WO2016009620A1 - 鍛造クランク軸の製造方法 - Google Patents

鍛造クランク軸の製造方法 Download PDF

Info

Publication number
WO2016009620A1
WO2016009620A1 PCT/JP2015/003452 JP2015003452W WO2016009620A1 WO 2016009620 A1 WO2016009620 A1 WO 2016009620A1 JP 2015003452 W JP2015003452 W JP 2015003452W WO 2016009620 A1 WO2016009620 A1 WO 2016009620A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
crankshaft
die
arm
manufacturing
Prior art date
Application number
PCT/JP2015/003452
Other languages
English (en)
French (fr)
Inventor
憲司 田村
潤一 大久保
広一郎 石原
吉野 健
訓宏 薮野
黒川 宣幸
智久 山下
奨 高本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/325,101 priority Critical patent/US10350671B2/en
Priority to EP15821281.1A priority patent/EP3170576B1/en
Priority to JP2016534103A priority patent/JP6245369B2/ja
Priority to CN201580038133.0A priority patent/CN106488816B/zh
Priority to MX2017000605A priority patent/MX2017000605A/es
Publication of WO2016009620A1 publication Critical patent/WO2016009620A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/08Making machine elements axles or shafts crankshafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/027Trimming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/08Crankshafts made in one piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/46Shaping by deformation without removing material by forging

