WO2016017207A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016017207A1
WO2016017207A1 PCT/JP2015/057796 JP2015057796W WO2016017207A1 WO 2016017207 A1 WO2016017207 A1 WO 2016017207A1 JP 2015057796 W JP2015057796 W JP 2015057796W WO 2016017207 A1 WO2016017207 A1 WO 2016017207A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
plating layer
tin plating
magnesium alloy
treatment
Prior art date
Application number
PCT/JP2015/057796
Other languages
French (fr)
Japanese (ja)
Inventor
平渡 末二
芳夫 小和田
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2016017207A1 publication Critical patent/WO2016017207A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a compressor, and more particularly, to a compressor including a magnesium alloy member whose surface is subjected to surface treatment by tin plating at a sliding portion thereof.
  • Magnesium alloys are lightweight, have high specific strength, and are excellent in vibration absorption. Therefore, magnesium alloys are used in various fields ranging from large machines such as aircraft and automobiles to small home appliances such as portable computers. Adoption is progressing as a material to replace the bulky metal.
  • this magnesium alloy has been studied to apply this magnesium alloy to the members that make up the sliding part. This makes it possible to reduce the weight of the compressor and reduce the moment of inertia of the movable member. Therefore, improvement in responsiveness can be expected.
  • the magnesium alloy In order to apply the magnesium alloy to the member of the sliding portion, unlike the case where the casing or cover is applied, not only to suppress the high corrosivity inherent in the magnesium alloy, but also to improve the slidability of the member. Surface treatment is required.
  • an anodized film is formed on the surface of a base material made of a magnesium alloy (for example, JP-A-2005-504884).
  • nickel-phosphorus plating is applied to the base material (for example, JP-A-2003-113785).
  • tin plating is applied to the base material.
  • the surface hardness of the member is improved by forming an anodized film or the like, a certain effect can be obtained in reducing wear, but the frictional resistance is reduced and the sliding property is reduced. It is not enough to raise.
  • Patent Document 1 listed below discloses a method in which tin plating is performed on a base material via a zinc plating layer as the third method. Specifically, after the surface of the substrate is etched with a chromic acid-free aqueous solution, a substitution galvanizing layer is formed on the surface, and tin plating is further performed using this as a base.
  • Tin (Sn) is a material that is soft and has excellent conformability, so it has already been put into practical use as a plating metal for sliding bearings and the like.
  • tin plating By performing the surface treatment of the magnesium alloy member by tin plating, it becomes possible to increase the slidability of the magnesium alloy member that can contribute to weight reduction and responsiveness improvement, and to manufacture a more efficient compressor.
  • the replacement zinc is used as a pre-treatment for forming the tin plating layer in the surface treatment of the member. It is plated.
  • the present invention is to increase the efficiency of the compressor by adopting a magnesium alloy member having high slidability, and in particular, it can be manufactured while maintaining good lubricity and ensuring durability and suppressing manufacturing costs. It aims to be.
  • At least one of a plurality of members arranged to be relatively slidable is constituted by a magnesium alloy member.
  • the magnesium alloy member includes a base material and a tin plating layer on the surface of the member, and the base material has at least a part of a surface corresponding to a surface of the magnesium alloy member in contact with the sliding member. It is formed of a magnesium alloy, and the tin plating layer is formed directly on the surface of the base material without any other plating layer.
  • the efficiency of the compressor can be increased by employing a magnesium alloy member having a tin plating layer on the surface.
  • the tin plating single layer treatment is performed after the unevenness treatment, the worn tin plating is retained in the unevenness portion even after the compressor is used for a long time, so that the lubrication effect is brought out and the durability is ensured. it can.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a scroll compressor according to an embodiment of the present invention (for details of the configuration of the compressor, see, for example, JP-A-10-068392).
  • the movable scroll member 22 is composed of a magnesium alloy member.
  • the movable scroll member 22 and the fixed scroll member 26 described later constitute a sliding portion of the compressor.
  • the material of the fixed scroll member 26 is not particularly limited, but an aluminum alloy is employed in the present embodiment.
  • Both the movable scroll member 22 and the fixed scroll member 26 may be made of a magnesium alloy member.
  • the compressor housing 10 is divided into a bottomed cylindrical housing body 12 and a front housing 14 that is coupled to the housing body 12 so as to close the opening.
  • a drive shaft 18 is supported on the front housing 14 via a bearing 16.
  • a pulley 20 is attached to one end of the drive shaft 18 located outside the front housing 14, and power is transmitted to the drive shaft 18 via the pulley 20.
  • the movable scroll member 22 is fixed at the other end of the drive shaft 18 with respect to the one end via a mechanism 24 that converts the rotational motion of the drive shaft 18 into the revolving motion of the movable scroll member 22, and is disposed in the housing body 12. Yes.
  • a fixed scroll member 26 is fixed to the inner wall of the housing body 12, and the movable scroll member 22 and the fixed scroll member 26 are installed so that their spiral walls 22a, 26a mesh with each other with a predetermined deviation (for example, 180 °).
  • the drive shaft 18 rotates and the movable scroll member 22 revolves without rotating with respect to the fixed scroll member 26, thereby forming between the spiral wall 22 a of the movable scroll member 22 and the spiral wall 26 a of the fixed scroll member 26.
  • the space to be moved moves toward the center end side of the spiral walls 22a and 26a while reducing the volume thereof, and a compression action is generated on the gas held in the space.
  • a magnesium alloy of material AZ80 (ASTM standard) is adopted as a base material of the magnesium alloy member (hereinafter simply referred to as “base material”).
  • the magnesium alloy used for the base material may be ZK60, AZ61 and AZ31 in addition to the above materials.
  • the composition of each magnesium alloy is shown in the following table.
  • the surface of the substrate has a ten-point average roughness Rzjis and an arithmetic average roughness Ra, and the ratio Rzjis / Ra is 4 or more (Rzjis / Ra ⁇ 4).
  • the surface roughness of the substrate can be adjusted by machining such as polishing.
  • the measurement of roughness conforms to the standard of JIS B0601.
  • polishing is generally performed for the purpose of smoothing (mirroring) the unevenness as much as possible before forming the tin plating layer.
  • moderate unevenness is left. This is completely different from the concavo-convex process for forming the concavo-convex part. That is, in the present embodiment, the unevenness treatment is performed by adjusting the surface roughness without increasing the number of treatment steps, and cost reduction is further promoted.
  • the hardness of the base material is 70 or more in terms of Vickers hardness HV (HV ⁇ 70).
  • the surface of the substrate is subjected to an activation treatment, and the surface after the activation treatment is neutralized. Then, the neutralized base material is subjected to a plating treatment using a substituted tin plating solution adjusted to be weakly acidic, neutral or weakly alkaline, and a single layer of tin having a predetermined thickness on the surface of the base material. A plating layer is formed.
  • the thickness of the tin plating layer is formed so that the friction coefficient of the tin plating layer is 0.1 or less, and in this embodiment, the thickness is in the range of 2 to 6 ⁇ m.
  • the thickness of the tin plating layer can be confirmed by, for example, a fluorescent X-ray film thickness measuring device manufactured by Fischer.
  • Example A plate made of a magnesium alloy AZ80 (ASTM standard, aluminum 7.8 to 9.2% by weight, zinc 0.2 to 0.8% by weight) was adopted as a substrate, and the surface was polished.
  • the dimensions of the used plate material are 50 mm in length, 50 mm in width, and 2 mm in thickness.
  • a commercially available degreasing agent (for example, a commercial product manufactured by Kizai Co., Ltd., trade name “Macscreen BGF-220HF”) is used at a concentration of 50 g per liter, and a temperature of 60 to 70 ° C. for 5 to 10 minutes. The surface of the substrate is degreased and washed over a period of time. 2.
  • Etching Use a commercially available etchant (for example, chromic acid free etchant manufactured by Kizai Co., Ltd.) diluted at a rate of 100 mL per liter, and etch at a temperature of 55 to 65 ° C. for 1 to 3 minutes. The magnesium oxide film and the like are removed. In addition to the above, a hexavalent chromic acid-based etchant may be used as the etchant. 3.
  • Activation (acid immersion) An activator containing acidic ammonium fluoride and phosphoric acid, or a commercially available activator (for example, Mg-activator manufactured by Kizai Co., Ltd.) is adjusted to pH 2.0-3.0, and 25-30 ° C.
  • An activation treatment is performed at a temperature of 1 to 2 minutes to form a thin film of magnesium phosphate and magnesium fluoride on the surface. 4).
  • Neutralization (acid immersion) A neutralizing and reaction moderating agent containing sodium pyrophosphate and ammonium acid fluoride, or a commercially available neutralizing agent (for example, Mg-neutralizing agent manufactured by Kizai Co., Ltd.) is used as a stock solution, and a temperature of 25 to 30 ° C. The surface after the activation treatment is neutralized for 1 to 2 minutes.
  • caustic and acidic ammonium fluorides may be used as the neutralizing agent. 5.
  • the neutralized substrate is immersed in a substituted tin plating solution prepared to be weakly acidic (pH 3.0 to 6.0), neutral or weakly alkaline (pH 8 to 11) as soon as possible.
  • a tin plating layer is formed on the surface with a predetermined thickness. In this embodiment, the thickness of the tin plating layer is 2 to 6 ⁇ m. 6).
  • Thermal diffusion The substrate after plating is subjected to thermal diffusion treatment at a temperature of 110 to 120 ° C. for 30 to 60 minutes.
  • FIG. 2 shows the results of a sliding test of a magnesium alloy member (test material) that has been surface-treated by the method of the above embodiment (Examples 1 to 5).
  • Comparative Examples 2 and 4 are different from the magnesium alloy member according to this embodiment in the thickness of the tin plating layer (Comparative Example 2) or the hardness of the base material (Comparative Example 4). The procedure is the same as in the above embodiment.
  • FIG. 3 schematically shows the configuration of the test apparatus 100 employed in the sliding test whose result is shown in FIG.
  • a magnesium alloy member (plate) 110 that has been surface-treated by the method of the above embodiment is used as a test material, and this is placed on a fixed disk 120, while an A4000-based aluminum alloy member 130 in a ring shape is used as a counterpart material. And installed on the movable disk 140. Then, while pressing the mating material 130 against the test material 110 at a surface pressure of 2 MPa, the movable disk 140 is rotated in an oil immersion environment under the conditions of a rotational speed of 3351 rpm and a peripheral speed of 4 m / sec. The test time is 1000 seconds.
  • FIG. 4 shows changes in the surface pressure and sliding speed from the start of the test (test pattern).
  • FIG. 5 shows the results of the sliding test according to this embodiment for Examples 1 and 2 and Comparative Examples 1 and 2 among the examples shown in FIG.
  • Comparative Example 1 line C
  • Example 1 As shown in FIG. 5, the materials of Examples 1 and 2 maintain a low coefficient of friction (average 0.04 in Example 1 and average 0.06 in Example 2) over the entire test time, resulting in high slip. I was able to achieve mobility.
  • the plating component (tin) and lubricating oil are retained by the formed unevenness, and the sliding surface is appropriately replenished. Therefore, it is possible to improve lubricity and eventually improve durability.
  • the magnesium alloy member (movable scroll member 22) can be manufactured at a lower manufacturing cost.
  • the adhesiveness of the tin plating layer to the base material is enhanced by applying the thermal diffusion treatment to the base material after the plating process, it is not necessary to perform a dedicated process for ensuring the adhesiveness. The manufacturing cost can be reduced.
  • the thickness of the tin plating layer is such that the friction coefficient of the tin plating layer is 0.1 or less, and in the present embodiment, it is in the range of 2 to 6 ⁇ m, so that it covers the entire sliding surface. A good lubricating effect can be obtained.
  • FIG. 6 shows the relationship between the thickness of the tin plating layer and the coefficient of friction based on the results of the sliding test conducted on Examples 1 to 5 shown in FIG.
  • the thickness is in the range of 2 to 6 ⁇ m
  • the friction coefficient is stably suppressed to a value well below 0.1, and high slidability can be realized.
  • the thickness of the tin plating layer is too thin as in Comparative Example 2 (thickness of 0.4 ⁇ m) or too thick as in Comparative Example 5 (thickness of 8.5 ⁇ m)
  • the coefficient of friction exceeds 0.1, and the tendency for the slidability to decrease is observed.
  • the thickness of the tin plating layer is set in the range of 2 to 6 ⁇ m as in the present embodiment, the friction coefficient can be greatly reduced, whereby the magnesium alloy is applied to the dynamic part, Furthermore, by forming a film having a low friction coefficient, it is possible to contribute to improving the efficiency of a compressor or the like.
  • the ratio of the ten-point average roughness (Rzjis) to the arithmetic average roughness (Ra) (Rzjis / Ra) is set to a roughness of 4 or more.
  • FIG. 7 and 8 schematically show the relationship between the surface roughness of the substrate and the lubrication state of the surface.
  • FIG. 7 shows a case where Rzjis / Ra ⁇ 4
  • FIG. 8 shows a case where Rzjis / Ra ⁇ 4.
  • Rzjis / Ra ⁇ 4 FIG. 7
  • fine irregularities exist on the surface of the base material, and after starting sliding from the state shown in FIG. 7 (a), as shown in FIG.
  • the coefficient of friction of the surface is reduced and the slidability is improved.
  • Rzjis / Ra ⁇ 4 FIG. 7
  • the compressor according to the present invention is not limited to the scroll compressor, but may be a compressor of another type.
  • FIG. 9 is a cross-sectional view showing the overall configuration of a rotary swash plate compressor according to another embodiment of the present invention (see, for example, Japanese Patent Application Laid-Open No. 2010-144638 for details of the configuration of the compressor). .
  • the rotary swash plate 58 is made of a magnesium alloy member.
  • a sliding portion is constituted by the rotating swash plate 58 and the shoe 70 provided on the piston 68.
  • the compressor housing 50 is divided into a front housing 52, a cylinder block 54, and a rear housing 56.
  • the front housing 52 is coupled to the cylinder block 54 on the side where the rotary swash plate 58 is provided, and vice versa.
  • a rear housing 56 is coupled to the side.
  • a valve plate 60 is sandwiched between the cylinder block 54 and the rear housing 56, and a drive shaft 64 is supported on the front housing 52 via a bearing 62.
  • a pulley (not shown) is attached to the drive shaft 64 at one end, and power is transmitted to the drive shaft 64 via the pulley.
  • the rotary swash plate 58 is attached to the drive shaft 64 so that the tilt angle can be changed, and is disposed in the front housing 52.
  • the rotor 66 is fixed to the drive shaft 64, and the rotary swash plate 58 is coupled to the rotor 66 via the connecting portion 66 a while the drive shaft 64 is inserted through the central portion thereof.
  • the cylinder block 54 is formed with a plurality of cylinder bores 54a arranged in the circumferential direction, and a piston 68 is accommodated in each cylinder bore 54a.
  • the piston 68 is formed with a recess 68a at an end located outside the cylinder bore 54a, and a pair of shoes 70, 70 are housed in the recess 68a, and the outer periphery of the rotary swash plate 58 is formed of a swash plate by the shoes 70, 70.
  • the drive shaft 64 rotates and the rotary swash plate 58 rotates while maintaining an inclination angle with respect to the drive shaft 64, so that the rotation of the drive shaft 64 is reciprocated by the piston 68 via the rotary swash plate 58 and the shoes 70, 70.
  • the gas that has been converted and taken into the cylinder bore 54a is compressed.
  • the compression target gas is taken into the cylinder bore 54a from the suction chamber 56a formed in the rear housing 56 through the suction hole 60a of the valve plate 60, and after being compressed by the piston 68, is discharged into the discharge chamber through the discharge hole 60b of the valve plate 60. 56b.
  • the suction hole 60a and the discharge hole 60b are each provided with a check valve (not shown) that allows a flow in a specified direction and blocks a flow in the reverse direction.
  • the efficiency of the compressor is increased by adopting a magnesium alloy member having high slidability, and tin plating is directly applied on the surface of the base material, thereby reducing the man-hours required for the surface treatment and reducing the cost.
  • the effects similar to those described in the description of the previous embodiment can be obtained, such as making it possible to manufacture a magnesium alloy member (rotary swash plate 58) at a low manufacturing cost.
  • the compressor provided with the magnesium alloy member according to the present invention in the sliding portion may be of a variable capacity type.
  • FIG. 9 shows, as a specific example, an additional configuration in which the rotary swash plate compressor is a variable capacity type.
  • the capacity control valve 80 is attached to the rear housing 56, and the capacity control valve 80 adjusts the opening degree of the communication passage 82 formed between the discharge chamber 56b and the space in the front housing 52 (crank chamber 52a). As a result, the amount of gas in the discharge chamber 56b introduced into the crank chamber 52a changes, and the internal pressure of the crank chamber 52a changes. A minute hole (orifice) 60c is formed in the valve plate 60, and a part of the gas in the crank chamber 52a flows into the suction chamber 56a through the orifice 60c.
  • the capacity control valve 80 variably controls the discharge capacity of the compressor by introducing the internal pressure of the suction chamber 56a into the pressure sensing unit and controlling the internal pressure of the suction chamber 56a to a predetermined value.
  • SYMBOLS 10 Compressor housing (scroll type compressor), 12 ... Housing main body, 14 ... Front housing, 16 ... Bearing, 18 ... Drive shaft, 20 ... Pulley, 22 ... Movable scroll member, 24 ... Conversion mechanism, 26 ... Fixed scroll 50, compressor housing (swash plate compressor), 52 front housing, 54 cylinder block, 54a cylinder bore, 56 rear housing, 56a suction chamber, 56b discharge chamber, 58 rotary swash plate, 60 , Valve plate, 60a, suction hole, 60b, discharge hole, 62, bearing, 64, drive shaft, 66, rotor, 66a, coupling part, 68, piston, 70, shoe, 80, capacity control valve.
  • compressor housing swash plate compressor
  • 52 front housing 54 cylinder block, 54a cylinder bore, 56 rear housing, 56a suction chamber, 56b discharge chamber, 58 rotary swash plate, 60 , Valve plate, 60a, suction hole, 60b, discharge hole, 62, bearing, 64, drive

