detection apparatus including a test pattern insertion circuit 510 according to another embodiment.
  • the detection target potential (positive electrode) 12 is the positive electrode potential of the DC high voltage portion of the inverter.
  • the first divided voltage value 610 is a voltage obtained by dividing the detection target potential 12 by the first resistor 500. In the configuration of FIG. 3, the voltage in a state where the switching element 530 is conductive is indicated.
  • the second divided voltage value 620 is a voltage obtained by dividing the detection target potential 12 by the first resistor 500 and the second resistor 520. In the configuration of FIG. 3, it refers to a voltage when the switching element 530 is not conductive.
  • the case potential 14 is a (chassis) potential serving as a reference for the control circuit.
  • the first resistor 500 is a voltage dividing resistor for dividing the detection target potential 12 to a first divided value 610 with the case potential 14 as a reference.
  • the second resistor 520 forms a combined voltage dividing resistor with the first resistor 500 when diagnosing the first resistor 500.
  • the second resistor 520 is a resistor for dividing the detection target potential 12 to a second divided value 620 with the case potential 14 as a reference by forming a combined voltage dividing resistor with the first resistor 500.
  • the switching element 530 is a switch for synthesizing the first resistor 500 and the second resistor 520 by turning off the first resistor 500 when diagnosing the first resistor 500.
  • the test pattern insertion circuit 510 includes a second resistor 520 and a switching element 530.
  • the test pattern insertion circuit 510 synthesizes the first resistor 500 and the second resistor 520 by turning off the switching element 530.
  • the test pattern insertion circuit 510 is a circuit for generating a second divided voltage value 620 by combining the first resistor 500 and the second resistor 520. Note that when diagnosing the first resistor 500, the switching element 530 can be made conductive and non-conductive at the time of non-diagnosis.
  • the detection target potential (negative electrode) 13 the first resistor 501, the test pattern insertion circuit 511, the second resistor 521, the switching element 531, the first divided voltage value 611, and the second divided voltage value 621.
  • Equation 7 the ratio K4 between the DC high voltage 10 and the divided voltage 60 on the positive electrode side is expressed by Equation 7
  • the ratio K5 between the DC high voltage 10 and the divided voltage 61 on the negative electrode side can be expressed by Equation 8.
  • the switching element 530 when the switching element 530 is turned off and the switching element 531 is turned on, the ratio between the DC high voltage 10 and the divided voltage 60 on the positive electrode side is K5, and the DC high voltage 10 and the divided voltage on the negative electrode side are K5.
  • the ratio of 61 is K4.
  • the microcomputer 45 can diagnose whether the fluctuation of the divided voltage 60 on the positive electrode side by switching the state of the switching element 530 is in accordance with the ratio.
  • the first resistor 500 is diagnosed.
  • the second resistor can be realized by observing the voltage fluctuation of the negative side inversion detection signal 63 due to the switching of the state of the switching element 531.
  • FIG. 6B shows a configuration when the test pattern insertion circuit 510 according to the present embodiment includes the test pattern insertion circuit 510 in series on the case potential side of the first resistor 500.
  • 6A and 6B are circuit elements having the same function.
  • the ratio between the first divided voltage value 610 and the second divided voltage value 620 in the normal state is uniquely determined from the resistance value of the first resistor 500 and the resistance value of the second resistor 520. Can be calculated.
  • the ratio of the first divided voltage value 610 and the second divided voltage value 620 when an abnormality occurs in the resistance value of the first resistor 500 is the ratio of the first divided voltage value 610 and the second divided voltage value 620 in the normal state. Is a different value (see Equations 9 and 10).
  • FIG. 4 is a circuit block diagram of a voltage detection apparatus including a test pattern insertion circuit 510 according to another embodiment. 4, the operation by the switching element 530 is the same as that in FIG. 3, and the operation by the switching element 531 is the same as in FIG. 1 and FIG.
  • Equation 12 Equation 12
  • the divided voltage 62 between the positive electrode and the negative electrode is The diagnosis of the first resistor 500 on the positive electrode side and the first resistor 501 on the negative electrode side can be performed without changing and without affecting the drive to the AC electric load.
  • FIG. 5 is a circuit block diagram of a voltage detection apparatus including a test pattern insertion circuit 510 according to another embodiment. Since the structure which attached
  • FIG. 5 shows an example in which the connection destination of the test pattern insertion circuit 510 on the positive electrode side is not the case potential 14 but an arbitrary internal power supply.
  • the switching element 530 is kept non-conductive, and the voltage is injected by setting the switching element 530 in the conductive state, so that the divided voltage 60 on the positive electrode side can be increased. By doing so, it is possible to diagnose the buffer and arithmetic circuit in the subsequent stage without applying a DC high voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Inverter Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

 本発明の目的は、通常の測定を行いつつ、分圧器の状態を診断し、信頼性を向上させることである。本発明に係る電圧検出装置は、検知部の電圧を第1分圧値に分圧するための第1抵抗体と、前記第1分圧値を第2分圧値に分圧するための第2抵抗体とスイッチング素子により構成されるテストパターン挿入回路部と、を備え、前記テストパターン挿入回路部は、前記第1分圧値と同電位の接続点に接続され、前記スイッチング素子が導通したときの前記第2分圧値に基づき、前記第1抵抗体の状態を検知する。