Definitions

  • the present invention relates to a method of manufacturing a crankshaft by hot forging.
  • crankshaft For reciprocating engines such as automobiles, motorcycles, agricultural machinery, and ships, a crankshaft is indispensable for converting the reciprocating motion of the piston into a rotational motion to extract power.
  • Crankshafts are roughly classified into those manufactured by die forging and those manufactured by casting. In particular, when high strength and high rigidity are required, the former forged crankshaft having excellent characteristics is often used.
  • a forged crankshaft is made of billet as a raw material, and the billet has a round or square cross section and a constant cross sectional area over the entire length. Further, in the production of a forged crankshaft, each step of preliminary forming, die forging, deburring, and shaping is sequentially provided.
  • the preforming process includes roll forming and bending processes, and the die forging process includes roughing and finishing processes.
  • crankshaft 1 (a) to 1 (f) are schematic diagrams for explaining a manufacturing process of a conventional general forged crankshaft.
  • the crankshaft 1 illustrated in FIG. 1 (f) is mounted on a 4-cylinder engine and is a crankshaft of a 4-cylinder-8-counterweight.
  • the crankshaft 1 has five journal portions J1 to J5, four pin portions P1 to P4, a front portion Fr, a flange portion Fl, and eight crank arms connecting the journal portions J1 to J5 and the pin portions P1 to P4, respectively.
  • Part hereinafter also simply referred to as “arm part”) A1 to A8.
  • the crankshaft 1 has counterweight portions (hereinafter also simply referred to as “weight portions”) W1 to W8 in all eight arm portions A1 to A8.
  • the weight portions W1 to W8 are formed integrally with the arm portions A1 to A8, respectively.
  • journal portions J1 to J5 the journal portions P1 to P4, the arm portions A1 to A8, and the weight portions W1 to W8 are collectively referred to
  • the reference numerals are “J” for the journal portion and “P” for the pin portion.
  • the pin portion P and a pair of arm portions A (including the weight portion W) connected to the pin portion P are collectively referred to as “slow”.
  • the forged crankshaft 1 is manufactured as follows. First, the billet 2 shown in FIG. 1A cut in advance to a predetermined length is heated by a heating furnace (for example, an induction heating furnace or a gas atmosphere heating furnace), and then roll forming is performed. In the roll forming step, for example, the billet 2 is rolled with a perforated roll and the volume thereof is distributed in the longitudinal direction while squeezing, thereby forming the roll waste land 3 as an intermediate material (see FIG. 1B). Next, in the bending step, the roll waste land 3 obtained by roll forming is partially crushed from a direction perpendicular to the longitudinal direction. Thereby, the volume of the roll wasteland 3 is allocated and the bending wasteland 4 which is the further intermediate material is shape
  • molded (refer FIG.1 (c)).
  • the bent rough ground 4 obtained by bending is press-forged using a pair of upper and lower dies.
  • the rough forging material 5 in which the approximate shape of the crankshaft (final product) is formed is formed (see FIG. 1D).
  • the finish punching process the rough forging material 5 obtained by roughing is provided, and the rough forging material 5 is press-forged using a pair of upper and lower dies.
  • the forging material 6 shaped to match the crankshaft of the final product is formed (see FIG. 1 (e)).
  • surplus material flows out as burrs from between the mold split surfaces of the molds facing each other. For this reason, the rough forged material 5 and the finished forged material 6 both have large burrs (5a, 6a) around the shaped crankshaft.
  • the finished forged material 6 with the burr 6a obtained by finish punching is removed by punching and removing the burr 6a with a blade tool, for example, while holding it with a mold from above and below.
  • the forge crankshaft 1 is obtained.
  • the key points of the forged crankshaft 1 from which burrs have been removed are slightly lowered from above and below with a mold to correct the dimensional shape of the final product.
  • the essential parts of the crankshaft 1 correspond to, for example, a shaft portion such as the journal portion J, the pin portion P, the front portion Fr, the flange portion Fl, and the arm portion A and the weight portion W.
  • the forged crankshaft 1 is manufactured.
  • the manufacturing process shown in FIGS. 1A to 1F can be applied to various crankshafts as well as the 4-cylinder-8-piece counterweight crankshaft shown in FIG. 1F.
  • the present invention can be applied to a crankshaft of a 4-cylinder-four-counterweight.
  • the weight portion W is provided in a part of the arm portions A.
  • the weight part W is provided in the first first arm part A1, the last eighth arm part A8, and the central two arm parts (fourth arm part A4, fifth arm part A5).
  • the manufacturing process is the same for crankshafts mounted on 3-cylinder engines, in-line 6-cylinder engines, V-type 6-cylinder engines, 8-cylinder engines, and the like.
  • a twist process is added after a deburring process.
  • crankshaft which is a basic part of a reciprocating engine, is also required to be lighter. Examples of conventional techniques for reducing the weight of a forged crankshaft include the following.
  • Patent Documents 1 and 2 describe an arm part in which a hole is formed on the surface on the journal part side, and also describe a method of manufacturing a crankshaft having this arm part.
  • the hole portion of the arm portion is formed on a straight line connecting the axis center of the journal portion and the axis center of the pin portion (hereinafter also referred to as “arm portion center line”), and is deeply recessed toward the pin portion.
  • the volume of the hole part is reduced in weight.
  • the weight reduction of the arm portion leads to a reduction in the weight of the weight portion paired with the arm portion, which in turn leads to a weight reduction of the entire forged crankshaft.
  • rigidity torsional rigidity and bending rigidity
  • the surface of the arm portion on the journal portion side is provided with a dent while maintaining the thickness of both side portions of the arm portion, it is possible to reduce the weight and ensure the rigidity at the same time.
  • the arm portion is formed small without forming a recess on the surface of the arm portion. Further, after the deburring step, a punch is pushed into the surface of the arm portion, and a dent is formed by the trace of the punch.
  • Patent Document 3 describes a method of manufacturing a crankshaft in which a journal portion and a pin portion are formed, and an arm portion is formed as it is.
  • a stepped round bar in which the portions corresponding to the journal portion and the pin portion of the crankshaft are individually constricted is used as a material.
  • a pair of journal portion equivalent portions sandwiching the pin portion equivalent portions are respectively held by dies.
  • both dies are approached in the axial direction to compress and deform the round bar material, and the punch is pressed in a direction perpendicular to the axial direction to the pin portion.
  • the portion corresponding to the pin portion is eccentric.
  • Patent Document 4 describes a method of manufacturing a crankshaft in which a journal part and a pin part are formed, and an arm part is formed as it is.
  • a simple round bar is used as a material. One of both ends of this round bar material is held by the fixed type and the other is held by the movable type, while the journal part of the round bar material is held by the journal type, and the pin part is held by the pin type. To do.
  • An object of the present invention is to provide a method for producing a forged crankshaft that can easily obtain a forged crankshaft that simultaneously achieves weight reduction and rigidity securing while improving the yield.
  • a method for manufacturing a forged crankshaft includes a journal part serving as a rotation center, a pin part eccentric with respect to the journal part, and a crank arm part connecting the journal part and the pin part. It is a manufacturing method of a forged crankshaft.
  • the manufacturing method includes a preforming step of forming a burr-free rough material in which a shape of a crankshaft having a surplus portion projecting from the outer periphery of each side portion in the vicinity of the pin portion of the crank arm portion is formed;
  • the rough material formed in the pre-forming step is reduced using a pair of first molds to form a forging material with a burr, and a burr is formed from the forging material formed in the die forging step.
  • a deburring step to be removed In the die forging step, the surface of the crank arm portion on the journal portion side excluding at least the surface of the both side portions is held by pressing the second die while the first die, The surplus portion of the crank arm portion is deformed to increase the thickness of the both side portions of the crank arm portion.
  • the second mold has a guide groove, and the burr that flows out during the rolling process of the die forging step is guided by the guide groove.
  • the second mold in the reduction direction so that the second mold is positioned at the center between the pair of first molds in the reduction process of the die forging step.
  • a surplus portion protruding locally is formed on the outer periphery of both sides of the arm portion in the preforming step, and the surplus portion protruding locally is formed by the first die in the die forging step. Deform and increase the thickness of both sides of the arm. Thereby, it becomes possible to form a dent in the surface of the arm part on the journal part side while keeping the thickness of both side parts of the arm part thick. For this reason, in the obtained forged crankshaft, weight reduction and rigidity ensuring can be achieved simultaneously.
  • the surface of the arm portion on the journal portion side excluding at least the regions on both sides is held by pressing the second die.
