WO2016002880A1 - 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体 - Google Patents

伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体 Download PDF

Info

Publication number
WO2016002880A1
WO2016002880A1 PCT/JP2015/069129 JP2015069129W WO2016002880A1 WO 2016002880 A1 WO2016002880 A1 WO 2016002880A1 JP 2015069129 W JP2015069129 W JP 2015069129W WO 2016002880 A1 WO2016002880 A1 WO 2016002880A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
gradient
measurement value
cae
circumferential
Prior art date
Application number
PCT/JP2015/069129
Other languages
English (en)
French (fr)
Inventor
聡 白神
吉田 博司
隆司 宮城
淳 新田
吉田 亨
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201580034909.1A priority Critical patent/CN106470776B/zh
Priority to JP2015560893A priority patent/JP5967321B2/ja
Priority to EP15815590.3A priority patent/EP3165298A4/en
Priority to KR1020167036501A priority patent/KR101886556B1/ko
Priority to US15/322,409 priority patent/US10467361B2/en
Publication of WO2016002880A1 publication Critical patent/WO2016002880A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/201Work-pieces; preparation of the work-pieces, e.g. lubricating, coating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/24Sheet material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Definitions

  • the present invention relates to a stretch flange crack prediction method, a stretch flange crack prediction apparatus, a computer program, and a record that can accurately predict the occurrence of stretch flange cracks occurring at the flange end when a plastic plate is stretch flange formed. It relates to the medium.
  • This application claims priority based on Japanese Patent Application No. 2014-137185 filed in Japan on July 2, 2014, the contents of which are incorporated herein by reference.
  • plastic parts for example, high-strength steel sheets of 270 to 1470 MPa
  • plastic parts are press-molded to produce automobile parts or other parts.
  • the part shape, molding conditions, etc. cracks may occur at the end of the molded part during press molding.
  • Patent Document 5 a method for specifying the breaking strain of a plate-like material that can accurately specify the breaking strain in stretch flange molding.
  • the fracture strain at the flange end when stretch flange molding is performed is in line with the strain gradient (vertical strain gradient) from the steel plate end to the inside and the steel plate end. It can be specified as a function or a map with a strain concentration gradient (circumferential strain gradient), and the presence or absence of fracture can be predicted.
  • Patent Documents 4 and 5 do not disclose that a threshold value for determining the occurrence of breakage is obtained with high accuracy, and breaks at a place where it is predicted that breakage will not occur in stretch flange molding of a plastic plate. On the contrary, the phenomenon that it does not actually break at the place where it was predicted to break could occur.
  • the present invention relates to a stretch flange crack prediction method, a stretch flange crack prediction apparatus, a computer program, and a record that can accurately predict the occurrence of stretch flange cracks occurring at the flange end when a plastic plate is stretch flange formed.
  • the purpose is to provide a medium.
  • the gist of the present invention is as follows.
  • a first aspect of the present invention is a stretch flange crack prediction method for predicting the occurrence of stretch flange cracks occurring at the flange end when a plastic plate is stretched flange-molded. Measured values for obtaining a measured strain value, a vertical strain gradient measured value, and a circumferential strain gradient measured value under an experimental measurement environment with a predetermined gauge length and a predetermined gradient evaluation length.
  • the fracture strain measurement value obtained under the experimental measurement environment by the measurement value acquisition step is added to the vertical strain gradient measurement value and the circumferential strain gradient measurement value, and the element size in the CAE analysis step
  • a rupture determination threshold acquisition step for acquiring a rupture determination threshold by converting based on the gradient evaluation length, the vertical strain gradient, and the circumferential strain gradient, and the maximum of the maximum principal strain maximum element
  • the fracture strain measurement value, the vertical strain gradient measurement value, and the circumferential strain gradient measurement value obtained in the measurement value acquisition step and a fracture strain function acquiring step for acquiring a fracture strain function for specifying the fracture strain using the vertical strain gradient and the circumferential strain gradient as variables, and the fracture determination threshold acquisition step includes the following equation (1):
  • the rupture determination threshold value may be acquired by converting the rupture strain function in accordance with the CAE analysis measurement environment based on the equations (4) to (4).
  • ⁇ 1 * (CAE) is a fracture determination threshold value
  • ⁇ 1 * (exp) is a measured value of fracture strain obtained in the measurement value obtaining step
  • GL is the gauge length used in the measurement value acquisition process
  • L S (exp) is the gradient evaluation length used in the measurement value acquisition step
  • ⁇ N (exp) is the vertical strain gradient measurement value acquired in the measurement value acquisition step
  • ⁇ C (exp) is a circumferential strain gradient measurement value acquired in the measurement value acquisition step
  • ⁇ (CAE) is the maximum principal strain of the maximum principal strain maximum element
  • ES is the element size used in the CAE analysis process
  • L S (CAE) is the gradient evaluation length used in the CAE analysis step
  • ⁇ N (CAE) is the vertical strain gradient obtained in the CAE analysis step
  • ⁇ C (CAE) is a circumferential strain gradient acquired in the CAE analysis step.
  • the fracture strain measurement value, the vertical strain gradient measurement value, and the circumferential strain gradient measurement value obtained in the measurement value acquisition step and a fracture strain function acquiring step of acquiring a fracture strain function for specifying the fracture strain using the vertical strain gradient and the circumferential strain gradient as variables, and in the fracture determination threshold acquisition step, the following equation (5)
  • the rupture determination threshold value may be acquired by converting the rupture strain function according to the CAE analysis measurement environment based on the equations (8) to (8).
  • ⁇ 1 * (CAE) is a fracture determination threshold value
  • ⁇ 1 * (exp) is a measured value of fracture strain obtained in the measurement value obtaining step
  • GL is the gauge length used in the measurement value acquisition process
  • L S (exp) is the gradient evaluation length used in the measurement value acquisition step
  • Cl (exp) is a processing condition for obtaining a plate-shaped test piece
  • ⁇ N (exp) is the vertical strain gradient measurement value acquired in the measurement value acquisition step
  • ⁇ C (exp) is a circumferential strain gradient measurement value acquired in the measurement value acquisition step
  • ⁇ (CAE) is the maximum principal strain of the maximum principal strain maximum element
  • ES is the element size used in the CAE analysis process
  • L S (CAE) is the gradient evaluation length used in the CAE analysis step
  • Cl (CAE) is a processing condition for obtaining a plastic plate
  • ⁇ N (CAE) is the vertical strain gradient obtained in the CAE analysis step
  • ⁇ C (CAE) is a
  • the fracture strain measurement value, the vertical strain gradient measurement value, and the circumferential strain gradient measurement value obtained in the measurement value acquisition step are:
  • a strain distribution data acquisition step for acquiring strain distribution data indicating correlation for each of the plurality of plate-like test pieces is further provided, and in the fracture determination threshold acquisition step, the strain distribution data is processed according to the CAE analysis measurement environment.
  • a fracture determination curved surface may be generated using the processed strain distribution data, and the fracture determination threshold may be acquired from the fracture determination curved surface.
  • a strain distribution function of the following equation (9) may be used as the strain distribution data.
  • ⁇ 0 is the maximum principal strain
  • B N is a material parameter indicating the spread size near the peak in the vertical direction
  • C N is a material parameter indicating the severity of the vertical gradient
  • BC is a material parameter indicating the spread size around the peak in the circumferential direction
  • C C is a material parameter indicating the severity of the circumferential gradient.
  • Strain distribution data acquisition for acquiring the strain distribution data indicating the correlation between the measured fracture strain value, the vertical strain gradient measurement value, and the circumferential strain gradient measurement value obtained for each of the plurality of plate-like test pieces
  • a step of obtaining the fracture determination threshold value wherein the strain distribution data of the test piece processing conditions according to the CAE analysis measurement environment is processed according to the CAE analysis measurement environment, and the processed strain distribution data May be used to generate a rupture determination curved surface and obtain the rupture determination threshold from the rupture determination curved surface.
  • the plurality of plate-shaped test pieces have end portions formed with notches having different shapes, and in the measurement value acquisition step, With respect to each of the plate-like test pieces, the fracture strain measurement value for each of the plurality of plate-like test pieces while giving a tensile deformation and a bending deformation in the plate surface so that the notch becomes a breakage portion
  • the vertical strain gradient measurement value and the circumferential strain gradient measurement value may be measured and acquired.
  • the notch shape formed in the plurality of plate-shaped test pieces has a relatively small vertical strain gradient and a circumferential strain gradient.
  • the measurement value of the breaking strain is a measurement value of the breaking strain at the breaking portion of the plate-like test piece
  • the measurement value of the vertical strain gradient is It is a measurement value of the strain gradient from the rupture site to the inner side of the plate-shaped test piece
  • the circumferential strain gradient measurement value is a strain gradient from the rupture site to the direction along the end of the plate-shaped test sample. May be measured values.
  • the CAE analysis step includes an element extraction step of extracting the maximum principal strain maximum element having the maximum principal strain from the molding data, and the maximum An element row specifying step for specifying, based on an element selection algorithm, an element row extending from the flange end to the inside of the plastic plate, and an element row along the flange end, using the principal strain maximum element as a reference element; A strain gradient calculating step of calculating the vertical strain gradient of the maximum principal strain maximum element and the circumferential strain gradient of the maximum principal strain maximum element for the identified element row.
  • a second aspect of the present invention is a stretch flange crack prediction device for predicting the occurrence of stretch flange cracks occurring at the flange end when a plastic plate is stretched flange-molded, each of a plurality of plate-like test pieces. Measured values for obtaining a measured strain value, a vertical strain gradient measured value, and a circumferential strain gradient measured value under an experimental measurement environment with a predetermined gauge length and a predetermined gradient evaluation length.
  • the fracture strain measurement value obtained under the experimental measurement environment by the measurement value acquisition unit is added to the vertical strain gradient measurement value and the circumferential strain gradient measurement value, and the element size in the CAE analysis unit,
  • a rupture determination threshold value acquisition unit that acquires a rupture determination threshold value by converting based on a gradient evaluation length, the vertical strain gradient, and the circumferential strain gradient, and the maximum main strain maximum element of the maximum main strain maximum element
  • a stretch flange crack prediction apparatus comprising: a prediction unit that compares strain with the break determination threshold and predict
  • the rupture strain function acquiring unit for acquiring the rupture strain function for specifying the rupture strain using the vertical strain gradient and the circumferential strain gradient as variables is further provided.
  • the rupture determination threshold value may be acquired by converting the rupture strain function in accordance with the CAE analysis measurement environment based on the equations (4) to (4).
  • ⁇ 1 * (CAE) is a fracture determination threshold value
  • ⁇ 1 * (exp) is a measurement value of fracture strain obtained by the measurement value obtaining unit
  • GL is the gauge length used in the measurement value acquisition unit
  • L S (exp) is the gradient evaluation length used in the measurement value acquisition unit
  • ⁇ N (exp) is a vertical strain gradient measurement value acquired by the measurement value acquisition unit
  • ⁇ C (exp) is a circumferential strain gradient measurement value acquired by the measurement value acquisition unit
  • ⁇ (CAE) is the maximum principal strain of the maximum principal strain maximum element
  • ES is the element size used in the CAE analysis unit
  • L S (CAE) is the gradient evaluation length used in the CAE analysis unit
  • ⁇ N (CAE) is a vertical strain gradient acquired by the CAE analysis unit
  • ⁇ C (CAE) is a circumferential strain gradient acquired by the CAE analysis unit.
  • the rupture strain function acquiring unit for acquiring the rupture strain function for specifying the rupture strain using the vertical strain gradient and the circumferential strain gradient as variables is further provided.
  • the rupture determination threshold value may be acquired by converting the rupture strain function according to the CAE analysis measurement environment based on the equations (8) to (8).
  • ⁇ 1 * (CAE) is a fracture determination threshold value
  • ⁇ 1 * (exp) is a measurement value of fracture strain obtained by the measurement value obtaining unit
  • GL is the gauge length used in the measurement value acquisition unit
  • L S (exp) is the gradient evaluation length used in the measurement value acquisition unit
  • Cl (exp) is a processing condition for obtaining a plate-shaped test piece
  • ⁇ N (exp) is a vertical strain gradient measurement value acquired by the measurement value acquisition unit
  • ⁇ C (exp) is a circumferential strain gradient measurement value acquired by the measurement value acquisition unit
  • ⁇ (CAE) is the maximum principal strain of the maximum principal strain maximum element
  • ES is the element size used in the CAE analysis unit
  • L S (CAE) is the gradient evaluation length used in the CAE analysis unit
  • Cl (CAE) is a processing condition for obtaining a plastic plate
  • ⁇ N (CAE) is a vertical strain gradient acquired by the CAE analysis unit
  • ⁇ C (CAE) is
  • the fracture strain measurement value, the vertical strain gradient measurement value, and the circumferential strain gradient measurement value obtained by the measurement value acquisition unit A strain distribution data acquisition unit that acquires strain distribution data indicating correlation for each of the plurality of plate-like test pieces is further provided, and the fracture determination threshold value acquisition unit processes the strain distribution data according to the CAE analysis measurement environment.
  • a fracture determination curved surface may be generated using the processed strain distribution data, and the fracture determination threshold may be acquired from the fracture determination curved surface.
  • the strain distribution function of the following equation (9) may be used as the strain distribution data in the fracture determination threshold value acquisition unit.
  • the measurement value acquisition unit uses a plurality of plate-like test pieces processed under a plurality of test piece machining conditions as the plurality of plate-like test pieces.
  • the fracture determination threshold value acquisition unit further processes the strain distribution data of the test piece processing conditions according to the CAE analysis measurement environment according to the CAE analysis measurement environment, and processes the strain distribution data processed May be used to generate a rupture determination curved surface and obtain the rupture determination threshold from the rupture determination curved surface.
  • the plurality of plate-shaped test pieces have end portions in which notches having different shapes are formed, and the measurement value acquisition unit includes the plurality of pieces.
  • the fracture strain measurement value for each of the plurality of plate-like test pieces while giving a tensile deformation and a bending deformation in the plate surface so that the notch becomes a breakage portion
  • the vertical strain gradient measurement value and the circumferential strain gradient measurement value may be measured and acquired.
  • the notch shape formed in the plurality of plate-shaped test pieces has a relatively small vertical strain gradient and a circumferential strain gradient.
  • the fracture strain measurement value is a measurement value of the fracture strain at the fracture site of the plate-like test piece
  • the vertical strain gradient measurement value is It is a measurement value of the strain gradient from the rupture site to the inner side of the plate-shaped test piece
  • the circumferential strain gradient measurement value is a strain gradient from the rupture site to the direction along the end of the plate-shaped test sample. May be measured values.
  • the CAE analysis unit extracts an element extraction unit that extracts the maximum principal strain maximum element having the maximum principal strain from the molding data, and the maximum An element row specifying unit that specifies an element row that goes from the flange end to the inside of the plastic plate, and an element row along the flange end based on an element selection algorithm, using the main strain maximum element as a reference element;
  • the identified element row may include a strain gradient calculation unit that calculates the vertical strain gradient of the maximum principal strain maximum element and the circumferential strain gradient of the maximum principal strain maximum element.
  • a third aspect of the present invention is a program that causes the stretch flange crack prediction apparatus according to (11) to execute the stretch flange crack prediction method according to (1).
  • a fourth aspect of the present invention is a computer-readable recording medium on which the program according to (21) is recorded.
  • FIG. 2 is a plan view showing a state in which a plate-shaped test piece 1 is attached to a side bend testing machine 10.
  • FIG. 3 is a plan view showing a state in which a strain is applied to the plate-like test piece 1 by the side bend testing machine 10. It is a top view which shows the plate-shaped test piece 1a of type 1.
  • FIG. It is a top view which shows the plate-shaped test piece 1b of type 2.
  • FIG. 1c It is a top view which shows the plate-shaped test piece 1c of type 3.
  • FIG. It is a top view which shows the plate-shaped test piece 1d of type 4.
  • FIG. It is a top view which shows the plate-shaped test piece 1e of type 5.
  • FIG. It is a top view which shows the plate-shaped test piece 1f of type 6.
  • FIG. It is a figure which shows typically the relationship between the vertical direction strain gradient X and the circumferential direction strain gradient Y of the plate-shaped test piece 1a of type 1.
  • FIG. It is a figure which shows typically the relationship between the vertical direction strain gradient X and the circumferential direction strain gradient Y of the plate-shaped test piece 1b of type 2.
  • FIG. 1 It is a graph which shows the circumferential direction strain gradient measured value of the plate-shaped test piece 1b. It is the schematic which shows the change of a grid line at the time of carrying out the side bend test for the plate-shaped test piece 1 which drew the grid line at the predetermined space
  • FIG. It is a figure which shows the three-dimensional map of the breaking strain (epsilon) f about the steel type C, the vertical direction strain gradient X, and the circumferential direction strain gradient Y.
  • FIG. It is a figure which shows the 1st example of the element selection algorithm which specifies the element row
  • FIG. 1 It is a figure which shows the 3rd example of the element selection algorithm which specifies the element row
  • FIG. 5 is a strain distribution diagram before and after processing a type 1 plate test piece 1a into vertical strain gradient data in a CAE analysis measurement environment.
  • FIG. 6 is a strain distribution diagram before and after processing a type 2 plate-shaped test piece 1b into vertical strain gradient data in a CAE analysis measurement environment.
  • FIG. 6 is a strain distribution diagram before and after processing a type 3 plate specimen 1c into vertical strain gradient data under a CAE analysis measurement environment. It is a strain distribution figure before and behind processing to the data of the vertical direction strain gradient in the CAE analysis measurement environment about the type 4 plate-shaped test piece 1d.
  • FIG. 6 is a strain distribution diagram before and after processing a type 5 plate specimen 1e into data of a vertical strain gradient in a CAE analysis measurement environment.
  • FIG. 6 is a strain distribution diagram before and after processing a type 6 plate-shaped specimen 1f into vertical strain gradient data in a CAE analysis measurement environment. It is a strain distribution figure before and behind processing to the data of the circumferential direction strain gradient in a CAE analysis measurement environment about the type 1 plate-shaped test piece 1a. It is a strain distribution figure before and behind processing to the data of the circumferential direction strain gradient in a CAE analysis measurement environment about the type 2 plate-shaped test piece 1b.
  • FIG. 6 is a strain distribution diagram before and after processing a type 3 plate specimen 1c into data of a circumferential strain gradient under a CAE analysis measurement environment.
  • FIG. 6 is a strain distribution diagram before and after processing a type 4 plate specimen 1d into data of a circumferential strain gradient in a CAE analysis measurement environment. It is a strain distribution figure before and behind processing to the data of the circumferential direction strain gradient in a CAE analysis measurement environment about the type 5 plate-shaped test piece 1e. It is a strain distribution figure before and behind processing to the data of the circumferential direction strain gradient in the CAE analysis measurement environment about the type 6 plate-shaped test piece 1f. It is a figure which shows the stretch flange crack determination curved surface created based on the strain distribution map after a process.
  • the present inventors diligently studied a method for solving the above problems.
  • the inventors have (I) In the direction from the flange end to the inside (hereinafter sometimes referred to as the vertical direction), the greater the strain gradient of the maximum principal strain, the less likely the stretch flange cracks occur, and the direction along the flange end. (Hereinafter sometimes referred to as the circumferential direction), focusing on the fact that the greater the strain gradient of the maximum principal strain, the easier the stretch flange cracks occur, and the strain gradient in the above two directions is changed from the plate-shaped test piece.
  • the fracture determination threshold value is obtained by converting the fracture strain measurement value associated with the strain gradients in the two directions based on the information of the CAE analysis, and this fracture determination threshold value is obtained as the maximum principal strain obtained by the CAE analysis.
  • FIG. 2 shows an outline of the main steps of the stretch flange crack prediction method according to the first embodiment of the present invention.
  • the stretch flange crack prediction method includes a measurement value acquisition step S1, a CAE analysis step S2, a fracture determination threshold acquisition step S3, and a prediction step S4, as shown in FIG.
  • a measurement value acquisition step S1 a measurement value acquisition step S1
  • a CAE analysis step S2 a fracture determination threshold acquisition step S3
  • a prediction step S4 as shown in FIG.
  • each process will be described in detail.
  • Measured value of rupture strain ⁇ 1 * (exp) which is a measured value of rupture strain at 1 rupture site
  • measured value of vertical strain gradient which is a measured value of strain gradient in the vertical direction from the rupture site of plate-like test piece ⁇ N (exp) and a circumferential strain gradient measurement value ⁇ C (exp) , which is a measurement value of the strain gradient in the circumferential direction from the fracture site of the plate-like test piece 1, are acquired.
  • Examples of methods for obtaining the above-mentioned fracture strain measurement value ⁇ 1 * (exp) , vertical strain gradient measurement value ⁇ N (exp) , and circumferential strain gradient measurement value ⁇ C (exp) include different shapes.
  • a plurality of plate-like test pieces 1 having end portions in which notches 6 are formed are prepared, and tensile deformation and in-plate are performed on each of these plate-like test pieces 1 so that the notches 6 are broken portions. What is necessary is just to measure distortion, giving a bending deformation and making it fracture.
  • the raw material of the plate-shaped test piece 1 is a steel type equivalent to the steel type of the steel plate used as the prediction object of an actual stretch flange crack, and it is still more preferable that it is the same steel type.
  • the plate-like test piece 1 is manufactured by processing a plate-like member under a predetermined processing condition (clearance condition for punching, laser output condition for laser processing, etc.) by a processing method such as punching or laser processing. Can do.
  • FIG. 3 and FIG. 4 show the fracture strain measurement value ⁇ 1 * (exp) , the vertical strain gradient measurement value ⁇ N (exp) , and the circumferential strain gradient measurement value ⁇ C of the plate-like test piece 1.
  • the aspect of the side bend testing machine 10 for measuring (exp) is shown.
  • FIG. 3 is a plan view showing a state in which the plate-shaped test piece 1 is attached to the side bend tester 10, and
  • FIG. 4 shows a state in which the plate-shaped test piece 1 is distorted by the side bend tester 10.
  • FIG. 3 is a plan view showing a state in which the plate-shaped test piece 1 is attached to the side bend tester 10
  • FIG. 4 shows a state in which the plate-shaped test piece 1 is distorted by the side bend tester 10.
  • the side bend testing machine 10 is configured such that two arms 12 having bent portions crossed in an X shape are pivotally attached to a base 14 by a shaft 13 at an intermediate point of the arms 12.
  • the plate-like test piece 1 is gripped with the notch 6 on the outside by gripping portions 19 attached to the respective tips of the two arms 12 via bolts 18.
