WO2016004710A1 - 双视场显示器及其制造方法、驱动方法 - Google Patents

双视场显示器及其制造方法、驱动方法 Download PDF

Info

Publication number
WO2016004710A1
WO2016004710A1 PCT/CN2014/089925 CN2014089925W WO2016004710A1 WO 2016004710 A1 WO2016004710 A1 WO 2016004710A1 CN 2014089925 W CN2014089925 W CN 2014089925W WO 2016004710 A1 WO2016004710 A1 WO 2016004710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
light
region
view display
black matrix
Prior art date
Application number
PCT/CN2014/089925
Other languages
English (en)
French (fr)
Inventor
林家强
武延兵
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/770,235 priority Critical patent/US10311809B2/en
Publication of WO2016004710A1 publication Critical patent/WO2016004710A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction

Definitions

  • Embodiments of the present invention relate to a dual field of view display, a method of manufacturing the same, and a method of driving the same.
  • the display device prepared by the above display technology is a dual field of view display device.
  • the driver can see the road condition navigation information from the left side of the display device, and the passengers in the passenger seat can watch other programs such as entertainment, leisure, and the like.
  • This user-friendly "double vision" function satisfies the needs of different users for different information acquisition.
  • An aspect of the present invention provides a dual field of view display, comprising a color film substrate and an array substrate disposed opposite to each other, and a color filter substrate or one side of the array substrate is provided with a slit grating, the color film
  • the substrate includes a plurality of pixel units and a first black matrix surrounding each of the pixel units, the slit gratings including a light-shielding region and a light-transmitting region arranged in a matrix form; the light-transmitting region partially exposing two levels
  • the pixel unit adjacent in the direction; the dual field of view display further includes a light blocking portion for preventing light leakage from an upper edge and/or a lower edge region of the light transmitting region.
  • Another aspect of the embodiments of the present invention provides a method of manufacturing a dual field of view display, including:
  • the color filter substrate comprises a plurality of pixel units and a first black matrix surrounding each of the pixel units;
  • the slit grating comprises a light shielding region and a light transmission region which are arranged at intervals and arranged in a matrix form;
  • the color filter substrate and the array substrate are disposed, and the slit grating is disposed on one side of the color filter substrate or the array substrate such that the light transmitting portion partially exposes two pixel units adjacent in the horizontal direction.
  • a driving method of a dual field of view display wherein a pixel unit in a dual field of view display includes a dark state sub-pixel, and the method includes:
  • the array substrate controls the liquid crystal at the corresponding position of the dark sub-pixel to be deflected according to the control signal, so that the dual field of view display displays a black picture corresponding to the position of the dark sub-pixel.
  • Figure 1a is a partial schematic view of a known dual field of view display
  • Figure 1b is a top plan view of a known dual field of view display
  • 2a is a schematic partial structural diagram of a dual field of view display according to an embodiment of the present invention.
  • 2b is a schematic structural diagram of a pixel unit according to an embodiment of the present invention.
  • 2c is a schematic structural diagram of a slit grating according to an embodiment of the present invention.
  • 3a is a schematic partial structural diagram of another dual field of view display according to an embodiment of the present invention.
  • 3b is a schematic structural diagram of another pixel unit according to an embodiment of the present disclosure.
  • FIG. 4a is a schematic partial structural diagram of another dual field of view display according to an embodiment of the present invention.
  • 4b is a schematic structural diagram of another pixel unit according to an embodiment of the present disclosure.
  • 5a is a schematic partial structural diagram of still another dual field of view display according to an embodiment of the present invention.
  • FIG. 5b is a schematic structural diagram of still another pixel unit according to an embodiment of the present invention.
  • Figure 1a shows a known dual field of view display.
  • a grating is attached to the display panel 10, for example, the slit grating 11 capable of improving the fineness of the double-view image.
  • the slit grating 11 is an optical device composed of staggered transparent stripes and light-shielding stripes.
  • the transparent stripe of the slit grating 11 corresponds to the light-transmitting region 111, so that a small portion of the plurality of pixels can be exposed
  • the light-shielding stripe corresponds to the light-shielding region 112, so that a plurality of pixels are covered in whole or in part.
  • the user located in the left viewing area 12 on the left side of the display device can see the display panel 10 through the light transmitting area 111 of the slit grating 11. a portion of the pixels (including the plurality of first display regions 101); a user located at the right-view region 13 on the right side of the display device can see another portion of the pixels on the display panel 10 through the light-transmitting region 111 of the slit grating 11 (including a plurality of pixels)
  • the second display area 102 The second display area 102).
  • the area between the left view area 12 and the right view area 13 is a crosstalk area 14, which can simultaneously see the pixels of the first display area 101 and the second display area 102, so that the displayed picture will generate crosstalk, so the crosstalk area 13 Generally not used as the observation area of the user.
  • the slit grating 11 has a distance of several hundred micrometers from the plane in which the pixel is located, the pixel may cause light leakage in a partial region of the light transmitting region 111.
  • the pixels of the second display area 102 that should be seen in the right view area 13 will transmit light to the left view area 12 through the upper and lower edges of the light transmissive area 111, thereby making the left view
  • the picture seen by the user of viewport 12 produces crosstalk.
  • the pixels of the second display area 102 or the first display area 101 are still affected by the light emitted by the pixels. Thereby limiting the viewing angle of the user, reducing the display effect and user experience of the display device.
  • the embodiment of the invention provides a dual field of view display, a manufacturing method thereof and a driving method thereof, which solve the problem that the viewing angle of the dual field of view display user is limited.
  • the embodiment of the present invention provides a dual field of view display, as shown in FIG. 2a, including a color film substrate 20 and an array substrate (not shown) disposed opposite to each other, and one side of the color filter substrate 20 or the array substrate is provided with a narrow Slit grating 11.
  • the color filter substrate 20 includes a plurality of pixel units 201 and a first black matrix 202 surrounding each of the pixel units 201.
  • the slit grating 11 may include a light shielding region 112 and a light transmitting region 111 which are spaced apart and arranged in a matrix form.
  • the light transmitting region 111 partially exposes two pixel units 201 adjacent in the horizontal direction.
  • the above dual field of view display may further include a light blocking portion 300 for preventing light leakage from the upper edge region A and/or the lower edge region B of the light transmitting region 111.
  • the light shielding region 112 may partially cover at least two pixel units 201 adjacent in the horizontal direction and completely cover the first black matrix 202 corresponding to the position of the light shielding region 112.
  • the light-shielding region 112 partially covers two pixel units 201 adjacent in the horizontal direction (the two pixel units 201L and 201R adjacent to the horizontal direction in FIG. 2a) is taken as an example.
  • the slit film grating 11 is disposed on one side of the color filter substrate 20 or the array substrate, which may be because the color filter substrate 20 and the array substrate are disposed on the box, so the slit grating 11 may be located in the array.
  • the substrate is adjacent to a side surface of the color filter substrate 20; or is located on a side surface of the color filter substrate 20 away from the array substrate, that is, on the light exit side of the display panel 10 composed of the color filter substrate 20 and the array substrate. s surface.
  • the surface of the slit grating 11 on the light-emitting side of the display panel 10 will be described as an example, but the installation position of the slit grating 11 is not limited.
  • the light-shielding region 112 partially covers at least two adjacent pixel units 201, where the partial coverage, as shown in FIG. 2c, may be that the light-shielding region 112 covers most of the two adjacent pixel units 201L and 201R. area.
  • the light-transmitting region 111 is partially exposed to the light-transmitting region 111, and the light-shielding region 112 is larger than the light-transmitting region.
  • the area of 111 In this way, the pixel units 201L and 201R are respectively blocked by a light shielding area 112 so as to be located on the left side of the display panel.
  • the pixel unit 201L is seen through the light transmitting area 111 adjacent to the light shielding area 112; the user located on the right side sees the pixel unit 201R through the light transmitting area 111 to realize the dual field of view.
  • the light blocking portion 300 disposed in the upper edge region A and/or the lower edge region B of the light transmitting region 111 leaks, when the user is positioned on the left side of the display panel, the display panel 10 is viewed from above or below.
