WO2016010121A1 - 高Cr系CSEF鋼のシングルサブマージアーク溶接方法 - Google Patents

高Cr系CSEF鋼のシングルサブマージアーク溶接方法 Download PDF

Info

Publication number
WO2016010121A1
WO2016010121A1 PCT/JP2015/070433 JP2015070433W WO2016010121A1 WO 2016010121 A1 WO2016010121 A1 WO 2016010121A1 JP 2015070433 W JP2015070433 W JP 2015070433W WO 2016010121 A1 WO2016010121 A1 WO 2016010121A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
welding
submerged arc
welding method
Prior art date
Application number
PCT/JP2015/070433
Other languages
English (en)
French (fr)
Inventor
山下 賢
和也 井海
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP15822552.4A priority Critical patent/EP3170616B1/en
Priority to KR1020177001279A priority patent/KR101915911B1/ko
Priority to CN201580037690.0A priority patent/CN106470796B/zh
Publication of WO2016010121A1 publication Critical patent/WO2016010121A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0213Narrow gap welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a method for single submerged arc welding of high Cr-based CSEF (Creep Strength-Enhanced Ferritic) steel.
  • High Cr-based CSEF steels include SA387Gr. Stipulated in ASTM (American Society for Testing and Materials) and ASME (American Society of Mechanical Engineers) standards. 91, SA213Gr. T91 etc.
  • Thermal power boilers, turbines, and reactors are formed by appropriately combining forged rings, pipes, and bent steel sheets.
  • the forged ring has a plate thickness of 150 to 450 mm, a maximum outer diameter of less than 7 m, and a total length of several to several tens of meters.
  • welding methods for thermal power generation boilers, turbines, and reactors covering arc welding, TIG (Tungsten Inert Gas) welding, and submerged arc welding are used.
  • Thermal power boilers, turbines, and reactors have a large proportion of welded parts because of their structures, so there is a strong demand for reduction of welding materials and high efficiency of welding.
  • any method of narrowing the groove width or reducing the groove angle is a disadvantageous condition for hot cracking during welding.
  • the following techniques are disclosed as techniques for suppressing high-temperature cracking in submerged arc welding and improving the efficiency of welding.
  • Patent Document 1 contains a predetermined amount of C, Si, Mn, Ni, Cr, Mo, V, Nb and N, and regulates the total amount of Mn and Ni to a predetermined amount, and P, S, Cu
  • An improved 9Cr-1Mo steel welding wire is disclosed in which Ti, Al, B, W, Co, and O are regulated to a predetermined amount, and the balance is Fe and inevitable impurities.
  • hot cracking is suppressed by setting C to 0.070 to 0.150 mass% and regulating P and S to 0.010 mass% or less.
  • Patent Document 2 discloses a wire containing a predetermined amount of C, Mn, Cr, Mo, Ni, V, Nb, Al, and N, and limiting Si and O to a predetermined amount, and a predetermined amount of CaF. 2 , 1 or 2 types of CaO and MgO, 1 or 2 types of Al 2 O 3 and ZrO 2 , welding is performed in combination with a welding flux containing Al and limiting SiO 2 to a predetermined amount A method of submerged arc welding of 9Cr-1Mo steel is disclosed.
  • Patent Document 2 a wire in which C is 0.01 to 0.15 wt%, Al is 0.005 to 1.5 wt%, Si is 0.05 wt% or less, and SiO 2 is 5 wt% or less (Si is added). It is substantially not contained), and hot cracking is suppressed by combining with a welding flux having CaF 2 of 25 to 70 wt%.
  • the improved 9Cr-1Mo steel welding wire disclosed in Patent Document 1 is a thin wire with a wire diameter of 2.4 mm ⁇ , so that a poor weld is likely to occur due to poor arc spread and poor fusion. It may not be possible. Further, when the wire diameter is increased to 4.0 mm ⁇ and submerged arc welding is performed, hot cracking may occur.
  • the welding heat input that is, to increase the welding current and arc voltage and to reduce the welding speed.
  • the penetration shape is likely to become a die especially in a narrow groove, and the risk of occurrence of hot cracking increases.
  • the hot cracking that is a problem here is a so-called "hot cracking" that occurs because low melting point compounds of P, S, Si, and Nb contained in the weld metal segregate between dendrites and austenite grain boundaries during solidification, and welding shrinkage strain is further applied. Hot cracking.
  • This invention is made
  • the subject is providing the welding method which can suppress the high temperature crack of a first layer in the single submerged arc welding of high Cr type
  • the inventors of the present invention diligently investigated the cause of hot cracking of the first layer submerged arc weld metal of high Cr-based CSEF steel.
  • the high-temperature cracking of the first layer submerged arc weld metal of the high Cr-based CSEF steel picks up C from the high Cr-based CSEF steel base metal to the weld metal by dilution, which reduces the melting point of the molten metal, It was found that hot cracking occurred.
  • the C content of the high Cr-based CSEF steel is ASTM A182 Gr.
  • F91 is 0.08 to 0.12% by mass
  • Gr. F92 is 0.07 to 0.13 mass%
  • Gr. F122 is 0.07 to 0.14 mass%
  • Gr. F911 is 0.09 to 0.13 mass%.
  • C less than 0.05% by mass
  • N 0.055% by mass or less
  • Si more than 0.05% by mass and 0.30% by mass or less
  • CaF 2 2-30% by mass
  • Al 2 O 3 5-25% by mass
  • total of Si and SiO 2 5-25% by mass (in terms of SiO 2) )
  • BaO 25 wt% or less
  • ZrO2 10% by mass or less
  • TiO 2 by performing the submerged arc welding by combining flux restricted to less than 5 wt%, welding efficiency, the soundness of the welded portion After securing, it discovered that the hot crack of the first layer could be suppressed.
  • Ni-based component wires such as austenitic stainless steel such as 308L and 309L, Inconel 625, Inconel 82, and Hastelloy were also examined. In conclusion, it was judged that such a component-based wire cannot be applied to a high Cr-based CSEF steel welded joint because the weld metal laminated in the first layer has a high Ni composition.
  • the single submerged arc welding method of the high Cr system CSEF steel of the present invention is C: less than 0.05 mass%, N: 0.055 mass% or less, Si: more than 0.05 mass%, and 0.30 mass%.
  • the single submerged arc welding method of the high Cr system CSEF steel of the present invention further comprises at least one type of welding wire selected from the group of Mn, Ni, Cr, Mo, V, Nb, W, Co, and B.
  • Mn 2.20 mass% or less
  • Ni 1.00 mass% or less
  • Cr 10.50 mass% or less
  • Mo 1.20 mass% or less
  • V 0.45 mass% or less
  • Nb 0.080% by mass or less
  • W 2.0% by mass or less
  • Co 3.0% by mass or less
  • B 0.005% by mass or less.
  • the wire feed speed (V) is 50 to 120 g / min
  • the welding speed (v) is 20 to 60 cm / min
  • the hot cracking can be performed more reliably. Further, poor fusion and slag entrainment can be suppressed, and high welding efficiency can be obtained.
  • the tip / base metal distance is preferably 20 to 40 mm.
  • the tip angle is in a range where the receding angle ⁇ is up to 60 ° and the advancing angle ⁇ is up to 60 °.
  • the welding wire feeding speed can be more reliably stabilized.
  • the tip shape is preferably a straight tube shape or a bend square shape.
  • the single submerged arc welding method of the high Cr system CSEF steel of the present invention can suppress the first layer high temperature crack, that is, the first layer first pass high temperature crack.
  • FIG. 3 is a side view of the chip shown in FIG. 2.
  • FIG. 3 is an end view of the tip end side of the chip shown in FIG. 2.
  • the welding method of the present invention is a single submerged arc welding method of high Cr system CSEF steel. In particular, it is suitably used for first layer welding in a narrow groove as shown in FIG.
  • the single submerged arc welding method of the present invention is intended for high Cr system CSEF steel as a base material (material to be welded).
  • the high Cr-based CSEF steel refers to a CSEF steel containing 8 mass% or more of Cr.
  • There are various standards for high Cr-based CSEF steel For example, SA387Gr. 91, Gr. 122, Gr. 92, Gr. 911 and SA213Gr.
  • a predetermined amount of C, Si, Mn, P, S, Ni, Cr, Mo, V, Nb, and N is contained, and the balance is Fe and inevitable impurities.
  • C 0.07 to 0.14 mass%, Si: 0.50 mass% or less, Mn: 0.70 mass% or less, P: 0.025 mass% or less, S: 0.015 mass %: Ni: 0.50 mass% or less, Cr: 8.00 to 11.50 mass%, Mo: 0.25 to 1.10 mass%, V: 0.15 to 0.35 mass%, Nb: It contains 0.04 to 0.10% by mass, N: 0.03 to 0.10% by mass, and the balance is Fe and inevitable impurities. Furthermore, Cu: 1.70 mass% or less, B: 0.060 mass% or less, W: 2.50 mass% or less, Co: 3.0 mass% or less may be contained.
  • the welding wire used in the single submerged arc welding method of the present invention contains C: less than 0.05% by mass, N: 0.055% by mass or less, Si: more than 0.05% by mass, and 0.50% by mass or less.
  • the balance is Fe and inevitable impurities.
  • the hot cracking of the first layer is caused by an excess of C in the molten metal due to dilution of the base material and a decrease in the melting point of the molten metal.
  • the high Cr-based CSEF steel targeted by the present invention has a high C content design in order to ensure creep strength.
  • the base metal dilution rate of the first layer submerged arc welding was up to about 50%.
  • N (nitrogen) is known as an element that effectively acts to improve creep strength in high Cr-based CSEF steel and its weld metal.
  • N content of a welding wire shall be 0.055 mass% or less.
  • the upper limit with preferable N content of a welding wire is 0.05 mass%.
  • Si of welding wire more than 0.05% by mass and 0.50% by mass or less
  • Si has the effect of adjusting the viscosity of the molten metal to adjust the bead shape.
  • the Si content is 0.05% by mass or less