  • the other end of the arm 12 protrudes from the base 14 and is expanded by the pressure of the hydraulic cylinder 15 as shown in FIG.
  • the plate-like test piece 1 is given tensile deformation and bending deformation within the plate surface.
  • transformation similar to stretch flange molding is implement
  • the imaging device 17 Since the breakage occurs at the notch 6, the imaging device 17 is arranged behind the base 14 (see FIG. 3 or 4), and the behavior at the break is photographed. Since the strain rate when processing with a press machine is 0.01 to 1 / sec, the strain rate applied to the plate-like test piece 1 with the side bend tester 10 is preferably 0.01 to 1 / sec.
  • the notch shape of the notch 6 of the plate-like test piece 1 may be, for example, a depth D of 0 to 100 mm, a curvature R ⁇ 1 of 0 to 1.0, and a ligament length L of 1 to 500 mm.
  • the type 1 plate-like test piece 1a has a notch 6a having a notch depth D of 15 mm, a curvature R ⁇ 1 of 0.067, and a ligament length L of 20 mm.
  • the type 2 plate-shaped test piece 1b has a notch 6b having a notch depth D of 4 mm, a curvature R- 1 of 0.033, and a ligament length L of 31 mm.
  • the type 3 plate-like test piece 1c has a notch 6c having a notch depth D of 21 mm, a curvature R- 1 of 0.067, and a ligament length L of 14 mm.
  • the type 4 plate-shaped test piece 1d has a notch 6d having a notch depth D of 12.8 mm, a curvature R ⁇ 1 of 0.050, and a ligament length L of 22.2 mm.
  • the type 5 plate-like test piece 1e has a notch 6e having a notch depth D of 27 mm, a curvature R ⁇ 1 of 0.067, and a ligament length L of 8 mm.
  • the type 6 plate-shaped test piece 1 f is a test piece in which an adjustment notch 6 ′ for adjusting the ligament length L is formed.
  • this test piece it can be considered that a notch 6f having a notch depth D of 0 mm, a curvature R- 1 of 0, and a ligament length L of 8 mm is formed on the opposite side of the adjustment notch 6 '. .
  • the shape of the notches 6 of the plurality of plate-like test pieces 1 is (1) a first notch shape (for example, notch 6a) having a relatively small vertical strain gradient and a relatively small circumferential strain gradient; (2) a second notch shape (for example, notch 6e) having a relatively large vertical strain gradient and a relatively large circumferential strain gradient; (3) a third notch shape (for example, notch 6f) having a relatively large vertical strain gradient and a relatively small circumferential strain gradient; (4) a fourth notch shape (for example, the notch 6b) having a relatively small vertical strain gradient and a relatively large circumferential strain gradient; It is preferable to select so as to include.
  • a plate specimen having a relatively small vertical strain gradient means that the slope of a straight line obtained by linearizing the data points of the vertical strain gradient by the least square method is the average of all the plate specimens. It means a plate-shaped test piece smaller than the value. The same applies to “a plate-shaped test piece having a relatively small circumferential strain gradient”.
  • a notch shape different from the first notch shape to the fourth notch shape may be further included.
  • FIG. 7 shows, as an example, the vertical strain gradient measurement value ⁇ N (exp) of the plate-shaped test piece 1b (type 2).
  • the vertical strain gradient measurement value ⁇ N (exp) is the difference between the strain at the break starting point (position 0 in the figure) and the strain at the position away from the break starting point between the break starting point and the above position. It is a value divided by the distance between them, and is an index indicating the strain distribution from the end of the plate toward the inside.
  • FIG. 8 shows, as an example, a circumferential strain gradient measurement value ⁇ C (exp) of the plate-shaped test piece 1b (type 2).
  • the circumferential strain gradient measured value ⁇ C (exp) is the difference between the strain at the break starting point (position 0 in the figure) and the strain at a position away from the break starting point along the plate edge, and the break starting point. It is a value divided by the distance to the above position, and is an index indicating the strain distribution in the direction along the plate edge.
  • the circumferential strain gradient measurement value ⁇ C (exp) can be obtained in two directions (left and right in FIG. 8 ) with the fracture origin as the center, but only one or both averages may be used. Good.
  • FIG. 9 shows changes in lattice lines when a plate bend test piece 1 in which lattice lines are drawn in the vicinity of the notches 6 at regular intervals is subjected to a side bend test.
  • FIG. 9 it can be seen that the lattice lines near the notch 6 are expanded after the test.
  • the strain at the measurement point can be determined from the change in the lattice line or point on the surface of the plate-shaped test piece 1 or the uneven pattern and the change in the plate thickness at the end. Moreover, you may obtain
  • FIG. Then, the difference between the strain at the rupture starting point and the strain at a position of 1 to 100 mm from the rupture starting point is divided by the distance between them, and the vertical strain gradient measured value ⁇ N (exp) and the circumferential strain gradient measured value ⁇ C ( exp) . Since the gradient is not constant, linear approximation may be performed by the maximum square method or the like.
  • the upper limit of the strain measurement point position is preferably 100 mm from the break starting point.
  • the lower limit of the strain measurement position is preferably 1 mm.
  • the processing condition Cl (exp) is a parameter such as a punching clearance condition of the plate-shaped test piece 1 and a laser output condition of laser processing
  • the processing condition Cl (CAE) is a punching process for obtaining a plastic plate. Parameters such as clearance conditions and laser output conditions for laser processing. Since the breaking strain ⁇ f is affected by these processing conditions, it is possible to specify the breaking strain ⁇ f with high accuracy by considering the processing conditions Cl (exp) and Cl (CAE) .
  • ⁇ f a + bX 1.5 + cY 1.5 (ac: constant) can be used as a simplified function.
  • the side bend test was performed, and the results of obtaining the fracture strain measurement value ⁇ 1 * (exp) , the vertical strain gradient measurement value ⁇ N (exp) , and the circumferential strain gradient measurement value ⁇ C (exp) are shown.
  • the breaking strain ⁇ f can be specified by a three-dimensional map of the vertical strain gradient X and the circumferential strain gradient Y. Functions and maps are mathematically equivalent.
  • FIG. 10 shows a three-dimensional map of the breaking strain ⁇ f, the vertical strain gradient X, and the circumferential strain gradient Y for the steel type A.
  • This three-dimensional map includes the fracture strain measurement value ⁇ 1 * (exp) acquired in the measurement value acquisition step S1, the vertical strain gradient measurement value ⁇ N (exp) , and the circumferential strain gradient measurement value ⁇ C (exp). Based on the response surface method (RSM).
  • the vertical axis is the strain ⁇
  • the right axis is the circumferential strain gradient Y
  • the depth direction axis is the vertical strain gradient X.
  • the breaking strain ⁇ f is displayed as a curved surface (a curved surface surrounded by PRSQ).
  • a point P is a point where the vertical strain gradient X and the circumferential strain gradient Y are substantially zero, and corresponds to the fracture strain ⁇ f when the plate-shaped test piece 1 without a notch is simply pulled.
  • the point Q is a point where the vertical strain gradient X is substantially zero, but there is a circumferential strain gradient Y, and corresponds to the breaking strain ⁇ f when the notched plate-like test piece 1 is simply pulled.
  • the point R is a point where there is a vertical strain gradient X, but the circumferential strain gradient Y is substantially zero, and corresponds to the fracture strain ⁇ f when the plate-shaped test piece 1 without a notch is bent in-plane. At this time, the breaking strain ⁇ f is maximized.
  • the point S corresponds to the breaking strain ⁇ f when the plate-like test piece 1 having a notch is bent in the plane.
  • FIG. 11 shows a three-dimensional map of the breaking strain ⁇ f, the vertical strain gradient X, and the circumferential strain gradient Y for another steel type B.
  • FIG. 12 shows a three-dimensional map of the breaking strain ⁇ f, the vertical strain gradient X, and the circumferential strain gradient Y for still another steel type C.
  • the portion where the breaking strain ⁇ f is 0.6 to 0.7 is (A), the portion where 0.5 to 0.6 is (B), and the portion where 0.4 to 0.5 is ( C), 0.3-0.4 part is (D), 0.2-0.3 part is (E), 0.1-0.2 part is (F), 0-0.1
  • the part of was displayed as (G). If the steel type is different, the breaking strain ⁇ f changes, but the shape of the curved surface displaying the breaking strain ⁇ f is substantially the same.
  • CAE analysis process S2 the process of stretch flange forming of a steel plate (plastic plate) is performed by a finite element method, and CAE analysis measurement is performed at a predetermined element size ES and a predetermined gradient evaluation length L S (CAE).
  • the maximum principal strain maximum element ⁇ where the maximum principal strain ⁇ is maximum
  • the vertical strain gradient ⁇ N (CAE) of the maximum principal strain maximum element ⁇ , and The circumferential strain gradient ⁇ C (CAE) of the maximum principal strain maximum element ⁇ To get.
  • a large circumferential strain gradient ⁇ C (CAE) means that tensile stress is concentrated at a specific position (a position of the reference element) at the flange end. Therefore, if the circumferential strain gradient ⁇ C (CAE) is large, cracks are likely to occur at the flange end.
  • the circumferential strain gradient ⁇ C (CAE) from the reference element can be easily calculated from the strain of the element constituting the end, but the vertical strain gradient ⁇ N (CAE) from the reference element is automatically calculated. It is not easy to calculate automatically.
  • an element selection algorithm for automatically specifying an element sequence adjacent in the direction from the reference element to the inside of the end is incorporated in the calculation process.
  • the distortion gradient in the direction from the end toward the inside is calculated from the distortion of the elements in the element sequence specified based on the element selection algorithm.
  • the CAE analysis step S2 may include an element extraction step S21, an element string specifying step S22, and a strain gradient calculation step S23.
  • the maximum principal strain maximum element ⁇ having the maximum principal strain ⁇ is extracted from the molding data relating to the flange end.
  • a molded product is made into an assembly of a large number of elements in accordance with the finite element method, and is analyzed by performing a molding simulation (see, for example, JP-A-2006-167766).
  • molding data (element shape and strain data) in the molding process is acquired.
  • molding data relating to the end of the flange is extracted. This extraction can be automatically performed by a computer by a method of selecting an element that does not have an adjacent element.
  • the maximum principal strain maximum element ⁇ having the maximum principal strain ⁇ (the maximum principal strain maximum value) is extracted at the extracted end.
  • FIG. 13 shows a first example of an element selection algorithm for specifying an element row from the flange end toward the inside of the steel plate.
  • a straight line P1 passing through the midpoint of the side a along the end of the reference element A and perpendicular to the end is assumed.
  • the side b intersecting the straight line P1 is specified, and the adjacent element B sharing the side b is extracted.
  • the side c passing through the midpoint of the side b of the adjacent element B and intersecting the straight line P2 perpendicular to the side b is specified, and the adjacent element C sharing the side b is extracted.
  • This “side identification” — “adjacent element extraction” is repeated to identify an element string.
  • the maximum principal strain ⁇ is extracted from the strain of the element row specified in this way, and the strain gradient in the direction from the end toward the inside (vertical direction) can be calculated.
  • FIG. 14 shows a second example of an element selection algorithm for specifying an element row from the flange end toward the inside of the steel plate.
  • a straight line P1 passing through the midpoint of the side a along the end of the reference element A and perpendicular to the end is assumed.
  • Elements A, B, C, D, E, F... That intersect the straight line P1 at two or more points are selected.
  • an element where the perpendicular L dropped from the center of gravity of the element to the straight line P1 intersects the straight line P1 within the same element is selected, and an element that does not satisfy this criterion is not selected.
  • element D is not selected and element E is selected.
  • an element with an asterisk (*) is the selected element.
  • FIG. 15 shows a third example of an element selection algorithm for specifying an element row from the flange end toward the inside of the steel plate.
  • the adjacent element B1 having the maximum maximum principal strain ⁇ is extracted from the plurality of adjacent elements B1, B2, B3 sharing the side, Among the plurality of adjacent elements C1, C2, and C3 that share a side different from the side of the adjacent element B1, the adjacent element C1 having the maximum maximum principal strain ⁇ is extracted. This extraction is repeated to identify the element string.
  • FIG. 16 shows an example of an element selection algorithm for specifying an element row along the flange end.
  • the elements in the direction along the side a at the end of the reference element A are extracted in the order of B1 and B2, and are extracted in the order of C1 and C2. This extraction is repeated to identify the element string.
  • strain gradient calculation step S23 In the strain gradient calculation step S23, the vertical strain gradient ⁇ N (CAE) of the maximum principal strain maximum element ⁇ and the circumferential strain gradient ⁇ of the maximum principal strain maximum element ⁇ for the element sequence specified in the element extraction step S22. C (CAE) is calculated. Taking the case of the element selection algorithm shown in FIG. 16 as an example, the displacement between the nodes is time-sequentially determined from the identified element sequence in the order of the nodes NB1 and NB2 along the end, and in the order of the nodes NC1 and NC2. To calculate the circumferential strain gradient ⁇ C (CAE) .
  • each of the plurality of plate-like test pieces 1 is associated with the vertical strain gradient measurement value ⁇ N (exp) and the circumferential strain gradient measurement value ⁇ C (exp).
  • the measured fracture strain value ⁇ 1 * (exp) is obtained.
  • the data obtained in the measurement value acquisition step S1 and the data obtained in the CAE analysis step S2 are obtained from different measurement environments.
  • the data obtained in the measurement value acquisition step S1 is data obtained under an experimental measurement environment with a predetermined gauge length GL and a predetermined gradient evaluation length L S (exp)
  • CAE predetermined gradient evaluation length L S
  • the data obtained in the analysis step S2 is data obtained under a CAE analysis measurement environment with a predetermined element size ES and a predetermined gradient evaluation length L S (CAE) . Therefore, since data obtained under different measurement environments are compared, it may be difficult to achieve more accurate prediction of stretch flange cracks.
  • the fracture strain measurement value ⁇ 1 * (exp) obtained under the experimental measurement environment is used as the vertical strain gradient measurement value ⁇ N (exp) and the circumferential strain gradient measurement value ⁇ .
  • element size ES in the CAE analysis step S2 Gradient evaluation length L S (CAE) , A vertical strain gradient ⁇ N (CAE) , and -Circumferential strain gradient ⁇ C (CAE) ,
  • CAE Gradient evaluation length
  • CAE A vertical strain gradient ⁇ N
  • CAE -Circumferential strain gradient ⁇ C
  • the fracture determination threshold value ⁇ 1 * (CAE) is obtained by converting the fracture strain measurement value ⁇ 1 * (exp) based on the processing conditions of the plate-shaped test piece and the processing conditions of the steel plate.
  • the processing conditions are, for example, clearance conditions in the case of punching. As a result, it is possible to realize a stretch flange crack prediction with higher accuracy.
  • the fracture strain measurement value ⁇ 1 * (related to the vertical strain gradient measurement value ⁇ N (exp) and the circumferential strain gradient measurement value ⁇ C (exp) obtained in the measurement value acquisition step S1. exp), i.e., obtains the strain at break function (breaking strain function acquiring step), the following (1) to (4) by converting based on equation fracture determination threshold epsilon 1 * considering CAE analysis measurement environment ( CAE) .
  • ⁇ 1 * (CAE) is a fracture determination threshold value
  • ⁇ 1 * (exp) is a measured value of fracture strain obtained in the measurement value obtaining step S1
  • GL is the gauge length used in the measurement value acquisition step S1
  • L S (exp) is the gradient evaluation length used in the measurement value acquisition step S1
  • ⁇ N (exp) is the vertical strain gradient measurement value acquired in the measurement value acquisition step S1
  • ⁇ C (exp) is a circumferential strain gradient measurement value acquired in the measurement value acquisition step S1
  • ⁇ (CAE) is the maximum principal strain of the maximum principal strain maximum element
  • ES is the element size used in the CAE analysis step S2
  • L S (CAE) is the gradient evaluation length used in the CAE analysis step S2
  • ⁇ N (CAE) is the vertical strain gradient obtained in the CAE analysis step S2.
  • ⁇ C (CAE) is the circumferential strain gradient acquired in the CAE analysis step S2.
  • the breakage determination threshold may be acquired by converting the breakage strain function according to the CAE analysis measurement environment.
  • the strain distribution data indicating the correlation of the measurement values acquired for each of the plurality of plate-like test pieces 1 in the measurement value acquisition step S1 is converted in accordance with the CAE analysis measurement environment.
  • the correlation between the measured strain value ⁇ 1 * (exp) , the measured strain value ⁇ N (exp) in the vertical direction, and the measured strain value ⁇ C (exp) in the circumferential direction obtained in the measured value acquisition step S1 is shown.
  • Strain distribution data is acquired for each of the plurality of plate-like test pieces 1 with a gauge length GL smaller than the element size ES of the CAE measurement environment (strain distribution data acquisition step).
  • the range of the gauge length GL is preferably in the range of 0.1 mm to 1.0 mm, and more preferably 0.1 mm. Then, the strain distribution data is processed according to the element size ES of the CAE analysis measurement environment, a fracture determination curved surface is generated using the processed strain distribution data, and the fracture determination threshold ⁇ 1 * (CAE) is calculated from the fracture determination curved surface. get.
  • Equation (9) ⁇ 0 is the maximum principal strain, B N is a material parameter indicating the spread size in the vicinity of the peak in the vertical direction, and C N is a material indicating the severity of the gradient in the vertical direction.
  • B C is a material parameter indicating the spread size of the vicinity of the peak in the circumferential direction, and C C is a material parameter indicating the severity of the gradient in the circumferential direction.
  • Prediction process S4 In the prediction step, in order to more accurately predict the occurrence of stretch flange cracks in stretch flange molding, the maximum principal strain ⁇ obtained in the CAE analysis step S2 and the break determination threshold ⁇ obtained in the break determination threshold acquisition step S3. 1 * (CAE) is compared.
  • the stretch flange Since it is equal to or greater than the fracture strain at the end, which is the crack generation condition, it is predicted that stretch flange cracks will occur.
  • the product will be formed from an actual steel plate into a product shape based on the conditions of CAE analysis.
  • the stretch flange crack prediction apparatus 100 implements the stretch flange crack prediction method described in the first embodiment according to a built-in computer program. As illustrated in FIG. 17, the stretch flange crack prediction apparatus 100 includes a measurement value acquisition unit 101, a CAE analysis unit 102, a fracture determination threshold acquisition unit 103, and a prediction unit 104.
  • the measurement value acquisition unit 101 for each of the plurality of plate-like test pieces, the measured strain value, the vertical strain gradient measurement value, the predetermined gauge length, and the experimental measurement environment with the predetermined gradient evaluation length, And the circumferential strain gradient measurement value is acquired.
  • a flange end portion obtained by numerical analysis of a process of forming an elongated flange of a plastic plate by a finite element method under a CAE analysis measurement environment having a predetermined element size and a predetermined gradient evaluation length.
  • the maximum main strain maximum element having the maximum maximum main strain, the vertical strain gradient of the maximum main strain maximum element, and the circumferential strain gradient of the maximum main strain maximum element are acquired based on the molding data.
  • the rupture strain measurement value obtained under the experimental measurement environment by the measurement value acquisition unit is added to the vertical direction strain gradient measurement value and the circumferential direction strain gradient measurement value, and the element size in the CAE analysis unit
  • the fracture determination threshold value is acquired by performing conversion based on the gradient evaluation length, the vertical strain gradient, and the circumferential strain gradient.
  • the prediction unit 104 compares the maximum principal strain of the maximum principal strain maximum element with the fracture determination threshold value, and predicts that an expansion flange crack will occur when the maximum principal strain is equal to or greater than the fracture determination threshold value.
  • the measurement value acquisition unit 101, the CAE analysis unit 102, the rupture determination threshold value acquisition unit 103, and the prediction unit 104 described above are the measurement value acquisition step S1, the CAE analysis unit step S2, and the rupture determination threshold value acquisition step described in the first embodiment. Each corresponds to S3 and prediction step S4.
  • the stretch flange crack prediction apparatus 100 according to the second embodiment has a configuration corresponding to various processes described in the first embodiment, for example, a fracture strain function acquisition unit, a strain distribution data acquisition unit, an element extraction unit, and an element string specification. And a strain gradient calculation unit.
  • FIG. 18 shows a system bus for running a computer program.
  • each unit constituting the stretch flange crack prediction apparatus 100 described above can be realized by operating a program stored in a RAM or ROM of a computer.
  • each step of the prediction method can be realized by operating a program stored in a RAM or ROM of a computer.
  • This program and a computer-readable storage medium storing the program are included in the present invention.
  • the program is recorded on a recording medium such as a CD-ROM or provided to a computer via various transmission media.
  • a recording medium for recording the program besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
  • the program transmission medium a communication medium in a computer network system for propagating and supplying program information as a carrier wave can be used.
  • the computer network is a WAN such as a LAN or the Internet, a wireless communication network, or the like
  • the communication medium is a wired line such as an optical fiber or a wireless line.
  • the program included in the present invention is not limited to the one in which the functions of the above-described embodiments are realized by the computer executing the supplied program.
  • a program is also included in the present invention when the function of the above-described embodiment is realized in cooperation with an OS (operating system) or other application software running on the computer.
  • OS operating system
  • the program is also included in the present invention.
  • FIG. 18 is a schematic diagram showing an internal configuration of a personal user terminal device.
  • reference numeral 1200 denotes a personal computer (PC) having a CPU 1201.
  • the PC 1200 executes device control software stored in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk (FD) 1212.
  • the PC 1200 generally controls each device connected to the system bus 1204.
  • Each procedure in the present embodiment is realized by a program stored in the CPU 1201, the ROM 1202, or the hard disk (HD) 1211 of the PC 1200.
  • a keyboard controller (KBC) 1205 controls instruction input from a keyboard (KB) 1209, a device (not shown), or the like.
  • CRT controller 1206 is a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210.
  • Reference numeral 1207 denotes a disk controller (DKC).
  • the DKC 1207 controls access to a hard disk (HD) 1211 and a flexible disk (FD) 1212 that store a boot program, a plurality of applications, an editing file, a user file, a network management program, and the like.
  • the boot program is a startup program: a program for starting execution (operation) of hardware and software of a personal computer.
  • NIC network interface card
  • the occurrence of stretch flange cracks can be made extremely quickly and reliably by simple calculation without performing complicated and time-consuming calculations such as matrix calculation of large-scale simultaneous equations. It can be predicted accurately.
  • another aspect of the present invention is a program that causes the stretch flange crack prediction apparatus described in the second embodiment to execute the stretch flange crack prediction method described in the first embodiment, and further records the program.
  • a computer-readable recording medium A computer-readable recording medium.
  • the material of the plastic plate is a metal material such as aluminum or titanium, a glass fiber reinforced resin material such as FRP or FRTP, or a composite material thereof. May be used.
  • a flange crack prediction was performed when forming a vertical molded product having the shape shown in FIG.
  • FIG. 20 shows a contour diagram showing the distribution of main strains obtained by CAE analysis for press-formed parts. The molding data was analyzed by the element selection algorithm shown in FIGS.
  • the fracture determination threshold value ⁇ 1 * (CAE) was obtained by substituting the parameters shown in Table 3 into the equations (10) to (13).
  • Table 5 shows the strain distribution parameters obtained in the experimental measurement environment (0.1 mm pitch).
  • the strain distribution obtained from the above parameters was processed into data points under a CAE analysis measurement environment (2.0 mm pitch).
  • the strain distribution after processing is shown in FIGS. 21A to 21F and 22A to 22F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