Description

電圧検出装置
 本発明は、電圧検出装置に係り、特に直流高電圧を検出する装置に関する。
 電力変換装置は、直流電源から供給された直流電力を回転電機などの交流電気負荷に供給するための交流電力に変換する機能、あるいは回転電機により発電された交流電力を直流電源に供給するための直流電力に変換する電力変換機能を備えている。この電力変換機能を果たすため、電力変換装置はスイッチング素子を有するインバータ回路を有しており、スイッチング素子が導通動作や遮断動作を繰り返すことにより直流電力から交流電力へあるいは交流電力から直流電力への電力変換を行う。
 電力変換の電力制御を行うために、直流電源側の電圧値を検出する必要があり、一般に電圧値の計測機能が電力変換装置に内蔵される。なお、電力制御の指令は制御対象となる高電圧系とは絶縁された低電圧系の制御回路が演算する。
 従来の直流高電圧検出方法では、直列多段に分圧器を接続して低圧系の制御回路で計測可能な電圧に変換するようにしている。サージによる抵抗器の劣化等によって抵抗値が変化すると、分圧後の電圧も変化してしまい、正確な測定が出来なくなる。正確な直流高電圧検出が出来なくなると、モータ制御が不安定になることやパワーモジュールやコンデンサモジュールの故障の要因となることが懸念されるため、分圧器の異常診断機能を有することが望ましい。
 直流高電圧検出回路の異常診断方式としては、電流センサでの電流測定値から直流電圧値の変動予測値を演算し、実際の直流電圧測定値と比較する技術が知られている(例えば特許文献1参照)。しかしながらこの方式では直流高電圧検出回路のどの部分が故障しているかを判定することが困難であり、故障個所によるバックアップ動作を適切に行うことが困難である。 
特開2005-117756号公報
 本発明が解決しようとする課題は、通常の測定を行いつつ、分圧器の状態を診断し、信頼性を向上させることである。
 上記課題を解決するために、本発明に係る電圧検出装置は、検知部の電圧を第1分圧値に分圧するための第1抵抗体と、前記第1分圧値を第2分圧値に分圧するための第2抵抗体とスイッチング素子により構成されるテストパターン挿入回路部と、を備え、前記テストパターン挿入回路部は、前記第1分圧値と同電位の接続点に接続され、前記スイッチング素子が導通したときの前記第2分圧値に基づき、前記第1抵抗体の状態を検知する。
 本発明によれば、分圧器の状態を診断し、信頼性を向上させることができる。
本実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。 他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。 他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。 他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。 他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。 本実施形態に係るテストパターン挿入回路510のうち第1抵抗体500のケース電位側と並列にテストパターン挿入回路510を有する構成である。 本実施形態に係るテストパターン挿入回路510のうち第1抵抗体500のケース電位側に直列にテストパターン挿入回路510を有する構成である。 テストパターン挿入回路510及び511の駆動させた場合の第5波形図である。 テストパターン挿入回路510及び511の駆動させた場合の第1波形図である。 テストパターン挿入回路510及び511の駆動させた場合の第2波形図である。 テストパターン挿入回路510及び511の駆動させた場合の第3波形図である。 テストパターン挿入回路510及び511の駆動させた場合の第4波形図である。
 以下、本発明の実施形態を図面を用いて説明する。
 図1は、本実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。
 直流電源10は、電力変換装置の直流側に接続され、電力変換装置が交流電気負荷を駆動する場合には電力を供給し、交流電気負荷が発電する場合には電力変換装置を介して充電される。
 遮断装置11は、直流電源10と電力変換装置の間に挿入され、システム停止時や異常時に、直流電源10と電力変換装置を遮断する。
 コンデンサモジュール70は、電力変換装置の直流側に接続され、電力変換装置の動作によって発生する直流電圧変動を平滑化する。
 検知対象電位(正極)12は、インバータの直流高電圧部の正極電位である。第1分圧値610は、検知対象電位12を第1抵抗体500によって分圧された電圧である。図1に示される第1分圧値610は、スイッチング素子530が導通していない状態での電圧を示す。
 第2分圧値620は、検知対象電位12を第1抵抗体500と第2抵抗体520によって分圧した電圧である。図1に示される第2分圧値620は、スイッチング素子530が導通している状態での電圧をさす。
 ケース電位14は、マイクロコンピュータ等により構成される演算部である制御回路(不図示)の基準となる(シャシー)電位である。
 第1抵抗体500は、検知対象電位12をケース電位14を基準とする第1分圧値610に分圧するための分圧抵抗である。
 第2抵抗体520は、第1抵抗体500を診断する場合に第1抵抗体500と合成分圧抵抗を形成する。また第2抵抗体520は、第1抵抗体500と合成分圧抵抗を形成することによって検知対象電位12をケース電位14を基準とする第2分圧値620に分圧するための抵抗である。
 スイッチング素子530は、第1抵抗体500を診断する場合に導通することによって第1抵抗体500と第2抵抗体520を合成させるためのスイッチである。
 テストパターン挿入回路510は、第2抵抗体520とスイッチング素子530とから構成される。テストパターン挿入回路510は、第1抵抗体500を診断する場合にスイッチング素子530を導通させることによって第1抵抗体500と第2抵抗体520を合成させる。またテストパターン挿入回路510は、第1抵抗体500と第2抵抗体520を合成させることによって第2分圧値620を生成するための回路である。
 検知対象電位(負極)13、第1抵抗体501、テストパターン挿入回路511、第2抵抗体521、スイッチング素子531、第1分圧値611、第2分圧値621に関しても同様である。
 バッファ40は、正極側である第1分圧値610あるいは第2分圧値620を正極側の分圧電圧60として、演算回路42とマイコン45へ供給するボルテージフォロアである。