  • the light blocking portion 300 can block the light of the pixel unit 201L from exiting to the human eye through the upper edge region A and/or the lower edge region B of the light transmitting region 111, thereby causing picture crosstalk to ensure that the pixel unit 201R can be clearly seen by the user. It is equally acceptable when the user is on the right side of the display panel.
  • Embodiments of the present invention provide a dual field of view display, which includes a color film substrate and an array substrate disposed opposite to each other.
  • One side of the color filter substrate or the array substrate is provided with a slit grating, and the color film substrate includes a plurality of pixels. a unit and a first black matrix surrounding each pixel unit.
  • the slit grating includes a light shielding area and a light transmission area which are arranged at intervals and arranged in a matrix form.
  • the light transmitting region partially exposes two adjacent pixel units; the dual field of view display further includes a light blocking portion for preventing light leakage of the upper edge and/or the lower edge region of the light transmitting region.
  • the light blocking portion effectively prevents light from exiting from the upper edge or the lower edge region of the slit grating light transmitting region to the human eye.
  • the viewing angle of the user in the left view area or the right view area is improved, and crosstalk phenomenon is avoided when the picture is viewed from the top or the bottom.
  • the light blocking portion 300 includes a second black matrix 301 on the color film substrate corresponding to the upper edge region A and/or the lower edge region B of the light transmitting region 111.
  • the width W' of the second black matrix 301 is greater than or equal to the width W of the light-transmitting region 111.
  • the second black matrix 301 and the light transmitting region 111 have no gap in the width direction, that is, the horizontal direction in FIG. 2b, thereby effectively preventing the light of the pixel unit 201 from the upper edge region A of the light transmitting region 111 or The lower edge region B is emitted to the human eye, causing the occurrence of a light leakage phenomenon to cause crosstalk of the image.
  • the shape of the second black matrix 301 is trapezoidal, and the short bottom edge of the trapezoid is located in the light transmissive region 111.
  • the second black matrix 301 adopting the trapezoid can prevent the light leakage while preventing the area of the sub-pixels contacting the second black matrix 301 from being greatly reduced due to the provision of the second black matrix 301, thereby reducing the area.
  • the aperture ratio of the display device is trapezoidal, and the short bottom edge of the trapezoid is located in the light transmissive region 111.
  • the first black matrix 202 and the second black matrix 301 are of a unitary structure. In this way, the fabrication of the second black matrix 301 can be completed while the first black matrix 202 is being formed, thereby simplifying the fabrication process.
  • the pixel unit 201 may include at least one red sub-array arranged in parallel with each other. Pixel 2010, a green subpixel 2011, and a blue subpixel 2012. The present invention does not limit the order in which the sub-pixels are arranged. As shown in FIGS. 2a-2c, the light-shielding region 112 of the slit grating 11 covers two adjacent pixel units 201, and the pixel unit 201 includes only red sub-pixels 2010, green sub-pixels 2011, and blue. Subpixel 2012.
  • the pixel units 201 covered by each of the light shielding regions 112 are the same, so that the color of the sub-pixels corresponding to the upper edge region A and the lower edge region B of the light-transmitting region 111 is fixed for the entire display panel.
  • the sub-pixel corresponding to the upper edge region A of the light-transmitting region 111 is the red sub-pixel 2010, and the sub-pixel corresponding to the lower edge region B of the transparent region 111 is the blue sub-pixel 2012.
  • the light blocking portion 300 is unlikely to completely block the light emitted from the upper edge region A and the lower edge region B of the light transmitting region 111 by 100% due to factors such as the manufacturing process and the manufacturing precision.
  • the light that has not been completely blocked by the light blocking portion 300 is emitted to the human eye, so that the upper edge region A of each of the light transmitting regions 111 emits red light, and the lower edge region B of each of the light transmitting regions 111 emits blue light. , which may cause crosstalk of a fixed color throughout the display panel.
  • the pixel unit 201 in the embodiment of the present invention may include at least four sub-pixels, wherein at least two sub-pixels have the same color.
  • the pixel unit 201 includes one red sub-pixel 2010, one green sub-pixel 2011, one blue sub-pixel 2012, and another red sub-pixel 2010 arranged in sequence.
  • the pixel unit 201' at the lower edge of the pixel unit 201 includes one green sub-pixel 2011, one blue sub-pixel 2012, one red sub-pixel 2010, and another green sub-pixel 2011 arranged in sequence.
  • Other pixel units 201 are not exemplified herein. In this way, it can be avoided that the crosstalk of the fixed color of the entire display panel occurs because the number and order of the sub-pixels in each pixel unit 201 are the same.
  • the pixel unit 201 includes at least four sub-pixels in which the colors of at least two sub-pixels are the same is exemplified.
  • each pixel unit 201 includes four sub-pixels, thereby avoiding a crosstalk of a fixed color of the entire display panel due to the same number and order of sub-pixels within each pixel unit 201.
  • the light transmitting region 111 partially exposes two adjacent pixel units 201 and completely exposes the first black matrix 202 corresponding to the light transmitting region 111.
  • the upper edge region A and the lower edge region B of the light transmitting region 111 are provided with a second black matrix 301 having a trapezoidal shape for preventing light leakage from the upper edge region A and the lower edge region B of the light transmitting region 111.
  • the long bottom edge of the second black matrix 301 is greater than or equal to the width L2 of the light transmitting region 111, and the second black matrix 301 is integrated with the first black matrix 202.
  • the pixel units 201L and 201R are respectively blocked by a light shielding area 112, so that the user located on the left side of the display panel sees the pixel unit 201L through the light transmission area 111 adjacent to the light shielding area 112; The user on the right side sees the pixel unit 201R through the above-described light transmitting region 111.
  • the second black matrix 301 by arranging the second black matrix 301, the light leaked from the upper edge region A and the lower edge region B of the light transmitting region 111 by the pixel unit 201 can be absorbed. In this way, when the user's viewing angle micro-amplitude is viewed upward or downward within 5 degrees with respect to the horizontal plane, the picture crosstalk of the dual field of view display can be reduced.
  • each pixel unit 201 is a dark state sub-pixel 2013 for displaying a black picture, as shown in FIG. 4b, to satisfy the user.
  • the perspective of the micro-amplitude is further increased.
  • the dark state sub-pixel 2013 described above may include a red sub-pixel 2010, or a green sub-pixel 2011, or a blue sub-pixel 2012.
  • the light blocking portion 300 may include a portion of the dark state sub-pixel 2013 corresponding to the upper edge region A and/or the lower edge region B of the light transmitting region 111.
  • the light blocking unit 300 can be configured by the dark sub-pixels 2013 displaying the black screen, so that when the user's viewing angle is further increased, Part of the upper edge area A and/or the lower edge area B of the light-transmitting area 111 is prevented from leaking light, causing crosstalk of the picture.
  • the dark sub-pixel 2013 may include the above-mentioned red sub-pixel 2010, or the above-mentioned green sub-pixel 2011, or the above-mentioned blue sub-pixel 2012.
  • the sub-pixel constitutes the dark sub-pixel 2013 described above.
  • the pixel unit 201 includes a red sub-pixel 2010, a green sub-pixel 2011, a blue sub-pixel 2012, and a dark sub-pixel 2013, wherein the dark sub-pixel 2013 is composed of red sub-pixels.
  • the pixel 2010 is composed.
  • the dual field of view display receives the control signal for displaying the black picture
  • the liquid crystal at the position of the red sub-pixel 2010 located in the last row of the pixel unit 201 is deflected, so that no light is emitted.
  • the display panel now displays a black picture corresponding to the position of the red sub-pixel 2010, so the red sub-pixel 2010 at the position constitutes the dark sub-pixel 2013.
  • the pixel unit 201' at the lower edge of the pixel unit 201 includes a green sub-pixel 2011, a blue sub-pixel 2012, a red sub-pixel 2010, and a dark sub-pixel 2013 composed of the green sub-pixel 2011. Pixel units in other locations are similar.
  • each pixel unit 201 Since the order of arrangement of different sub-pixels in each pixel unit 201 is not fixed, it is possible to avoid crosstalk of a fixed color of the entire display panel due to the same number and order of sub-pixels in each pixel unit 201.
  • the pixel units 201L and 201R are respectively blocked by a light shielding area 112, so that the user located on the left side of the display panel sees the pixel unit 201L through the light transmission area 111 adjacent to the light shielding area 112; The user on the right side sees the pixel unit 201R through the above-described light transmitting region 111.
  • the second black matrix 301 by arranging the second black matrix 301, the light leaked from the upper edge region A and the lower edge region B of the light transmitting region 111 by the pixel unit 201 can be absorbed.
  • the dark sub-pixels 2013 for displaying a black picture in each of the pixel units 201 by setting the dark sub-pixels 2013 for displaying a black picture in each of the pixel units 201, light rays leaking from the upper edge area A and the lower edge area B of the light-transmitting area 111 can be reduced.