  • die forging can be performed without hindrance, and the recess of the arm portion can be easily formed without requiring a great deal of force.
  • the rough material to be processed in the die forging process has the shape of the crankshaft already formed and no burrs, the formation of burrs in forging can be reduced and the yield can be improved.
  • FIGS. 1 (a) to 1 (f) are schematic diagrams for explaining a manufacturing process of a conventional general forged crankshaft.
  • FIG. 1 (a) is a billet
  • FIG. 1 (b) is a rough roll.
  • 1 (c) shows a bent wasteland
  • FIG. 1 (d) shows a rough forged material
  • FIG. 1 (e) shows a finished forged material
  • FIG. 1 (f) shows a crankshaft.
  • 2 (a) to 2 (d) are schematic views showing examples of the shape of the arm portion of the crankshaft before forging according to the present invention
  • FIG. 2 (a) is a perspective view
  • FIG. 2 (b) is a journal.
  • FIG. 2C is a top view when viewed from the section side
  • FIG. 2C is a top view when viewed from the section side
  • FIG. 2D is a cross-sectional view along AA.
  • 3 (a) to 3 (d) are schematic views showing examples of the shape of the arm portion of the crankshaft after forging according to the present invention
  • FIG. 3 (a) is a perspective view
  • FIG. 3 (b) is a journal
  • FIG. 3C is a top view when viewed from the section side
  • FIG. 3D is a cross-sectional view along BB.
  • 4 (a) to 4 (c) are front views schematically showing an example of the operation of the mold in the die forging step of the present invention.
  • FIG. Indicates the middle stage of stamping
  • FIG. 4C shows the end of stamping.
  • 5 (a) and 5 (b) are top views schematically showing an example of the arrangement of the second mold in the die forging step of the present invention
  • FIG. 5 (b) shows the end of stamping.
  • the manufacturing method of the forged crankshaft of the present embodiment includes a pre-forming step, a die forging step, and a deburring step. Each process of pre-forming, die forging, and deburring is performed hot.
  • FIG. 2 (a) to FIG. 2 (d) are schematic views showing examples of the shape of the arm portion of the crankshaft before forging according to the present invention
  • FIG. 2 (a) is a perspective view
  • 2B is a front view when viewed from the journal portion side
  • FIG. 2C is a top view
  • FIG. 2D is a cross-sectional view along AA.
  • FIG. 3 (a) to 3 (d) are schematic views showing examples of the shape of the arm portion of the crankshaft after forging according to the present invention
  • FIG. 3 (a) is a perspective view
  • FIG. 3 (b) is a journal
  • FIG. 3C is a top view when viewed from the section side
  • FIG. 3D is a cross-sectional view along BB.
  • crankshaft arm portions including the weight portion
  • FIGS. 2 (a) to 2 (d) and FIGS. 3 (a) to 3 (d) one of the crankshaft arm portions (including the weight portion) is representatively extracted and shown. The remaining crankshaft arm portions are omitted.
  • both side portions (Aa, Ab) in the vicinity of the pin portion P swell toward the journal portion J, and those The thickness of both side portions (Aa, Ab) is increased. Furthermore, the arm part A has a dent in the area
  • the side part (Aa, Ab) of the arm part A means the side surface of the arm part A and its peripheral part.
  • the side parts (Aa, Ab) of the arm part A are end parts in the width direction of the arm part A (direction perpendicular to the plane including the axis of the journal part J and the axis of the pin part P).
  • the forged arm portion A has both side portions (Aa, Ab) maintained thick and has a recess formed on the surface on the journal portion J side.
  • the shape of the arm part A is maintained even after deburring.
  • the forged crankshaft by this embodiment can achieve weight reduction by the dent of the arm part A surface.
  • the arm portion A before forging is formed in a region As inside the both side portions (Aa, Ab) of the surface on the journal portion J side. It has a dent that matches that after forging (final product).
  • the indentation smoothly extends to the regions on both sides (Aa, Ab) of the arm part A.
  • the thickness of both sides (Aa, Ab) is thinner than the thickness after forging (final product).
  • surplus portions (Aaa, Aba) are formed on the outer circumferences of both sides (Aa, Ab) of the arm portion A.
  • This surplus part (Aaa, Aba) protrudes from the outer periphery (side surface) of each side part (Aa, Ab).
  • the surplus portions (Aaa, Aba) shown in FIGS. 2 (a) to 2 (d) are plate-shaped extending along the width direction, and extend along the outer periphery of both side portions (Aa, Ab) of the arm portion A. spread.
  • the thickness of the surplus portion (Aaa, Aba) is comparable or thin compared to the thickness of both side portions (Aa, Ab) at the base.
  • the method for manufacturing a forged crankshaft according to the present embodiment includes a preforming step, a die forging step, and a deburring step, and all the steps are performed in series. .
  • a twisting process is provided as a subsequent process of the deburring process.
  • a billet is used as a raw material, and the billet is preformed to form a rough material in which the approximate shape of the crankshaft (final product) is modeled.
  • the rough material is an intermediate material, and has a surplus volume in order to form a finished shape while forming burrs in the die forging process.
  • the preforming step can be constituted by, for example, drawing and multiple times of bending (also referred to as “flat pressing”).
  • drawing rolling a roll wasteland of intermediate material is obtained from a billet of material.
  • the volume of the billet is distributed in the longitudinal direction by roll forming using a perforated roll.
  • the volume of the roll wasteland is further distributed by partially reducing the roll wasteland from a direction perpendicular to the longitudinal direction of the roll wasteland.
  • a rough material may be obtained using the technique disclosed in Patent Document 3 or 4. Moreover, you may employ
  • a recess is formed on the surface of the arm portion on the journal portion J side together with the surplus portion (Aaa, Aba) of the arm portion in the obtained rough material.
  • the surplus portions (Aaa, Aba) are provided on the outer peripheries of both side portions (Aa, Ab) in the vicinity of the pin portion P, and project from the outer peripheries.
  • the recess is located in the region As inside the both side portions (Aa, Ab) of the surface on the journal portion J side, and matches the shape after forging (final product shape).
  • the rough material shall be free of burrs.
  • molds such as punches and dies are used in the formation of the rough material by the preforming process.
  • a mold engraving portion is engraved in the mold, and the shape of the above-described arm portion A, specifically, the shape of the surplus portion or the recess of the region As is reflected in the mold engraving portion.
  • the die-cutting gradient of the mold engraving portion does not become a reverse gradient in any of the portions corresponding to the surplus portions (Aaa, Aba) on the outer periphery of the arm portion and the portions corresponding to the dents on the surface of the arm portion. For this reason, the rough material can be formed without any trouble.
  • a pair of first molds is used in the same manner as a conventional general die forging process (more specifically, a roughing process or a finishing process).
  • die is used in the manufacturing method of this embodiment.
  • FIG. 4 (a) to 4 (c) are front views schematically showing an example of the operation of the mold in the die forging process of the present invention.
  • FIG. FIG. 4B shows the middle stage of stamping
  • FIG. 4C shows the end of stamping.
  • 4 (a) to 4 (c) show a rough material (31, 32), a pair of first and second molds 10 and 20 at the top and bottom.
  • FIG. 5 (a) and 5 (b) are top views schematically showing an example of the arrangement of the second mold in the die forging step of the present invention, and FIG. 5 (b) shows the end of stamping.
  • FIG. 5A and FIG. 5B show the rough material (31, 32) and the second mold 20. Further, in order to facilitate understanding of the drawings, the first mold is omitted, and only the second mold 20 is shown by a cross-sectional shape at the arm portion center plane.
  • a mold engraving portion is engraved in each of the upper mold 11 and the lower mold 12 of the first mold 10.
  • the shape of the portion of the crankshaft shape shown in FIG. 3 excluding the recess in the region As of the arm portion A is reflected.
  • the shape of the journal portion J and the pin portion P is reflected in the mold engraving portion.
  • the shape of the arm portion A excluding the recess of the region As is also reflected in the mold engraving portion.
  • the mold 20 is engraved with a mold engraving portion.
  • the mold engraving portion reflects the shape corresponding to the surface of the arm portion A on the journal portion J side excluding at least the regions on both sides (Aa, Ab).
  • the shape of the recess in the region As of the arm portion A is reflected.
  • Such a second mold 20 can be moved back and forth so as to come into contact with or separate from the surface of the arm portion on the journal portion J side.
  • the forward / backward movement of the second mold 20 is performed by a hydraulic cylinder or the like connected to the second mold 20.
  • the second mold 20 shown in FIGS. 4A to 4C and the like can be moved in the down direction so as to be positioned at the center between the upper mold 11 and the lower mold 12 of the first mold 10 (FIG. 4). 4 is movable in the vertical direction).
  • the mechanism for moving the second mold 20 in this way includes, for example, a holder (not shown) for holding the second mold 20, a first elastic body (for example, a spring, not shown), and a second elastic body. (For example, a spring, not shown).
  • the first elastic body connects the lower mold 12 and the holder, and the connected holder can move up and down.
  • the second elastic body has one end connected to the upper mold 11 and the other end capable of contacting the holder.