  • the effect cannot be obtained, the conformability is deteriorated, and the bead shape becomes poor.
  • the Si content of the welding wire exceeds 0.05% by mass and is 0.50% by mass or less.
  • the upper limit with preferable Si content of a welding wire is 0.48 mass% or less, and a more preferable upper limit is 0.45 mass% or less.
  • C, N, and Si described above are essential rules for the composition of the welding wire.
  • one or more selected from the group consisting of Mn, Ni, Cr, Mo, V, Nb, W, Co, and B can be contained. At this time, when each element is contained, it is preferably contained in the range described below.
  • Mn acts as a deoxidizer and has the effect of reducing the amount of oxygen in the deposited metal and improving toughness.
  • Mn is an austenite-forming element and has an effect of suppressing toughness deterioration due to residual ⁇ -ferrite in the weld metal.
  • the Mn content of the welding wire is preferably 2.20% by mass or less, and more preferably 2.15% by mass or less.
  • Ni is an austenite-forming element like Mn, and has the effect of suppressing toughness deterioration due to residual ⁇ -ferrite in the weld metal.
  • the Ni content of the welding wire exceeds 1.00% by mass, the toughness of the weld metal deteriorates. Therefore, in order to sufficiently obtain the above effects, the Ni content of the welding wire is preferably 1.00% by mass or less, and more preferably 0.95% by mass or less.
  • Cr is a main element of high Cr-based CSEF steel that is a base material of the welding method according to the present invention, and is an indispensable element for imparting oxidation resistance and high temperature strength to the base material, and is also contained in the welding wire. It is preferable to make it.
  • Cr is a ferrite-forming element, and if it exceeds 10.50 mass% and excessively contained, ⁇ -ferrite remains and the toughness of the weld metal deteriorates. Therefore, in order to sufficiently obtain the above effects, the Cr content of the welding wire is preferably 10.50% by mass or less, and more preferably 10.45% by mass or less.
  • Mo is a solid solution strengthening element and has the effect of improving the creep rupture strength.
  • Mo is a ferrite-forming element, if it is contained in excess of 1.20 mass%, ⁇ -ferrite remains in the weld metal and the toughness of the weld metal deteriorates. Therefore, in order to sufficiently obtain the above effects, the Mo content of the welding wire is preferably 1.20% by mass or less, and more preferably 1.18% by mass or less.
  • V is a precipitation strengthening element and has the effect of precipitating as carbonitride and improving creep rupture strength.
  • V is also a ferrite-forming element, and if it exceeds 0.45% by mass, it causes residual ⁇ -ferrite in the weld metal and deteriorates the toughness of the weld metal. Therefore, in order to sufficiently obtain the above effects, the V content of the welding wire is preferably 0.45% by mass or less, and more preferably 0.40% by mass or less.
  • Nb is an element that precipitates as solid solution strengthening and nitrides and contributes to stabilization of creep rupture strength.
  • Nb is also a ferrite-forming element, and if it exceeds 0.080% by mass, ⁇ -ferrite remains in the weld metal and the toughness of the weld metal deteriorates. Therefore, in order to sufficiently obtain the above effects, the Nb content of the welding wire is preferably 0.080% by mass or less, and more preferably 0.078% by mass or less.
  • W is an element that contributes to stabilization of the creep rupture strength by solid solution strengthening of the matrix and fine carbide precipitation.
  • W is also a ferrite-forming element, if it exceeds 2.0% by mass, ⁇ -ferrite remains in the weld metal and the toughness of the weld metal deteriorates. Therefore, in order to sufficiently obtain the above effects, the W content of the welding wire is preferably 2.0% by mass or less, more preferably 1.8% by mass or less, and further preferably 1.7% by mass or less.
  • Co is an element that suppresses residual ⁇ ferrite.
  • the Co content of the welding wire is preferably 3.0% by mass or less, more preferably 2.0% by mass or less, and further preferably 1.8% by mass or less.
  • the B content of the welding wire is preferably 0.005% by mass or less, more preferably 0.003% by mass or less, and further preferably 0.0015% by mass or less.
  • P and S are elements that increase the hot cracking susceptibility.
  • the P content of the welding wire is preferably regulated to 0.015% by mass or less, and more preferably 0.010% by mass or less.
  • the balance of the welding wire components is Fe and inevitable impurities.
  • Examples of inevitable impurities include Al and Ti.
  • the welding flux used in the single submerged arc welding method of the present invention is CaF 2 : 2-30% by mass, CaO: 2-20% by mass, MgO: 20-40% by mass, Al 2 O 3 : 5-25% by mass, Total of Si and SiO 2 : 5 to 25% by mass (SiO 2 equivalent), BaO: 25% by mass or less, ZrO 2 : 10% by mass or less, TiO 2 : Less than 5% by mass.
  • SiO 2 equivalent Total of Si and SiO 2 : 5 to 25% by mass (SiO 2 equivalent)
  • BaO 25% by mass or less
  • ZrO 2 10% by mass or less
  • TiO 2 Less than 5% by mass.
  • CaF 2 of welding flux 2 to 30% by mass
  • CaF 2 increases the fluidity by lowering the melting point of the slag, has the effect of arranging the bead shape.
  • the CaF 2 content in the welding flux is less than 2% by mass, a sufficient effect cannot be obtained and a bead shape defect occurs.
  • the CaF 2 content in the flux exceeds 30% by mass, the arc becomes unstable, and a circular dent called a pock mark is generated on the bead surface, and the surface properties deteriorate.
  • the content of CaF 2 in the welding flux is 2 to 30% by mass.
  • Preferred lower limit of the content of CaF 2 in the welding flux is 3 wt%, a preferred upper limit is 29 mass%.
  • CaO of welding flux 2 to 20% by mass
  • CaO has an effect of adjusting the bead shape by adjusting the viscosity of the slag.
  • CaO is a component having high fire resistance, and in a flux such as the present invention containing CaF 2 that lowers the melting point of slag, the melt characteristics are adjusted to adjust the bead shape. It is extremely effective. However, if the CaO content in the welding flux is less than 2% by mass, this effect cannot be obtained and the bead shape is poor. On the other hand, if the content of CaO in the welding flux exceeds 20% by mass, the fire resistance of the welding flux increases and it becomes difficult to melt, so the bead surface properties deteriorate. Therefore, the CaO content of the welding flux is 2 to 20% by mass.
  • the minimum with preferable CaO content of welding flux is 5 mass%, and a preferable upper limit is 17 mass%.
  • MgO of welding flux 20-40% by mass
  • MgO also has the effect of adjusting the bead shape by adjusting the viscosity of the slag. It is effective for improving the slag peelability.
  • MgO is a component having high fire resistance, and in the welding flux of the present invention containing a large amount of CaF 2 that lowers the melting point of slag, the melting characteristics are adjusted to adjust the bead shape. It is extremely effective. However, if the content of MgO in the welding flux is less than 20% by mass, this effect cannot be obtained and the bead shape is poor.
  • the content of MgO in the welding flux is 20 to 40% by mass.
  • the upper limit with preferable MgO content of a welding flux is 35 mass%.
  • Al 2 O 3 increases the concentration and stability of the arc, and has the effect of adjusting the fluidity by increasing the melting point of the slag and adjusting the bead shape, contrary to CaO.
  • the content of Al 2 O 3 in the welding flux is less than 5% by mass, this effect cannot be obtained, the arc becomes unstable and spatter increases, and the bead shape and bead surface properties deteriorate.
  • the content of Al 2 O 3 in the welding flux exceeds 25% by mass, slag seizure occurs.
  • the high Cr-based CSEF steel targeted by the present invention must have a higher preheating / interpass temperature than low alloy heat resistant steels such as mild steel and 2.25Cr-1Mo steel. Absent. For this reason, in particular, the slag tends to be seized. Slag seizure has a significant adverse effect on the laminated beads. For this reason, the content of Al 2 O 3 in the welding flux is set to 5 to 25% by mass. A preferable lower limit of the content of Al 2 O 3 of the welding flux is 8 wt%, a preferred upper limit is 22 mass%.
  • SiO 2 Total of welding flux Si and SiO 2 : 5 to 25% by mass (in terms of SiO 2 ) SiO 2 increases the viscosity of the slag, and particularly improves the conformability of the bead toe.
  • SiO 2 when added excessively, the melting point of the slag is lowered and the bead surface properties are deteriorated, and the slag becomes excessively brittle, continuous uniform peeling is not performed, and the slag firing is partially strong on the bead surface.
  • the total content of Si and SiO 2 in the flux is 5 to 25% by mass in terms of SiO 2 .
  • a preferable upper limit of the total content of Si and SiO 2 in the welding flux is 20% by mass.
  • the “sum of the Si and SiO 2", as are described in “(SiO 2 conversion)" is to determine the amount of SiO 2 for Si in the form SiO 2, the Si other than SiO 2, the amount Is converted to SiO 2 to obtain the amount, and the two amounts are summed.
  • BaO of welding flux 25% by mass or less
  • BaO has the effect of adjusting the viscosity of the slag and adjusting the bead shape. Furthermore, there exists an effect which improves the brittleness of slag itself, As a result, slag seizure is suppressed. However, if contained in excess, the fire resistance of the welding flux is increased and it becomes difficult to melt, so that the bead surface properties deteriorate. For this reason, the content of BaO in the welding flux is 25% by mass or less.