  • each pixel unit 201 includes four sub-pixels, one of which is a dark state sub-pixel 2013 displaying a black picture, the resolution of the dual field of view display in the vertical direction is reduced to 3/4. The resolution of the dual field of view display in the vertical direction can be further improved under the premise of ensuring a high viewing angle micro-amplitude.
  • each pixel unit 201 includes five sub-pixels, one of which is a dark state sub-pixel 2013 for displaying a black picture, as shown in FIG. 5a.
  • the pixel unit 201 includes one red sub-pixel 2010, one green sub-pixel 2011, one blue sub-pixel 2012, one red sub-pixel 2010, and one dark sub-pixel 2013.
  • the dark sub-pixel 2013 located in the last row of the pixel unit 201 is composed of the green sub-pixel 2011, and is located at the pixel when the dual-field display receives the control signal for displaying the black picture.
  • the liquid crystal at the position of the green sub-pixel 2011 of the last row in the unit 201 is deflected such that no light passes through the green sub-pixel 2011, and the display panel displays a black screen corresponding to the position of the green sub-pixel 2011.
  • the green sub-pixel 2010 at this location constitutes the dark sub-pixel 2013.
  • the pixel unit 201' at the lower edge of the pixel unit 201 includes a blue sub-pixel 2012, a red sub-pixel 2010, a green sub-pixel 2011, a blue sub-pixel 2012, and a red sub-pixel 2010. Dark state subpixel 2013. Pixel units in other locations are similar.
  • the pixel units 201L and 201R are respectively blocked by a light shielding area 112, so that the user located on the left side of the display panel sees the pixel unit 201L through the light transmission area 111 adjacent to the light shielding area 112; The user on the right side sees the pixel unit 201R through the above-described light transmitting region 111.
  • light rays leaking from the upper edge region A and the lower edge region B of the light transmitting region 111 by the pixel unit 201 can be absorbed by providing the second black matrix 301.
  • the dark sub-pixels 2013 for displaying a black picture in each of the pixel units 201 by setting the dark sub-pixels 2013 for displaying a black picture in each of the pixel units 201, light rays leaking from the upper edge area A and the lower edge area B of the light-transmitting area 111 can be reduced.
  • the size of the light-transmitting region 111 and the light-shielding region 112 of the slit grating 11 is changed (the pixel unit 201 covered by the light-shielding region 112 includes five The sub-pixel, and thus the length of the light-shielding region 111 is increased, and the dark-state sub-pixel 2013 is disposed in the pixel unit 201, so that the user's viewing angle may be shifted upward or downward within 20 degrees, and the display screen does not occur.
  • Crosstalk Thereby increasing the user's perspective micro-amplitude.
  • each pixel unit 201 includes five sub-pixels, one of which is a dark state sub-pixel 2013 displaying a black picture, the resolution of the dual field of view display in the vertical direction is reduced to 4/5. Therefore, the resolution provided by the third embodiment is higher than that provided by the second embodiment.
  • the length L of the light transmitting region 111 is larger than that of the second embodiment, and thus the display pattern is not as fine as that of the second embodiment.
  • the above is merely an example of the configuration of the slit grating 11 and the dark sub-pixel 2013 in a dual field of view display device of 200 PPI (Pixels per inch).
  • PPI Picture per inch
  • Those skilled in the art can set the number of the slit grating 11 structure and the number of dark state sub-pixels 2013 according to factors such as resolution, cross-talk resistance, and picture fineness according to the actual performance of the display.
  • the number of sub-pixels in each pixel unit 201 can be increased, including increasing the number of dark state sub-pixels 2013. To reach Reduce the purpose of picture crosstalk.
  • Other arrangements are not exemplified herein, but should all fall within the scope of protection of the present invention.
  • the length L of the light transmitting region 111 may be less than or equal to half the center distance S of two adjacent light transmitting regions 111 in the vertical direction, as shown in FIG. 5a.
  • the embodiment of the invention further provides a method for manufacturing a dual field of view display, comprising:
  • the slit grating 11 is formed, wherein the slit grating 11 comprises a light shielding region 112 and a light transmitting region 111 which are arranged at intervals and arranged in a matrix form;
  • the color filter substrate and the array substrate are disposed, and the slit grating 11 is disposed on one side of the color filter substrate or the array substrate such that the light transmitting region 111 partially exposes the pixel units 201 adjacent in the two horizontal directions.
  • the slit grating 11 is disposed on one side of the color filter substrate or the array substrate, and the slit grating 11 is located on a surface of the array substrate adjacent to the color filter substrate 20; or The surface of the color filter substrate 20 away from the array substrate, that is, the surface on the light-emitting side of the display panel 10 composed of the color filter substrate 20 and the array substrate.
  • the light blocking portion By forming the light blocking portion, the light is effectively prevented from exiting from the upper edge or the lower edge region of the light transmitting region of the slit grating to the human eye. Thereby, the viewing angle of the user in the left view area or the right view area is improved, and crosstalk phenomenon is avoided when the picture is viewed from the top or the bottom.
  • step S103 includes:
  • a second black matrix 301 is formed corresponding to the positions of the upper edge region A and/or the lower edge region B of the light transmitting region 111.
  • the width W' of the second black matrix 301 is greater than or equal to the width W2 of the light transmitting region 111.
  • the second black matrix 301 and the light transmitting region 111 have no gap in the width direction, that is, the horizontal direction in FIG. 2b, thereby effectively preventing the light of the pixel unit 201 from the upper edge of the light transmitting region 111.
  • the area A or the lower edge area B is emitted to the human eye, causing the occurrence of light leakage to cause crosstalk of the image.
  • the forming the second black matrix 301 on the color film substrate corresponding to the positions of the upper edge region A and/or the lower edge region B of the light transmitting region 111 includes:
  • a second black matrix 301 having a trapezoidal shape is formed in the upper edge region A and/or the lower edge region B of the first black matrix 202.
  • the short bottom edge of the trapezoid is located in the light transmitting region 111.
  • the second black matrix 301 adopting the trapezoid can prevent the light leakage while preventing the area of the sub-pixels contacting the second black matrix 301 from being greatly reduced due to the provision of the second black matrix 301, thereby reducing the area.
  • the aperture ratio of the display device is a trapezoidal shape.
  • the first black matrix 202 and the second black matrix 301 may be of a unitary structure. In this way, the fabrication of the second black matrix 301 can be completed while the first black matrix 202 is being formed, thereby simplifying the fabrication process.
  • the picture crosstalk is reduced or eliminated by the above scheme.
  • the above step S102 may include:
  • the length L of the light transmitting region 111 may be less than or equal to half the center distance S of two adjacent light transmitting regions 111 in the vertical direction, as shown in Fig. 5a.
  • the above step S102 may include that the light shielding area 112 may partially cover at least two horizontally adjacent pixel units 201 and completely cover the first black matrix 202 corresponding to the position of the light shielding area 112.
  • the number of pixel units 201 covered by the light-shielding region and 112 is larger, the grating preparation accuracy and difficulty are lower, but the fineness of the screen is also lowered. Therefore, those skilled in the art can design the size of the light shielding region 112 in consideration of the display effect and the production cost.
  • the light-shielding region 112 partially covers two pixel units 201 adjacent in the horizontal direction (the two pixel units 201L and 201R adjacent to the horizontal direction in FIG. 2a) is taken as an example.
  • the embodiment of the present invention further provides a driving method of a dual field of view display (that is, a method of inputting a display signal to an array substrate of the second or third dual field of view display of the embodiment described above for display), and includes dark in the pixel unit 201.
  • a driving method of a dual field of view display that is, a method of inputting a display signal to an array substrate of the second or third dual field of view display of the embodiment described above for display
  • the above method includes:
  • the array substrate controls the liquid crystal at the corresponding position of the dark sub-pixel 2013 to be deflected according to the control signal, so that the dual-view display displays the black screen corresponding to the position of the dark sub-pixel 2013.
  • the position of the dark state sub-pixel 2013 on the display panel of the dual-view display displays a black screen.
  • the portion of the dark state sub-pixel corresponding to the upper edge and/or the lower edge of the light-transmissive region of the slit grating may constitute a light blocking portion.
  • the light blocking portion Through the light blocking portion, the light is effectively prevented from exiting from the upper edge or the lower edge region of the light transmission region of the slit grating to the human eye. Thereby, the viewing angle of the user in the left view area or the right view area is improved, and crosstalk phenomenon is avoided when the picture is viewed from the top or the bottom.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