  • the die forging process using the first die 10 and the second die 20 is performed as follows. First, in a state where the upper mold 11 and the lower mold 12 of the first mold 10 are sufficiently separated, a rough material is stored in the mold engraving portion of the lower mold 12. At this time, the 2nd metal mold
  • the second mold 20 is advanced, and the second mold 20 is pressed into the recess of the region As of the arm part A as shown in FIGS. 4 (a) and 5 (a).
  • the shape of the recess in the region As of the arm part A is held by the second mold 20.
  • the position of the second mold 20 in the reduction direction is not a center between the pair of the first molds 10 but a predetermined distance from the lower mold 12.
  • the upper mold 11 is moved toward the lower mold 12.
  • the position of the second mold 20 in the rolling down direction (vertical direction) is maintained at a predetermined distance from the lower mold 12 because the upper mold 11 and the lower mold 12 are sufficiently separated from each other.
  • the second elastic body does not come into contact with the second mold 20; The position of the two molds 20 in the rolling direction is maintained.
  • the second mold 20 starts moving in the rolling direction, and the second mold 20 is the same as the first mold 10. Move so that it is centered between the pair. More specifically, when a mechanism constituted by the above-described holder, the first elastic body, and the second elastic body is employed, the second elastic body abuts on the second mold 20 and the first elastic body And the second elastic body start to compress. Accordingly, the second mold 20 is lowered. Since the amount of shrinkage of the first elastic body and the second elastic body is always adjusted to be the same when the second mold 20 is lowered, the second mold 20 includes the upper mold 11 and the lower mold 12. It descends in a state where it is always located in the middle of the center. Almost simultaneously with the start of the movement of the second mold 20 in the rolling direction, the rolling of the rough material 31 by the first mold 10 is started.
  • the upper die 11 is further moved so that the upper die 11 reaches the reduction end position (see FIG. 4C). During this time, in accordance with the movement of the upper mold 11, the second mold 20 moves so as to be always located at substantially the center between the pair of first molds 10. As the upper die 11 reaches the reduction end position, the reduction of the rough material 31 ends.
  • the rough material is reduced by the first mold 10, and the shapes corresponding to the mold engraving portions of the upper mold 11 and the lower mold 12 are formed into the rough material.
  • the journal portion J and the pin portion P are formed into a rough material.
  • the burr 32a is formed on the rough material along with the shaping by the reduction.
  • the second mold 20 is pressed against the recess in the region As of the arm part A. For this reason, the recessed shape of the region As of the arm part A is held by the second mold 20.
  • the second mold 20 is preferably movable up and down so as to be positioned at the center between the upper mold 11 and the lower mold 12 of the first mold 10, for example, by the above-described configuration.
  • the arm part center line of the rough material also moves up and down, and specifically, the arm part center line is positioned at the center between the upper mold 11 and the lower mold 12 of the first mold 10. Move up and down.
  • the second mold 20 can be moved up and down, the depression of the region As of the arm part A and the second mold 20 are maintained in their relative positional relationship in the reduction process. Move up and down. As a result, the recessed shape of the region As of the arm part A is more reliably held by the second mold 20.
  • surplus portions (Aaa, Aba) are formed on the outer circumferences of both side portions (Aa, Ab) of the arm portion A of the rough material, and the surplus portions (Aaa, Aba) are formed on both side portions (Aa, Aba). Ab) It protrudes from each outer periphery.
  • the mold engraving portion of the first mold 10 upper die 11 and lower die 12
  • the mold engraving part of the first mold 10 (upper mold 11 and lower mold 12) is pressed against the surplus part (Aaa, Aba), and the surplus part (Aaa, Aba) It is folded or crushed.
  • the surplus portion (Aaa, Aba) is deformed and shaped into a shape along the mold engraving portion of the first mold 10 (upper mold 11 and lower mold 12).
  • the surface on the journal portion J side protrudes at both side portions (Aa, Ab) of the arm portion A, and the thickness of both side portions (Aa, Ab) increases.
  • the second mold 20 is retracted and retracted from the arm portion A, and then the upper mold 11 of the first mold 10 is separated from the lower mold 12 and cranked. Take out the shaft (forging material).
  • crankshaft is obtained by punching and removing the burrs from the forged material with burrs.
  • main shapes for example, the arm part A, the journal part J, and the pin part P
  • the main shapes are also maintained in the forged material (obtained crankshaft) after deburring.
  • the manufacturing method of the present embodiment it is possible to form a dent on the surface of the arm part A on the journal part J side while maintaining the thickness of both side parts (Aa, Ab) of the arm part A thick. It becomes. For this reason, the manufacturing method of this embodiment can manufacture the forged crankshaft which aimed at weight reduction and rigidity ensuring simultaneously.
  • the manufacturing method of this embodiment models the surplus part (Aaa, Aba) which protrudes locally on the outer periphery of the both sides (Aa, Ab) of the arm part A, and this surplus part protrudes locally.
  • (Aaa, Aba) is deformed by reducing the first mold.
  • the force required for the reduction of the first mold may be about the same as that of conventional forging.
  • the second mold is pressed against the surface of the arm part A. However, since the second mold is not pushed further, the force for holding the second mold may be small. From these, the manufacturing method of this embodiment does not require a great deal of force and can be performed easily.
  • the manufacturing method of the present embodiment obtains a rough material without burrs in the preforming step and obtains a forged material with burrs in the die forging step, so that burrs are formed in the die forging step.
  • a portion of the forging material (rough material after die forging) 32 that comes into contact with the second mold is a burr 32a. Is not formed. From these, the manufacturing method of this embodiment can improve a yield.
  • the burrs flow out from the mold engraving portion of the first mold 10 (upper mold 11 and lower mold 12), and the first There is a case where the gap between the mold 10 and the second mold 20 enters. In this case, the first mold 10 and the second mold 20 may be damaged. Moreover, there is a possibility that the advance / retreat movement of the second mold 20 is hindered and the operation is stopped.
  • the second mold 20 has a guide groove 20a and guides burrs flowing out in the die forging process by the guide groove 20a.
  • a guide groove 20 a having a predetermined width is provided around a portion located in the center between the upper mold 11 and the lower mold 12 of the first mold 10. .
  • the shape and dimensions of the guide groove 20a may be appropriately set according to the size of the burr to be formed.
  • the cross-sectional shape of the guide groove 20a can be rectangular, trapezoidal, or semicircular.
  • the second mold 20 In the reduction process of the die forging step, it is preferable to move the second mold 20 in the reduction direction so that the second mold 20 is positioned at the center between the pair of first molds 10. Thereby, since the shape, such as a dent of the area As of the arm part A, is securely held by the second mold 20, the processing accuracy can be improved at the portion where the second mold 20 is pressed.
  • the mechanism for moving the second mold 20 in the reduction direction can adopt the above-described configuration, that is, it can be configured by a holder, a first elastic body, and a second elastic body.
  • the pin top portion Ac of the arm portion A is formed into a thick shape and the shape is maintained in the die forging step. Thereby, the thickness of pin top part Ac is securable in the crankshaft obtained.
  • the manufacturing method according to the present embodiment is not limited to the arm portion integrally including the weight portion as shown in FIGS. 2A to 2D and FIGS. 3A to 3D, and the arm not having the weight portion. May be targeted.
  • all the arm portions integrally have a weight portion.
  • the surplus portions may be formed on both side portions near the pin portion, and the surplus portions may be deformed to increase the thickness of both side portions.
  • some arm portions have a weight portion integrally.
  • the surplus portions may be formed on both side portions in the vicinity of the pin portion only in the arm portion integrally having the weight portion, and the surplus portions may be deformed to increase the thickness of the both side portions.
  • the surplus portions are formed on both side portions in the vicinity of the pin portion, and the surplus portions are deformed to form both side portions. You may increase the thickness of.
  • the manufacturing method of the present embodiment is not limited to a crankshaft mounted on a four-cylinder engine, but can be applied to a crankshaft mounted on a three-cylinder engine, an in-line six-cylinder engine, a V-type six-cylinder engine, an eight-cylinder engine, or the like. .
  • the present invention can be effectively used for manufacturing a forged crankshaft to be mounted on any reciprocating engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Forging (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 鍛造クランク軸の製造方法は、クランクアーム部(A)のピン部(P)近傍の両側部それぞれの外周から突出する余肉部(Aaa、Aba)を有するクランク軸の形状が造形されたバリなしの荒素材(31)を成形する予備成形工程と、荒素材(31)を一対の第1金型を用いて圧下することにより、バリ付きの鍛造材(32)を成形する型鍛造工程と、鍛造材(32)からバリ(32a)を除去するバリ抜き工程とを含む。型鍛造工程では、アーム部(A)のジャーナル部(J)側の表面を第2金型(20)の押し当てにより保持しながら、第1金型により、アーム部(A)の余肉部(Aaa、Aba)を変形させて、アーム部(A)の両側部(Aa、Ab)の厚みを増加させる。これらにより、軽量化と剛性確保を同時に図った鍛造クランク軸を、歩留りを向上させつつ簡便に得ることができる。

