WO2016002946A1 - Composition for fabricating optically functional layer, method for manufacturing optical film including optically functional layer, and optical film - Google Patents

Composition for fabricating optically functional layer, method for manufacturing optical film including optically functional layer, and optical film Download PDF

Info

Publication number
WO2016002946A1
WO2016002946A1 PCT/JP2015/069337 JP2015069337W WO2016002946A1 WO 2016002946 A1 WO2016002946 A1 WO 2016002946A1 JP 2015069337 W JP2015069337 W JP 2015069337W WO 2016002946 A1 WO2016002946 A1 WO 2016002946A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical functional
layer
functional layer
composition
liquid crystal
Prior art date
Application number
PCT/JP2015/069337
Other languages
French (fr)
Japanese (ja)
Inventor
武田 淳
暢之 芥川
渉 星野
顕夫 田村
西川 秀幸
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167035017A priority Critical patent/KR101956568B1/en
Priority to JP2016531480A priority patent/JP6335294B2/en
Priority to CN201580035178.2A priority patent/CN106471076B/en
Publication of WO2016002946A1 publication Critical patent/WO2016002946A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a composition for producing an optical functional layer, a method for producing an optical film including the optical functional layer, and a method for producing the optical film.
  • a method for producing a polymer film there is a method of coating film formation in addition to a method of producing by polymer stretching.
  • the uniformity of the coating surface quality greatly affects the quality of the film.
  • repellency occurs in which the coating solution is repelled on the surface of the crater, good film formation becomes difficult.
  • the repellency is more likely to occur because the higher the surface tension of the coating solution, the stronger the force that minimizes the surface area of the coating solution.
  • it is effective to add a surfactant to the coating liquid and adjust the surface state in contact with the gas.
  • Patent Documents 1 and 2 a wide range of fluorine-based surfactants and silicone-based surfactants that have high ability to reduce dynamic surface tension immediately after formation of a new surface and good solubility in coating solutions.
  • Patent Documents 1 and 2 a wide range of fluorine-based surfactants and silicone-based surfactants that have high ability to reduce dynamic surface tension immediately after formation of a new surface and good solubility in coating solutions.
  • Patent Document 3 a wide range of fluorine-based surfactants and silicone-based surfactants that have high ability to reduce dynamic surface tension immediately after formation of a new surface and good solubility in coating solutions.
  • an object of the present invention is to provide a composition for producing an optical functional layer that is less likely to cause repelling even when its viscosity is low, when used in coating film formation.
  • the present invention also provides a composition for preparing an optical functional layer that hardly causes repelling of the coating liquid for forming the upper layer when the optical functional layer after preparation is used as a lower layer and an upper layer is coated on the surface. Is also an issue.
  • this invention makes it a subject to provide the optical film which has an optical functional layer which can be used as a support body film for producing a laminated film, etc., and is hard to produce the repelling of the coating liquid for upper layer formation. .
  • the present inventors diligently studied the composition of the coating liquid as the composition for producing an optical functional layer, and determined that the degree of repellency during coating film formation varies depending on the solvent of the coating liquid. I found it. Surprisingly, it has also been found that the degree of repellency of the coating solution when the upper layer is further formed varies depending on the solvent of the coating solution used even after the solvent has been removed by drying. The present inventors have further studied based on these findings and completed the present invention.
  • a composition for preparing an optical functional layer The viscosity is 0.3 to 30.0 mPa ⁇ s
  • An optically functional component comprising a solvent and one or more compounds selected from the group consisting of polymerizable compounds and polymers;
  • the solvent is a mixed solvent of a low surface tension solvent having a surface tension of 10 to 22 mN / m and a standard surface tension solvent having a surface tension of more than 22 mN / m, and the content of the low surface tension solvent relative to the total amount of the solvent is 5
  • a composition for producing an optical functional layer having a mass% to 40 mass%.
  • Applying the optical functional layer-producing composition according to any one of [1] to [5] on a support to obtain a coating film, and drying the coating film to support the support The manufacturing method of an optical film including forming the optical functional layer 1 on a body.
  • Composition 2 contains a polymerizable compound, In the formation of the layer 2, the production method according to [8], comprising subjecting the dried coating film to a curing reaction. [10] The production method according to [8] or [9], wherein the composition 2 is the composition for producing an optical functional layer according to any one of [1] to [5]. [11] An optical film including the optical functional layer 1 formed from a coating film of the composition for producing an optical functional layer according to any one of [1] to [5]. [12] An optical film comprising the support and the optical functional layer 1 obtained by the method according to [6] or [7].
  • the present invention provides provision of a composition for producing an optical functional layer that is less likely to cause repelling even when the viscosity is low.
  • the present invention also provides a composition for producing an optical functional layer that hardly causes repelling in the coating liquid for forming the upper layer when the optical functional layer after production is used as a lower layer and an upper layer is applied and formed on the surface.
  • Manufacture an optical film having an optical functional layer that can be used as a support film for producing a laminated film with the composition for producing an optical functional layer of the present invention and hardly causes repelling in a coating solution for forming an upper layer. can do. Therefore, it is possible to produce a laminated film having various functions using the composition for producing an optical functional layer of the present invention.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • ((meth) acryl group” is used to mean “one or both of an acrylic group and a methacryl group”.
  • composition for optical functional layer preparation is a composition containing an optical functional component and a solvent. That is, the composition for preparing an optical functional layer may be a solution or a dispersion.
  • the composition for producing an optical functional layer of the present invention may be any composition that can be used as a coating liquid in coating film formation in the process of producing an optical film.
  • the composition for preparing an optical functional layer is a composition capable of forming an optical functional layer from a coated film, for example.
  • a solvent can be formed by drying a coated composition in a coated state.
  • the optical functional layer may be obtained by removing the film, or the optically functional layer may be obtained by drying the coating film composition and curing the dried coating film. .
  • the entire optical film may be formed from the composition for producing an optical functional layer, or a part of the optical film may be formed.
  • the composition for preparing an optical functional layer may form part or one of a plurality of layers forming an optical film.
  • the optical functional layer include an optically anisotropic layer such as a ⁇ / 4 layer, a light reflecting layer such as a polarizing layer, a layer in which a cholesteric liquid crystal phase is fixed, a light absorbing layer, and a transparent layer.
  • the composition for preparing an optical functional layer of the present invention hardly causes repelling even when the viscosity is low.
  • the viscosity of the composition for preparing an optical functional layer is 0.3 to 30.0 mPa ⁇ s, preferably 0.4 to 20 mPa ⁇ s, and more preferably 0.5 to 15 mPa ⁇ s.
  • the composition for producing an optical functional layer preferably does not contain a composition used in the casting method. This is because the composition used in the casting method usually has a high viscosity.
  • a viscosity means the value measured using the vibration viscometer on 25 degreeC conditions. As the vibration type viscometer, for example, Vm-100 manufactured by Seconic Corporation can be used. The viscosity can be adjusted mainly by adding a solvent content or polymer type molecules.
  • the composition for producing an optical functional layer of the present invention contains a solvent.
  • the solvent contained in the composition for preparing an optical functional layer is a mixed solvent of a low surface tension solvent and a standard surface tension solvent.
  • the total amount of the low surface tension solvent relative to the total amount of the solvent contained in the composition for producing an optical functional layer is 5% by mass to 40% by mass, and preferably 7% by mass to 36% by mass. % To 30% by mass is more preferable, and 10% to 25% by mass is even more preferable.
  • the inventors of the present invention have a composition for producing an optical functional layer containing a low surface tension solvent at a certain ratio, and it is difficult to cause repelling during coating, and the film surface is uniform and has no unevenness. It has been found that a functional layer can be produced. Surprisingly, repelling and optical unevenness did not occur without adding a fluorine-based surfactant or a silicone-based surfactant used in the prior art.
  • the low surface tension solvent shows a surface smoothing (leveling) function like the surfactant in the above-mentioned prior art, and the resistance to wind in the surrounding environment is improved. In addition, it is considered that optical unevenness is hardly caused and repelling is suppressed.
  • the inventors of the present invention used an optical functional layer produced by using the composition for producing an optical functional layer of the present invention as a lower layer (sometimes referred to as “optical functional layer 1” in this specification).
  • a lower layer sometimes referred to as “optical functional layer 1” in this specification.
  • an upper layer which may correspond to a layer referred to as “layer 2” in this specification
  • repelling during coating hardly occurs and the film surface is uniform.
  • a uniform upper layer can be produced.
  • the low surface tension solvent that exhibited the planar smoothing (leveling) function during the coating process volatilizes and disappears during drying during film formation.
  • the layer formed from the composition for producing an optical functional layer of the present invention is used as a lower layer, and as an upper layer forming coating solution solvent when an upper layer is formed on the surface by coating film formation. Can use a wide range of solvents.
  • the surface tension of the low surface tension solvent is 10 to 22 mN / m (10 to 22 dyn / cm), preferably 15 to 21 mN / m, and more preferably 18 to 20 mN / m.
  • the surface tension of the standard surface tension solvent is greater than 22 mN / m, preferably 23 to 50 mN / m, and more preferably 23 to 40 mN / m.
  • the difference between the surface tension of the low surface tension solvent and the surface tension of the standard surface tension solvent is preferably 2 mN / m or more, more preferably 3 mN / m or more, and 4 to 20 mN / m or more. More preferably, it is 0.005 to 0.015 mN / m.
  • the surface tension of a solvent is a value as described in a solvent handbook (Kodansha, 1976 issuance).
  • the surface tension of the solvent is a physical property value that can be measured by, for example, an automatic surface tension meter CBVP-A3 manufactured by Kyowa Interface Science Co., Ltd. The measurement may be performed at 25 ° C.
  • Each of the low surface tension solvent and the standard surface tension solvent may be a mixed solvent. At that time, the surface tension of each solvent constituting the low surface tension solvent as the mixed solvent and the surface tension of each solvent constituting the standard surface tension solvent as the mixed solvent may be in the above range.
  • the boiling point of the low surface tension solvent is preferably higher than that of the standard surface tension solvent.
  • the solubility of the optical functional component in the low surface tension solvent is preferably lower than the solubility of the optical functional component in the standard surface tension solvent.
  • the solubility of the optical functional component may be compared with the solubility of one or more compounds selected from the group consisting of a polymerizable compound and a polymer in the optical functional component.
  • the boiling point of the low surface tension solvent is higher than that of the standard surface tension solvent, and the solubility of the optical functional component in the low surface tension solvent is lower than the solubility of the optical functional component in the standard surface tension solvent. More preferred.
  • the composition for optical functional layer preparation which can suppress the repelling at the time of application
  • the standard surface tension solvent with higher solubility of the optical functional component and lower boiling point is volatilized first, resulting in a low surface tension solvent. It is thought that the effect of preventing repellency and unevenness due to the leveling function of the low surface tension solvent can be enhanced by remaining.
  • an organic solvent is preferably used, and a low surface tension solvent and a standard surface tension solvent can be selected from these.
  • organic solvents include alcohols (eg, ethanol, tert-butyl alcohol), amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (Eg, heptane, cyclopentane, benzene, hexane, tetrafluoroethylene), alkyl halides (eg, chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate, isopropyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone) ), Ether (eg, tetrahydrofuran, 1,2-dimethoxyethane), and amine (eg, trie
  • low surface tension solvents examples include tert-butyl alcohol (19.5 mN / m), tetrafluoroethylene (TFE, 20.6 mN / m), triethylamine (20.7 mN / m), cyclopentane (21.8 mN / m). m), heptane (19.6 mN / m), and a mixed solvent composed of a combination of any two or more of these solvents.
  • TFE tetrafluoroethylene
  • TFE tetrafluoroethylene
  • TFE tetrafluoroethylene
  • triethylamine 20.7 mN / m
  • cyclopentane 21.8 mN / m
  • heptane heptane (19.6 mN / m)
  • a mixed solvent composed of a combination of any two or more of these solvents. The numerical value indicates the surface tension.
  • tert-butyl alcohol tetrafluoroethylene, triethylamine, and cyclopentane are preferable from the viewpoint of safety, tert-butyl alcohol or tetrafluoroethylene is more preferable, and tert-butyl alcohol is more preferable.
  • Examples of standard surface tension solvents include methyl ethyl ketone (MEK, 23.9 mN / m), methyl acetate (24.8 mN / m), methyl isobutyl ketone (MIBK, 25.4 mN / m), cyclohexanone (34.5 mN / m). ), Acetone (23.7 mN / m), isopropyl acetate (0.022.1 mN / m), and a mixed solvent composed of a combination of any two or more of these solvents.
  • the numerical value indicates the surface tension.
  • methyl ethyl ketone, a mixed solvent of cyclohexanone and another solvent, a mixed solvent of methyl acetate and methyl isobutyl ketone, and the like are preferable.
  • the concentration of the solvent with respect to the total mass of the composition for producing an optical functional layer is preferably 95 to 50% by mass, more preferably 93 to 60% by mass, and further preferably 90 to 75% by mass. .
  • the solvent of the composition for preparing an optical functional layer is preferably removed by 95% by mass or more, and by 98% by mass or more, with respect to the total amount of the solvent. It is more preferable that 99% by mass or more is removed, and it is particularly preferable that 100% by mass is substantially removed.
  • the optical functional component is a component constituting the optical functional layer or a component that is a raw material of the constituent component.
  • the optical functional component may be a component obtained by removing the solvent from the composition for preparing an optical functional layer.
  • the optically functional component includes one or more compounds selected from the group consisting of polymerizable compounds and polymers.
  • the optical functional component includes a polymerizable compound (monomer) that can form a polymer by a polymerization reaction, a polymer, or a mixture thereof.
  • the optical functional component preferably contains a polymerizable compound or a mixture of a polymerizable compound and a polymer, and more preferably contains a polymerizable compound.
  • the optical functional component is not particularly limited as long as the optical functional layer can be formed by a film forming method including a coating step of the composition for preparing an optical functional layer.
  • the optical functional component is preferably one that can form an optical functional layer by a film forming method that does not include a stretching step.
  • the optical functional component may contain one or more compounds selected from the group consisting of a polymerizable compound and a polymer, and other additives such as a polymerization initiator and a chiral agent.
  • the optical functional component is preferably a liquid crystal composition containing a liquid crystal compound.
  • the polymerizable compound is a compound having a polymerizable group which is a functional group capable of addition polymerization reaction or condensation polymerization reaction.
  • the polymerizable compound may have one polymerizable group or two or more polymerizable groups.
  • Examples of the polymerizable group include a radical polymerizable group and a cationic polymerizable group. A combination of both may be used.
  • Examples of the radical polymerizable group include a vinyl group and a (meth) acryl group.
  • the cationic polymerizable group include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • preferred polymerizable groups include acryl groups and methacryl groups.
  • the liquid crystal compound includes a high molecular liquid crystal compound (polymer) and a low molecular liquid crystal compound.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • the liquid crystal compound includes a rod-like liquid crystal compound and a disk-like liquid crystal compound.
  • polymer liquid crystal compound examples include various main-chain and side-chain liquid crystal compounds in which a conjugated linear atomic group (mesogen) that imparts liquid crystal orientation is introduced into the main chain or side chain of the polymer. Etc.
  • main-chain polymer liquid crystal compound examples include polyester-based polymer liquid crystal compounds, discotic liquid crystal compounds, and cholesteric liquid crystal compounds having a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility.
  • Examples of the side chain type polymer liquid crystal compound include polysiloxane, polyacrylate, polymethacrylate or polymalonate as a main chain skeleton, and a mesogen portion consisting of a para-substituted cyclic compound unit capable of imparting nematic orientation as a side chain.
  • Examples thereof include a polymer compound in which a chain skeleton and a side chain are bonded via a spacer portion composed of a conjugated atomic group.
  • Examples of the polymer liquid crystal compound include liquid crystal polymers described in JP-A-2004-285174, JP-A-2004-285169, JP-A-2005-139375, and thermotropic liquid crystal properties described in JP-A-2011-237513. Examples thereof include polymers.
  • the low molecular liquid crystal compound contained in the optical functional component is preferably a polymerizable compound (polymerizable liquid crystal compound) capable of forming a polymer by a polymerization reaction.
  • rod-like liquid crystal compound examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • the rod-like liquid crystal compound which is a polymerizable liquid crystal compound Makromol. Chem.
  • JP-A Nos. 0600, 98/23580, 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and Japanese Patent Application No. 2001-64627 Etc. can be used.
  • the rod-like liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
  • Examples of the discotic liquid crystal compound include compounds described in JP 2007-108732 A and JP 2010-244038 A. Below, the preferable example of a polymeric discotic liquid crystal compound is shown.
  • the optical functional component may contain a polymerization initiator.
  • the polymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • An acyloin compound (described in US Pat. No. 2,722,512), a polynuclear quinone compound (described in US Pat. Nos.
  • the optical functional layer formed from the composition for preparing an optical functional layer may be a layer in which a cholesteric liquid crystal phase is fixed.
  • the optical functional component preferably contains a chiral agent.
  • the chiral agent various known chiral agents (for example, described in Liquid Crystal Device Handbook, Chapter 3-4-3, TN, chiral agent for STN, page 199, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989) You can choose from.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the rod-shaped liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-shaped liquid crystal compound by a polymerization reaction between the chiral agent having a polymerizable group and the polymerizable rod-shaped liquid crystal compound.
  • a polymer having a repeating unit derived from a chiral agent is derived from the rod-shaped liquid crystal compound.
  • the polymerizable group possessed by the chiral agent having a polymerizable group is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral agent may be a liquid crystal compound.
  • Examples of the chiral agent exhibiting a strong twisting force include, for example, JP 2010-181852 A, JP 2003-287623 A, JP 2002-80851 A, JP 2002-80478 A, and JP 2002-302487 A.
  • the chiral agent described in the gazette is mentioned, and can be preferably used.
  • isosorbide compounds having a corresponding structure can be used for the isosorbide compounds described in these publications, and isosorbide compounds having a corresponding structure can be used for the isomannide compounds described in these publications. It can also be used.
  • the optical functional component does not substantially contain a fluorine-based surfactant and a silicone-based surfactant. That is, it is preferable that the composition for preparing an optical functional layer does not substantially contain a fluorine-based surfactant and a silicone-based surfactant.
  • the low surface tension solvent is likely to function as described above. Further, the surface of the formed optical functional layer is less likely to be hydrophobic, and repelling is less likely to occur when the upper layer is formed.
  • the content of the fluorine-based surfactant and the silicone-based surfactant in the composition for producing an optical functional layer is 0.5% by mass or less based on the total mass of the composition for producing an optical functional layer, Preferably, it may be 0.3% by mass or less. For example, it may be 0.1 mass% or less, 0.05 mass% or less, 0.01 mass% or less, or 0.001 mass% or less.
  • the fluorine-based surfactant is a compound containing fluorine and is unevenly distributed on the surface in the solvent used in the composition for producing an optical functional layer.
  • the fluorosurfactant having a hydrophobic portion include those containing fluorine among compounds described as alignment control agents described in paragraphs 0028 to 0034 of JP2011-191582A, and Japanese Patent No. 2841611.
  • the fluorine-based surfactants described in paragraphs 0017 to 0019 of JP-A-2005-272560 examples of commercially available fluorosurfactants include Surflon manufactured by AGC Seimi Chemical Co., Ltd. and MegaFac manufactured by DIC Corporation.
  • the silicone-based surfactant is a compound containing silicone, and is a compound unevenly distributed on the surface in the solvent used in the composition for producing an optical functional layer.
  • the silicone surfactant include polymethylphenylsiloxane, polyether-modified silicone oil, polyether-modified dimethylpolysiloxane, dimethylsilicone, diphenylsilicone, hydrogen-modified polysiloxane, vinyl-modified polysiloxane, hydroxy-modified polysiloxane, Amino modified polysiloxane, carboxyl modified polysiloxane, chloro modified polysiloxane, epoxy modified polysiloxane, methacryloxy modified polysiloxane, mercapto modified polysiloxane, fluorine modified polysiloxane, long chain alkyl modified polysiloxane, phenyl modified polysiloxane, silicone modified copolymer And low molecular weight compounds containing silicon atoms.