提供一种双视场显示器及其制备方法、驱动方法。该双视场显示器包括相对设置的彩膜基板(20)和阵列基板,彩膜基板(20)或阵列基板的一侧设置有狭缝光栅(11),彩膜基板(20)包括多个像素单元(201)和围绕每个像素单元(201)的第一黑矩阵(202)。狭缝光栅(11)包括间隔设置,并呈矩阵形式排列的遮光区(112)和透光区(111)。该双视场显示器还包括用于防止透光区(111)的上边缘(A)和/或下边缘(B)区域漏光的阻光部(300),解决了双视场显示器用户视角受限的问题。

Description

双视场显示器及其制造方法、驱动方法 技术领域
本发明实施例涉及一种双视场显示器及其制造方法、驱动方法。
背景技术
随着显示技术的发展,能够在一个显示屏的两侧(如左右两侧)可看到不同图像的显示技术越来越多地被应用于显示领域当中。采用上述显示技术制备的显示装置为双视场显示装置。例如,在汽车上设置双视场显示装置,驾驶员可以从显示装置的左侧看到路况导航信息,而副驾座位上的乘客可以观看娱乐、休闲等其它节目。这种人性化的“双视”功能很好地满足了不同的用户对不同信息获取的需求。
发明内容
本发明实施例的一方面,提供一种双视场显示器,包括相对设置的彩膜基板和阵列基板,所述彩膜基板或所述阵列基板的一侧设置有狭缝光栅,所述彩膜基板包括多个像素单元和围绕每个像素单元的第一黑矩阵,所述狭缝光栅包括间隔设置,并呈矩阵形式排列的遮光区和透光区;所述透光区部分露出两个水平方向上相邻的所述像素单元;所述双视场显示器还包括用于防止所述透光区的上边缘和/或下边缘区域漏光的阻光部。
本发明实施例的另一方面,提供一种双视场显示器的制造方法,包括:
提供阵列基板和彩膜基板,其中彩膜基板包括多个像素单元和围绕每个像素单元的第一黑矩阵;
制作狭缝光栅,其中该狭缝光栅包括间隔设置并呈矩阵形式排列的遮光区和透光区;
制作用于防止所述透光区的上边缘区域和/或下边缘区域漏光的阻光部;以及
对盒彩膜基板和阵列基板,并且将所述狭缝光栅设置于所述彩膜基板或所述阵列基板的一侧,使得透光区部分露出两个水平方向上相邻的像素单元。
本发明实施例的又一方面,提供一种双视场显示器的驱动方法,其中双视场显示器中的像素单元包括暗态亚像素,所述方法包括:
向所述阵列基板输入控制信号;
所述阵列基板根据所述控制信号,控制所述暗态亚像素对应位置处的液晶进行偏转,使得所述双视场显示器对应所述暗态亚像素的位置显示黑色画面。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1a为一种已知双视场显示器的局部结构示意图;
图1b为一种已知双视场显示器的局部结构俯视图;
图2a为本发明实施例提供的一种双视场显示器的局部结构示意图;
图2b为本发明实施例提供的一种像素单元的结构示意图;
图2c为本发明实施例提供的一种狭缝光栅的结构示意图;
图3a为本发明实施例提供的另一种双视场显示器的局部结构示意图;
图3b为本发明实施例提供的另一种像素单元的结构示意图;
图4a为本发明实施例提供的另一种双视场显示器的局部结构示意图;
图4b为本发明实施例提供的另一种像素单元的结构示意图;
图5a为本发明实施例提供的又一种双视场显示器的局部结构示意图;
图5b为本发明实施例提供的又一种像素单元的结构示意图。
具体实施方式
图1a示出了一种已知的双视场显示器。显示面板10上贴合有光栅,例如能够提高双视图像精细度的狭缝光栅11。该狭缝光栅11是一种由交错排列的透明条纹和遮光条纹构成的光学器件。如图1b所示,狭缝光栅11的透明条纹对应透光区111,使得多个像素的一小部分能够露出,遮光条纹对应遮光区112,使得多个像素全部或部分被覆盖。这样一来,位于显示装置左侧左视区12的用户可以通过狭缝光栅11的透光区111看到显示面板10上 的一部分像素(包括多个第一显示区101);位于显示装置右侧右视区13的用户可以通过狭缝光栅11的透光区111看到显示面板10上的另一部分像素(包括多个第二显示区102)。左视区12和右视区13之间的区域为串扰区14,该区域可以同时看到第一显示区101和第二显示区102的像素,因此显示的画面会产生串扰,所以串扰区13一般不作为用户的观测区。
然而,由于狭缝光栅11与像素所在的平面具有数百微米的距离,所以像素会在透光区111的部分区域产生漏光。例如,当用户位于左视区12时,应该在右视区13看到的第二显示区102的像素会透过透光区111的上下边缘将光线出射至左视区12,从而使得位于左视区12的用户看到的画面产生串扰。这样一来,即使用户位于左视区12或右视区13,当用户偏上或偏下观看显示面板10时,仍然会受到第二显示区102或第一显示区101像素出射光的影响。从而限制了用户的观看角度,降低了显示装置的显示效果和用户体验。
本发明实施例提供一种双视场显示器及其制造方法、驱动方法,解决了双视场显示器用户视角受限的问题。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置 改变后,则该相对位置关系也可能相应地改变。
本发明实施例提供一种双视场显示器,如图2a所示,包括相对设置的彩膜基板20和阵列基板(图中未示出),彩膜基板20或阵列基板的一侧设置有狭缝光栅11。如图2b所示,彩膜基板20包括多个像素单元201和围绕每个像素单元201的第一黑矩阵202。
如图2c所示,狭缝光栅11可以包括间隔设置,并呈矩阵形式排列的遮光区112和透光区111。
透光区111部分露出两个水平方向上相邻的像素单元201。
此外,如图2b所示,上述双视场显示器还可以包括用于防止透光区111的上边缘区域A和/或下边缘区域B漏光的阻光部300。
遮光区112可以部分覆盖至少两个水平方向上相邻的像素单元201,并完全覆盖对应遮光区112位置的第一黑矩阵202。当遮光区112覆盖的像素单元201的数量越多,光栅制作精度和难度越低,但是画面的精细度也会降低。因此,本领域技术人员可以综合考虑显示效果和生产成本对遮光区112的尺寸进行设计。本发明实施例是以遮光区112部分覆盖两个水平方向上相邻的像素单元201(图2a中覆盖水平方向相邻的两个像素单元201L和201R)为例进行的说明。
需要说明的是,第一,彩膜基板20或阵列基板的一侧设置有狭缝光栅11,可以是指,由于彩膜基板20和阵列基板对盒设置,因此,狭缝光栅11可以位于阵列基板靠近所述彩膜基板20的一侧表面;或者,位于彩膜基板20远离所述阵列基板的一侧表面,即位于由彩膜基板20和阵列基板构成的显示面板10的出光侧一侧的表面。本发明实施例以,狭缝光栅11位于显示面板10的出光侧一侧的表面为例进行说明,但对狭缝光栅11的设置位置不进行限定。
第二,遮光区112部分覆盖至少两个相邻的像素单元201,这里的部分覆盖,由图2c所示,可以是,遮光区112覆盖了两个相邻的像素单元201L和201R的大部分面积。而透光区111部分露出两个相邻的像素单元201,可以是,未被遮光区与112覆盖的小部分像素单元201裸露于透光区111,其中,遮光区112的面积大于透光区111的面积。这样一来,通过一个遮光区112分别对像素单元201L和201R进行遮挡,以使得位于显示面板左侧的用 户通过与上述遮光区112相邻的透光区111看到像素单元201L;位于右侧的用户通过上述透光区111看到像素单元201R,以实现双视场。
在此情况下,通过设置于透光区111的上边缘区域A和/或下边缘区域B漏光的阻光部300,当位于显示面板左侧用户偏上或偏下观看显示面板10时,该阻光部300可以阻挡像素单元201L的光线通过透光区111的上边缘区域A和/或下边缘区域B出射至人眼,而引起画面串扰,以保证用户能够清晰的看到像素单元201R。当用户位于显示面板右侧时同理可得。