Description

鍛造クランク軸の製造方法
 本発明は、熱間鍛造によりクランク軸を製造する方法に関する。
 自動車、自動二輪車、農業機械、船舶等のレシプロエンジンは、ピストンの往復運動を回転運動に変換して動力を取り出すために、クランク軸が不可欠である。クランク軸は、型鍛造によって製造されるものと、鋳造によって製造されるものとに大別される。特に、高強度と高剛性が要求される場合は、それらの特性に優れた前者の鍛造クランク軸が多用される。
 一般に、鍛造クランク軸はビレットを原材料とし、そのビレットは、断面が丸形又は角形で全長にわたって断面積が一定である。また、鍛造クランク軸の製造では、予備成形、型鍛造、バリ抜き、及び整形の各工程が順に設けられる。通常、予備成形工程は、ロール成形と曲げ打ちの各工程を含み、型鍛造工程は、荒打ちと仕上げ打ちの各工程を含む。
 図1(a)~図1(f)は、従来の一般的な鍛造クランク軸の製造工程を説明するための模式図である。図1(f)に例示するクランク軸1は、4気筒エンジンに搭載されるものであり、4気筒-8枚カウンターウエイトのクランク軸である。そのクランク軸1は、5つのジャーナル部J1~J5、4つのピン部P1~P4、フロント部Fr、フランジ部Fl、及びジャーナル部J1~J5とピン部P1~P4をそれぞれつなぐ8枚のクランクアーム部(以下、単に「アーム部」ともいう)A1~A8から構成される。また、クランク軸1は、8枚の全てのアーム部A1~A8にカウンターウエイト部(以下、単に「ウエイト部」ともいう)W1~W8を有する。そのウエイト部W1~W8は、それぞれアーム部A1~A8と一体で成形される。
 以下では、ジャーナル部J1~J5、ピン部P1~P4、アーム部A1~A8及びウエイト部W1~W8のそれぞれを総称するとき、その符号は、ジャーナル部で「J」、ピン部で「P」、アーム部で「A」、ウエイト部で「W」とも記す。ピン部P及びこのピン部Pにつながる一組のアーム部A(ウエイト部Wを含む)をまとめて「スロー」ともいう。
 図1に示す製造方法では、以下のようにして鍛造クランク軸1が製造される。先ず、予め所定の長さに切断した図1(a)に示すビレット2を加熱炉(例えば誘導加熱炉やガス雰囲気加熱炉)によって加熱した後、ロール成形を行う。ロール成形工程では、例えば孔型ロールによりビレット2を圧延して絞りつつその体積を長手方向に配分し、中間素材であるロール荒地3を成形する(図1(b)参照)。次に、曲げ打ち工程では、ロール成形によって得られたロール荒地3を長手方向と直角な方向から部分的に圧下する。これにより、ロール荒地3の体積を配分し、更なる中間素材である曲げ荒地4を成形する(図1(c)参照)。
 続いて、荒打ち工程では、曲げ打ちによって得られた曲げ荒地4を上下に一対の金型を用いてプレス鍛造する。これにより、クランク軸(最終製品)のおおよその形状が造形された荒鍛造材5を成形する(図1(d)参照)。更に、仕上げ打ち工程では、荒打ちによって得られた荒鍛造材5が供され、荒鍛造材5を上下に一対の金型を用いてプレス鍛造する。これにより、最終製品のクランク軸と合致する形状が造形された鍛造材6を成形する(図1(e)参照)。これら荒打ち及び仕上げ打ちのとき、互いに対向する金型の型割面の間から、余材がバリとして流出する。このため、荒鍛造材5及び仕上げ鍛造材6は、いずれも、造形されたクランク軸の周囲にバリ(5a、6a)が大きく付いている。
 バリ抜き工程では、仕上げ打ちによって得られたバリ6a付きの仕上げ鍛造材6を、例えば、上下から金型で保持しつつ、刃物型によってバリ6aを打ち抜き除去する。これにより、図1(f)に示すように、鍛造クランク軸1が得られる。整形工程では、バリを除去した鍛造クランク軸1の要所を上下から金型で僅かに圧下し、最終製品の寸法形状に矯正する。ここで、クランク軸1の要所は、例えば、ジャーナル部J、ピン部P、フロント部Fr、フランジ部Flなどといった軸部、更にはアーム部A及びウエイト部Wが該当する。こうして、鍛造クランク軸1が製造される。
 図1(a)~図1(f)に示す製造工程は、図1(f)に示す4気筒-8枚カウンターウエイトのクランク軸に限らず、様々なクランク軸に適用できる。例えば、4気筒-4枚カウンターウエイトのクランク軸にも適用できる。ここで、4気筒-4枚カウンターウエイトのクランク軸では、8枚のアーム部Aのうち、一部のアーム部Aにウエイト部Wを設ける。例えば先頭の第1アーム部A1、最後尾の第8アーム部A8、及び中央の2枚のアーム部(第4アーム部A4、第5アーム部A5)にウエイト部Wを設ける。その他に、3気筒エンジン、直列6気筒エンジン、V型6気筒エンジン、8気筒エンジン等に搭載されるクランク軸であっても、製造工程は同様である。なお、ピン部の配置角度の調整が必要な場合は、バリ抜き工程の後に、捩り工程が追加される。
 近年、特に自動車用のレシプロエンジンには、燃費の向上のために軽量化が求められている。このため、レシプロエンジンの基幹部品であるクランク軸にも、軽量化の要求が著しくなっている。鍛造クランク軸の軽量化を図る従来技術としては、下記のものがある。
 特許文献1及び2には、ジャーナル部側の表面に穴部が形成されたアーム部が記載され、このアーム部を有するクランク軸の製造方法も記載されている。アーム部の穴部は、ジャーナル部の軸心とピン部の軸心とを結ぶ直線(以下、「アーム部中心線」ともいう)上に形成され、ピン部に向けて大きく深く窪む。このような同文献に記載されたアーム部は、穴部の体積分が軽量化される。アーム部の軽量化は、アーム部と対をなすウエイト部の重量軽減につながり、ひいては鍛造クランク軸全体の軽量化につながる。また、同文献に開示されたアーム部は、アーム部中心線を間に挟むピン部近傍の両側部で厚みが厚く維持されていることから、剛性(ねじり剛性及び曲げ剛性)も確保される。
 このように、アーム部の両側部の厚みを厚く維持しつつ、アーム部のジャーナル部側の表面に凹みを持たせれば、軽量化と剛性確保を同時に図ることができる。
 ただし、そのような独特な形状のアーム部を有する鍛造クランク軸は、従来の製造方法では製造することが困難である。型鍛造工程において、アーム部表面に凹みを形成しようとすれば、当該凹み部位の金型の型抜き勾配が逆勾配になり、成形された鍛造材が金型から抜けなくなる事態が生じるからである。
 そのような事態に対処するため、特許文献1及び2に記載された製造方法では、型鍛造工程ではアーム部表面に凹みを形成することなくアーム部を小さく成形することとしている。また、バリ抜き工程の後に、アーム部の表面にパンチを押し込み、そのパンチの痕跡によって凹みを形成することとしている。
 ところで、前記図1(a)~図1(f)に示すような製造方法では、製品とはならない不要なバリが大量に発生することから、歩留りの低下は否めない。このため、鍛造クランク軸を製造する上では、従来から、バリの発生を極力抑え、歩留りの向上を実現することが課題となっている。この課題に対応する従来の技術としては下記のものがある。
 例えば、特許文献3には、ジャーナル部及びピン部が造形され、アーム部もそれなりに造形されたクランク軸を製造する方法が記載されている。その製造技術では、クランク軸のジャーナル部とピン部に相当する部分が個々にくびれた段付きの丸棒を素材とする。その丸棒素材のうちでピン部相当部分を間に挟む一対のジャーナル部相当部分をそれぞれダイスで把持する。
 この状態で、両ダイスを軸方向に接近させて丸棒素材に圧縮変形を与えるとともに、ピン部相当部分に軸方向と直角な方向にポンチを押し付ける。これにより、ピン部相当部分を偏芯させる。このピン部相当部分の偏芯をクランクスローにわたって順次繰り返すことにより、ジャーナル部及びピン部が造形され、アーム部もそれなりに造形される。
 また、特許文献4にも、ジャーナル部及びピン部が造形され、アーム部もそれなりに造形されたクランク軸を製造する方法が記載されている。その製造技術では、単なる丸棒を素材とする。この丸棒素材の両端部のうちの一方を固定型で、その他方を可動型でそれぞれ保持するとともに、丸棒素材のジャーナル部相当部分をジャーナル型で、ピン部相当部分をピン型でそれぞれ保持する。
 この状態から、可動型、ジャーナル型及びピン型を固定型に向けて軸方向に移動させて丸棒素材に圧縮変形を与える。これと同時に、ピン型を軸方向と直角な偏芯方向に移動させてピン部相当部分を偏芯させる。これにより、ジャーナル部及びピン部が造形され、アーム部もそれなりに造形される。
 特許文献3及び4に記載される製造方法では、いずれもバリが発生しないことから、歩留りの著しい向上が期待できる。
特開2012-7726号公報 特開2010-230027号公報 特開2008-155275号公報 特開2011-161496号公報
 確かに、前記特許文献1及び2に記載された製造方法によれば、アーム部の両側部の厚みを厚く維持しつつ、アーム部のジャーナル部側の表面に凹みを形成することが可能となる。これにより、軽量化と剛性確保を同時に図った鍛造クランク軸を製造することができる。
 しかし、この製造方法では、アーム部表面に凹みを形成するために、アーム部表面にパンチを強く押し込んでアーム部全体を変形させることから、パンチの押し込みに多大な力を要する。このため、パンチに多大な力を付与するための格別な設備構成が必要であり、パンチの耐久性に関しても配慮が必要となる。
 一方、前記特許文献3及び4に記載された製造方法によれば、いずれもバリが発生しないことから、歩留りの著しい向上が期待できる。しかし、鍛造クランク軸の軽量化については検討されておらず、軽量化の要求を満足することができない。
 本発明の目的は、軽量化と剛性確保を同時に図った鍛造クランク軸を、歩留りを向上させつつ簡便に得ることができる鍛造クランク軸の製造方法を提供することにある。
 本発明の実施形態による鍛造クランク軸の製造方法は、回転中心となるジャーナル部と、そのジャーナル部に対して偏心したピン部と、前記ジャーナル部と前記ピン部をつなぐクランクアーム部と、を有する鍛造クランク軸の製造方法である。当該製造方法は、前記クランクアーム部の前記ピン部近傍の両側部それぞれの外周から突出する余肉部を有するクランク軸の形状が造形されたバリなしの荒素材を成形する予備成形工程と、前記予備成形工程で成形した前記荒素材を一対の第1金型を用いて圧下することにより、バリ付きの鍛造材を成形する型鍛造工程と、前記型鍛造工程で成形した前記鍛造材からバリを除去するバリ抜き工程と、を含む。前記型鍛造工程では、前記クランクアーム部の前記ジャーナル部側の表面のうちで前記両側部の領域を少なくとも除く表面を、第2金型の押し当てにより保持しながら、前記第1金型により、前記クランクアーム部の前記余肉部を変形させて前記クランクアーム部の前記両側部の厚みを増加させる。
 上記の製造方法において、前記第2金型は、案内溝を有し、前記型鍛造工程の圧下過程で流出する前記バリを前記案内溝によって誘導するのが好ましい。