  • the upper limit with preferable BaO content of a welding flux is 22 mass%.
  • ZrO 2 of welding flux 10% by mass or less
  • ZrO 2 also has an effect of adjusting the bead shape by increasing the melting point of slag and adjusting the fluidity, like Al 2 O 3 .
  • the content of ZrO 2 in the welding flux is 10% by mass or less.
  • TiO 2 of welding flux less than 5% by mass
  • TiO 2 has the effect of increasing the coverage of slag on the beads.
  • excessive inclusion causes slag seizure.
  • the content of TiO 2 in the welding flux is less than 5% by mass.
  • the above is an essential rule for the composition of the welding flux.
  • These components can be added in the form of single substances, compounds containing these components, ores and melt fluxes.
  • CaF 2 may be added as fluorite
  • CaO as lime and melt flux
  • MgO magnesia clinker and melt flux
  • Al 2 O 3 as alumina and melt flux
  • SiO 2 as potassium feldspar
  • soda feldspar and melt flux etc.
  • alloy powder, oxides and fluorides can be appropriately added to the welding flux in order to adjust the alloy components and welding workability.
  • the single submerged arc welding method of the high Cr system CSEF steel of the present invention has predetermined welding wire feed speed, welding speed, and welding amount per unit weld length in addition to the above-mentioned definition of the composition of the welding wire and welding flux. It is preferable to make it.
  • various welding conditions in the welding method will be described.
  • the welding wire feed speed V is preferably 50 to 120 g / min.
  • the welding speed v is preferably 20 to 60 cm / min.
  • the amount of deposition per unit weld length is calculated by the welding wire feed speed / welding speed. If the welding amount per unit weld length is less than 1.8 g / cm, the welding amount may be too small and the welding efficiency may deteriorate. On the other hand, if the amount of welding per unit weld length exceeds 4.5 g / cm, the amount of welding becomes excessive, so that the amount of solidification shrinkage of the molten metal becomes excessive and the shape of the weld is indefinite. May become perpendicular to the final solidified part and cause hot cracking. For this reason, the amount of deposition per unit weld length is preferably 1.8 to 4.5 g / cm. The welding current and the arc voltage are adjusted as one means for controlling the wire feeding speed within an appropriate range.
  • the tip / base material distance, the tip shape, and the tip angle will be described.
  • solid wire for submerged arc welding of high Cr-based CSEF steel and co-material is compared with solid wire for 1.25Cr-0.5Mo steel, 2.25Cr-1Mo steel, 2.25Cr-1Mo-V steel.
  • the electrical resistance is high, so that the amount of Joule heat generation becomes large and the amount of welding increases. That is, the amount of welding is large even with the same welding current.
  • the Joule heating value increases as the distance between the tip and the base material increases.
  • the tip / base material distance is less than 20 mm, the tip of the tip may be melted by the arc.
  • the distance between the tip and the base material exceeds 40 mm, the amount of welding may be excessive. Therefore, it is preferable to manage the distance between the tip and the base material to 20 to 40 mm, more preferably 25 to 35 mm.
  • Tip shape is straight tube, bend square, or Fig. 62 of Japanese Examined Patent Publication No. 62-58827.
  • the shape as shown in 3b may be used, and is appropriately selected from the viewpoint of securing wire feedability and feeding position stabilization.
  • An example of a bend square-shaped chip is shown in FIGS. Bending the tip 30 within a range that does not hinder the welding wire feeding stabilizes the power feeding position, and as a result, stabilizes the welding wire feeding speed.
  • the tip angle includes a line perpendicular to the surface of the base material 10 and a tip end where the welding wire 40 finally protrudes from the tip 30. This is an angle formed by the axis of the portion 30a.
  • the tip angle affects the degree of heating of the welding wire by the welding arc, and as a result, increases or decreases the welding wire feeding speed. Specifically, if the welding current is the same and the distance L between the tip base materials is the tip angle is the forward angle ⁇ (see FIGS. 6 and 9), the backward angle ⁇ is the case (see FIGS. 5 and 8).
  • the wire feed speed is higher than that of (see).
  • the tip angle is preferably managed in a range where the receding angle ⁇ is up to 60 ° and in a range where the advancing angle ⁇ is up to 60 °, in order to stabilize the welding wire feeding speed.
  • the welding wire diameter is preferably selected from 3 to 5 mm ⁇ . If it is less than 3 mm ⁇ , the construction efficiency may be impaired. If it exceeds 5 mm ⁇ , hot cracking may not be suppressed even if the invention is devised.
  • the power supply characteristic may be either a drooping characteristic or a constant voltage characteristic.
  • the polarity may be either DCEP (Direct Current Electrode Positive) or AC (Alternating Current).
  • the welding method of the present invention uses a thermal power generation boiler, a turbine, and a reactor as suitable welding targets. Therefore, the base material plate thickness is preferably 150 to 450 mm. However, the welding method of the present invention can also be applied to welding with a base metal plate thickness of less than 150 mm. Similarly, in the welding method of the present invention, a narrow groove (I groove) as shown in FIG. However, the welding method of the present invention does not exclude tandem welding (not shown), tandem welding by Scott connection, application to V groove, X groove, and use of a groove filler.
  • the welding method of the present invention is an initial layer single submerged welding method in which only the initial layer 21 shown in FIG.
  • the welding method of the present invention can be applied not only to the first layer 21 but also to the case where a weld metal is further laminated and welded to the first layer 21.
  • the first layer, or the first layer and the overlay layer (specifically, the second layer, the third layer, etc. when the first layer is the first layer), gouging, It can be removed by machining or the like.
  • Nos. 1 to 14 that fall within the scope of the present invention will be described below in comparison with comparative examples (Nos. 15 to 48) that deviate from the scope of the present invention.
  • Three types of base materials of chemical components shown in Table 1 were prepared. As shown in FIG. 1, for this base material 10, a narrow groove having a plate thickness t of 250 mm, a groove bottom radius of curvature R of 10 mm, and a groove angle ⁇ of 4 ° is formed by machining, did. Moreover, 17 types of welding wires having chemical components shown in Table 2 were used. The wire diameter is 4.0 mm ⁇ . In addition, 27 types of welding fluxes having particle sizes and chemical components shown in Table 3 were used. In Tables 2 and 3, those not satisfying the provisions of the present invention are indicated by underlining the numerical values.
  • the welding wire feeding speed and the welding speed are changed using the welding wire shown in Table 2 and the welding flux shown in Table 3, and the submerged arc welding is performed. did.
  • the welding wire feed speed was controlled by changing the welding current and welding speed.
  • the welding conditions are as follows. Other conditions are shown in Table 4.
  • Tip Tip bent tip 30 shown in FIGS. 2 to 4 (bent square tip)
  • Electrode characteristics Drooping characteristics
  • Electrode polarity AC single welding
  • Attitude Downward lamination method: First layer 1 layer 1 pass
  • the bead shape was evaluated by visually observing the height of the bead in the weld line direction, and when the smooth bead was formed ( ⁇ ), the formed bead was rough, and the unevenness was large in the weld line direction. The case was judged as bad (x).
  • Pock mark The number of occurrences of pock on the bead surface is measured visually within a range of 300 mm excluding the start and end of the weld bead. It was determined to be defective (x).
  • Tables 5 and 6 show the evaluation results of hot cracking, conformability, bead shape, bead surface property, slag seizure, and pock mark in each example and comparative example. In Table 6, those not satisfying the provisions of the present invention are underlined.
  • Examples 1 to 14 satisfied the scope of the present invention, and were excellent in any of hot cracking, conformability, bead shape, bead surface property, slag seizure, and pock mark.
  • Comparative Examples 15 to 48 do not satisfy the scope of the present invention, the performance in any one or more of hot cracking, conformability, bead shape, bead surface property, slag seizure, and pock mark There was a place inferior to.
  • Comparative Examples 15 to 23 the chemical composition of the welding wire was not within the range of the present invention, and the performance was poor in any one or more of hot cracking, conformability, bead shape, and slag seizure.
  • Comparative Examples 24 to 36 the chemical composition of the welding flux is out of the present invention, and the performance is poor in any one or more of conformability, bead shape, bead surface property, slag seizure, and pock mark. It was.
  • Comparative Examples 37 to 48 the chemical composition of the welding wire and the chemical composition of the welding flux are out of the present invention, and any of hot cracking, conformability, bead shape, bead surface property, slag seizure, and pock mark In one or more, the performance was inferior.
  • Base material material to be welded
  • Specimen material to be welded
  • First layer 20
  • Tip 20
  • Tip tip 40