本发明实施例提供一种双视场显示器,该双视场显示器包括相对设置的彩膜基板和阵列基板,彩膜基板或阵列基板的一侧设置有狭缝光栅,彩膜基板包括多个像素单元和围绕每个像素单元的第一黑矩阵。狭缝光栅包括间隔设置,并呈矩阵形式排列的遮光区和透光区。其中,透光区部分露出两个相邻的像素单元;该双视场显示器还包括用于防止透光区的上边缘和/或下边缘区域漏光的阻光部。这样一来,通过上述阻光部,有效地阻止了光线从狭缝光栅透光区的上边缘或下边缘区域出射至人眼。从而提高了用户在左视区或右视区的观看视角,避免了由于偏上或偏下观看画面时,产生串扰现象。
在一个示例中,上述阻光部300包括位于彩膜基板上,对应透光区111的上边缘区域A和/或下边缘区域B的第二黑矩阵301。
例如,上述第二黑矩阵301的宽度W’大于等于透光区111的宽度W。这样一来,可以保证第二黑矩阵301与透光区111在宽度方向,即图2b中的水平方向上无间隙,从而有效防止像素单元201的光线从透光区111的上边缘区域A或下边缘区域B出射至人眼,导致漏光现象的出现而引起图像的串扰。
在一个示例中,如图3b所示,第二黑矩阵301的形状为梯形,该梯形的短底边位于透光区111内。这样一来,采用梯形的第二黑矩阵301能够在防止漏光的同时,避免由于设置第二黑矩阵301,而导致与第二黑矩阵301相接触的亚像素的面积大大减小,从而降低了显示装置的开口率。
在一个示例中,第一黑矩阵202与第二黑矩阵301为一体结构。这样一来,能够在制作第一黑矩阵202的同时完成第二黑矩阵301的制作,从而简化制作工艺。
需要说明的是,像素单元201可以包括相互平行排列的至少一个红色亚 像素2010、一个绿色亚像素2011以及一个蓝色亚像素2012。本发明对各个亚像素的排列顺序并不进行限制。如图2a-2c所示,狭缝光栅11的遮光区112覆盖了两个相邻的像素单元201,而该像素单元201只包括了依次排列的红色亚像素2010、绿色亚像素2011以及蓝色亚像素2012。因此,每个遮光区112覆盖的像素单元201均相同,这样一来,对于整个显示面板而言,对应透光区111的上边缘区域A和下边缘区域B的亚像素的颜色是固定的,例如对应透光区111的上边缘区域A的亚像素为红色亚像素2010,对应透光区111的下边缘区域B的亚像素为蓝色亚像素2012。在实际生产加工过程中,由于制作工艺以及制作精度等因素的影响,阻光部300不可能100%的将从透光区111的上边缘区域A和下边缘区域B出射的光线完全遮挡。这样未经过阻光部300完全遮挡的光线出射至人眼后,使得每一个透光区111的上边缘区域A发出红色的光,每一个透光区111的下边缘区域B发出蓝色的光,从而可能导致整个显示面板出现固定颜色的串扰。
为了进一步避免出现上述串扰现象,本发明实施例中的像素单元201可以至少包括四个亚像素,其中至少两个亚像素的颜色相同。例如,如图3b所示,像素单元201包括依次排列的一个红色亚像素2010、一个绿色亚像素2011、一个蓝色亚像素2012以及又一个红色亚像素2010。像素单元201下边缘的像素单元201’包括依次排列的一个绿色亚像素2011、一个蓝色亚像素2012、一个红色亚像素2010以及又一个绿色亚像素2011。其它像素单元201在此不再一一举例。这样一来,可以避免因每一个像素单元201内的亚像素的数量和顺序均相同导致整个显示面板出现固定颜色的串扰。
以下对像素单元201至少包括四个亚像素,其中至少两个亚像素的颜色相同的情况进行举例说明。
实施例一
如图3a所示,狭缝光栅11的遮光区112部分覆盖两个相邻的像素单元201L和201R,并完全覆盖对应上述遮光区112的第一黑矩阵202。如图3b所示,每个像素单元201包括四个亚像素,从而避免因每一个像素单元201内的亚像素的数量和顺序均相同而导致整个显示面板出现固定颜色的串扰。
透光区111部分露出两个相邻的像素单元201,并完全露出对应上述透光区111的第一黑矩阵202。
透光区111的上边缘区域A和下边缘区域B设置有呈梯形状的,用于防止透光区111的上边缘区域A和下边缘区域B漏光的第二黑矩阵301。该第二黑矩阵301的长底边大于等于透光区111的宽度L2,并且第二黑矩阵301与第一黑矩阵202为一体结构。
在本实施例中,通过一个遮光区112分别对像素单元201L和201R进行遮挡,以使得位于显示面板左侧的用户通过与上述遮光区112相邻的透光区111看到像素单元201L;位于右侧的用户通过上述透光区111看到像素单元201R。在此基础上,通过设置第二黑矩阵301,可以对像素单元201从透光区111的上边缘区域A和下边缘区域B漏出的光线进行吸收。这样一来,当用户的视角微幅度在相对于水平面5度以内偏上或偏下观看时,可以,降低双视场显示器的画面串扰。
实施例二
本实施例与实施例一的不同之处在于,每个像素单元201所包括的四个亚像素之一为用于显示黑色画面的暗态亚像素2013,如图4b所示,以满足用户对视角微幅度进一步调高的要求。
上述暗态亚像素2013可以包括红色亚像素2010,或绿色亚像素2011,或蓝色亚像素2012。
上述阻光部300可以包括暗态亚像素2013对应透光区111的上边缘区域A和/或下边缘区域B的部分。这样一来,在设置有上述第二黑矩阵301的基础上,还可以通过由显示黑色画面的暗态亚像素2013构成上述阻光部300,从而使得用户的视角微幅度进一步增大时,能够防止透光区111的上边缘区域A和/或下边缘区域B的部分漏光,而引起画面的串扰。
需要说明的是,暗态亚像素2013可以包括上述红色亚像素2010,或上述绿色亚像素2011,或上述蓝色亚像素2012。例如,当像素单元201中红色亚像素2010、绿色亚像素2011、蓝色亚像素2012之一显示黑色画面时,该亚像素构成上述暗态亚像素2013。例如,如图4b所示,像素单元201包括依次排列的一个红色亚像素2010,一个绿色亚像素2011、一个蓝色亚像素2012以及一个暗态亚像素2013,其中暗态亚像素2013由红色亚像素2010构成。当双视场显示器接收到用于显示黑色画面的控制信号时,位于该像素单元201中最后一行的红色亚像素2010位置处的液晶发生偏转,使得无光线 透过上述红色亚像素2010,这时显示面板对应该红色亚像素2010的位置显示黑色画面,因此该位置处的红色亚像素2010构成暗态亚像素2013。
同理,像素单元201下边缘的像素单元201’包括依次排列的绿色亚像素2011、蓝色亚像素2012、红色亚像素2010以及由绿色亚像素2011构成的暗态亚像素2013。其它位置的像素单元与此相似。
由于每个像素单元201中不同亚像素的排列顺序并不固定,因此可以避免因每一个像素单元201内的亚像素的数量和顺序均相同而导致整个显示面板出现固定颜色的串扰。
在本实施例中,通过一个遮光区112分别对像素单元201L和201R进行遮挡,以使得位于显示面板左侧的用户通过与上述遮光区112相邻的透光区111看到像素单元201L;位于右侧的用户通过上述透光区111看到像素单元201R。在此基础上,通过设置第二黑矩阵301,可以对像素单元201从透光区111的上边缘区域A和下边缘区域B漏出的光线进行吸收。另外,通过设置位于每个像素单元201中用于显示黑色画面的暗态亚像素2013,可以减小从透光区111的上边缘区域A和下边缘区域B漏出的光线。
这样一来,在设置用于吸收漏光的第二黑矩阵301的基础上,通过改变狭缝光栅11的透光区111和遮光区112的尺寸,并在像素单元201中设置暗态亚像素2013,可以使用户的视角微幅度在20度以内偏上或偏下观看时,显示画面不会发生串扰。从而提高了用户的视角微幅度。此外,由于每个像素单元201包括四个亚像素,其中一个亚像素为显示黑色画面的暗态亚像素2013,因此该双视场显示器在垂直方向上的分辨率降低为3/4。在保证较高的视角微幅度的前提下,进一步地可以提高双视场显示器在垂直方向上的分辨率。