  • silicone surfactants include Shin-Etsu Chemical KF-96, X-22-945, Tore Silicone DC3PA, DC7PA, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, FS -1265-300 (above, manufactured by Toray Dow Corning Silicone Co., Ltd.), TSF-4300, -4440, -4445, -4446, -4442, -4460 (above, GE Toshiba Silicon Co., Ltd.) ), Polysiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-301, BYK-302, BYK-307, BYK-325, BYK-331, BYK-333, BYK-341 BYK-345, BYK-346, BYK-348, BYK-375 (BIC Chemi) -Japan Co., Ltd.) Aron GS-30 (manufactured by Toa Go, To
  • the optical functional layer is formed from a coating film made of the composition for producing an optical functional layer.
  • the optical functional layer may be, for example, a layer formed by applying a composition for preparing an optical functional layer on a support and drying the resulting coating film, and further by light irradiation or heating. It may be a layer formed by being subjected to a curing process.
  • composition for producing an optical functional layer can be performed by a method of developing by an appropriate method such as a roll coating method, a gravure printing method, or a spin coating method. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. Alternatively, the coating film can be formed by ejecting the composition for producing an optical functional layer from a nozzle using an ink jet apparatus.
  • Drying may be performed by standing or may be performed by heating.
  • an optical function derived from the optical functional component may be expressed.
  • a liquid crystal phase may be formed in the process of removing the solvent by drying.
  • the liquid crystal phase may be formed by setting the transition temperature to the liquid crystal phase by heating.
  • the liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C. from the viewpoint of production suitability and the like.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase.
  • a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
  • the optical functional component contains a polymerizable compound
  • the optical functional component contains a polymerizable liquid crystal compound
  • the molecular alignment state of the liquid crystal compound can be maintained and fixed by curing. Curing can be carried out by a polymerization reaction of a polymerizable group in the polymerizable compound.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred.
  • the light irradiation for the polymerization of the polymerizable compound, particularly the polymerizable liquid crystal compound preferably uses ultraviolet rays.
  • the irradiation energy is preferably 50 mJ / cm 2 to 1000 J / cm 2 , more preferably 100 to 800 mJ / cm 2 .
  • light irradiation may be performed under heating conditions.
  • ultraviolet irradiation may be performed under heating conditions.
  • the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable.
  • a preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
  • the reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 60% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 70% or more, more preferably 80% or more.
  • a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective. Moreover, after superposing
  • the reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
  • the optical properties based on the orientation of the liquid crystal compound molecules of the optical functional layer using the liquid crystal compound as the optical functional component are sufficient as long as they are retained in the layer, and are cured.
  • the liquid crystal composition of the later optical functional layer no longer needs to exhibit liquid crystallinity.
  • the liquid crystal compound molecules may become high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the optical functional layer is also preferably a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase.
  • cholesteric liquid crystal layer and the method for producing the cholesteric liquid crystal layer reference can be made, for example, to those described in JP-A-1-133003, JP-A-3416302, JP-A-3363565, and JP-A-8-271731.
  • the optical film can be produced by forming the optical functional layer on the support as described above.
  • the support may be peeled off after the optical functional layer is formed.
  • the phrase “on the support” means “directly on the support surface” or “through another layer formed on the support surface”. You may form an optical functional layer in the surface of the other layer formed previously.
  • the composition for preparing an optical functional layer of the present invention is less likely to cause repellency when applied and formed, and particularly less likely to cause repellency when applied to the surface of a support, alignment layer, or liquid crystal layer described below. It is also preferable to form an optical functional layer on the surface of the optical functional layer as described above. Since the optical functional layer formed from the composition for preparing an optical functional layer of the present invention hardly causes repelling, various laminated optical films can be prepared.
  • the optical film includes an optical functional layer formed as described above.
  • the optical film may include one optical functional layer or two or more layers.
  • the optical film may be composed only of the optical functional layer, or may contain other layers in addition to the optical functional layer. Examples of other layers include a support, an alignment layer, and a surface protective layer.
  • you may have layers which have optical functionality, such as a liquid crystal layer, other than the optical functional layer formed from the composition for optical functional layer preparation of this invention.
  • the optical film preferably includes a layer formed by curing a composition containing a liquid crystal compound (hereinafter sometimes referred to as “liquid crystal layer”), and is formed from the composition for producing an optical functional layer of the present invention. It is also preferable to include a liquid crystal layer as a layer.
  • the optical film preferably includes a layer formed by fixing a cholesteric liquid crystal phase, and includes a layer formed by fixing a cholesteric liquid crystal phase as a layer formed from the composition for preparing an optical functional layer of the present invention. Is also preferable.
  • the optical film preferably has a structure in which two liquid crystal layers are laminated, and the two layers are preferably in direct contact with each other.
  • the liquid crystal layer which is a layer formed from the composition for producing an optical functional layer of the present invention, is selected from the group consisting of a polymerizable compound and a polymer as a lower layer (optical functional layer 1) on the surface thereof. It is preferable to have a structure having a liquid crystal layer (layer 2) formed by applying a composition 2 containing an optical functional component containing one or more compounds and a solvent.
  • the solvent of the composition 2 at this time can be selected from the organic solvents exemplified above.
  • the composition 2 may be the composition for producing an optical functional layer of the present invention.
  • a structure in which layers are similarly formed on the surface of the layer 2 is also preferable, and the optical film may be a laminated film of 3 to 10 liquid crystal layers formed in the same manner.
  • the composition for preparing an optical functional layer of the present invention does not require the addition of a fluorine-based surfactant or a silicone-based surfactant, so that it can be used for preparing a laminated film in which a liquid crystal layer is laminated as described above.
  • a fluorine-based surfactant or a silicone-based surfactant can be used for preparing a laminated film in which a liquid crystal layer is laminated as described above.
  • alignment disorder may occur at the interface between the lower layer and the upper layer.
  • the present inventors have found that when using a mixed solvent containing a low surface tension solvent, such alignment disturbance is also suppressed. Although not bound by any theory, it is considered that the low surface tension solvent does not remain on the lower liquid crystal surface as described above, and thus does not affect the liquid crystal interaction between the upper layer and the lower layer.
  • either one of the optical functional layer 1 and the layer 2 is a rod-like liquid crystal. It is also preferred that the layer is formed from a composition containing a compound and the other is a layer formed from a composition containing a discotic liquid crystal compound. Further, either one of the optical functional layer 1 and the layer 2 is a layer formed by curing a composition containing a polymerizable rod-like liquid crystal compound, and the other is a composition containing a polymerizable discotic liquid crystal compound. A layer formed by curing is also preferred.
  • optical film is not particularly limited.
  • examples of the optical film include a retardation film, a reflective film, and a light absorbing film. More specifically, examples include an optical compensation film, a polarizing film, a brightness enhancement film, a heat shielding film, and a projection film used for liquid crystal display devices.
  • the optical film produced using the composition for producing an optical functional layer of the present invention may be a support film for producing a laminated film.
  • the support film includes the lower layer (optical functional layer 1).
  • the support film preferably includes the optical functional layer 1 as an outermost layer or includes only an easily peelable film such as a laminate film outside the optical functional layer 1.
  • the optical functional layer 1 in the support film is preferably a liquid crystal layer.
  • the optical functional layer 1 in the support film is more preferably a layer formed by curing a composition containing a polymerizable discotic liquid crystal compound.
  • the support film may include a support, an alignment layer, and other liquid crystal layers.
  • the support glass or a polymer film can be used.
  • polymer film materials used as the support include cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film).
  • Polyolefins such as polyethylene and polypropylene, polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone films, polyacrylic resin films such as polymethyl methacrylate, polyurethane resin films, polyester films, polycarbonate films, polysulfone films , Polyether film, polymethylpentene film, polyetherketone film, (meth) a Rilnitrile film, polyolefin, polymer having alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation)), and the like.
  • polyester resin films such as polyethylene terephthalate and polyethylene naphthalate
  • polyethersulfone films polyacrylic resin films such as polymethyl methacrylate, polyurethane resin films, polyester films, polycarbonate films, polysulfone films , Polyether film, polymethylpentene film,
  • the support may be a temporary support that is peeled off after the formation of the optical functional layer and is not included in the optical film.
  • the thickness of the support may be about 5 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 250 ⁇ m, more preferably 15 ⁇ m to 90 ⁇ m.
  • the optical film may include an alignment layer.
  • the alignment layer is used for aligning the molecules of the liquid crystal compound in the layer-forming composition when the layer containing the liquid crystal compound is formed.
  • the alignment layer is used in forming a layer such as an optical functional layer. In the optical film, the alignment layer may or may not be included.
  • the alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves. Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. Depending on the material of the lower layer such as the support and the optical functional layer, the lower layer can be made to function as an alignment layer by direct alignment treatment (for example, rubbing treatment) without providing the alignment layer.
  • a lower layer support is PET.
  • the lower optical functional layer may act as an alignment layer to align the liquid crystal compound for producing the upper layer.
  • the upper liquid crystal compound can be aligned without providing an alignment layer or without performing a special alignment process (for example, rubbing process).
  • a rubbing-treated alignment layer and a photo-alignment layer used by rubbing the surface as preferred examples will be described.
  • the polymer that can be used for the rubbing treatment oriented layer include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, polyvinyl alcohol, and the like described in paragraph No. [0022] of JP-A-8-338913.
  • Examples include modified polyvinyl alcohol, poly (N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, and polycarbonate.
  • Silane coupling agents can be used as the polymer.
  • Water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred.
  • the aforementioned composition is applied to the rubbing-treated surface of the alignment layer to align the molecules of the liquid crystal compound. After that, if necessary, the alignment layer polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment layer polymer is crosslinked using a crosslinking agent, thereby the optical anisotropy described above.
  • a layer can be formed.
  • the film thickness of the alignment layer is preferably in the range of 0.1 to 10 ⁇ m.
  • the surface of the alignment layer, support, or other layer to which the composition for producing an optical functional layer is applied may be rubbed as necessary.
  • the rubbing treatment can be generally performed by rubbing the surface of a film containing a polymer as a main component with paper or cloth in a certain direction.
  • a general method of rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).
  • the rubbing density (L) is quantified by the following formula (A).
  • Formula (A) L Nl (1 + 2 ⁇ rn / 60v)
  • N is the number of rubbing
  • l is the contact length of the rubbing roller
  • r is the radius of the roller
  • n is the number of rotations (rpm) of the roller
  • v is the stage moving speed (second speed).
  • the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this.
  • the description in Japanese Patent No. 4052558 can also be referred to as conditions for the rubbing process.
  • the photo-alignment layer formed from the above material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment layer.
  • linearly polarized light irradiation is an operation for causing a photoreaction in a photo-alignment material.
  • the wavelength of light used varies depending on the photo-alignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction.
  • the peak wavelength of light used for light irradiation is 200 nm to 700 nm, and more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
  • the light source used for light irradiation is a commonly used light source such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, a carbon arc lamp, or various lasers (eg, semiconductor laser, helium). Neon laser, argon ion laser, helium cadmium laser, YAG laser), light emitting diode, cathode ray tube, and the like.
  • a method using a polarizing plate eg, iodine polarizing plate, dichroic dye polarizing plate, wire grid polarizing plate
  • reflection using a prism-based element eg, Glan-Thompson prism
  • a prism-based element eg, Glan-Thompson prism
  • Brewster angle A method using a type polarizer or a method using light emitted from a laser light source having polarization can be employed.
  • a method of irradiating light from the top surface or the back surface to the alignment layer surface perpendicularly or obliquely with respect to the alignment layer is employed.
  • the incident angle of light varies depending on the photo-alignment material, but is, for example, 0 to 90 ° (vertical), preferably 40 to 90.
  • the non-polarized light is irradiated obliquely.
  • the incident angle is 10 to 80 °, preferably 20 to 60, particularly preferably 30 to 50 °.
  • the irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
  • the optical film of each Example and the comparative example was produced with the layer structure shown in Table 1.
  • the material of each layer is as follows.
  • TD40UL A commercially available cellulose acylate film “TD40UL” (manufactured by FUJIFILM Corporation) was used.
  • TD40UL with alignment layer After passing TD40UL through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkali solution having the composition shown below is applied to one side of the film using a bar coater. It was transported for 10 seconds under a steam far-infrared heater manufactured by Noritake Company Limited, which was applied at 2 and heated to 110 ° C.
  • Alignment Layer Formation of Alignment Layer An alignment layer coating solution having the following composition was continuously applied to the long cellulose acetate film saponified as described above with a # 14 wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds. The obtained coating film was continuously rubbed to prepare an alignment layer. At this time, the longitudinal direction of the long film and the transport direction were parallel, and the rotation axis of the rubbing roller was 45 ° clockwise relative to the longitudinal direction of the film.
  • composition of alignment layer coating solution
  • a coating liquid A1 containing a discotic liquid crystal compound having the following composition was continuously applied with a # 3.6 wire bar.
  • the conveyance speed (V) of the film was 20 m / min.
  • UV irradiation was performed at 80 ° C. to fix the orientation of the liquid crystal compound and form a ⁇ / 4 layer.
  • the UV irradiation amount was 300 mJ / cm 2 .
  • the alignment aids 1 and 2 are each a mixture of two types of compounds having different methyl group substitution positions on the trimethyl-substituted benzene ring (mixing ratio of the two types of compounds 50:50 (mass ratio)).
  • a coating liquid (any one of B1 to B10, B12, B13, B15 to B18) is applied to the surface of the alignment layer formed on the surface of TD40UL or the surface of the alignment layer formed on the surface of ⁇ / 4 layer of TD40UL + ⁇ / 4.
  • the film thickness was adjusted to 3 ⁇ m and applied continuously.
  • the solvent was dried at 70 ° C. for 2 minutes, and after evaporating the solvent, heat aging was performed at 115 ° C. for 3 minutes to obtain a uniform alignment state.
  • the coating film was kept at 45 ° C., and irradiated with ultraviolet rays using a high-pressure mercury lamp in a nitrogen atmosphere to form a cholesteric liquid crystal layer.
  • the UV irradiation amount was 300 mJ / cm 2 .
  • Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Surfactant 1 0.3 part by mass Polymerization initiator 1 3 parts by mass Chiral agent 1 8 parts by weight methyl ethyl ketone 290 parts by weight cyclohexanone 50 parts by weight ⁇
  • Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Surfactant 2 (Shin-Etsu Chemical Co., Ltd .; X-22-2445) 0.2 parts by mass Polymerization initiator 1 3 parts by weight chiral agent 1 3.8 parts by weight methyl ethyl ketone 290 parts by weight cyclohexanone 50 parts by weight ⁇ ⁇
  • Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 220 parts by mass Cyclohexanone 50 Part by mass Isopropyl acetate 70 parts by mass ⁇
  • B12 ⁇ Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass Chiral agent 1 3.8 parts by mass Cellulose acetate butyrate manufactured by EASTMAN (CAB-171-15) 0.5 parts by mass Methyl ethyl ketone 152 parts by mass Cyclohexanone 34 parts by mass tert-butanol 48 parts by mass ⁇ ⁇
  • Discotic liquid crystal compound (Compound 101) 80 parts by weight Discotic liquid crystal compound (Compound 102) 20 parts by weight Polymerizable monomer 1 10 parts by weight Polymerization initiator 1 3 parts by weight chiral agent 1 3.8 parts by weight Dihydroterpineol 10 parts by weight methyl ethyl ketone 189 parts by weight cyclohexanone 43 parts by weight tert-butanol 60 parts by weight ⁇
  • HC1 A hard coat coating solution having the following composition was applied to the surface of the TD40UL with a bar coater, dried, and irradiated with ultraviolet rays to form a 10 ⁇ m thick hard coat layer.
  • the liquid was applied with a wire bar coater # 1.6, the coating film was dried at 60 ° C. for 0.5 minutes, and then using a high-pressure mercury lamp, an oxygen concentration of about 0.1% under a nitrogen purge, an illuminance of 40 mW / cm 2 , An ultraviolet ray with an irradiation amount of 120 mJ / cm 2 was irradiated at 30 ° C.
  • the prepared hard coat coating solution was applied with a wire bar coater # 1.6, and the coating film was dried at 60 ° C. for 0.5 minutes, and then using a high pressure mercury lamp, the oxygen concentration was about 0.1% under nitrogen purge and the illuminance was 40 mW. / Cm 2 and an ultraviolet ray with an irradiation amount of 120 mJ / cm 2 were irradiated at 30 ° C.
  • the liquid was applied with a wire bar coater # 1.6, the coating film was dried at 60 ° C. for 0.5 minutes, and then using a high-pressure mercury lamp, an oxygen concentration of about 0.1% under a nitrogen purge, an illuminance of 40 mW / cm 2 ,
  • the intermediate layer was cured by irradiating UV rays with an irradiation amount of 120 mJ / cm 2 at 30 ° C. for 30 seconds.
  • the film thickness of the obtained intermediate layer was 0.6 ⁇ m.
  • HC3 A hard coat coating solution having the following composition is applied to the surface of the hard coat layer (HC1, HC2) prepared above by gravure coating, heated at 120 ° C. for 5 minutes to remove the solvent, and then irradiated with ultraviolet light using a high pressure mercury lamp. Irradiate 350 mJ / cm 2 , A hard coat layer having a thickness of 4 ⁇ m was formed.
  • ⁇ ⁇ 80% urethane acrylate solution (Dainippon Ink & Chemicals: Unidic-17806) 80 parts by weight polyester acrylate (Toa Gosei: Aronix-M8060) 20 parts by weight photopolymerization initiator (Irgacure 907 (manufactured by BASF) 2 parts by weight toluene 48 parts by weight ⁇ ⁇
  • the coating solution was applied with a # 3.2 wire bar, which was attached to a metal frame and heated in a constant temperature bath at 100 ° C. for 2 minutes to align the rod-like liquid crystal compound.
  • the UV irradiation amount was 300 mJ / cm 2 .
  • Rod-like liquid crystal compound 201 83 parts by weight Rod-like liquid crystal compound 202 15 parts by weight Rod-like liquid crystal compound 203 2 parts by weight polyfunctional monomer A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd. 1 part by weight polymerization initiator IRGACURE 819 (manufactured by BASF) 4 Part by mass Surfactant 2 0.05 part by mass Surfactant 3 0.01 part by mass Chiral agent LC756 (manufactured by BASF) 5.1 parts by mass Toluene 165 parts by mass Cyclohexanone 10 parts by mass ⁇ ⁇
  • Viscosity measurement of coating solution For the coating solutions for preparing B1 to B10, B12, B13, B15 to B18 and HC1, HC2, and HC4 to 6 prepared above, use Vm-100 (vibrating viscometer) manufactured by Seconic. The viscosity was measured. The measured value was 31 mPa ⁇ s for the coating solution for B12 and 28 mPa ⁇ s for the coating solution for B13. All other coating solutions were in the range of 1.5 to 10 mPa ⁇ s.
  • the produced optical film was evaluated according to the following criteria.
  • the results are shown in Table 1.
  • ⁇ Repel> The number of repellency of the layer formed using each composition in the film of each Example and Comparative Example 15 cm ⁇ 20 cm was counted. Here, the area
  • the superiority or inferiority of the liquid crystal alignment was determined according to the following criteria depending on the presence or absence of alignment defects when the film was observed with a deflection microscope.
  • the evaluation is preferably any one of evaluation criteria A to C. If it is evaluation standard A or B, it is excellent in production efficiency and can be used suitably, and it is more preferable that it is evaluation standard A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

 The present invention provides: a composition for fabricating an optically functional layer, the composition having a viscosity of 0.3-30.0 mPa∙s and including a solvent and an optically functional component including one or more compounds selected from the group consisting of a polymerizable compound and a polymer, the solvent being a solvent mixture of a low-surface-tension solvent having a surface tension of 10-22 mN/m and a standard-surface-tension solvent having a surface tension greater than 22 mN/m, and the content of the low-surface-tension solvent being 5%-40% by mass with respect to the entire quantity of the solvent; a method for manufacturing an optical film using the composition for fabricating an optically functional layer; and an optical film manufactured using the composition for fabricating an optically functional layer. This composition for fabricating an optically functional layer is not prone to cissing even when viscosity is low in a coating film thereof, and is also not prone to cissing during formation of a top layer.