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

 高Cr系CSEF鋼のシングルサブマージアーク溶接において、初層の高温割れ を抑制することができる溶接方法を提供する。 C:0.05質量%未満、N:0.055質量%以下、Si:0.05質量%を超え、0.50質量%以下を含有し、残部がFeおよび不可避的不純物である溶接ワイヤと、CaF:2~30質量%、CaO:2~20質量%、MgO:20~40質量%、Al:5~25質量%、SiおよびSiOの合計:5~25質量%(SiO換算)を含有し、BaO:25質量%以下、ZrO:10質量%以下、TiO:5質量%未満に規制した溶接フラックスとを組み合わせて用いることを特徴とする高Cr系CSEF鋼のシングルサブマージアーク溶接方法である。

Description

高Cr系CSEF鋼のシングルサブマージアーク溶接方法
 本発明は、高Cr系CSEF(Creep Strength-Enhanced Ferritic:クリープ強度強化フェライト)鋼のシングルサブマージアーク溶接方法に関する。
 火力発電ボイラやタービン、脱硫や改質(重油分解)用の化学反応容器(リアクタ)は、高温、高圧で運転されるため、材料としては、1.25Cr-0.5Mo鋼、2.25Cr-1.0Mo鋼、2.25Cr-1.0Mo-V鋼などが適用されている。近年、重油の有効利用や石油精製において、さらなる高能率化が求められており、8質量%以上のCrを含有する高Cr系CSEF鋼の適用が検討されている。高Cr系CSEF鋼には、ASTM(American Society for Testing and Materials:米国材料試験協会)規格やASME(American Society of Mechanical Engineers:米国機械協会)規格に規定されるSA387Gr.91、SA213Gr.T91等がある。
 火力発電ボイラやタービン、リアクタは、鍛造リングやパイプ、曲げ加工鋼板を適宜組み合わせて溶接して形成される。ちなみに鍛造リングは、板厚150~450mm、最大外径7m弱、全長数~数10mにもなる。火力発電ボイラやタービン、リアクタの溶接方法としては、被覆アーク溶接、TIG(Tungsten Inert Gas)溶接、サブマージアーク溶接が用いられる。また、火力発電ボイラやタービン、リアクタは、構造上、溶接部分の割合が大きくなるため、溶接材料の低減、溶接の高能率化が強く求められている。
 一般的に、溶接材料の低減に対しては、開先幅を狭く、かつ、開先角度を小さくした狭開先を用いる方法がある。また、高能率化に対しては、サブマージアーク溶接が、他の溶接方法と比較して高能率であることから多用されている。しかし、高Cr系CSEF鋼のサブマージアーク溶接では、開先幅を狭くしたり、開先角度を小さくする方法はいずれも、溶接時の高温割れに対しては、不利な条件となる。サブマージアーク溶接における高温割れを抑制し、溶接の高能率化を図る技術としては、以下のような技術が開示されている。
 例えば、特許文献1には、所定量のC、Si、Mn、Ni、Cr、Mo、V、NbおよびNを含有し、MnおよびNiの総量を所定量に規制すると共に、P、S、Cu、Ti、Al、B、W、CoおよびOを所定量に規制し、残部がFeおよび不可避的不純物からなる改良9Cr-1Mo鋼用溶接ワイヤが開示されている。そして、特許文献1では、Cを0.070~0.150質量%とし、かつ、P、Sをいずれも0.010質量%以下に規制することによって、高温割れを抑制している。
 また、特許文献2には、所定量のC、Mn、Cr、Mo、Ni、V、Nb、AlおよびNを含有し、かつ、SiおよびOを所定量に限定したワイヤと、所定量のCaF、CaOおよびMgOの1種または2種、Al O およびZrO の1種または2種、Alを含有し、かつ、SiOを所定量に限定した溶接フラックスとを組み合わせて溶接を行う9Cr-1Mo鋼のサブマージアーク溶接方法が開示されている。そして、特許文献2では、Cを0.01~0.15wt%、Alを0.005~1.5wt%、Siを0.05wt%以下としたワイヤと、SiOを5wt%以下(Siを実質的に含有せず)、CaFを25~70wt%とした溶接フラックスとを組み合わせることで、高温割れを抑制している。
特許第4476018号公報 特許第2529843号公報
 しかしながら、従来の技術では、高Cr系CSEF鋼のサブマージアーク溶接において、以下の問題がある。
 特許文献1の改良9Cr-1Mo鋼用溶接ワイヤにおいては、ワイヤ径が2.4mmφと細径ワイヤであるがために、アークの広がりに乏しく融合不良が発生しやすくなって健全な溶接部が得られない場合がある。また、ワイヤ径を4.0mmφに太径化してサブマージアーク溶接を行うと高温割れが発生する場合がある。
 特許文献2の9Cr-1Mo鋼のサブマージアーク溶接方法においては、ワイヤおよび溶接フラックスが低Si設計であるため、初層のビート形状やなじみ性が劣化して、積層溶接部に融合不良やスラグ巻込みを引き起こす場合がある。すなわち、溶接部の健全性が低下する場合がある。
一般的に、溶接能率を高めるためには、溶接入熱を上げる、すなわち、溶接電流、アーク電圧を高め、溶接速度を低めにすることによって可能となる。しかし、溶接入熱を上げると、特に狭開先では溶込み形状がなし型となりやすく、高温割れの発生リスクが高まる。ここで問題となる高温割れは、溶着金属中に含まれるP、S、Si、Nbによる低融点化合物が凝固時にデンドライト間やオーステナイト結晶粒界に偏析し、さらに溶接収縮ひずみが加わって発生するいわゆる高温割れである。そのため、高温割れの抑制策として、溶接材料の化学成分調整、具体的には、P、S等の不純物を超高純度(EHP:Extra High Purity)溶解で100ppm以下に抑えることは効果的である。しかしながら、超高純度溶解は、電子ビーム溶解や専用の特殊炉壁耐火材を使わざるを得ないことから経済的に難点がある。このため一般的な不純物レベルでも高温割れの発生を抑制できる技術が求められている。
 本発明は、上記事情に鑑みてなされたものであり、その課題は、高Cr系CSEF鋼のシングルサブマージアーク溶接において、初層の高温割れを抑制することができる溶接方法を提供することである。
 本発明者らは、高Cr系CSEF鋼の初層サブマージアーク溶接金属の高温割れについて鋭意原因究明を行った。その結果、高Cr系CSEF鋼の初層サブマージアーク溶接金属の高温割れは、高Cr系CSEF鋼母材から希釈によって溶接金属へCがピックアップされ、このことによって溶融金属の融点が低下して、高温割れが発生することを突き止めた。ちなみに、高Cr系CSEF鋼のC含有量は、ASTM A182 Gr.F91は0.08~0.12質量%、Gr.F92は0.07~0.13質量%、Gr.F122は0.07~0.14質量%、Gr.F911は0.09~0.13質量%である。
 さらに、鋭意研究を進めた結果、C:0.05質量%未満、N:0.055質量%以下、Si:0.05質量%を超え0.30質量%以下を含有するワイヤと、CaF:2~30質量%、CaO:2~20質量%、MgO:20~40質量%、Al O:5~25質量%、SiおよびSiOの合計:5~25質量%(SiO換算)を含有し、BaO:25質量%以下、ZrO2 :10質量%以下、TiO:5質量%未満に規制したフラックスを組み合わせてサブマージアーク溶接を行うことによって、溶接能率、溶接部の健全性を確保した上で、初層の高温割れを抑制できることを見出した。
 なお同研究では、特にワイヤに関して、308Lや309Lといったオーステナイト系ステンレス、インコネル625、インコネル82、ハステロイといったNi基の成分系のワイヤについても検討した。結論として、このような成分系のワイヤは、初層に積層される溶接金属が高Ni組成になることから、高Cr系CSEF鋼溶接継手に対して適用することはできないと判断した。
 そこで、本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法はC:0.05質量%未満、N:0.055質量%以下、Si:0.05質量%を超え、0.30質量%以下を含有し、残部がFeおよび不可避的不純物である溶接ワイヤと、CaF:2~30質量%、CaO:2~20質量%、MgO:20~40質量%、Al:5~25質量%、SiおよびSiOの合計:5~25質量%(SiO換算)を含有し、BaO:25質量%以下、ZrO2 :10質量%以下、TiO:5質量%未満に規制した溶接フラックスとを組み合わせて用いることを特徴とする。
 かかる溶接方法によれば、特定の組成を有する溶接ワイヤと特定の組成を有する溶接フラックスとを組み合わせて、シングルサブマージアーク溶接を行うことによって、母材からのCのピックアップによる初層の高温割れを抑制させることが可能となる。
 また、本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法は、溶接ワイヤがさらに、Mn、Ni、Cr、Mo、V、Nb、W、Co、Bの群から選択される1種類以上を含有し、そのとき、Mn:2.20質量%以下、Ni:1.00質量%以下、Cr:10.50質量%以下、Mo:1.20質量%以下、V:0.45質量%以下、Nb:0.080質量%以下、W:2.0質量%以下、Co:3.0質量%以下、B:0.005質量%以下であることが好ましい。
 かかる溶接方法によれば、溶接ワイヤに特定の元素を含有させることによって、さらに靱性を改善し、またクリープ破断強度を向上させること等が可能となる。