 上記の製造方法において、前記型鍛造工程の圧下過程で、前記第2金型が前記第1金型の対間の中央に位置するように前記第2金型を圧下方向に移動させるのが好ましい。
 本発明によれば、予備成形工程でアーム部の両側部の外周に局部的に突出する余肉部を形成し、この局部的に突出する余肉部を、型鍛造工程で第1金型によって変形させてアーム部の両側部の厚みを増加させる。これにより、アーム部の両側部の厚みを厚く維持しつつ、アーム部のジャーナル部側の表面に凹みを形成することが可能となる。このため、得られる鍛造クランク軸において、軽量化と剛性確保を同時に図ることができる。
 型鍛造工程では、アーム部のジャーナル部側の表面のうちで両側部の領域を少なくとも除く表面を、第2金型の押し当てにより保持する。この第2金型を用いることにより、型鍛造を支障なく行えるとともに、アーム部の凹みの形成を多大な力を要することなく簡便に行える。また、型鍛造工程で加工対象の荒素材はクランク軸の形状が既に造形されているとともにバリなしであるので、鍛造でのバリの形成を低減でき、歩留りを向上できる。
図1(a)~図1(f)は、従来の一般的な鍛造クランク軸の製造工程を説明するための模式図であり、図1(a)はビレット、図1(b)はロール荒地、図1(c)は曲げ荒地、図1(d)は荒鍛造材、図1(e)は仕上げ鍛造材、図1(f)はクランク軸をそれぞれ示す。 図2(a)~図2(d)は、本発明による鍛造前のクランク軸におけるアーム部の形状例を示す模式図であり、図2(a)は斜視図、図2(b)はジャーナル部側から見たときの正面図、図2(c)は上面図、図2(d)はA-A断面図である。 図3(a)~図3(d)は、本発明による鍛造後のクランク軸におけるアーム部の形状例を示す模式図であり、図3(a)は斜視図、図3(b)はジャーナル部側から見たときの正面図、図3(c)は上面図、図3(d)はB-B断面図である。 図4(a)~(c)は、本発明の型鍛造工程での金型の動作例を模式的に示す正面図であり、図4(a)は型打ち初期時、図4(b)は型打ち中期時、図4(c)は型打ち終了時をそれぞれ示す。 図5(a)及び図5(b)は、本発明の型鍛造工程での第2金型の配置例を模式的に示す上面図であり、図5(a)は型打ち初期時、図5(b)は型打ち終了時をそれぞれ示す。
 以下に、本発明の鍛造クランク軸の製造方法について、図面を参照しながら説明する。
 本実施形態の鍛造クランク軸の製造方法は、予備成形工程と、型鍛造工程と、バリ抜き工程とを含む。予備成形、型鍛造及びバリ抜きの各工程は、いずれも熱間で行う。
1.クランク軸のアーム部の形状
 図2(a)~図2(d)は、本発明による鍛造前のクランク軸におけるアーム部の形状例を示す模式図であり、図2(a)は斜視図、図2(b)はジャーナル部側から見たときの正面図、図2(c)は上面図、図2(d)はA-A断面図である。
 図3(a)~図3(d)は、本発明による鍛造後のクランク軸におけるアーム部の形状例を示す模式図であり、図3(a)は斜視図、図3(b)はジャーナル部側から見たときの正面図、図3(c)は上面図、図3(d)はB-B断面図である。
 図2(a)~図2(d)及び図3(a)~図3(d)では、クランク軸のアーム部(ウエイト部を含む)の1つを代表的に抽出して示しており、残りのクランク軸のアーム部を省略する。
 本実施形態における鍛造後のアーム部Aでは、図3(a)~図3(d)に示すように、ピン部P近傍の両側部(Aa、Ab)がジャーナル部J側に膨らみ、それらの両側部(Aa、Ab)の厚みが厚くされる。更に、そのアーム部Aは、ジャーナル部J側の表面のうち、両側部(Aa、Ab)の内側の領域Asに、凹みを有する。ここで、アーム部Aの側部(Aa、Ab)とは、アーム部Aの側面及びその周辺部を意味する。アーム部Aの側部(Aa、Ab)は、換言すると、アーム部Aの幅方向(ジャーナル部Jの軸心及びピン部Pの軸心を含む面に対して垂直な方向)の端部となる。
 このように鍛造後のアーム部Aは、両側部(Aa、Ab)の厚みが厚く維持されるとともに、ジャーナル部J側の表面に凹みが形成されている。このアーム部Aの形状は、バリ抜き後も維持される。このため、本実施形態による鍛造クランク軸は、アーム部A表面の凹みによって軽量化を図ることができる。加えて、アーム部Aの両側部(Aa、Ab)の厚み維持によって剛性の確保を図ることができる。
 これに対し、鍛造前のアーム部Aは、図2(a)~図2(d)に示すように、ジャーナル部J側の表面のうち、両側部(Aa、Ab)の内側の領域Asに、鍛造後(最終製品)と合致する凹みを持つ。その凹みはアーム部Aの両側部(Aa、Ab)の領域まで滑らかに広がっている。これにより、そのアーム部形状は、両側部(Aa、Ab)の厚みが鍛造後(最終製品)の厚みよりも薄い。
 更に、アーム部Aの両側部(Aa、Ab)には、それぞれの外周に余肉部(Aaa、Aba)が造形される。この余肉部(Aaa、Aba)は、両側部(Aa、Ab)それぞれの外周(側面)から突出する。図2(a)~図2(d)に示す余肉部(Aaa、Aba)は、幅方向に沿って伸びる板状であり、アーム部Aの両側部(Aa、Ab)の外周に沿って広がる。余肉部(Aaa、Aba)の厚みは、その根元の両側部(Aa、Ab)の厚みと比べ、同程度であるか又は薄い。
2.鍛造クランク軸の製造方法
 上述のとおり、本実施形態の鍛造クランク軸の製造方法は、予備成形工程と、型鍛造工程と、バリ抜き工程とを含み、いずれの工程も熱間で一連に行われる。ピン部の配置角度の調整が必要な場合は、バリ抜き工程の後工程として、捩り工程が設けられる。
 予備成形工程では、ビレットを原材料とし、このビレットに予備成形を施すことにより、クランク軸(最終製品)のおおよその形状が造形された荒素材を造形する。その荒素材は、中間素材であり、型鍛造工程でバリを形成しつつ仕上げ形状に造形するため、余剰体積を有する。
 予備成形工程は、例えば、絞り圧延と、複数回の曲げ打ち(通称「平押し」ともいう)とで構成できる。絞り圧延では、素材のビレットから中間素材のロール荒地を得る。その絞り圧延では、孔型ロールを用いたロール成形により、ビレットの体積を長手方向に配分する。続いて、曲げ打ちでは、ロール荒地の長手方向と直角な方向からロール荒地を部分的に圧下することにより、ロール荒地の体積をさらに配分する。このような加工を繰り返しロール荒地に施すことにより、上述の形状の荒素材を得ることが可能である。
 予備成形工程では、前記特許文献3又は4に開示される技術を用いて荒素材を得てもよい。また、クロスロールや閉塞鍛造を採用してもよい。
 このような予備成形工程では、得られる荒素材に、前記図2に示すようなクランク軸(最終製品)のおおよその形状を造形する。加えて、得られる荒素材に、アーム部の余肉部(Aaa、Aba)とともに、アーム部のジャーナル部J側の表面に凹みを造形する。その余肉部(Aaa、Aba)は、前述の通り、ピン部P近傍の両側部(Aa、Ab)それぞれの外周に設けられ、その外周から突出する。また、凹みは、ジャーナル部J側の表面のうち、両側部(Aa、Ab)の内側の領域Asに位置し、鍛造後(最終製品形状)の形状と合致する。併せて、荒素材は、バリなしとする。
 ここで、予備成形工程による荒素材の成形では、ポンチやダイス等の金型が用いられる。その金型には、型彫刻部が彫り込まれており、その型彫刻部には、前述のアーム部Aの形状、具体的には余肉部や領域Asの凹みの形状が反映されている。型彫刻部の型抜き勾配は、アーム部外周の余肉部(Aaa、Aba)に対応する部位及びアーム部表面の凹みに対応する部位のいずれでも、逆勾配にならない。このため、荒素材の成形は支障なく行える。
 そして、型鍛造工程に移行する。型鍛造工程では、従来の一般的な型鍛造工程(より具体的には荒打ち工程や仕上げ打ち工程)と同様に、一対の第1金型を用いる。本実施形態の製造方法では、加えて、第2金型を用いる。
 図4(a)~図4(c)は、本発明の型鍛造工程での金型の動作例を模式的に示す正面図であり、図4(a)は型打ち初期時、図4(b)は型打ち中期時、図4(c)は型打ち終了時をそれぞれ示す。図4(a)~図4(c)には、荒素材(31、32)と、上下で一対の第1金型10と、第2金型20とを示す。
 図5(a)及び図5(b)は、本発明の型鍛造工程での第2金型の配置例を模式的に示す上面図であり、図5(a)は型打ち初期時、図5(b)は型打ち終了時をそれぞれ示す。図5(a)及び図5(b)には、荒素材(31、32)と、第2金型20とを示す。また、図面の理解を容易にするため、第1金型を省略し、第2金型20のみをアーム部中心面での断面形状で示す。
 第1金型10の上型11及び下型12には、型彫刻部がそれぞれ彫り込まれている。その型彫刻部には、前記図3に示すクランク軸の形状のうち、アーム部Aの領域Asの凹みを除いた部分の形状が反映されている。具体的には、型彫刻部には、ジャーナル部Jやピン部Pの形状が反映される。また、型彫刻部には、領域Asの凹みを除いたアーム部Aの形状も反映される。
 第1金型10の上型11及び下型12は、第2金型20を収容するため、アーム部Aの領域Asの凹みに対応する部位が大きく開放されている。
 第2金型20には、型彫刻部が彫り込まれている。その型彫刻部には、アーム部Aのジャーナル部J側の表面のうちで両側部(Aa、Ab)の領域を少なくとも除く表面に対応する形状が反映されている。図4(a)~(c)等に示す第2金型20の型彫刻部には、アーム部Aの領域Asの凹みの形状が反映されている。
 このような第2金型20は、アーム部のジャーナル部J側の表面に対して接触したり離間したりするように進退移動が可能である。第2金型20の進退移動は、第2金型20に連結された油圧シリンダ等によって実行される。
 加えて、図4(a)~(c)等に示す第2金型20は、第1金型10の上型11と下型12との中央に位置するように圧下方向に移動可能(図4では上下方向に移動可能)である。このように第2金型20を移動させるための機構は、例えば、第2金型20を保持するホルダー(図示なし)と、第1弾性体(例えばばね、図示なし)と、第2弾性体(例えばばね、図示なし)とで構成できる。第1弾性体は、下型12とホルダーとを連結し、連結されたホルダーは上下動可能である。第2弾性体は、その一端が上型11と連結され、他端がホルダーと当接可能である。
 このような構成の場合、初期状態では、上型11と下型12とが充分に離間して第2弾性体の他端がホルダーと当接しない。このため、上型11と下型12とが近づいても、ホルダーと下型12との距離が一定で維持される。上型11と下型12とが近づき、上型11と下型12との中央に第2金型20が位置すると、第2弾性体の他端がホルダーと当接する。上型11と下型12とがさらに近づくと、第1弾性体及び第2弾性体がそれぞれ圧縮を開始し、それに伴ってホルダーとともに第2金型20が下降する。その際、第1弾性体と第2弾性体の縮む量が同じになるように調整されているので、第2金型20は、上型11と下型12との中央に位置する状態で下降する。