 バッファ41は、負極側である第1分圧値611あるいは第2分圧値621を負極側の分圧電圧61として、演算回路42と演算回路43へ供給するボルテージフォロアである。
 演算回路43は、ケース電位14に対して負電圧となっている負極側の分圧電圧61をケース電位14を基準に反転し、負極電圧反転検知信号63を出力する。
 演算回路42は、正極側の分圧電圧60と負極側の分圧電圧61の差動をとって直流高電圧の正極負極間の分圧電圧62を演算する。
 演算回路44は、予め設定した過電圧しきい値に対して正極負極間の分圧電圧62の過電圧判定を実施し、過電圧検知信号64を出力する。
 マイコン45に対して、直流高電圧正極側の分圧電圧60を直接A/D変換ポートに入力したり、演算回路42の演算結果つまり正極負極間の分圧電圧62をA/D変換ポートに入力したり、演算回路43の演算結果つまり負極電圧反転検知信号63をA/D変換ポートに入力する。
 マイコン45は、入力された各演算結果をもとに、電力変換用の制御信号を生成し、直流高電圧のケースへのリークを検知する。また、マイコン45に対して演算回路44の演算結果である過電圧検知信号64を汎用デジタルポートに入力し、過電圧と判定された場合には電力変換動作を停止するようにマイコン45が制御信号を調整する。
 さらに、マイコン45は汎用デジタル出力ポート(非図示)からスイッチング素子530とスイッチング素子531の導通状態を切り替える指令を出す。
 図6(a)は、本実施形態に係るテストパターン挿入回路510のうち第1抵抗体500のケース電位側と並列にテストパターン挿入回路510を有する構成である。
 第1抵抗体500は、検知対象電位12を基準電位14を基準とする第1分圧値610に分圧するための分圧抵抗である。第1分圧値610は、モータを制御するマイコン45に内蔵されたA/D変換器に入力され、モータを制御するための制御定数として使用される。
 テストパターン挿入回路510は、第2抵抗体520とスイッチング素子530から構成され、スイッチング素子530を導通させることによって第1抵抗体500と第2抵抗体520を合成させ、第2分圧値620を生成する。
 スイッチング素子530を導通していない場合は第1抵抗体500だけが検知対象電位12を分圧する抵抗となり、分圧電圧は第1分圧値610となる。以後、スイッチング素子530が導通している状態を診断状態、スイッチング素子530が導通していない状態を非診断状態とする。
 本実施形態によると、第1抵抗体500の抵抗値と第2抵抗体520の抵抗値から正常状態における第1分圧値610と第2分圧値620の比率を一意に計算することができる。第1抵抗体500の抵抗値に異常が発生した場合の第1分圧値610と第2分圧値620の比率は、正常状態における第1分圧値610と第2分圧値620の比率とは異なった値となる(数1及び数2参照)。
(数1) スイッチング素子530非導通時: R2 / (R1+R2)
(数2) スイッチング素子530導通時: (R2//R3) / (R1+R2//R3) 
 第1分圧値610と第2分圧値620をマイコンのA/D変換器に入力し、比率を演算する。この比率が第1抵抗体500の抵抗値と第2抵抗体520の抵抗値で決まる比率と異なる場合、第1抵抗体500を異常と診断することが出来る。(あるいは第1分圧値610を元に第2分圧値620を推定しておき、測定した第2分圧値620と比較しても良い。)
 これにより、第1抵抗体500の抵抗値異常を診断することが可能となり、電圧検知装置の測定信頼性が向上する。
 なお、図1に示されるバッファ回路部40は、第1抵抗体500と第2抵抗体520からなる分圧回路と後段の演算回路40やマイコン45を分離するための回路である。バッファ回路部40の入力インピーダンスが分圧回路の抵抗値に比べて無視できるくらい大きいと仮定すると、バッファ回路部40後段の回路に関係なく、バッファ回路部40前段の回路定数のみで分圧値を計算できる。テストパターン挿入回路510をバッファ回路部40の前段に配置することにより、第1抵抗体500と第2抵抗体520の合成抵抗が形成され、前記の手法により第1抵抗体500の抵抗値異常を診断することが可能となる。
 一般に直流高電圧の正極負極間の分圧電圧62が交流電気負荷を駆動するパラメータとして使用され、直流高電圧正極側の分圧電圧60と負極電圧反転検知信号63は直流高電圧のケースへのリーク検知などの診断目的で使用される。以下では正極負極間の分圧電圧60に影響を与えずに分圧器の状態を診断する方法について説明する。
 図1に示された構成において、R1P=R1N=R1、R2P=R2N=R2、R3P=R3N=R3、バッファ回路40及び41と演算回路42のゲインを1とする。また、スイッチング素子530、531の導通状態のON抵抗と非導通状態のリーク電流、バッファ40、41や演算回路42のリーク電流は無視できるものとする。加えて、直流高電圧とケース電位の間には本構成以外のリークは発生していないものとする。スイッチング素子530を導通させてスイッチング素子531を非導通とさせた場合、直流高電圧10と正極負極間の分圧電圧62の比率K0は数3で表せる。
(数3)
Figure JPOXMLDOC01-appb-I000001
 ここで、R1>>R2、R1>>R3であるとき、つまりスイッチング素子530、630の状態を変化させても、ケース電位14と直流高電圧の電位の相関の違いが十分に小さいと考えられるときは、直流高電圧10と正極側の分圧電圧60の比率K1は数4で、直流高電圧10と負極側の分圧電圧61の比率K2は数5で表せる。
(数4)
Figure JPOXMLDOC01-appb-I000002
(数5)
Figure JPOXMLDOC01-appb-I000003
 一方、スイッチング素子530を非導通とさせてスイッチング素子531を導通させた場合は、直流高電圧10と正極側の分圧電圧60の比率がK2となり、直流高電圧10と負極側の分圧電圧61の比率がK1となる。
 スイッチング素子530とスイッチング素子531のどちらか一方を導通、もう一方を非導通とする動作を入れ替えても、正極負極間の分圧電圧62はK1+K2で常に一定となるため、交流電気負荷への駆動に影響を与えない。
 また、比率K1、K2は回路定数で一意に決定されるため、スイッチング素子530の状態を切り替えることによる正極側の分圧電圧60の変動がその比率に則っているかをマイコン45で診断することが第1抵抗体500の診断となる。同様にスイッチング素子531の状態の切り替えることによる負極側反転検知信号63の電圧変動を観測することで第2抵抗体が可能となる。