Description

光学機能性層作製用組成物、光学機能性層を含む光学フィルムの製造方法、および光学フィルムComposition for producing optical functional layer, method for producing optical film including optical functional layer, and optical film
 本発明は、光学機能性層作製用組成物、光学機能性層を含む光学フィルムの製造方法、および光学フィルムの製造方法に関する。 The present invention relates to a composition for producing an optical functional layer, a method for producing an optical film including the optical functional layer, and a method for producing the optical film.
 ポリマーフィルムの製造方法としては、ポリマーの延伸により作製する方法のほか、塗布成膜による方法がある。塗布成膜において、塗布面質の均質性はフィルムの品質に大きく影響する。特に、塗布液が塗布面でクレーター状にはじかれる「ハジキ」が生じると、良好なフィルム形成が困難となる。
 ハジキは、塗布液の表面張力が高いほど、塗布液の表面積を最小化させるようにする力が強く働くため、生じやすい。塗布液の表面張力を低下させてハジキを抑制するためには、塗布液に界面活性剤を添加し、気体に接する表面の状態を調整することが有効である。この目的のため、新しい表面が形成された直後の動的表面張力を低下させる能力が高いとともに、塗布液への溶解性も良好な、フッ素系界面活性剤やシリコーン系の界面活性剤などが広く用いられている(特許文献1および2)。
 一方、近年、フィルムの多機能化が求められており、機能の異なる層を積層した構成の積層フィルムが多く作製されている(例えば特許文献3)。
As a method for producing a polymer film, there is a method of coating film formation in addition to a method of producing by polymer stretching. In coating film formation, the uniformity of the coating surface quality greatly affects the quality of the film. In particular, when “repellency” occurs in which the coating solution is repelled on the surface of the crater, good film formation becomes difficult.
The repellency is more likely to occur because the higher the surface tension of the coating solution, the stronger the force that minimizes the surface area of the coating solution. In order to suppress the repellency by reducing the surface tension of the coating liquid, it is effective to add a surfactant to the coating liquid and adjust the surface state in contact with the gas. For this purpose, a wide range of fluorine-based surfactants and silicone-based surfactants that have high ability to reduce dynamic surface tension immediately after formation of a new surface and good solubility in coating solutions. (Patent Documents 1 and 2).
On the other hand, in recent years, multi-functionalization of films has been demanded, and many laminated films having a structure in which layers having different functions are laminated are produced (for example, Patent Document 3).
特許2841611号Japanese Patent No. 2841611 特開2005-272560号公報JP 2005-272560 A 特開2011-191582号公報JP 2011-191582 A
 上記のフッ素系界面活性剤やシリコーン系の界面活性剤は、疎水性基を利用して塗膜表面に偏在し、塗膜の表面張力を低下させており、作製されたフィルムにも残存する。そのため、その上にさらに上層を塗布成膜して積層フィルムを作製しようとすると、フィルムの疎水表面に対して塗布液の表面張力が不足し、ハジキが発生してしまう。
 解決手段の1つとして、特許文献3では下層の界面活性剤を上層に拡散させることが試みられている。しかし、この方法では、下層の膜硬度や上層形成のための塗布液の溶剤の種類を適切に選択する必要がある。
 他にも、ハジキの防止方法としては、粘度を上げることで、流動性を抑えることが考えられる。しかし、一般的に、粘度が高いと均質な塗膜を形成することは困難である。
The above-mentioned fluorine-based surfactant and silicone-based surfactant are unevenly distributed on the surface of the coating film by utilizing a hydrophobic group to reduce the surface tension of the coating film, and remain in the produced film. For this reason, when an upper layer is further applied thereon to form a laminated film, the surface tension of the coating liquid is insufficient with respect to the hydrophobic surface of the film, and repelling occurs.
As one solution, Patent Document 3 attempts to diffuse a lower layer surfactant into an upper layer. However, in this method, it is necessary to appropriately select the film hardness of the lower layer and the type of solvent of the coating solution for forming the upper layer.
In addition, as a method for preventing repellency, it is conceivable to suppress fluidity by increasing the viscosity. However, in general, it is difficult to form a uniform coating film when the viscosity is high.
 上記を鑑み、本発明は、塗布成膜に用いられたときに、粘度が低くてもハジキを生じにくい光学機能性層作製用組成物を提供することを課題とする。また、本発明は、作製後の光学機能性層を下層として、その表面に上層を塗布成膜する際、上層形成用の塗布液のハジキを生じさせにくい光学機能性層作製用組成物の提供も課題とする。さらに本発明は、積層フィルムを作製するための支持体フィルムなどとして用いることができる、上層形成用の塗布液のハジキを生じさせにくい光学機能性層を有する光学フィルムを提供することを課題とする。 In view of the above, an object of the present invention is to provide a composition for producing an optical functional layer that is less likely to cause repelling even when its viscosity is low, when used in coating film formation. The present invention also provides a composition for preparing an optical functional layer that hardly causes repelling of the coating liquid for forming the upper layer when the optical functional layer after preparation is used as a lower layer and an upper layer is coated on the surface. Is also an issue. Furthermore, this invention makes it a subject to provide the optical film which has an optical functional layer which can be used as a support body film for producing a laminated film, etc., and is hard to produce the repelling of the coating liquid for upper layer formation. .
 上記課題の解決のため、本発明者らは光学機能性層作製用組成物としての塗布液の組成について鋭意検討し、塗布液の溶剤によって塗布成膜の際のハジキの程度が変化することを見出した。また、驚くべきことに、乾燥により溶剤を除去した後のフィルムにおいても、用いた塗布液の溶剤によって、さらに上層を形成する際の塗布液のハジキの程度が変化することを見出した。本発明者らは、これらの知見に基づいてさらに検討を重ね、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors diligently studied the composition of the coating liquid as the composition for producing an optical functional layer, and determined that the degree of repellency during coating film formation varies depending on the solvent of the coating liquid. I found it. Surprisingly, it has also been found that the degree of repellency of the coating solution when the upper layer is further formed varies depending on the solvent of the coating solution used even after the solvent has been removed by drying. The present inventors have further studied based on these findings and completed the present invention.
 すなわち、本発明は下記の[1]~[16]を提供するものである。
[1]光学機能性層作製用組成物であって、
粘度が0.3~30.0mPa・sであり、
溶剤と重合性化合物およびポリマーから成る群から選択される1つ以上の化合物を含む光学機能性成分とを含み、
上記溶剤は、表面張力10~22mN/mの低表面張力溶剤と表面張力が22mN/mより大きい標準表面張力溶剤との混合溶剤であって、上記溶剤全量に対する低表面張力溶剤の含量は、5質量%~40質量%である
光学機能性層作製用組成物。
[2]上記標準表面張力溶剤の沸点が上記低表面張力溶剤の沸点よりも低い、[1]に記載の光学機能性層作製用組成物。
[3]上記低表面張力溶剤がtert-ブチルアルコールである[1]または[2]に記載の光学機能性層作製用組成物。
That is, the present invention provides the following [1] to [16].
[1] A composition for preparing an optical functional layer,
The viscosity is 0.3 to 30.0 mPa · s,
An optically functional component comprising a solvent and one or more compounds selected from the group consisting of polymerizable compounds and polymers;
The solvent is a mixed solvent of a low surface tension solvent having a surface tension of 10 to 22 mN / m and a standard surface tension solvent having a surface tension of more than 22 mN / m, and the content of the low surface tension solvent relative to the total amount of the solvent is 5 A composition for producing an optical functional layer having a mass% to 40 mass%.
[2] The composition for producing an optical functional layer according to [1], wherein the boiling point of the standard surface tension solvent is lower than the boiling point of the low surface tension solvent.
[3] The composition for producing an optical functional layer according to [1] or [2], wherein the low surface tension solvent is tert-butyl alcohol.
[4]上記光学機能性成分が重合性化合物を含む[1]~[3]のいずれか一項に記載の光学機能性層作製用組成物。
[5]上記光学機能性成分が重合性液晶化合物を含む[4]に記載の光学機能性層作製用組成物。
[6]支持体上に[1]~[5]のいずれか一項に記載の光学機能性層作製用組成物を塗布して塗膜を得ること、および上記塗膜を乾燥して上記支持体上に光学機能性層1を形成することを含む、光学フィルムの製造方法。
[7]支持体上に[4]または[5]に記載の光学機能性層作製用組成物を塗布して塗膜を得ること、上記塗膜を乾燥すること、および乾燥した上記塗膜を硬化反応に付して上記支持体上に光学機能性層1を形成することを含む、光学フィルムの製造方法。
[8]光学機能性層1の表面に、重合性化合物およびポリマーから成る群から選択される1つ以上の化合物を含む光学機能性成分と溶剤とを含む組成物2を塗布して塗膜を得ること、および上記塗膜を乾燥することを含む方法により層2を形成することを含む、[6]または[7]に記載の製造方法。
[4] The composition for producing an optical functional layer according to any one of [1] to [3], wherein the optical functional component includes a polymerizable compound.
[5] The composition for producing an optical functional layer according to [4], wherein the optical functional component includes a polymerizable liquid crystal compound.
[6] Applying the optical functional layer-producing composition according to any one of [1] to [5] on a support to obtain a coating film, and drying the coating film to support the support The manufacturing method of an optical film including forming the optical functional layer 1 on a body.
[7] Applying the optical functional layer preparation composition described in [4] or [5] on a support to obtain a coating film, drying the coating film, and drying the coating film The manufacturing method of an optical film including attaching | subjecting hardening reaction and forming the optical functional layer 1 on the said support body.
[8] On the surface of the optical functional layer 1, a composition 2 containing an optical functional component containing one or more compounds selected from the group consisting of a polymerizable compound and a polymer and a solvent is applied to form a coating film. The manufacturing method according to [6] or [7], comprising forming and forming layer 2 by a method including obtaining and drying the coating film.
[9]組成物2が重合性化合物を含み、
層2の形成において、乾燥した上記塗膜を硬化反応に付すことを含む[8]に記載の製造方法。
[10]組成物2が[1]~[5]のいずれか一項に記載の光学機能性層作製用組成物である[8]または[9]に記載の製造方法。
[11][1]~[5]のいずれか一項に記載の光学機能性層作製用組成物の塗膜から形成される光学機能性層1を含む光学フィルム。
[12][6]または[7]に記載の方法により得られる、支持体および光学機能性層1を含む光学フィルム。
[13]光学機能性層1が、コレステリック液晶相を固定してなる層である[11]または[12]に記載の光学フィルム。
[14][8]~[10]のいずれか一項に記載の方法により得られる光学フィルムであって、支持体、光学機能性層1および層2をこの順で含む光学フィルム。
[15]光学機能性層1および層2からなる群から選択される1層以上が、コレステリック液晶相を固定してなる層である[14]に記載の光学フィルム。
[16]光学機能性層1および層2のいずれか一方が、重合性の棒状液晶化合物を含む組成物の硬化により形成された層であり、他方が重合性の円盤状液晶化合物を含む組成物の硬化により形成された層である[14]または[15]に記載の光学フィルム。
[9] Composition 2 contains a polymerizable compound,
In the formation of the layer 2, the production method according to [8], comprising subjecting the dried coating film to a curing reaction.
[10] The production method according to [8] or [9], wherein the composition 2 is the composition for producing an optical functional layer according to any one of [1] to [5].
[11] An optical film including the optical functional layer 1 formed from a coating film of the composition for producing an optical functional layer according to any one of [1] to [5].
[12] An optical film comprising the support and the optical functional layer 1 obtained by the method according to [6] or [7].
[13] The optical film according to [11] or [12], wherein the optical functional layer 1 is a layer formed by fixing a cholesteric liquid crystal phase.
[14] An optical film obtained by the method according to any one of [8] to [10], comprising the support, the optical functional layer 1 and the layer 2 in this order.
[15] The optical film according to [14], wherein one or more layers selected from the group consisting of the optical functional layer 1 and the layer 2 are layers formed by fixing a cholesteric liquid crystal phase.
[16] A composition in which any one of the optical functional layer 1 and the layer 2 is a layer formed by curing a composition containing a polymerizable rod-like liquid crystal compound, and the other contains a polymerizable discotic liquid crystal compound. The optical film according to [14] or [15], which is a layer formed by curing.
 本発明により、粘度が低くてもハジキを生じにくい光学機能性層作製用組成物を提供が提供される。本発明はまた、作製後の光学機能性層を下層として、その表面に上層を塗布成膜する際、上層形成用の塗布液にもハジキを生じさせにくい光学機能性層作製用組成物を提供する。本発明の光学機能性層作製用組成物により積層フィルムを作製するための支持体フィルムとして用いることができる、上層形成用の塗布液にハジキを生じさせにくい光学機能性層を有する光学フィルムを製造することができる。そのため、本発明の光学機能性層作製用組成物を用いて、多様な機能を有する積層フィルムの製造が可能である。 The present invention provides provision of a composition for producing an optical functional layer that is less likely to cause repelling even when the viscosity is low. The present invention also provides a composition for producing an optical functional layer that hardly causes repelling in the coating liquid for forming the upper layer when the optical functional layer after production is used as a lower layer and an upper layer is applied and formed on the surface. To do. Manufacture an optical film having an optical functional layer that can be used as a support film for producing a laminated film with the composition for producing an optical functional layer of the present invention and hardly causes repelling in a coating solution for forming an upper layer. can do. Therefore, it is possible to produce a laminated film having various functions using the composition for producing an optical functional layer of the present invention.
 以下、本発明を詳細に説明する。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「((メタ)アクリル基」は、「アクリル基およびメタアクリル基のいずれか一方または双方」の意味で使用される。
Hereinafter, the present invention will be described in detail.
In the present specification, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the present specification, “((meth) acryl group” is used to mean “one or both of an acrylic group and a methacryl group”.
[光学機能性層作製用組成物]
 光学機能性層作製用組成物は、光学機能性成分と溶剤とを含む組成物である。すなわち、光学機能性層作製用組成物は、溶液または分散液であればよい。本発明の光学機能性層作製用組成物は光学フィルムの作製過程における塗布成膜の際の塗布液として用いることができるものであればよい。光学機能性層作製用組成物は、特に塗布された塗膜から、光学機能性層を形成することができる組成物であり、例えば、塗布されて塗膜状態の組成物を乾燥させることにより溶剤を除去して光学機能性層が得られるものであってもよく、塗膜状態の組成物を乾燥して、乾燥後の塗膜を硬化して光学機能性が得られるものであってもよい。
 光学機能性層作製用組成物から、光学フィルム全体が形成されてもよく、光学フィルムの一部が形成されていてもよい。例えば、光学機能性層作製用組成物は光学フィルムを形成する複数の層のうちの一部または一層を形成するものであってもよい。
 光学機能性層としては、λ/4層などの光学異方性層、偏光層、コレステリック液晶相を固定した層などの光反射層、光吸収層、透明層などが挙げられる。
[Composition for optical functional layer preparation]
The composition for preparing an optical functional layer is a composition containing an optical functional component and a solvent. That is, the composition for preparing an optical functional layer may be a solution or a dispersion. The composition for producing an optical functional layer of the present invention may be any composition that can be used as a coating liquid in coating film formation in the process of producing an optical film. The composition for preparing an optical functional layer is a composition capable of forming an optical functional layer from a coated film, for example. For example, a solvent can be formed by drying a coated composition in a coated state. The optical functional layer may be obtained by removing the film, or the optically functional layer may be obtained by drying the coating film composition and curing the dried coating film. .
The entire optical film may be formed from the composition for producing an optical functional layer, or a part of the optical film may be formed. For example, the composition for preparing an optical functional layer may form part or one of a plurality of layers forming an optical film.
Examples of the optical functional layer include an optically anisotropic layer such as a λ / 4 layer, a light reflecting layer such as a polarizing layer, a layer in which a cholesteric liquid crystal phase is fixed, a light absorbing layer, and a transparent layer.
 本発明の光学機能性層作製用組成物は、粘度が低くてもハジキを生じにくい。光学機能性層作製用組成物の粘度は0.3~30.0mPa・sであり、0.4~20mPa・sであることが好ましく、0.5~15mPa・sであることがより好ましい。光学機能性層作製用組成物は、流延法で用いられる組成物を含まないことが好ましい。流延法で用いられる組成物は通常高粘度であるからである。
 なお、本明細書において、粘度は、25℃の条件で、振動式粘度計を用いて測定した値を意味する。振動式粘度計としては、例えば、セコニック社製、Vm-100を使用することができる。
 粘度は主に溶剤の含量や、ポリマー型の分子を添加することで調整することができる。
The composition for preparing an optical functional layer of the present invention hardly causes repelling even when the viscosity is low. The viscosity of the composition for preparing an optical functional layer is 0.3 to 30.0 mPa · s, preferably 0.4 to 20 mPa · s, and more preferably 0.5 to 15 mPa · s. The composition for producing an optical functional layer preferably does not contain a composition used in the casting method. This is because the composition used in the casting method usually has a high viscosity.
In addition, in this specification, a viscosity means the value measured using the vibration viscometer on 25 degreeC conditions. As the vibration type viscometer, for example, Vm-100 manufactured by Seconic Corporation can be used.
The viscosity can be adjusted mainly by adding a solvent content or polymer type molecules.
<溶剤>
 本発明の光学機能性層作製用組成物は溶剤を含む。光学機能性層作製用組成物に含まれる溶剤は、低表面張力溶剤と標準表面張力溶剤との混合溶剤である。そして、光学機能性層作製用組成物に含まれる溶剤全量に対する低表面張力溶剤全量の含量は、5質量%~40質量%であり、7質量%~36質量%であることが好ましく、10質量%~30質量%であることがより好ましく、10質量%~25質量%であることがさらに好ましい。
<Solvent>
The composition for producing an optical functional layer of the present invention contains a solvent. The solvent contained in the composition for preparing an optical functional layer is a mixed solvent of a low surface tension solvent and a standard surface tension solvent. The total amount of the low surface tension solvent relative to the total amount of the solvent contained in the composition for producing an optical functional layer is 5% by mass to 40% by mass, and preferably 7% by mass to 36% by mass. % To 30% by mass is more preferable, and 10% to 25% by mass is even more preferable.
 本発明者らは、上記のように、低表面張力溶剤を一定の割合で含ませた光学機能性層作製用組成物は塗布時のハジキが生じにくいとともに、膜面が均一でムラのない光学機能性層を作製できることを見出した。驚くべきことに、ハジキや光学ムラは、従来技術で用いられていたフッ素系界面活性剤やシリコーン系の界面活性剤を加えなくても生じなかった。いずれの理論に拘泥するものではないが、塗布時には、低表面張力溶剤が上述の従来技術における界面活性剤と同様に、面状平滑化(レベリング)機能を示し、周辺環境の風に対する耐性が向上し、光学ムラを生じにくくさせ、さらにはハジキを抑制できているものと考えられる。 As described above, the inventors of the present invention have a composition for producing an optical functional layer containing a low surface tension solvent at a certain ratio, and it is difficult to cause repelling during coating, and the film surface is uniform and has no unevenness. It has been found that a functional layer can be produced. Surprisingly, repelling and optical unevenness did not occur without adding a fluorine-based surfactant or a silicone-based surfactant used in the prior art. Although not bound by any theory, at the time of application, the low surface tension solvent shows a surface smoothing (leveling) function like the surfactant in the above-mentioned prior art, and the resistance to wind in the surrounding environment is improved. In addition, it is considered that optical unevenness is hardly caused and repelling is suppressed.
 本発明者らは、同時に、本発明の光学機能性層作製用組成物を用いて作製された光学機能性層を下層(本明細書において、「光学機能性層1」ということがある。)として、その表面に、更に上層(本明細書において、「層2」とする層に対応することがある。)を塗布成膜する際にも塗布時のハジキが生じにくいとともに、膜面が均一でムラのない上層を作製できることを見出した。いずれの理論に拘泥するものではないが、上述のように、塗布時には、面状平滑化(レベリング)機能を示していた低表面張力溶剤は、フィルム形成時の乾燥の際に、揮発して消失し、形成されるフィルムに残留しないため、従来技術の界面活性剤のように表面を疎水化することなく、上層形成時のハジキが生じにくいと考えられる。上記のような特質から、本発明の光学機能性層作製用組成物から形成された層を下層として、その表面に塗布成膜で上層を形成する際の、上層形成用の塗布液の溶剤としては、幅広い溶剤を使用できる。 At the same time, the inventors of the present invention used an optical functional layer produced by using the composition for producing an optical functional layer of the present invention as a lower layer (sometimes referred to as “optical functional layer 1” in this specification). As a result, even when an upper layer (which may correspond to a layer referred to as “layer 2” in this specification) is formed on the surface, repelling during coating hardly occurs and the film surface is uniform. And found that a uniform upper layer can be produced. Although not bound by any theory, as described above, the low surface tension solvent that exhibited the planar smoothing (leveling) function during the coating process volatilizes and disappears during drying during film formation. In addition, since it does not remain in the film to be formed, it is considered that repellency during formation of the upper layer is unlikely to occur without hydrophobizing the surface as in the case of the surfactant of the prior art. From the above characteristics, the layer formed from the composition for producing an optical functional layer of the present invention is used as a lower layer, and as an upper layer forming coating solution solvent when an upper layer is formed on the surface by coating film formation. Can use a wide range of solvents.
 低表面張力溶剤の表面張力は10~22mN/m(10~22dyn/cm)であり、15~21mN/mであることが好ましく、18~20mN/mであることがより好ましい。標準表面張力溶剤の表面張力は22mN/mより大きく、23~50mN/mであることが好ましく、23~40mN/mであることがより好ましい。
 また、低表面張力溶剤の表面張力と標準表面張力溶剤の表面張力との差は、2mN/m以上であることが好ましく、3mN/m以上であることがより好ましく、4~20mN/m以上であることがさらに好ましく、0.005~0.015mN/mであることが特に好ましい。
The surface tension of the low surface tension solvent is 10 to 22 mN / m (10 to 22 dyn / cm), preferably 15 to 21 mN / m, and more preferably 18 to 20 mN / m. The surface tension of the standard surface tension solvent is greater than 22 mN / m, preferably 23 to 50 mN / m, and more preferably 23 to 40 mN / m.
The difference between the surface tension of the low surface tension solvent and the surface tension of the standard surface tension solvent is preferably 2 mN / m or more, more preferably 3 mN / m or more, and 4 to 20 mN / m or more. More preferably, it is 0.005 to 0.015 mN / m.
 なお、本明細書において、溶剤の表面張力は、溶剤ハンドブック(講談社、1976年発行)に記載の値である。溶剤の表面張力は、例えば、協和界面科学株式会社製自動表面張力計CBVP-A3により測定することができる物性値である。測定は25℃の条件で行えばよい。
 低表面張力溶剤および標準表面張力溶剤のそれぞれが混合溶剤であってもよい。その際、混合溶剤たる低表面張力溶剤を構成する個々の溶剤の表面張力、および、混合溶剤たる標準表面張力溶剤を構成する個々の溶剤の表面張力が上記範囲にあればよい。
In addition, in this specification, the surface tension of a solvent is a value as described in a solvent handbook (Kodansha, 1976 issuance). The surface tension of the solvent is a physical property value that can be measured by, for example, an automatic surface tension meter CBVP-A3 manufactured by Kyowa Interface Science Co., Ltd. The measurement may be performed at 25 ° C.
Each of the low surface tension solvent and the standard surface tension solvent may be a mixed solvent. At that time, the surface tension of each solvent constituting the low surface tension solvent as the mixed solvent and the surface tension of each solvent constituting the standard surface tension solvent as the mixed solvent may be in the above range.
 低表面張力溶剤の沸点は標準表面張力溶剤の沸点よりも高いことが好ましい。また、低表面張力溶剤に対する光学機能性成分の溶解性は標準表面張力溶剤に対する光学機能性成分の溶解性よりも低いことが好ましい。ここで、光学機能性成分の溶解性は光学機能性成分中の重合性化合物およびポリマーから成る群から選択される1つ以上の化合物の溶解性を比較すればよい。また、低表面張力溶剤の沸点が標準表面張力溶剤の沸点よりも高いとともに、低表面張力溶剤に対する光学機能性成分の溶解性が標準表面張力溶剤に対する光学機能性成分の溶解性よりも低いことがより好ましい。塗布時のハジキをより抑制できる光学機能性層作製用組成物となるからである。いずれの理論に拘泥するものではないが、フィルム形成の際の乾燥工程で、光学機能性成分の溶解性がより高く、かつ沸点のより低い標準表面張力溶剤が先に揮発し、低表面張力溶剤が残留することで、低表面張力溶剤によるレベリング機能による、ハジキやムラを防止する効果を高めることができると考えられる。 The boiling point of the low surface tension solvent is preferably higher than that of the standard surface tension solvent. The solubility of the optical functional component in the low surface tension solvent is preferably lower than the solubility of the optical functional component in the standard surface tension solvent. Here, the solubility of the optical functional component may be compared with the solubility of one or more compounds selected from the group consisting of a polymerizable compound and a polymer in the optical functional component. In addition, the boiling point of the low surface tension solvent is higher than that of the standard surface tension solvent, and the solubility of the optical functional component in the low surface tension solvent is lower than the solubility of the optical functional component in the standard surface tension solvent. More preferred. It is because it becomes the composition for optical functional layer preparation which can suppress the repelling at the time of application | coating more. Without being bound by any theory, in the drying process during film formation, the standard surface tension solvent with higher solubility of the optical functional component and lower boiling point is volatilized first, resulting in a low surface tension solvent. It is thought that the effect of preventing repellency and unevenness due to the leveling function of the low surface tension solvent can be enhanced by remaining.