 このような第1金型10及び第2金型20を用いた型鍛造工程は、以下のように行われる。先ず、第1金型10の上型11と下型12とを充分に離間させた状態で、下型12の型彫刻部に荒素材を収納する。このとき、第2金型20は、荒素材31から離間した退避状態にあり、アーム部Aは、ジャーナル部J側表面(領域As)の凹みが全く拘束されていない。
 続いて、第2金型20を進出させ、図4(a)及び図5(a)に示すように、アーム部Aの領域Asの凹みに第2金型20を押し付ける。これにより、アーム部Aの領域Asの凹みの形状が、第2金型20で保持される。その際、第2金型20の圧下方向の位置は、第1金型10の対間の中央でなく、下型12から所定の距離にある。
 この状態で、上型11を下型12に向けて移動させる。その際、第2金型20の圧下方向(上下方向)の位置は、上型11と下型12とが充分に離間した状態であることから、下型12から所定の距離の位置で維持される。より具体的には、前述のホルダーと、第1弾性体と、第2弾性体とで構成される機構を採用する場合、第2弾性体が第2金型20に当接しないことから、第2金型20の圧下方向の位置が維持される。第2金型20の圧下方向の位置が第1金型10の対間の中央となる状態となるまで上型11をさらに移動させると、図4(b)に示す状態となる。
 図4(b)に示す状態から上型11を下型12に向けてさらに移動させると、第2金型20が圧下方向の移動を開始し、第2金型20は第1金型10の対間の中央に位置するように移動する。より具体的には、前述のホルダーと、第1弾性体と、第2弾性体とで構成される機構を採用する場合、第2弾性体が第2金型20に当接し、第1弾性体と第2弾性体の双方が圧縮を開始する。これに伴い、第2金型20が下降する。その第2金型20の下降の際、第1弾性体と第2弾性体の縮む量が常に同じになるように調整されているので、第2金型20は、上型11と下型12とのほぼ中央に常に位置する状態で下降する。この第2金型20の圧下方向の移動開始とほぼ同時に、第1金型10による荒素材31の圧下が開始される。
 上型11をさらに移動させて上型11を圧下終了位置に到達させる(図4(c)参照)。この間、上型11の移動に応じて、第2金型20は第1金型10の対間のほぼ中央に常に位置するように移動する。上型11の圧下終了位置への到達に伴い、荒素材31の圧下が終了する。
 その圧下開始から終了に至る過程で、第1金型10によって荒素材が圧下され、上型11及び下型12の型彫刻部に対応する形状が荒素材に造形される。例えば、ジャーナル部Jやピン部Pが荒素材に造形される。この圧下による造形に伴い、バリ32aが荒素材に形成される。
 また、圧下過程では、第2金型20がアーム部Aの領域Asの凹みに押し付けられている。このため、アーム部Aの領域Asの凹み形状は、第2金型20によって保持される。第2金型20は、例えば前述の構成により、第1金型10の上型11と下型12との中央に位置するように上下動が可能であるのが好ましい。ここで、圧下過程では、荒素材のアーム部中心線も上下に移動し、具体的には、アーム部中心線は第1金型10の上型11と下型12との中央に位置するように上下動する。しがたって、第2金型20が上下動可能であれば、圧下過程において、アーム部Aの領域Asの凹みと第2金型20とは、それらの相対的な位置関係が維持された状態で上下動する。その結果、アーム部Aの領域Asの凹み形状は、第2金型20によってより確実に保持される。
 さらに、荒素材のアーム部Aの両側部(Aa、Ab)それぞれの外周には、余肉部(Aaa、Aba)が造形され、その余肉部(Aaa、Aba)は、両側部(Aa、Ab)それぞれの外周から突出する。一方、第1金型10(上型11及び下型12)の型彫刻部には、領域Asの凹みを除いたアーム部Aの形状、具体的にはアーム部の両側部(Aa、Ab)の形状が反映されている。これらより、圧下に伴い、余肉部(Aaa、Aba)には第1金型10(上型11及び下型12)の型彫刻部が押し当てられ、余肉部(Aaa、Aba)が、折り曲げられるか又は押し潰される。このように余肉部(Aaa、Aba)が変形し、第1金型10(上型11及び下型12)の型彫刻部に沿う形状に造形される。その結果、アーム部Aの両側部(Aa、Ab)でジャーナル部J側の表面が張り出し、両側部(Aa、Ab)の厚みが増加する。
 このようにして、前記図3に示すように、アーム部Aの両側部(Aa、Ab)の厚みが厚くされ、アーム部Aのジャーナル部J側の表面に凹みが造形された鍛造材が得られる。
 また、圧下過程では、アーム部Aは、そのジャーナル部J側の表面の凹み領域Asに第2金型20が押し当てられて拘束されているので、その領域Asの凹みの形状が安定する。
 第1金型10での圧下を完了した後、第2金型20を後退させてアーム部Aから退避させ、その後に、第1金型10の上型11を下型12から離間させてクランク軸(鍛造材)を取り出す。
 続いて、バリ抜き工程で、バリ付きの鍛造材からバリを打ち抜いて除去することにより、クランク軸を得る。その際、鍛造材に造形された主な形状(例えばアーム部Aやジャーナル部J、ピン部P)は、バリ抜き後の鍛造材(得られるクランク軸)でも維持される。
 このように本実施形態の製造方法によれば、アーム部Aの両側部(Aa、Ab)の厚みを厚く維持しつつ、アーム部Aのジャーナル部J側の表面に凹みを造形することが可能となる。このため、本実施形態の製造方法は、軽量化と剛性確保を同時に図った鍛造クランク軸を製造することができる。
 また、本実施形態の製造方法は、アーム部Aの両側部(Aa、Ab)の外周に局部的に突出する余肉部(Aaa、Aba)を造形し、この局部的に突出する余肉部(Aaa、Aba)を第1金型の圧下によって変形させる。この第1金型の圧下で必要な力は、従来の鍛造と同程度でよい。一方、第2金型をアーム部A表面に押し付けるが、その第2金型をそれ以上に押し込むわけではないことから、第2金型を保持する力は小さくて済む。これらから、本実施形態の製造方法は、多大な力が不要であり、簡便に行える。
 ここで、前記図1に示すような従来の製造方法では、荒打ち工程及び仕上げ打ち工程で一対の金型を用いてプレス鍛造することから、得られる鍛造材に大きなバリが形成される。これに対し、本実施形態の製造方法は、予備成形工程でバリなしの荒素材を得て、型鍛造工程でバリ付きの鍛造材を得るので、型鍛造工程でバリが形成されるが、そのバリは小さい。また、前記図3(a)~(d)及び図5(b)に示すように、鍛造材(型鍛造後の荒素材)32のうちの第2金型が当接する部位には、バリ32aが形成されない。これらから、本実施形態の製造方法は、歩留りを向上させることができる。
 本実施形態の製造方法では、型鍛造工程でバリを形成しつつ形状を造形するので、そのバリが第1金型10(上型11及び下型12)の型彫刻部から流出し、第1金型10と第2金型20の隙間に侵入する場合がある。この場合、第1金型10や第2金型20の損傷に至るおそれがある。また、第2金型20の進退移動を阻害し、操業停止に陥るおそれもある。
 これらを防止するため、第2金型20は、案内溝20aを有し、型鍛造工程で流出するバリを案内溝20aによって誘導するのが好ましい。例えば、前記図4及び図5に示す第2金型20では、第1金型10の上型11と下型12との中央に位置する部分を中心に所定の幅の案内溝20aが設けられる。このように案内溝20aを設けることにより、荒素材に形成されるバリは、第1金型10(上型11及び下型12)と第2金型20の隙間に侵入することなく、案内溝20aに誘導される。
 案内溝20aの形状や寸法は、形成されるバリの大きさに応じて適宜設定すればよい。例えば、案内溝20aの断面形状は、矩形状や台形状、半円状とすることができる。
 型鍛造工程の圧下過程では、第2金型20が第1金型10の対間の中央に位置するように第2金型20を圧下方向に移動させるのが好ましい。これにより、アーム部Aの領域Asの凹み等の形状が第2金型20で確実に保持されるので、第2金型20を押し当てる部位で加工精度を向上できる。第2金型20を圧下方向に移動させるための機構は、前述の構成を採用でき、すなわち、ホルダーと、第1弾性体と、第2弾性体とで構成できる。
 ここで、クランク軸では、ピン部Pとアーム部Aのつなぎ目であるピンフィレット部には、応力集中が生じ易い。このため、疲労強度の向上を目的とし、高周波誘導加熱による焼入れをピンフィレット部に施す場合が多い。このとき、アーム部Aのピントップ部Acは、焼入れが施されるピンフィレット部に隣接するので、ある程度の厚みが確保されていないと、焼割れが生じるおそれがある。
 予備成形工程では、アーム部Aのピントップ部Acを厚肉の形状に成形し、その形状を型鍛造工程でも維持するのが好ましい。これにより、得られるクランク軸において、ピントップ部Acの厚みを確保できる。または、予備成形工程では、ピントップ部Acの形状を厚肉に成形することなく、型鍛造工程でピントップ部Acを厚肉の形状に成形するのが好ましい。これによっても、得られるクランク軸において、ピントップ部Acの厚みを確保できる。このようにしてピントップ部Acの厚みを確保すれば、焼割れに対する抵抗性を向上できる。
 本実施形態の製造方法は、図2(a)~(d)及び図3(a)~(d)に示すようなウエイト部を一体で有するアーム部に限らず、ウエイト部を有さないアーム部を対象としてもよい。具体的には、前述の4気筒-8枚カウンターウエイトのクランク軸は、全部のアーム部がウエイト部を一体で有する。この場合、全部のアーム部において、ピン部近傍の両側部に余肉部を成形し、その余肉部を変形させて両側部の厚みを増加させてもよい。
 また、前述の4気筒-4枚カウンターウエイトのクランク軸は、一部のアーム部がウエイト部を一体で有する。この場合、ウエイト部を一体で有するアーム部においてのみ、ピン部近傍の両側部に余肉部を成形し、その余肉部を変形させて両側部の厚みを増加させてもよい。あるいは、ウエイト部を一体で有するアーム部及びウエイト部を一体で有さないアーム部のいずれにおいても、ピン部近傍の両側部に余肉部を成形し、その余肉部を変形させて両側部の厚みを増加させてもよい。
 本実施形態の製造方法は、4気筒エンジンに搭載されるクランク軸に限らず、3気筒エンジンや直列6気筒エンジン、V型6気筒エンジン、8気筒エンジン等に搭載されるクランク軸にも適用できる。
 本発明は、あらゆるレシプロエンジンに搭載される鍛造クランク軸の製造に有効に利用できる。
 1:鍛造クランク軸、 J、J1~J5:ジャーナル部、
 P、P1~P4:ピン部、 Fr:フロント部、 Fl:フランジ部、
 A、A1~A8:クランクアーム部、
 W、W1~W8:カウンターウエイト部、
 Aa、Ab:アーム部の側部、 Ac:アーム部のピントップ部、
 As:アーム部のジャーナル部側表面における両側部の内側領域、
 Aaa、Aba:余肉部、 10:第1金型、 11:上型、
 12:下型、 20:第2金型、 20a:案内溝、
 31:型鍛造前の荒素材、 32:型鍛造後の荒素材(鍛造材)、
 32a:バリ
 