  R1>>R2、R1>>R3の条件下ではK0=K1+K2とみなすことができるが、厳密には異なる。使用する条件によっては直流高電圧10とケース電位14の相関関係にも注意して検討する必要がある。
 図8は、テストパターン挿入回路510及び511の駆動させた場合の第1波形図である。図8の上段の波形は、図1に示される正極側の分圧電圧60の波形であり、ここでの通常分圧値はスイッチング素子530が導通状態である時の電圧値である。
 図8の中段の波形は、図1に示される負極側の分圧電圧61の波形であり、ここでの通常分圧値はスイッチング素子531が導通状態である時の電圧値である。図8の下段の波形は、図8の上段の波形と中段の波形を合成した波形を示す。
 演算回路42なし44及びマイコン45は、電圧検知回路で測定した電圧と予め設定した任意の過電圧検知しきい値を比較することによって過電圧を検出する回路である。テストパターン挿入回路510及び511によって分圧比を変化させる(あるいは所定の電圧を注入する)ことで、実電圧(通常分圧値)が過電圧検知レベルに達していなくとも測定電圧を過電圧検知レベルに到達させることができる。これにより、実際に過電圧の状態にすることなく、過電圧検知回路が正常に動作しているかを確認することができる。
 図9は、テストパターン挿入回路510及び511の駆動させた場合の第2波形図である。
 第1テストパターン回路部は直流高電圧の正極と基準電位の間の電圧を分圧する回路に接続し、正極側検知回路の分圧値を変化させる回路である。
 第2テストパターン回路部は直流高電圧の負極と基準電位の間の電位を分圧する回路に接続し、負極側検知回路の分圧値を変化させる回路である。
 例えば、第1テストパターン回路部によって正極側検知回路の分圧値絶対値が小さくなるように変化させるとき、第2テストパターン回路部によって負極側検知回路の分圧値絶対値が大きくなるように変化させる。変化量が同じとなるように第1テストパターン回路の抵抗値と第2テストパターン回路の抵抗値を設定しておくことで、テストパターン挿入時の正極側検知結果と負極側検知結果の差動演算値がテストパターン挿入前と同じとなり、差動演算結果に影響を与えない診断を可能とする。 
 図10は、テストパターン挿入回路510及び511の駆動させた場合の第3波形図である。図11は、テストパターン挿入回路510及び511の駆動させた場合の第4波形図である。
 第1テストパターン回路からテストパターンを挿入してから、第1テストパターン回路からのテストパターン挿入が分圧値に反映されるまでの動作遅延相当の時間をおいてから第2テストパターン回路からテストパターンを挿入し、第2テストパターン回路からのテストパターン挿入を解除してから、第2テストパターン回路のテストパターン解除が分圧値に反映されるまでの動作遅延相当の時間をおいてから第1テストパターン回路からのテストパターンを解除する。
 こうすることで、分圧値絶対値を小さくするように作用する挿入回路の出力が変化しきる前に分圧値絶対値を大きくするように作用する挿入回路の出力が変化して差動演算値が高い値になることを抑制し、テストパターン挿入による過電圧検知の誤検知を防止することができる。
 図2は、他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。図1と同じ図面番号を付した構成は、同様な機能を有するので、説明を省略する。
 フィルタ回路46は、正極側の分圧電圧60からテストパターン挿入回路510によって発生する高周波成分を除去してマイコン45へ供給する。フィルタ回路47は、正極側の分圧電圧60からテストパターン挿入回路510による変動を透過し、それより高周波となる成分は除去してマイコン45へ供給する。
 フィルタ回路48は、負極電圧反転検知信号63からテストパターン挿入回路610によって発生する高周波成分を除去してマイコン45へ供給する。フィルタ回路49は、負極電圧反転検知信号63からテストパターン挿入回路610による変動を透過し、それより高周波となる成分は除去してマイコン45へ供給する。
 図7は、テストパターン挿入回路510及び511の駆動させた場合の第5波形図である。第1フィルタ回路46は、テストパターン挿入回路510より挿入されるパルスが後段のマイコン45(あるいは演算回路42ないし44)で検出されない状態に減衰するフィルタ定数を設定したフィルタ回路である。
 第2フィルタ回路47は、テストパターン挿入回路510より挿入されるパルスを後段のマイコン(あるいは演算回路)で検出できる状態で透過するフィルタ定数を設定したフィルタ回路である。
 これにより、テストパターンを挿入した際に、挿入しない場合と変化ない値と挿入することによって変化した値を同時に測定することができる。
 図3は、他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。
 検知対象電位(正極)12は、インバータの直流高電圧部の正極電位である。第1分圧値610は、検知対象電位12を第1抵抗体500によって分圧した電圧である。図3の構成ではスイッチング素子530が導通している状態での電圧をさす。
 第2分圧値620は、検知対象電位12を第1抵抗体500と第2抵抗体520によって分圧した電圧である。図3の構成ではスイッチング素子530が導通していない状態での電圧をさす。
 ケース電位14は、制御回路の基準となる(シャシー)電位である。第1抵抗体500は、検知対象電位12をケース電位14を基準とする第1分圧値610に分圧するための分圧抵抗である。第2抵抗体520は、第1抵抗体500を診断する場合に第1抵抗体500と合成分圧抵抗を形成する。第2抵抗体520は、第1抵抗体500と合成分圧抵抗を形成することによって検知対象電位12をケース電位14を基準とする第2分圧値620に分圧するための抵抗である。
 スイッチング素子530は、第1抵抗体500を診断する場合に非導通とすることによって第1抵抗体500と第2抵抗体520を合成させるためのスイッチである。
 テストパターン挿入回路510は、第2抵抗体520とスイッチング素子530構成される。テストパターン挿入回路510は、第1抵抗体500を診断する場合にスイッチング素子530を非導通とすることによって第1抵抗体500と第2抵抗体520を合成させる。またテストパターン挿入回路510は、第1抵抗体500と第2抵抗体520を合成させることによって第2分圧値620を生成するための回路である。なお、第1抵抗体500を診断する場合にスイッチング素子530を導通させ、非診断時に非導通とすることも可能である。
 検知対象電位(負極)13、第1抵抗体501、テストパターン挿入回路511、第2抵抗体521、スイッチング素子531、第1分圧値611、第2分圧値621に関しても同様である。
 図3の構成において、R1P=R1N=R1、R2P=R2N=R2、R3P=R3N=R3、バッファ40、41と演算回路42のゲインを1とする。また、スイッチング素子530、531の導通状態のON抵抗と非導通状態のリーク電流、バッファ40、41や演算回路42のリーク電流は無視できるものとする。加えて、直流高電圧とケース電位の間には本構成以外のリークは発生していないものとする。スイッチング素子530を導通させてスイッチング素子531を非導通とさせた場合、直流高電圧10と正極負極間の分圧電圧62の比率K3は数6で表せる。
(数6)
Figure JPOXMLDOC01-appb-I000004
 ここで、R1>>R2、R1>>R3であるとき、つまりスイッチング素子530、531の状態を変化させても、ケース電位14と直流高電圧の電位の相関の違いが十分に小さいと考えられるときは、直流高電圧10と正極側の分圧電圧60の比率K4は数7で、直流高電圧10と負極側の分圧電圧61の比率K5は数8で表せる。
(数7)
Figure JPOXMLDOC01-appb-I000005
(数8)
Figure JPOXMLDOC01-appb-I000006
 一方、スイッチング素子530を非導通とさせてスイッチング素子531を導通させた場合は、直流高電圧10と正極側の分圧電圧60の比率がK5となり、直流高電圧10と負極側の分圧電圧61の比率がK4となる。
 スイッチング素子530とスイッチング素子531のどちらか一方を導通、もう一方を非導通とする動作を入れ替えても、正極負極間の分圧電圧62はK4+K5で常に一定となるため、交流電気負荷への駆動に影響を与えない。
 また、比率K4、K5は回路定数で一意に決定されるため、スイッチング素子530の状態を切り替えることによる正極側の分圧電圧60の変動がその比率に則っているかをマイコン45で診断することが第1抵抗体500の診断となる。同様にスイッチング素子531の状態の切り替えることによる負極側反転検知信号63の電圧変動を観測することで第2抵抗体が可能となる。
 図6(b)は、本実施形態に係るテストパターン挿入回路510のうち第1抵抗体500のケース電位側に直列にテストパターン挿入回路510を有する場合の構成である。図6(a)と図6(b)とで同じ番号を付した構成は、同じ機能を有する回路素子である。
 図6(b)の実施形態によると、第1抵抗体500の抵抗値と第2抵抗体520の抵抗値から正常状態における第1分圧値610と第2分圧値620の比率を一意に計算することができる。第1抵抗体500の抵抗値に異常が発生した場合の第1分圧値610と第2分圧値620の比率は、正常状態における第1分圧値610と第2分圧値620の比率とは異なった値となる(数9と数10参照)。
(数9)スイッチング素子530非導通時: (R2+R3) / (R1+R2+R3)
(数10)スイッチング素子530導通時: R2 / (R1+R2)
 第1分圧値610と第2分圧値620をマイコンのA/D変換器に入力し、比率を演算する。この比率が第1抵抗体500の抵抗値と第2抵抗体520の抵抗値で決まる比率と異なる場合、第1抵抗体500を異常と診断することが出来る。
 これにより、第1抵抗体500の抵抗値異常を診断することが可能となり、電圧検知装置の測定信頼性が向上する。
 図4は、他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。図4において、スイッチング素子530による動作は図3と、スイッチング素子531による動作は図1や図2と同様である。
 図4の構成において、R1P=R1N=R1、R2P=R2N=R2、バッファ40、41と演算回路42のゲインを1とする。また、スイッチング素子530、531の導通状態のON抵抗と非導通状態のリーク電流、バッファ40、41や演算回路42のリーク電流は無視できるものとする。加えて、直流高電圧とケース電位の間には本構成以外のリークは発生していないものとする。
 通常時はスイッチング素子530を導通、スイッチング素子531を非導通とさせることで、直流高電圧10と正極負極間の分圧電圧62の比率K6を数11の状態とする。
(数11)
Figure JPOXMLDOC01-appb-I000007
 ここで、R1>>R2、R1>>R3P、R1>>R3Nであるとする。スイッチング素子530を導通から非導通、スイッチング素子531を導通から非導通と同時に切り替えた際に、正極負極間の分圧電圧62が変化しない条件は、数12で与えられる。
(数12)
Figure JPOXMLDOC01-appb-I000008
 数12が成立するようにR3PとR3Nの抵抗値を決定することで、スイッチング素子530を導通から非導通、スイッチング素子531を導通から非導通と切り替えた場合でも正極負極間の分圧電圧62は変化せず、交流電気負荷への駆動に影響を与えずに正極側の第1抵抗体500および負極側の第1抵抗体501の診断を実施できる。
 図5は、他の実施形態に係るテストパターン挿入回路510を備えた電圧検知装置の回路ブロック図である。図2と同じ図面番号を付した構成は、同様な機能を有するので、説明を省略する。
 図5は正極側のテストパターン挿入回路510の接続先をケース電位14ではなく、任意の内部電源とした例である。通常はスイッチング素子530を非導通としておき、導通状態とすることで電圧が注入され、正極側の分圧電圧60を高くすることができる。こうすることで直流高電圧を印加せずとも後段のバッファや演算回路を診断することも可能となる。
10…直流電源、11…遮断装置、12…検知対象電位、13…検知対象電位、14…ケース電位、15…任意の内部電源、40…バッファ回路、41…バッファ回路、42…演算回路、43…演算回路、44…演算回路、45…マイコン、46…フィルタ回路、47…フィルタ回路、48…フィルタ回路、49…フィルタ回路、60…正極側の分圧電圧、61…負極側の分圧電圧、62…正極負極間の分圧電圧、63…負極電圧反転検知信号、64…過電圧検知信号、70…コンデンサモジュール、500…第1抵抗体、501…第1抵抗体、510…テストパターン挿入回路、511…テストパターン挿入回路、520…第2抵抗体、521…第2抵抗体、530…スイッチング素子、531…スイッチング素子、610…第1分圧値、611…第1分圧値、620…第2分圧値、621…第2分圧値

Claims (9)

  1.  検知部の電圧を第1分圧値に分圧するための第1抵抗体と、
     前記第1分圧値を第2分圧値に分圧するための第2抵抗体とスイッチング素子により構成されるテストパターン挿入回路部と、を備え、
     前記テストパターン挿入回路部は、前記第1分圧値と同電位の接続点に接続され、
     前記スイッチング素子が導通したときの前記第2分圧値に基づき、前記第1抵抗体の状態を検知する電圧検知装置。
  2.  請求項1に記載の電圧検知装置であって、 
     前記第2抵抗体は、前記スイッチング素子と電気的に直列に接続される電圧検知装置。
  3.  請求項1または2に記載の電圧検知装置であって、 
     前記テストパターン回路部による前記第1抵抗体の状態に関する情報を含む検知信号を変換するバッファ回路部と、 
     前記バッファ回路部からの信号に基づき演算する演算回路部と、を備え 
     前記テストパターン回路部は、前記バッファ回路部に対して前記検知部に近い側に電気的に接続される電圧検知装置。
  4.  請求項3に記載の電圧検知装置であって、 
     前記バッファ回路部と前記演算回路部とを繋ぐ第1フィルタ回路及び第2フィルタ回路を備え、 
     前記第1フィルタ回路は、前記テストパターン回路部の信号を抑制するように設けられ、 
     前記第2フィルタ回路は、前記テストパターン回路部の信号を前記演算回路部に伝達させるように構成される電圧検知装置。
  5.  請求項1ないし4に記載のいずれかの電圧検知装置であって、 
     前記検知部が過電圧を検知する過電圧検知回路部を備え、 
     前記テストパターン回路部は、一方の端子が前記第1分圧値と同電位の接続点に接続されるとともに他方の端子が電源回路部に接続され、 
     前記過電圧検知回路部は、前記テストパターン回路部により昇圧された前記検知部の電圧値に基づき過電圧を検知する電圧検知装置。
  6.  請求項1ないし4に記載のいずれかの電圧検知装置であって、 
     前記テストパターン回路部は、前記検知部の正極側に接続される第1テストパターン回路部と、前記検知部の負極側に接続される第2テストパターン回路部と、により構成され、 
     前記第1テストパターン回路部は、一方の端子が前記第1分圧値と同電位の接続点に接続されるとともに他方の端子が接地され、 
     前記第2テストパターン回路部は、一方の端子が前記第1分圧値と同電位の接続点に接続されるとともに他方の端子が接地され、 
     さらに前記第2テストパターン回路部は、前記第1テストパターン回路部のパルスとは極性の異なるパルスを出力する電圧検知装置。
  7.  請求項6に記載の電圧検知装置であって、 
     前記第1テストパターン回路部及び前記第2テストパターン回路部は、負極側パルスが正極側パルスを包含するように駆動する電圧検知装置。
  8.  検知部の電圧を第1分圧値に分圧するための第1抵抗体と、
     前記第1分圧値を第2分圧値に分圧するための第2抵抗体とスイッチング素子により構成されるテストパターン挿入回路部と、を備え、
     前記テストパターン挿入回路部は、前記第1抵抗体と基準電位の間に接続され、
     前記スイッチング素子を非導通としたときの前記第2分圧値に基づき、前記第1抵抗体の状態を検知する電圧検知装置。
  9.  請求項8に記載の電圧検知装置であって、
     前記第2抵抗体は、前記スイッチング素子と電気的に並列に接続される電圧検知装置。
PCT/JP2015/067388 2014-08-01 2015-06-17 電圧検出装置 WO2016017309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580041216.5A CN106796255B (zh) 2014-08-01 2015-06-17 电压检测装置
JP2016538213A JP6415566B2 (ja) 2014-08-01 2015-06-17 電圧検出装置
DE112015002196.5T DE112015002196B4 (de) 2014-08-01 2015-06-17 Spannungsdetektionseinrichtung
US15/312,085 US9964579B2 (en) 2014-08-01 2015-06-17 Voltage detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014157291 2014-08-01
JP2014-157291 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017309A1 true WO2016017309A1 (ja) 2016-02-04

Family

ID=55217214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067388 WO2016017309A1 (ja) 2014-08-01 2015-06-17 電圧検出装置

Country Status (5)

Country Link
US (1) US9964579B2 (ja)
JP (1) JP6415566B2 (ja)
CN (1) CN106796255B (ja)
DE (1) DE112015002196B4 (ja)
WO (1) WO2016017309A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017309A1 (ja) * 2014-08-01 2016-02-04 日立オートモティブシステムズ株式会社 電圧検出装置
US11448559B2 (en) * 2018-03-30 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Capacitance detection device for detecting the capacitance of a sensor element
DE102018126913A1 (de) 2018-10-29 2020-04-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Überspannungsschutzschaltung für ein Steuergerät für ein Fahrzeug, Steuergerät für ein Fahrzeug und Verfahren zum Testen einer Überspannungsschutzschaltung für ein Steuergerät für ein Fahrzeug
US11411500B2 (en) * 2019-11-12 2022-08-09 Infineon Technologies Austria Ag Voltage feedback continuity failure detection in voltage regulators
US11366174B2 (en) * 2020-09-11 2022-06-21 Analog Devices, Inc. Predicting failures in feedback network of power supplies using a secondary servo loop
JP7505034B2 (ja) 2020-12-22 2024-06-24 日立Astemo株式会社 電圧検知回路
CN113608011B (zh) * 2021-08-11 2024-01-30 国网江苏省电力有限公司 一种具有自校准功能的直流高电压测量装置及其操作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329720A (ja) * 2002-05-09 2003-11-19 Toyota Motor Corp センサ出力信号の異常検出装置
WO2011148592A1 (ja) * 2010-05-25 2011-12-01 パナソニック株式会社 過電流検知回路、及び電池パック

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907061A1 (de) 1979-02-23 1980-08-28 Licentia Gmbh Schaltung zur erzeugung eines konstanten ausgangssignals
US6288881B1 (en) * 1999-08-17 2001-09-11 John A. Melvin Battery voltage regulator protection circuits
DE10142011B4 (de) * 2001-08-28 2005-12-29 Infineon Technologies Ag Spannungssensor, Schaltungsanordnung mit einem Spannungssensor, sowie Verfahren zum Konfigurieren und Betreiben einer derartigen Schaltungsanordnung
JP4061168B2 (ja) * 2002-10-16 2008-03-12 矢崎総業株式会社 地絡検知装置および絶縁抵抗計測装置
JP4295059B2 (ja) 2003-10-06 2009-07-15 日産自動車株式会社 直流電圧検出回路の故障診断装置およびモータ制御システム
JP3961505B2 (ja) * 2004-04-13 2007-08-22 松下電器産業株式会社 電圧検出回路、電源装置及び半導体装置
JP2008306788A (ja) * 2007-06-05 2008-12-18 Ricoh Co Ltd スイッチングレギュレータ及びスイッチングレギュレータの動作制御方法
CN100516893C (zh) * 2007-07-04 2009-07-22 深圳市长运通集成电路设计有限公司 可编程电压监测电路
JP5109795B2 (ja) * 2008-05-13 2012-12-26 ミツミ電機株式会社 電圧検出回路およびスイッチング電源装置
JP5406614B2 (ja) * 2009-07-15 2014-02-05 矢崎総業株式会社 絶縁状態検出装置
JP2011179861A (ja) * 2010-02-26 2011-09-15 Renesas Electronics Corp 電圧検出回路
CN201622302U (zh) * 2010-04-09 2010-11-03 维熹科技股份有限公司 过电压与过电流检测电路
CN201774453U (zh) * 2010-08-26 2011-03-23 Bcd半导体制造有限公司 一种开关电源的电源电压检测电路
CN102687026B (zh) * 2010-08-31 2014-08-27 松下电器产业株式会社 车辆用绝缘阻抗检测装置
JP5687484B2 (ja) * 2010-12-20 2015-03-18 矢崎総業株式会社 絶縁状態検出ユニットのフライングキャパシタ故障検出装置
JP5903633B2 (ja) * 2012-10-31 2016-04-13 パナソニックIpマネジメント株式会社 電源装置及び該電源装置を用いた車両用照明装置
WO2016017309A1 (ja) * 2014-08-01 2016-02-04 日立オートモティブシステムズ株式会社 電圧検出装置
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
US10094863B2 (en) * 2016-03-02 2018-10-09 Texas Instruments Incorporated High-resolution power electronics measurements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329720A (ja) * 2002-05-09 2003-11-19 Toyota Motor Corp センサ出力信号の異常検出装置
WO2011148592A1 (ja) * 2010-05-25 2011-12-01 パナソニック株式会社 過電流検知回路、及び電池パック

Also Published As

Publication number Publication date
CN106796255B (zh) 2019-08-06
CN106796255A (zh) 2017-05-31
DE112015002196B4 (de) 2020-01-02
JP6415566B2 (ja) 2018-10-31
JPWO2016017309A1 (ja) 2017-04-27
DE112015002196T5 (de) 2017-02-23
US20170089969A1 (en) 2017-03-30
US9964579B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
JP6415566B2 (ja) 電圧検出装置
CN105527533B (zh) 电源电压检测装置
JP6414520B2 (ja) 検査システム
US9261551B2 (en) Ground fault detecting device for an ungrounded circuit
US9694686B2 (en) Multifunctional monitoring of electrical systems
WO2013190733A1 (ja) リーク検出装置
JP2009042080A (ja) 電圧検出装置
JP2007068249A (ja) 電気自動車用リーク検出装置
WO2015182030A1 (ja) 車両用地絡検出装置
JP6369407B2 (ja) 故障検知システム
JP5571486B2 (ja) 組電池の電圧検出装置
CN110895312A (zh) 接地故障检测设备
JP2009150779A (ja) 非接地回路の絶縁性検出装置
RU2740149C1 (ru) Устройство диагностики датчика напряжения и способ диагностики датчика напряжения
CN114746762A (zh) 漏电检测装置、车辆用电源***
JP2020102397A (ja) 真空遮断器システムおよび真空遮断器の異常診断方法
JP6195547B2 (ja) 漏電検出装置
JP2020112526A (ja) 電圧検出装置
JP2018148635A (ja) インバータの過電流検出回路
JP5316343B2 (ja) 電池監視装置
WO2022137705A1 (ja) 電圧検知回路
US11041931B2 (en) Voltage measurement device with self-diagnosis function, and self-diagnosis method of voltage measurement device
JP2017122662A (ja) 地絡検出回路
JP2018124234A (ja) 接触状態改善装置
KR20160072739A (ko) 누전 검출 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538213

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15312085

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002196

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827394

Country of ref document: EP

Kind code of ref document: A1