 また、本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法は、ワイヤ送給速度(V)を50~120g/min、溶接速度(v)を20~60cm/minとし、ワイヤ送給速度と溶接速度との比で求める単位長さ当りの溶着量(V/v)を1.8~4.5g/cmとする条件で溶接することが好ましい。
 かかる溶接方法によれば、ワイヤ送給速度(V)、溶接速度(v)および単位長さ当りの溶着量(V/v)を所定の好ましい範囲に制御することによって、より確実に、高温割れ、融合不良およびスラグ巻込みを抑制し、高い溶接効率を得ることができる。
 また、本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法は、チップ/母材間距離が20~40mmであることが好ましい。
 かかる溶接方法によれば、チップのアークによる溶損、および溶着量が過剰となることを確実に抑制できる。
 また、本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法では、チップ角度は、後退角αが60°までの範囲、前進角βが60°までの範囲であることが好ましい。
 かかる溶接方法によれば、溶接ワイヤ送給速度をより確実に安定化できる。
 また、本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法では、チップ形状は、直管状またはベンド角材状であることが好ましい。
 かかる溶接方法によれば、ワイヤ送給性と給電位置安定化をより確実に確保できる。
 本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法は、初層の高温割れ、すなわち、最初の1層1パス目の高温割れを抑制することができる。
本発明の溶接方法における狭開先の形状、溶接金属の初層の形態を示す断面図である。 本発明の溶接方法におけるチップ(溶接チップ)の形状を示す正面図である。 図2に示すチップの側面図である。 図2に示すチップのチップ先端部側の端面図である。 本発明の溶接方法におけるチップの形状を示す正面図である。 本発明の溶接方法におけるチップの形状を示す正面図である。 本発明の溶接方法におけるチップの形状を示す正面図である。 本発明の溶接方法におけるチップの形状を示す正面図である。 本発明の溶接方法におけるチップの形状を示す正面図である。 本発明の溶接方法におけるチップの形状を示す正面図である。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 本発明の溶接方法は、高Cr系CSEF鋼のシングルサブマージアーク溶接方法である。特に、図1に示すような、狭開先における初層溶接、特に1層1パス目の溶接に好適に用いられる。
<母材>
 本発明のシングルサブマージアーク溶接方法は、母材(被溶接材)として高Cr系CSEF鋼を対象とするものである。ここで、高Cr系CSEF鋼とは、8質量%以上のCrを含有するCSEF鋼のことをいう。高Cr系CSEF鋼には、各種の規格がある。例えば、ASTM規格やASME規格に規定されたSA387Gr.91、Gr.122、Gr.92、Gr.911およびSA213Gr.T91、EN規格(European standards:欧州規格)に規定されたX10CrMoVNb9-1、並びに火力技術基準に規定された火SFVAF28、火SFVAF29、火STBA28、火STPA28、火SCMV28等がある。
 好ましい母材の化学成分としては、所定量のC、Si、Mn、P、S、Ni、Cr、Mo、V、Nb、Nを含有し、残部がFeおよび不可避的不純物である。あるいはさらに所定量のCu、B、W、Co(これらの4元素から選択される1種以上)を含有してもよい。具体的には、C:0.07~0.14質量%、Si:0.50質量%以下、Mn:0.70質量%以下、P:0.025質量%以下、S:0.015質量%以下、Ni:0.50質量%以下、Cr:8.00~11.50質量%、Mo:0.25~1.10質量%、V:0.15~0.35質量%、Nb:0.04~0.10質量%、N:0.03~0.10質量%を含有し、残部がFeおよび不可避的不純物である。さらにCu:1.70質量%以下、B:0.060質量%以下、W:2.50質量%以下、Co:3.0質量%以下を含有してもよい。
<溶接ワイヤ>
 本発明のシングルサブマージアーク溶接方法で用いる溶接ワイヤは、C:0.05質量%未満、N:0.055質量%以下、Si:0.05質量%を超え、0.50質量%以下を含有し、残部がFeおよび不可避的不純物である。以下、各構成の数値限定理由について説明する。
(溶接ワイヤのC:0.05質量%未満)
 初層の高温割れは、母材希釈によって溶融金属のCが過剰となり、溶融金属の融点が低下することによって引き起こされる。本発明が対象とする高Cr系CSEF鋼は、クリープ強度を確保するために高C含有率設計となっている。調査の結果、初層サブマージアーク溶接の母材希釈率は50%前後にまでなることが判明した。溶接条件調整による母材希釈の低減はある程度可能ではあるが、施工バラツキも考慮した溶接材料の成分設計が不可避である。以上のことから、溶接ワイヤのC含有量を0.05質量%未満とする。
(溶接ワイヤのN:0.055質量%以下)
 N(窒素)は、高Cr系CSEF鋼およびその溶接金属においては、クリープ強度向上に有効に作用する元素として知られている。しかしながら、0.055質量%を超えて、過剰に含有すると、スラグ焼付きが発生する。このため、溶接ワイヤのN含有量は、0.055質量%以下とする。溶接ワイヤのN含有量の好ましい上限は0.05質量%である。
(溶接ワイヤのSi:0.05質量%を超え、0.50質量%以下)
 Siは、溶融金属の粘性を調整してビード形状を整える作用を有する。しかし、Si含有量が0.05質量%以下であると、その効果が得られず、なじみ性が劣化して、ビード形状が不良となる。一方、Si含有量が0.50質量%を超えると、スラグ焼付きが発生して、スラグ除去が困難となる。このため、溶接ワイヤのSi含有量は、0.05質量%を超え、0.50質量%以下とする。溶接ワイヤのSi含有量の好ましい上限は0.48質量%以下、より好ましい上限は0.45質量%以下である。
 以上説明したC、N、Siが溶接ワイヤの組成の必須の規定である。その他の成分として、Mn、Ni、Cr、Mo、V、Nb、W、Co、Bの群から選択される1種類以上を含有させることができる。このとき、各元素を含有させるときは、以下に説明する範囲で含有させることが好ましい。
 Mnは、脱酸剤として作用し、溶着金属中の酸素量を低減して靱性を改善する効果がある。また、Mnは、オーステナイト生成元素であり、溶接金属におけるδ-フェライトの残留による靱性劣化を抑制する効果がある。しかし、溶接ワイヤのMn含有量が2.20質量%を超えると、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのMn含有量は2.20質量%以下が好ましく、2.15質量%以下がより好ましい。
 Niは、Mnと同様にオーステナイト生成元素であり、溶接金属におけるδ-フェライトの残留による靱性劣化を抑制する効果がある。しかし、溶接ワイヤのNi含有量が1.00質量%を超えると、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのNi含有量は1.00質量%以下が好ましく、0.95質量%以下がより好ましい。
 Crは、本発明に係る溶接方法の母材である高Cr系CSEF鋼の主要元素であり、母材に耐酸化性および高温強度を付与するために不可欠な元素であり、溶接ワイヤにも含有させることが好ましい。しかし、Crはフェライト生成元素であり、10.50質量%を超えて過剰に含有すると、δ-フェライトの残留を引き起こし、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのCr含有量は10.50質量%以下が好ましく、10.45質量%以下がより好ましい。
 Moは、固溶強化元素であり、クリープ破断強度を向上させる効果がある。しかし、Moはフェライト生成元素であるため、1.20質量%を超えて過剰に含有すると、溶接金属におけるδ-フェライトの残留を引き起こし、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのMo含有量は1.20質量%以下が好ましく、1.18質量%以下がより好ましい。
 Vは、析出強化元素であり、炭窒化物として析出して、クリープ破断強度を向上させる効果がある。しかし、Vはフェライト生成元素でもあり、0.45質量%を超えて過剰に含有すると、溶接金属におけるδ-フェライトの残留を引き起こし、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのV含有量は0.45質量%以下が好ましく、0.40質量%以下がより好ましい。
 Nbは、固溶強化および窒化物として析出して、クリープ破断強度の安定化に寄与する元素である。しかし、Nbはフェライト生成元素でもあり、0.080質量%を超えて過剰に含有すると、溶接金属におけるδ-フェライトの残留を引き起こし、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのNb含有量は0.080質量%以下が好ましく、0.078質量%以下がより好ましい。