实施例三
本实施例与实施例二的不同之处在于,每个像素单元201包括五个亚像素,其中一个亚像素为用于显示黑色画面的暗态亚像素2013,如图5a所示。
像素单元201包括依次排列的一个红色亚像素2010,一个绿色亚像素2011、一个蓝色亚像素2012、一个红色亚像素2010以及一个暗态亚像素2013。例如,位于该像素单元201中最后一行的暗态亚像素2013由绿色亚像素2011构成,当双视场显示器接收到用于显示黑色画面的控制信号时,位于该像素 单元201中最后一行的绿色亚像素2011位置处的液晶发生偏转,使得无光线透过上述绿色亚像素2011,这时显示面板对应该绿色亚像素2011的位置显示黑色画面。而该位置处的绿色亚像素2010构成暗态亚像素2013。
同理,像素单元201下边缘的像素单元201’包括依次排列的一个蓝色亚像素2012、一个红色亚像素2010、一个绿色亚像素2011、一个蓝色亚像素2012以及一个由红色亚像素2010构成的暗态亚像素2013。其它位置的像素单元与此相似。
在本实施例中,通过一个遮光区112分别对像素单元201L和201R进行遮挡,以使得位于显示面板左侧的用户通过与上述遮光区112相邻的透光区111看到像素单元201L;位于右侧的用户通过上述透光区111看到像素单元201R。在此基础上,通过设置第二黑矩阵301可以对像素单元201从透光区111的上边缘区域A和下边缘区域B漏出的光线进行吸收。另外,通过设置位于每个像素单元201中用于显示黑色画面的暗态亚像素2013,可以减小从透光区111的上边缘区域A和下边缘区域B漏出的光线。
这样一来,在设置用于吸收漏光的第二黑矩阵301的基础上,通过改变狭缝光栅11的透光区111和遮光区112的尺寸(由于遮光区112覆盖的像素单元201包括五个亚像素,因此该遮光区111的长度增加),并在像素单元201中设置暗态亚像素2013,可以使用户的视角微幅度在20度以内偏上或偏下观看时,显示画面不会发生串扰。从而提高了用户的视角微幅度。此外,由于每个像素单元201包括五个亚像素,其中一个亚像素为显示黑色画面的暗态亚像素2013,因此该双视场显示器在垂直方向上的分辨率降低为4/5。因此该实施例三提供的方案的分辨率高于实施例二提供的方案。此外,实施例三中,透光区111的长度L较实施例二大,因此显示图案没有实施例二的精细。
当然,上述仅仅是对200PPI(Pixels per inch,每英寸所拥有的像素)的双视场显示装置中,狭缝光栅11结构以及暗态亚像素2013设置的举例说明。本领域技术人员,可以根据实际显示器性能的需要,综合考虑分辨率、抗串扰程度以及画面精细程度等因素,对狭缝光栅11结构以及暗态亚像素2013的数量进行设置。例如对于更高PPI(400PPI)的显示装置,可以增大每个像素单元201中的亚像素的数量,包括增加暗态亚像素2013的数量。以达到 降低画面串扰目的。其它设置方案在此不再一一举例,但都应当属于本发明的保护范围。
采用上述方案降低或消除画面串扰,例如在像素单元201中设置用于显示黑色画面的暗态亚像素2013时,需要增大遮光区112的面积以对暗态亚像素2013进行覆盖。因此,本发明实施例中,在制作狭缝光栅11时,透光区111的长度L可以小于等于竖直方向上两个相邻透光区111中心间距S的一半,如图5a所示。
本发明实施例还提供一种双视场显示器的制造方法,包括:
S101、提供阵列基板和彩膜基板,其中彩膜基板包括多个像素单元201和围绕每个像素单元的第一黑矩阵202;
S102、制作狭缝光栅11,其中该狭缝光栅11包括间隔设置并呈矩阵形式排列的遮光区112和透光区111;
S103、制作用于防止透光区111的上边缘区域A和/或下边缘区域B漏光的阻光部300;以及
S104、对盒彩膜基板和阵列基板,并且将狭缝光栅11设置于彩膜基板或阵列基板的一侧,使得透光区111部分露出两个水平方向上相邻的像素单元201。
需要说明的是,上述步骤S104中,将狭缝光栅11设置于彩膜基板或阵列基板的一侧是指,狭缝光栅11位于阵列基板靠近所述彩膜基板20的一侧表面;或者,位于彩膜基板20远离所述阵列基板的一侧表面,即位于由彩膜基板20和阵列基板构成的显示面板10的出光侧一侧的表面。
通过形成阻光部,有效地阻止了光线从狭缝光栅透光区的上边缘或下边缘区域出射至人眼。从而提高了用户在左视区或右视区的观看视角,避免了由于偏上或偏下观看画面时,产生串扰现象。
在一个示例中,上述步骤S103包括:
在彩膜基板上,对应透光区111的上边缘区域A和/或下边缘区域B的位置制作第二黑矩阵301。
例如,第二黑矩阵301的宽度W’大于等于透光区111的宽度W2。这样一来,可以保证第二黑矩阵301与透光区111在宽度方向,即图2b中的水平方向上无间隙,从而有效防止像素单元201的光线从透光区111的上边缘 区域A或下边缘区域B出射至人眼,导致漏光现象的出现而引起图像的串扰。
在一个示例中,上述在彩膜基板上,对应透光区111的上边缘区域A和/或下边缘区域B的位置制作第二黑矩阵301包括:
在第一黑矩阵202的上边缘区域A和/或下边缘区域B制作呈梯形状的第二黑矩阵301。其中,上述梯形的短底边位于透光区111内。这样一来,采用梯形的第二黑矩阵301能够在防止漏光的同时,避免由于设置第二黑矩阵301,而导致与第二黑矩阵301相接触的亚像素的面积大大减小,从而降低了显示装置的开口率。
在一个示例中,第一黑矩阵202与第二黑矩阵301可以为一体结构。这样一来,能够在制作第一黑矩阵202的同时完成第二黑矩阵301的制作,从而简化制作工艺。
在一个示例中,采用上述方案降低或消除画面串扰,例如在像素单元201中设置用于显示黑色画面的暗态亚像素2013时,需要增大遮光区112的面积以对暗态亚像素2013进行覆盖。因此,上述步骤S102可以包括:
在制作狭缝光栅11时,透光区111的长度L可以小于等于竖直方向上两个相邻透光区111中心间距S的一半,如图5a所示。
在一个示例中,上述步骤S102可以包括:遮光区112可以部分覆盖至少两个水平方向上相邻的像素单元201,并完全覆盖对应遮光区112位置的第一黑矩阵202。当遮光区与112覆盖的像素单元201的数量越多,光栅制作精度和难度越低,但是画面的精细度也会降低。因此,本领域技术人员可以综合考虑显示效果和生产成本对遮光区112的尺寸进行设计。本发明实施例是以遮光区112部分覆盖两个水平方向上相邻的像素单元201(图2a中覆盖水平方向相邻的两个像素单元201L和201R)为例进行的说明。
本发明实施例还提供一种双视场显示器的驱动方法(即向如上所述的实施例二或三双视场显示器的阵列基板输入显示信号以进行显示的方法),在像素单元201包括暗态亚像素2013的情况下,上述方法包括:
S201、向阵列基板输入控制信号。
S202、阵列基板根据所述控制信号,控制暗态亚像素2013对应位置处的液晶进行偏转,使得双视场显示器对应暗态亚像素2013的位置显示上述黑色画面。
例如,暗态亚像素2013对应位置处的液晶偏转至一定角度,并遮挡该显示器背光源从该位置出射的光线时,双视场显示器的显示面板上对应暗态亚像素2013的位置显示黑色画面。
在本实施例中,暗态亚像素对应狭缝光栅透光区的上边缘和/或下边缘的部分可以构成阻光部。通过上述阻光部,有效地阻止了光线从狭缝光栅透光区的上边缘或下边缘区域出射至人眼。从而提高了用户在左视区或右视区的观看视角,避免了由于偏上或偏下观看画面时,产生串扰现象。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请基于并且要求于2014年7月8日递交的中国专利申请第201410323170.3号的优先权,在此全文引用上述中国专利申请公开的内容。