この伸びフランジ割れ予測方法は、可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を予測する伸びフランジ割れ予測方法であって、複数の板状試験片それぞれについて、破断歪測定値、垂直方向歪勾配測定値、及び、周方向歪勾配測定値、を取得する測定値取得工程(S1)と、最大主歪が最大である最大主歪最大要素、前記最大主歪最大要素の垂直方向歪勾配、及び、前記最大主歪最大要素の周方向歪勾配、を取得するCAE解析工程(S2)と、前記破断歪測定値を変換することで、破断判定閾値を取得する破断判定閾値取得工程(S3)と、前記最大主歪が前記破断判定閾値以上のとき、伸びフランジ割れが発生すると予測する予測工程(S4)と、を備える。

Description

伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体
 本発明は、可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を正確に予測することを可能とする伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体に関する。
 本願は、2014年7月2日に、日本に出願された特願2014-137185号に基づき優先権を主張し、その内容をここに援用する。
 従来、可塑性板(例えば、270~1470MPaの高強度鋼板)をプレス成形して、自動車部品、又はその他の部品を製造している。しかし、可塑性板の材質、部品形状、又は成形条件等によっては、プレス成形時に成形部品の端部に割れが発生する場合がある。
 絞り加工やフォーム加工において可塑性板の面内に発生する割れは、板厚減少率評価方法や成形限界図(FLD:フォーミング リミット ダイアグラム)で評価できる(例えば、特許文献1~3、参照)。しかし、成形品の端部に発生する割れは端部の性状やその周辺のひずみ分布の影響が大きいので、特許文献1~3に開示された既存の評価方法では、実用できるほどの精度で評価することはできない。
 可塑性板を湾曲立体形状にプレス成形する場合、湾曲立体形状の内側面において大きな引張応力が発生して、“伸びフランジ割れ”という割れが発生し易い。具体的には、図1の(a)に示すような平らな可塑性板を、図1の(b)に示すように断面がハット型で、フランジ部を備える湾曲立体形状にプレス成形すると、特に複雑な端部形状を有するフランジ部(図1において点線で囲まれたA~Dの部分)には、可塑性板素材の均一伸びを超える大きな伸びが生じる。その結果、これらのフランジ部には内側に大きな引張応力が発生し、伸びフランジ割れが発生し易い。この傾向は、延性に乏しい高強度鋼板を湾曲立体形状にプレス成形する場合に顕著である。
 本出願人は、伸びフランジ割れの発生状況を予測するためには、成形品の端部における最大主歪(ある要素の中で最も歪が大きい方向の歪)だけでなく、その周辺の歪勾配を考慮する必要があることを知見し、特許文献4で、フランジ割れ分析方法を提案した。特許文献4に開示のフランジ割れ分析方法によれば、歪勾配を考慮した上でフランジ割れの発生状況を分析することができ、また、予測分析をより短時間で行うことができる。
 また、本出願人は、特許文献5で、伸びフランジ成形において、破断歪を正確に特定することができる板状材料の破断歪特定方法を提案した。特許文献5に開示の破断歪特定方法によれば、伸びフランジ成形を行う際におけるフランジ端部の破断歪を、鋼板端部から内部への歪勾配(垂直方向歪勾配)と鋼板端部に沿う歪集中勾配(周方向歪勾配)との関数又はマップとして特定し、破断発生の有無を予測することができる。
 しかしながら、特許文献4、5には、破断の発生の有無を判定する閾値を高い精度で得ることについては開示されておらず、可塑性板の伸びフランジ成形において、破断しないと予測した箇所で破断するという現象や、逆に、破断すると予測した箇所で実際には破断しないという現象が起こり得た。
日本国特開2001-076022号公報 日本国特開2009-061477号公報 日本国特開2011-245554号公報 日本国特開2011-083813号公報 日本国特開2011-140046号公報
 上述の通り、伸びフランジ割れの予測を正確に行う予測方法が求められているものの、未だ、実用レベルで使用できる高精度の予測方法は得られていない。
 本発明は、可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を正確に予測することを可能とする伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体を提供することを目的とする。
 本発明の要旨は以下のとおりである。
(1)本発明の第一の態様は、可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を予測する伸びフランジ割れ予測方法であって、複数の板状試験片それぞれについて、所定のゲージ長さ、及び、所定の勾配評価長さでの実験測定環境の元、破断歪測定値、垂直方向歪勾配測定値、及び、周方向歪勾配測定値、を取得する測定値取得工程と、前記可塑性板の前記伸びフランジ成形の過程を有限要素法で、所定の要素サイズ、及び、所定の勾配評価長さのCAE解析測定環境の元、数値解析して得た前記フランジ端部に関する成形データに基づき、最大主歪が最大である最大主歪最大要素、前記最大主歪最大要素の垂直方向歪勾配、及び、前記最大主歪最大要素の周方向歪勾配、を取得するCAE解析工程と、前記測定値取得工程によって前記実験測定環境の元で得られた前記破断歪測定値を、前記垂直方向歪勾配測定値及び前記周方向歪勾配測定値に加え、前記CAE解析工程における前記要素サイズ、前記勾配評価長さ、前記垂直方向歪勾配、及び、前記周方向歪勾配、に基づいて変換することで、破断判定閾値を取得する破断判定閾値取得工程と、前記最大主歪最大要素の前記最大主歪と、前記破断判定閾値と、を比較して、前記最大主歪が前記破断判定閾値以上のとき、伸びフランジ割れが発生すると予測する予測工程と、を備える伸びフランジ割れ予測方法である。
(2)上記(1)に記載の伸びフランジ割れ予測方法では、前記測定値取得工程で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び、前記周方向歪勾配測定値、に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得工程を更に備え、前記破断判定閾値取得工程では、下記(1)式~(4)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得してもよい。
Figure JPOXMLDOC01-appb-M000019
 