 Wは、マトリックスの固溶強化と微細炭化物析出によって、クリープ破断強度の安定化に寄与する元素である。しかし、Wはフェライト生成元素でもあるため、2.0質量%を超えて過剰に含有すると、溶接金属におけるδ-フェライトの残留を引き起こし、溶接金属の靱性が劣化する。したがって、前記の効果を十分に得るためには、溶接ワイヤのW含有量は2.0質量%以下が好ましく、1.8質量%以下がより好ましく、1.7質量%以下がさらに好ましい。
 Coは、δフェライトの残留を抑制する元素である。しかし、Coを3.0質量%を超えて過剰に含有すると、Ac1点を下げるため、高温焼戻しが不可能となり、組織の安定化処理ができなくなる。したがって、前記の効果を十分に得るためには、溶接ワイヤのCo含有量は3.0質量%以下が好ましく、2.0質量%以下がより好ましく、1.8質量%以下がさらに好ましい。
 Bは、微量含有により炭化物を分散・安定化させ、クリープ破断強度を高める効果がある。しかし、Bを0.005質量%を超えて過剰に含有すると、高温割れを引き起こす。したがって、前記の効果を十分に得るためには、溶接ワイヤのB含有量は0.005質量%以下が好ましく、0.003質量%以下がより好ましく、0.0015質量%以下がさらに好ましい。
 PおよびSは、それぞれ高温割れ感受性を高める元素である。P含有量が0.015質量%を超える場合、または、S含有量が0.010質量%を超える場合、耐高温割れ性が劣化する。したがって、溶接ワイヤのP含有量は0.015質量%以下に規制することが好ましく、0.010質量%以下がより好ましい。また、溶接ワイヤのS含有量は0.010質量%以下に規制することが好ましく、0.009質量%以下がより好ましい。
 溶接ワイヤの成分の残部は、Feおよび不可避的不純物である。不可避的不純物としては、例えば、Al、Tiなどが挙げられる。
<溶接フラックス>
 本発明のシングルサブマージアーク溶接方法で用いる溶接フラックスは、CaF:2~30質量%、CaO:2~20質量%、MgO:20~40質量%、Al:5~25質量%、SiおよびSiOの合計:5~25質量%(SiO換算)を含有し、BaO:25質量%以下、ZrO:10質量%以下、TiO:5質量%未満に規制している。以下、各構成の数値限定理由について説明する。
(溶接フラックスのCaF:2~30質量%)
 CaFは、スラグの融点を下げて流動性を高め、ビード形状を整える作用がある。しかし、溶接フラックス中のCaF含有量が2質量%未満では、十分な効果を得ることができず、ビード形状不良が発生する。一方、フラックス中のCaF含有量が30質量%超では、アークが不安定となり、ビード表面にポックマークと呼ばれる円形の凹みが発生して、表面性状が劣化する。本発明が対象とする高Cr系CSEF鋼の初層ビードでは、特にこの傾向が顕著であり、これらビード形状不良やビード表面性状不良は、積層するビードへ多大な悪影響を及ぼす。このため、溶接フラックスのCaFの含有量は、2~30質量%とする。溶接フラックスのCaFの含有量の好ましい下限は3質量%であり、好ましい上限は29質量%である。
(溶接フラックスのCaO:2~20質量%)
 CaOは、スラグの粘性を調整してビード形状を整える効果がある。CaOは、後述するMgOやBaOと同様に、耐火性の高い成分であり、スラグの融点を降下させるCaFを含有する本発明のようなフラックスにおいては、溶融特性を調整してビード形状を整えるのに極めて有効である。しかし、溶接フラックス中のCaOの含有量が2質量%未満ではこの効果が得られずビード形状不良となる。一方、溶接フラックス中のCaOの含有量が20質量%を超えると、溶接フラックスの耐火性が高まり溶けにくくなるため、ビード表面性状が劣化する。このため、溶接フラックスのCaOの含有量は、2~20質量%とする。溶接フラックスのCaOの含有量の好ましい下限は5質量%であり、好ましい上限は17質量%である。
(溶接フラックスのMgO:20~40質量%)
 MgOも、スラグの粘性を調整してビード形状を整える効果がある。スラグ剥離性を向上させるのに有効である。また、CaOやBaOと同様に、MgOは耐火性の高い成分であり、スラグの融点を降下させるCaFを多量に含有する本発明の溶接フラックスにおいては、溶融特性を調整してビード形状を整えるのに極めて有効である。しかし、溶接フラックスのMgOの含有量が20質量%未満では、この効果が得られず、ビード形状不良となる。一方、MgOの含有量が40質量%を超えると、溶接フラックスの耐火性が高まり溶けにくくなるため、ビード表面性状が劣化する。このため、溶接フラックスのMgOの含有量は、20~40質量%とする。溶接フラックスのMgOの含有量の好ましい上限は35質量%である。
(溶接フラックスのAl O :5~25質量%)
Alは、アークの集中性と安定性を高めるとともに、CaOとは逆に、スラグの融点を高めて流動性を調整し、ビード形状を整える効果がある。しかし、溶接フラックスのAlの含有量が5質量%未満では、この効果が得られず、アークが不安定となりスパッタが増加するとともに、ビード形状とビード表面性状が劣化する。一方、溶接フラックスのAlの含有量が25質量%を超えると、スラグの焼付きが発生してしまう。本発明が対象とする高Cr系CSEF鋼は遅れ割れ防止の観点から、軟鋼や2.25Cr-1Mo鋼のような低合金耐熱鋼と比較して、予熱・パス間温度を高めとせざるを得ない。このため、特にスラグが焼付きやすくなる傾向にある。スラグの焼付きは、積層するビードへ多大な悪影響を及ぼす。このため、溶接フラックスのAlの含有量は、5~25質量%とする。溶接フラックスのAlの含有量の好ましい下限は8質量%であり、好ましい上限は22質量%である。
(溶接フラックスのSiおよびSiOの合計:5~25質量%(SiO換算))
SiOは、スラグの粘性を増加させ、特にビード止端部のなじみ性を改善する。一方、過剰に添加すると、スラグの融点が低下してビード表面性状が劣化するとともに、スラグが過度に脆くなってしまい、連続的な均一剥離がなされず、ビード表面に部分的に強固なスラグ焼付きを引き起こす。これらは、溶接フラックス中に脱酸剤として適宜添加されるSiや、溶接フラックス造粒時に固着剤として使用する水ガラス中のSiOも同様である。このため、これらを含めてフラックス中のSiおよびSiOの含有量を制限する必要がある。よって、フラックスのSiおよびSiOの合計の含有量を、SiO換算で5~25質量%とする。溶接フラックスのSiおよびSiOの合計の含有量の好ましい上限は20質量%である。
 以上に説明した趣旨から本明細書において「SiおよびSiOの合計」とは、SiOの形態のSiと、SiO以外の形態のSiの合計量を意味する。この「SiおよびSiOの合計」は、「(SiO換算)」の記載がある場合は、SiOの形態のSiについてはSiOの量を求め、SiO以外のSiについては、その量をSiOに換算しその量を求め、この2つの量を合計したものである。
(溶接フラックスのBaO:25質量%以下)
 BaOは、CaOと同様に、スラグの粘性を調整して、ビード形状を整える効果がある。さらに、スラグ自体の脆さを改善する効果があり、結果としてスラグ焼付きを抑制する。しかし、過剰に含有すると溶接フラックスの耐火性が高まり、溶けにくくなるため、ビード表面性状が劣化する。このため、溶接フラックスのBaOの含有量は、25質量%以下とする。溶接フラックスのBaOの含有量の好ましい上限は22質量%である。
(溶接フラックスのZrO:10質量%以下)
ZrOも、Al同様、スラグの融点を高めて流動性を調整してビード形状を整える効果がある。しかし、過剰に含有するとフラックスの耐火性が高まり、溶けにくくなるため、ビード表面性状が劣化する。このため、溶接フラックスのZrOの含有量は、10質量%以下とする。
 (溶接フラックスのTiO:5質量%未満)
TiOは、スラグのビードへの被覆性を高める作用を有する。しかし過剰に含有するとスラグ焼付きを引き起こす。このため、溶接フラックスのTiOの含有量は、5質量%未満とする。
 以上が溶接フラックスの組成の必須の規定である。これらの成分は、単独物質、これらの成分を含有する化合物、鉱石および溶融フラックスの形態で添加することができる。例えばCaFは蛍石、CaOは石灰および溶融フラックス、MgOはマグネシアクリンカおよび溶融フラックス、Alはアルミナおよび溶融フラックス、SiOはカリ長石、ソーダ長石および溶融フラックス等として添加してもよい。また溶接フラックスには上記成分の他に、合金成分および溶接作業性を調整するために、合金粉末、酸化物および弗化物を適宜添加することができる。
 本発明の高Cr系CSEF鋼のシングルサブマージアーク溶接方法は、前記の溶接ワイヤと溶接フラックスの組成の規定に加えて、溶接ワイヤの送給速度、溶接速度、単位溶接長当りの溶着量を所定のものとすることが好ましい。以下、溶接方法における種々の溶接条件について説明する。
(溶接ワイヤの送給速度V:50~120g/min)
 溶接ワイヤの送給速度Vが、50g/minを下回ると、溶接電流が低すぎてアークが不安定となり、溶込不良が発生するおそれがある。一方、溶接ワイヤの送給速度Vが120g/minを上回ると、溶着量が多すぎて高温割れが発生するおそれがある。このため、溶接ワイヤの送給速度Vは、50~120g/minとすることが好ましい。
(溶接速度v:20~60cm/min)
 溶接速度vが、20cm/minを下回ると、溶着量が多すぎて高温割れが発生するおそれがある。一方、溶接速度vが60cm/minを上回ると溶融金属の供給が間に合わず、ビード形状が不安定となって融合不良やスラグ巻込みが発生するおそれがある。このため、溶接速度vは、20~60cm/minとすることが好ましい。