Claims (17)

  1. 一种双视场显示器,包括相对设置的彩膜基板和阵列基板,所述彩膜基板或所述阵列基板的一侧设置有狭缝光栅,所述彩膜基板包括多个像素单元和围绕每个像素单元的第一黑矩阵,其中
    所述狭缝光栅包括间隔设置,并呈矩阵形式排列的遮光区和透光区;
    所述透光区部分露出两个水平方向上相邻的所述像素单元;
    所述双视场显示器还包括用于防止所述透光区的上边缘和/或下边缘区域漏光的阻光部。
  2. 根据权利要求1所述的双视场显示器,其中所述阻光部包括位于设置在所述彩膜基板上,对应所述透光区的上边缘和/或下边缘区域的第二黑矩阵。
  3. 根据权利要求2所述的双视场显示器,其中所述像素单元包括相互平行排列的至少一个红色亚像素、一个绿色亚像素以及一个蓝色亚像素。
  4. 根据权利要求1-3任一项所述的双视场显示器,其中所述像素单元还包括至少一个用于显示黑色画面的暗态亚像素;
    所述暗态亚像素包括所述红色亚像素,或所述绿色亚像素,或所述蓝色亚像素;
    所述阻光部包括所述暗态亚像素对应所述透光区的上边缘和/或下边缘区域的部分。
  5. 根据权利要求2所述的双视场显示器,其中所述第二黑矩阵的形状为梯形,其中所述梯形的短底边位于所述透光区内。
  6. 根据权利要求2所述的双视场显示器,其中所述第一黑矩阵与所述第二黑矩阵为一体结构。
  7. 根据权利要求1所述的双视场显示器,其中所述透光区的长度小于等于两个相邻所述透光区中心间距的一半。
  8. 根据权利要求1所述的双视场显示器,其中所述遮光区部分覆盖至少两个水平方向上相邻的所述像素单元,并完全覆盖对应所述遮光区位置的所述第一黑矩阵。
  9. 根据权利要求2所述的双视场显示器,其中所述第二黑矩阵的宽度大 于等于所述透光区的宽度。
  10. 一种双视场显示器的制造方法,包括:
    提供阵列基板和彩膜基板,其中彩膜基板包括多个像素单元和围绕每个像素单元的第一黑矩阵;
    制作狭缝光栅,其中该狭缝光栅包括间隔设置并呈矩阵形式排列的遮光区和透光区;
    制作用于防止所述透光区的上边缘区域和/或下边缘区域漏光的阻光部;以及
    对盒彩膜基板和阵列基板,并且将所述狭缝光栅设置于所述彩膜基板或所述阵列基板的一侧,使得透光区部分露出两个水平方向上相邻的像素单元。
  11. 根据权利要求10所述的双视场显示器的制造方法,其中所述制作用于防止所述透光区的上边缘和/或下边缘漏光的阻光部的步骤包括:
    在所述彩膜基板上,对应所述透光区的上边缘和/或下边缘区域的位置制作第二黑矩阵。
  12. 根据权利要求11所述的双视场显示器的制造方法,其中在所述彩膜基板上,对应所述透光区的上边缘和/或下边缘区域的位置制作第二黑矩阵的方法包括:
    在所述彩膜基板上,对应所述透光区的上边缘和/或下边缘区域的位置制作呈梯形状的所述第二黑矩阵;其中所述梯形的短底边位于所述透光区内。
  13. 根据权利要求11或12所述的双视场显示器的制造方法,其中所述第一黑矩阵与所述第二黑矩阵为一体结构。
  14. 根据权利要求10所述的双视场显示器的制造方法,其中所述透光区的长度小于等于两个相邻所述透光区中心间距的一半。
  15. 根据权利要求10所述的双视场显示器的制造方法,其中所述遮光区部分覆盖至少两个水平方向上相邻的所述像素单元,并完全覆盖对应所述遮光区位置的所述第一黑矩阵。
  16. 根据权利要求11所述的双视场显示器的制造方法,所述第二黑矩阵的宽度大于等于所述透光区的宽度。
  17. 一种如权利要求4-9任一项所述双视场显示器的驱动方法,包括:
    向所述阵列基板输入控制信号;
    所述阵列基板根据所述控制信号,控制所述暗态亚像素对应位置处的液晶进行偏转,使得所述双视场显示器对应所述暗态亚像素的位置显示黑色画面。
PCT/CN2014/089925 2014-07-08 2014-10-30 双视场显示器及其制造方法、驱动方法 WO2016004710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/770,235 US10311809B2 (en) 2014-07-08 2014-10-30 Dual view-field display and fabricating method and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410323170.3A CN104102043B (zh) 2014-07-08 2014-07-08 一种双视场显示器及其驱动方法
CN201410323170.3 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016004710A1 true WO2016004710A1 (zh) 2016-01-14