Figure JPOXMLDOC01-appb-M000020
 
Figure JPOXMLDOC01-appb-M000021
 
Figure JPOXMLDOC01-appb-M000022
 
ここで、
ε (CAE)は、破断判定閾値であり、
ε (exp)は、測定値取得工程で取得された破断歪測定値であり、
GLは、測定値取得工程で用いたゲージ長さであり、
S(exp)は、測定値取得工程で用いた勾配評価長さであり、
ΔεN(exp)は、測定値取得工程で取得された垂直方向歪勾配測定値であり、
ΔεC(exp)は、測定値取得工程で取得された周方向歪勾配測定値であり、
ε(CAE)は、最大主歪最大要素の最大主歪であり、
ESは、CAE解析工程で用いた要素サイズであり、
S(CAE)は、CAE解析工程で用いた勾配評価長さであり、
ΔεN(CAE)は、CAE解析工程で取得された垂直方向歪勾配であり、
ΔεC(CAE)は、CAE解析工程で取得された周方向歪勾配である。
(3)上記(1)に記載の伸びフランジ割れ予測方法では、前記測定値取得工程で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び、前記周方向歪勾配測定値、に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得工程を更に備え、前記破断判定閾値取得工程では、下記(5)式~(8)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得してもよい。
Figure JPOXMLDOC01-appb-M000023
 
Figure JPOXMLDOC01-appb-M000024
 
Figure JPOXMLDOC01-appb-M000025
 
Figure JPOXMLDOC01-appb-M000026
 
ここで、
ε (CAE)は、破断判定閾値であり、
ε (exp)は、測定値取得工程で取得された破断歪測定値であり、
GLは、測定値取得工程で用いたゲージ長さであり、
S(exp)は、測定値取得工程で用いた勾配評価長さであり、
Cl(exp)は、板状試験片を得る際の加工条件であり、
ΔεN(exp)は、測定値取得工程で取得された垂直方向歪勾配測定値であり、
ΔεC(exp)は、測定値取得工程で取得された周方向歪勾配測定値であり、
ε(CAE)は、最大主歪最大要素の最大主歪であり、
ESは、CAE解析工程で用いた要素サイズであり、
S(CAE)は、CAE解析工程で用いた勾配評価長さであり、
Cl(CAE)は、可塑性板を得る際の加工条件であり、
ΔεN(CAE)は、CAE解析工程で取得された垂直方向歪勾配であり、
ΔεC(CAE)は、CAE解析工程で取得された周方向歪勾配である。
(4)上記(1)に記載の伸びフランジ割れ予測方法では、前記測定値取得工程で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び前記周方向歪勾配測定値、の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得工程を更に備え、前記破断判定閾値取得工程では、前記歪分布データを前記CAE解析測定環境に合わせて加工し、加工された前記歪分布データを用いて破断判定曲面を生成し、前記破断判定曲面から前記破断判定閾値を取得してもよい。
(5)上記(4)に記載の伸びフランジ割れ予測方法では、前記破断判定閾値取得工程において、下記(9)式の歪分布関数を前記歪分布データとしてもよい。
Figure JPOXMLDOC01-appb-M000027
 
ここで、
εは、最大主歪であり、
は、垂直方向のピーク近辺の広がり大きさを示す材料パラメータであり、
は、垂直方向の勾配の厳しさを示す材料パラメータであり、
は、周方向のピーク近辺の広がり大きさを示す材料パラメータであり、
は、周方向の勾配の厳しさを示す材料パラメータである。
(6)上記(1)に記載の伸びフランジ割れ予測方法では、複数の試験片加工条件下において加工された複数の板状試験片を前記複数の板状試験片として用いて前記測定値取得工程で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び前記周方向歪勾配測定値、の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得工程を更に備え、前記破断判定閾値取得工程では、前記CAE解析測定環境に合わせた前記試験片加工条件の前記歪分布データを前記CAE解析測定環境に合わせて加工し、加工された前記歪分布データを用いて破断判定曲面を生成し、前記破断判定曲面から前記破断判定閾値を取得してもよい。
(7)上記(1)に記載の伸びフランジ割れ予測方法では、前記複数の板状試験片は、互いに異なる形状の切欠が形成された端部を有し、前記測定値取得工程では、前記複数の板状試験片のそれぞれに対し、前記切欠が破断部位となるように板面内で引張変形及び曲げ変形を与えて破断させながら、前記複数の板状試験片それぞれについて、前記破断歪測定値、前記垂直方向歪勾配測定値、及び、前記周方向歪勾配測定値を測定して取得してもよい。
(8)上記(7)に記載の伸びフランジ割れ予測方法では、前記複数の板状試験片に形成される前記切欠の形状は、垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に小さい第1の切欠形状と、垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に大きい第2の切欠形状と、垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に小さい第3の切欠形状と、垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に大きい第4の切欠形状と、を少なくとも含んでもよい。
(9)上記(1)に記載の伸びフランジ割れ予測方法では、前記破断歪測定値は、前記板状試験片の破断部位の破断歪の測定値であり、前記垂直方向歪勾配測定値は、前記破断部位から前記板状試験片の内側方向への歪勾配の測定値であり、前記周方向歪勾配測定値は、前記破断部位から前記板状試験片の端部に沿う方向への歪勾配の測定値であってもよい。
(10)上記(1)に記載の伸びフランジ割れ予測方法では、前記CAE解析工程は、前記成形データから、前記最大主歪を有する前記最大主歪最大要素を抽出する要素抽出工程と、前記最大主歪最大要素を基準要素として、前記フランジ端部から前記可塑性板の内側へ向かう要素列と、前記フランジ端部に沿う要素列とを、要素選択アルゴリズムに基づいて特定する要素列特定工程と、特定した前記要素列について、前記最大主歪最大要素の前記垂直方向歪勾配と、前記最大主歪最大要素の前記周方向歪勾配とを演算する歪勾配演算工程と、を備えてもよい。
(11)本発明の第二の態様は、可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を予測する伸びフランジ割れ予測装置であって、複数の板状試験片それぞれについて、所定のゲージ長さ、及び、所定の勾配評価長さでの実験測定環境の元、破断歪測定値、垂直方向歪勾配測定値、及び、周方向歪勾配測定値、を取得する測定値取得部と、前記可塑性板の前記伸びフランジ成形の過程を有限要素法で、所定の要素サイズ、及び、所定の勾配評価長さのCAE解析測定環境の元、数値解析して得た前記フランジ端部に関する成形データに基づき、最大主歪が最大である最大主歪最大要素、前記最大主歪最大要素の垂直方向歪勾配、及び、前記最大主歪最大要素の周方向歪勾配、を取得するCAE解析部と、前記測定値取得部によって前記実験測定環境の元で得られた前記破断歪測定値を、前記垂直方向歪勾配測定値及び前記周方向歪勾配測定値に加え、前記CAE解析部における前記要素サイズ、前記勾配評価長さ、前記垂直方向歪勾配、及び、前記周方向歪勾配、に基づいて変換することで、破断判定閾値を取得する破断判定閾値取得部と、前記最大主歪最大要素の前記最大主歪と、前記破断判定閾値と、を比較して、前記最大主歪が前記破断判定閾値以上のとき、伸びフランジ割れが発生すると予測する予測部と、を備える伸びフランジ割れ予測装置である。
(12)上記(11)に記載の伸びフランジ割れ予測装置では、前記測定値取得部で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び、前記周方向歪勾配測定値、に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得部を更に備え、前記破断判定閾値取得部では、下記(1)式~(4)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得してもよい。
Figure JPOXMLDOC01-appb-M000028
 
Figure JPOXMLDOC01-appb-M000029
 
Figure JPOXMLDOC01-appb-M000030
 
Figure JPOXMLDOC01-appb-M000031
 
ここで、
ε (CAE)は、破断判定閾値であり、
ε (exp)は、測定値取得部で取得された破断歪測定値であり、
GLは、測定値取得部で用いたゲージ長さであり、
S(exp)は、測定値取得部で用いた勾配評価長さであり、
ΔεN(exp)は、測定値取得部で取得された垂直方向歪勾配測定値であり、
ΔεC(exp)は、測定値取得部で取得された周方向歪勾配測定値であり、
ε(CAE)は、最大主歪最大要素の最大主歪であり、
ESは、CAE解析部で用いた要素サイズであり、
S(CAE)は、CAE解析部で用いた勾配評価長さであり、
ΔεN(CAE)は、CAE解析部で取得された垂直方向歪勾配であり、
ΔεC(CAE)は、CAE解析部で取得された周方向歪勾配である。
(13)上記(11)に記載の伸びフランジ割れ予測装置では、前記測定値取得部で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び、前記周方向歪勾配測定値、に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得部を更に備え、前記破断判定閾値取得部では、下記(5)式~(8)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得してもよい。
Figure JPOXMLDOC01-appb-M000032
 
Figure JPOXMLDOC01-appb-M000033
 
Figure JPOXMLDOC01-appb-M000034
 
Figure JPOXMLDOC01-appb-M000035
 
ここで、
ε (CAE)は、破断判定閾値であり、
ε (exp)は、測定値取得部で取得された破断歪測定値であり、
GLは、測定値取得部で用いたゲージ長さであり、
S(exp)は、測定値取得部で用いた勾配評価長さであり、
Cl(exp)は、板状試験片を得る際の加工条件であり、
ΔεN(exp)は、測定値取得部で取得された垂直方向歪勾配測定値であり、
ΔεC(exp)は、測定値取得部で取得された周方向歪勾配測定値であり、
ε(CAE)は、最大主歪最大要素の最大主歪であり、
ESは、CAE解析部で用いた要素サイズであり、
S(CAE)は、CAE解析部で用いた勾配評価長さであり、
Cl(CAE)は、可塑性板を得る際の加工条件であり、
ΔεN(CAE)は、CAE解析部で取得された垂直方向歪勾配であり、
ΔεC(CAE)は、CAE解析部で取得された周方向歪勾配である。
(14)上記(11)に記載の伸びフランジ割れ予測装置では、前記測定値取得部で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び前記周方向歪勾配測定値、の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得部を更に備え、前記破断判定閾値取得部では、前記歪分布データを前記CAE解析測定環境に合わせて加工し、加工された前記歪分布データを用いて破断判定曲面を生成し、前記破断判定曲面から前記破断判定閾値を取得してもよい。
(15)上記(14)に記載の伸びフランジ割れ予測装置では、前記破断判定閾値取得部において、下記(9)式の歪分布関数を前記歪分布データとしてもよい。
Figure JPOXMLDOC01-appb-M000036
 