Claims (3)

  1.  回転中心となるジャーナル部と、そのジャーナル部に対して偏心したピン部と、前記ジャーナル部と前記ピン部をつなぐクランクアーム部と、を有する鍛造クランク軸の製造方法であって、
     当該製造方法は、
     前記クランクアーム部の前記ピン部近傍の両側部それぞれの外周から突出する余肉部を有するクランク軸の形状が造形されたバリなしの荒素材を成形する予備成形工程と、
     前記予備成形工程で成形した前記荒素材を一対の第1金型を用いて圧下することにより、バリ付きの鍛造材を成形する型鍛造工程と、
     前記型鍛造工程で成形した前記鍛造材からバリを除去するバリ抜き工程と、を含み、
     前記型鍛造工程では、前記クランクアーム部の前記ジャーナル部側の表面のうちで前記両側部の領域を少なくとも除く表面を、第2金型の押し当てにより保持しながら、前記第1金型により、前記クランクアーム部の前記余肉部を変形させて前記クランクアーム部の前記両側部の厚みを増加させる、鍛造クランク軸の製造方法。
  2.  請求項1に記載の鍛造クランク軸の製造方法において、
     前記第2金型は、案内溝を有し、前記型鍛造工程の圧下過程で流出する前記バリを前記案内溝によって誘導する、鍛造クランク軸の製造方法。
  3.  請求項1または2に記載の鍛造クランク軸の製造方法において、
     前記型鍛造工程の圧下過程で、前記第2金型が前記第1金型の対間の中央に位置するように前記第2金型を圧下方向に移動させる、鍛造クランク軸の製造方法。
     
PCT/JP2015/003452 2014-07-14 2015-07-09 鍛造クランク軸の製造方法 WO2016009620A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/325,101 US10350671B2 (en) 2014-07-14 2015-07-09 Method for producing a forged crankshaft
EP15821281.1A EP3170576B1 (en) 2014-07-14 2015-07-09 Method for producing a forged crankshaft
JP2016534103A JP6245369B2 (ja) 2014-07-14 2015-07-09 鍛造クランク軸の製造方法
CN201580038133.0A CN106488816B (zh) 2014-07-14 2015-07-09 锻造曲轴的制造方法
MX2017000605A MX2017000605A (es) 2014-07-14 2015-07-09 Metodo para producir un cigüeñal forjado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014144338 2014-07-14
JP2014-144338 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016009620A1 true WO2016009620A1 (ja) 2016-01-21

Family

ID=55078129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003452 WO2016009620A1 (ja) 2014-07-14 2015-07-09 鍛造クランク軸の製造方法

Country Status (6)

Country Link
US (1) US10350671B2 (ja)
EP (1) EP3170576B1 (ja)
JP (1) JP6245369B2 (ja)
CN (1) CN106488816B (ja)
MX (1) MX2017000605A (ja)
WO (1) WO2016009620A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159246A1 (ja) * 2015-04-03 2016-10-06 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2016159253A1 (ja) * 2015-04-03 2016-10-06 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2016182065A1 (ja) * 2015-05-14 2016-11-17 新日鐵住金株式会社 鍛造クランク軸の製造装置
WO2017203066A1 (es) * 2016-05-24 2017-11-30 Cie Automotive, S.A. Dispositivo para aligerar el peso de componentes de vehículos

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417967B2 (ja) * 2015-01-27 2018-11-07 新日鐵住金株式会社 鍛造クランク軸の製造方法
JP6822574B2 (ja) * 2017-08-21 2021-01-27 日本製鉄株式会社 鍛造クランク軸の製造方法
CN109622848B (zh) * 2018-12-29 2020-07-17 中钢集团邢台机械轧辊有限公司 一种电池极片轧辊镦粗方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015485A (en) * 1974-07-24 1977-04-05 Klockner-Humboldt-Deutz Aktiengesellschaft Crank shaft for a multi-cylinder short stroke internal combustion engine
JPS63180336A (ja) * 1987-01-23 1988-07-25 Honda Motor Co Ltd クランクシヤフトの製造方法
JPH01241348A (ja) * 1988-03-22 1989-09-26 Honda Motor Co Ltd クランクシャフトのリストライク方法及び装置
JPH0411913U (ja) * 1990-05-18 1992-01-30
WO2015075940A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2015075924A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2015075934A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643340C2 (de) * 1976-09-25 1984-06-28 Eumuco Aktiengesellschaft für Maschinenbau, 5090 Leverkusen Verfahren und Vorrichtung zur Herstellung einer Kurbelwelle durch Warmumformung
JPH08226432A (ja) * 1995-02-17 1996-09-03 Mitsubishi Heavy Ind Ltd クランク軸
DE10346405A1 (de) * 2003-10-07 2005-06-09 Man B & W Diesel Ag Kurbelwelle und Verfahren zu ihrer Herstellung
JP4167161B2 (ja) * 2003-10-10 2008-10-15 日野自動車株式会社 多気筒エンジンのクランクシャフト粗材
JP4944598B2 (ja) 2006-12-26 2012-06-06 株式会社神戸製鋼所 一体型クランク軸の鍛造装置
DE102008047551A1 (de) * 2008-09-16 2010-04-15 Fev Motorentechnik Gmbh Gewichtserleichterung an einer gegossenen Kurbelwelle
JP5249831B2 (ja) 2009-03-26 2013-07-31 本田技研工業株式会社 クランクシャフトおよびその製造方法
JP5324284B2 (ja) * 2009-03-27 2013-10-23 本田技研工業株式会社 クランクシャフトの製造装置および製造方法
JP2011161496A (ja) 2010-02-12 2011-08-25 Toyota Motor Corp クランクシャフトの製造装置、及び、クランクシャフトの製造方法
JP2012007726A (ja) * 2010-05-21 2012-01-12 Honda Motor Co Ltd クランクシャフトおよびその製造方法
DE102011014310A1 (de) * 2011-03-18 2012-09-20 Volkswagen Aktiengesellschaft Leichtbau-Kurbelwelle
CN102240772B (zh) * 2011-05-13 2013-06-05 北京机电研究所 单拐曲轴锻件成形的方法
JP5708893B2 (ja) * 2012-09-07 2015-04-30 新日鐵住金株式会社 鍛造クランク軸の仕上打ち用素材の成形装置
CN104853864B (zh) * 2012-12-12 2016-10-12 新日铁住金株式会社 锻造曲轴及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015485A (en) * 1974-07-24 1977-04-05 Klockner-Humboldt-Deutz Aktiengesellschaft Crank shaft for a multi-cylinder short stroke internal combustion engine
JPS63180336A (ja) * 1987-01-23 1988-07-25 Honda Motor Co Ltd クランクシヤフトの製造方法
JPH01241348A (ja) * 1988-03-22 1989-09-26 Honda Motor Co Ltd クランクシャフトのリストライク方法及び装置
JPH0411913U (ja) * 1990-05-18 1992-01-30
WO2015075940A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2015075924A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2015075934A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159246A1 (ja) * 2015-04-03 2016-10-06 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2016159253A1 (ja) * 2015-04-03 2016-10-06 新日鐵住金株式会社 鍛造クランク軸の製造方法
US10413965B2 (en) 2015-04-03 2019-09-17 Nippon Steel Corporation Method for producing forged crankshaft
WO2016182065A1 (ja) * 2015-05-14 2016-11-17 新日鐵住金株式会社 鍛造クランク軸の製造装置
JPWO2016182065A1 (ja) * 2015-05-14 2018-02-08 新日鐵住金株式会社 鍛造クランク軸の製造装置
WO2017203066A1 (es) * 2016-05-24 2017-11-30 Cie Automotive, S.A. Dispositivo para aligerar el peso de componentes de vehículos
US11311929B2 (en) 2016-05-24 2022-04-26 Cie Automotive, S.A. Device for calibrating and lightening the weight of crankshafts

Also Published As

Publication number Publication date
MX2017000605A (es) 2017-04-27
EP3170576B1 (en) 2018-12-19
JP6245369B2 (ja) 2017-12-13
JPWO2016009620A1 (ja) 2017-04-27
US10350671B2 (en) 2019-07-16
EP3170576A4 (en) 2018-02-28
US20170189955A1 (en) 2017-07-06
EP3170576A1 (en) 2017-05-24
CN106488816A (zh) 2017-03-08
CN106488816B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
JP6245369B2 (ja) 鍛造クランク軸の製造方法
JP6132030B2 (ja) 鍛造クランク軸の製造方法
JP6344485B2 (ja) 鍛造クランク軸の製造方法
JP6024832B2 (ja) 鍛造クランク軸の製造方法
JP6037049B2 (ja) 鍛造クランク軸の製造方法
JP6561576B2 (ja) 鍛造クランク軸の製造方法
WO2016159246A1 (ja) 鍛造クランク軸の製造方法
JP6561577B2 (ja) 鍛造クランク軸の製造方法
JP6287631B2 (ja) 鍛造クランク軸の製造方法
JP6561575B2 (ja) 鍛造クランク軸の製造方法
JP6439863B2 (ja) 鍛造クランク軸の製造方法
WO2016186165A1 (ja) 鍛造クランク軸の製造装置および製造方法
JP6380670B2 (ja) 鍛造クランク軸の製造装置
JP6555393B2 (ja) 鍛造クランク軸の製造方法
JP6387721B2 (ja) 鍛造クランク軸の製造方法
JP6550919B2 (ja) 鍛造クランク軸の製造装置
JP6417967B2 (ja) 鍛造クランク軸の製造方法
JP2016132005A (ja) 鍛造クランク軸の製造方法
WO2018110073A1 (ja) 鍛造クランク軸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534103

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15325101

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000605

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030843

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015821281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821281

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016030843

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161228