Abstract

[Purpose] To increase the efficiency of a compressor. [Solution] As a member (for example, a movable scroll member 22) that forms a sliding portion of a compressor, a magnesium alloy member that has been subjected to a surface treatment with tin plating is adopted. The magnesium alloy member includes a base material and a tin plating layer for a surface of this member. A surface of the base material that corresponds to a surface of the member in contact with a sliding counterpart member is formed of a magnesium alloy, and the tin plating layer is directly formed on the surface of the base material after an unevenness treatment without another plating layer disposed therebetween.

Description

圧縮機Compressor
 本発明は、圧縮機に関し、より詳細には、その摺動部に、錫めっきによって表面処理を施したマグネシウム合金部材を備える圧縮機に関する。 The present invention relates to a compressor, and more particularly, to a compressor including a magnesium alloy member whose surface is subjected to surface treatment by tin plating at a sliding portion thereof.
 マグネシウム合金は、軽量で比強度が高く、更に振動吸収性にも優れるという性質から、航空機及び自動車等の大型機械を初め、ポータブルコンピュータ等の小型家電製品に至る各種の分野で、鉄等の重量の嵩む金属に代わる素材として採用が進んでいる。その一方で、圧縮機の分野においてこのマグネシウム合金を、摺動部を構成する部材に適用することが検討されており、これにより、圧縮機の軽量化が図れるうえ、可動部材の低慣性モーメント化によって応答性の向上を期待することができる。マグネシウム合金を摺動部の部材に適用するには、ケーシング又はカバーを適用の対象とする場合と異なり、マグネシウム合金が本来有する高い腐食性を抑えるだけでなく、部材の摺動性を高めるための表面処理が必要となる。 Magnesium alloys are lightweight, have high specific strength, and are excellent in vibration absorption. Therefore, magnesium alloys are used in various fields ranging from large machines such as aircraft and automobiles to small home appliances such as portable computers. Adoption is progressing as a material to replace the bulky metal. On the other hand, in the field of compressors, it has been studied to apply this magnesium alloy to the members that make up the sliding part. This makes it possible to reduce the weight of the compressor and reduce the moment of inertia of the movable member. Therefore, improvement in responsiveness can be expected. In order to apply the magnesium alloy to the member of the sliding portion, unlike the case where the casing or cover is applied, not only to suppress the high corrosivity inherent in the magnesium alloy, but also to improve the slidability of the member. Surface treatment is required.
 ここで、マグネシウム合金部材に適用し得る表面処理の例を幾つか挙げれば、次のようである。 Here, some examples of the surface treatment that can be applied to the magnesium alloy member are as follows.
 第1は、マグネシウム合金からなる基材の表面上に陽極酸化被膜を形成するものである(例えば、特開2005-504884号公報)。 First, an anodized film is formed on the surface of a base material made of a magnesium alloy (for example, JP-A-2005-504884).
 第2は、基材にニッケル-燐めっきを施すものである(例えば、特開2003-113785号公報)。 Second, nickel-phosphorus plating is applied to the base material (for example, JP-A-2003-113785).
 第3は、基材に錫めっきを施すものである。 Third, tin plating is applied to the base material.
 しかし、上記第1及び第2の方法では、陽極酸化被膜等の形成によって部材の表面硬さが向上することから、摩耗の低減において一定の効果が得られるものの、摩擦抵抗を抑え、摺動性を高めるうえでは充分でない。 However, in the first and second methods, since the surface hardness of the member is improved by forming an anodized film or the like, a certain effect can be obtained in reducing wear, but the frictional resistance is reduced and the sliding property is reduced. It is not enough to raise.
 下記特許文献1には、上記第3の方法として、基材に対し、亜鉛めっき層を介して錫めっきを施すものが開示されている。具体的には、基材の表面をクロム酸フリー水溶液でエッチングした後、その表面上に置換亜鉛めっき層を形成し、更にこれを下地として錫めっきを施すものである。 Patent Document 1 listed below discloses a method in which tin plating is performed on a base material via a zinc plating layer as the third method. Specifically, after the surface of the substrate is etched with a chromic acid-free aqueous solution, a substitution galvanizing layer is formed on the surface, and tin plating is further performed using this as a base.
特開2010-285660号公報JP 2010-285660 A
 錫(すず、Sn)は、軟質であり、かつなじみ性にも優れた素材であることから、すべり軸受け等のめっき金属として既に実用されている。錫めっきによってマグネシウム合金部材の表面処理を施すことで、軽量化及び応答性向上に寄与し得るマグネシウム合金部材の摺動性を高め、より高効率な圧縮機を製造することが可能となる。 Tin (Sn) is a material that is soft and has excellent conformability, so it has already been put into practical use as a plating metal for sliding bearings and the like. By performing the surface treatment of the magnesium alloy member by tin plating, it becomes possible to increase the slidability of the magnesium alloy member that can contribute to weight reduction and responsiveness improvement, and to manufacture a more efficient compressor.
 ところで、前掲文献1に記載の方法では、錫めっき層の形成によってマグネシウム合金部材の摺動性を高めることができるものの、部材の表面処理において、錫めっき層を形成する前段階の処理として置換亜鉛めっきを施している。 By the way, in the method described in the above-mentioned document 1, although the slidability of the magnesium alloy member can be improved by forming the tin plating layer, the replacement zinc is used as a pre-treatment for forming the tin plating layer in the surface treatment of the member. It is plated.
 しかし、かかる置換亜鉛めっき処理を行うことにより該処理前の基材が持つ凹凸が小さくなり過ぎ、凹凸部での潤滑油の保持量が減少し、圧縮機の長時間の使用により摩耗が進行し耐久性が低下するという問題を生じる。 However, by performing such substitutional galvanizing treatment, the unevenness of the base material before the treatment becomes too small, the amount of lubricating oil retained in the unevenness portion is reduced, and wear progresses due to long-term use of the compressor. This causes a problem that durability is lowered.
 また、置換亜鉛めっき処理の工程が増えることにより、被膜形成過程が煩雑となり、製造コストも嵩むという問題もある。 In addition, there is a problem that the film forming process becomes complicated and the manufacturing cost increases due to an increase in the number of substitutional galvanizing processes.
 従って、本発明は、摺動性の高いマグネシウム合金部材の採用によって圧縮機の効率を高めることにあり、特に、良好な潤滑性を維持して耐久性を確保し、製造コストも抑えて作製可能とすることを目的とする。 Therefore, the present invention is to increase the efficiency of the compressor by adopting a magnesium alloy member having high slidability, and in particular, it can be manufactured while maintaining good lubricity and ensuring durability and suppressing manufacturing costs. It aims to be.
 本発明に係る圧縮機は、相対的に摺動可能に配設された複数の部材のうち少なくとも1つがマグネシウム合金部材によって構成される。前記マグネシウム合金部材は、基材と、この部材表面の錫めっき層と、を含んで構成され、前記基材は、マグネシウム合金部材の摺動相手部材に接する面に対応する少なくとも一部の表面がマグネシウム合金によって形成され、前記錫めっき層は、基材の表面上に他のめっき層を介さずに直接形成される。 In the compressor according to the present invention, at least one of a plurality of members arranged to be relatively slidable is constituted by a magnesium alloy member. The magnesium alloy member includes a base material and a tin plating layer on the surface of the member, and the base material has at least a part of a surface corresponding to a surface of the magnesium alloy member in contact with the sliding member. It is formed of a magnesium alloy, and the tin plating layer is formed directly on the surface of the base material without any other plating layer.
 本発明によれば、錫めっき層を表面に有するマグネシウム合金部材の採用によって圧縮機の効率を高めることができる。そして、本発明では、凹凸処理後に錫めっき単層処理を行うので、圧縮機の長時間使用後でも摩耗した錫めっきが凹凸部に保持されることにより、潤滑効果が引き出され、耐久性を確保できる。また、錫めっき層形成前に簡易な凹凸処理を行うだけですみ、低廉な製造コストでマグネシウム合金部材を作製することができる。 According to the present invention, the efficiency of the compressor can be increased by employing a magnesium alloy member having a tin plating layer on the surface. In the present invention, since the tin plating single layer treatment is performed after the unevenness treatment, the worn tin plating is retained in the unevenness portion even after the compressor is used for a long time, so that the lubrication effect is brought out and the durability is ensured. it can. Moreover, it is only necessary to perform a simple uneven treatment before forming the tin plating layer, and a magnesium alloy member can be produced at a low manufacturing cost.
本発明の一実施形態に係る圧縮機の断面図Sectional drawing of the compressor which concerns on one Embodiment of this invention 同上実施形態に係る表面処理を施した供試材料の摺動試験の結果As a result of the sliding test of the test material subjected to the surface treatment according to the above embodiment 同上摺動試験に採用した試験装置の概略構成図Schematic configuration diagram of the test equipment used for the sliding test 同上摺動試験の試験パターン(面圧及びすべり速度)Test pattern for sliding test (surface pressure and sliding speed) 同上摺動試験における摩擦係数の変化(実施例1及び2、比較例1及び2)Friction coefficient change in the sliding test (Examples 1 and 2, Comparative Examples 1 and 2) 同上摺動試験における錫めっき層の厚さと摩擦係数との関係Relationship between the thickness of tin-plated layer and the coefficient of friction in the sliding test 基材の表面粗さと部材表面の潤滑状態との関係(Rzjis/Ra≧4)Relationship between surface roughness of base material and lubrication state of member surface (Rzjis / Ra ≧ 4) 基材の表面粗さと部材表面の潤滑状態との関係(Rzjis/Ra<4)Relationship between surface roughness of substrate and lubrication state of member surface (Rzjis / Ra <4) 本発明の他の実施形態に係る圧縮機の断面図Sectional drawing of the compressor which concerns on other embodiment of this invention.
 以下に図面を参照して、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 図1は、本発明の一実施形態に係るスクロール式圧縮機の全体的な構成を示す断面図である(圧縮機の構成の詳細について、例えば、特開平10-068392号公報を参照)。 FIG. 1 is a cross-sectional view showing the overall configuration of a scroll compressor according to an embodiment of the present invention (for details of the configuration of the compressor, see, for example, JP-A-10-068392).
 本実施形態では、マグネシウム合金部材によって可動スクロール部材22を構成している。可動スクロール部材22と後に述べる固定スクロール部材26とによってこの圧縮機の摺動部が構成される。固定スクロール部材26の素材には、特に限定されるものではないが、本実施形態では、アルミニウム合金を採用している。可動スクロール部材22及び固定スクロール部材26の双方をマグネシウム合金部材によって構成してもよい。 In this embodiment, the movable scroll member 22 is composed of a magnesium alloy member. The movable scroll member 22 and the fixed scroll member 26 described later constitute a sliding portion of the compressor. The material of the fixed scroll member 26 is not particularly limited, but an aluminum alloy is employed in the present embodiment. Both the movable scroll member 22 and the fixed scroll member 26 may be made of a magnesium alloy member.
 圧縮機ハウジング10は、有底円筒状のハウジング本体12と、ハウジング本体12に対してその開口を塞ぐように結合するフロントハウジング14と、に分割形成されている。フロントハウジング14には、ベアリング16を介して駆動軸18が支持されている。本実施形態において、駆動軸18には、フロントハウジング14外に位置する一端にプーリ20が取り付けられ、このプーリ20を介して駆動軸18に動力が伝達される。可動スクロール部材22は、前記一端に対する駆動軸18の他端において、駆動軸18の回転運動を可動スクロール部材22の公転運動に変換する機構24を介して固定され、ハウジング本体12内に配置されている。ハウジング本体12の内壁に固定スクロール部材26が固定されており、可動スクロール部材22と固定スクロール部材26とは、互いの渦巻壁22a,26aが所定のずれ(例えば、180°)をもって噛み合うように設置されている。駆動軸18が回転し、可動スクロール部材22が固定スクロール部材26に対して自転せずに公転することで、可動スクロール部材22の渦巻壁22aと固定スクロール部材26の渦巻壁26aとの間に形成される空間が、その容積を減少させながら渦巻壁22a,26aの中央端部側に移動し、この空間内に保持されているガスに対して圧縮作用を生じることになる。 The compressor housing 10 is divided into a bottomed cylindrical housing body 12 and a front housing 14 that is coupled to the housing body 12 so as to close the opening. A drive shaft 18 is supported on the front housing 14 via a bearing 16. In the present embodiment, a pulley 20 is attached to one end of the drive shaft 18 located outside the front housing 14, and power is transmitted to the drive shaft 18 via the pulley 20. The movable scroll member 22 is fixed at the other end of the drive shaft 18 with respect to the one end via a mechanism 24 that converts the rotational motion of the drive shaft 18 into the revolving motion of the movable scroll member 22, and is disposed in the housing body 12. Yes. A fixed scroll member 26 is fixed to the inner wall of the housing body 12, and the movable scroll member 22 and the fixed scroll member 26 are installed so that their spiral walls 22a, 26a mesh with each other with a predetermined deviation (for example, 180 °). Has been. The drive shaft 18 rotates and the movable scroll member 22 revolves without rotating with respect to the fixed scroll member 26, thereby forming between the spiral wall 22 a of the movable scroll member 22 and the spiral wall 26 a of the fixed scroll member 26. The space to be moved moves toward the center end side of the spiral walls 22a and 26a while reducing the volume thereof, and a compression action is generated on the gas held in the space.
 本実施形態に係るマグネシウム合金部材(可動スクロール部材22)の作製方法について、以下に説明する。 A method for producing a magnesium alloy member (movable scroll member 22) according to this embodiment will be described below.
 基材の選定
 本実施形態では、マグネシウム合金部材の基材(以下、単に「基材」という)として、材質AZ80(ASTM規格)のマグネシウム合金を採用する。基材に採用するマグネシウム合金は、上記材質のほか、ZK60、AZ61及びAZ31であってもよい。各マグネシウム合金の組成を次表に示す。
Selection of Substrate In the present embodiment, a magnesium alloy of material AZ80 (ASTM standard) is adopted as a base material of the magnesium alloy member (hereinafter simply referred to as “base material”). The magnesium alloy used for the base material may be ZK60, AZ61 and AZ31 in addition to the above materials. The composition of each magnesium alloy is shown in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 基材の表面は、十点平均粗さをRzjis、算術平均粗さをRaとして、これらの比Rzjis/Raが4以上となる粗さとする(Rzjis/Ra≧4)。基材の表面粗さは、研磨等の機械加工によって調節することが可能である。粗さの測定は、JIS B0601の規格に準じる。本実施形態では、後述する錫めっき層の形成処理前に、このように表面粗さを調節する処理が凹凸処理に相当する。なお、研磨は従来錫めっき層の形成処理前に凹凸をできるだけなくして平滑化(鏡面化)する目的で使用されることが一般的に行われるが、本発明のように適度な凹凸を残すように凹凸部を形成する凹凸処理とは全く相違する。即ち、本実施形態では、処理工程数を増やすことなく、表面粗さの調節によって凹凸処理を実施するものであり、低コスト化がより促進される。 The surface of the substrate has a ten-point average roughness Rzjis and an arithmetic average roughness Ra, and the ratio Rzjis / Ra is 4 or more (Rzjis / Ra ≧ 4). The surface roughness of the substrate can be adjusted by machining such as polishing. The measurement of roughness conforms to the standard of JIS B0601. In the present embodiment, the process for adjusting the surface roughness in this way before the tin plating layer forming process described later corresponds to the unevenness process. In general, polishing is generally performed for the purpose of smoothing (mirroring) the unevenness as much as possible before forming the tin plating layer. However, as in the present invention, moderate unevenness is left. This is completely different from the concavo-convex process for forming the concavo-convex part. That is, in the present embodiment, the unevenness treatment is performed by adjusting the surface roughness without increasing the number of treatment steps, and cost reduction is further promoted.
 基材の硬さは、ビッカース硬さHVで70以上とする(HV≧70)。 The hardness of the base material is 70 or more in terms of Vickers hardness HV (HV ≧ 70).
 表面処理
 本実施形態では、基材の表面を脱脂・洗浄及びエッチングした後、基材の表面に活性化処理を施し、活性化処理後の表面を中和する。そして、中和後の基材に対し、弱酸性、中性又は弱アルカリ性に調整した置換錫めっき液を用いてめっき処理を施し、基材の表面上に所定の厚さの、単層の錫めっき層を形成する。
Surface treatment In this embodiment, after degreasing, washing and etching the surface of the substrate, the surface of the substrate is subjected to an activation treatment, and the surface after the activation treatment is neutralized. Then, the neutralized base material is subjected to a plating treatment using a substituted tin plating solution adjusted to be weakly acidic, neutral or weakly alkaline, and a single layer of tin having a predetermined thickness on the surface of the base material. A plating layer is formed.
 ここで、錫めっき層の厚さは、錫めっき層の摩擦係数が0.1以下となる厚さに形成し、本実施形態では、厚さを2~6μmの範囲としている。錫めっき層の厚さは、例えば、フィッシャー社製の蛍光X線式膜厚測定器によって確認することができる。 Here, the thickness of the tin plating layer is formed so that the friction coefficient of the tin plating layer is 0.1 or less, and in this embodiment, the thickness is in the range of 2 to 6 μm. The thickness of the tin plating layer can be confirmed by, for example, a fluorescent X-ray film thickness measuring device manufactured by Fischer.
 具体的な表面処理の手順について、以下に説明する。 The specific surface treatment procedure will be described below.
 実施例
 基材として、マグネシウム合金AZ80(ASTM規格、アルミニウム7.8~9.2重量%、亜鉛0.2~0.8重量%)からなる板材を採用し、表面を研磨した。使用した板材の寸法は、縦50mm、横50mm、厚さ2mmである。
1.脱脂・洗浄
 市販の脱脂剤(例えば、キザイ株式会社製の市販品、商品名「マックスクリーンBGF-220HF」)を1リットル当たり50gの濃度で使用し、60~70℃の温度で5~10分に亘り、基材の表面を脱脂及び洗浄する。
2.エッチング
 市販のエッチング液(例えば、キザイ株式会社製のクロム酸フリーエッチング剤)を1リットル当たり100mLの割合で希釈して用い、55~65℃の温度で1~3分に亘ってエッチングし、表面のマグネシウム酸化膜等を除去する。エッチング液には、上記のほか、6価クロム酸系のエッチング液を使用してもよい。
3.活性化(酸浸漬)
 酸性フッ化アンモニウム及びリン酸を含有する活性化剤、又は市販の活性化剤(例えば、キザイ株式会社製のMg-活性化剤)をpH2.0~3.0に調整し、25~30℃の温度で1~2分に亘って活性化処理を行い、表面にリン酸マグネシウム及びフッ化マグネシウムの薄膜を形成する。
4.中和(酸浸漬)
 ピロリン酸ナトリウム及び酸性フッ化アンモニウムを含有する中和及び反応緩和剤、又は市販の中和剤(例えば、キザイ株式会社製のMg-中和剤)を原液で使用し、25~30℃の温度で1~2分に亘って活性化処理後の表面を中和する。中和剤には、上記のほか、苛性アルカリ及び酸性フッ化アンモニウム系のものを採用してもよい。
5.錫めっき
 中和後、できるだけ速やかに、弱酸性(pH3.0~6.0)、中性又は弱アルカリ性(pH8~11)に調製した置換錫めっき液に中和後の基材を浸漬し、その表面上に所定の厚さで錫めっき層を形成する。本実施形態では、錫めっき層の厚さを2~6μmとする。
6.熱拡散
 110~120℃の温度で30~60分に亘り、めっき処理後の基材に熱拡散処理を施す。
Example A plate made of a magnesium alloy AZ80 (ASTM standard, aluminum 7.8 to 9.2% by weight, zinc 0.2 to 0.8% by weight) was adopted as a substrate, and the surface was polished. The dimensions of the used plate material are 50 mm in length, 50 mm in width, and 2 mm in thickness.
1. Degreasing and washing A commercially available degreasing agent (for example, a commercial product manufactured by Kizai Co., Ltd., trade name “Macscreen BGF-220HF”) is used at a concentration of 50 g per liter, and a temperature of 60 to 70 ° C. for 5 to 10 minutes. The surface of the substrate is degreased and washed over a period of time.
2. Etching Use a commercially available etchant (for example, chromic acid free etchant manufactured by Kizai Co., Ltd.) diluted at a rate of 100 mL per liter, and etch at a temperature of 55 to 65 ° C. for 1 to 3 minutes. The magnesium oxide film and the like are removed. In addition to the above, a hexavalent chromic acid-based etchant may be used as the etchant.
3. Activation (acid immersion)
An activator containing acidic ammonium fluoride and phosphoric acid, or a commercially available activator (for example, Mg-activator manufactured by Kizai Co., Ltd.) is adjusted to pH 2.0-3.0, and 25-30 ° C. An activation treatment is performed at a temperature of 1 to 2 minutes to form a thin film of magnesium phosphate and magnesium fluoride on the surface.
4). Neutralization (acid immersion)
A neutralizing and reaction moderating agent containing sodium pyrophosphate and ammonium acid fluoride, or a commercially available neutralizing agent (for example, Mg-neutralizing agent manufactured by Kizai Co., Ltd.) is used as a stock solution, and a temperature of 25 to 30 ° C. The surface after the activation treatment is neutralized for 1 to 2 minutes. In addition to the above, caustic and acidic ammonium fluorides may be used as the neutralizing agent.
5. After the neutralization of the tin plating, the neutralized substrate is immersed in a substituted tin plating solution prepared to be weakly acidic (pH 3.0 to 6.0), neutral or weakly alkaline (pH 8 to 11) as soon as possible. A tin plating layer is formed on the surface with a predetermined thickness. In this embodiment, the thickness of the tin plating layer is 2 to 6 μm.
6). Thermal diffusion The substrate after plating is subjected to thermal diffusion treatment at a temperature of 110 to 120 ° C. for 30 to 60 minutes.
 上記工程1~6のうち、「1.脱脂・洗浄」~「4.中和」までは公知の方法と同様であってよく、例えば、キザイ株式会社の「クロムフリー・スーパーマグネプロセス」における対応工程を採用することができる。 Among the above steps 1 to 6, “1. Degreasing / cleaning” to “4. Neutralization” may be the same as known methods, for example, “Chromium-free super magne process” of Kizai Co., Ltd. A process can be employed.
  図2は、上記実施例の方法によって表面処理を施したマグネシウム合金部材(供試材料)の摺動試験の結果を示している(実施例1~5)。 FIG. 2 shows the results of a sliding test of a magnesium alloy member (test material) that has been surface-treated by the method of the above embodiment (Examples 1 to 5).
 同図中、比較例1及び4の部材に施した表面処理の手順は、次のようである。 In the figure, the surface treatment procedure applied to the members of Comparative Examples 1 and 4 is as follows.
 比較例
 実施例と同様にマグネシウム合金AZ80からなる板材を採用し、脱脂・洗浄、エッチング、活性化、中和の各工程を実施した後、基材の表面上に置換めっきによって亜鉛めっき層を形成し、これに続いて電解めっきによって銅ストライク層を形成する。そして、銅ストライク層上に電解めっきによって錫めっき層を形成し、比較例のマグネシウム合金部材(供試材料)を完成する。
Comparative Example Adopting a plate made of magnesium alloy AZ80 in the same way as the example, after performing the steps of degreasing / cleaning, etching, activation and neutralization, a galvanized layer is formed on the surface of the substrate by displacement plating Subsequently, a copper strike layer is formed by electrolytic plating. Then, a tin plating layer is formed on the copper strike layer by electrolytic plating to complete a magnesium alloy member (test material) of a comparative example.
 比較例2及び4の部材は、本実施形態に係るマグネシウム合金部材とは錫めっき層の厚さ(比較例2)又は基材の硬さ(比較例4)が異なるものであり、表面処理の手順は、上記実施例のものと同様である。 The members of Comparative Examples 2 and 4 are different from the magnesium alloy member according to this embodiment in the thickness of the tin plating layer (Comparative Example 2) or the hardness of the base material (Comparative Example 4). The procedure is the same as in the above embodiment.
  摺動試験の内容及び結果
 図3は、図2に結果を示す摺動試験に採用した試験装置100の構成を概略的に示している。
Content and Result of Sliding Test FIG. 3 schematically shows the configuration of the test apparatus 100 employed in the sliding test whose result is shown in FIG.
 本実施形態では、JIS K7218のリングオンプレート法に準じて摺動試験を実施した。 In this embodiment, a sliding test was performed according to the ring-on-plate method of JIS K7218.
 上記実施例の方法によって表面処理を施したマグネシウム合金部材(プレート)110を供試材料として、これを固定ディスク120に設置する一方、A4000系のアルミニウム合金部材130をリング状にしたものを相手材料とし、可動ディスク140に設置する。そして、供試材料110に対して相手材料130を面圧2MPaで押し付けつつ、オイル浸漬環境において回転数3351rpm、周速度4m/secの条件で可動ディスク140を回転させる。試験時間は、1000秒である。面圧及びすべり速度の試験開始からの変化(試験パターン)を示すと、図4のようである。 A magnesium alloy member (plate) 110 that has been surface-treated by the method of the above embodiment is used as a test material, and this is placed on a fixed disk 120, while an A4000-based aluminum alloy member 130 in a ring shape is used as a counterpart material. And installed on the movable disk 140. Then, while pressing the mating material 130 against the test material 110 at a surface pressure of 2 MPa, the movable disk 140 is rotated in an oil immersion environment under the conditions of a rotational speed of 3351 rpm and a peripheral speed of 4 m / sec. The test time is 1000 seconds. FIG. 4 shows changes in the surface pressure and sliding speed from the start of the test (test pattern).
 図5は、本実施形態に係る摺動試験の結果を、図2に示す各例のうち実施例1及び2、ならびに比較例1及び2について示している。 FIG. 5 shows the results of the sliding test according to this embodiment for Examples 1 and 2 and Comparative Examples 1 and 2 among the examples shown in FIG.
 実施例1(線A)では、基材にマグネシウム合金AZ80の押出材(ビッカース硬さH=80)を採用し、錫めっき層を厚さ5.5μmで形成した。 In Example 1 (line A), an extruded material of magnesium alloy AZ80 (Vickers hardness H = 80) was adopted as a base material, and a tin plating layer was formed with a thickness of 5.5 μm.
 実施例2(線B)では、基材にマグネシウム合金AZ80の鍛造材(HV=72)を採用し、錫めっき層を厚さ2.2μmで形成した。 In Example 2 (line B), a forged material (HV = 72) of a magnesium alloy AZ80 was adopted as a base material, and a tin plating layer was formed with a thickness of 2.2 μm.
 比較例1(線C)では、基材にマグネシウム合金AZ80の押出材(HV=80)を採用し、厚さ1.2μmの亜鉛めっき層を介して、表面の錫めっき層を厚さ1.9μmで形成した。 In Comparative Example 1 (line C), an extruded material (HV = 80) of a magnesium alloy AZ80 is used as a base material, and a tin plating layer on the surface has a thickness of 1. through a zinc plating layer having a thickness of 1.2 μm. Formed at 9 μm.
 比較例2(線D)では、基材にマグネシウム合金ZK60の押出材(HV=85)を採用し、下地の亜鉛めっき層を介さずに、基材の表面上に直接錫めっき層を厚さ0.4μmで形成した。 In Comparative Example 2 (line D), a magnesium alloy ZK60 extruded material (HV = 85) is adopted as the base material, and the tin plating layer is directly formed on the surface of the base material without using the underlying zinc plating layer. The thickness was 0.4 μm.
 図5に示すように、実施例1及び2の材料では、試験時間全体に亘って低い摩擦係数(実施例1で平均0.04、実施例2で平均0.06)を維持し、高い摺動性を達成することができた。 As shown in FIG. 5, the materials of Examples 1 and 2 maintain a low coefficient of friction (average 0.04 in Example 1 and average 0.06 in Example 2) over the entire test time, resulting in high slip. I was able to achieve mobility.
 これに対し、比較例1及び2の材料では、いずれにおいても400~500秒の辺りで摩擦係数が大幅に変動し、材料の摺動面に焼付きが生じた。 On the other hand, in the materials of Comparative Examples 1 and 2, the friction coefficient fluctuated significantly around 400 to 500 seconds, and seizure occurred on the sliding surface of the material.
 上記以外の実施例3~5の材料についても低い摩擦係数(平均0.04~0.08)が得られ、高い摺動性を達成することができた(図2)。 For the materials of Examples 3 to 5 other than the above, a low friction coefficient (average 0.04 to 0.08) was obtained, and high slidability could be achieved (FIG. 2).
 比較例3及び4の材料では、試験時間の途中で焼付きが生じた。 In the materials of Comparative Examples 3 and 4, seizure occurred during the test time.
 本実施形態によって得られる効果をまとめると、次のようである。 The effects obtained by this embodiment are summarized as follows.
 第1に、錫めっきによって表面処理を施したマグネシウム合金部材(可動スクロール部材22)を摺動部に採用したことで、摺動部の摩擦抵抗を抑え、圧縮機の効率を高めることができる。 First, by adopting a magnesium alloy member (movable scroll member 22) surface-treated by tin plating for the sliding portion, it is possible to suppress the frictional resistance of the sliding portion and increase the efficiency of the compressor.
 第2に、錫めっき層形成前に、基材の表面に凹凸処理を行ったため、形成された凹凸によってめっき成分(錫)及び潤滑油が保持され、摺動面に適宜補充されることになるので、潤滑性を向上させ、ひいては耐久性を向上することができる。 Second, since the surface of the base material was subjected to unevenness treatment before the tin plating layer was formed, the plating component (tin) and lubricating oil are retained by the formed unevenness, and the sliding surface is appropriately replenished. Therefore, it is possible to improve lubricity and eventually improve durability.
 第3に、前記表面処理において、マグネシウム合金からなる基材の表面に対して直接錫めっきを施したことで、基材と錫めっき層との間に他のめっき層が介在しないので、表面処理に要する工数を削減し、より低廉な製造コストでマグネシウム合金部材(可動スクロール部材22)を作製することができる。 Thirdly, in the surface treatment, since the surface of the base material made of a magnesium alloy is directly subjected to tin plating, no other plating layer is interposed between the base material and the tin plating layer. Therefore, the magnesium alloy member (movable scroll member 22) can be manufactured at a lower manufacturing cost.
 第4に、めっき処理後の基材に熱拡散処理を施したことで、基材に対する錫めっき層の密着性が高められるので、密着性確保のための専用の処理を施す必要がなく、工数を削減し、製造コストを低減することができる。 Fourth, since the adhesiveness of the tin plating layer to the base material is enhanced by applying the thermal diffusion treatment to the base material after the plating process, it is not necessary to perform a dedicated process for ensuring the adhesiveness. The manufacturing cost can be reduced.
 第5に、錫めっき層の厚さは、錫めっき層の摩擦係数が0.1以下となる厚さとし、本実施形態では、2~6μmの範囲としたことで、摺動面全体に亘って良好な潤滑効果を得ることができる。 Fifth, the thickness of the tin plating layer is such that the friction coefficient of the tin plating layer is 0.1 or less, and in the present embodiment, it is in the range of 2 to 6 μm, so that it covers the entire sliding surface. A good lubricating effect can be obtained.
 図6は、図2に示す実施例1~5について実施した摺動試験の結果から、錫めっき層の厚さと摩擦係数との関係を示したものである。同図に示すように、厚さが2~6μmの範囲範囲では、摩擦係数が0.1を大きく下回る値に安定して抑えられており、高い摺動性を実現し得ることが分かる。これに対し、錫めっき層の厚さが、比較例2(厚さが0.4μm)のように薄すぎたり、比較例5(厚さが8.5μm)のように厚すぎたりした場合は、摩擦係数が0.1を超え、摺動性が低下する傾向が見られる。 FIG. 6 shows the relationship between the thickness of the tin plating layer and the coefficient of friction based on the results of the sliding test conducted on Examples 1 to 5 shown in FIG. As shown in the figure, it can be seen that when the thickness is in the range of 2 to 6 μm, the friction coefficient is stably suppressed to a value well below 0.1, and high slidability can be realized. On the other hand, when the thickness of the tin plating layer is too thin as in Comparative Example 2 (thickness of 0.4 μm) or too thick as in Comparative Example 5 (thickness of 8.5 μm) The coefficient of friction exceeds 0.1, and the tendency for the slidability to decrease is observed.
 これは、比較例2のように錫めっき層の厚さが薄すぎる(0.5μm未満)場合は、錫のなじみ効果が小さくなり金属間接触が容易に発生して摩擦係数が上昇し、最終的に焼き付きに至るおそれがある。一方、比較例5のように錫めっき層の厚さが厚すぎる場合は、摺動によって剥がれる錫の皮膜の量が多くなり、該多量の皮膜が摺動面に巻き込まれて摩擦係数が上昇するため好ましくない。また、錫めっき層の厚さが厚すぎる場合は、皮膜の剥離による寸法変化が大きくなり、部品性能を満たせなくなるおそれもある。 This is because, when the thickness of the tin plating layer is too thin as in Comparative Example 2 (less than 0.5 μm), the conforming effect of tin is reduced, metal-to-metal contact is easily generated, and the friction coefficient is increased. May result in seizure. On the other hand, when the thickness of the tin plating layer is too thick as in Comparative Example 5, the amount of the tin film peeled off by sliding increases, and the large amount of film is caught on the sliding surface to increase the friction coefficient. Therefore, it is not preferable. Moreover, when the thickness of a tin plating layer is too thick, the dimensional change by peeling | exfoliation of a film | membrane becomes large, and there exists a possibility that it may become unable to satisfy | fill part performance.
 したがって、本実施形態のように錫めっき層の厚さを2~6μmの範囲範囲に設定すれば、摩擦係数を大幅に低下させることができ、これにより、マグネシウム合金を動的部品に適用し、さらに摩擦係数の低い皮膜を形成することで、圧縮機などの効率向上に寄与することができる。 Therefore, if the thickness of the tin plating layer is set in the range of 2 to 6 μm as in the present embodiment, the friction coefficient can be greatly reduced, whereby the magnesium alloy is applied to the dynamic part, Furthermore, by forming a film having a low friction coefficient, it is possible to contribute to improving the efficiency of a compressor or the like.
 第6に、基材の表面において、十点平均粗さ(Rzjis)と算術平均粗さ(Ra)との比(Rzjis/Ra)が4以上となる粗さとし、基材の表面にある程度の凹凸を持たせることで、めっき成分(錫)及び潤滑油が表面の凹部に貯えられ易くなり、摩擦係数を減少させることができる。 Sixth, on the surface of the base material, the ratio of the ten-point average roughness (Rzjis) to the arithmetic average roughness (Ra) (Rzjis / Ra) is set to a roughness of 4 or more. By providing the plating component (tin) and the lubricating oil are easily stored in the concave portion on the surface, the friction coefficient can be reduced.
 図7及び8は、基材の表面粗さと表面の潤滑状態との関係を模式的に示したものである。図7がRzjis/Ra≧4の場合を、図8がRzjis/Ra<4の場合を夫々示している。Rzjis/Ra≧4の場合(図7)は、基材の表面に微細な凹凸が存在し、図7(a)に示す状態からの摺動開始後、同図(b)に示すように、表面の凹部がめっき成分(錫)及び潤滑油で埋まることで、表面の摩擦係数が低減され、摺動性が向上する。これに対し、Rzjis/Ra<4の場合(図8)は、表面の凹凸が全体として小さく、なだらかであるため、図8(a)に示す状態から摺動を開始した後にあっても表面の凹部がめっき成分等で埋まらず、基材の凸部と相手材料との間で金属接触が生じて、短時間のうちに潤滑性が損なわれてしまう。これにより、摩擦係数が上昇し、焼付きが発生し易くなるものと考えられる。 7 and 8 schematically show the relationship between the surface roughness of the substrate and the lubrication state of the surface. FIG. 7 shows a case where Rzjis / Ra ≧ 4, and FIG. 8 shows a case where Rzjis / Ra <4. In the case of Rzjis / Ra ≧ 4 (FIG. 7), fine irregularities exist on the surface of the base material, and after starting sliding from the state shown in FIG. 7 (a), as shown in FIG. By filling the concave portions on the surface with the plating component (tin) and lubricating oil, the coefficient of friction of the surface is reduced and the slidability is improved. On the other hand, in the case of Rzjis / Ra <4 (FIG. 8), since the unevenness of the surface is small as a whole and is gentle, even after the sliding is started from the state shown in FIG. The concave portion is not filled with the plating component or the like, and metal contact occurs between the convex portion of the base material and the counterpart material, and the lubricity is impaired within a short time. Thereby, it is considered that the friction coefficient increases and seizure is likely to occur.
 第7に、基材の硬さをビッカース硬さで70以上としたことで、実際の摺動時におけるマグネシウム合金部材(可動スクロール部材22)の歪みを抑制し、摺動性の悪化を防止することができる。これに対し、基材の硬さが低いと、摺動相手部材(例えば、固定スクロール部材26)に対して一定以上の荷重で押し付けられた場合に、基材に歪みが生じ、部分的に荷重が増大して、摺動性が悪化する可能性がある。図2に示す比較例4の供試材料に生じた焼付きは、これが原因であると考えられる。 Seventh, by setting the hardness of the base material to 70 or more in terms of Vickers hardness, distortion of the magnesium alloy member (movable scroll member 22) during actual sliding is suppressed, and deterioration of slidability is prevented. be able to. On the other hand, when the hardness of the base material is low, the base material is distorted when pressed against the sliding counterpart member (for example, the fixed scroll member 26) with a certain load or more, and the load is partially applied. May increase and the slidability may deteriorate. This is considered to be the cause of seizure occurring in the test material of Comparative Example 4 shown in FIG.
 本発明に係る圧縮機は、スクロール式圧縮機に限らず、他の形式の圧縮機であってもよい。 The compressor according to the present invention is not limited to the scroll compressor, but may be a compressor of another type.
 図9は、本発明の他の実施形態に係る回転斜板式圧縮機の全体的な構成を示す断面図である(圧縮機の構成の詳細について、例えば、特開2010-144638号公報を参照)。 FIG. 9 is a cross-sectional view showing the overall configuration of a rotary swash plate compressor according to another embodiment of the present invention (see, for example, Japanese Patent Application Laid-Open No. 2010-144638 for details of the configuration of the compressor). .
 本実施形態では、マグネシウム合金部材によって回転斜板58を構成している。回転斜板58とピストン68に設けられるシュー70とによって摺動部が構成される。 In this embodiment, the rotary swash plate 58 is made of a magnesium alloy member. A sliding portion is constituted by the rotating swash plate 58 and the shoe 70 provided on the piston 68.
 圧縮機ハウジング50は、フロントハウジング52と、シリンダブロック54と、リアハウジング56と、に分割形成され、シリンダブロック54に対し、回転斜板58が設けられる側にフロントハウジング52が結合され、その反対側にリアハウジング56が結合される。シリンダブロック54とリアハウジング56との間に、バルブプレート60が挟持され、フロントハウジング52には、ベアリング62を介して駆動軸64が支持される。駆動軸64には、その一端に図示しないプーリが取り付けられ、このプーリを介して駆動軸64に動力が伝達される。回転斜板58は、駆動軸64に対して傾角を変更可能に取り付けられ、フロントハウジング52内に配置される。具体的には、駆動軸64にロータ66が固定され、回転斜板58は、その中央部に駆動軸64が挿通されるとともに、ロータ66に対して連結部66aを介して結合される。シリンダブロック54には、複数のシリンダボア54aが周方向に並べて形成され、それぞれのシリンダボア54aにピストン68が収められる。ピストン68には、シリンダボア54a外に位置する端部に窪み68aが形成され、この窪み68aに一対のシュー70,70が収められ、シュー70,70によって回転斜板58の外周部が斜板の表裏両側から摺動自在に挟み込まれる。駆動軸64が回転し、回転斜板58が駆動軸64に対する傾角を維持しながら回転することで、駆動軸64の回転が回転斜板58及びシュー70,70を介してピストン68の往復運動に変換され、シリンダボア54a内に取り込まれたガスに対して圧縮作用を生じることになる。圧縮対象ガスは、リアハウジング56に形成された吸入室56aからバルブプレート60の吸入孔60aを介してシリンダボア54aに取り込まれ、ピストン68による圧縮後、バルブプレート60の吐出孔60bを介して吐出室56bに送り出される。吸込孔60a及び吐出孔60bには、夫々規定方向の流れを許容し、その逆方向の流れを遮断する、図示しない逆止弁が設けられる。 The compressor housing 50 is divided into a front housing 52, a cylinder block 54, and a rear housing 56. The front housing 52 is coupled to the cylinder block 54 on the side where the rotary swash plate 58 is provided, and vice versa. A rear housing 56 is coupled to the side. A valve plate 60 is sandwiched between the cylinder block 54 and the rear housing 56, and a drive shaft 64 is supported on the front housing 52 via a bearing 62. A pulley (not shown) is attached to the drive shaft 64 at one end, and power is transmitted to the drive shaft 64 via the pulley. The rotary swash plate 58 is attached to the drive shaft 64 so that the tilt angle can be changed, and is disposed in the front housing 52. Specifically, the rotor 66 is fixed to the drive shaft 64, and the rotary swash plate 58 is coupled to the rotor 66 via the connecting portion 66 a while the drive shaft 64 is inserted through the central portion thereof. The cylinder block 54 is formed with a plurality of cylinder bores 54a arranged in the circumferential direction, and a piston 68 is accommodated in each cylinder bore 54a. The piston 68 is formed with a recess 68a at an end located outside the cylinder bore 54a, and a pair of shoes 70, 70 are housed in the recess 68a, and the outer periphery of the rotary swash plate 58 is formed of a swash plate by the shoes 70, 70. It is slidably inserted from both sides. The drive shaft 64 rotates and the rotary swash plate 58 rotates while maintaining an inclination angle with respect to the drive shaft 64, so that the rotation of the drive shaft 64 is reciprocated by the piston 68 via the rotary swash plate 58 and the shoes 70, 70. The gas that has been converted and taken into the cylinder bore 54a is compressed. The compression target gas is taken into the cylinder bore 54a from the suction chamber 56a formed in the rear housing 56 through the suction hole 60a of the valve plate 60, and after being compressed by the piston 68, is discharged into the discharge chamber through the discharge hole 60b of the valve plate 60. 56b. The suction hole 60a and the discharge hole 60b are each provided with a check valve (not shown) that allows a flow in a specified direction and blocks a flow in the reverse direction.
 本実施形態でも、摺動性の高いマグネシウム合金部材の採用によって圧縮機の効率を高めるとともに、基材の表面上に直接錫めっきを施したことで、表面処理に要する工数を削減し、より低廉な製造コストでマグネシウム合金部材(回転斜板58)を作製することが可能となる等、先の実施形態に関する説明で述べたのと同様の効果を得ることができる。 Even in this embodiment, the efficiency of the compressor is increased by adopting a magnesium alloy member having high slidability, and tin plating is directly applied on the surface of the base material, thereby reducing the man-hours required for the surface treatment and reducing the cost. The effects similar to those described in the description of the previous embodiment can be obtained, such as making it possible to manufacture a magnesium alloy member (rotary swash plate 58) at a low manufacturing cost.
 本発明に係るマグネシウム合金部材を摺動部に備える圧縮機は、可変容量型のものであってもよい。 The compressor provided with the magnesium alloy member according to the present invention in the sliding portion may be of a variable capacity type.
 図9は、その具体例として、回転斜板式圧縮機を可変容量型とする追加の構成を示している。 FIG. 9 shows, as a specific example, an additional configuration in which the rotary swash plate compressor is a variable capacity type.
 リアハウジング56に容量制御弁80が取り付けられ、容量制御弁80は、吐出室56bとフロントハウジング52内の空間(クランク室52a)との間に形成された連通路82の開度を調節する。これにより、吐出室56b内のガスのクランク室52aへの導入量が変化し、クランク室52aの内圧が変化する。バルブプレート60に微小孔(オリフィス)60cが形成され、クランク室52a内のガスの一部は、オリフィス60cを介して吸入室56aに流入する。容量制御弁80は、吸入室56aの内圧を感圧部に導入し、吸入室56aの内圧を所定に制御することで、圧縮機の吐出容量を可変に制御する。 The capacity control valve 80 is attached to the rear housing 56, and the capacity control valve 80 adjusts the opening degree of the communication passage 82 formed between the discharge chamber 56b and the space in the front housing 52 (crank chamber 52a). As a result, the amount of gas in the discharge chamber 56b introduced into the crank chamber 52a changes, and the internal pressure of the crank chamber 52a changes. A minute hole (orifice) 60c is formed in the valve plate 60, and a part of the gas in the crank chamber 52a flows into the suction chamber 56a through the orifice 60c. The capacity control valve 80 variably controls the discharge capacity of the compressor by introducing the internal pressure of the suction chamber 56a into the pressure sensing unit and controlling the internal pressure of the suction chamber 56a to a predetermined value.
 10…圧縮機ハウジング(スクロール式圧縮機)、12…ハウジング本体、14…フロントハウジング、16…ベアリング、18…駆動軸、20…プーリ、22…可動スクロール部材、24…変換機構、26…固定スクロール部材、50…圧縮機ハウジング(斜板式圧縮機)、52…フロントハウジング、54…シリンダブロック、54a…シリンダボア、56…リアハウジング、56a…吸入室、56b…吐出室、58…回転斜板、60…バルブプレート、60a…吸入孔、60b…吐出孔、62…ベアリング、64…駆動軸、66…ロータ、66a…連結部、68…ピストン、70…シュー、80…容量制御弁。 DESCRIPTION OF SYMBOLS 10 ... Compressor housing (scroll type compressor), 12 ... Housing main body, 14 ... Front housing, 16 ... Bearing, 18 ... Drive shaft, 20 ... Pulley, 22 ... Movable scroll member, 24 ... Conversion mechanism, 26 ... Fixed scroll 50, compressor housing (swash plate compressor), 52 front housing, 54 cylinder block, 54a cylinder bore, 56 rear housing, 56a suction chamber, 56b discharge chamber, 58 rotary swash plate, 60 , Valve plate, 60a, suction hole, 60b, discharge hole, 62, bearing, 64, drive shaft, 66, rotor, 66a, coupling part, 68, piston, 70, shoe, 80, capacity control valve.

Claims (8)

  1.  相対的に摺動可能に配設された複数の部材のうち少なくとも1つがマグネシウム合金部材であり、
     前記マグネシウム合金部材は、基材と、この部材表面の錫めっき層と、を含んで構成され、
     前記基材は、前記マグネシウム合金部材の摺動相手部材に接する面に対応する少なくとも一部の表面がマグネシウム合金によって形成され、
     前記基材に凹凸処理を行うと共に、
     凹凸処理を行った後に、前記基材の表面に錫めっき層を形成したこと特徴とする圧縮機。
    At least one of the plurality of members arranged to be relatively slidable is a magnesium alloy member,
    The magnesium alloy member includes a base material and a tin plating layer on the surface of the member,
    The base material is formed of a magnesium alloy at least part of the surface corresponding to the surface of the magnesium alloy member that contacts the sliding counterpart member,
    While performing uneven processing on the substrate,
    A compressor in which a tin plating layer is formed on the surface of the base material after the unevenness treatment is performed.
  2.  前記錫めっき層は、他のめっき層を介さずに直接形成したことを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the tin plating layer is directly formed without any other plating layer.
  3.  前記基材に前記凹凸処理を行った後に、
     前記基材の表面を洗浄及びエッチングし、
     前記エッチング後、前記基材の表面に活性化処理を施し、
     前記活性化処理後、前記基材の表面を中和し、
     前記中和後の前記基材に対し、弱酸性、中性又は弱アルカリ性の置換錫めっき液でめっき処理を施して形成された、
     請求項1又は請求項2に記載の圧縮機。
    After performing the unevenness treatment on the substrate,
    Cleaning and etching the surface of the substrate;
    After the etching, the surface of the substrate is subjected to an activation treatment,
    After the activation treatment, neutralize the surface of the substrate,
    For the base material after the neutralization, formed by subjecting a weakly acidic, neutral or weakly alkaline substituted tin plating solution to a plating treatment,
    The compressor according to claim 1 or 2.
  4.  前記錫めっき層におけるめっき処理後の前記基材に熱拡散処理を施して形成された、請求項1~請求項3のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 3, formed by subjecting the base material after the plating treatment in the tin plating layer to a thermal diffusion treatment.
  5.  摩擦係数0.1以下となる前記錫めっき層を有する、請求項1~請求項4のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 4, comprising the tin plating layer having a friction coefficient of 0.1 or less.
  6.  前記錫めっき層は、厚さが2μm~6μmの範囲内である、請求項5に記載の圧縮機。 6. The compressor according to claim 5, wherein the tin plating layer has a thickness in a range of 2 μm to 6 μm.
  7.  前記基材は、その表面の十点平均粗さRzjisと算術平均粗さRaとの比Rzjis/Raが4以上である、請求項1~請求項6のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 6, wherein a ratio Rzjis / Ra of a ten-point average roughness Rzjis and an arithmetic average roughness Ra of the surface of the base material is 4 or more.
  8.  前記基材は、ビッカース硬さが70以上である、請求項1~請求項7のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the base material has a Vickers hardness of 70 or more.
PCT/JP2015/057796 2014-08-01 2015-03-17 Compressor WO2016017207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-157495 2014-08-01
JP2014157495A JP2016035215A (en) 2014-08-01 2014-08-01 Compressor

Publications (1)

Publication Number Publication Date
WO2016017207A1 true WO2016017207A1 (en) 2016-02-04

Family

ID=55217112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057796 WO2016017207A1 (en) 2014-08-01 2015-03-17 Compressor

Country Status (2)

Country Link
JP (1) JP2016035215A (en)
WO (1) WO2016017207A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243034B2 (en) 2018-04-17 2023-03-22 株式会社デンソー Collision determination device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350151A (en) * 1999-03-08 1999-12-21 Dowa Mining Co Ltd Stainless steel bolt and nut
JP2000144439A (en) * 1998-10-30 2000-05-26 Kizai Kk Plating treating method for nonconductor stock, and electroless treating solution composition therefor
JP2001348692A (en) * 2000-06-07 2001-12-18 Toto Ltd Method for plating copper-alloy water feeding utensil and its plated product
JP2005291151A (en) * 2004-04-02 2005-10-20 Sanden Corp Scroll type fluid machine
JP2007056287A (en) * 2005-08-23 2007-03-08 Univ Of Fukui Plating-pretreatment method for polymeric textile material, plating method, method for forming coating film on high polymeric material, method for producing electroconductive textile material, and method for producing electroconductive material
WO2009132412A1 (en) * 2008-04-28 2009-11-05 Randell Technologies Inc. Rotor assembly for rotary compressor
JP2012031816A (en) * 2010-08-02 2012-02-16 Sanden Corp Scroll type fluid machine
JP2013189690A (en) * 2012-03-14 2013-09-26 Umg Abs Ltd Plated plastic chassis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144439A (en) * 1998-10-30 2000-05-26 Kizai Kk Plating treating method for nonconductor stock, and electroless treating solution composition therefor
JPH11350151A (en) * 1999-03-08 1999-12-21 Dowa Mining Co Ltd Stainless steel bolt and nut
JP2001348692A (en) * 2000-06-07 2001-12-18 Toto Ltd Method for plating copper-alloy water feeding utensil and its plated product
JP2005291151A (en) * 2004-04-02 2005-10-20 Sanden Corp Scroll type fluid machine
JP2007056287A (en) * 2005-08-23 2007-03-08 Univ Of Fukui Plating-pretreatment method for polymeric textile material, plating method, method for forming coating film on high polymeric material, method for producing electroconductive textile material, and method for producing electroconductive material
WO2009132412A1 (en) * 2008-04-28 2009-11-05 Randell Technologies Inc. Rotor assembly for rotary compressor
JP2012031816A (en) * 2010-08-02 2012-02-16 Sanden Corp Scroll type fluid machine
JP2013189690A (en) * 2012-03-14 2013-09-26 Umg Abs Ltd Plated plastic chassis

Also Published As

Publication number Publication date
JP2016035215A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP4285634B2 (en) Sliding member
US9885347B2 (en) Components for compressors having electroless coatings on wear surfaces
US7997884B2 (en) Rotary device and oil pump having α-alumina and zirconia coating
JP2008002387A (en) Refrigerant compressor and refrigeration cycle device using same
EP2646702A1 (en) Tribological pair and process for surface treatment in tribological pairs
US20130129550A1 (en) Scroll-Type Fluid Machine
WO2016017207A1 (en) Compressor
JP2002005013A (en) Swash plate type compressor
US6129996A (en) Conversion coatings of tin with cobalt and bismuth for aluminum sliding surfaces
JP4813135B2 (en) Rotary compressor
KR20170086843A (en) Scroll compressor
JP5132711B2 (en) Vane, rolling piston type single-stage rotary hermetic compressor, water heater, and vane manufacturing method
JP5601990B2 (en) Swash plate compressor and swash plate surface treatment method for swash plate compressor
WO2009157267A1 (en) Shoe in piston type compressor
KR20140078746A (en) Sliding members and piston pump motor
JP5141968B2 (en) Manufacturing method of metal parts
KR20100138618A (en) Compressor and method of parts coating thereof
JPH1077978A (en) Displacement type fluid compressor and coat forming method
CN107587996A (en) A kind of compressor for air-conditioning system
US20020178905A1 (en) Enriched cobalt-tin swashplate coating alloy
EP3702492B1 (en) Method for manufacturing scroll compressor
JP2013170516A (en) Scroll type fluid machine
JP2009293094A5 (en)
JP2014234724A (en) Vane rotary compressor
KR20120062417A (en) Method of manufacturing swash plate in swash plate type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826781

Country of ref document: EP

Kind code of ref document: A1