Family

ID=51670305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089925 WO2016004710A1 (zh) 2014-07-08 2014-10-30 双视场显示器及其制造方法、驱动方法

Country Status (3)

Country Link
US (1) US10311809B2 (zh)
CN (1) CN104102043B (zh)
WO (1) WO2016004710A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102043B (zh) 2014-07-08 2017-03-22 京东方科技集团股份有限公司 一种双视场显示器及其驱动方法
CN104517541B (zh) * 2015-01-08 2018-04-27 京东方科技集团股份有限公司 多视场显示部件、图案化遮蔽层和多视场显示装置
CN104599626B (zh) * 2015-03-02 2017-03-01 京东方科技集团股份有限公司 显示驱动方法和装置、采样区的生成方法和装置
CN106226915B (zh) * 2016-08-03 2018-12-21 京东方科技集团股份有限公司 一种显示模组及显示装置
CN106875852B (zh) * 2017-02-27 2021-08-17 北京京东方光电科技有限公司 一种显示基板、显示面板、显示装置及其显示方法
CN108196392B (zh) * 2018-01-05 2021-01-22 京东方科技集团股份有限公司 一种显示面板、显示器及显示装置
CN108388043B (zh) * 2018-02-28 2021-01-26 京东方科技集团股份有限公司 一种显示用基板、显示面板和显示装置
CN109324439B (zh) * 2018-11-22 2021-10-01 京东方科技集团股份有限公司 一种显示面板及其制作方法,以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079680A1 (en) * 2007-09-26 2009-03-26 Epson Imaging Devices Corporation Dual-view display device
CN101907796A (zh) * 2010-03-22 2010-12-08 福建华映显示科技有限公司 双视域液晶显示器的制造方法
CN102194391A (zh) * 2010-03-10 2011-09-21 索尼公司 两图像显示装置
US20120154696A1 (en) * 2010-12-17 2012-06-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN104102043A (zh) * 2014-07-08 2014-10-15 京东方科技集团股份有限公司 一种双视场显示器及其制备方法、驱动方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255306B1 (ko) * 2006-06-28 2013-04-15 엘지디스플레이 주식회사 듀얼 뷰 표시 장치와 그 구동 방법
TWI361291B (en) * 2007-03-19 2012-04-01 Au Optronics Corp Color filter and black matrix thereof
JP5667752B2 (ja) * 2009-08-20 2015-02-12 株式会社ジャパンディスプレイ 立体映像表示装置
CN102236201B (zh) * 2010-04-30 2014-06-04 京东方科技集团股份有限公司 双视显示器、双视彩膜结构及其制造方法
CN102650823A (zh) * 2011-05-13 2012-08-29 京东方科技集团股份有限公司 具有偏振能力的彩色滤光片及其制作方法
JP5732331B2 (ja) * 2011-06-27 2015-06-10 株式会社ジャパンディスプレイ 液晶表示装置
JP6053278B2 (ja) * 2011-12-14 2016-12-27 三菱電機株式会社 2画面表示装置
CN202487576U (zh) * 2012-02-09 2012-10-10 京东方科技集团股份有限公司 阵列基板和双视场显示装置
JP5893452B2 (ja) * 2012-03-14 2016-03-23 株式会社ジャパンディスプレイ 表示装置、および電子装置
US20130286005A1 (en) * 2012-04-27 2013-10-31 Shenzhen China Star Optoelectronics Technology Co. Ltd. Three-Dimensional Display Device and Drive Method Thereof
CN102681231B (zh) * 2012-05-04 2015-03-25 深圳市华星光电技术有限公司 液晶显示面板及3d影像***
JP2015012363A (ja) * 2013-06-27 2015-01-19 ソニー株式会社 通信装置及び検出方法
CN103913868A (zh) * 2014-04-08 2014-07-09 深圳市华星光电技术有限公司 一种液晶显示器及成像控制的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079680A1 (en) * 2007-09-26 2009-03-26 Epson Imaging Devices Corporation Dual-view display device
CN102194391A (zh) * 2010-03-10 2011-09-21 索尼公司 两图像显示装置
CN101907796A (zh) * 2010-03-22 2010-12-08 福建华映显示科技有限公司 双视域液晶显示器的制造方法
US20120154696A1 (en) * 2010-12-17 2012-06-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN104102043A (zh) * 2014-07-08 2014-10-15 京东方科技集团股份有限公司 一种双视场显示器及其制备方法、驱动方法

Also Published As

Publication number Publication date
CN104102043A (zh) 2014-10-15
US20160267859A1 (en) 2016-09-15
CN104102043B (zh) 2017-03-22
US10311809B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2016004710A1 (zh) 双视场显示器及其制造方法、驱动方法
CN111766716B (zh) 显示组件、显示装置和驱动方法
CN101331776B (zh) 显示设备
CN103268044B (zh) 一种裸眼3d液晶显示装置及其制造方法
EP2818914B1 (en) Liquid crystal lens and process for manufacturing the same, stereoscopic display device and process for manufacturing the same
TWI464491B (zh) 顯示裝置
WO2017020473A1 (zh) 三维显示装置及其显示方法
US7777821B2 (en) Liquid crystal display device
JP6231246B2 (ja) 液晶パネル及び液晶表示装置
JP5694026B2 (ja) 表示装置
JP6061266B2 (ja) 液晶表示装置
WO2017156955A1 (zh) 双视显示装置
JP2010231010A (ja) 電気光学装置
WO2017161894A1 (en) Display substrate, manufacturing method thereof, and display apparatus
US11137619B2 (en) Display device for virtual reality, viewing device for virtual reality and head-mounted display apparatus
KR20090055913A (ko) 다중시각 표시장치
JPWO2013172233A1 (ja) 立体映像表示装置
JP2009157301A (ja) 電気光学装置
JP2014066745A (ja) 表示装置
JP6734696B2 (ja) 表示装置用基板、表示装置及び表示装置用基板の製造方法
JP6499204B2 (ja) 液晶表示装置の製造方法及び露光マスクのセット
WO2016121799A1 (ja) カラーフィルター基板および表示装置
JP2006018195A (ja) 表示デバイス
KR102647450B1 (ko) 액정표시패널
JP2008180800A (ja) 表示素子および表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14770235

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14897287

Country of ref document: EP

Kind code of ref document: A1