ここで、
εは、最大主歪であり、
は、垂直方向のピーク近辺の広がり大きさを示す材料パラメータであり、
は、垂直方向の勾配の厳しさを示す材料パラメータであり、
は、周方向のピーク近辺の広がり大きさを示す材料パラメータであり、
は、周方向の勾配の厳しさを示す材料パラメータである。
(16)上記(11)に記載の伸びフランジ割れ予測装置では、複数の試験片加工条件下において加工された複数の板状試験片を前記複数の板状試験片として用いて前記測定値取得部で得られた前記破断歪測定値、前記垂直方向歪勾配測定値、及び前記周方向歪勾配測定値、の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得部を更に備え、前記破断判定閾値取得部では、前記CAE解析測定環境に合わせた前記試験片加工条件の前記歪分布データを前記CAE解析測定環境に合わせて加工し、加工された前記歪分布データを用いて破断判定曲面を生成し、前記破断判定曲面から前記破断判定閾値を取得してもよい。
(17)上記(11)に記載の伸びフランジ割れ予測装置では、前記複数の板状試験片は、互いに異なる形状の切欠が形成された端部を有し、前記測定値取得部では、前記複数の板状試験片のそれぞれに対し、前記切欠が破断部位となるように板面内で引張変形及び曲げ変形を与えて破断させながら、前記複数の板状試験片それぞれについて、前記破断歪測定値、前記垂直方向歪勾配測定値、及び、前記周方向歪勾配測定値を測定して取得してもよい。
(18)上記(17)に記載の伸びフランジ割れ予測装置では、前記複数の板状試験片に形成される前記切欠の形状は、垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に小さい第1の切欠形状と、垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に大きい第2の切欠形状と、垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に小さい第3の切欠形状と、垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に大きい第4の切欠形状と、を少なくとも含んでもよい。
(19)上記(11)に記載の伸びフランジ割れ予測装置では、前記破断歪測定値は、前記板状試験片の破断部位の破断歪の測定値であり、前記垂直方向歪勾配測定値は、前記破断部位から前記板状試験片の内側方向への歪勾配の測定値であり、前記周方向歪勾配測定値は、前記破断部位から前記板状試験片の端部に沿う方向への歪勾配の測定値であってもよい。
(20)上記(11)に記載の伸びフランジ割れ予測装置では、前記CAE解析部は、前記成形データから、前記最大主歪を有する前記最大主歪最大要素を抽出する要素抽出部と、前記最大主歪最大要素を基準要素として、前記フランジ端部から前記可塑性板の内側へ向かう要素列と、前記フランジ端部に沿う要素列とを、要素選択アルゴリズムに基づいて特定する要素列特定部と、特定した前記要素列について、前記最大主歪最大要素の前記垂直方向歪勾配と、前記最大主歪最大要素の前記周方向歪勾配とを演算する歪勾配演算部と、を備えてもよい。
(21)本発明の第三の態様は、上記(1)に記載の伸びフランジ割れ予測方法を、上記(11)に記載の伸びフランジ割れ予測装置に実行させるプログラムである。
(22)本発明の第四の態様は、上記(21)に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体である。
 本発明によれば、可塑性板の伸びフランジ成形において、破断する部位と破断しない部位を正確に予測することができる。
プレス成形の一態様を示す図であって、(a)は、プレス成形前の可塑性板(ブランク)を示し、(b)は、プレス成形後の湾曲立体形状を示す。 本発明の第一実施形態に係る伸びフランジ割れ予測方法の主要工程の概略を示す図である。 サイドベンド試験機10に板状試験片1を取り付けた状態を示す平面図である。 サイドベンド試験機10により板状試験片1に歪を付与している状態を示す平面図である。 タイプ1の板状試験片1aを示す平面図である。 タイプ2の板状試験片1bを示す平面図である。 タイプ3の板状試験片1cを示す平面図である。 タイプ4の板状試験片1dを示す平面図である。 タイプ5の板状試験片1eを示す平面図である。 タイプ6の板状試験片1fを示す平面図である。 タイプ1の板状試験片1aの垂直方向歪勾配Xと周方向歪勾配Yとの関係を模式的に示す図である。 タイプ2の板状試験片1bの垂直方向歪勾配Xと周方向歪勾配Yとの関係を模式的に示す図である。 タイプ3の板状試験片1cの垂直方向歪勾配Xと周方向歪勾配Yとの関係を模式的に示す図である。 タイプ4の板状試験片1dの垂直方向歪勾配Xと周方向歪勾配Yとの関係を模式的に示す図である。 タイプ5の板状試験片1eの垂直方向歪勾配Xと周方向歪勾配Yとの関係を模式的に示す図である。 タイプ6の板状試験片1fの垂直方向歪勾配Xと周方向歪勾配Yとの関係を模式的に示す図である。 板状試験片1bの垂直方向歪勾配測定値を示すグラフである。 板状試験片1bの周方向歪勾配測定値を示すグラフである。 所定の間隔で格子線を描いた板状試験片1をサイドベンド試験した際の格子線の変化を示す概略図である。 鋼種Aについての破断歪εf、垂直方向歪勾配X、及び、周方向歪勾配Yの3次元マップを示す図である。 鋼種Bについての破断歪εf、垂直方向歪勾配X、及び、周方向歪勾配Yの3次元マップを示す図である。 鋼種Cについての破断歪εf、垂直方向歪勾配X、及び、周方向歪勾配Yの3次元マップを示す図である。 フランジ端部から鋼板の内側に向かう要素列を特定する要素選択アルゴリズムの第一の例を示す図である。 フランジ端部から鋼板の内側に向かう要素列を特定する要素選択アルゴリズムの第二の例を示す図である。 フランジ端部から鋼板の内側に向かう要素列を特定する要素選択アルゴリズムの第三の例を示す図である。 フランジ端部に沿う要素列を特定する要素選択アルゴリズムの例を示す図である。 本発明の第二実施形態に係る伸びフランジ割れ予測装置100の概略を示す図である。 コンピュータープログラムを稼働させるシステムバスを示す図である。 実施例で使用したプレス成形部品の斜視図である。 プレス成形部品について、CAE解析で求めた主歪の分布を示すコンタ図である。 タイプ1の板状試験片1aについて、CAE解析測定環境下での垂直方向歪勾配のデータに加工する前後の歪分布図である。 タイプ2の板状試験片1bについて、CAE解析測定環境下での垂直方向歪勾配のデータに加工する前後の歪分布図である。 タイプ3の板状試験片1cについて、CAE解析測定環境下での垂直方向歪勾配のデータに加工する前後の歪分布図である。 タイプ4の板状試験片1dについて、CAE解析測定環境下での垂直方向歪勾配のデータに加工する前後の歪分布図である。 タイプ5の板状試験片1eについて、CAE解析測定環境下での垂直方向歪勾配のデータに加工する前後の歪分布図である。 タイプ6の板状試験片1fについて、CAE解析測定環境下での垂直方向歪勾配のデータに加工する前後の歪分布図である。 タイプ1の板状試験片1aについて、CAE解析測定環境下での周方向歪勾配のデータに加工する前後の歪分布図である。 タイプ2の板状試験片1bについて、CAE解析測定環境下での周方向歪勾配のデータに加工する前後の歪分布図である。 タイプ3の板状試験片1cについて、CAE解析測定環境下での周方向歪勾配のデータに加工する前後の歪分布図である。 タイプ4の板状試験片1dについて、CAE解析測定環境下での周方向歪勾配のデータに加工する前後の歪分布図である。 タイプ5の板状試験片1eについて、CAE解析測定環境下での周方向歪勾配のデータに加工する前後の歪分布図である。 タイプ6の板状試験片1fについて、CAE解析測定環境下での周方向歪勾配のデータに加工する前後の歪分布図である。 加工後の歪分布図に基づき作成した伸びフランジ割れ判定曲面を示す図である。
 本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、本発明者らは、
(i)フランジ端部から内側に向かう方向(以下、垂直方向と呼ぶことがある。)においては、最大主歪の歪勾配が大きいほど、伸びフランジ割れが発生し難く、フランジ端部に沿う方向(以下、周方向と呼ぶことがある。)においては、最大主歪の歪勾配が大きいほど、伸びフランジ割れが発生し易いことに着目し、板状試験片から上記二つの方向の歪勾配に関連付けられた破断歪測定値を取得することで、伸びフランジ割れの発生を精度よく予測できること、そして、
(ii)上記二つの方向の歪勾配に関連付けられた破断歪測定値をCAE解析の情報に基づき変換することで破断判定閾値を取得し、この破断判定閾値を、CAE解析で得られる最大主歪のデータと比較することにより、伸びフランジ割れの発生を、更に精度よく予測できること、
を知見した。
 本発明は上記知見に基づきなされたものである。以下、本発明を実施形態に基づき詳細に説明する。尚、本発明では可塑性板(可塑性材料)をプレス成形の対象として伸びフランジ割れの予測を行うことが可能であるが、以下の説明においては鋼板(鋼材)を例に挙げて説明をする。
 図2に、本発明の第一実施形態に係る伸びフランジ割れの予測方法の主要工程の概略を示す。
 本実施形態に係る伸びフランジ割れの予測方法は、図2に示すように、測定値取得工程S1、CAE解析工程S2、破断判定閾値取得工程S3、及び予測工程S4を含む。以下、それぞれの工程について詳細に説明する。
(測定値取得工程S1)
 測定値取得工程S1では、所定のゲージ長さGL、及び、所定の勾配評価長さLS(exp)での実験測定環境の元、複数の板状試験片1のそれぞれについて、板状試験片1の破断部位における、破断歪の測定値である破断歪測定値ε (exp)、板状試験片1の破断部位から垂直方向への歪勾配の測定値である垂直方向歪勾配測定値ΔεN(exp)、及び、板状試験片1の破断部位から周方向への歪勾配の測定値である周方向歪勾配測定値ΔεC(exp)、を取得する。
 上記の破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)を取得する方法としては、例えば、互いに異なる形状の切欠6が形成された端部を有する複数の板状試験片1を準備し、これらの板状試験片1のそれぞれに対し、切欠6が破断部位となるように板面内で引張変形及び曲げ変形を与えて破断させながら歪を測定すればよい。
 尚、板状試験片1の素材は、実際の伸びフランジ割れの予測対象となる鋼板の鋼種と同等の鋼種であることが好ましく、同一の鋼種であることが更に好ましい。
 板状試験片1は、打抜き加工やレーザ加工などの加工方法により、所定の加工条件(打抜き加工のクリアランス条件や、レーザ加工のレーザ出力条件等)で板状部材を加工することにより製造することができる。
(サイドベンド試験機10)
 具体例として、図3及び図4に、板状試験片1の破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)を測定するためのサイドベンド試験機10の態様を示す。
 図3は、サイドベンド試験機10に板状試験片1を取り付けた状態を示す平面図であり、図4は、サイドベンド試験機10により板状試験片1に歪を付与している状態を示す平面図である。
 サイドベンド試験機10は、X状にクロスした屈曲部を有する二本のアーム12が、アーム12の中間点で、軸13によりベース14に枢着されて構成されている。板状試験片1は、二本のアーム12のそれぞれの先端にボルト18を介して取り付けられる把持部19により、切欠6を外側にした状態で把持される。アーム12の他端は、ベース14から突出していて、図4に示すように、油圧シリンダー15の押圧で押し広げられる。その結果、板状試験片1は、板面内で引張変形及び曲げ変形が与えられる。これにより、板状試験片1において、伸びフランジ成形と同様の変形が実現する。
 破断は切欠6の部分で発生するので、ベース14の後方に撮像機器17を配置し(図3又は図4、参照)、破断時の挙動を撮影する。プレス機で加工を行う際の歪速度は0.01~1/secであるので、サイドベンド試験機10で板状試験片1に与える歪速度は0.01~1/secが好ましい。
(複数の板状試験片1)
 複数の板状試験片1には、互いに異なる形状の切欠6が形成されているため、それぞれの板状試験片1毎に異なる破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)を得ることが可能となる。
 板状試験片1の切欠6の切欠形状は、例えば、深さDが0~100mm、曲率R-1が0~1.0、リガメント長さLが1~500mmであればよい。
 図5A~図5Fに、板状試験片1の具体例(タイプ1~6)として、35mm×100mmの矩形の鋼板に対し各種形状の切欠6a~6fを打抜き加工により形成した板状試験片1a~1fを示す。
 タイプ1の板状試験片1aは、切欠深さDが15mm、曲率R-1が0.067、リガメント長さLが20mmである切欠6aを有する。
 タイプ2の板状試験片1bは、切欠深さDが4mm、曲率R-1が0.033、リガメント長さLが31mmである切欠6bを有する。
 タイプ3の板状試験片1cは、切欠深さDが21mm、曲率R-1が0.067、リガメント長さLが14mmである切欠6cを有する。
 タイプ4の板状試験片1dは、切欠深さDが12.8mm、曲率R-1が0.050、リガメント長さLが22.2mmである切欠6dを有する。
 タイプ5の板状試験片1eは、切欠深さDが27mm、曲率R-1が0.067、リガメント長さLが8mmである切欠6eを有する。
 タイプ6の板状試験片1fは、リガメント長さLを調整するための調整切欠6’が形成された試験片である。この試験片の場合、調整切欠6’の反対側に、切欠深さDが0mm、曲率R-1が0、リガメント長さLが8mmの切欠6fが形成されていると見做すことができる。
(複数の板状試験片1の選定方法)
 図6A~図6Fに、板状試験片1a~1fの破断歪測定値ε (exp)(図中εf)、垂直方向歪勾配測定値ΔεN(exp)(図中X)、及び、周方向歪勾配測定値ΔεC(exp)(図中Y)を模式的に示す。この図6A~図6Fに示されるように、垂直方向歪勾配測定値ΔεN(exp)は、リガメント長さLが短いほど大きくなる傾向があり、一方、周方向歪勾配測定値ΔεC(exp)は、曲率R-1が大きいほど大きくなる傾向がある。
 この法則に基づき、複数の板状試験片1の切欠6の形状は、
(1)垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に小さい第1の切欠形状(例えば、切欠6a)と、
(2)垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に大きい第2の切欠形状(例えば、切欠6e)と、
(3)垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に小さい第3の切欠形状(例えば、切欠6f)と、
(4)垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に大きい第4の切欠形状(例えば、切欠6b)と、
を含むように選定されることが好ましい。
 ここで、例えば「垂直方向歪勾配が相対的に小さい板状試験片」とは、垂直方向歪勾配のデータ点を最小二乗法により直線化した直線の傾きが、全ての板状試験片の平均値よりも小さい板状試験片のことを意味する。「周方向歪勾配が相対的に小さい板状試験片」も同様である。
 より高い精度のデータを得るために、第1の切欠形状~第4切欠形状とは異なる形状の切欠形状(例えば、切欠6c、切欠6d)を更に含ませてもよい。
(垂直方向歪勾配測定値ΔεN(exp)
 図7に、板状試験片1b(タイプ2)の垂直方向歪勾配測定値ΔεN(exp)を一例として示す。垂直方向歪勾配測定値ΔεN(exp)は、破断起点(図中、位置0の位置)の歪と、破断起点から内側に離れた位置における歪との差を、破断起点と上記位置との間の距離で割った値であり、板端部から内側方向への歪分布を示す指標である。
(周方向歪勾配測定値ΔεC(exp)
 図8に、板状試験片1b(タイプ2)の周方向歪勾配測定値ΔεC(exp)を一例として示す。周方向歪勾配測定値ΔεC(exp)は、破断起点(図中、位置0の位置)の歪と、破断起点から板端部に沿って離れた位置における歪との差を、破断起点と上記位置との間の距離で割った値であり、板端部に沿う方向への歪分布を示す指標である。周方向歪勾配測定値ΔεC(exp)は、破断起点を中心として二方向(図8中、左右方向)に得ることができるが、一方のみを使ってもよく、両方の平均を使ってもよい。
 板状試験片1の表面には、試験前後における寸法の変化を検知するため、予め、線又は点を一定間隔で印刷するか、又は、微細な凹凸を一定間隔で形成する。試験前後において寸法の変化を検知できればよいので、寸法変化の検知形態は任意である。
 図9に、一定間隔で切欠6付近に格子線を描いた板状試験片1をサイドベンド試験した際の格子線の変化を示す。図9において、試験後、切欠6付近の格子線は拡がっていることが解る。
 測定点における歪は、板状試験片1の表面の格子線又は点、又は、凹凸パターンの変化、及び、端部の板厚変化から求めることができる。また、板状試験片1の表面に形成した1mm以下の凹凸の試験前後における位置の相関から求めてもよい。そして、破断起点の歪と、破断起点から1~100mmの位置の歪の差を、その間の距離で除し、垂直方向歪勾配測定値ΔεN(exp)と周方向歪勾配測定値ΔεC(exp)を求める。勾配は一定ではないため、最大二乗法等で直線近似してもよい。
 歪測定位置が破断起点から100mmを超えると、歪が破断歪に与える影響を無視できるので、歪測定点の位置の上限は破断起点から100mmが好ましい。歪測定位置の下限は1mmが好ましい。
(破断歪関数)
 測定値取得工程S1で得られた破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)に基づいて、垂直方向歪勾配Xと周方向歪勾配Yとを変数として破断歪εfが特定される関数(以下、破断歪関数と呼ぶ)、すなわち、εf=f(X,Y)で特定してもよい。
 具体的な破断歪関数としては、例えば、a~hを定数として、εf=a+bX+dX+gYを用いることができる。
 更には、板状試験片1の加工条件Cl(exp)も考慮し、より精度の高い破断歪関数、すなわち、εf=f(X,Y,Cl(exp),Cl(CAE))で特定してもよい。
 加工条件Cl(exp)は、板状試験片1の打抜き加工のクリアランス条件や、レーザ加工のレーザ出力条件等のパラメータであり、加工条件Cl(CAE)は,可塑性板を得る際の打抜き加工のクリアランス条件や、レーザー加工のレーザー出力条件等のパラメータである。破断歪εfはこれらの加工条件の影響を受けるため、加工条件Cl(exp)およびCl(CAE)を考慮することで高い精度で破断歪εfを特定することが可能となる。
 なお、本発明者らは、簡略化した関数として、εf=a+bX1.5+cY1.5(a~c:定数)を用いることができることを実験的に確認した。
 表1に、図5A~図5Fに示すタイプ1~6の板状試験片1a~1f(鋼種A)について、GL=2.0mm、Ls(exp)=8.0mmの実験測定環境下で、サイドベンド試験を行い、破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)を取得した結果を示す。
 その結果に基づき、εf=a+bX1.5+cY1.5で表される破断歪関数のa~cを決定すると、a=0.389、b=5.26、c=-5.93である。
Figure JPOXMLDOC01-appb-T000037
 
(3次元マップ)
 また、破断歪εfを、垂直方向歪勾配Xと周方向歪勾配Yの3次元マップで特定することもできる。関数とマップは数学的に等価である。
 図10に、鋼種Aについての破断歪εf、垂直方向歪勾配X、及び、周方向歪勾配Yの3次元マップを示す。この3次元マップは、測定値取得工程S1で取得した破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)に基づき、応答曲面法(RSM)を用いることで作成することができる。縦軸が歪ε、右方向の軸が周方向歪勾配Y、奥行き方向の軸が垂直方向歪勾配Xである。破断歪εfは曲面(PRSQで囲む曲面)で表示されている。歪εが0.4~0.5の部分(C)、歪εが0.3~0.4の部分(D)、及び、歪εが0.2~0.3の部分(E)が表示されている。
 図10において、点Pは、垂直方向歪勾配Xと周方向歪勾配Yが略ゼロの点であり、切欠のない板状試験片1を単純に引っ張りした場合の破断歪εfに相当する。
 点Qは、垂直方向歪勾配Xが略ゼロであるが、周方向歪勾配Yがある点であり、切欠のある板状試験片1を単純に引張りした場合の破断歪εfに相当する。
 点Rは、垂直方向歪勾配Xがあるが、周方向歪勾配Yが略ゼロの点であり、切欠のない板状試験片1を面内曲げした場合の破断歪εfに相当する。このときに、破断歪εfが最大となる。
 点Sは、切欠のある板状試験片1を面内曲げした場合の破断歪εfに相当する。
 図10から、周方向歪勾配Yが増加すると、破断歪εfは低下するが、逆に、垂直方向歪勾配Xが大きくなると、破断歪εfは増加することが解る。これは、垂直方向歪勾配Xが大きくなると、板端部から僅かに内側で歪が急激に減少して、破断が進展し難いためであると考えられる。
 図11に、別の鋼種Bについての破断歪εf、垂直方向歪勾配X、及び、周方向歪勾配Yの3次元マップを示す。図12に、更に別の鋼種Cについての破断歪εf、垂直方向歪勾配X、及び、周方向歪勾配Yの3次元マップを示す。
 図11及び図12において、破断歪εfが0.6~0.7の部分を(A)、0.5~0.6の部分を(B)、0.4~0.5の部分を(C)、0.3~0.4の部分を(D)、0.2~0.3の部分を(E)、0.1~0.2の部分を(F)、0~0.1の部分を(G)として表示した。鋼種が異なれば、破断歪εfは変化するが、破断歪εfを表示する曲面の形状は略同一となる。
(CAE解析工程S2)
 次に、CAE解析工程においては、鋼板(可塑性板)の伸びフランジ成形の過程を有限要素法で、所定の要素サイズES、及び、所定の勾配評価長さLS(CAE)でのCAE解析測定環境の元、数値解析して得たフランジ端部に関する成形データに基づき、
・最大主歪εが最大である最大主歪最大要素α、
・最大主歪最大要素αの垂直方向歪勾配ΔεN(CAE)、及び、
・最大主歪最大要素αの周方向歪勾配ΔεC(CAE)
を取得する。
 垂直方向歪勾配ΔεN(CAE)が大きいほど、伸びフランジ割れは発生し難い。この垂直方向歪勾配ΔεN(CAE)が大きいということは、フランジ端部から僅かに内側に入ったところで、歪が急激に小さくなることを意味する。それ故、垂直方向歪勾配ΔεN(CAE)が大きければ、フランジ端部にミクロ的な割れが発生しても、割れは進展しない。
 また、周方向歪勾配ΔεC(CAE)が大きいほど、伸びフランジ割れは発生し易い。この周方向歪勾配ΔεC(CAE)が大きいということは、フランジ端部の特定位置(基準要素の位置)に引張応力が集中していることを意味する。それ故、周方向歪勾配ΔεC(CAE)が大きければ、フランジ端部に割れが発生し易い。
 このように、伸びフランジ割れの発生は、フランジ端部における、周方向歪勾配ΔεC(CAE)と、垂直方向歪勾配ΔεN(CAE)とを考慮することで、精度よく予測することができる。
 フランジ端部において、基準要素からの周方向歪勾配ΔεC(CAE)は、端部を構成する要素の歪から容易に演算できるが、基準要素からの垂直方向歪勾配ΔεN(CAE)を自動的に演算することは容易でない。
 そこで、基準要素からの垂直方向歪勾配ΔεN(CAE)の演算においては、演算過程に、基準要素から端部の内部に向かう方向に隣接する要素列を自動的に特定する要素選択アルゴリズムを組み込み、要素選択アルゴリズムに基づいて特定した要素列の要素が持つ歪から、端部から内部に向かう方向の歪勾配を演算する。
 具体例として、CAE解析工程S2は、要素抽出工程S21と、要素列特定工程S22と、歪勾配演算工程S23とを備えてもよい。
(要素抽出工程S21)
 要素抽出工程S21では、フランジ端部に関する成形データから、最大主歪εを有する最大主歪最大要素αを抽出する。
 まず、成形品を、有限要素法に従って多数の要素の集合体とし、成形シミュレーションを行って解析する(解析手法は、例えば、特開2006-167766号公報、参照)。そして、成形過程における成形データ(要素の形状及び歪のデータ)を取得する。この成形データから、フランジの端部に関する成形データを抽出する。なお、この抽出は、隣接する要素を持たない要素を選択する方法により、コンピュータで自動的に行うことができる。
 そして、抽出した端部において、最大主歪ε(最大主歪の最大値)を有する最大主歪最大要素αを抽出する。
(要素列特定工程S22)
 要素列特定工程S22では、最大主歪最大要素αを基準要素Aとして、フランジ端部から鋼板の内側へ向かう要素列と、フランジ端部に沿う要素列とを、要素選択アルゴリズムに基づいて特定する。
 以下、要素選択アルゴリズムを具体例に基づき説明する。
 図13に、フランジ端部から鋼板の内側に向かう要素列を特定する要素選択アルゴリズムの第一の例を示す。基準要素Aの端部に沿った辺aの中点を通り、端部に垂直な直線P1を想定する。次に、直線P1と交差する辺bを特定し、辺bを共有する隣接要素Bを抽出する。次に、隣接要素Bの辺bの中点を通り、辺bに垂直な直線P2と交差する辺cを特定し、辺bを共有する隣接要素Cを抽出する。この“辺の特定”-“隣接要素の抽出”を繰り返して行い要素列を特定する。
 このようにして特定した要素列の歪から、最大主歪εを抽出し、端部から内側に向かう方向(垂直方向)の歪勾配を演算することが可能となる。
 図14に、フランジ端部から鋼板の内側に向かう要素列を特定する要素選択アルゴリズムの第二の例を示す。基準要素Aの端部に沿った辺aの中点を通り端部に垂直な直線P1を想定する。直線P1と2点以上で交差する要素A、B、C、D、E、F・・・を選択する。要素Dと要素Eのように、端部が直線P1と僅かに交差する要素については、何れを選択するかの基準を定めておく必要がある。
 ここでは、要素の重心から直線P1に降ろした垂線Lが、同一要素内で直線P1と交わる要素を選択し、この基準を満たさない要素は選択しない。その結果、要素Dは選択されず、要素Eが選択される。図14中、星印(*)を付した要素が選択された要素である。
 図15に、フランジ端部から鋼板の内側に向かう要素列を特定する要素選択アルゴリズムの第三の例を示す。基準要素Aの端部の辺aに沿う方向とは異なる歪進展方向において、辺を共有する複数の隣接要素B1、B2、B3のうち、最大主歪εが最大の隣接要素B1を抽出し、隣接要素B1の辺とは異なる辺を共有する複数の隣接要素C1、C2、C3のうち、最大主歪εが最大の隣接要素C1を抽出する。この抽出を繰り返して要素列を特定する。
 上記アルゴリズムによれば、最大主歪εが最大の隣接要素を順次抽出するので、成形過程において歪進展方向が変化しても、歪進展方向への追従が可能となり、この方向における歪勾配を演算することができる。
 図16に、フランジ端部に沿う要素列を特定する要素選択アルゴリズムの例を示す。基準要素Aの端部の辺aに沿う方向の要素を、B1、B2の順に抽出するとともに、C1、C2の順に抽出する。この抽出を繰り返して要素列を特定する。
(歪勾配演算工程S23)
 歪勾配演算工程S23では、要素抽出工程S22で特定した要素列について、最大主歪最大要素αの垂直方向歪勾配ΔεN(CAE)と、前記最大主歪最大要素αの前記周方向歪勾配ΔεC(CAE)とを演算する。
 図16に示す要素選択アルゴリズムの場合を例に採ると、特定した要素列から、端部に沿った節点NB1、NB2の順に、また、節点NC1、NC2の順に、節点間の変位を時系列的に演算して周方向歪勾配ΔεC(CAE)を演算する。
(破断判定閾値取得工程S3)
 上述のように、測定値取得工程S1によれば、複数の板状試験片1それぞれについて、垂直方向歪勾配測定値ΔεN(exp)及び周方向歪勾配測定値ΔεC(exp)に関連づけられた破断歪測定値ε (exp)が得られる。
 ただし、これらの測定値から得られる破断歪関数(εf=f(X,Y))を破断判定閾値データとして、CAE解析工程S2で得られる垂直方向歪勾配ΔεN(CAE)及び周方向歪勾配ΔεC(CAE)に関連付けられた最大主歪εのデータと直接比較しても、精度の高い伸びフランジ割れ予測を実現することが困難な場合がある。
 これは、測定値取得工程S1で得られたデータとCAE解析工程S2で得られたデータとが互いに異なる測定環境から得られているためである。
 測定値取得工程S1で得られたデータは、所定のゲージ長さGL、及び、所定の勾配評価長さLS(exp)での実験測定環境の元で得られたデータであり、一方、CAE解析工程S2で得られたデータは、所定の要素サイズES、及び、所定の勾配評価長さLS(CAE)でのCAE解析測定環境の元で得られたデータである。
 従って、互いに異なる測定環境の下で得られたデータを比較することになるため、より精度の高い伸びフランジ割れ予測を実現することが困難な場合がある。
 そこで、破断判定閾値取得工程S3では、実験測定環境の元で得られた破断歪測定値ε (exp)を、垂直方向歪勾配測定値ΔεN(exp)及び周方向歪勾配測定値ΔεC(exp)に加え、CAE解析工程S2における
・要素サイズES、
・勾配評価長さLS(CAE)
・垂直方向歪勾配ΔεN(CAE)、及び、
・周方向歪勾配ΔεC(CAE)
に基づいて変換することで、破断判定閾値ε (CAE)を取得する。
 これにより、同等の測定環境の下で得られたデータとしての比較が可能となるため、より精度の高い伸びフランジ割れ予測を実現することが可能となる。
 より好ましくは、破断歪測定値ε (exp)を、板状試験片の加工条件や鋼板の加工条件にも基づいて変換することで、破断判定閾値ε (CAE)を取得する。加工条件とは、例えば、打抜き加工の場合には、クリアランス条件等である。これにより、更に精度の高い伸びフランジ割れ予測を実現することが可能となる。
 破断判定閾値ε (CAE)を取得する具体的な方策としては、下記に示す二通りの方策が例示される。
(第一の方策)
 第一の方策では、測定値取得工程S1で得られた垂直方向歪勾配測定値ΔεN(exp)及び周方向歪勾配測定値ΔεC(exp)に関連付けられた破断歪測定値ε (exp)、すなわち、破断歪関数を取得し(破断歪関数取得工程)、下記(1)式~(4)式に基づき変換することで、CAE解析測定環境を考慮した破断判定閾値ε (CAE)を取得する。
Figure JPOXMLDOC01-appb-M000038
 
Figure JPOXMLDOC01-appb-M000039
 
Figure JPOXMLDOC01-appb-M000040
 
Figure JPOXMLDOC01-appb-M000041
 
 上記(1)式~(4)式において、
ε (CAE)は、破断判定閾値であり、
ε (exp)は、測定値取得工程S1で取得された破断歪測定値であり、
GLは、測定値取得工程S1で用いたゲージ長さであり、
S(exp)は、測定値取得工程S1で用いた勾配評価長さであり、
ΔεN(exp)は、測定値取得工程S1で取得された垂直方向歪勾配測定値であり、
ΔεC(exp)は、測定値取得工程S1で取得された周方向歪勾配測定値であり、
ε(CAE)は、最大主歪最大要素の最大主歪であり、
ESは、CAE解析工程S2で用いた要素サイズであり、
S(CAE)は、CAE解析工程S2で用いた勾配評価長さであり、
ΔεN(CAE)は、CAE解析工程S2で取得された垂直方向歪勾配であり、
ΔεC(CAE)は、CAE解析工程S2で取得された周方向歪勾配である。
 また、複数の板状試験片1を得る際の加工条件Cl(exp)と、可塑性板を得る際の加工条件Cl(CAE)と、も考慮し、下記(5)式~(8)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得してもよい。
Figure JPOXMLDOC01-appb-M000042
 
Figure JPOXMLDOC01-appb-M000043
 
Figure JPOXMLDOC01-appb-M000044
 
Figure JPOXMLDOC01-appb-M000045
 
(第二の方策)
 第二の方策では、測定値取得工程S1において複数の板状試験片1それぞれについて取得した測定値の相関を示す歪分布データをCAE解析測定環境に合わせて変換する。
 まず、測定値取得工程S1で得られた破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び周方向歪勾配測定値ΔεC(exp)の相関を示す歪分布データを複数の板状試験片1それぞれについて、CAE測定環境の要素サイズESより小さいゲージ長さGLで取得する(歪分布データ取得工程)。ゲージ長さGLの範囲は0.1mm~1.0mmの範囲が好ましく、0.1mmがより好ましい。
 そして、歪分布データをCAE解析測定環境の要素サイズESに合わせて加工し、加工された歪分布データを用いて破断判定曲面を生成し、破断判定曲面から破断判定閾値ε (CAE)を取得する。加工方法としては、例えば歪分布を0.1mmピッチで取得し、CAE解析測定環境の要素サイズES=2.0mmに合わせて加工する場合、20点毎の平均値を1点とする加工を行う。
 尚、複数の試験片加工条件(クリアランスの異なる打抜き加工、レーザ出力条件の異なるレーザ加工等)で加工された複数の板状試験片1を用いて、破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び周方向歪勾配測定値ΔεC(exp)の相関を示す歪分布データをそれぞれの板状試験片について取得してもよい(歪分布データ取得工程)。この場合、CAE解析測定環境に合わせた試験片加工条件の歪分布データをCAE解析測定環境に合わせて加工し、破断判定曲面を生成することで、加工条件も考慮したより精度の高い破断判定閾値ε (CAE)を取得することができる。
 歪分布データとしては、下記(9)式の歪分布関数を用いてもよい。
Figure JPOXMLDOC01-appb-M000046
 
 (9)式において、εは、最大主歪であり、Bは、垂直方向のピーク近辺の広がり大きさを示す材料パラメータであり、Cは、垂直方向の勾配の厳しさを示す材料パラメータであり、Bは、周方向のピーク近辺の広がり大きさを示す材料パラメータであり、Cは、周方向の勾配の厳しさを示す材料パラメータである。
(予測工程S4)
 予測工程では、伸びフランジ成形において、伸びフランジ割れの発生をより正確に予測するため、CAE解析工程S2で得られた最大主歪εと、破断判定閾値取得工程S3で得られた破断判定閾値ε (CAE)とを比較する。
 CAE解析工程S2で得られた最大主歪εが、破断判定閾値取得工程S3で得られた破断判定閾値ε (CAE)以上(ε≧ε (CAE))であれば、伸びフランジ割れ発生条件である端部の破断歪以上となるので、伸びフランジ割れが発生すると予測する。
 CAE解析工程S2で得られた最大主歪εが、破断判定閾値取得工程S3で得られた破断判定閾値ε (CAE)未満(ε<ε (CAE))であれば、伸びフランジ割れ発生条件である端部の破断歪より小さいので、伸びフランジ割れが発生しないと予測する。
 尚、伸びフランジ割れが発生すると予測した場合、鋼種、成形前のブランク形状、製品形状、成形条件などを変更し、伸びフランジ割れが発生しないと予測するまで同様の予測方法を繰り返し行う。
 伸びフランジ割れが発生しないと予測した場合、CAE解析の条件に基づき実際の鋼板から製品形状に成形する。
(第二実施形態)
 本発明の第二実施形態に係る伸びフランジ割れ予測装置100は、内蔵するコンピュータープログラムに従って、上記第一実施形態で説明した伸びフランジ割れ予測方法を実施する。図17に示す通り、伸びフランジ割れ予測装置100は、測定値取得部101と、CAE解析部102と、破断判定閾値取得部103と、予測部104とを含む。
 測定値取得部101では、複数の板状試験片それぞれについて、所定のゲージ長さ、及び、所定の勾配評価長さでの実験測定環境の元、破断歪測定値、垂直方向歪勾配測定値、及び、周方向歪勾配測定値、を取得する。
 CAE解析部102では、可塑性板の伸びフランジ成形の過程を有限要素法で、所定の要素サイズ、及び、所定の勾配評価長さのCAE解析測定環境の元、数値解析して得たフランジ端部に関する成形データに基づき、最大主歪が最大である最大主歪最大要素、最大主歪最大要素の垂直方向歪勾配、及び、最大主歪最大要素の周方向歪勾配、を取得する。
 破断判定閾値取得部103では、測定値取得部によって実験測定環境の元で得られた破断歪測定値を、垂直方向歪勾配測定値及び周方向歪勾配測定値に加え、CAE解析部における要素サイズ、勾配評価長さ、垂直方向歪勾配、及び、周方向歪勾配、に基づいて変換することで、破断判定閾値を取得する。
 予測部104では、最大主歪最大要素の最大主歪と、破断判定閾値と、を比較して、最大主歪が破断判定閾値以上のとき、伸びフランジ割れが発生すると予測する。
 上述の測定値取得部101、CAE解析部102、破断判定閾値取得部103、及び予測部104は、第一実施形態で説明した測定値取得工程S1、CAE解析部工程S2、破断判定閾値取得工程S3、及び予測工程S4にそれぞれ対応する。第二実施形態に係る伸びフランジ割れ予測装置100は、第一実施形態で説明した各種の工程に対応する構成、例えば、破断歪関数取得部、歪分布データ取得部、要素抽出部、要素列特定部、及び歪勾配演算部等を有してもよい。
 図18に、コンピュータープログラムを稼働させるシステムバスを示す。
 上述した伸びフランジ割れ予測装置100を構成する各ユニットの機能は、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。同様に、予測方法の各ステップは、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。
 具体的に、前記プログラムは、例えばCD-ROMのような記録媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録媒体としては、CD-ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワークシステムにおける通信媒体を用いることができる。ここで、コンピュータネットワークとは、LAN、インターネットの等のWAN、無線通信ネットワーク等であり、通信媒体とは、光ファイバ等の有線回線や無線回線等である。
 また、本発明に含まれるプログラムとしては、供給されたプログラムをコンピュータが実行することにより上述の実施形態の機能が実現されるようなもののみではない。例えば、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。また、供給されたプログラムの処理の全て或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。
 例えば、図18は、パーソナルユーザ端末装置の内部構成を示す模式図である。この図18において、1200はCPU1201を備えたパーソナルコンピュータ(PC)である。PC1200は、ROM1202またはハードディスク(HD)1211に記憶された、又はフレキシブルディスク(FD)1212より供給されるデバイス制御ソフトウェアを実行する。このPC1200は、システムバス1204に接続される各デバイスを総括的に制御する。
 PC1200のCPU1201、ROM1202またはハードディスク(HD)1211に記憶されたプログラムにより、本実施形態における各手順が実現される。
 1203はRAMであり、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209や不図示のデバイス等からの指示入力を制御する。
 1206はCRTコントローラ(CRTC)であり、CRTディスプレイ(CRT)1210の表示を制御する。1207はディスクコントローラ(DKC)である。DKC1207は、ブートプログラム、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。ここで、ブートプログラムとは、起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラムである。
 1208はネットワーク・インターフェースカード(NIC)で、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、或は他のPCと双方向のデータのやり取りを行う。
 上記のパーソナルユーザ端末装置によれば、大規模な連立方程式の行列演算等の煩雑で長時間を要する計算を行うことなく、簡易な計算により、極めて迅速で確実に、伸びフランジ割れの発生をより正確に予測することができる。 このように、本発明の別の態様は、第一実施形態で説明した伸びフランジ割れ予測方法を、第二実施形態で説明した伸びフランジ割れ予測装置に実行させるプログラム、更には、当該プログラムを記録したコンピュータで読み取り可能な記録媒体を含む。
 以上、実施形態に基づき本発明について詳細に説明したが、上記実施形態は、本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらのみによって本発明の技術的範囲が限定的に解釈されてはならない。
 例えば、上述の説明においては、可塑性板として鋼板を用いているが、可塑性板の材料としては、アルミやチタン等の金属材料、FRPやFRTP等のガラス繊維強化樹脂材料、更にはこれらの複合材料を用いてもよい。
 また、測定値取得工程に関し、上述の説明においては実験に基づき各種測定値を取得しているが、各種測定値を取得する手段はこれのみに限定されるものではない。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例のみに限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 板厚1.6mm、引張強さ590MPa級の冷延鋼板をブランク材として用いて図19に示す形状の鞍型成形品を成形する場合のフランジ割れ予測を実施した。この鞍型成形品のフランジ部は、高さH=20mm、曲率R-1=0.033である。
(測定値取得)
 板厚1.6mm、引張強さ590MPa級の冷延鋼板を打抜き加工することにより、図5A~図6Fに示す6タイプの板状試験片を取得した。
 そして、それぞれの板状試験片について、図3、図4に示すサイドベンド試験機を用いて、GL=2.0mm、Ls(exp)=8.0mmの実験測定環境下で、破断歪測定値ε (exp)、垂直方向歪勾配測定値ΔεN(exp)、及び、周方向歪勾配測定値ΔεC(exp)を取得した。表2にその結果を示す。
Figure JPOXMLDOC01-appb-T000047
 
(CAE解析)
 図19に示す形状に冷延鋼板をプレス成形する過程を有限要素法で、要素サイズES=2.0mm、勾配評価長さLs(CAE)=4.0mmのCAE解析測定環境の元、最大主歪最大要素α、最大主歪最大要素αの垂直方向歪勾配ΔεN(CAE)、及び、最大主歪最大要素αの周方向歪勾配ΔεC(CAE)を算出した。有限要素法のソルバーには、市販のFEMコードであるLS-DYNAを使用した。図20に、プレス成形部品について、CAE解析で求めた主歪の分布を示すコンタ図を示す。
 成形データは、図13及び図16に示す要素選択アルゴリズムで解析し、歪勾配及び周方向歪勾配を算出した。
その結果、
最大主歪最大要素αの最大主歪ε(CAE)=0.57、
最大主歪最大要素αの垂直方向歪勾配ΔεN(CAE)=0.0236、
最大主歪最大要素αの周方向歪勾配ΔεC(CAE)=0.0153
が求められた。
(破断判定閾値取得1)
 伸びフランジ割れ有無を判定するための破断判定閾値ε1 (CAE)を算出するために、下記の(10)~(13)式を用いた。これらの式は、第一実施形態における(1)~(4)式を具体化した式の一例である。
 尚、実験測定環境と打抜き条件は、予め固定しておくことで定数化している。
 (11)式のパラメータは材料パラメータであり、(10)式、(12)式、(13)式のパラメータは実験測定環境パラメータである。
Figure JPOXMLDOC01-appb-M000048
 
Figure JPOXMLDOC01-appb-M000049
 
Figure JPOXMLDOC01-appb-M000050
 
Figure JPOXMLDOC01-appb-M000051
 
 上記(10)式~(13)式に表3に示すパラメータを代入することで、破断判定閾値ε (CAE)を取得した。
Figure JPOXMLDOC01-appb-T000052
 
 CAE解析で得られた数値を上記(10)式~(13)式に代入し、
破断判定閾値ε (CAE)=0.4632
が求められた。
(伸びフランジ割れ予測)
 CAE解析で得られた最大主歪最大要素αの最大主歪ε(CAE)=0.57が上記破断判定閾値ε (CAE)=0.4632を超えるため、この鞍型成形品は「伸びフランジ割れが発生する」と予測された。
 同様の試験を、フランジ高さHを変えて行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000053
 
 表4に示すように、破断判定閾値ε (CAE)を閾値として伸びフランジ割れ予想を行う実施例によれば、破断歪測定値ε (exp)を閾値とする比較例よりも高い精度で、上記冷延鋼板の伸びフランジ成形を行う際に、破断する部位と破断しない部位を予測することができた。
 (破断判定閾値取得2)
 各サイドベンド試験片から得られたひずみ分布を下記の(14)式及び(15)式を用いて近似した。これらの式は、第一実施形態における(9)式を具体化した式の一例である。
Figure JPOXMLDOC01-appb-M000054
 
Figure JPOXMLDOC01-appb-M000055
 
 実験測定環境下(0.1mmピッチ)で得られたひずみ分布パラメータを表5に示す。
Figure JPOXMLDOC01-appb-T000056
 
 上記パラメータから得られたひずみ分布をCAE解析測定環境下(2.0mmピッチ)でのデータ点に加工した。加工後の歪分布を図21A~21F、22A~22Fに示す。
 加工後の歪分布に基づき、応答曲面法を用いて得られた伸びフランジ割れ判定曲面は図23に示す通りであり、これを式で表すと
ε (CAE)=0.454+5.26×ΔεN(CAE) 1.5-5.93×ΔεC(CAE) 1.5
であった。
 上記の数値を上記(14)式、(15)式に代入すると、
破断判定閾値ε (CAE)=0.454+5.26×0.02361.5-5.93×0.01531.5=0.462
であった。
(伸びフランジ割れ予測)
CAE解析で得られた最大主歪最大要素αの最大主歪ε(CAE)=0.57が上記破断判定閾値ε (CAE)を超えるため、この鞍型成形品は「伸びフランジ割れが発生する」と予測された。
 同様の試験を、フランジ高さHを変えて行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000057
 
 表6に示すように、破断判定閾値ε (CAE)を閾値として伸びフランジ割れ予想を行う実施例によれば、破断歪測定値ε (exp)を閾値とする比較例よりも高い精度で、上記冷延鋼板の伸びフランジ成形を行う際に、破断する部位と破断しない部位を予測することができた。
 前述したように、本発明によれば、可塑性板の伸びフランジ成形において、破断する部位と破断しない部位を正確に予測することができる。
1(1a,1b,1c,1d,1e,1f)  板状試験片
6(6a,6b,6c,6d,6e,6f)  切欠
6’  調整切欠
10  サイドベンド試験機
12  アーム
13  軸
14  ベース
15  油圧シリンダー
17  撮像機器
18  ボルト
19  把持部
100  伸びフランジ割れ予測装置
101  測定値取得部
102  CAE解析部
103  破断判定閾値取得部
104  予測部

Claims (22)

  1.  可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を予測する伸びフランジ割れ予測方法であって、
     複数の板状試験片それぞれについて、所定のゲージ長さ、及び、所定の勾配評価長さでの実験測定環境の元、
    ・破断歪測定値、
    ・垂直方向歪勾配測定値、及び、
    ・周方向歪勾配測定値、
    を取得する測定値取得工程と、
     前記可塑性板の前記伸びフランジ成形の過程を有限要素法で、所定の要素サイズ、及び、所定の勾配評価長さのCAE解析測定環境の元、数値解析して得た前記フランジ端部に関する成形データに基づき、
    ・最大主歪が最大である最大主歪最大要素、
    ・前記最大主歪最大要素の垂直方向歪勾配、及び、
    ・前記最大主歪最大要素の周方向歪勾配、
    を取得するCAE解析工程と、
     前記測定値取得工程によって前記実験測定環境の元で得られた前記破断歪測定値を、前記垂直方向歪勾配測定値及び前記周方向歪勾配測定値に加え、前記CAE解析工程における
    ・前記要素サイズ、
    ・前記勾配評価長さ、
    ・前記垂直方向歪勾配、及び、
    ・前記周方向歪勾配、
    に基づいて変換することで、破断判定閾値を取得する破断判定閾値取得工程と、
    ・前記最大主歪最大要素の前記最大主歪と、
    ・前記破断判定閾値と、
    を比較して、前記最大主歪が前記破断判定閾値以上のとき、伸びフランジ割れが発生すると予測する予測工程と、
    を備えることを特徴とする伸びフランジ割れ予測方法。
  2.  前記測定値取得工程で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び、
    ・前記周方向歪勾配測定値、
    に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得工程を更に備え、
     前記破断判定閾値取得工程では、下記(1)式~(4)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得する
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
    Figure JPOXMLDOC01-appb-M000001
     
    Figure JPOXMLDOC01-appb-M000002
     
    Figure JPOXMLDOC01-appb-M000003
     
    Figure JPOXMLDOC01-appb-M000004
     
    ここで、
    ε (CAE)は、破断判定閾値であり、
    ε (exp)は、測定値取得工程で取得された破断歪測定値であり、
    GLは、測定値取得工程で用いたゲージ長さであり、
    S(exp)は、測定値取得工程で用いた勾配評価長さであり、
    ΔεN(exp)は、測定値取得工程で取得された垂直方向歪勾配測定値であり、
    ΔεC(exp)は、測定値取得工程で取得された周方向歪勾配測定値であり、
    ε(CAE)は、最大主歪最大要素の最大主歪であり、
    ESは、CAE解析工程で用いた要素サイズであり、
    S(CAE)は、CAE解析工程で用いた勾配評価長さであり、
    ΔεN(CAE)は、CAE解析工程で取得された垂直方向歪勾配であり、
    ΔεC(CAE)は、CAE解析工程で取得された周方向歪勾配である。
  3.  前記測定値取得工程で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び、
    ・前記周方向歪勾配測定値、
    に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得工程を更に備え、
     前記破断判定閾値取得工程では、下記(5)式~(8)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得する
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
    Figure JPOXMLDOC01-appb-M000005
     
    Figure JPOXMLDOC01-appb-M000006
     
    Figure JPOXMLDOC01-appb-M000007
     
    Figure JPOXMLDOC01-appb-M000008
     
    ここで、
    ε (CAE)は、破断判定閾値であり、
    ε (exp)は、測定値取得工程で取得された破断歪測定値であり、
    GLは、測定値取得工程で用いたゲージ長さであり、
    S(exp)は、測定値取得工程で用いた勾配評価長さであり、
    Cl(exp)は、板状試験片を得る際の加工条件であり、
    ΔεN(exp)は、測定値取得工程で取得された垂直方向歪勾配測定値であり、
    ΔεC(exp)は、測定値取得工程で取得された周方向歪勾配測定値であり、
    ε(CAE)は、最大主歪最大要素の最大主歪であり、
    ESは、CAE解析工程で用いた要素サイズであり、
    S(CAE)は、CAE解析工程で用いた勾配評価長さであり、
    Cl(CAE)は、可塑性板を得る際の加工条件であり、
    ΔεN(CAE)は、CAE解析工程で取得された垂直方向歪勾配であり、
    ΔεC(CAE)は、CAE解析工程で取得された周方向歪勾配である。
  4.  前記測定値取得工程で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び
    ・前記周方向歪勾配測定値、
    の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得工程を更に備え、
     前記破断判定閾値取得工程では、
     前記歪分布データを前記CAE解析測定環境に合わせて加工し、
     加工された前記歪分布データを用いて破断判定曲面を生成し、
     前記破断判定曲面から前記破断判定閾値を取得する
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
  5.  前記破断判定閾値取得工程では、下記(9)式の歪分布関数を前記歪分布データとする
    ことを特徴とする請求項4に記載の伸びフランジ割れ予測方法。
    Figure JPOXMLDOC01-appb-M000009
     
    ここで、
    εは、最大主歪であり、
    は、垂直方向のピーク近辺の広がり大きさを示す材料パラメータであり、
    は、垂直方向の勾配の厳しさを示す材料パラメータであり、
    は、周方向のピーク近辺の広がり大きさを示す材料パラメータであり、
    は、周方向の勾配の厳しさを示す材料パラメータである。
  6.  複数の試験片加工条件下において加工された複数の板状試験片を前記複数の板状試験片として用いて前記測定値取得工程で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び
    ・前記周方向歪勾配測定値、
    の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得工程を更に備え、
     前記破断判定閾値取得工程では、
     前記CAE解析測定環境に合わせた前記試験片加工条件の前記歪分布データを前記CAE解析測定環境に合わせて加工し、
     加工された前記歪分布データを用いて破断判定曲面を生成し、
     前記破断判定曲面から前記破断判定閾値を取得する
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
  7.  前記複数の板状試験片は、互いに異なる形状の切欠が形成された端部を有し、
     前記測定値取得工程では、前記複数の板状試験片のそれぞれに対し、前記切欠が破断部位となるように板面内で引張変形及び曲げ変形を与えて破断させながら、前記複数の板状試験片それぞれについて、
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び、
    ・前記周方向歪勾配測定値
    を測定して取得する
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
  8.  前記複数の板状試験片に形成される前記切欠の形状は、
     垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に小さい第1の切欠形状と、
     垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に大きい第2の切欠形状と、
     垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に小さい第3の切欠形状と、
     垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に大きい第4の切欠形状と、
    を少なくとも含むことを特徴とする請求項7に記載の伸びフランジ割れ予測方法。
  9.  前記破断歪測定値は、前記板状試験片の破断部位の破断歪の測定値であり、
     前記垂直方向歪勾配測定値は、前記破断部位から前記板状試験片の内側方向への歪勾配の測定値であり、
     前記周方向歪勾配測定値は、前記破断部位から前記板状試験片の端部に沿う方向への歪勾配の測定値である
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
  10.  前記CAE解析工程は、
     前記成形データから、前記最大主歪を有する前記最大主歪最大要素を抽出する要素抽出工程と、
     前記最大主歪最大要素を基準要素として、前記フランジ端部から前記可塑性板の内側へ向かう要素列と、前記フランジ端部に沿う要素列とを、要素選択アルゴリズムに基づいて特定する要素列特定工程と、
     特定した前記要素列について、前記最大主歪最大要素の前記垂直方向歪勾配と、前記最大主歪最大要素の前記周方向歪勾配とを演算する歪勾配演算工程と、
    を備える
    ことを特徴とする請求項1に記載の伸びフランジ割れ予測方法。
  11.  可塑性板を伸びフランジ成形する際、フランジ端部に生じる伸びフランジ割れの発生を予測する伸びフランジ割れ予測装置であって、
     複数の板状試験片それぞれについて、所定のゲージ長さ、及び、所定の勾配評価長さでの実験測定環境の元、
    ・破断歪測定値、
    ・垂直方向歪勾配測定値、及び、
    ・周方向歪勾配測定値、
    を取得する測定値取得部と、
     前記可塑性板の前記伸びフランジ成形の過程を有限要素法で、所定の要素サイズ、及び、所定の勾配評価長さのCAE解析測定環境の元、数値解析して得た前記フランジ端部に関する成形データに基づき、
    ・最大主歪が最大である最大主歪最大要素、
    ・前記最大主歪最大要素の垂直方向歪勾配、及び、
    ・前記最大主歪最大要素の周方向歪勾配、
    を取得するCAE解析部と、
     前記測定値取得部によって前記実験測定環境の元で得られた前記破断歪測定値を、前記垂直方向歪勾配測定値及び前記周方向歪勾配測定値に加え、前記CAE解析部における
    ・前記要素サイズ、
    ・前記勾配評価長さ、
    ・前記垂直方向歪勾配、及び、
    ・前記周方向歪勾配、
    に基づいて変換することで、破断判定閾値を取得する破断判定閾値取得部と、
    ・前記最大主歪最大要素の前記最大主歪と、
    ・前記破断判定閾値と、
    を比較して、前記最大主歪が前記破断判定閾値以上のとき、伸びフランジ割れが発生すると予測する予測部と、
    を備えることを特徴とする伸びフランジ割れ予測装置。
  12.  前記測定値取得部で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び、
    ・前記周方向歪勾配測定値、
    に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得部を更に備え、
     前記破断判定閾値取得部では、下記(1)式~(4)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得する
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
    Figure JPOXMLDOC01-appb-M000010
     
    Figure JPOXMLDOC01-appb-M000011
     
    Figure JPOXMLDOC01-appb-M000012
     
    Figure JPOXMLDOC01-appb-M000013
     
    ここで、
    ε (CAE)は、破断判定閾値であり、
    ε (exp)は、測定値取得部で取得された破断歪測定値であり、
    GLは、測定値取得部で用いたゲージ長さであり、
    S(exp)は、測定値取得部で用いた勾配評価長さであり、
    ΔεN(exp)は、測定値取得部で取得された垂直方向歪勾配測定値であり、
    ΔεC(exp)は、測定値取得部で取得された周方向歪勾配測定値であり、
    ε(CAE)は、最大主歪最大要素の最大主歪であり、
    ESは、CAE解析部で用いた要素サイズであり、
    S(CAE)は、CAE解析部で用いた勾配評価長さであり、
    ΔεN(CAE)は、CAE解析部で取得された垂直方向歪勾配であり、
    ΔεC(CAE)は、CAE解析部で取得された周方向歪勾配である。
  13.  前記測定値取得部で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び、
    ・前記周方向歪勾配測定値、
    に基づき、垂直方向歪勾配と周方向歪勾配とを変数として破断歪が特定される破断歪関数を取得する破断歪関数取得部を更に備え、
     前記破断判定閾値取得部では、下記(5)式~(8)式に基づき前記破断歪関数を前記CAE解析測定環境に合わせて変換することで、前記破断判定閾値を取得する
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
    Figure JPOXMLDOC01-appb-M000014
     
    Figure JPOXMLDOC01-appb-M000015
     
    Figure JPOXMLDOC01-appb-M000016
     
    Figure JPOXMLDOC01-appb-M000017
     
    ここで、
    ε (CAE)は、破断判定閾値であり、
    ε (exp)は、測定値取得部で取得された破断歪測定値であり、
    GLは、測定値取得部で用いたゲージ長さであり、
    S(exp)は、測定値取得部で用いた勾配評価長さであり、
    Cl(exp)は、板状試験片を得る際の加工条件であり、
    ΔεN(exp)は、測定値取得部で取得された垂直方向歪勾配測定値であり、
    ΔεC(exp)は、測定値取得部で取得された周方向歪勾配測定値であり、
    ε(CAE)は、最大主歪最大要素の最大主歪であり、
    ESは、CAE解析部で用いた要素サイズであり、
    S(CAE)は、CAE解析部で用いた勾配評価長さであり、
    Cl(CAE)は、可塑性板を得る際の加工条件であり、
    ΔεN(CAE)は、CAE解析部で取得された垂直方向歪勾配であり、
    ΔεC(CAE)は、CAE解析部で取得された周方向歪勾配である。
  14.  前記測定値取得部で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び
    ・前記周方向歪勾配測定値、
    の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得部を更に備え、
     前記破断判定閾値取得部では、
     前記歪分布データを前記CAE解析測定環境に合わせて加工し、
     加工された前記歪分布データを用いて破断判定曲面を生成し、
     前記破断判定曲面から前記破断判定閾値を取得する
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
  15.  前記破断判定閾値取得部では、下記(9)式の歪分布関数を前記歪分布データとする
    ことを特徴とする請求項14に記載の伸びフランジ割れ予測装置。
    Figure JPOXMLDOC01-appb-M000018
     
    ここで、
    εは、最大主歪であり、
    は、垂直方向のピーク近辺の広がり大きさを示す材料パラメータであり、
    は、垂直方向の勾配の厳しさを示す材料パラメータであり、
    は、周方向のピーク近辺の広がり大きさを示す材料パラメータであり、
    は、周方向の勾配の厳しさを示す材料パラメータである。
  16.  複数の試験片加工条件下において加工された複数の板状試験片を前記複数の板状試験片として用いて前記測定値取得部で得られた
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び
    ・前記周方向歪勾配測定値、
    の相関を示す歪分布データを前記複数の板状試験片それぞれについて取得する歪分布データ取得部を更に備え、
     前記破断判定閾値取得部では、
     前記CAE解析測定環境に合わせた前記試験片加工条件の前記歪分布データを前記CAE解析測定環境に合わせて加工し、
     加工された前記歪分布データを用いて破断判定曲面を生成し、
     前記破断判定曲面から前記破断判定閾値を取得する
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
  17.  前記複数の板状試験片は、互いに異なる形状の切欠が形成された端部を有し、
     前記測定値取得部では、前記複数の板状試験片のそれぞれに対し、前記切欠が破断部位となるように板面内で引張変形及び曲げ変形を与えて破断させながら、前記複数の板状試験片それぞれについて、
    ・前記破断歪測定値、
    ・前記垂直方向歪勾配測定値、及び、
    ・前記周方向歪勾配測定値
    を測定して取得する
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
  18.  前記複数の板状試験片に形成される前記切欠の形状は、
     垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に小さい第1の切欠形状と、
     垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に大きい第2の切欠形状と、
     垂直方向歪勾配が相対的に大きく、且つ、周方向歪勾配が相対的に小さい第3の切欠形状と、
     垂直方向歪勾配が相対的に小さく、且つ、周方向歪勾配が相対的に大きい第4の切欠形状と、
    を少なくとも含むことを特徴とする請求項17に記載の伸びフランジ割れ予測装置。
  19.  前記破断歪測定値は、前記板状試験片の破断部位の破断歪の測定値であり、
     前記垂直方向歪勾配測定値は、前記破断部位から前記板状試験片の内側方向への歪勾配の測定値であり、
     前記周方向歪勾配測定値は、前記破断部位から前記板状試験片の端部に沿う方向への歪勾配の測定値である
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
  20.  前記CAE解析部は、
     前記成形データから、前記最大主歪を有する前記最大主歪最大要素を抽出する要素抽出部と、
     前記最大主歪最大要素を基準要素として、前記フランジ端部から前記可塑性板の内側へ向かう要素列と、前記フランジ端部に沿う要素列とを、要素選択アルゴリズムに基づいて特定する要素列特定部と、
     特定した前記要素列について、前記最大主歪最大要素の前記垂直方向歪勾配と、前記最大主歪最大要素の前記周方向歪勾配とを演算する歪勾配演算部と、
    を備える
    ことを特徴とする請求項11に記載の伸びフランジ割れ予測装置。
  21.  請求項1に記載の伸びフランジ割れ予測方法を、請求項11に記載の伸びフランジ割れ予測装置に実行させることを特徴とするプログラム。
  22.  請求項21に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体。
PCT/JP2015/069129 2014-07-02 2015-07-02 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体 WO2016002880A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580034909.1A CN106470776B (zh) 2014-07-02 2015-07-02 拉伸翻边裂纹预测方法、拉伸翻边裂纹预测装置、计算机程序及记录介质
JP2015560893A JP5967321B2 (ja) 2014-07-02 2015-07-02 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体
EP15815590.3A EP3165298A4 (en) 2014-07-02 2015-07-02 Stretch-flange crack prediction method, stretch-flange crack prediction device, computer program, and recording medium
KR1020167036501A KR101886556B1 (ko) 2014-07-02 2015-07-02 신장 플랜지 균열 예측 방법, 신장 플랜지 균열 예측 장치, 컴퓨터 프로그램, 및 기록 매체
US15/322,409 US10467361B2 (en) 2014-07-02 2015-07-02 Stretch flange crack prediction method, stretch flange crack prediction apparatus, computer program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-137185 2014-07-02
JP2014137185 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002880A1 true WO2016002880A1 (ja) 2016-01-07

Family

ID=55019407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069129 WO2016002880A1 (ja) 2014-07-02 2015-07-02 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体

Country Status (6)

Country Link
US (1) US10467361B2 (ja)
EP (1) EP3165298A4 (ja)
JP (1) JP5967321B2 (ja)
KR (1) KR101886556B1 (ja)
CN (1) CN106470776B (ja)
WO (1) WO2016002880A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034312A (ja) * 2017-08-10 2019-03-07 新日鐵住金株式会社 成形性評価方法、プログラム及び記録媒体
JP2020159834A (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 破断クライテリア解析方法、破断クライテリア解析プログラム、及び破断クライテリア解析システム
KR20210125537A (ko) 2019-03-14 2021-10-18 제이에프이 스틸 가부시키가이샤 신장 플랜지 균열 평가 방법, 금속판의 선정 방법, 프레스 금형의 설계 방법, 부품 형상의 설계 방법, 및 프레스 부품의 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852426B2 (ja) * 2016-02-05 2021-03-31 日本製鉄株式会社 成形性評価方法、プログラム及び記録媒体
CN110740821B (zh) * 2017-07-20 2021-04-20 杰富意钢铁株式会社 金属板在剪切加工面的变形极限的评价方法、裂纹预测方法以及冲压金属模的设计方法
WO2019039134A1 (ja) * 2017-08-23 2019-02-28 Jfeスチール株式会社 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
KR102345288B1 (ko) 2017-09-26 2021-12-29 제이에프이 스틸 가부시키가이샤 변형 한계의 평가 방법, 균열 예측 방법 및 프레스 금형의 설계 방법
CN112629833B (zh) * 2019-09-25 2024-04-19 上海汽车集团股份有限公司 一种载荷采集方法及装置
CN112536355B (zh) * 2020-10-22 2022-04-12 钢铁研究总院有限公司 一种评价高强钢板落料边翻边成形性能的方法
CN112915542B (zh) * 2021-03-31 2022-07-22 腾讯科技(深圳)有限公司 一种碰撞数据处理方法、装置、计算机设备及存储介质
CN114187348B (zh) * 2022-02-16 2022-05-06 成都大公博创信息技术有限公司 一种基于计算机视觉的电缆护套断裂伸长率测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076022A (ja) * 1999-09-03 2001-03-23 Kobe Steel Ltd アルミニウム合金板からなる成形品の設計方法
JP2009061477A (ja) * 2007-09-07 2009-03-26 Nippon Steel Corp 薄板プレス成形シミュレーションにおける伸びフランジ割れの推定方法
JP2011043452A (ja) * 2009-08-24 2011-03-03 Nippon Steel Corp 曲げ限界ひずみ測定法、曲げ割れ判定方法、及び曲げ割れ判定プログラム
JP2011083813A (ja) * 2009-10-19 2011-04-28 Nippon Steel Corp フランジ割れ分析方法
JP2011140046A (ja) * 2010-01-08 2011-07-21 Nippon Steel Corp 板状材料の破断ひずみ特定方法
JP2011245554A (ja) * 2010-05-27 2011-12-08 Livermore Software Technology Corp 数値的シミュレーションを用いるシートメタル成形不具合の予測する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445601C2 (ru) * 2007-04-12 2012-03-20 Ниппон Стил Корпорейшн Способ прогнозирования трещинообразования, устройство обработки, программный продукт и носитель записи
JP5434622B2 (ja) 2010-01-20 2014-03-05 新日鐵住金株式会社 薄板のプレス成形シミュレーションにおける破断判定方法および破断判定装置
CN102565072B (zh) * 2011-12-30 2013-12-18 重庆大学 拉伸铝合金板表面裂纹立体视觉在线检测方法
CN103105477B (zh) * 2013-01-23 2015-02-04 太原科技大学 一种预测锻态钢锻造裂纹萌生的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076022A (ja) * 1999-09-03 2001-03-23 Kobe Steel Ltd アルミニウム合金板からなる成形品の設計方法
JP2009061477A (ja) * 2007-09-07 2009-03-26 Nippon Steel Corp 薄板プレス成形シミュレーションにおける伸びフランジ割れの推定方法
JP2011043452A (ja) * 2009-08-24 2011-03-03 Nippon Steel Corp 曲げ限界ひずみ測定法、曲げ割れ判定方法、及び曲げ割れ判定プログラム
JP2011083813A (ja) * 2009-10-19 2011-04-28 Nippon Steel Corp フランジ割れ分析方法
JP2011140046A (ja) * 2010-01-08 2011-07-21 Nippon Steel Corp 板状材料の破断ひずみ特定方法
JP2011245554A (ja) * 2010-05-27 2011-12-08 Livermore Software Technology Corp 数値的シミュレーションを用いるシートメタル成形不具合の予測する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI YOSHIDA ET AL.: "Evaluation and Improving Method of Stretch Flange-ability", NIPPON STEEL TECHNICAL REPORT, vol. 393, 31 July 2012 (2012-07-31), pages 18 - 24, XP055251125 *
See also references of EP3165298A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034312A (ja) * 2017-08-10 2019-03-07 新日鐵住金株式会社 成形性評価方法、プログラム及び記録媒体
KR20210125537A (ko) 2019-03-14 2021-10-18 제이에프이 스틸 가부시키가이샤 신장 플랜지 균열 평가 방법, 금속판의 선정 방법, 프레스 금형의 설계 방법, 부품 형상의 설계 방법, 및 프레스 부품의 제조 방법
US11971390B2 (en) 2019-03-14 2024-04-30 Jfe Steel Corporation Stretch flange crack evaluation method, metal sheet selection method, press die design method, component shape design method, and pressed component manufacturing method
JP2020159834A (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 破断クライテリア解析方法、破断クライテリア解析プログラム、及び破断クライテリア解析システム

Also Published As

Publication number Publication date
JPWO2016002880A1 (ja) 2017-04-27
KR20170013325A (ko) 2017-02-06
EP3165298A4 (en) 2018-03-07
EP3165298A1 (en) 2017-05-10
US10467361B2 (en) 2019-11-05
US20180107772A1 (en) 2018-04-19
CN106470776B (zh) 2019-03-08
JP5967321B2 (ja) 2016-08-10
CN106470776A (zh) 2017-03-01
KR101886556B1 (ko) 2018-08-07

Similar Documents

Publication Publication Date Title
JP5967321B2 (ja) 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体
KR101065502B1 (ko) 파단 예측 방법
JP5435352B2 (ja) 板状材料の破断ひずみ特定方法
Hussaini et al. Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316
Liu et al. Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen
KR101167764B1 (ko) 파단 예측 방법, 연산 처리 장치 및 기록 매체
KR101227295B1 (ko) 파단 판정 방법, 파단 판정 장치, 프로그램 및 컴퓨터 판독 가능한 기록 매체
EP3016009A1 (en) Method for determining bending fracture in metal plate, program, and storage medium
JP4621216B2 (ja) 破断限界取得方法及び装置、並びにプログラム及び記録媒体
JP4621217B2 (ja) 破断予測方法及び装置、並びにプログラム及び記録媒体
Allaer et al. Direct fracture toughness determination of a ductile epoxy polymer from digital image correlation measurements on a single edge notched bending sample
KR102271009B1 (ko) 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 깨짐 예측 방법 및 프레스 금형의 설계 방법
JP7110976B2 (ja) 成形性評価方法、プログラム及び記録媒体
Souto et al. Material parameter identification within an integrated methodology considering anisotropy, hardening and rupture
Mohr et al. Plasticity and fracture of martensitic boron steel under plane stress conditions
JP2012104042A (ja) 均一伸びの予測方法および均一伸びの予測プログラム
JP6897413B2 (ja) 成形性評価方法、プログラム及び記録媒体
JP6287665B2 (ja) 薄鋼板製部材の延性脆性破壊特性の予測方法及び装置、並びにそのプログラム及び記録媒体
JP7206902B2 (ja) 成形性評価方法、プログラム及び記録媒体
JP7327595B1 (ja) 金属板の成形限界取得方法及び装置
JP6107411B2 (ja) 薄板の割れ評価方法
JP4686522B2 (ja) 破面解析方法及び装置
JP5381606B2 (ja) フランジ割れ分析方法
JP2023005230A (ja) 金属材料のミクロ組織の損傷挙動評価方法
Tsoupis et al. Prediction of damage in small curvature bending processes of high strength steels using continuum damage mechanics model in 3D simulation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560893

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322409

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015815590

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815590

Country of ref document: EP