(単位溶接長当りの溶着量:1.8~4.5g/cm)
 単位溶接長当りの溶着量は、溶接ワイヤの送給速度/溶接速度によって計算される。単位溶接長当りの溶着量が1.8g/cmを下回ると、溶着量が少なすぎて溶接効率が劣化するおそれがある。一方、単位溶接長当りの溶着量が4.5g/cmを上回ると溶着量が過剰となるため、溶融金属の凝固収縮量が過大かつ溶込み形状もなし形になるため、凝固収縮のかかる方向が最終凝固部に対し垂直となって高温割れが発生するおそれがある。このため、単位溶接長当りの溶着量は、1.8~4.5g/cmとすることが好ましい。溶接電流及びアーク電圧は、上記ワイヤ送給速度を適正範囲にコントロールする一手段として調整される。
 ここでチップ/母材間距離、チップ形状、チップ角度について説明する。
 前記のように高Cr系CSEF鋼と共材のサブマージアーク溶接用ソリッドワイヤは、1.25Cr-0.5Mo鋼、2.25Cr-1Mo鋼、2.25Cr-1Mo-V鋼用ソリッドワイヤと比較して電気抵抗が高く、このためジュール発熱量が大となり溶着量が多くなる。すなわち同じ溶接電流であっても溶着量が多い。ジュール発熱量はチップ/母材間距離が長くなるほど大となる。チップ/母材間距離が20mm未満では、チップ先端がアークによって溶損するおそれがある。チップ/母材間距離が40mmを超えると、溶着量が過剰となるおそれがある。したがってチップ/母材間距離を20~40mm、より好ましくは25~35mmに管理することが好ましい。
 チップ形状は、直管状やベンド角材状、あるいは特公昭62-58827号公報のFig.3bに示されるような形状でも構わず、ワイヤ送給性と給電位置安定化を確保する観点から適宜選択される。ベンド角材状のチップの一例を図2~図4に示す。溶接ワイヤ送給を阻害しない範囲でチップ30を曲げることは、給電位置を安定化させ、結果として溶接ワイヤ送給速度を安定化する。
 チップ角度は、図5~図7、図8~図10に示すように、母材10の表面に対して垂直な線と、溶接ワイヤ40が最終的にチップ30から突出する部分であるチップ先端部30aでの軸線とがなす角度である。そして、チップ角度は、溶接アークによる溶接ワイヤの加熱度合を左右し、結果として溶接ワイヤ送給速度を増減させる。具体的には、同じ溶接電流、同じチップ母材間距離Lであれば、チップ角度が前進角βの場合(図6、図9参照)の方が後退角αの場合(図5、図8参照)よりもワイヤ送給速度が増加する。そして、チップ角度は、後退角αが60°までの範囲、前進角βが60°までの範囲に管理することが、溶接ワイヤ送給速度を安定化させるために好ましい。
 さらに溶接ワイヤ径、電源特性、極性、板厚、開先形状について説明する。
 溶接ワイヤ径は3~5mmφの中から適宜選択することが好ましい。3mmφ未満では施工能率が損なわれるおそれがある。5mmφを超えると、本発明の工夫を図っても高温割れが抑制できないおそれがある。電源特性は垂下特性、定電圧特性いずれでも構わない。極性はDCEP(Direct Current Electrode Positive)、AC(Alternating Current)のいずれでも構わない。
 本発明の溶接方法は、前記のように火力発電ボイラやタービン、リアクタを好適な溶接対象とする。したがって、母材板厚は150~450mmが好ましい。しかしながら、本発明の溶接方法は、母材板厚が150mm未満の溶接への適用も可能である。同様に、本発明の溶接方法は、母材開先形状として図1に示すような狭開先(I開先)を好適な溶接対象とする。しかしながら、本発明の溶接方法は、図示しないV結線、スコット結線によるタンデム溶接、V開先、X開先への適用、開先充填剤の使用を排除するものではない。
 初層、あるいは初層とこれに積層する上盛層の除去について説明する。
 本発明の溶接方法は、図1に示す初層21のみを好適な溶接対象とする初層シングルサブマージ溶接方法である。しかしながら、本発明の溶接方法は、図示しないが、初層21のみならず、初層21に溶接金属をさらに積層して溶接する場合においても、適用可能である。
 初層、あるいは初層とこれに積層する上盛層(具体的には、初層を1層目としたときの2層目、3層目など)は、要求される継手性能によって、ガウジング、機械加工等で除去することができる。
 以下、本発明の範囲に入る実施例(No.1~14)について、その効果を本発明の範囲から外れる比較例(No.15~48)と比較して説明する。
 表1に示す化学成分の母材を3種類用意した。図1に示すように、この母材10について、板厚tが250mm、溝底の曲率半径Rが10mm、開先角度θが4°の狭開先を機械加工で形成して試験体20とした。
 また、表2に示す化学成分の溶接ワイヤを17種類使用した。ワイヤ径は4.0mmφである。また、表3に示す粒度、化学成分の溶接フラックスを27種類使用した。なお、表2、表3中、本発明の規定を満たさないものは数値に下線を引いて示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1に示す試験体20の狭開先内を、表2に記載の溶接ワイヤと表3に記載の溶接フラックスを用いて、溶接ワイヤ送給速度および溶接速度を変化させ、サブマージアーク溶接を実施した。溶接ワイヤ送給速度は、溶接電流、溶接速度を変化させることによりコントロールした。
 溶接条件は以下のとおりである。また、その他の条件は表4に示す。
(溶接条件)
チップ:図2~図4に示す先端曲りチップ30(ベント角材状チップ)
電極特性:垂下特性
電極極性:ACシングル
溶接姿勢:下向き
積層方法:初層1層1パス
Figure JPOXMLDOC01-appb-T000004
(評価方法)
 この溶接を行った試験体20について、溶接終了後、目視にて、高温割れ、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークを評価した。高温割れ、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークの各評価方法は以下のとおりである。
(1)高温割れ
 溶接ビードのスタート、エンド部を除外した300mmの範囲で、50mmごとの断面でマクロ組織を観察した。計5つの断面全てで、割れが発生していない場合を○(良好)、割れが発生した場合を×(不良)と判定した。
(2)なじみ性
 溶接ビードのスタート、エンド部を除外した300mmの範囲で、50mmごとの断面でマクロ組織を観察した。計5つの断面全てでビード止端形状が滑らかな場合を良好(○)、それ以外を不良(×)と判定した。
 ビード形状の評価は、目視で溶接線方向のビード余盛高さを観察して、滑らかなビードが形成された場合を良好(○)、形成されたビードが粗く、溶接線方向で凹凸が大きかった場合を不良(×)と判定した。
(4)ビード表面性状
 溶接ビードのスタート、エンド部を除外した300mmの範囲で、目視で溶接線方向のリップル(波目)の粗密有無を観察して、粗密のないものを良好(○)、粗密のあるものを(×)と判定した。
(5)スラグ焼付き
 溶接終了後のビード表面に付着したフラックスをハンマーで3回たたき、スラグが容易に剥離した場合を良好(○)、剥離しなかった場合を不良(×)と判定した。
(6)ポックマーク
 溶接ビードのスタート、エンド部を除外した300mmの範囲で、目視にてビード表面のポック発生個数を計測して、ポックマークが5個以下を良好(○)、6個以上を不良(×)と判定した。
 各実施例、比較例の高温割れ、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークの評価結果を表5、表6に示した。なお、表6中、本発明の規定を満たさないものは下線を引いて示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、実施例1~14は、本発明の範囲を満たしており、高温割れ、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークのいずれにおいても優れていた。これに対して、比較例15~48は、本発明の範囲を満たしていないため、高温割れ、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークのいずれか1つ以上において、性能に劣るところがあった。
 比較例15~23は、溶接ワイヤの化学組成が本発明から外れているものであり、高温割れ、なじみ性、ビード形状、スラグ焼付きのいずれか1つ以上において、性能に劣っていた。比較例24~36は、溶接フラックスの化学組成が本発明から外れているものであり、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークのいずれか1つ以上において、性能に劣っていた。比較例37~48は、溶接ワイヤの化学組成と溶接フラックスの化学組成が本発明から外れているものであり、高温割れ、なじみ性、ビード形状、ビード表面性状、スラグ焼付き、ポックマークのいずれか1つ以上において、性能に劣るところがあった。
 以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。
 本出願は、出願日が2014年7月18日である日本国特許出願、特願第2014-147995号を基礎出願とする優先権主張と伴う。特願第2014-147995号は参照することにより本明細書に取り込まれる。
10 母材(被溶接材)
20 試験体
21 初層
30 チップ
30a チップ先端部
40 溶接ワイヤ