 溶剤としては、有機溶剤が好ましく用いられ、この中から、低表面張力溶剤と標準表面張力溶剤とを選択することができる。有機溶剤の例には、アルコール(例、エタノール、tert-ブチルアルコール)、アミド(例、N、N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ヘプタン、シクロペンタン、ベンゼン、ヘキサン、テトラフルオロエチレン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル、酢酸イソプロピル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1、2-ジメトキシエタン)、アミン(例、トリエチルアミン)が挙げられる。二種類以上の有機溶剤を併用してもよい。 As the solvent, an organic solvent is preferably used, and a low surface tension solvent and a standard surface tension solvent can be selected from these. Examples of organic solvents include alcohols (eg, ethanol, tert-butyl alcohol), amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (Eg, heptane, cyclopentane, benzene, hexane, tetrafluoroethylene), alkyl halides (eg, chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate, isopropyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone) ), Ether (eg, tetrahydrofuran, 1,2-dimethoxyethane), and amine (eg, triethylamine). Two or more organic solvents may be used in combination.
 低表面張力溶剤の例としては、tert-ブチルアルコール(19.5mN/m)、テトラフルオロエチレン(TFE、20.6mN/m)、トリエチルアミン(20.7mN/m)、シクロペンタン(21.8mN/m)、ヘプタン(19.6mN/m)およびこれら溶剤のいずれか2種以上の組み合わせからなる混合溶剤などが挙げられる。数値は表面張力を示す。これらのうち、tert-ブチルアルコール、テトラフルオロエチレン、トリエチルアミン、シクロペンタンが、安全性の観点から、好ましく、tert-ブチルアルコールまたはテトラフルオロエチレンがより好ましく、tert-ブチルアルコールがさらに好ましい。 Examples of low surface tension solvents include tert-butyl alcohol (19.5 mN / m), tetrafluoroethylene (TFE, 20.6 mN / m), triethylamine (20.7 mN / m), cyclopentane (21.8 mN / m). m), heptane (19.6 mN / m), and a mixed solvent composed of a combination of any two or more of these solvents. The numerical value indicates the surface tension. Of these, tert-butyl alcohol, tetrafluoroethylene, triethylamine, and cyclopentane are preferable from the viewpoint of safety, tert-butyl alcohol or tetrafluoroethylene is more preferable, and tert-butyl alcohol is more preferable.
 標準表面張力溶剤の例としては、メチルエチルケトン(MEK、23.9mN/m)、酢酸メチル(24.8mN/m)、メチルイソブチルケトン(MIBK、25.4mN/m)、シクロヘキサノン(34.5mN/m)、アセトン(23.7mN/m)、酢酸イソプロピル(0.022.1mN/m)およびこれら溶剤のいずれか2種以上の組み合わせからなる混合溶剤などが挙げられる。数値は表面張力を示す。これらのうち、メチルエチルケトン、シクロヘキサノンと他の1つの溶剤の混合溶剤、酢酸メチルとメチルイソブチルケトンとの混合溶剤などが好ましい。 Examples of standard surface tension solvents include methyl ethyl ketone (MEK, 23.9 mN / m), methyl acetate (24.8 mN / m), methyl isobutyl ketone (MIBK, 25.4 mN / m), cyclohexanone (34.5 mN / m). ), Acetone (23.7 mN / m), isopropyl acetate (0.022.1 mN / m), and a mixed solvent composed of a combination of any two or more of these solvents. The numerical value indicates the surface tension. Of these, methyl ethyl ketone, a mixed solvent of cyclohexanone and another solvent, a mixed solvent of methyl acetate and methyl isobutyl ketone, and the like are preferable.
 光学機能性層作製用組成物全質量に対する溶剤の濃度は、95~50質量%であることが好ましく、93~60質量%であることがより好ましく、90~75質量%であることがさらに好ましい。
 光学機能性層形成の際の乾燥工程では、光学機能性層作製用組成物の溶剤は、溶剤全量に対して、95質量%以上除去されることが好ましく、98質量%以上除去されることがより好ましく、99質量%以上除去されることがさらに好ましく、実質的に100質量%除去されることが特に好ましい。
The concentration of the solvent with respect to the total mass of the composition for producing an optical functional layer is preferably 95 to 50% by mass, more preferably 93 to 60% by mass, and further preferably 90 to 75% by mass. .
In the drying step in forming the optical functional layer, the solvent of the composition for preparing an optical functional layer is preferably removed by 95% by mass or more, and by 98% by mass or more, with respect to the total amount of the solvent. It is more preferable that 99% by mass or more is removed, and it is particularly preferable that 100% by mass is substantially removed.
<光学機能性成分>
 光学機能性成分は、光学機能性層を構成する成分または構成する成分の原料となる成分である、光学機能性成分は、光学機能性層作製用組成物から溶剤を除いた成分であればよい。光学機能性成分は、重合性化合物およびポリマーから成る群から選択される1つ以上の化合物を含む。光学機能性成分は、重合反応によりポリマーを形成できる重合性化合物(モノマー)、ポリマー、またはそれらの混合物を含む。光学機能性成分は重合性化合物または重合性化合物とポリマーとの混合物を含むことが好ましく、重合性化合物を含むことがより好ましい。
 光学機能性成分は、光学機能性層作製用組成物の塗布工程を含む成膜法により光学機能性層を形成することのできるものであれば特に限定されない。光学機能性成分は、延伸工程を含まない成膜法により光学機能性層を形成することのできるものであることが好ましい。光学機能性成分は、重合性化合物およびポリマーから成る群から選択される1つ以上の化合物のほか、重合開始剤、キラル剤などのその他の添加剤を含んでいてもよい。
 光学機能性成分は液晶化合物を含む液晶組成物であることも好ましい。
<Optical functional component>
The optical functional component is a component constituting the optical functional layer or a component that is a raw material of the constituent component. The optical functional component may be a component obtained by removing the solvent from the composition for preparing an optical functional layer. . The optically functional component includes one or more compounds selected from the group consisting of polymerizable compounds and polymers. The optical functional component includes a polymerizable compound (monomer) that can form a polymer by a polymerization reaction, a polymer, or a mixture thereof. The optical functional component preferably contains a polymerizable compound or a mixture of a polymerizable compound and a polymer, and more preferably contains a polymerizable compound.
The optical functional component is not particularly limited as long as the optical functional layer can be formed by a film forming method including a coating step of the composition for preparing an optical functional layer. The optical functional component is preferably one that can form an optical functional layer by a film forming method that does not include a stretching step. The optical functional component may contain one or more compounds selected from the group consisting of a polymerizable compound and a polymer, and other additives such as a polymerization initiator and a chiral agent.
The optical functional component is preferably a liquid crystal composition containing a liquid crystal compound.
(重合性化合物)
 重合性化合物は、付加重合反応または縮合重合反応が可能な官能基である重合性基を有する化合物である。重合性化合物は重合性基を1つ有していても2つ以上有していてもよい。重合性基としては、ラジカル重合性基とカチオン重合性基などが挙げられる。両者の組み合わせであってもよい。ラジカル重合性基としては、ビニル基および(メタ)アクリル基などが挙げられる。カチオン重合性基としては、エポキシ基、オキセタニル基、およびビニルエーテル基などが挙げられる。上記のうち、好ましい重合性基としては、アクリル基、メタクリル基があげられる。
(Polymerizable compound)
The polymerizable compound is a compound having a polymerizable group which is a functional group capable of addition polymerization reaction or condensation polymerization reaction. The polymerizable compound may have one polymerizable group or two or more polymerizable groups. Examples of the polymerizable group include a radical polymerizable group and a cationic polymerizable group. A combination of both may be used. Examples of the radical polymerizable group include a vinyl group and a (meth) acryl group. Examples of the cationic polymerizable group include an epoxy group, an oxetanyl group, and a vinyl ether group. Among the above, preferred polymerizable groups include acryl groups and methacryl groups.
(液晶化合物)
 液晶化合物には、高分子液晶化合物(ポリマー)および低分子液晶化合物が含まれる。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。また、液晶化合物としては、棒状液晶化合物および円盤状液晶化合物が含まれる。
(Liquid crystal compound)
The liquid crystal compound includes a high molecular liquid crystal compound (polymer) and a low molecular liquid crystal compound. Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). The liquid crystal compound includes a rod-like liquid crystal compound and a disk-like liquid crystal compound.
 高分子液晶化合物としては、例えば、液晶配向性を付与する共役性の直線状原子団(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種高分子液晶化合物等が挙げられる。主鎖型の高分子液晶化合物の例としては、屈曲性を付与するスペーサ部でメソゲン基を結合した構造の、ポリエステル系高分子液晶化合物、円盤状液晶化合物やコレステリック液晶化合物等が挙げられる。側鎖型高分子液晶化合物の例としては、ポリシロキサン、ポリアクリレート、ポリメタクリレートまたはポリマロネートを主鎖骨格とし、ネマチック配向付与性のパラ置換環状化合物単位からなるメソゲン部を側鎖として含み、これら主鎖骨格と側鎖とが共役性の原子団からなるスペーサ部を介して結合された高分子化合物等が挙げられる。高分子液晶化合物の例としては、特開2004-285174号公報 特開2004-285169号公報 または特開2005-139375号公報等に記載の液晶ポリマー、および2011-237513号公報に記載サーモトロピック液晶性高分子などが挙げられる。
 光学機能性成分に含まれる低分子液晶化合物は重合反応によりポリマーを形成できる重合性化合物(重合性液晶化合物)であることが好ましい。
Examples of the polymer liquid crystal compound include various main-chain and side-chain liquid crystal compounds in which a conjugated linear atomic group (mesogen) that imparts liquid crystal orientation is introduced into the main chain or side chain of the polymer. Etc. Examples of the main-chain polymer liquid crystal compound include polyester-based polymer liquid crystal compounds, discotic liquid crystal compounds, and cholesteric liquid crystal compounds having a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility. Examples of the side chain type polymer liquid crystal compound include polysiloxane, polyacrylate, polymethacrylate or polymalonate as a main chain skeleton, and a mesogen portion consisting of a para-substituted cyclic compound unit capable of imparting nematic orientation as a side chain. Examples thereof include a polymer compound in which a chain skeleton and a side chain are bonded via a spacer portion composed of a conjugated atomic group. Examples of the polymer liquid crystal compound include liquid crystal polymers described in JP-A-2004-285174, JP-A-2004-285169, JP-A-2005-139375, and thermotropic liquid crystal properties described in JP-A-2011-237513. Examples thereof include polymers.
The low molecular liquid crystal compound contained in the optical functional component is preferably a polymerizable compound (polymerizable liquid crystal compound) capable of forming a polymer by a polymerization reaction.
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。重合性液晶化合物である棒状液晶化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、WO95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号、同6-16616号、同7-110469号、同11-80081号、および特願2001-64627号の各公報などに記載の化合物を用いることができる。さらに棒状液晶化合物としては、例えば、特表平11-513019号公報や特開2007-279688号公報に記載のものも好ましく用いることができる。 Examples of the rod-like liquid crystal compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. As the rod-like liquid crystal compound which is a polymerizable liquid crystal compound, Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), U.S. Pat. Nos. 4,683,327, 5,622,648, 5,770,107, WO 95/22586, 95/24455, 97/97. JP-A Nos. 0600, 98/23580, 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and Japanese Patent Application No. 2001-64627 Etc. can be used. Further, as the rod-like liquid crystal compound, for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
 円盤状液晶化合物としては、例えば、特開2007-108732号公報や特開2010-244038号公報に記載の化合物が挙げられる。
 以下に、重合性円盤状液晶化合物の好ましい例を示す。
Examples of the discotic liquid crystal compound include compounds described in JP 2007-108732 A and JP 2010-244038 A.
Below, the preferable example of a polymeric discotic liquid crystal compound is shown.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(重合開始剤)
 重合性化合物の重合による組成物の硬化により光学機能性層が形成される場合などにおいて、光学機能性成分は重合開始剤を含んでいてもよい。
 重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)等が挙げられる。
(Polymerization initiator)
In the case where the optical functional layer is formed by curing the composition by polymerization of the polymerizable compound, the optical functional component may contain a polymerization initiator.
Examples of the polymerization initiator include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. An acyloin compound (described in US Pat. No. 2,722,512), a polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of a triarylimidazole dimer and p-aminophenyl ketone (US Pat. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850) and oxadiazole compounds (US Pat. No. 4,221,970), acylphosphine oxides Compound (Japanese Patent Publication No. 63-407) No. 99, JP-B-5-29234, JP-A-10-95788, JP-A-10-29997) and the like.
(キラル剤)
 光学機能性層作製用組成物から形成される光学機能性層はコレステリック液晶相を固定した層であってもよい。その場合、光学機能性成分はキラル剤を含むことが好ましい。
 キラル剤は、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989に記載)から選択することができる。キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤が重合性基を有するとともに、併用する棒状液晶化合物も重合性基を有する場合は、重合性基を有するキラル剤と重合性棒状液晶合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性基を有するキラル剤が有する重合性基は、重合性棒状液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
(Chiral agent)
The optical functional layer formed from the composition for preparing an optical functional layer may be a layer in which a cholesteric liquid crystal phase is fixed. In that case, the optical functional component preferably contains a chiral agent.
As the chiral agent, various known chiral agents (for example, described in Liquid Crystal Device Handbook, Chapter 3-4-3, TN, chiral agent for STN, page 199, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989) You can choose from. A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When the chiral agent has a polymerizable group and the rod-shaped liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-shaped liquid crystal compound by a polymerization reaction between the chiral agent having a polymerizable group and the polymerizable rod-shaped liquid crystal compound. And a polymer having a repeating unit derived from a chiral agent. In this embodiment, the polymerizable group possessed by the chiral agent having a polymerizable group is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
The chiral agent may be a liquid crystal compound.
 強い捩れ力を示すキラル剤としては、例えば、特開2010-181852号公報、特開2003-287623号公報、特開2002-80851号公報、特開2002-80478号公報、特開2002-302487号公報に記載のキラル剤が挙げられ、好ましく用いることができる。さらに、これらの公開公報に記載されているイソソルビド化合物類については対応する構造のイソマンニド化合物類を用いることもでき、これらの公報に記載されているイソマンニド化合物類については対応する構造のイソソルビド化合物類を用いることもできる。 Examples of the chiral agent exhibiting a strong twisting force include, for example, JP 2010-181852 A, JP 2003-287623 A, JP 2002-80851 A, JP 2002-80478 A, and JP 2002-302487 A. The chiral agent described in the gazette is mentioned, and can be preferably used. Furthermore, isosorbide compounds having a corresponding structure can be used for the isosorbide compounds described in these publications, and isosorbide compounds having a corresponding structure can be used for the isomannide compounds described in these publications. It can also be used.
(フッ素系界面活性剤およびシリコーン系界面活性剤)
 光学機能性成分はフッ素系界面活性剤およびシリコーン系界面活性剤を実質的に含まないことが好ましい。すなわち、光学機能性層作製用組成物はフッ素系界面活性剤およびシリコーン系界面活性剤を実質的に含まないことが好ましい。このような界面活性剤を含まないことにより、低表面張力溶剤が上記のように機能しやすくなる。また、形成された光学機能性層の表面が疎水的になりにくくなり、上層を形成する際にハジキが生じにくくなる。
 具体的には、光学機能性層作製用組成物のフッ素系界面活性剤およびシリコーン系界面活性剤の含量が、光学機能性層作製用組成物の総質量に対して0.5質量%以下、好ましくは0.3質量%以下であればよい。例えば、0.1質量%以下、0.05質量%以下、0.01質量%以下、0.001質量%以下であってもよい。
(Fluorine-based surfactant and silicone-based surfactant)
It is preferable that the optical functional component does not substantially contain a fluorine-based surfactant and a silicone-based surfactant. That is, it is preferable that the composition for preparing an optical functional layer does not substantially contain a fluorine-based surfactant and a silicone-based surfactant. By not including such a surfactant, the low surface tension solvent is likely to function as described above. Further, the surface of the formed optical functional layer is less likely to be hydrophobic, and repelling is less likely to occur when the upper layer is formed.
Specifically, the content of the fluorine-based surfactant and the silicone-based surfactant in the composition for producing an optical functional layer is 0.5% by mass or less based on the total mass of the composition for producing an optical functional layer, Preferably, it may be 0.3% by mass or less. For example, it may be 0.1 mass% or less, 0.05 mass% or less, 0.01 mass% or less, or 0.001 mass% or less.
 フッ素系界面活性剤は、フッ素を含む化合物であって、光学機能性層作製用組成物において使用される溶剤中で表面に偏在する化合物である。疎水性部分を有するフッ素系界面活性剤の例としては、特開2011-191582号公報の段落0028~0034に記載の配向制御剤として記載される化合物のうちのフッ素を含むもの、特許2841611号に記載のフッ素系界面活性剤、特開2005-272560号公報の段落0017~0019に記載のフッ素系界面活性剤などが挙げられる。
 市販品のフッ素系界面活性剤としては、AGCセイミケミカル株式会社製のサーフロンや、DIC株式会社製のメガファックを挙げることができる。
The fluorine-based surfactant is a compound containing fluorine and is unevenly distributed on the surface in the solvent used in the composition for producing an optical functional layer. Examples of the fluorosurfactant having a hydrophobic portion include those containing fluorine among compounds described as alignment control agents described in paragraphs 0028 to 0034 of JP2011-191582A, and Japanese Patent No. 2841611. And the fluorine-based surfactants described in paragraphs 0017 to 0019 of JP-A-2005-272560.
Examples of commercially available fluorosurfactants include Surflon manufactured by AGC Seimi Chemical Co., Ltd. and MegaFac manufactured by DIC Corporation.
 シリコーン系界面活性剤は、シリコーンを含む化合物であって、光学機能性層作製用組成物において使用される溶剤中で表面に偏在する化合物である。
 シリコーン系界面活性剤としては、例えば、ポリメチルフェニルシロキサン、ポリエーテル変性シリコーンオイル、ポリエーテル変性ジメチルポリシロキサン、ジメチルシリコーン、ジフェニルシリコーン、ハイドロジェン変性ポリシロキサン、ビニル変性ポリシロキサン、ヒドロキシ変性ポリシロキサン、アミノ変性ポリシロキサン、カルボキシル変性ポリシロキサン、クロル変性ポリシロキサン、エポキシ変性ポリシロキサン、メタクリロキシ変性ポリシロキサン、メルカプト変性ポリシロキサン、フッ素変性ポリシロキサン、長鎖アルキル変性ポリシロキサン、フェニル変性ポリシロキサン、シリコーン変性コポリマーなどの珪素原子含有の低分子化合物が挙げられる。
The silicone-based surfactant is a compound containing silicone, and is a compound unevenly distributed on the surface in the solvent used in the composition for producing an optical functional layer.
Examples of the silicone surfactant include polymethylphenylsiloxane, polyether-modified silicone oil, polyether-modified dimethylpolysiloxane, dimethylsilicone, diphenylsilicone, hydrogen-modified polysiloxane, vinyl-modified polysiloxane, hydroxy-modified polysiloxane, Amino modified polysiloxane, carboxyl modified polysiloxane, chloro modified polysiloxane, epoxy modified polysiloxane, methacryloxy modified polysiloxane, mercapto modified polysiloxane, fluorine modified polysiloxane, long chain alkyl modified polysiloxane, phenyl modified polysiloxane, silicone modified copolymer And low molecular weight compounds containing silicon atoms.
 シリコーン系界面活性剤の市販品としては、信越化学社製のKF-96、X-22-945、トーレシリコーンDC3PA、同DC7PA、同SH11PA、同SH21PA、同SH28PA、同SH29PA、同SH30PA、同FS-1265-300(以上、東レ・ダウコーニング・シリコーン(株)製)、TSF-4300、同-4440、同-4445、同-4446、同-4452、同-4460(以上、GE東芝シリコン(株)製)、ポリシロキサンポリマーKP341(信越化学(株)製)、BYK-301、同BYK-302、同BYK-307、同BYK-325、同BYK-331、同BYK-333、同BYK-341、同BYK-345、同BYK-346、同BYK-348、同BYK-375(ビックケミー・ジャパン(株)製)アロンGS-30(東亜合成社製)、シリコーンL-75、シリコーンL-76、シリコーンL-77、シリコーンL-78、シリコーンL-79、シリコーンL-520およびシリコーンL-530(日本ユニカ社製)等を挙げることができる。 Commercially available silicone surfactants include Shin-Etsu Chemical KF-96, X-22-945, Tore Silicone DC3PA, DC7PA, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, FS -1265-300 (above, manufactured by Toray Dow Corning Silicone Co., Ltd.), TSF-4300, -4440, -4445, -4446, -4442, -4460 (above, GE Toshiba Silicon Co., Ltd.) ), Polysiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-301, BYK-302, BYK-307, BYK-325, BYK-331, BYK-333, BYK-341 BYK-345, BYK-346, BYK-348, BYK-375 (BIC Chemi) -Japan Co., Ltd.) Aron GS-30 (manufactured by Toa Gosei Co., Ltd.), Silicone L-75, Silicone L-76, Silicone L-77, Silicone L-78, Silicone L-79, Silicone L-520 and Silicone L -530 (manufactured by Nippon Unika Co., Ltd.).
<光学機能性層の形成>
 光学機能性層は光学機能性層作製用組成物からなる塗膜から形成される。光学機能性層は、例えば、支持体上に光学機能性層作製用組成物を塗布し、得られる塗膜を乾燥することにより形成された層であってもよく、さらに光照射または加熱などによる硬化工程に付して形成された層であってもよい。
<Formation of optical functional layer>
The optical functional layer is formed from a coating film made of the composition for producing an optical functional layer. The optical functional layer may be, for example, a layer formed by applying a composition for preparing an optical functional layer on a support and drying the resulting coating film, and further by light irradiation or heating. It may be a layer formed by being subjected to a curing process.
 光学機能性層作製用組成物の塗布は、ロールコーティング方式やグラビア印刷方式、スピンコート方式などの適宜な方式で展開する方法などにより行うことができる。さらにワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、等の種々の方法によって行うことができる。また、インクジェット装置を用いて、光学機能性層作製用組成物をノズルから吐出して、塗布膜を形成することもできる。 Application of the composition for producing an optical functional layer can be performed by a method of developing by an appropriate method such as a roll coating method, a gravure printing method, or a spin coating method. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. Alternatively, the coating film can be formed by ejecting the composition for producing an optical functional layer from a nozzle using an ink jet apparatus.
 乾燥は放置により行ってもよく、加熱して行ってもよい。乾燥の工程において、光学機能性成分に由来する光学機能が発現するものであってもよい。例えば、光学機能性成分が液晶化合物を含むものである場合、乾燥により溶剤が除去される過程で、液晶相を形成させていてもよい。液晶相の形成は、加熱により液晶相への転移温度とすることにより行ってもよい。例えば、一旦等方性相の温度まで加熱し、その後、液晶相転移温度まで冷却する等によって、安定的に液晶相の状態にすることができる。液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。10℃未満であると液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し、熱エネルギーの浪費、基板の変形、変質等からも不利になる。 Drying may be performed by standing or may be performed by heating. In the drying step, an optical function derived from the optical functional component may be expressed. For example, when the optical functional component contains a liquid crystal compound, a liquid crystal phase may be formed in the process of removing the solvent by drying. The liquid crystal phase may be formed by setting the transition temperature to the liquid crystal phase by heating. For example, the liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the liquid crystal phase transition temperature. The liquid crystal phase transition temperature is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C. from the viewpoint of production suitability and the like. When the temperature is lower than 10 ° C., a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase. When the temperature exceeds 200 ° C., a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
 例えば光学機能性成分が重合性化合物を含むものである場合、上記乾燥後の膜を硬化することが好ましい。光学機能性成分が重合性液晶化合物を含むものである場合、硬化により、液晶化合物の分子の配向状態を維持して固定することができる。硬化は、重合性化合物中の重合性基の重合反応により実施することができる。 For example, when the optical functional component contains a polymerizable compound, it is preferable to cure the dried film. When the optical functional component contains a polymerizable liquid crystal compound, the molecular alignment state of the liquid crystal compound can be maintained and fixed by curing. Curing can be carried out by a polymerization reaction of a polymerizable group in the polymerizable compound.
 重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。重合性化合物特に重合性液晶化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、50mJ/cm2~1000J/cm2であることが好ましく、100~800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。 The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred. The light irradiation for the polymerization of the polymerizable compound, particularly the polymerizable liquid crystal compound, preferably uses ultraviolet rays. The irradiation energy is preferably 50 mJ / cm 2 to 1000 J / cm 2 , more preferably 100 to 800 mJ / cm 2 . In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。
 また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達せず、膜強度が不十分の場合には、窒素置換等の方法により、雰囲気中の酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。紫外線照射によって進行される硬化反応(例えば重合反応)の反応率は、層の機械的強度の保持等や未反応物が層から流出するのを抑える等の観点から、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがよりさらに好ましい。反応率を向上させるためには照射する紫外線の照射量を増大する方法や窒素雰囲気下あるいは加熱条件下での重合が効果的である。また、一旦重合させた後に、重合温度よりも高温状態で保持して熱重合反応によって反応をさらに推し進める方法や、再度紫外線を照射する方法を用いることもできる。反応率の測定は反応性基(例えば重合性基)の赤外振動スペクトルの吸収強度を、反応進行の前後で比較することによって行うことができる。
In order to accelerate the curing reaction, ultraviolet irradiation may be performed under heating conditions.
Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less. The reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 60% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 70% or more, more preferably 80% or more. In order to improve the reaction rate, a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective. Moreover, after superposing | polymerizing once, the method of hold | maintaining at a temperature higher than superposition | polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can also be used. The reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
 光学機能性成分として液晶化合物を用いた光学機能性層の液晶化合物分子の配向に基づく光学的性質、例えば、コレステリック液晶相の光学的性質は、層中において保持されていれば十分であり、硬化後の光学機能性層の液晶組成物はもはや液晶性を示す必要はない。例えば、液晶化合物分子が硬化反応により高分子量化して、もはや液晶性を失っていてもよい。 The optical properties based on the orientation of the liquid crystal compound molecules of the optical functional layer using the liquid crystal compound as the optical functional component, for example, the optical properties of the cholesteric liquid crystal phase are sufficient as long as they are retained in the layer, and are cured. The liquid crystal composition of the later optical functional layer no longer needs to exhibit liquid crystallinity. For example, the liquid crystal compound molecules may become high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
 光学機能性層は、コレステリック液晶相を固定してなるコレステリック液晶層であることも好ましい。コレステリック液晶層およびコレステリック液晶層の製造方法としては、例えば、特開平1-133003号公報、特許3416302号、特許3363565号、特開平8-271731号公報に記載を参照することができる。 The optical functional layer is also preferably a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase. As for the cholesteric liquid crystal layer and the method for producing the cholesteric liquid crystal layer, reference can be made, for example, to those described in JP-A-1-133003, JP-A-3416302, JP-A-3363565, and JP-A-8-271731.
<光学フィルムの製造方法>
 光学フィルムは支持体上に、上記のように光学機能性層を形成することにより、製造することができる。支持体は光学機能性層の形成後剥離してもよい。
 本明細書において、「支持体上に」というとき、「支持体表面に直接」または「支持体表面に形成された他の層を介して」との意味を示す。
 光学機能性層は先に形成された他の層の表面に形成してもよい。本発明の光学機能性層作製用組成物は塗布成膜される際、ハジキを生じにくく、特に、後述の支持体、配向層、または液晶層の表面に塗布される際、ハジキを生じにくい。
 光学機能性層の表面にさらに上記のように光学機能性層を形成することも好ましい。本発明の光学機能性層作製用組成物から形成される光学機能性層はハジキを生じさせにくいため、様々な積層型の光学フィルムの作製が可能である。
<Method for producing optical film>
The optical film can be produced by forming the optical functional layer on the support as described above. The support may be peeled off after the optical functional layer is formed.
In the present specification, the phrase “on the support” means “directly on the support surface” or “through another layer formed on the support surface”.
You may form an optical functional layer in the surface of the other layer formed previously. The composition for preparing an optical functional layer of the present invention is less likely to cause repellency when applied and formed, and particularly less likely to cause repellency when applied to the surface of a support, alignment layer, or liquid crystal layer described below.
It is also preferable to form an optical functional layer on the surface of the optical functional layer as described above. Since the optical functional layer formed from the composition for preparing an optical functional layer of the present invention hardly causes repelling, various laminated optical films can be prepared.
<光学フィルム>
 光学フィルムは上記のように形成される光学機能性層を含む。光学フィルムは光学機能性層を1層含むものであっても、2層以上含むものであってもよい。光学フィルムは光学機能性層のみからなるものであってもよく、光学機能性層の他に他の層を含むものであってもよい。他の層としては、支持体、配向層、表面保護層などが挙げられる。また、本発明の光学機能性層作製用組成物から形成された光学機能性層以外の、液晶層などの光学機能性を有する層を有していてもよい。
<Optical film>
The optical film includes an optical functional layer formed as described above. The optical film may include one optical functional layer or two or more layers. The optical film may be composed only of the optical functional layer, or may contain other layers in addition to the optical functional layer. Examples of other layers include a support, an alignment layer, and a surface protective layer. Moreover, you may have layers which have optical functionality, such as a liquid crystal layer, other than the optical functional layer formed from the composition for optical functional layer preparation of this invention.
 光学フィルムは、液晶化合物を含む組成物の硬化により形成された層(以下、「液晶層」ということがある)を含むことが好ましく、本発明の光学機能性層作製用組成物から形成される層として液晶層を含むことも好ましい。
 また、光学フィルムは、コレステリック液晶相を固定してなる層を含むことが好ましく、本発明の光学機能性層作製用組成物から形成される層としてコレステリック液晶相を固定してなる層を含むことも好ましい。
 光学フィルムは、液晶層2層が積層された構造を有することが好ましく、上記2層は互いに直接接していることが好ましい。特に、本発明の光学機能性層作製用組成物から形成される層である液晶層を下層(光学機能性層1)としてその表面に上層として重合性化合物およびポリマーから成る群から選択される1つ以上の化合物を含む光学機能性成分と溶剤とを含む組成物2を塗布して形成された液晶層(層2)を有する構造を有することが好ましい。このときの組成物2の溶剤は上記で例示した有機溶剤から選択することができる。組成物2が本発明の光学機能性層作製用組成物であってもよい。層2の表面にさらに同様に層が形成された構造も好ましく、光学フィルムは同様に形成された液晶層の3~10層の積層フィルムであってもよい。
The optical film preferably includes a layer formed by curing a composition containing a liquid crystal compound (hereinafter sometimes referred to as “liquid crystal layer”), and is formed from the composition for producing an optical functional layer of the present invention. It is also preferable to include a liquid crystal layer as a layer.
The optical film preferably includes a layer formed by fixing a cholesteric liquid crystal phase, and includes a layer formed by fixing a cholesteric liquid crystal phase as a layer formed from the composition for preparing an optical functional layer of the present invention. Is also preferable.
The optical film preferably has a structure in which two liquid crystal layers are laminated, and the two layers are preferably in direct contact with each other. In particular, the liquid crystal layer, which is a layer formed from the composition for producing an optical functional layer of the present invention, is selected from the group consisting of a polymerizable compound and a polymer as a lower layer (optical functional layer 1) on the surface thereof. It is preferable to have a structure having a liquid crystal layer (layer 2) formed by applying a composition 2 containing an optical functional component containing one or more compounds and a solvent. The solvent of the composition 2 at this time can be selected from the organic solvents exemplified above. The composition 2 may be the composition for producing an optical functional layer of the present invention. A structure in which layers are similarly formed on the surface of the layer 2 is also preferable, and the optical film may be a laminated film of 3 to 10 liquid crystal layers formed in the same manner.
 本発明の光学機能性層作製用組成物は、フッ素系界面活性剤またはシリコーン系界面活性剤の添加を必要としないことにより、上記のように液晶層を積層した積層フィルムの作製に用いる際に、追加的な効果を有する。フッ素系界面活性剤またはシリコーン系界面活性剤を一定量以上含む組成物から形成された液晶層を下層として上層を形成すると、下層と上層との界面で配向乱れが発生することがある。低表面張力溶剤を含む混合溶剤を用いる際には、このような配向乱れも抑止していることを本発明者らは見出した。いずれの理論に拘泥するものではないが、上述のように、低表面張力溶剤が下層の液晶表面に残留しないため、上層と下層の液晶相互作用に影響を与えないためと考えられる。 The composition for preparing an optical functional layer of the present invention does not require the addition of a fluorine-based surfactant or a silicone-based surfactant, so that it can be used for preparing a laminated film in which a liquid crystal layer is laminated as described above. Have additional effects. When an upper layer is formed with a liquid crystal layer formed from a composition containing a certain amount or more of a fluorosurfactant or a silicone surfactant as a lower layer, alignment disorder may occur at the interface between the lower layer and the upper layer. The present inventors have found that when using a mixed solvent containing a low surface tension solvent, such alignment disturbance is also suppressed. Although not bound by any theory, it is considered that the low surface tension solvent does not remain on the lower liquid crystal surface as described above, and thus does not affect the liquid crystal interaction between the upper layer and the lower layer.
 本発明の光学機能性層作製用組成物を用いて作製される光学フィルムに互いに直接接している2つの液晶層が含まれる場合、光学機能性層1および層2のいずれか一方が、棒状液晶化合物を含む組成物から形成された層であり、他方が円盤状液晶化合物を含む組成物から形成された層であることも好ましい。さらに、光学機能性層1および層2のいずれか一方が、重合性の棒状液晶化合物を含む組成物の硬化により形成された層であり、他方が重合性の円盤状液晶化合物を含む組成物の硬化により形成された層であることも好ましい。 When two liquid crystal layers in direct contact with each other are included in the optical film produced using the composition for producing an optical functional layer of the present invention, either one of the optical functional layer 1 and the layer 2 is a rod-like liquid crystal. It is also preferred that the layer is formed from a composition containing a compound and the other is a layer formed from a composition containing a discotic liquid crystal compound. Further, either one of the optical functional layer 1 and the layer 2 is a layer formed by curing a composition containing a polymerizable rod-like liquid crystal compound, and the other is a composition containing a polymerizable discotic liquid crystal compound. A layer formed by curing is also preferred.
 光学フィルムの用途は特に限定されない。光学フィルムの例としては、位相差フィルム、反射フィルム、光吸収フィルムなどが挙げられる。より具体的には、液晶表示装置等に用いられる光学補償フィルム、偏光フィルムおよび輝度向上フィルム、遮熱フィルム、投映用フィルムなどが挙げられる。 The use of the optical film is not particularly limited. Examples of the optical film include a retardation film, a reflective film, and a light absorbing film. More specifically, examples include an optical compensation film, a polarizing film, a brightness enhancement film, a heat shielding film, and a projection film used for liquid crystal display devices.
 本発明の光学機能性層作製用組成物を用いて作製される光学フィルムは、積層フィルムを作製するための支持体フィルムであってもよい。支持体フィルムは、上記の下層(光学機能性層1)を含む。支持体フィルムは、光学機能性層1を最外層として含んでいるか、または、光学機能性層1の外側にラミネートフィルムなどの容易に剥離可能なフィルムのみを含んでいることが好ましい。支持体フィルムにおける光学機能性層1は液晶層であることが好ましい。支持体フィルムにおける光学機能性層1は重合性の円盤状液晶化合物を含む組成物の硬化により形成された層であることがさらに好ましい。支持体フィルムは光学機能性層1のほかに支持体、配向層、他の液晶層などの層を含んでいてもよい。 The optical film produced using the composition for producing an optical functional layer of the present invention may be a support film for producing a laminated film. The support film includes the lower layer (optical functional layer 1). The support film preferably includes the optical functional layer 1 as an outermost layer or includes only an easily peelable film such as a laminate film outside the optical functional layer 1. The optical functional layer 1 in the support film is preferably a liquid crystal layer. The optical functional layer 1 in the support film is more preferably a layer formed by curing a composition containing a polymerizable discotic liquid crystal compound. In addition to the optical functional layer 1, the support film may include a support, an alignment layer, and other liquid crystal layers.
(支持体)
 支持体としては、ガラスやポリマーフィルムを用いることができる。支持体として用いられるポリマーフィルムの材料の例には、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、ポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。
 支持体は光学機能性層の形成後剥離されて光学フィルムに含まれない仮支持体であってもよい。
 支持体の膜厚としては、5μm~1000μm程度であればよく、好ましくは10μm~250μmであり、より好ましくは15μm~90μmである。
(Support)
As the support, glass or a polymer film can be used. Examples of polymer film materials used as the support include cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film). Polyolefins such as polyethylene and polypropylene, polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone films, polyacrylic resin films such as polymethyl methacrylate, polyurethane resin films, polyester films, polycarbonate films, polysulfone films , Polyether film, polymethylpentene film, polyetherketone film, (meth) a Rilnitrile film, polyolefin, polymer having alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation)), and the like. Of these, triacetyl cellulose, polyethylene terephthalate, and polymers having an alicyclic structure are preferable, and triacetyl cellulose is particularly preferable.
The support may be a temporary support that is peeled off after the formation of the optical functional layer and is not included in the optical film.
The thickness of the support may be about 5 μm to 1000 μm, preferably 10 μm to 250 μm, more preferably 15 μm to 90 μm.
(配向層)
 光学フィルムは配向層を含んでいてもよい。配向層は、液晶化合物を含む層の形成の際、層作製用組成物中の液晶化合物の分子を配向させるために用いられる。
 配向層は光学機能性層などの層の形成の際に用いられ、光学フィルムにおいては、配向層が含まれていてもいなくてもよい。
(Orientation layer)
The optical film may include an alignment layer. The alignment layer is used for aligning the molecules of the liquid crystal compound in the layer-forming composition when the layer containing the liquid crystal compound is formed.
The alignment layer is used in forming a layer such as an optical functional layer. In the optical film, the alignment layer may or may not be included.
 配向層は、有機化合物(好ましくはポリマー)のラビング処理、SiOなどの無機化合物の斜方蒸着、マイクログルーブを有する層の形成等の手段で設けることができる。さらには、電場の付与、磁場の付与、或いは光照射により配向機能が生じる配向層も知られている。
 支持体、光学機能性層などの下層の材料によっては、配向層を設けなくても、下層を直接配向処理(例えば、ラビング処理)することで、配向層として機能させることもできる。そのような下層となる支持体の一例としては、PETを挙げることができる。
 また、光学機能性層の上に直接層を積層する場合、下層の光学機能性層が配向層として振舞い上層の作製のための液晶化合物を配向させることができる場合もある。このような場合、配向層を設けなくても、また、特別な配向処理(例えば、ラビング処理)を実施しなくても上層の液晶化合物を配向することができる。
 以下、好ましい例として表面をラビング処理して用いられるラビング処理配向層および光配向層を説明する。
The alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves. Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
Depending on the material of the lower layer such as the support and the optical functional layer, the lower layer can be made to function as an alignment layer by direct alignment treatment (for example, rubbing treatment) without providing the alignment layer. An example of such a lower layer support is PET.
In addition, when a layer is laminated directly on the optical functional layer, the lower optical functional layer may act as an alignment layer to align the liquid crystal compound for producing the upper layer. In such a case, the upper liquid crystal compound can be aligned without providing an alignment layer or without performing a special alignment process (for example, rubbing process).
Hereinafter, a rubbing-treated alignment layer and a photo-alignment layer used by rubbing the surface as preferred examples will be described.
-ラビング処理配向層-
 ラビング処理配向層に用いることができるポリマーの例には、例えば特開平8-338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールが更に好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。
-Rubbed alignment layer-
Examples of the polymer that can be used for the rubbing treatment oriented layer include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, polyvinyl alcohol, and the like described in paragraph No. [0022] of JP-A-8-338913. Examples include modified polyvinyl alcohol, poly (N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, and polycarbonate. Silane coupling agents can be used as the polymer. Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. .
 配向層のラビング処理面に前述の組成物を塗布して、液晶化合物の分子を配向させる。その後、必要に応じて、配向層ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向層ポリマーを架橋させることで、前述の光学異方性層を形成することができる。
 配向層の膜厚は、0.1~10μmの範囲にあることが好ましい。
The aforementioned composition is applied to the rubbing-treated surface of the alignment layer to align the molecules of the liquid crystal compound. After that, if necessary, the alignment layer polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment layer polymer is crosslinked using a crosslinking agent, thereby the optical anisotropy described above. A layer can be formed.
The film thickness of the alignment layer is preferably in the range of 0.1 to 10 μm.
-ラビング処理-
 光学機能性層作製用組成物が塗布される、配向層、支持体、またはそのほかの層の表面は、必要に応じてラビング処理をしてもよい。ラビング処理は、一般にはポリマーを主成分とする膜の表面を、紙や布で一定方向に擦ることにより実施することができる。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
-Rubbing treatment-
The surface of the alignment layer, support, or other layer to which the composition for producing an optical functional layer is applied may be rubbed as necessary. The rubbing treatment can be generally performed by rubbing the surface of a film containing a polymer as a main component with paper or cloth in a certain direction. A general method of rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).
 ラビング密度を変える方法としては、「液晶便覧」(丸善社発行)に記載されている方法を用いることができる。ラビング密度(L)は、下記式(A)で定量化されている。
式(A) L=Nl(1+2πrn/60v)
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm)、vはステージ移動速度(秒速)である。
As a method for changing the rubbing density, a method described in “Liquid Crystal Handbook” (published by Maruzen) can be used. The rubbing density (L) is quantified by the following formula (A).
Formula (A) L = Nl (1 + 2πrn / 60v)
In the formula (A), N is the number of rubbing, l is the contact length of the rubbing roller, r is the radius of the roller, n is the number of rotations (rpm) of the roller, and v is the stage moving speed (second speed).
 ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。また、ラビング処理の際の条件としては、特許4052558号の記載を参照することもできる。 In order to increase the rubbing density, the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this. In addition, the description in Japanese Patent No. 4052558 can also be referred to as conditions for the rubbing process.
-光配向層-
 光照射により形成される光配向層に用いられる光配向材料としては、多数の文献等に記載がある。例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、特許第4162850号に記載の光架橋性ポリイミド、ポリアミド、またはエステルが好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、またはエステルである。
-Photo-alignment layer-
A large number of documents describe the photo-alignment material used for the photo-alignment layer formed by light irradiation. For example, JP 2006-285197 A, JP 2007-76839 A, JP 2007-138138 A, JP 2007-94071 A, JP 2007-121721 A, JP 2007-140465 A, Azo compounds described in JP 2007-156439 A, JP 2007-133184 A, JP 2009-109831 A, JP 3888848 A, Patent 4151746 Aroma described in JP 2002-229039 A Group ester compounds, maleimide and / or alkenyl-substituted nadiimide compounds having photo-alignment units described in JP-A Nos. 2002-265541 and 2002-31703, and light described in Japanese Patent No. 4205195 and Japanese Patent No. 4205198 Crosslinkable silane derivative, special 2003-520878, JP-T-2004-529220 and JP-mentioned as photocrosslinkable polyimide, polyamide or ester are preferable examples described in Japanese Patent No. 4162850. Particularly preferred are azo compounds, photocrosslinkable polyimides, polyamides, or esters.
 上記材料から形成した光配向層に、直線偏光または非偏光照射を施し、光配向層を製造する。
 本明細書において、「直線偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。好ましくは、光照射に用いる光のピーク波長が200nm~700nmであり、より好ましくは光のピーク波長が400nm以下の紫外光である。
The photo-alignment layer formed from the above material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment layer.
In this specification, “linearly polarized light irradiation” is an operation for causing a photoreaction in a photo-alignment material. The wavelength of light used varies depending on the photo-alignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction. Preferably, the peak wavelength of light used for light irradiation is 200 nm to 700 nm, and more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
 光照射に用いる光源は、通常使われる光源、例えばタングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、カーボンアークランプ等のランプ、各種のレーザー(例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、YAGレーザー)、発光ダイオード、陰極線管などを挙げることができる。 The light source used for light irradiation is a commonly used light source such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, a carbon arc lamp, or various lasers (eg, semiconductor laser, helium). Neon laser, argon ion laser, helium cadmium laser, YAG laser), light emitting diode, cathode ray tube, and the like.
 直線偏光を得る手段としては、偏光板(例、ヨウ素偏光板、二色色素偏光板、ワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例、グラントムソンプリズム)やブリュースター角を利用した反射型偏光子を用いる方法、または偏光を有するレーザー光源から出射される光を用いる方法が採用できる。また、フィルターや波長変換素子等を用いて必要とする波長の光のみを選択的に照射してもよい。 As means for obtaining linearly polarized light, a method using a polarizing plate (eg, iodine polarizing plate, dichroic dye polarizing plate, wire grid polarizing plate), reflection using a prism-based element (eg, Glan-Thompson prism) or Brewster angle A method using a type polarizer or a method using light emitted from a laser light source having polarization can be employed. Moreover, you may selectively irradiate only the light of the required wavelength using a filter, a wavelength conversion element, etc.
 照射する光は、直線偏光の場合、配向層に対して上面、または裏面から配向層表面に対して垂直、または斜めから光を照射する方法が採用される。光の入射角度は、光配向材料によって異なるが、例えば、0~90°(垂直)、好ましくは40~90である。
 非偏光を利用する場合には、斜めから非偏光を照射する。その入射角度は、10~80°、好ましくは20~60、特に好ましくは30~50°である。
 照射時間は好ましくは1分~60分、さらに好ましくは1分~10分である。
In the case of linearly polarized light, a method of irradiating light from the top surface or the back surface to the alignment layer surface perpendicularly or obliquely with respect to the alignment layer is employed. The incident angle of light varies depending on the photo-alignment material, but is, for example, 0 to 90 ° (vertical), preferably 40 to 90.
When non-polarized light is used, the non-polarized light is irradiated obliquely. The incident angle is 10 to 80 °, preferably 20 to 60, particularly preferably 30 to 50 °.
The irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
 表1に示す層構成で各実施例、および比較例の光学フィルムを作製した。各層の材料は以下のとおりである。
(TD40UL)
 市販のセルロースアシレートフィルム「TD40UL」(富士フイルム株式会社製)を用いた。
(配向層付きTD40UL)
 TD40ULを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
The optical film of each Example and the comparative example was produced with the layer structure shown in Table 1. The material of each layer is as follows.
(TD40UL)
A commercially available cellulose acylate film “TD40UL” (manufactured by FUJIFILM Corporation) was used.
(TD40UL with alignment layer)
After passing TD40UL through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkali solution having the composition shown below is applied to one side of the film using a bar coater. It was transported for 10 seconds under a steam far-infrared heater manufactured by Noritake Company Limited, which was applied at 2 and heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acylate film.
──────────────────────────────────
アルカリ溶液組成
──────────────────────────────────
水酸化カリウム                     4.7質量部
水                          15.8質量部
イソプロパノール                   63.7質量部
界面活性剤SF-1:C1429O(CH2CH2O)20H     1.0質量部
プロピレングリコール                 14.8質量部
──────────────────────────────────
──────────────────────────────────
Alkaline solution composition ──────────────────────────────────
Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Surfactant SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 part by weight Propylene glycol 14. 8 parts by mass ──────────────────────────────────
配向層の形成
 上記のように鹸化処理した長尺状のセルロースアセテートフィルムに、下記の組成の配向層塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。得られた塗膜に連続的にラビング処理を施し、配向層を作製した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対して、ラビングローラーの回転軸は時計回りに45°の方向とした。

──────────────────────────────────
配向層塗布液の組成
──────────────────────────────────
下記の変性ポリビニルアルコール              10質量部
水                           371質量部
メタノール                       119質量部
グルタルアルデヒド                   0.5質量部
光重合開始剤(イルガキュアー2959、BASF社製)  0.3質量部
──────────────────────────────────
Formation of Alignment Layer An alignment layer coating solution having the following composition was continuously applied to the long cellulose acetate film saponified as described above with a # 14 wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds. The obtained coating film was continuously rubbed to prepare an alignment layer. At this time, the longitudinal direction of the long film and the transport direction were parallel, and the rotation axis of the rubbing roller was 45 ° clockwise relative to the longitudinal direction of the film.

──────────────────────────────────
Composition of alignment layer coating solution ──────────────────────────────────
Denatured polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde 0.5 parts by weight Photopolymerization initiator (Irgacure 2959, manufactured by BASF) 0.3 parts by weight ───────── ─────────────────────────
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(TD40UL+λ/4)
 上記作製した配向層上に、下記の組成の円盤状液晶化合物を含む塗布液A1を#3.6のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は20m/minとした。塗布液の溶剤の乾燥および円盤状液晶化合物の配向熟成のために、130℃の温風で90秒間加熱した。続いて、80℃にてUV照射を行い、液晶化合物の配向を固定化しλ/4層を形成した。
このとき、UV照射量は300mJ/cm2とした。
──────────────────────────────────
円盤状液晶化合物を含む塗布液A1
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
配向助剤1                       0.9質量部
配向助剤2                       0.1質量部
重合開始剤1                        3質量部
メチルエチルケトン                   250質量部
tert-ブタノール                   50質量部
──────────────────────────────────
(TD40UL + λ / 4)
On the prepared alignment layer, a coating liquid A1 containing a discotic liquid crystal compound having the following composition was continuously applied with a # 3.6 wire bar. The conveyance speed (V) of the film was 20 m / min. In order to dry the solvent of the coating solution and to mature the alignment of the discotic liquid crystal compound, it was heated with warm air of 130 ° C. for 90 seconds. Subsequently, UV irradiation was performed at 80 ° C. to fix the orientation of the liquid crystal compound and form a λ / 4 layer.
At this time, the UV irradiation amount was 300 mJ / cm 2 .
──────────────────────────────────
Coating liquid A1 containing discotic liquid crystal compound
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Alignment aid 1 0.9 parts by mass Alignment aid 2 0.1 parts by mass Polymerization initiator 1 3 parts by mass Methyl ethyl ketone 250 masses Tert-Butanol 50 parts by mass──────────────────────────────────
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

 上記配向助剤1および2は、それぞれトリメチル置換のベンゼン環におけるメチル基の置換位置異なる2種の化合物の混合物(2種の化合物の混合比50:50(質量比))である。また、界面活性剤1の「a/b=98/2」との記載は、aは98質量%、bは2質量%であることを示す。 The alignment aids 1 and 2 are each a mixture of two types of compounds having different methyl group substitution positions on the trimethyl-substituted benzene ring (mixing ratio of the two types of compounds 50:50 (mass ratio)). In addition, the description “a / b = 98/2” of the surfactant 1 indicates that a is 98 mass% and b is 2 mass%.
(TD40UL+λ/4(配向層付き))
 λ/4層の表面に上記と同様に配向層を作製した。
(TD40UL + λ / 4 (with alignment layer))
An alignment layer was prepared on the surface of the λ / 4 layer in the same manner as described above.
(B1~B10、B12,B13、B15~B18)
 上記TD40UL表面に形成した配向層の表面、またはTD40UL+λ/4のλ/4層の表面に形成した配向層の表面に、塗布液(B1~B10、B12,B13、B15~B18のいずれか)を、3μmの膜厚になるように調整し、連続的に塗布した。
 続いて、溶剤を70℃、2分間乾燥し、溶剤を気化させた後に115℃で3分間加熱熟成を行って、均一な配向状態を得た。
 その後この塗布膜を45℃に保持し、これに窒素雰囲気下で高圧水銀灯を用いて紫外線照射して、コレステリック液晶層を形成した。
 このとき、UV照射量は300mJ/cm2とした
(B1 to B10, B12, B13, B15 to B18)
A coating liquid (any one of B1 to B10, B12, B13, B15 to B18) is applied to the surface of the alignment layer formed on the surface of TD40UL or the surface of the alignment layer formed on the surface of λ / 4 layer of TD40UL + λ / 4. The film thickness was adjusted to 3 μm and applied continuously.
Subsequently, the solvent was dried at 70 ° C. for 2 minutes, and after evaporating the solvent, heat aging was performed at 115 ° C. for 3 minutes to obtain a uniform alignment state.
Thereafter, the coating film was kept at 45 ° C., and irradiated with ultraviolet rays using a high-pressure mercury lamp in a nitrogen atmosphere to form a cholesteric liquid crystal layer.
At this time, the UV irradiation amount was 300 mJ / cm 2 .
B1
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
界面活性剤1                      0.3質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   290質量部
シクロヘキサノン                     50質量部
――――――――――――――――――――――――――――――――――
B1
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Surfactant 1 0.3 part by mass Polymerization initiator 1 3 parts by mass Chiral agent 1 8 parts by weight methyl ethyl ketone 290 parts by weight cyclohexanone 50 parts by weight ――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
B2
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
界面活性剤2(信越化学社製;X-22-2445)    0.2質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   290質量部
シクロヘキサノン                     50質量部
――――――――――――――――――――――――――――――――――
B2
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Surfactant 2 (Shin-Etsu Chemical Co., Ltd .; X-22-2445) 0.2 parts by mass Polymerization initiator 1 3 parts by weight chiral agent 1 3.8 parts by weight methyl ethyl ketone 290 parts by weight cyclohexanone 50 parts by weight ――――――――――――――――――――――――――― ―――――――
B3
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
界面活性剤1                      0.3質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   220質量部
シクロヘキサノン                     50質量部
tert-ブタノール                   70質量部
――――――――――――――――――――――――――――――――――
B3
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Surfactant 1 0.3 part by mass Polymerization initiator 1 3 parts by mass Chiral agent 1 8 parts by mass Methyl ethyl ketone 220 parts by mass Cyclohexanone 50 parts by mass tert-Butanol 70 parts by mass ――――――――――――――――――――――――――――――――― -
B4
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   220質量部
シクロヘキサノン                     50質量部
tert-ブタノール                   70質量部
――――――――――――――――――――――――――――――――――
B4
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 220 parts by mass Cyclohexanone 50 Mass part tert-Butanol 70 parts by mass ――――――――――――――――――――――――――――――――――
B5
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   145質量部
シクロヘキサノン                     50質量部
tert-ブタノール                  145質量部
――――――――――――――――――――――――――――――――――
B5
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 145 parts by mass Cyclohexanone 50 Mass part tert-Butanol 145 parts by mass ――――――――――――――――――――――――――――――――――
B6
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   174質量部
シクロヘキサノン                     50質量部
tert-ブタノール                  116質量部
――――――――――――――――――――――――――――――――――
B6
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 174 parts by mass Cyclohexanone 50 Mass part tert-Butanol 116 parts by mass ――――――――――――――――――――――――――――――――――
B7
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   267質量部
シクロヘキサノン                     50質量部
tert-ブタノール                   23質量部
――――――――――――――――――――――――――――――――――
B7
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 267 parts by mass Cyclohexanone 50 Mass part tert-Butanol 23 parts by mass ――――――――――――――――――――――――――――――――――
B8
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)             80質量部
円盤状液晶化合物(化合物102)             20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   278質量部
シクロヘキサノン                     50質量部
tert-ブタノール                   12質量部
――――――――――――――――――――――――――――――――――
B8
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 278 parts by mass Cyclohexanone 50 Mass part tert-Butanol 12 parts by mass ――――――――――――――――――――――――――――――――――
B9
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   220質量部
シクロヘキサノン                     50質量部
酢酸イソプロピル                     70質量部
――――――――――――――――――――――――――――――――――
B9
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 220 parts by mass Cyclohexanone 50 Part by mass Isopropyl acetate 70 parts by mass ――――――――――――――――――――――――――――――――――
B10
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   220質量部
シクロヘキサノン                     50質量部
シクロペンタン                      70質量部
――――――――――――――――――――――――――――――――――
B10
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 220 parts by mass Cyclohexanone 50 70 parts by mass of cyclopentane by mass ――――――――――――――――――――――――――――――――――
B12
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
EASTMAN社製セルロースアセテートブチレート (CAB-171-15) 0.5質量部
メチルエチルケトン                   152質量部
シクロヘキサノン                     34質量部
tert-ブタノール                    48質量部
――――――――――――――――――――――――――――――――――
B12
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass Chiral agent 1 3.8 parts by mass
Cellulose acetate butyrate manufactured by EASTMAN (CAB-171-15) 0.5 parts by mass Methyl ethyl ketone 152 parts by mass Cyclohexanone 34 parts by mass tert-butanol 48 parts by mass ――――――――――――――――― ―――――――――――――――――
B13
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
ジヒドロターピネオール                  10質量部
メチルエチルケトン                   189質量部
シクロヘキサノン                     43質量部
tert-ブタノール                   60質量部
――――――――――――――――――――――――――――――――――
B13
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by weight Discotic liquid crystal compound (Compound 102) 20 parts by weight Polymerizable monomer 1 10 parts by weight Polymerization initiator 1 3 parts by weight chiral agent 1 3.8 parts by weight Dihydroterpineol 10 parts by weight methyl ethyl ketone 189 parts by weight cyclohexanone 43 parts by weight tert-butanol 60 parts by weight ―――――――――――――――――――――――――――――――――
B15
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   270質量部
tert-ブタノール                   70質量部
――――――――――――――――――――――――――――――――――
B15
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by weight Discotic liquid crystal compound (Compound 102) 20 parts by weight Polymerizable monomer 1 10 parts by weight Polymerization initiator 1 3 parts by weight chiral agent 1 3.8 parts by weight methyl ethyl ketone 270 parts by weight tert- 70 parts by weight of butanol ――――――――――――――――――――――――――――――――――
B16
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
アセトン                        220質量部
シクロヘキサノン                     50質量部
tert-ブタノール                   70質量部
――――――――――――――――――――――――――――――――――
B16
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by weight Discotic liquid crystal compound (Compound 102) 20 parts by weight Polymerizable monomer 1 10 parts by weight Polymerization initiator 1 3 parts by weight chiral agent 1 3.8 parts by weight Acetone 220 parts by weight Cyclohexanone 50 Mass part tert-Butanol 70 parts by mass ――――――――――――――――――――――――――――――――――
B17
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   270質量部
2,2,2-トリエチルフルオロエタノール         70質量部
――――――――――――――――――――――――――――――――――
B17
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 270 parts by mass 2, 70 parts by mass of 2,2-triethylfluoroethanol ――――――――――――――――――――――――――――――――――
B18
――――――――――――――――――――――――――――――――――
円盤状液晶化合物(化合物101)                   80質量部
円盤状液晶化合物(化合物102)                   20質量部
重合性モノマー1                     10質量部
重合開始剤1                        3質量部
キラル剤1                       3.8質量部
メチルエチルケトン                   290質量部
シクロヘキサノン                     50質量部
――――――――――――――――――――――――――――――――――
B18
――――――――――――――――――――――――――――――――――
Discotic liquid crystal compound (Compound 101) 80 parts by mass Discotic liquid crystal compound (Compound 102) 20 parts by mass Polymerizable monomer 1 10 parts by mass Polymerization initiator 1 3 parts by mass chiral agent 1 3.8 parts by mass Methyl ethyl ketone 290 parts by mass Cyclohexanone 50 Mass part ――――――――――――――――――――――――――――――――――
(HC1)
 上記TD40ULの表面に下記組成のハードコート塗布液をバーコーターにて塗布、乾燥、紫外線照射を行い、膜厚10μmのハードコート層を形成した。

HC1
――――――――――――――――――――――――――――――――――
紫光 UV-7605B(日本合成化学社製ウレタンアクリレートオリゴマー)                            100質量部
イルガキュア184(BASF社製)             4質量部
ビスコート 8F(大阪有機化学工業株式会社製)      0.5質量部
1H,1H,5H-オクタフルオロペンチルアクリレート    2質量部
酢酸メチル                        50質量部
メチルイソブチルケトン                  50質量部
――――――――――――――――――――――――――――――――――
(HC1)
A hard coat coating solution having the following composition was applied to the surface of the TD40UL with a bar coater, dried, and irradiated with ultraviolet rays to form a 10 μm thick hard coat layer.

HC1
――――――――――――――――――――――――――――――――――
Purple light UV-7605B (urethane acrylate oligomer manufactured by Nippon Synthetic Chemical Co., Ltd.) 100 parts by mass Irgacure 184 (manufactured by BASF) 4 parts by mass Biscoat 8F (manufactured by Osaka Organic Chemical Co., Ltd.) 0.5 parts by mass 1H, 1H, 5H-octa Fluoropentyl acrylate 2 parts by weight Methyl acetate 50 parts by weight Methyl isobutyl ketone 50 parts by weight ――――――――――――――――――――――――――――――――― -
(HC2)
 上記TD40ULの表面に下記組成のハードコート塗布液をバーコーターにて塗布、乾燥、紫外線照射を行い、膜厚10μmのハードコート層を形成した。
――――――――――――――――――――――――――――――――――
紫光 UV-7605B(日本合成化学社製ウレタンアクリレートオリゴマー)                            100質量部
イルガキュア184(BASF社製)             4質量部
ビスコート 8F(大阪有機化学工業株式会社製)      0.5質量部
酢酸メチル                        70質量部
メチルイソブチルケトン                  20質量部
tert-ブタノール                   30質量部
――――――――――――――――――――――――――――――――――
(HC2)
A hard coat coating solution having the following composition was applied to the surface of the TD40UL with a bar coater, dried, and irradiated with ultraviolet rays to form a 10 μm thick hard coat layer.
――――――――――――――――――――――――――――――――――
Purple light UV-7605B (urethane acrylate oligomer manufactured by Nippon Synthetic Chemical Co., Ltd.) 100 parts by mass Irgacure 184 (manufactured by BASF) 4 parts by mass Biscoat 8F (manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.5 parts by mass Methyl acetate 70 parts by mass Methyl isobutyl Ketone 20 parts by weight tert-butanol 30 parts by weight ----------
(HC4)
 TD40UL表面に形成された配向層の表面に、下記組成の混合物を酢酸メチル/シクロヘキサノン=50/50(質量(%))の混合液中に20質量%になるように加えて作製したハードコート塗布液を、ワイヤーバーコーター#1.6で塗布し、塗膜を60℃、0.5分乾燥後、高圧水銀灯を用いて、窒素パージ下酸素濃度約0.1%で照度40mW/cm2、照射量120mJ/cm2の紫外線を30℃、30秒間照射し、膜厚0.6μmのハードコート層を形成した。
――――――――――――――――――――――――――――――――――
アクリル系化合物二種(ACR1:ACR2=33:67) 100質量部
光重合開始剤(イルガキュア127、BASF社製)      4質量部
空気界面側垂直配向剤                  0.2質量部
酢酸メチル/シクロヘキサノン               上記添加量
――――――――――――――――――――――――――――――――――
(HC4)
Hard coat coating prepared by adding a mixture of the following composition to the surface of the alignment layer formed on the surface of TD40UL so as to be 20% by mass in a mixed solution of methyl acetate / cyclohexanone = 50/50 (mass (%)) The liquid was applied with a wire bar coater # 1.6, the coating film was dried at 60 ° C. for 0.5 minutes, and then using a high-pressure mercury lamp, an oxygen concentration of about 0.1% under a nitrogen purge, an illuminance of 40 mW / cm 2 , An ultraviolet ray with an irradiation amount of 120 mJ / cm 2 was irradiated at 30 ° C. for 30 seconds to form a hard coat layer having a thickness of 0.6 μm.
――――――――――――――――――――――――――――――――――
Two acrylic compounds (ACR1: ACR2 = 33: 67) 100 parts by mass photopolymerization initiator (Irgacure 127, manufactured by BASF) 4 parts by mass Air interface side vertical alignment agent 0.2 parts by mass Methyl acetate / cyclohexanone Above addition amount ――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(HC5)
 TD40UL表面に形成された配向層の表面に、下記組成の混合物を酢酸メチル/シクロヘキサノン/tert-ブタノール =50/30/20(質量(%)の混合液中に20質量%になるように加えて作製したハードコート塗布液をワイヤーバーコーター#1.6で塗布し、塗膜を60℃、0.5分乾燥後、高圧水銀灯を用いて、窒素パージ下酸素濃度約0.1%で照度40mW/cm2、照射量120mJ/cm2の紫外線を30℃、30秒間照射し、膜厚0.6μmのハードコート層を形成した。
――――――――――――――――――――――――――――――――――
アクリル系化合物二種(ACR1:ACR2=33:67) 100質量部
光重合開始剤(イルガキュア127、BASF社製)      4質量部
酢酸メチル/シクロヘキサノン/tert-ブタノール=50/30/20(質量(%))                       上記添加量
――――――――――――――――――――――――――――――――――
(HC5)
To the surface of the alignment layer formed on the surface of TD40UL, a mixture having the following composition was added so as to be 20% by mass in a mixed solution of methyl acetate / cyclohexanone / tert-butanol = 50/30/20 (mass (%)). The prepared hard coat coating solution was applied with a wire bar coater # 1.6, and the coating film was dried at 60 ° C. for 0.5 minutes, and then using a high pressure mercury lamp, the oxygen concentration was about 0.1% under nitrogen purge and the illuminance was 40 mW. / Cm 2 and an ultraviolet ray with an irradiation amount of 120 mJ / cm 2 were irradiated at 30 ° C. for 30 seconds to form a hard coat layer having a thickness of 0.6 μm.
――――――――――――――――――――――――――――――――――
Two acrylic compounds (ACR1: ACR2 = 33: 67) 100 parts by mass photopolymerization initiator (Irgacure 127, manufactured by BASF) 4 parts by mass Methyl acetate / cyclohexanone / tert-butanol = 50/30/20 (mass (% )) Additive amount above ――――――――――――――――――――――――――――――――――
(HC6)
 TD40UL表面に形成された配向層の表面に、下記組成の混合物を酢酸メチル/シクロヘキサノン=50/50(質量(%))の混合液中に20質量%になるように加えて作製したハードコート塗布液を、ワイヤーバーコーター#1.6で塗布し、塗膜を60℃、0.5分乾燥後、高圧水銀灯を用いて、窒素パージ下酸素濃度約0.1%で照度40mW/cm2、照射量120mJ/cm2の紫外線を30℃、30秒間UV照射し中間層を硬化させた。得られた中間層の膜厚は0.6μmであった。

――――――――――――――――――――――――――――――――――
アクリル系化合物二種(ACR1:ACR2=33:67) 100質量部
光重合開始剤(イルガキュア127、BASF社製)      4質量部
酢酸メチル/シクロヘキサノン=50/50(質量(%))  上記添加量
――――――――――――――――――――――――――――――――――
(HC6)
Hard coat coating prepared by adding a mixture of the following composition to the surface of the alignment layer formed on the surface of TD40UL so as to be 20% by mass in a mixed solution of methyl acetate / cyclohexanone = 50/50 (mass (%)) The liquid was applied with a wire bar coater # 1.6, the coating film was dried at 60 ° C. for 0.5 minutes, and then using a high-pressure mercury lamp, an oxygen concentration of about 0.1% under a nitrogen purge, an illuminance of 40 mW / cm 2 , The intermediate layer was cured by irradiating UV rays with an irradiation amount of 120 mJ / cm 2 at 30 ° C. for 30 seconds. The film thickness of the obtained intermediate layer was 0.6 μm.

――――――――――――――――――――――――――――――――――
Two acrylic compounds (ACR1: ACR2 = 33: 67) 100 parts by mass photopolymerization initiator (Irgacure 127, manufactured by BASF) 4 parts by mass methyl acetate / cyclohexanone = 50/50 (mass (%)) ―――――――――――――――――――――――――――――――――
(HC3)
 上記作製したハードコート層(HC1、HC2)の表面に、下記組成のハードコート塗布液をグラビアコート法により塗布し、120℃で5分間加熱して溶媒を除去後、高圧水銀灯を用いて紫外線を350mJ/cm2照射し、
厚さ4μmのハードコート層を形成した。

――――――――――――――――――――――――――――――――――
ウレタンアクリレート80%溶液(大日本インキ化学工業:ユニディックー17806)                       80質量部
ポリエステルアクリレート(東亜合成製:アロニックス-M8060)
                             20質量部
光重合開始剤(イルガキュア907(BASF社製)      2質量部
トルエン                         48質量部
――――――――――――――――――――――――――――――――――
(HC3)
A hard coat coating solution having the following composition is applied to the surface of the hard coat layer (HC1, HC2) prepared above by gravure coating, heated at 120 ° C. for 5 minutes to remove the solvent, and then irradiated with ultraviolet light using a high pressure mercury lamp. Irradiate 350 mJ / cm 2 ,
A hard coat layer having a thickness of 4 μm was formed.

――――――――――――――――――――――――――――――――――
80% urethane acrylate solution (Dainippon Ink & Chemicals: Unidic-17806) 80 parts by weight polyester acrylate (Toa Gosei: Aronix-M8060)
20 parts by weight photopolymerization initiator (Irgacure 907 (manufactured by BASF) 2 parts by weight toluene 48 parts by weight ―――――――――――――――――――――――――――― ――――――
(LC1)
 上記作製したハードコート層(HC4~6)の表面に、下記組成の混合物をMEK/シクロヘキサノン(=90/10(質量(%))の混合液中に30質量%になるように加えて作製した塗布液を#3.2のワイヤーバーで塗布した。これを金属の枠に貼り付けて、100℃の恒温槽中で2分間加熱し、棒状液晶化合物を配向させた。次に、50℃に冷却した後に、窒素パージ下酸素濃度約0.1%で空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度190mW/cm2、照射量300mJ/cm2の紫外線を照射して塗布層を硬化させた。その後、室温まで放冷してホメオトロピック液晶層を形成した。

――――――――――――――――――――――――――――――――――
B01:B02=90:10の組成で混合した液晶化合物  1.8質量部
光重合開始剤(イルガキュア907、BASF社製)   0.06質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)   0.02質量部
垂直配向剤(S01)                0.002質量部
アクリル化合物(ACR3)              0.14質量部
MEK/シクロヘキサノン(=90/10)         上記添加量
――――――――――――――――――――――――――――――――――
(LC1)
A mixture of the following composition was added to the surface of the hard coat layer (HC4 to 6) prepared above so as to be 30% by mass in a mixed solution of MEK / cyclohexanone (= 90/10 (mass (%))). The coating solution was applied with a # 3.2 wire bar, which was attached to a metal frame and heated in a constant temperature bath at 100 ° C. for 2 minutes to align the rod-like liquid crystal compound. After cooling, using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) with an oxygen concentration of about 0.1% under a nitrogen purge, it is applied by irradiating ultraviolet rays with an illuminance of 190 mW / cm 2 and an irradiation amount of 300 mJ / cm 2. The layer was cured and then allowed to cool to room temperature to form a homeotropic liquid crystal layer.

――――――――――――――――――――――――――――――――――
B01: B02 = 90: 10 mixed liquid crystal compound 1.8 parts by mass photopolymerization initiator (Irgacure 907, manufactured by BASF) 0.06 parts by mass sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) ) 0.02 parts by mass vertical alignment agent (S01) 0.002 parts by mass acrylic compound (ACR3) 0.14 parts by mass MEK / cyclohexanone (= 90/10) ―――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(LC11)
 上記作製した液晶層(B1~B10、B12,B13、B15~B18)の表面に、下記の組成の棒状液晶化合物を含む塗布液を作製したB1上に5μmの膜厚になるように調整し、連続的に塗布した。フィルムの搬送速度(V)は20m/minとした。塗布液の溶剤の乾燥および棒状液晶化合物の配向熟成のために、85℃の温風で120秒間加熱した。続いて、30℃にてUV照射を行い、液晶化合物の配向を固定化し光学異方性層を形成した。
 このとき、UV照射量は300mJ/cm2とした。

――――――――――――――――――――――――――――――――――
棒状液晶化合物201                   83質量部
棒状液晶化合物202                   15質量部
棒状液晶化合物203                    2質量部
多官能モノマーA-TMMT(新中村化学工業(株)社製    1質量部
重合開始剤IRGACURE819(BASF社製)      4質量部
界面活性剤2                     0.05質量部
界面活性剤3                     0.01質量部
キラル剤LC756(BASF社製)           5.1質量部
トルエン                        165質量部
シクロヘキサノン                     10質量部
――――――――――――――――――――――――――――――――――
(LC11)
Adjust the surface of the prepared liquid crystal layers (B1 to B10, B12, B13, B15 to B18) to a thickness of 5 μm on B1 on which a coating liquid containing a rod-like liquid crystal compound having the following composition was prepared, It was applied continuously. The conveyance speed (V) of the film was 20 m / min. In order to dry the solvent of the coating solution and to mature the alignment of the rod-like liquid crystal compound, it was heated with hot air at 85 ° C. for 120 seconds. Subsequently, UV irradiation was performed at 30 ° C. to fix the orientation of the liquid crystal compound and form an optically anisotropic layer.
At this time, the UV irradiation amount was 300 mJ / cm 2 .

――――――――――――――――――――――――――――――――――
Rod-like liquid crystal compound 201 83 parts by weight Rod-like liquid crystal compound 202 15 parts by weight Rod-like liquid crystal compound 203 2 parts by weight polyfunctional monomer A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd. 1 part by weight polymerization initiator IRGACURE 819 (manufactured by BASF) 4 Part by mass Surfactant 2 0.05 part by mass Surfactant 3 0.01 part by mass Chiral agent LC756 (manufactured by BASF) 5.1 parts by mass Toluene 165 parts by mass Cyclohexanone 10 parts by mass ――――――――― ―――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
塗布液の粘度測定
 上記で作製したB1~B10、B12,B13、B15~B18およびHC1,HC2,HC4~6作製用の塗布液につき、セコニック社製、Vm-100(振動式粘度計)を使用して粘度を測定した。B12用の塗布液で31mPa・s、B13用の塗布液で28mPa・sの測定値であった。その他の塗布液は全て1.5~10mPa・sの範囲内であった。
Viscosity measurement of coating solution For the coating solutions for preparing B1 to B10, B12, B13, B15 to B18 and HC1, HC2, and HC4 to 6 prepared above, use Vm-100 (vibrating viscometer) manufactured by Seconic. The viscosity was measured. The measured value was 31 mPa · s for the coating solution for B12 and 28 mPa · s for the coating solution for B13. All other coating solutions were in the range of 1.5 to 10 mPa · s.
 作製した光学フィルムについては、以下の基準で評価した。結果を表1に示す。
<ハジキ>
 各実施例および比較例のフィルム15cm×20cm中の、各組成物を用いて形成した層のハジキの個数を数えた。ここで、下層の表面中において上層が形成されていない領域をハジキとした。その結果を元に、以下の基準で評価した。
A:ハジキが1個以下
B:ハジキが1個超、5個以下
C:ハジキが5個超
 評価基準AまたはBであれば、生産効率に優れ、好適に用いることができ、評価基準Aであることがより好ましい。
<面状>
 塗布後の層に関し、目視にて面状を確認した。B18を用いた比較例を「基準」として評価Dとし、評価を行った。
A:乾燥ムラやシワの無い面状である
B:乾燥ムラがわずかに見られるが問題なく使用できる
C:乾燥ムラや凹凸がBに比べ多いが問題なく使用できる
D:乾燥ムラに起因する明らかな凹凸が見られ、使用に適さない
<配向>
 液晶配向性の優劣は、偏向顕微鏡によって膜を観察したときの配向欠陥の有無によって、以下の基準にしたがって決定した。評価基準A~Cのいずれかの評価であることが好ましい。評価基準AまたはBであれば、生産効率に優れ、好適に用いることができ、評価基準Aであることがより好ましい。
A: 配向不良なし
B: 配向不良ほとんどなし
C: 一部に若干の配向不良が見られる
D: 全面に配向不良あり
The produced optical film was evaluated according to the following criteria. The results are shown in Table 1.
<Repel>
The number of repellency of the layer formed using each composition in the film of each Example and Comparative Example 15 cm × 20 cm was counted. Here, the area | region where the upper layer is not formed in the surface of the lower layer was made into a repellency. Based on the results, evaluation was made according to the following criteria.
A: 1 or less repellency B: More than 1 repellency, 5 or less C: More than 5 repellency Evaluation criteria A or B is excellent in production efficiency and can be suitably used. More preferably.
<Surface shape>
Regarding the layer after coating, the surface state was visually confirmed. The comparative example using B18 was evaluated as D as a “standard” and evaluated.
A: A surface having no drying unevenness or wrinkles B: Drying unevenness is slightly seen but can be used without problems C: Drying unevenness and irregularities are larger than B, but can be used without problems D: Clearly caused by drying unevenness <Orientation>
The superiority or inferiority of the liquid crystal alignment was determined according to the following criteria depending on the presence or absence of alignment defects when the film was observed with a deflection microscope. The evaluation is preferably any one of evaluation criteria A to C. If it is evaluation standard A or B, it is excellent in production efficiency and can be used suitably, and it is more preferable that it is evaluation standard A.
A: No orientation failure B: Almost no orientation failure C: Some orientation failure is observed in part D: Orientation failure on the entire surface
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (16)

  1. 光学機能性層作製用組成物であって、
    粘度が0.3~30.0mPa・sであり、
    溶剤と重合性化合物およびポリマーから成る群から選択される1つ以上の化合物を含む光学機能性成分とを含み、
    前記溶剤は、表面張力10~22mN/mの低表面張力溶剤と表面張力が22mN/mより大きい標準表面張力溶剤との混合溶剤であって、前記溶剤全量に対する低表面張力溶剤の含量は5質量%~40質量%である
    光学機能性層作製用組成物。
    A composition for preparing an optical functional layer,
    The viscosity is 0.3 to 30.0 mPa · s,
    An optically functional component comprising a solvent and one or more compounds selected from the group consisting of polymerizable compounds and polymers;
    The solvent is a mixed solvent of a low surface tension solvent having a surface tension of 10 to 22 mN / m and a standard surface tension solvent having a surface tension of more than 22 mN / m, and the content of the low surface tension solvent with respect to the total amount of the solvent is 5% by mass. Composition for producing an optical functional layer in an amount of from 40 to 40% by mass.
  2. 前記標準表面張力溶剤の沸点が前記低表面張力溶剤の沸点よりも低い請求項1に記載の光学機能性層作製用組成物。 The composition for producing an optical functional layer according to claim 1, wherein the boiling point of the standard surface tension solvent is lower than the boiling point of the low surface tension solvent.
  3. 前記低表面張力溶剤がtert-ブチルアルコールである、請求項1または2に記載の光学機能性層作製用組成物。 The composition for producing an optical functional layer according to claim 1 or 2, wherein the low surface tension solvent is tert-butyl alcohol.
  4. 前記光学機能性成分が重合性化合物を含む請求項1~3のいずれか一項に記載の光学機能性層作製用組成物。 The composition for producing an optical functional layer according to any one of claims 1 to 3, wherein the optical functional component contains a polymerizable compound.
  5. 前記光学機能性成分が重合性液晶化合物を含む請求項4に記載の光学機能性層作製用組成物。 The composition for producing an optical functional layer according to claim 4, wherein the optical functional component contains a polymerizable liquid crystal compound.
  6. 支持体上に請求項1~5のいずれか一項に記載の光学機能性層作製用組成物を塗布して塗膜を得ること、および前記塗膜を乾燥して前記支持体上に光学機能性層1を形成することを含む光学フィルムの製造方法。 A coating film is obtained by applying the composition for producing an optical functional layer according to any one of claims 1 to 5 on a support, and the optical function is dried on the support by drying the coating film. A method for producing an optical film, comprising forming a conductive layer 1.
  7. 支持体上に請求項4または5に記載の光学機能性層作製用組成物を塗布して塗膜を得ること、前記塗膜を乾燥すること、および乾燥した前記塗膜を硬化反応に付して前記支持体上に光学機能性層1を形成することを含む光学フィルムの製造方法。 The composition for producing an optical functional layer according to claim 4 or 5 is applied onto a support to obtain a coating film, the coating film is dried, and the dried coating film is subjected to a curing reaction. A method for producing an optical film, comprising forming the optical functional layer 1 on the support.
  8. 光学機能性層1の表面に重合性化合物およびポリマーから成る群から選択される1つ以上の化合物を含む光学機能性成分と溶剤とを含む組成物2を塗布して塗膜を得ること、および前記塗膜を乾燥することを含む方法により層2を形成することを含む請求項6または7に記載の製造方法。 Applying a composition 2 containing an optical functional component containing at least one compound selected from the group consisting of a polymerizable compound and a polymer to the surface of the optical functional layer 1 and a solvent to obtain a coating film; and The manufacturing method of Claim 6 or 7 including forming the layer 2 by the method including drying the said coating film.
  9. 組成物2が重合性化合物を含み、
    層2の形成において乾燥した前記塗膜を硬化反応に付すことを含む請求項8に記載の製造方法。
    Composition 2 contains a polymerizable compound,
    The manufacturing method of Claim 8 including attaching | subjecting the said coating film dried in formation of the layer 2 to hardening reaction.
  10. 組成物2が請求項1~5のいずれか一項に記載の光学機能性層作製用組成物である請求項8または9に記載の製造方法。 The production method according to claim 8 or 9, wherein the composition 2 is the composition for producing an optical functional layer according to any one of claims 1 to 5.
  11. 請求項1~5のいずれか一項に記載の光学機能性層作製用組成物の塗膜から形成される光学機能性層1を含む光学フィルム。 An optical film comprising the optical functional layer 1 formed from a coating film of the composition for producing an optical functional layer according to any one of claims 1 to 5.
  12. 請求項6または7に記載の方法により得られる、支持体および光学機能性層1を含む光学フィルム。 The optical film containing the support body and the optical functional layer 1 obtained by the method of Claim 6 or 7.
  13. 光学機能性層1がコレステリック液晶相を固定してなる層である請求項11または12に記載の光学フィルム。 The optical film according to claim 11 or 12, wherein the optical functional layer 1 is a layer formed by fixing a cholesteric liquid crystal phase.
  14. 請求項8~10のいずれか一項に記載の方法により得られる光学フィルムであって、支持体、光学機能性層1および層2をこの順で含む光学フィルム。 An optical film obtained by the method according to any one of claims 8 to 10, comprising a support, the optical functional layer 1 and the layer 2 in this order.
  15. 光学機能性層1および層2からなる群から選択される1層以上が、コレステリック液晶相を固定してなる層である請求項14に記載の光学フィルム。 The optical film according to claim 14, wherein at least one layer selected from the group consisting of the optical functional layer 1 and the layer 2 is a layer formed by fixing a cholesteric liquid crystal phase.
  16. 光学機能性層1および層2のいずれか一方が、重合性の棒状液晶化合物を含む組成物の硬化により形成された層であり、他方が重合性の円盤状液晶化合物を含む組成物の硬化により形成された層である請求項14または15に記載の光学フィルム。 Either one of the optical functional layer 1 and the layer 2 is a layer formed by curing a composition containing a polymerizable rod-shaped liquid crystal compound, and the other is cured by curing a composition containing a polymerizable discotic liquid crystal compound. The optical film according to claim 14 or 15, which is a formed layer.
PCT/JP2015/069337 2014-07-04 2015-07-03 Composition for fabricating optically functional layer, method for manufacturing optical film including optically functional layer, and optical film WO2016002946A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167035017A KR101956568B1 (en) 2014-07-04 2015-07-03 Composition for fabricating optically functional layer, method for manufacturing optical film including optically functional layer, and optical film
JP2016531480A JP6335294B2 (en) 2014-07-04 2015-07-03 Composition for producing optical functional layer, method for producing optical film including optical functional layer, and optical film
CN201580035178.2A CN106471076B (en) 2014-07-04 2015-07-03 The manufacturing method and optical thin film of optical functional layer working composition, optical thin film comprising optical functional layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014138931 2014-07-04
JP2014-138931 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002946A1 true WO2016002946A1 (en) 2016-01-07

Family

ID=55019471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069337 WO2016002946A1 (en) 2014-07-04 2015-07-03 Composition for fabricating optically functional layer, method for manufacturing optical film including optically functional layer, and optical film

Country Status (4)

Country Link
JP (1) JP6335294B2 (en)
KR (1) KR101956568B1 (en)
CN (1) CN106471076B (en)
WO (1) WO2016002946A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179120A (en) * 2016-03-30 2017-10-05 株式会社ダイセル Thermosetting compound
WO2023074732A1 (en) * 2021-10-27 2023-05-04 富士フイルム株式会社 Optical film and production method for optical film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102395686B1 (en) * 2017-09-26 2022-05-06 후지필름 가부시키가이샤 How to make the film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310912A (en) * 2000-04-28 2001-11-06 Jsr Corp Curable composition for antistatic use, cured film and antistatic reflection preventing laminate
JP2005227425A (en) * 2004-02-12 2005-08-25 Fuji Photo Film Co Ltd Retardation plate, and quarter-wave plate and elliptic polarizer using the same
JP2005284000A (en) * 2004-03-30 2005-10-13 Jsr Corp Composition for antireflection film and antireflection film
JP2005301235A (en) * 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd Retardation plate and image display apparatus
JP2007093864A (en) * 2005-09-28 2007-04-12 Fujifilm Corp Optical retardation plate, polarizing plate, and liquid crystal display device
JP2010204221A (en) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd Optical element and liquid crystal display
JP2012177087A (en) * 2011-01-31 2012-09-13 Jnc Corp Polymerizable liquid crystal composition, and optically anisotropic body
WO2014054769A1 (en) * 2012-10-04 2014-04-10 富士フイルム株式会社 Circular polarizing plate and method for producing same, optical laminated body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841611B2 (en) 1990-01-11 1998-12-24 ダイキン工業株式会社 Fluorinated surfactant
JP2005272560A (en) 2004-03-24 2005-10-06 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and its polymer
JP5693027B2 (en) 2010-03-16 2015-04-01 富士フイルム株式会社 Laminated film manufacturing method, laminated film, and heat shield member
EP2586847A4 (en) * 2010-08-11 2016-01-13 Jnc Corp Liquid-crystal composition and liquid-crystal display element
JP5673047B2 (en) * 2010-12-07 2015-02-18 Jnc株式会社 Liquid crystal compound, liquid crystal composition, and liquid crystal display device
JP6024950B2 (en) * 2012-07-03 2016-11-16 Dic株式会社 Nematic liquid crystal composition and liquid crystal display device using the same
CN104837957B (en) * 2012-12-12 2016-06-29 Dic株式会社 Nematic liquid-crystal composition and use its liquid crystal display cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310912A (en) * 2000-04-28 2001-11-06 Jsr Corp Curable composition for antistatic use, cured film and antistatic reflection preventing laminate
JP2005227425A (en) * 2004-02-12 2005-08-25 Fuji Photo Film Co Ltd Retardation plate, and quarter-wave plate and elliptic polarizer using the same
JP2005301235A (en) * 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd Retardation plate and image display apparatus
JP2005284000A (en) * 2004-03-30 2005-10-13 Jsr Corp Composition for antireflection film and antireflection film
JP2007093864A (en) * 2005-09-28 2007-04-12 Fujifilm Corp Optical retardation plate, polarizing plate, and liquid crystal display device
JP2010204221A (en) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd Optical element and liquid crystal display
JP2012177087A (en) * 2011-01-31 2012-09-13 Jnc Corp Polymerizable liquid crystal composition, and optically anisotropic body
WO2014054769A1 (en) * 2012-10-04 2014-04-10 富士フイルム株式会社 Circular polarizing plate and method for producing same, optical laminated body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179120A (en) * 2016-03-30 2017-10-05 株式会社ダイセル Thermosetting compound
WO2023074732A1 (en) * 2021-10-27 2023-05-04 富士フイルム株式会社 Optical film and production method for optical film

Also Published As

Publication number Publication date
CN106471076A (en) 2017-03-01
JP6335294B2 (en) 2018-05-30
KR20170010317A (en) 2017-01-26
CN106471076B (en) 2019-01-22
JPWO2016002946A1 (en) 2017-06-08
KR101956568B1 (en) 2019-03-11

Similar Documents

Publication Publication Date Title
JP2024069240A (en) Optically absorptive anisotropic film, three-dimensional optically absorptive anisotropic film and method for producing same
JP2021140157A (en) Laminate
JP6285529B2 (en) Elliptical polarizing plate
JP5812823B2 (en) Film and manufacturing method thereof
JP6790836B2 (en) Multi-layer film, its use, and manufacturing method
JP6423002B2 (en) Polymer, composition, optical film, and liquid crystal display device
JP6445011B2 (en) Polymer, composition, optical film and liquid crystal display device
WO2016136231A1 (en) Laminate and optical film
JP2016197219A (en) Laminate and optical film
WO2016136901A1 (en) Transfer body for optical film, optical film, organic electroluminescence display device, and method for manufacturing optical film
WO2017098727A1 (en) Composition for preparing optical functional layer, optical film, and liquid crystal display
JP2015138162A (en) Optical anisotropic film
JP6335294B2 (en) Composition for producing optical functional layer, method for producing optical film including optical functional layer, and optical film
JP2015129922A (en) Optical anisotropic film
JP2006292910A (en) Method of manufacturing elliptically polarizing plate, and image display device using the elliptically polarizing plate
WO2016052404A1 (en) Optical film having cholesteric liquid crystal layer and production method for optical film having cholesteric liquid crystal layer
WO2014168260A1 (en) Composition for forming optically anisotropic layer
JP2006259038A (en) Method of manufacturing elliptically polarizing plate, and image display apparatus using elliptically polarizing plate
JP6394592B2 (en) Alignment layer for optically anisotropic film
WO2014168258A1 (en) Method for producing optically anisotropic film
JP2006195424A (en) Elliptical polarization plate, manufacturing method thereof and image display device using elliptical polarization plate
JP6651353B2 (en) Method for producing optically anisotropic film
JP2019028474A (en) Optical anisotropic film
JP7417623B2 (en) Optical laminates, polarizing plates, and image display devices
WO2014168257A1 (en) Alignment film forming composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167035017

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016531480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815303

Country of ref document: EP

Kind code of ref document: A1