Claims (6)

  1.  C:0.05質量%未満、N:0.055質量%以下、Si:0.05質量%を超え、0.50質量%以下を含有し、残部がFeおよび不可避的不純物である溶接ワイヤと、
     CaF:2~30質量%、CaO:2~20質量%、MgO:20~40質量%、Al:5~25質量%、SiおよびSiOの合計:5~25質量%(SiO換算)を含有し、BaO:25質量%以下、ZrO:10質量%以下、TiO:5質量%未満に規制した溶接フラックスと、
    を組み合わせて用いることを特徴とする高Cr系CSEF鋼のシングルサブマージアーク溶接方法。
  2.  前記溶接ワイヤがさらに、Mn、Ni、Cr、Mo、V、Nb、W、Co、Bの群から選択される1種類以上を含有し、
     そのとき、Mn:2.20質量%以下、Ni:1.00質量%以下、Cr:10.50質量%以下、Mo:1.20質量%以下、V:0.45質量%以下、Nb:0.080質量%以下、W:2.0質量%以下、Co:3.0質量%以下、B:0.005質量%以下であることを特徴とする請求項1に記載の高Cr系CSEF鋼のシングルサブマージアーク溶接方法。
  3.  ワイヤ送給速度(V)を50~120g/min、溶接速度(v)を20~60cm/minとし、前記ワイヤ送給速度と前記溶接速度との比で求める単位長さ当りの溶着量(V/v)を1.8~4.5g/cmとする条件で溶接することを特徴とする請求項1乃至2に記載の高Cr系CSEF鋼のシングルサブマージアーク溶接方法。
  4.  チップ/母材間距離が20~40mmである請求項3に記載の高Cr系CSEF鋼のシングルサブマージアーク溶接方法。
  5.  チップ角度は、後退角αが60°までの範囲、前進角βが60°までの範囲である請求項4に記載の高Cr系CSEF鋼のシングルサブマージアーク溶接方法。
  6.  チップ形状は、直管状またはベンド角材状である請求項5記載の高Cr系CSEF鋼のシングルサブマージアーク溶接方法。
PCT/JP2015/070433 2014-07-18 2015-07-16 高Cr系CSEF鋼のシングルサブマージアーク溶接方法 WO2016010121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15822552.4A EP3170616B1 (en) 2014-07-18 2015-07-16 Method of single submerged arc welding of high-cr csef steel
KR1020177001279A KR101915911B1 (ko) 2014-07-18 2015-07-16 고Cr계 CSEF 강의 싱글 서브머지드 아크 용접 방법
CN201580037690.0A CN106470796B (zh) 2014-07-18 2015-07-16 高Cr系CSEF钢的单丝埋弧焊方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014147995A JP6282190B2 (ja) 2014-07-18 2014-07-18 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
JP2014-147995 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010121A1 true WO2016010121A1 (ja) 2016-01-21

Family

ID=55078607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070433 WO2016010121A1 (ja) 2014-07-18 2015-07-16 高Cr系CSEF鋼のシングルサブマージアーク溶接方法

Country Status (5)

Country Link
EP (1) EP3170616B1 (ja)
JP (1) JP6282190B2 (ja)
KR (1) KR101915911B1 (ja)
CN (1) CN106470796B (ja)
WO (1) WO2016010121A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110293338A (zh) * 2019-06-28 2019-10-01 东北大学 一种船用高氟低锆型熔炼焊剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440011A (zh) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 一种真空感应炉冶炼低合金含氮焊丝钢及其冶炼方法
US20220235445A1 (en) 2019-03-19 2022-07-28 Nippon Steel Corporation Ferritic heat-resistant steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067758A (ja) * 1973-10-22 1975-06-06
JPS6376789A (ja) * 1986-09-19 1988-04-07 Nippon Steel Corp 9Cr−Mo鋼用潜弧溶接ワイヤ
JPH05285691A (ja) * 1992-04-15 1993-11-02 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH07204885A (ja) * 1994-01-14 1995-08-08 Sumitomo Metal Ind Ltd 耐溶接高温割れ性に優れたフェライト鋼溶接材料
JPH07214325A (ja) * 1993-12-10 1995-08-15 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH09277084A (ja) * 1996-04-12 1997-10-28 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH10156534A (ja) * 1996-11-21 1998-06-16 Sumitomo Metal Ind Ltd スパイラル鋼管の製造方法
JP2005329415A (ja) * 2004-05-18 2005-12-02 Kobe Steel Ltd 改良9Cr−1Mo鋼用溶接ワイヤ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529843B2 (ja) * 1987-03-09 1996-09-04 新日本製鐵株式会社 9Cr−1Mo鋼のサブマ−ジア−ク溶接方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067758A (ja) * 1973-10-22 1975-06-06
JPS6376789A (ja) * 1986-09-19 1988-04-07 Nippon Steel Corp 9Cr−Mo鋼用潜弧溶接ワイヤ
JPH05285691A (ja) * 1992-04-15 1993-11-02 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH07214325A (ja) * 1993-12-10 1995-08-15 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH07204885A (ja) * 1994-01-14 1995-08-08 Sumitomo Metal Ind Ltd 耐溶接高温割れ性に優れたフェライト鋼溶接材料
JPH09277084A (ja) * 1996-04-12 1997-10-28 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH10156534A (ja) * 1996-11-21 1998-06-16 Sumitomo Metal Ind Ltd スパイラル鋼管の製造方法
JP2005329415A (ja) * 2004-05-18 2005-12-02 Kobe Steel Ltd 改良9Cr−1Mo鋼用溶接ワイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3170616A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110293338A (zh) * 2019-06-28 2019-10-01 东北大学 一种船用高氟低锆型熔炼焊剂及其制备方法

Also Published As

Publication number Publication date
KR101915911B1 (ko) 2018-11-06
JP2016022501A (ja) 2016-02-08
JP6282190B2 (ja) 2018-02-21
EP3170616B1 (en) 2020-12-23
CN106470796B (zh) 2020-02-07
EP3170616A4 (en) 2018-04-04
CN106470796A (zh) 2017-03-01
KR20170016496A (ko) 2017-02-13
EP3170616A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
KR101918866B1 (ko) 고Cr계 CSEF 강의 탠덤 서브머지드 아크 용접 방법
JP5977998B2 (ja) Ni基合金溶接金属、帯状電極及び溶接方法
WO2012073646A1 (ja) Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
JP5671364B2 (ja) クリープ特性に優れた溶接金属
JP5928726B2 (ja) 被覆アーク溶接棒
JP6209135B2 (ja) 狭開先タンデムサブマージアーク溶接方法
US20160318133A1 (en) Welding material for heat resistant steel
WO2016009903A1 (ja) 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
WO2016010121A1 (ja) 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
CN107949455B (zh) 埋弧焊用焊丝
WO2016010122A1 (ja) 高Cr系CSEF鋼の初層サブマージアーク溶接方法
WO2017154754A1 (ja) 溶接金属、および該溶接金属を含む溶接構造体
JP6641084B2 (ja) 溶接時の耐棒焼け性に優れる低水素系被覆アーク溶接棒
KR101657836B1 (ko) 극저온 인성, 내열성 및 내균열성이 우수한 플럭스 코어드 아크 용접 재료
KR101760828B1 (ko) Ni계 플럭스 코어드 와이어 용접재료
WO2017038975A1 (ja) サブマージアーク溶接用ワイヤ
JPH09300096A (ja) オーステナイト系ステンレス鋼用不活性ガスアーク溶接材料
WO2024053280A1 (ja) ソリッドワイヤ及びガスシールドアーク溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822552

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015822552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822552

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177001279

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE