WO2016002505A1 - フィルター内の***部の外形を最適化したフィルター - Google Patents

フィルター内の***部の外形を最適化したフィルター Download PDF

Info

Publication number
WO2016002505A1
WO2016002505A1 PCT/JP2015/067335 JP2015067335W WO2016002505A1 WO 2016002505 A1 WO2016002505 A1 WO 2016002505A1 JP 2015067335 W JP2015067335 W JP 2015067335W WO 2016002505 A1 WO2016002505 A1 WO 2016002505A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cell separation
separation material
cell
liquid
Prior art date
Application number
PCT/JP2015/067335
Other languages
English (en)
French (fr)
Inventor
敬太 山下
尚武 前久保
伸好 梅田
伸彦 佐藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016531248A priority Critical patent/JP6646575B2/ja
Publication of WO2016002505A1 publication Critical patent/WO2016002505A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements

Definitions

  • the present invention relates to a cell separation filter or a cell separation method using the same.
  • An erythrocyte product is a blood product that is used when bleeding and erythrocytes are deficient, or when oxygen is deficient due to reduced function of erythrocytes.
  • the erythrocyte preparation does not require leukocytes that induce side effects such as abnormal immune reactions or graft-versus-host disease (GVHD), and it is necessary to remove leukocytes with a filter.
  • GVHD graft-versus-host disease
  • platelets may be removed in addition to leukocytes.
  • the platelet preparation is a blood preparation used for patients who are bleeding or tend to bleed due to lack of blood coagulation factors.
  • unnecessary cells and components other than platelets are removed by centrifugation, and only the necessary platelet components are collected.
  • hematopoietic stem cell transplantation for the treatment of leukemia and solid cancer has been actively performed, and a method of separating and administering leukocyte groups containing hematopoietic stem cells necessary for treatment has been taken.
  • umbilical cord blood is attracting attention in addition to bone marrow and peripheral blood because of its advantages such as low burden on donors and excellent proliferation ability.
  • menstrual blood it has been suggested that there are abundant stem cells in menstrual blood, and menstrual blood that has been discarded may be used as a valuable source of stem cells.
  • leukocytes For bone marrow and peripheral blood, it is desirable to separate and purify leukocytes after removing unnecessary cells, but umbilical cord blood is also becoming popular for banking for relatives and is stored frozen until use. From the necessity, leukocytes are separated and purified for the purpose of preventing red blood cell hemolysis due to cryopreservation.
  • Patent Document 1 a method of collecting leukocytes using a filter material that captures only white blood cells without capturing red blood cells and platelets (Patent Document 1, Patent Document 2, and Patent Document 3) has been reported as a cell separation method.
  • Patent Document 2 a method of collecting leukocytes using a filter material that captures only white blood cells without capturing red blood cells and platelets
  • an object of the present invention is to provide a cell separation filter with improved cell recovery efficiency. Another object of the present invention is to provide a cell separation method capable of efficiently collecting desired cells using the cell separation filter.
  • the present inventors have intensively studied to solve such problems. As a result, the cell recovery rate is significantly improved by forming a raised portion having a predetermined outer shape on the surface of the liquid inlet side or the liquid outlet side in the cell separation material filled in the cell separation filter, In addition, the present inventors have found that blood components that are not recovered but captured by the cell separation material can be significantly reduced, and the present invention has been completed.
  • the gist of the present invention is as follows.
  • a filter having a container filled with a cell separation material, having a liquid inlet at either the upper part or the lower part of the container, and a liquid outlet at the opposite side,
  • the surface of the filled cell separation material has a raised portion that is raised in at least one direction on the liquid inlet side or the liquid outlet side,
  • the minimum value of the thickness of the cell separation material is 1.20 ⁇ 10 to 1.26 ⁇ 10 mm, and the maximum thickness of the cell separation material is 1.26 ⁇ 10 to 2.10 ⁇ 10 mm [1]
  • the cell-containing liquid is introduced from the liquid inlet of the filter according to any one of the above [1] to [9], and is contacted with the cell separation material filled in the filter to obtain leukocytes and / or simple substances.
  • a first step of capturing the nuclei in the cell separator, and A cell separation method comprising a second step of introducing a collection liquid into the filter and collecting white blood cells and / or mononuclear cells from the cell separation material.
  • the first step including a step of introducing a physiological saline or a buffer solution from a liquid inlet of the filter and bringing the cell separation material into contact with the physiological saline or the buffer solution, [10] or [11].
  • the cells in the blood can be efficiently recovered by using the filter of the present invention.
  • FIG. 2 is a top view of the filter shown in FIG. 1 and a vertical cross-sectional view taken along the line AA of the filter.
  • FIG. 3 is an enlarged vertical sectional view of a main part of the filter shown in FIG. 2. It is the schematic which shows the measurement location at the time of measuring the external shape of a protruding part. It is the schematic which shows an example of the pressing member with a nozzle of a filter. It is a longitudinal cross-sectional view of the cell separation material with which the filter shown in FIG. 2 was filled.
  • 1 is a schematic diagram illustrating a structure of a filter used in Example 1.
  • FIG. 1 is a schematic diagram illustrating a structure of a filter used in Example 1.
  • FIG. 3 is a longitudinal sectional view showing an example of an outer shape of a cell separation material 11 filled in a filter used in Example 1.
  • FIG. 1 is a schematic diagram of a circuit of a cell separation device used in Example 1.
  • FIG. It is the figure at the time of putting the cell separation material taken out from the filter after the cell collection
  • the filter of the present invention is a filter having a container filled with a cell separation material, having a liquid inlet at either the upper part or the lower part of the container and a liquid outlet at the opposite side.
  • the surface of the filled cell separation material has a raised portion that is raised in at least one direction on the liquid inlet side or the liquid outlet side,
  • Cell separation material The form of the cell separation material used in the present invention is not particularly limited, and examples thereof include a porous body having a communicating pore structure, a fiber assembly, and a fabric. Preferably it is comprised with a fiber, More preferably, it is a nonwoven fabric.
  • the material for the cell separation material examples include polyolefins such as polypropylene, polyethylene, high density polyethylene and low density polyethylene, polyester, vinyl chloride, polyvinyl alcohol, vinylidene chloride, rayon, vinylon, polystyrene, acrylic (polymethyl methacrylate, poly Hydroxyethyl methacrylate, polyacrylonitrile, polyacrylic acid, polyacrylate, etc.), nylon, polyurethane, polyimide, aramid, polyamide, cupra, polyparaphenylene terephthalamide, carbon, phenol, tetron, pulp, hemp, cellulose, kenaf, chitin, Examples include chitosan, glass, and cotton.
  • polyolefins such as polypropylene, polyethylene, high density polyethylene and low density polyethylene, polyester, vinyl chloride, polyvinyl alcohol, vinylidene chloride, rayon, vinylon, polystyrene, acrylic (polymethyl methacrylate, poly Hydroxyethyl
  • the cell separation material may be composed of a single material among these materials, or may be composed of a composite material obtained by combining a plurality of materials.
  • the average fiber diameter of the cell separation material used in the present invention is not particularly limited as long as it is appropriately selected according to the type of target cells.
  • the cell separation material may be subjected to a hydrophilic treatment.
  • hydrophilizing treatment By hydrophilizing treatment, non-specific capture of cells other than the desired necessary cells can be suppressed, and cell-containing liquid can be passed through the cell separation material without bias to improve performance and improve efficiency of collecting necessary cells. Can be granted.
  • Hydrophilic treatment methods include water-soluble polyhydric alcohols, polymers having hydroxyl groups, cationic groups or anionic groups, or copolymers thereof (for example, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, or copolymers thereof).
  • Adsorption method water-soluble polymer (polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, etc.) adsorption method, hydrophilic polymer fixed to hydrophobic membrane (for example, hydrophilic monomer is chemically bonded to the surface) Method), electron beam irradiation method, method of cross-linking insolubilization of hydrophilic polymer by irradiating radiation to cell separation filter in water-containing state, method of insolubilization and immobilization of hydrophilic polymer by heat treatment in dry state , The method of sulfonating the surface of hydrophobic membrane, hydrophilic polymer and sparse A method of forming a membrane from a mixture with a conductive polymer dope, a method of imparting hydrophilic groups to the membrane surface by treatment with an aqueous alkaline solution (NaOH, KOH, etc.), a soaked hydrophobic porous membrane in alcohol, and then treating with a water-soluble polymer aqueous solution
  • hydrophilic polymer examples include polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, polyhydroxyethyl methacrylate, polysaccharide (cellulose, chitin, chitosan, etc.), water-soluble polyhydric alcohol, and the like.
  • hydrophobic polymer examples include polystyrene, polyvinyl chloride, polyolefin (polyethylene, polypropylene, etc.), acrylic, urethane, vinylon, nylon, polyester, and the like.
  • cell adhesion proteins and antibodies against specific antigens expressed on the target stem cells are immobilized on the cell separation material.
  • cell adhesion proteins include fibronectin, laminin, vitronectin, collagen and the like.
  • antibodies include, but are not limited to, CD73, CD90, CD105, CD166, CD140a, CD271, and the like.
  • immobilization methods include general protein immobilization methods such as cyanogen bromide activation method, acid azide derivative method, condensation reagent method, diazo method, alkylation method, and crosslinking method. It can be used arbitrarily.
  • the container filled with the cell separating material has a liquid inlet at either the upper part or the lower part and a liquid outlet at the opposite side.
  • the liquid introduction port refers to a port for introducing a liquid containing a target cell (also referred to as a cell-containing liquid) into the container from the outside of the container.
  • the liquid outlet port is a port provided on the opposite side of the liquid inlet port with respect to the vertical direction, and is mainly used to discharge the liquid that has passed through the cell separation material during cell separation operation to the outside of the container.
  • the shape of the container may be any shape such as a sphere, a container, a cassette, a bag, and a tube as long as the cell separating material can be incorporated therein.
  • Preferable specific examples include, for example, a cylindrical container having a capacity of about 0.1 to 400 mL and a diameter of about 0.1 to 15 cm, a square or a rectangle having a length of about 0.1 to 20 cm, and a thickness of 0. Examples thereof include a square columnar container of about 1 to 5 cm.
  • the presser with nozzle that can cover the cylindrical main body 3 and the openings at the top and bottom thereof.
  • the members 4 and 5 and the caps 6 and 7 for fixing the main body 3 and the pressing member with nozzle 4 and 5 are configured.
  • the holding members with nozzles 4 and 5 are respectively provided with a liquid inlet 9 for introducing liquid into the container 2 and a liquid outlet 10 for discharging liquid from the container 2.
  • the liquid inlet 9 and the liquid outlet 10 are constituted by nozzles in order to easily connect a tube for feeding a liquid.
  • the shape and size of the nozzle are not particularly limited.
  • the holding members with nozzles 4 and 5 have a stopper shape, and are fixed in contact with the inner surface of the main body 3 by being pushed into the lumen of the cylindrical main body 3.
  • a seal 8 is provided on the contact surface between the presser members 4 and 5 with the nozzle and the main body 3.
  • the seal 8 ensures the airtightness between the presser members 4 and 5 with the nozzle and the main body 3 and prevents the entry of microorganisms and the like from the outside.
  • a resin packing may be provided around a groove provided on the surface of the presser members 4 and 5 with nozzles. There is no particular limitation on the configuration.
  • the presser members 4 and 5 with nozzles may be directly fixed to the main body 3 (not shown).
  • the pressing member with the nozzle and the main body can be fixed by, for example, providing a screw on the surface where the pressing member with the nozzle and the main body come into contact.
  • the cell separation material 11 is stacked and filled.
  • the locations for capturing cells are dispersed, clogging is suppressed, and separation and collection of cells from the filter are also possible. Can be done efficiently. Note that a portion in which cell separation materials having the same fiber diameter are successively laminated is treated as one layer regardless of the number of laminated cell separation materials.
  • the container 2 may be provided with a cleaning liquid inlet (not shown) for cleaning non-adherent cells remaining in the cell separation material 11 independently on the liquid inlet 9 side, or the liquid outlet 10.
  • a cell recovery solution inlet for recovering cells captured by the cell separation material independently for flowing the cell recovery solution in the direction opposite to the flow of the cell-containing solution and the washing solution) may be provided. (Not shown).
  • the container 2 can be manufactured using any structural material.
  • the structural material include non-reactive polymers, biocompatible metals, alloys, and glass.
  • Non-reactive polymers include acrylonitrile polymers such as acrylonitrile butadiene styrene terpolymers; polytetrafluoroethylene, polychlorotrifluoroethylene, copolymers of tetrafluoroethylene and hexafluoropropylene, halogenated polymers such as polyvinyl chloride; polyamides and polyimides , Polysulfone, polycarbonate, polyethylene, polypropylene, polyvinyl chloride acrylic copolymer, polycarbonate acrylonitrile butadiene styrene, polystyrene, polymethylpentene and the like.
  • Metal materials (biocompatible metals, alloys) useful as container materials include stainless steel, titanium, platinum, tantalum, gold, and alloys thereof, as well as gold-plated alloy iron, platinum-plated alloy iron, cobalt chromium alloy, and nitride.
  • Examples thereof include titanium-coated stainless steel.
  • Particularly preferred is a material having sterilization resistance, and specific examples include polypropylene, polyvinyl chloride, polyethylene, polyimide, polycarbonate, polysulfone, and polymethylpentene.
  • the filter of the present invention has a raised portion that is raised on at least one direction on the liquid inlet side or the liquid outlet side on the surface of the cell separation material filled in the container.
  • the raised portion is a raised portion (12 a, 12 a ′, 12 a ′′, 12 b, 12 b ′ on the surface of the cell separation material 11. , 12b ′′). More specifically, as shown in FIGS.
  • the recessed part between the said protruding parts means the recessed part between protruding parts.
  • the filter 1 shown in FIG. 2B has three raised portions 12a, 12a ′, 12a ′′ on the surface of the cell separation material 11 on the liquid inlet 9 side, and two recessed portions 15a, 15a ′ therebetween.
  • the surface of the cell separation material 11 on the liquid outlet 10 side has three raised portions 12b, 12b ′, 12b ′′, and two concave portions 15b, 15b ′ therebetween.
  • the concave portions 15a and 15b between the raised portions are both valley shapes that are recessed in a curved shape between two substantially mountain-shaped raised portions.
  • the concave portion refers to a concave portion in a state where the concave portion can directly contact the cell-containing liquid introduced into the filter. Therefore, as will be described later, by providing the protrusions 16 on the holding members 4 and 5 with the nozzles, the protrusions and the surface of the cell separation material are formed in the recessed portions generated by pressing the surface of the cell separation material 11. Does not correspond to the recess between the raised portions.
  • the distal end surface of the holding member with nozzles 4 and 5 inserted into the lumen of the main body 3 of the container 2 is shown in FIG.
  • the surface of the cell separation material 11 filled in the container 2 can be pressed.
  • the said protrusion parts 16a and 16b protrude to the lumen
  • the part can be formed.
  • the shape of the tip surfaces of the protrusions 16a and 16b is not particularly limited, and examples thereof include a linear shape, a rod shape, a polygonal shape, an elliptical shape, a circular shape, or a shape obtained by combining two or more of these shapes.
  • a linear shape a rod shape, a polygonal shape, an elliptical shape, a circular shape, or a shape obtained by combining two or more of these shapes.
  • the surface of the cell separation material is pressed with the protrusions, distortion occurs between the protrusions, and the recesses between the protrusions are easily formed. For example, as shown in FIG.
  • the periphery of the cell separation material 11 is pressed into a round shape with a substantially circular protrusion 16a, and further, a rod-shaped protrusion 16b from the periphery to the center at intervals of approximately 120 °.
  • the pressure is pressed, distortion occurs on the surface of the cell separation material 11 that is not pressed, and a plurality of ridges and the ridges of these ridges are formed as shown in FIGS. 2 (b), 3 (a), and 3 (b).
  • a plurality of substantially valley-shaped recesses are formed therebetween.
  • the raised portions 12a and 12a '' are large raised portions formed on the surface of the cell separation material 11 surrounded by the substantially circular protruding portions 16a and 16b in three directions, and the protruding portions 12a ′. Is a small raised portion near the center in the downward direction of the liquid inlet 9. Therefore, four raised portions are formed on the surface of the cell separating material 11 on the liquid inlet 9 side. Moreover, since the recessed part 15a arises between the said large protruding part 12a and the small protruding part 12a '(it is the same also between the said protruding parts 12a''and12a'), the cell separation material 11 by the side of the liquid inlet 9 is produced. There are a total of three recesses on the surface of
  • the area of the front end surface of the protrusion is preferably 30% or less of the surface area of the cell separation material from the viewpoint of facilitating formation of a raised portion, particularly a recessed portion between raised portions.
  • the area of the tip surface of the protrusion may be calculated by measuring using a ruler or the like, and the vertical length (y) and horizontal length (x) in the cross-sectional area of the tip surface are measured.
  • the origin (0, 0) for determining the approximate area may be calculated by measuring a plurality of points other than the origin and performing integral calculation using Excel.
  • the tip surface of the protrusion may be adjusted so that the heights of all the protrusions coincide with each other, or the tip surface may be adjusted to change the height of the protrusion. You may adjust so that there may be a three-dimensional level
  • the expression (1) is an expression showing the outer shape of a substantially parabolic ridge on the upper surface in a longitudinal section parallel to the vertical direction of the cell separation material.
  • said Formula (2) is a type
  • the position of the longitudinal section for confirming the outer shape of the raised portion is not particularly limited as long as a substantially parabolic section can be confirmed.
  • the height and length of the cross section of the raised portion shown in the longitudinal section are the height y of the raised portion and the length x of the raised portion, respectively.
  • the lowest position of the raised portion is set as the origin (0, 0).
  • the upward height is indicated by “+”
  • the downward height is indicated by “ ⁇ ”.
  • the a is an index indicating the size of the bulge in the bulge that satisfies the formula (1) or the formula (2), and the higher the value of the a, the higher the bulge is in the upward or downward direction. Become. On the other hand, the smaller the value of a, the lower the bulge is in the upward or downward direction. From the viewpoint of maintaining the structure and function of the filter itself and performing ideal fluid flow during cell recovery, the a is preferably 0.030 to 0.120, and 0.036 to 0.115. It is more preferable.
  • the b is preferably from 0.3 to 1.5, and more preferably from 0.4 to 1.4.
  • the origin O1 is first determined, and then the positions of four points (R1, R2, R3, R4) from the origin O1 are set to R1. It is measured as (y1, x1), R2 (y2, x2), R3 (y3, x3), R4 (y4, x4). Then, the numerical formula (1) can be calculated by inputting these numerical values into spreadsheet software and calculating an approximate curve.
  • an origin O2 different from the raised portion 12a is determined, and then four points (R5, R6, R7, R8) from the origin O2. ) Is measured as R5 (-y5, x5), R6 (-y6, x6), R7 (-y7, x7), R8 (-y8, x8). Then, the numerical formula (2) can be calculated by inputting these numerical values into spreadsheet software and calculating an approximate curve.
  • the ratio of a and b (a / b) is adjusted to a range of 0.03 to 0.25.
  • the cell separation material has an ideal shape suitable for cell recovery, and has a shape with a plurality of ridges on the surface. It is conceivable that, when the cell is collected, ideal liquid flow is performed, and as a result, the cell collection efficiency is improved.
  • the a / b is more preferably 0.05 to 0.10, and further preferably 0.06 to 0.093.
  • At least one ridge is provided on at least one surface on the liquid inlet side or the liquid outlet side, and at least one concave portion is provided between the ridges. It is preferable.
  • the raised part and the recessed part between raised parts said by said Formula (c), (d) are the raised part and recessed part between raised parts seen in the longitudinal cross-section of the cell separation material with which the filter was filled.
  • Examples of the cell separation material satisfying the relationship of the formula (c) include a cell separation material having a raised portion on one of the liquid inlet side and the liquid outlet side.
  • a cell separation material having a raised portion on one of the liquid inlet side and the liquid outlet side For example, when the pressing member with nozzle 4 shown in FIG. 5 is used on the liquid inlet side or the liquid outlet side of the filter 1, four raised portions and three recessed portions between the raised portions are generated on the surface of the cell separation material 11. Therefore, the relationship of the formula (c) is satisfied.
  • a cell separation material of another form satisfying the relationship of the formula (c) for example, a case where a nozzle having a different number of protrusions 16b on the holding member 4 with nozzle from the number shown in FIG. 5 is used. Can be mentioned.
  • protrusions 16b when there are two protrusions 16b, there are two oval ridges between the protrusions and one circular ridge at the center, and there is a recess between the oval ridge and the circular ridge. Since there is one, three raised portions and two recessed portions between the raised portions are generated on the surface of the cell separation material. Further, when there are four protrusions 16b, there are four elliptical bulges between the protrusions and a circular bulge at the center, and one recess between the elliptical bulge and the circular bulge. For this reason, five raised portions and four recessed portions between the raised portions are formed on the surface of the cell separation material.
  • Examples of the cell separation material that satisfies the relationship of the formula (d) include cell separation materials that have raised portions on both the liquid inlet side and the liquid outlet side. For example, when the pressing member with nozzle 4 shown in FIG. 5 is used on the liquid inlet side and the liquid outlet side of the filter 1, the raised portions and the recessed portions between the raised portions are formed on the upper and lower surfaces.
  • the cell separation material has eight ridges and six ridges between the raised portions, and satisfies the relationship of the above formula (d).
  • Examples of the cell separation material in another form that satisfies the relationship of the formula (d) include, for example, a case where a nozzle different from the number of the protrusions 16b illustrated in FIG.
  • the pressing member with nozzle 4 having two protrusions 16b when used, six ridges and four recesses between the ridges are formed on the surfaces of the upper and lower cell separation materials, and there are four protrusions 16b. In the case where the pressing member with nozzle 4 is used, 10 raised portions and 8 recessed portions between raised portions are generated on the surface of the cell separating material.
  • the surface of the cell separation material to be filled is generally suppressed in a substantially flat shape with respect to the vertical direction by a lid, a partition wall or the like. Therefore, the raised portions, especially the recessed portions between the raised portions, have a shape that cannot be seen on the surface of the cell separation material filled in the conventional filter.
  • the minimum thickness of the cell separation material is preferably 1.20 ⁇ 10 to 1.26 ⁇ 10 mm. Further, the maximum value of the thickness of the cell separation material is preferably 1.26 ⁇ 10 to 2.10 ⁇ 10 mm, and more preferably 1.55 ⁇ 10 to 2.05 ⁇ 10 mm.
  • the thickness of the cell separating material including the raised portions 12a and 12b is the thickness of the cell separating material including the other raised portions.
  • this thickness X becomes the maximum value of the cell separation material 11.
  • the minimum value of the thickness of the cell separating material 11 is, for example, the thickness Y between the surfaces of the cell separating material 11 in the portion pressed by the protrusion 16a in FIG.
  • the longitudinal section of the cell separation material 11 is observed at various angles with respect to the center of the cell separation material, What is necessary is just to measure the maximum thickness and the minimum thickness.
  • the longitudinal section of the filter is observed by imaging with X-ray CT, and the length of each part of the longitudinal section of the cell separation material 11 is determined by CT data viewer (product name “myVGL2” manufactured by Volume Graphics). .2 ").
  • the sum of the cross-sectional areas of the raised portions is 2.08 ⁇ 10 to 1.09 ⁇ 10 2 mm 2
  • the cross-sectional area other than the raised portions is 5.40 ⁇ 10 2 to 5.61 ⁇ .
  • the cross-sectional area of the cell separation material refers to a vertical cross-sectional area when the cell separation material is cut in parallel to the vertical direction of the container.
  • the cross-sectional area of the raised portion refers to a cross-sectional area when the cell separation material is cut in the vertical direction at a portion including a position where the height of the raised portion is maximum with respect to the upward or downward direction.
  • the cross-sectional area other than the raised portion refers to an area obtained by subtracting the cross-sectional area of the raised portion from the total cross-sectional area measured by cutting the cell separating material in the vertical direction as described above.
  • FIG. 6 shows a longitudinal section of the cell separation material 11 of the filter 1 shown in FIG.
  • the cross-sectional area of the cell separation material is all the cross-sectional areas ( ⁇ + ⁇ + ⁇ ′) shown in the figure.
  • the cross-sectional area of the raised portion there are a cross-sectional area ⁇ on the liquid inlet 9 side and a cross-sectional area ⁇ ′ on the liquid outlet 10 side, and the sum ( ⁇ + ⁇ ′) thereof becomes the cross-sectional area of the raised portion.
  • the remaining cross-sectional area ((beta)) which pulled the cross-sectional area of the protruding part from the cross-sectional area of the said cell separation material becomes cross-sectional area other than a protruding part.
  • the ratio ( ⁇ + ⁇ ′) / ⁇ is more preferably adjusted to a range of 0.23 to 0.42.
  • the cells targeted in the present invention may be white blood cells or mononuclear cells, and are not particularly limited.
  • artificial pluripotent stem cells iPS cells
  • embryonic stem cells ES cells
  • mesenchymal stem cells Adipose-derived mesenchymal cells
  • adipose-derived stromal stem cells pluripotent adult stem cells
  • bone marrow stromal cells hematopoietic stem cells and other multipotent biological stem cells
  • T cells, B cells killer T cells (cytotoxic T cells)
  • Lymphocyte cells such as NK cells, NKT cells, regulatory T cells, macrophages, monocytes, dendritic cells, granulocytes, erythrocytes, platelets, etc., nerve cells, muscle cells, fibroblasts, hepatocytes
  • somatic cells such as cardiomyocytes or cells that have undergone treatment such as gene introduction or differentiation.
  • the filter of the present invention is suitably used for collecting various cells, particularly leukocytes, hematopoietic stem cells and / or mononuclear cells.
  • leukocytes include granulocytes such as neutrophils, eosinophils and basophils in peripheral blood, and mononuclear cells such as monocytes and lymphocytes.
  • a cell-containing liquid is introduced from the liquid inlet of the filter and brought into contact with a cell separation material filled in the filter, whereby leukocytes and / or mononuclear cells are separated from the cell separation material.
  • a first step to be captured by, and Examples include a method including a second step of introducing a collection solution into the filter and collecting white blood cells and / or mononuclear cells from the cell separation material.
  • the cell-containing liquid can be used without particular limitation as long as it is a suspension containing cells containing the leukocytes, hematopoietic stem cells and / or mononuclear cells.
  • biological tissue such as the umbilical cord can be treated with an enzyme.
  • suspensions prepared by pretreatment such as sonication and so on.
  • it may be a suspension obtained by culturing or proliferating cells such as leukocytes exemplified above using a culture solution or a stimulating factor in vitro.
  • the cell-containing liquid when the cell-containing liquid is introduced from the liquid inlet of the filter, the cell-containing liquid is introduced into the filter by pressurizing the cell-containing liquid, By contacting with the cell separation material filled in the filter, leukocytes and / or mononuclear cells are captured by the cell separation material.
  • the degree of pressurization is not particularly limited.
  • the cell separation material a material capable of capturing leukocytes and / or mononuclear cells may be used.
  • blood components other than leukocytes may be removed as unnecessary components or may be collected as necessary, and there is no particular limitation.
  • the collection liquid is introduced into the filter that has captured white blood cells, etc., so that the white blood cells and the like are separated from the filter into the collection liquid, and the collection liquid containing the white blood cells and the like is collected from the liquid inlet.
  • white blood cells and the like can be collected.
  • the recovered liquid is introduced into the filter from the liquid outlet of the filter.
  • the recovered solution is not particularly limited as long as it is a solution that is isotonic with cells, and examples include those that have been used as injection solvents such as physiological saline and Ringer's solution, buffers, and culture media for cell culture. .
  • a medium that can be cultured as it is after passing through the culture step is preferable, and when it is used as it is for the treatment without passing through the culture step, safety such as an isotonic solution that has been used for infusions such as physiological saline is guaranteed. It is preferable to use the recovered liquid.
  • the first step and the second step may be performed at the room temperature or may be performed at a refrigeration temperature.
  • processing the refrigerated cell containing liquid is mentioned.
  • Examples of storage of the cell-containing liquid include storage by a refrigerator set at a refrigeration temperature, storage by a water bath, storage by dry ice, and the like. It is preferable to store in a refrigerator because of its versatility.
  • the refrigeration temperature is preferably 1 ° C or higher and 6 ° C or lower, more preferably 3 ° C or higher and 5 ° C or lower. If the refrigeration temperature is less than 1 ° C, the cells die, and if the storage temperature exceeds 6 ° C, the bacteria may propagate and cause contamination.
  • a physiological saline or buffer solution is introduced from the liquid inlet of the filter, and the cell separation material and the physiological Saline or buffer may be contacted.
  • physiological saline or a buffer solution is introduced from the liquid inlet of the filter and led out from the liquid outlet of the filter, thereby By removing the contaminating components, unnecessary components can be reduced in the collected cells.
  • Example 1 As shown in FIG. 7, 112 cylindrical non-woven fabrics (cell separators 11) made of polybutylene terephthalate are filled in a cylindrical container body 3 made of polycarbonate having a diameter of 52 mm in a stacked state.
  • the structure shown in FIGS. 1, 2 (a) and 2 (b) is obtained by inserting the presser members 4 and 5 shown in FIG. 5 into the upper and lower openings and screwing them with caps 6 and 7 from above.
  • the filter 1 which has was produced.
  • the protrusions 16b of the two upper and lower nozzle pressing members 4, 5 are aligned, and the thickness of the nonwoven fabric pressed by the tip surface of the protrusion 16b is the minimum value of the cell separation material. I did it. In addition, the distance between the tip surfaces of the upper and lower protrusions 16b was adjusted to 12 mm (the minimum value of the thickness of the cell separation material).
  • the raised portions 12a, 12a ′, The raised portions 12b and 12b ′ and the recessed portion 15b were confirmed on the surface of the recessed portion 15a and the liquid outlet port side.
  • the raised portions 12 a ′ and 12 b ′ are both between the protruding portions 16 b and are large raised portions having a substantially elliptical shape when viewed from the upper surface.
  • the raised portions 12 a and 12 b are both of the cell separating material 11. It was near the center and was a small bulge with a substantially circular shape when viewed from above.
  • the position of the longitudinal section to be observed is rotated by about 3 ° from the center of the cell separation material, and the longitudinal section including the raised portion on the upper surface next to the protruding portion 16b is observed.
  • the origin was determined, and the height and length of the raised portions at a plurality of points from the origin were measured. The results are shown in Table 2.
  • the state of the cell separation material filled in the filter 1 was as follows. (Thickness of cell separation material) Maximum thickness of cell separation material in filter (X): 18.46 mm Minimum thickness (Y) of cell separation material in the filter: 12.09 mm Thickness of the cell separation material from the concave portion between the raised portions on the liquid inlet side to the concave portion between the raised portions on the liquid outlet side: 13.96 to 16.92 (mm) (Cross sectional area of cell separation material) Sum of cross-sectional areas of raised portions: 144.93 to 182.46 mm 2 Cross-sectional area other than the raised portion: 545.86 mm 2
  • Example 2 The filter 1 was produced in the same manner as in Example 1 except that the protrusions 16b of the upper and lower two presser members 4 and 5 in the filter 1 were not aligned and fixed by rotating by 60 ° from the center. .
  • Example 3 A filter 1 was produced in the same manner as in Example 1 except that the number of cell separation materials to be laminated was 140. The minimum value of the thickness of the cell separation material was not changed, and the compression was strengthened by changing the number of stacked layers so that the cell separation material was more easily raised.
  • Example 1 except that it was pressed in advance so that the height of the laminated state was 12 mm, and was filled with non-woven fabric (112 sheets) in which the surface of the cell separation material was substantially planar and the height of the raised portions was suppressed. Similarly, filter 1 was produced.
  • a tube 17a is connected to the liquid inlet 9, and the tube 17a is connected to a means 18 for containing a cell suspension and a means 19 for containing a priming physiological saline.
  • the tube 17b and the tube 17c connected to the means (collection bag) 20 for storing the collected liquid that has passed through the filter and the means 21 for collecting the collected liquid collected in the collection bag or the like are connected via the flow path switching means 22a.
  • the tube 17b was connected with a means 18 for containing a cell suspension and a means 19 for containing a priming physiological saline via a flow path switching means 22b.
  • the tube 17c is connected to a means 20 for storing the recovered liquid that has passed through the filter and a means 21 for recovering the recovered liquid collected in a recovery bag or the like via a flow path switching means 22c. Further, a tube 17d is connected to the liquid outlet 10, and a means (waste liquid bag) 23 for containing the cell suspension that has passed through the filter and a means 24 for collecting the recovered liquid are connected via the flow path switching means 22d. Connected.
  • each flow path switching unit was appropriately performed according to the type of liquid passing through the filter 1 and the target unit for liquid transfer.
  • a priming operation is performed by manually passing 150 mL of physiological saline through the filter 1 using a syringe, and the physiological saline that has passed through the filter 1 is passed through the waste liquid bag 23. It was collected.
  • CPD blood preservation solution C solution
  • HES hydroxyethyl starch
  • white blood cells were recovered from the liquid inlet 9 into the recovery bag 20.
  • a blood cell counter (trade name “K-4500”, manufactured by Sysmex Corporation) was used for blood count of blood before treatment and blood count of the solution after recovery, and the leukocyte recovery rate was calculated from each measurement result.
  • Test Example 2 Cell separation materials were taken out from the filters used in Examples 1 and 3 and Comparative Example 1 after white blood cell collection, and placed on white absorbent paper. As a result, as shown in FIG. 10, the cell separation material obtained in Examples 1 and 3 had almost the original color (white) of the cell separation material, whereas the cell obtained in Comparative Example 1 A large amount of blood-derived components remained from the separating material and stained red. Therefore, as in the filter 1 used in Examples 1 and 3, a raised portion that protrudes in at least one direction on the liquid inlet side or the liquid outlet side on the surface of the packed cell separation material. It can be seen that the formation and the outer shape of the cell separation material satisfy a predetermined formula can reduce the recovery loss of blood components and can recover the target cells more efficiently.
  • the cells collected in the present invention can be provided by culturing and proliferating the cells, or can be used without being proliferated, and may be used as therapeutic cells.
  • Specific treatment subjects include ischemic diseases and vascular diseases, but are not limited thereto.
  • Cells to be transplanted into a cartilage injury patient by differentiation induction with a differentiation inducer or the like cells to be transplanted into a bone disease patient, cells to be transplanted into a myocardial disease patient or vascular disease patient, neural tissue
  • the present invention is not limited to these cells.
  • the differentiation inducer those capable of inducing differentiation of the target cells are preferably used, but as the differentiation inducer for cartilage, dexamethasone, TGF ⁇ , insulin, transferrin, ethanolamine, proline, ascorbic acid, pyruvate Salt, selenium, etc .; bone differentiation inducers include dexamethasone, ⁇ -glycerophosphate, vitamin C, ascorbate, etc .; myocardial differentiation inducers include EGF, PDGF, 5-azacytidine Examples of the differentiation inducer to nerve include EGF, bFGF, bHLH and the like; Examples of the differentiation inducer to blood vessel include bFGF, VEGF and the like.
  • the cells collected or grown according to the present invention may be stored frozen. From the point that damage to cells can be reduced, it is preferably cryopreserved using liquid nitrogen. Alternatively, cryopreserved cells can be thawed and transplanted into humans or animals, used for research, or cultured again.
  • the pharmaceutical composition can be produced using the cells collected or grown according to the present invention.
  • a pharmaceutical composition can be produced by mixing the cells with a pharmaceutically acceptable additive.
  • pharmaceutically acceptable additives include coagulants, nutrient sources such as vitamins, and antibiotics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、細胞分離材が充填された容器を有し、該容器の上部又は下部のいずれかに液体導入口、その反対側に液体導出口を備えたフィルターにおいて、充填された前記細胞分離材の表面に、液体導入口側又は液体導出口側の少なくとも1方向へ向けて***している***部を有し、前記***部の高さyと長さxが式(1):y=-ax+bx及び/又は式(2):y=ax-bxの関係を満たし、且つaとbの比率(a/b)が0.03~0.25の範囲に調整する。本発明は、細胞の回収効率が向上した細胞分離フィルター及び細胞分離フィルターを用いて、目的の細胞を効率よく回収することができる細胞分離方法を提供することを目的とする。

Description

フィルター内の***部の外形を最適化したフィルター
 本発明は、細胞分離フィルター又はこれを利用した細胞分離方法に関する。
 近年、血液学や科学テクノロジーの急速な進歩に伴い、全血・骨髄・臍帯血・組織抽出物をはじめとする体液から必要な血液分画のみを分離して患者に投与することで治療効果を高め、さらに、治療に必要のない分画は投与しないことで副作用を抑制する、という治療スタイルが広く普及している。
 例えば、血液輸血もその1つである。赤血球製剤は、出血及び赤血球が不足する場合、又は赤血球の機能低下により酸素が欠乏している場合に使用される血液製剤である。赤血球製剤には、異常な免疫反応や移植片対宿主病(GVHD)等の副作用を誘導する白血球は不要であり、フィルターで白血球を除去する必要がある。場合によっては白血球に加えて血小板も除去することもある。
 一方、血小板製剤は、血液凝固因子の欠乏による出血ないし出血傾向にある患者に使用される血液製剤である。血小板製剤の製造のためには、遠心分離により、血小板以外の不要な細胞や成分は除去され、必要とされる血小板成分のみが採取されている。
 加えて近年、白血病や固形癌治療に向けた造血幹細胞移植が盛んに行われるようになり、治療に必要な、造血幹細胞を含む白血球群を分離し投与する方法がとられている。この造血幹細胞のソースとして、ドナーの負担が少ない、増殖能力が優れている、等の利点から、骨髄や末梢血に加えて臍帯血も注目を浴びている。また近年、月経血中にも幹細胞が豊富に存在することが示唆され、これまで廃棄されていた月経血も貴重な幹細胞ソースとして利用される可能性がある。
 骨髄や末梢血に関して、不要な細胞を除き白血球を分離・純化して投与することが望まれている一方で、臍帯血についても血縁者のためのバンキングが盛んになり、使用時まで凍結保存する必要性から、凍結保存による赤血球溶血を防ぐことを目的に白血球は分離・純化されている。
 細胞分離方法として、最近では、赤血球と血小板は捕捉されず白血球のみを捕捉するフィルター材料を用いて白血球を回収する方法(特許文献1、特許文献2、特許文献3)も報告されている。
 しかしながら、実際に細胞の分離を行う際には、原因は不明ながら、フィルター材料に充填する細胞分離材内を血液がうまく通過しなかったり、細胞分離材に細胞が捕捉されたまま回収できないケースがあり、これらの問題は、特に臍帯血のように液量の少ない血液から造血幹細胞等の細胞を回収する際には看過できない問題となっていた。
特表2001-518792号公報 国際公開第98/32840号 特開平10-313855号公報
 上記のような事情に鑑み、本発明の目的は、細胞の回収効率が向上した細胞分離フィルターを提供することにある。
 また、本発明の他の目的は、前記細胞分離フィルターを用いて、目的の細胞を効率よく回収することができる細胞分離方法を提供することにある。
 本発明者らは、かかる課題を解決すべく、鋭意検討を進めた。その結果、細胞分離フィルターに充填される細胞分離材における液体導入口側又は液体導出口側の表面に、所定の外形を有する***部を形成させることで、細胞の回収率が有意に向上し、しかも細胞分離材に捕捉されたまま回収されない血液成分も顕著に低減できることを見出し、本発明を完成するに至った。
 即ち、本発明の要旨は以下の通りである。
 〔1〕細胞分離材が充填された容器を有し、該容器の上部又は下部のいずれかに液体導入口、その反対側に液体導出口を備えたフィルターであって、
 充填された前記細胞分離材の表面に、液体導入口側又は液体導出口側の少なくとも1方向へ向けて***している***部を有しており、
 前記***部の高さyと長さxが式(1)及び/又は式(2):
y=-ax+bx     式(1)
y=ax-bx      式(2)
の関係を満たし、且つaとbの比率(a/b)が0.03~0.25の範囲である***部を1つ以上有するフィルター。
 〔2〕前記細胞分離材の表面に、***部を少なくとも2つ及び***部の間に凹部を少なくとも1つ有する前記〔1〕に記載のフィルター。
 〔3〕***部の数をn、***部間凹部の数をmとした場合において、以下の(c)又は(d):
(c)n=m+1;
(d)n=m+2;
の関係を満たす前記〔2〕に記載のフィルター。
 〔4〕aが0.030~0.120及び/又はbが0.3~1.5である前記〔1〕~〔3〕のいずれかに記載のフィルター。
 〔5〕細胞分離材の厚みの最小値が1.20×10~1.26×10mm、細胞分離材の厚みの最大値が1.26×10~2.10×10mmである前記〔1〕~〔4〕のいずれかに記載のフィルター。
 〔6〕***部の断面積の和が2.08×10~1.09×10mm、***部以外の断面積が5.40×10~5.61×10mmである前記〔1〕~〔5〕のいずれかに記載のフィルター。
 〔7〕前記容器の内側に突き出しており、前記容器に内蔵している前記細胞分離材の上部側又は下部側の表面を押圧可能な突起部を前記容器内部の上部側又は下部側に備え、前記突起部の先端面の面積が前記細胞分離材の表面積の30%以下である前記〔1〕~〔6〕のいずれかに記載のフィルター。
 〔8〕前記突起部の先端面の形状が線形、棒形、多角形、楕円形、円形又はこれらの形状のうち2種以上を組み合わせた形状である前記〔7〕に記載のフィルター。
 〔9〕前記突起部を少なくとも2つ以上有する前記〔7〕又は〔8〕に記載のフィルター。
 〔10〕前記〔1〕~〔9〕のいずれかに記載のフィルターの液体導入口から細胞含有液を導入し、フィルター内に充填されている細胞分離材と接触させて、白血球及び/又は単核球を細胞分離材に捕捉させる第一の工程、及び、
 前記フィルター内に回収液を導入し、白血球及び/又は単核球を細胞分離材から回収する第二の工程
を含む、細胞分離方法。
 〔11〕前記第二の工程が、フィルターの液体導出口から回収液を導入し、液体導入口から白血球及び/又は単核球を回収する工程である、前記〔10〕に記載の細胞分離方法。
 〔12〕さらに、前記第一の工程の前に、フィルターの液体導入口から生理食塩水又は緩衝液を導入し、細胞分離材と生理食塩水又は緩衝液とを接触させる工程を含む、前記〔10〕又は〔11〕に記載の細胞分離方法。
 〔13〕さらに、前記第一の工程の後であって第二の工程の前に、フィルターの液体導入口から生理食塩水又は緩衝液を導入して、フィルターの液体導出口から導出することにより、フィルター内の夾雑成分を除去する工程を含む、前記〔10〕~〔12〕のいずれかに記載の細胞分離方法。
 本発明のフィルターを用いることにより、血液中の細胞を効率よく回収することができる。
本発明のフィルターの1例を示す概略図である。 図1に示すフィルター上面図と、該フィルターのA-A部における縦断面図である。 図2に示すフィルターの要部拡大縦断面図である。 ***部の外形を測定する際の測定箇所を示す概略図である。 フィルターのノズル付押え部材の1例を示す概略図である。 図2に示すフィルターに充填された細胞分離材の縦断面図である。 実施例1で用いたフィルターの構造を示す概略図である。 実施例1で用いたフィルターに充填された細胞分離材11の外形の1例を示す縦断面図である。 実施例1で用いた細胞分離用デバイスの回路の概略図である。 実施例1、3及び比較例1において細胞回収後のフィルターから取り出した細胞分離材を置き、そこに残存する血液成分をそれぞれ比較した際の図である。
 以下、本発明を詳細に説明する。
 本発明のフィルターは、細胞分離材が充填された容器を有し、該容器の上部又は下部のいずれかに液体導入口、その反対側に液体導出口を備えたフィルターであって、
 充填された前記細胞分離材の表面に、液体導入口側又は液体導出口側の少なくとも1方向へ向けて***している***部を有しており、
 前記***部の高さyと長さxが式(1)及び/又は式(2):
y=-ax+bx     式(1)
y=ax-bx      式(2)
の関係を満たし、且つaとbの比率(a/b)が0.03~0.25の範囲である***部を1つ以上有することを特徴とする。
(細胞分離材)
 本発明で使用される細胞分離材の形態は、特に限定されず、連通孔構造の多孔質体、繊維の集合体、織物等が挙げられる。好ましくは繊維で構成されるものであり、より好ましくは不織布である。
 前記細胞分離材の材質としては、例えば、ポリプロピレン、ポリエチレン、高密度ポリエチレン、低密度ポリエチレン等のポリオレフィン、ポリエステル、塩化ビニル、ポリビニルアルコール、塩化ビニリデン、レーヨン、ビニロン、ポリスチレン、アクリル(ポリメチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリロニトリル、ポリアクリル酸、ポリアクリレート等)、ナイロン、ポリウレタン、ポリイミド、アラミド、ポリアミド、キュプラ、ポリパラフェニレンテレフタルアミド、カーボン、フェノール、テトロン、パルプ、麻、セルロース、ケナフ、キチン、キトサン、ガラス、綿等を挙げることができる。中でも、ポリエステル、ポリプロピレン、アクリル、レーヨン、ナイロン、ポリブチレンテレフタラート、ポリエチレンテレフタラート等の高分子を好適に用いることができる。前記細胞分離材は、これらの材質のうち、単一の材質からなってもよいし、複数の材質を組み合わせた複合材からなってもよい。
 本発明で用いられる細胞分離材の平均繊維径としては、目的の細胞の種類に合わせて適宜選択すればよく特に限定はない。
 前記細胞分離材の性能をより向上させるために、細胞分離材に親水化処理を行ってもよい。親水化処理することにより、目的とする必要細胞以外の細胞における非特異的な捕捉の抑制、細胞含有液を偏り無く細胞分離材中に通過させ、性能の向上、必要細胞の回収効率向上等を付与することができる。親水化処理方法としては、水溶性多価アルコール、又は水酸基、カチオン基もしくはアニオン基を有するポリマー、あるいはその共重合体(例えば、ヒドロキシエチルメタクリレート、ジメチルアミノエチルメタクリレート、あるいはその共重合体等)を吸着させる方法、水溶性高分子(ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール等)を吸着させる方法、疎水性膜に親水性高分子を固定する方法(例えば、表面に親水性モノマーを化学的に結合させる方法等)、電子線照射する方法、含水状態で細胞分離フィルターに放射線を照射することで親水性高分子を架橋不溶化する方法、乾燥状態で熱処理することにより親水性高分子を不溶化し固定する方法、疎水性膜の表面をスルホン化する方法、親水性高分子と疎水性ポリマードープとの混合物から膜をつくる方法、アルカリ水溶液(NaOH、KOH等)処理により膜表面に親水基を付与する方法、疎水性多孔質膜をアルコールに浸漬した後、水溶性ポリマー水溶液で処理乾燥後、熱処理や放射線等で不溶化処理する方法、又は界面活性作用を有する物質を吸着させる方法等が挙げられる。
 親水性高分子としては、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、エチレン-ビニルアルコール共重合体、ポリヒドロキシエチルメタクリレート、多糖類(セルロース、キチン、キトサン等)、水溶性多価アルコール等が挙げられる。
 疎水性ポリマーとしては、ポリスチレン、ポリ塩化ビニル、ポリオレフィン(ポリエチレン、ポリプロピレン等)、アクリル、ウレタン、ビニロン、ナイロン、ポリエステル等が挙げられる。
 さらに回収目的とする細胞の細胞分離材への付着性を向上させるために、細胞付着性のタンパク質や、目的とする幹細胞上に発現されている特異的抗原に対する抗体を、細胞分離材上に固定化してもよい。細胞付着性のタンパク質としては、フィブロネクチン、ラミニン、ビトロネクチン、コラーゲン等が挙げられる。抗体としては、CD73、CD90、CD105、CD166、CD140a、CD271等が挙げられるが、これらに限定されるものではない。また、固定化方法としては、例えば、一般的なタンパク質の固定化方法である、臭化シアン活性化法、酸アジド誘導体法、縮合試薬法、ジアゾ法、アルキル化法、架橋法等の方法を任意に用いることができる。
(容器)
 前記細胞分離材を充填する容器は、上部又は下部のいずれかに液体導入口、その反対側に液体導出口を備える。
 液体導入口とは前記容器外部から前記容器内部に目的の細胞を含有する液体(細胞含有液ともいう)を導入する口をいう。
 液体導出口とは、前記液体導入口の上下方向に対して反対側に設けられる口であり、主に細胞分離操作の際に細胞分離材を通過した液体を容器外部へ排出するための口をいう。
 前記液体導入口及び液体導出口はそれぞれ1つ以上あればよく、数については特に限定はない。
 また、前記液体導入口又は液体導出口が設けられる上部又は下部の位置としては、特に限定はない。
 なお、細胞分離材に捕捉された細胞は、本発明のフィルターを組み合わせた細胞分離デバイスの構成によっては、前記液体導入口から容器外部に排出される場合もある。
 前記容器の形状としては、前記細胞分離材を内蔵できる形状であればよく、球、コンテナ、カセット、バッグ、チューブ等、任意の形態であってよい。好ましい具体例としては、例えば、容量約0.1~400mL程度、直径0.1~15cm程度の筒状容器や、一片の長さ0.1~20cm程度の正方形又は長方形で、厚みが0.1~5cm程度の四角柱状容器等が挙げられる。
 例えば、図1、2(a)、2(b)に示すように円筒形状のフィルター1では、円筒状の本体3と、その上部及び下部にある開口部に蓋をすることができるノズル付押え部材4、5と、前記本体3とノズル付押え部材4、5とを固定するためのキャップ6、7とで構成される。
 前記ノズル付押え部材4、5には、容器2内部に液体を導入するための液体導入口9、容器2から液体を排出するための液体導出口10がそれぞれ設けられている。なお、前記液体導入口9及び液体導出口10は液体を送液するためのチューブを接続しやすくするために、ノズルで構成されている。前記ノズルの形状や大きさについては特に限定はない。
 前記ノズル付押え部材4、5は栓型になっており、円筒状の前記本体3の内腔に押し込むことで、本体3の内面と接して固定される。
 前記ノズル付押え部材4、5と本体3との接触面にはシール8が設けられている。このシール8により、ノズル付押え部材4、5と本体3との気密性を確実にして外部からの微生物等の侵入を防ぐことができる。前記シール8としては、例えば、図2(b)に示すように、ノズル付押え部材4、5の表面に設けた溝の周囲に樹脂製のパッキンを設けることが挙げられるが、シール8の配置や構成については特に限定はない。
 前記ノズル付き押え部材4、5は、前記本体3に直接固定できるようにしてもよい(図示せず)。ノズル付き押え部材と本体とが接触する面に、例えば、ネジを設けることでノズル付き押え部材と本体とを固定することができる。この場合、図2(b)に示す前記キャップ6、7は不要となる。
 前記容器2内では、前記細胞分離材11が積層されて充填される。例えば、繊維径の異なる細胞分離材11を2層以上積層したフィルターとすることにより、細胞を捕捉する箇所が分散され、目詰まりの発生が抑制されるとともに、フィルターからの細胞の分離・回収も効率的に行うことができる。なお、繊維径が同じ細胞分離材が連続して積層された部分は、積層された細胞分離材の枚数によらず1層として扱う。
 また、前記容器2には、液体導入口9側に独立して細胞分離材11内に留まっている非付着細胞を洗浄するための洗浄液導入口を設けたり(図示せず)、液体導出口10側に独立して細胞分離材に捕捉された細胞を回収するための細胞回収液導入口(細胞含有液及び洗浄液の流れとは逆方向から細胞回収液を流すため)を備えたりしてもよい(図示せず)。
 前記容器2は、任意の構造材料を使用して作製することができる。構造材料としては、具体的には非反応性ポリマー、生体親和性金属、合金、ガラス等が挙げられる。非反応性ポリマーとしては、アクリロニトリルブタジエンスチレンターポリマー等のアクリロニトリルポリマー;ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレンとヘキサフルオロプロピレンのコポリマー、ポリ塩化ビニル等のハロゲン化ポリマー;ポリアミド、ポリイミド、ポリスルホン、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリビニルクロリドアクリルコポリマー、ポリカーボネートアクリロニトリルブタジエンスチレン、ポリスチレン、ポリメチルペンテン等が挙げられる。容器の材料として有用な金属材料(生体親和性金属、合金)としては、ステンレス鋼、チタン、白金、タンタル、金、及びそれらの合金、並びに金メッキ合金鉄、白金メッキ合金鉄、コバルトクロミウム合金、窒化チタン被覆ステンレス鋼等が挙げられる。特に好ましくは、耐滅菌製を有する素材であるが、具体的には、ポリプロピレン、ポリ塩化ビニル、ポリエチレン、ポリイミド、ポリカーボネート、ポリスルホン、ポリメチルペンテン等が挙げられる。
(***部)
 本発明のフィルターは、前記容器内に充填された前記細胞分離材の表面に、液体導入口側又は液体導出口側の少なくとも1方向へ向けて***している***部を有する。
 前記***部とは、図2(b)、3(a)、3(b)に示すように、細胞分離材11の表面における***した部分(12a、12a’、12a’’、12b、12b’、12b’’)をいう。より詳細には、図3(a)、3(b)に示すように、フィルターの液体導入口9及び液体導出口10に対して平行な細胞分離材11の縦断面において、液体導入口9側又は液体導出口10側の細胞分離材11の表面の最も低い部分(液体導入口9側であれば部分13)から盛り上がった部分であり、液体導入口9側であれば、頂点(14a、14a’、14a’’)を有する部分をいう。例えば、図2(b)、3(a)、3(b)では、頂点14aを有する***部12a、頂点14a’を有する12a’、頂点14a’’を有する12a’’という3つの***部が、凹部15a、15a’を境としてつながった形状をしている。
 前記***部間の凹部とは、***部同士の間の凹んだ部分をいう。例えば、図2(b)に示すフィルター1は、液体導入口9側の細胞分離材11の表面に3つの***部12a、12a’、12a”、その間に2つの凹部15a、15a’を有する。また液体導出口10側の細胞分離材11の表面に3つの***部12b、12b’、12b”、その間に2つの凹部15b、15b’を有する、
 前記***部間の凹部15a、15bは、いずれも略山形の2つの***部の間で、曲線状に凹んだ谷形状となっている。なお、本発明では、前記凹部はフィルター内に導入される細胞含有液と直接接触できる状態の凹部をいう。したがって、後述のように、前記ノズル付押え部材4、5に突起部16を設けることで、前記細胞分離材11の表面を押圧して生じた凹んだ部分では、突起部と細胞分離材の表面とが接触しているため、***部間凹部には該当しない。
 前記のような***部や***部間凹部を細胞分離材の表面に形成する方法としては、前記細胞分離材の表面に予め***部や***部間凹部が形成される加工、例えば、エンボス加工等が施された細胞分離材を用いることが挙げられる。
 また、細胞分離材の材質等によらずに簡便に***部等を形成できる観点から、ノズル付押え部材4、5の容器2の本体3の内腔に差し込む先端面に、図5に示すように、突起部16a、16bを設けることで、容器2内に充填した前記細胞分離材11の表面を押圧することができる。そして、前記突起部16a、16bは、前記容器2の内腔側に突き出ており、前記容器2に充填している前記細胞分離材11の上部側又は下部側の表面を押圧することで、***部を形成することができる。
 前記突起部16a、16bの先端面の形状としては、特に限定はないが、線形、棒形、多角形、楕円形、円形又はこれらの形状のうち2種以上を組み合わせた形状が挙げられる。
 中でも、前記突起部を少なくとも2つ以上組み合わせると、突起部で細胞分離材の表面を押圧した際に、***部間にひずみが生じて***部間凹部を形成しやすくなる。
 例えば、図2(a)に示すように、略円形の突起部16aで細胞分離材11の周囲を丸形に押圧し、さらに略120°間隔で周囲から中心部方向にかけて棒形の突起部16bで押圧すると、押圧されていない細胞分離材11の表面にひずみが生じて、図2(b)、図3(a)、3(b)に示すように複数の***部及びこれらの***部の間に略谷状の複数の凹部が形成される。具体的には、***部12a、12a’’は、略円形の突起部16a及び突起部16b同士で3方向を囲まれた細胞分離材11の表面に生じる大きい***部であり、***部12a’は液体導入口9の下方向にある中央付近の小さい***部である。したがって、液体導入口9側の細胞分離材11の表面には***部が4つ生じている。また、前記大きい***部12aと小さい***部12a’との間(前記***部12a’’と12a’との間も同じ)には凹部15aが生じるので、液体導入口9側の細胞分離材11の表面には凹部が全部で3つ生じている。
 前記突起部の先端面の面積としては、***部、特に***部間凹部の形成をし易くする観点から、前記細胞分離材の表面積の30%以下であることが好ましい。
 なお、突起部の先端面の面積は、定規等を用いて測定して計算すればよいし、また、先端面の断面積における縦の長さ(y)、横の長さ(x)を測定するための原点(0、0)を定め、原点以外の複数点を測定し、エクセルを用いて積分計算することで近似面積を算出すればよい。
 なお、前記突起部の先端面は、図5に示すように、全ての突起部の高さを一致するように調整してもよいし、突起部の高さを変えるように調整して先端面に立体的な段差があるように調整してもよい。
 本発明では、前記***部のうち少なくとも1つの***部の高さyと長さxが式(1)及び/又は式(2):
y=-ax+bx     式(1)
y=ax-bx      式(2)
の関係を満たし、且つaとbの比率(a/b)が0.03~0.25の範囲であることを特徴とする。
 なお、a、bはともに定数であり、0を超える数値である。
 前記式(1)は、細胞分離材の上下方向に平行な縦断面において、上側表面にある略放物線状の***部の外形を示す式である。
 また、前記式(2)は、細胞分離材の上下方向に平行な縦断面において、下側表面にある略放物線状の***部の外形を示す式である。
 したがって、本発明のフィルターとは、前記細胞分離材の上下表面のいずれかに形成される***部の少なくとも1つの***部の外形が前記式(1)及び/又は式(2)を満たすフィルターをいう。
 前記***部の外形を確認するための縦断面の位置としては、略放物線状の断面が確認できればよく、特に限定はない。
 前記縦断面に示される***部の断面の高さと長さが、それぞれ***部の高さy、***部の長さxとなる。y、xともに、***部の最も低い位置を原点(0、0)として設定し、yについては上方向の高さを「+」、下方向の高さを「-」で示す。
 前記aは、前記式(1)又は式(2)を満たす***部における***の大きさを示す指標であり、前記aの値が大きくなるほど、上方向又は下方向に高く***していることになる。一方、aの値が小さくなるほど、上方向又は下方向に低く***していることになる。
 フィルター自体の構造及び機能を維持し、細胞回収時の理想的な通液を行う観点から、前記aとしては0.030~0.120であることが好ましく、0.036~0.115であることがより好ましい。また、前記bとしては0.3~1.5であることが好ましく、0.4~1.4であることがより好ましい。
 前記***部の縦断面におけるy、xの原点(0、0)を定め、原点以外の複数点を測定し、それらの数値を計算ソフトに入力して近似曲線を計算することでa、bを含む前記式(1)又は式(2)を算出することができる。
 測定する点としては、原点を含めて少なくとも5点以上が好ましい。
 なお、前記原点は、縦断面における***部が生じる最も低い位置に設定すればよい。また前記原点は***部毎に定める。
 例えば、図4(a)に示す上方向の***部12aの外形を測定する場合、まず原点O1を定め、次いで、この原点O1から4点(R1、R2、R3、R4)の位置を、R1(y1、x1)、R2(y2、x2)、R3(y3、x3)、R4(y4、x4)として測定する。そして、これらの数値を表計算ソフトに入力して近似曲線を計算することで式(1)を算出することができる。
 一方、図4(b)に示す下方向の***部12bの外形を測定する場合、***部12aとは別の原点O2を定め、次いで、この原点O2から4点(R5、R6、R7、R8)の位置を、R5(-y5、x5)、R6(-y6、x6)、R7(-y7、x7)、R8(-y8、x8)として測定する。
 そして、これらの数値を表計算ソフトに入力して近似曲線を計算することで式(2)を算出することができる。
 本発明のフィルターでは、前記式(1)又は式(2)において、aとbの比率(a/b)が0.03~0.25の範囲に調整される。
 前記a/bを前記の範囲に調整することで、細胞の回収効率が高くなるという効果が奏される。
 前記a/bと細胞の回収率との技術的な関係については、細胞分離材には細胞回収に適した理想的な形があり、複数の連なった***部を有したような形状を表面に有することで細胞回収を行う際に理想的な通液がなされ、結果として細胞回収効率が向上するということが考えられる。
 前記a/bとしては、0.05~0.10がより好ましく、0.06~0.093がさらに好ましい。
 本発明のフィルターでは、細胞の回収効率が高くなる観点から、液体導入口側又は液体導出口側の少なくとも1つの表面に、***部を少なくとも2つ及び***部の間に凹部を少なくとも1つ有することが好ましい。
 本発明では、前記細胞分離材の表面の前記***部の数をn、前記***部間凹部の数をmとした場合において、以下の(c)又は(d):
(c)n=m+1;
(d)n=m+2;
の関係を満たすようにすることで、細胞回収効率を高くすることが可能になる。
 なお、n、mは整数であり、n≧2、m≧1である。
 なお、前記式(c)、(d)でいう***部及び***部間凹部は、フィルターに充填した細胞分離材の縦断面に見られる***部及び***部間凹部である。
 前記式(c)の関係を満たす細胞分離材としては、液体導入口側又は液体導出口側の一方に***部がある細胞分離材が挙げられる。例えば、図5に示すノズル付押え部材4をフィルター1の液体導入口側又は液体導出口側に用いた場合、細胞分離材11の表面において、4つの***部及び3つの***部間凹部が生じるため、前記式(c)の関係を満たすことになる。
 前記式(c)の関係を満たす他形態の細胞分離材としては、例えば、ノズル付押さえ部材4に存在する突起部16bの数が図5記載の数とは異なったノズルを用いた場合等が挙げられる。例えば、前記突起部16bが2つある場合、突起部同士の間に2つの楕円形***部及び中央部に1つの円形***部があり、楕円形***部と円形***部との間に凹部が1つあるため、細胞分離材の表面には***部3つ***部間凹部2つが生じる。
 また、前記突起部16bが4つある場合、突起部同士の間に4つの楕円形***部及び中央部に円形***部があり、楕円形***部と円形***部との間に凹部が1つあるため、細胞分離材の表面には***部5つ、***部間凹部4つが生じる。
 前記式(d)の関係を満たす細胞分離材としては、液体導入口側及び液体導出口側の両方に***部がある細胞分離材が挙げられる。例えば、図5に示すノズル付押え部材4をフィルター1の液体導入口側及び液体導出口側に用いた場合、上下の両面の表面上に***部及び***部間凹部が生じるため、***部が8個、***部間凹部6個を有する細胞分離材となり、前記式(d)の関係を満たすことになる。
 前記式(d)の関係を満たす他形態の細胞分離材としては、例えば、上記と同様、図5に記載の突起部16bの数とは異なったノズルを用いた場合等が挙げられる。例えば、前記突起部16bが2個あるノズル付押え部材4を用いた場合、上下の細胞分離材の表面には***部6つ***部間凹部4つが生じる
また、前記突起部16bが4個あるノズル付押え部材4を用いた場合、細胞分離材の表面には***部10個、***部間凹部8個が生じる。
 従来の細胞分離用フィルターでは、充填される細胞分離材の表面は、蓋や隔壁等により上下方向に対して略平面状に抑えられているのが一般的である。したがって、前記***部、中でも***部間凹部は、従来のフィルターに充填される細胞分離材表面には見られない形状である。
 本発明のフィルターでは、前記細胞分離材の厚みの最小値としては、1.20×10~1.26×10mmであることが好ましい。また、細胞分離材の厚みの最大値としては、1.26×10~2.10×10mmが好ましく、1.55×10~2.05×10mmであることがより好ましい。
 本発明のフィルターでは、前記細胞分離材の厚みの最大値について、例えば、図2(b)では、***部12a、12bを含む細胞分離材の厚みが他の***部を含む細胞分離材の厚みより大きい場合、この厚みXが細胞分離材11の最大値となる。
 また、細胞分離材11の厚みの最小値とは、例えば、図2(b)では、前記突起部16aで押えられた部分の細胞分離材11の表面同士の厚みYとなる。
 細胞分離材11の表面上の***部は、立体的な形状で存在しているため、細胞分離材の中心に対して様々な角度で細胞分離材11の縦断面を観察して、その中で最大の厚み、最小の厚みを計測すればよい。
 なお、フィルターの縦断面はX線CTによる撮影を行うことで観察しており、細胞分離材11の縦断面の各部の長さについては、CTデータビューアー(ボリュームグラフィックス社製、商品名「myVGL2.2」)を用いて測定すればよい。
 また、本発明のフィルターでは、前記***部の断面積の和が2.08×10~1.09×10mm、***部以外の断面積が5.40×10~5.61×10mmとすることでより細胞回収に適した***部の外形に調整することができるという利点がある。
 前記細胞分離材の断面積とは、前記容器の上下方向に対して平行に前記細胞分離材を切断したときの縦断面積をいう。
 前記***部の断面積とは、上方向又は下方向に対して***部の高さが最大となる位置を含む部分で前記細胞分離材を上下方向に切断したときの断面積をいう。また、前記***部以外の断面積とは、前記のように細胞分離材を上下方向に切断して測定した総断面積から、***部の断面積を引いた面積をいう。
 例えば、図2(b)に示すフィルター1の細胞分離材11の縦断面を図6に示す。
 細胞分離材の断面積は、図示される全ての断面積(α+β+α’)である。
 一方、***部の断面積については、液体導入口9側の断面積αと液体導出口10側の断面積α’とがあり、これらの和(α+α’)が***部の断面積となる。
 そして、前記細胞分離材の断面積から***部の断面積を引いた残りの断面積(β)が***部以外の断面積となる。
 前記比率(α+α’)/βは、0.23~0.42の範囲に調整することがより好ましい。
(細胞)
 本発明で目的とされる細胞とは、白血球や単核球であればよく、特に限定されないが、例えば人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、間葉系幹細胞、脂肪由来間葉系細胞、脂肪由来間質幹細胞、多能性成体幹細胞、骨髄ストローマ細胞、造血幹細胞等の多分化能を有する生体幹細胞、T細胞、B細胞、キラーT細胞(細胞障害性T細胞)、NK細胞、NKT細胞、制御性T細胞等のリンパ球系の細胞、マクロファージ、単球、樹状細胞、顆粒球、赤血球、血小板等、神経細胞、筋細胞、線維芽細胞、肝細胞、心筋細胞等の体細胞又は、遺伝子の導入や分化等の処理を行った細胞が例示される。
(細胞分離方法)
 本発明のフィルターは、前記のように様々な細胞、特に、白血球、造血幹細胞及び/又は単核球の回収に好適に使用される。
 白血球としては、末梢血中の好中球、好酸球、好塩基球等の顆粒球及び単球、リンパ球等の単核球が例示される。
 前記フィルターを用いる細胞分離方法としては、前記フィルターの液体導入口から細胞含有液を導入し、フィルター内に充填されている細胞分離材と接触させて、白血球及び/又は単核球を細胞分離材に捕捉させる第一の工程、及び、
 前記フィルター内に回収液を導入し、白血球及び/又は単核球を細胞分離材から回収する第二の工程
を含む方法が挙げられる。
 前記細胞含有液としては、前記白血球、造血幹細胞及び/又は単核球を含む細胞を含む懸濁液であれば特に限定されず用いることができるが、例えば、臍帯等の生体組織を酵素処理や破砕処理や抽出処理や分解処理や超音波処理等をした後の懸濁液、血液や骨髄液、臍帯血等の体液、血液や骨髄液を密度勾配遠心処理やろ過処理や酵素処理や分解処理や超音波処理等の前処理をして調製された懸濁液等が例示される。
 また、前記に例示した白血球等の細胞を生体外で培養液や刺激因子等を用いて培養や増殖等をした後の懸濁液であってもよい。
 前記第一の工程において、前記フィルターの液体導入口から前記細胞含有液を導入する際には、前記細胞含有液を加圧することでフィルター内への細胞含有液の導入を行い、細胞含有液をフィルター内に充填されている細胞分離材と接触させて、白血球及び/又は単核球を前記細胞分離材に捕捉させる。前記加圧の程度としては、特に限定はない。
 前記細胞分離材は、白血球及び/又は単核球を捕捉できるものを使用すればよい。
 なお、白血球以外の血液成分については、不要成分として除いてもよいし、必要に応じて回収してもよく、特に限定はない。
 前記第二の工程において、白血球等を捕捉したフィルターには回収液を導入することで、フィルターから白血球等を回収液中に分離させ、この白血球等を含む回収液を液体導入口から回収専用のバッグ等に導入することで白血球等を回収することができる。
 前記回収液は、フィルターの液体導出口からフィルター内に導入される。
 前記回収液は、細胞と等張である溶液であれば特に限定はないが、生理食塩液やリンゲル液等の注射溶剤として使用実績のあるものや、緩衝液、細胞培養用の培地等が挙げられる。特に、培養工程を経る際はそのまま培養が行える培地が好ましく、培養工程を経ずそのまま治療に用いる際は、生理食塩液等の点滴等に使用実績のある等張液等、安全性が保証されている回収液を使用することが好ましい。
 本発明において前記第一工程及び第二工程は、前記室温下で行ってもよいし、冷蔵温度下で行ってもよい。冷蔵温度下で行う場合、冷蔵された細胞含有液を処理することが挙げられる。細胞含有液の保管としては、冷蔵温度に設定した冷蔵庫による保管、ウォーターバスによる保管、及びドライアイスによる保管等が挙げられる。汎用性から冷蔵庫で保存することが好ましい。冷蔵温度としては、1℃以上6℃以下が好ましく、より好ましくは3℃以上5℃以下が好ましい。冷蔵温度が1℃未満では細胞は死滅し、6℃を超えて保存すると細菌が繁殖しコンタミネーションを起こす可能性がある。
 また、細胞分離材の状態を整えて、細胞を捕捉しやすくする観点から、前記第一の工程の前に、フィルターの液体導入口から生理食塩水又は緩衝液を導入し、細胞分離材と生理食塩水又は緩衝液とを接触させてもよい。
 また、前記第一の工程の後であって第二の工程の前に、フィルターの液体導入口から生理食塩水又は緩衝液を導入して、フィルターの液体導出口から導出することにより、フィルター内の夾雑成分を除去することで、回収される細胞内へ不要成分を低減することができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
(実施例1)
 図7に示すように、直径52mmのポリカーボネート製の円筒状容器本体3に、ポリブチレンテレフタラート製の円形の不織布(細胞分離材11)112枚を、積層状態で充填し、前記容器本体3の上下の開口部に図5で示すノズル付押え部材4、5を差し込み、その上からキャップ6、7でネジ止めすることで図1、2(a)、2(b)に示すような構造を有するフィルター1を作製した。
 前記フィルター1では、上下の2つのノズル付押え部材4、5の突起部16b同士の向きを揃えて、突起部16bの先端面で押えた不織布の厚みが細胞分離材の厚みの最小値となるようにした。なお、上下の突起部16bの先端面間の距離は12mm(細胞分離材の厚みの最小値)に調整した。
 ノズル付押え部材4、5の突起部16bの断面を含む位置で前記細胞分離材11の縦断面を観察したところ、図8に示すように液体導入口側の表面に***部12a、12a’、凹部15a、及び液体導出口側の表面に***部12b、12b’、凹部15bが確認された。なお、***部12a’、12b’はいずれも突起部16b同士の間にあり、上面から見た形状が略楕円形状の大きな***部であり、***部12a、12bはいずれも細胞分離材11の中央部に付近にあり、上面から見た形状が略円形状の小さな***部であった。したがって、***部は全部で8個、***部間凹部は6個あった。
 その他様々な角度から前記細胞分離材11の縦断面を見た結果、本断面で細胞分離材の厚みが最大となっており、より***部の高さが高くなっていた。
 次いで、前記4つの***部(12a、12a’、12b、12b’)についてそれぞれの高さ及び長さの原点O1、O2、O3、O4を定め、それぞれの原点から、複数の地点の***部の高さ及び長さを測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の***部について、Microsoft社製表計算ソフト「Excel」の表計算機能を利用して、「多項式近似」で「2次」を選択して近似曲線を算出したところ、以下のようになった。
上側***部12a :y=-0.0865x+1.051x
上側***部12a’:y=-0.1153x+1.231x
下側***部12b :y=0.0729x-0.9183x
下側***部12b’:y=0.0473x-0.8018x
 また、観察する縦断面の位置を前記細胞分離材の中心から3°程度回転し、上側表面の前記突起部16bの横にある***部を含む縦断面を観察し、この***部についても新たに原点を定め、その原点から複数の地点の***部の高さ及び長さを測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 前記***部の外形について、Microsoft社製ソフト「Excel」の表計算機能を利用して、近似曲線を算出したところ、以下のようになった。
 y=-0.0367x+0.4315x
 なお、フィルター1に充填される細胞分離材の状態は以下の通りであった。
 
(細胞分離材の厚み)
 フィルター内の細胞分離材の厚みの最大値(X):18.46mm
 フィルター内の細胞分離材の厚みの最小値(Y):12.09mm
 液体導入口側の***部間凹部から液体導出口側の***部間凹部までの細胞分離材の厚み:13.96~16.92(mm)
 
(細胞分離材の断面積)
 ***部の断面積の和:144.93~182.46mm
 ***部以外の断面積:545.86mm
(実施例2)
 前記フィルター1における上下の2つのノズル付押え部材4、5の突起部16b同士の向きを揃えず、中心から60°回転させて固定した以外は、実施例1と同様にしてフィルター1を作製した。
 次いで、上側及び下側にある任意に選択した***部(12a、12b)についてそれぞれの高さ及び長さの原点を定め、その原点から、複数の地点の***部の高さ及び長さを測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以上の***部の外形について、Microsoft社製ソフト「Excel」の表計算機能を利用して、「多項式近似」で「2次」を選択して近似曲線を算出したところ、以下のようになった。
上側***部12a :y=-0.0387x+0.6829x
下側***部12b :y=0.0362x-0.4469x
(実施例3)
 積層する細胞分離材の枚数を140枚にした以外は、実施例1と同様にしてフィルター1を作製した。細胞分離材の厚みの最小値は変えず、積層枚数を変えることで圧縮を強め、細胞分離材がより***し易いようにした。
 次いで、上側の***部12aについてそれぞれの高さ及び長さの原点Oを定め、その原点から、複数の地点の***部の高さ及び長さを測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 前記***部の外形について、Microsoft社製ソフト「Excel」の表計算機能を利用して、「多項式近似」で「2次」を選択して近似曲線を算出したところ、以下のようになった。
 上側***部12a :y=-0.1094x+1.4385x
 実施例1~3の結果より、フィルター1に充填されている細胞分離材表面にある様々な***部の外形について、上側の***部の外形は前記式(1)、下側の***部の外形は前記式(2)で示すことができることがわかる。
(比較例1)
 事前に積層状態の高さが12mmとなるようにプレスして、細胞分離材の表面が略平面状として***部の高さを抑えた不織布(112枚)を充填した以外は、実施例1と同様にして、フィルター1を作製した。
 次いで、下側の***部12bについて高さ及び長さの原点を定め、その原点から、複数の地点の***部の高さ及び長さを測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 前記***部について、Microsoft社製ソフト「Excel」の表計算機能を利用して、「多項式近似」で「2次」を選択して近似曲線を算出したところ、以下のようになった。
***部12b :y=0.0163x-0.2543x
(試験例1)
 次に、実施例1~3及び比較例1で得られた前記細胞分離フィルター1の液体導入口9と液体導出口10に、図9で示した回路を接続して細胞分離用デバイス25を作製した。
 図9に示す前記回路において、前記液体導入口9にはチューブ17aを接続し、このチューブ17aには、細胞懸濁液を収容する手段18及びプライミング用生理食塩水を収容する手段19に接続したチューブ17bと、フィルターを通過した回収液を収容する手段(回収バッグ)20及び回収バッグ等に回収された回収液を回収する手段21に接続したチューブ17cとを、流路切り替え手段22aを介して接続した。
 前記チューブ17bには流路切り替え手段22bを介して、細胞懸濁液を収容する手段18とプライミング用生理食塩水を収容する手段19とを接続した。
 前記チューブ17cには流路切り替え手段22cを介して、前記フィルターを通過した回収液を収容する手段20と回収バッグ等に回収された回収液を回収する手段21とを接続した。
 また、前記液体導出口10にはチューブ17dを接続し、流路切り替え手段22dを介して、フィルターを通過した細胞懸濁液を収容する手段(廃液バッグ)23及び回収液を回収する手段24と接続した。
 次に前記細胞分離用デバイス25を用いて細胞分離操作を実施した。なお、各流路切り替え手段の操作は、フィルター1に通液する液体の種類、送液する目的の手段に応じて、適宜行った。
 まず、プライミング用生理食塩水を収容する手段19としてシリンジを用いて手押しで生理食塩水150mLをフィルター1内に通液してプライミング操作を行い、廃液バッグ23にフィルター1を通過した生理食塩水を回収した。
 次に細胞懸濁液を収容する手段18からCPD抗凝固の新鮮ウシ血液100mL(血液保存液C液(CPD):血液=1:4で混合した20%CPDを含むウシ抹消血)をフィルター1に重力を利用して通液して、血液中の白血球を細胞分離材に捕捉させた。通過液は廃液バッグ23に回収した。
 その後、回収液を回収する手段24としてシリンジを用いて手押しでHES(ヒドロキシエチルスターチ)溶液を液体導出口10からフィルター1内に通液し、液体導入口9から回収バッグ20に白血球を回収した。
 処理前血液の血算、回収後の溶液の血算には血球カウンター(商品名「K-4500」、シスメックス社製)を用い、それぞれの測定結果より白血球の回収率を算出した。
 実施例1及び2で得られたフィルターでは、細胞(白血球)回収率は75%~82%となった。実施例3で得られたフィルターでは、細胞回収率は76%となり、細胞回収率(性能)の低下は見られなかった。
 一方、比較例1では、細胞回収率が65%となり、細胞回収率(性能)の低下が見られた。
(試験例2)
 白血球回収後の実施例1、3及び比較例1で使用したフィルターからそれぞれ細胞分離材を取り出して、白色の吸収紙の上に置いた。
 その結果、図10に示すように、実施例1及び3で得られた細胞分離材ではほぼ細胞分離材本来の色(白色)となっていたのに対して、比較例1で得られた細胞分離材からは血液由来の成分が多量に残存しており、赤色に染まっていた。
 したがって、実施例1及び3で使用したフィルター1のように、充填された前記細胞分離材の表面に、液体導入口側又は液体導出口側の少なくとも1方向へ向けて***している***部を形成し、且つ前記細胞分離材の外形が所定の式を満たすことで、血液成分の回収ロスを減らすことができ、目的の細胞をより効率よく回収することができることがわかる。
 本発明で回収さられた細胞は、細胞を培養し増殖させ提供することも、増殖させずに使用することも可能であり、治療用細胞として用いてもよい。具体的な治療対象としては、虚血性疾患、血管系疾患が挙げられるが、これらに限定されるものではない。
 本発明で得られた必要細胞を、分化誘導剤等により分化誘導することにより軟骨損傷患者に移植する細胞、骨疾患患者に移植する細胞、心筋疾患患者又は血管疾患患者に移植する細胞、神経組織を損傷した患者に移植する細胞として使用することができるが、これらに限定されるものではない。
 該分化誘導剤としては、目的とする細胞を分化誘導できるものを使用することが好ましいが、軟骨への分化誘導剤としてはデキサメタゾン、TGFβ、インシュリン、トランスフェリン、エタノールアミン、プロリン、アスコルビン酸、ピルビン酸塩、セレン等が挙げられ;骨への分化誘導剤としてはデキサメタゾン、β-グリセロリン酸、ビタミンC、アスコルビン酸塩等が挙げられ、;心筋への分化誘導剤としてはEGF、PDGF、5-アザシチジン等が挙げられ;神経への分化誘導剤としてはEGF、bFGF、bHLH等が挙げられ;血管への分化誘導剤としてはbFGF、VEGF等が挙げられる。
 本発明により回収した細胞や増殖させた細胞を凍結保存してもよい。細胞のへのダメージを少なくできる点から、液体窒素を用いて凍結保存することが好ましい。また、凍結保存した細胞を融解し、ヒトや動物への移植、研究への使用、又は再度培養することができる。
 本発明により回収した細胞や増殖させた細胞を用いて薬品組成物を製造することができる。前記細胞を製薬的に許容される添加剤と混合することで医薬品組成物を製造することができる。製薬的に許容される添加剤としては、凝固剤、ビタミン等の栄養源、抗生物質等が挙げられる。
 1 フィルター
 2 容器
 3 本体
 4、5 ノズル付押え部材
 6、7 キャップ
 8 シール
 9 液体導入口
 10 液体導出口
 11 細胞分離材
 12a、12a’、12b、12b’ ***部
 13 細胞分離材11の表面の最も低い部分
 14a、14a’、14a’’ ***部の頂点
 15a、15a’、15b、15b’ ***部間凹部
 16、16a、16b 突起部
 17a、17b、17c、17d チューブ
 18 細胞懸濁液を収容する手段
 19 プライミング用生理食塩水を収容する手段
 20 フィルターを通過した回収液を収容する手段(回収バッグ)
 21 回収バッグ等に回収された回収液を回収する手段
 22a、22b、22c、22d 流路切り替え手段
 23 フィルターを通過した細胞懸濁液を収容する手段(廃液バッグ)
 24 回収液を回収する手段
 25 細胞分離用デバイス

Claims (13)

  1.  細胞分離材が充填された容器を有し、該容器の上部又は下部のいずれかに液体導入口、その反対側に液体導出口を備えたフィルターであって、
     充填された前記細胞分離材の表面に、液体導入口側又は液体導出口側の少なくとも1方向へ向けて***している***部を有しており、
     前記***部の高さyと長さxが式(1)及び/又は式(2):
    y=-ax+bx     式(1)
    y=ax-bx      式(2)
    の関係を満たし、且つaとbの比率(a/b)が0.03~0.25の範囲である***部を1つ以上有するフィルター。
  2.  前記細胞分離材の表面に、***部を少なくとも2つ及び***部の間に凹部を少なくとも1つ有する請求項1に記載のフィルター。
  3.  ***部の数をn、***部間凹部の数をmとした場合において、以下の(c)又は(d):
    (c)n=m+1;
    (d)n=m+2;
    の関係を満たす請求項2に記載のフィルター。
  4.  aが0.030~0.120及び/又はbが0.3~1.5である請求項1~3のいずれかに記載のフィルター。
  5.  細胞分離材の厚みの最小値が1.20×10~1.26×10mm、細胞分離材の厚みの最大値が1.26×10~2.10×10mmである請求項1~4のいずれかに記載のフィルター。
  6.  ***部の断面積の和が2.08×10~1.09×10mm、***部以外の断面積が5.40×10~5.61×10mmである請求項1~5のいずれかに記載のフィルター。
  7.  前記容器の内側に突き出しており、前記容器に内蔵している前記細胞分離材の上部側又は下部側の表面を押圧可能な突起部を前記容器内部の上部側又は下部側に備え、前記突起部の先端面の面積が前記細胞分離材の表面積の30%以下である請求項1~6のいずれかに記載のフィルター。
  8.  前記突起部の先端面の形状が線形、棒形、多角形、楕円形、円形又はこれらの形状のうち2種以上を組み合わせた形状である請求項7に記載のフィルター。
  9.  前記突起部を少なくとも2つ以上有する請求項7又は8に記載のフィルター。
  10.  請求項1~9のいずれかに記載のフィルターの液体導入口から細胞含有液を導入し、フィルター内に充填されている細胞分離材と接触させて、白血球及び/又は単核球を細胞分離材に捕捉させる第一の工程、及び、
     前記フィルター内に回収液を導入し、白血球及び/又は単核球を細胞分離材から回収する第二の工程
    を含む、細胞分離方法。
  11.  前記第二の工程が、フィルターの液体導出口から回収液を導入し、液体導入口から白血球及び/又は単核球を回収する工程である、請求項10に記載の細胞分離方法。
  12.  さらに、前記第一の工程の前に、フィルターの液体導入口から生理食塩水又は緩衝液を導入し、細胞分離材と生理食塩水又は緩衝液とを接触させる工程を含む、請求項10又は11に記載の細胞分離方法。
  13.  さらに、前記第一の工程の後であって第二の工程の前に、フィルターの液体導入口から生理食塩水又は緩衝液を導入して、フィルターの液体導出口から導出することにより、フィルター内の夾雑成分を除去する工程を含む、請求項10~12のいずれかに記載の細胞分離方法。
     
PCT/JP2015/067335 2014-06-30 2015-06-16 フィルター内の***部の外形を最適化したフィルター WO2016002505A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531248A JP6646575B2 (ja) 2014-06-30 2015-06-16 フィルター内の***部の外形を最適化したフィルター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-135058 2014-06-30
JP2014135058 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002505A1 true WO2016002505A1 (ja) 2016-01-07

Family

ID=55019052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067335 WO2016002505A1 (ja) 2014-06-30 2015-06-16 フィルター内の***部の外形を最適化したフィルター

Country Status (2)

Country Link
JP (1) JP6646575B2 (ja)
WO (1) WO2016002505A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010394A (ja) * 2014-06-30 2016-01-21 株式会社カネカ フィルター内の***部の比率を最適化したフィルター
WO2018194061A1 (ja) * 2017-04-17 2018-10-25 株式会社カネカ 細胞分離用フィルター容器、細胞分離用フィルター装置
WO2020054755A1 (ja) * 2018-09-11 2020-03-19 日産化学株式会社 分離デバイスおよびそれを用いて分離対象物を分離する方法
CN114126773A (zh) * 2019-09-17 2022-03-01 株式会社村田制作所 过滤回收装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216179A (ja) * 1997-11-28 1999-08-10 Terumo Corp 白血球除去器、血液処理回路および血液処理方法
JP2003274923A (ja) * 2002-03-22 2003-09-30 Terumo Corp 単球捕捉フィルターおよび単球分離培養装置、並びに樹状細胞回収方法
JP2004130085A (ja) * 2002-07-10 2004-04-30 Maco Pharma 血小板産物のための選択的白血球除去ユニット
JP2005137453A (ja) * 2003-11-04 2005-06-02 Asahi Kasei Medical Co Ltd 血液処理フィルター
JP2008086353A (ja) * 2006-09-29 2008-04-17 Asahi Kasei Medical Co Ltd 血液処理フィルターおよび血液処理方法
US20080223776A1 (en) * 2005-10-10 2008-09-18 Chryslian Sumian Filtration unit for the selective elimination of a target substance
WO2012039400A1 (ja) * 2010-09-21 2012-03-29 旭化成メディカル株式会社 血液処理フィルター、及び血液処理フィルターの製造方法
WO2012070622A1 (ja) * 2010-11-25 2012-05-31 株式会社カネカ 白血球または単核球の分離方法、分離材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216179A (ja) * 1997-11-28 1999-08-10 Terumo Corp 白血球除去器、血液処理回路および血液処理方法
JP2003274923A (ja) * 2002-03-22 2003-09-30 Terumo Corp 単球捕捉フィルターおよび単球分離培養装置、並びに樹状細胞回収方法
JP2004130085A (ja) * 2002-07-10 2004-04-30 Maco Pharma 血小板産物のための選択的白血球除去ユニット
JP2005137453A (ja) * 2003-11-04 2005-06-02 Asahi Kasei Medical Co Ltd 血液処理フィルター
US20080223776A1 (en) * 2005-10-10 2008-09-18 Chryslian Sumian Filtration unit for the selective elimination of a target substance
JP2008086353A (ja) * 2006-09-29 2008-04-17 Asahi Kasei Medical Co Ltd 血液処理フィルターおよび血液処理方法
WO2012039400A1 (ja) * 2010-09-21 2012-03-29 旭化成メディカル株式会社 血液処理フィルター、及び血液処理フィルターの製造方法
WO2012070622A1 (ja) * 2010-11-25 2012-05-31 株式会社カネカ 白血球または単核球の分離方法、分離材

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010394A (ja) * 2014-06-30 2016-01-21 株式会社カネカ フィルター内の***部の比率を最適化したフィルター
WO2018194061A1 (ja) * 2017-04-17 2018-10-25 株式会社カネカ 細胞分離用フィルター容器、細胞分離用フィルター装置
WO2020054755A1 (ja) * 2018-09-11 2020-03-19 日産化学株式会社 分離デバイスおよびそれを用いて分離対象物を分離する方法
CN112996901A (zh) * 2018-09-11 2021-06-18 日产化学株式会社 分离装置及使用该分离装置对分离对象物进行分离的方法
JPWO2020054755A1 (ja) * 2018-09-11 2021-08-30 日産化学株式会社 分離デバイスおよびそれを用いて分離対象物を分離する方法
US20220041971A1 (en) * 2018-09-11 2022-02-10 Nissan Chemical Corporation Separation device and method for separating to-be-separated material using same
JP7501365B2 (ja) 2018-09-11 2024-06-18 日産化学株式会社 分離デバイスおよびそれを用いて分離対象物を分離する方法
CN114126773A (zh) * 2019-09-17 2022-03-01 株式会社村田制作所 过滤回收装置
CN114126773B (zh) * 2019-09-17 2023-10-03 株式会社村田制作所 过滤回收装置

Also Published As

Publication number Publication date
JPWO2016002505A1 (ja) 2017-04-27
JP6646575B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
US9649424B2 (en) Blood component separation system and separation material
US20180002663A1 (en) Method and material for separating leukocytes or mononuclear cells
JP5975985B2 (ja) 単核球調製材、及び前記調製材を利用した単核球調製方法
JP6196222B2 (ja) 細胞濃縮液の製造方法
JP6685231B2 (ja) 中空糸膜モジュールのプライミング方法
US20200046891A1 (en) Filter container for separating cells and filter device for separating cells
JP6646575B2 (ja) フィルター内の***部の外形を最適化したフィルター
JP2016116465A (ja) 細胞濃縮液の製造方法
JP6409371B2 (ja) フィルター内の***部の比率を最適化したフィルター
EP2843035B1 (en) Nucleated-cell capturing filter and nucleated-cell preparation method using same
WO2018062075A1 (ja) 懸濁液を無菌的に処理するための器具
JP2009102049A (ja) 細胞含有組成物調製容器、および該細胞含有組成物調製容器を備えた細胞含有組成物製造器具
JP2013034436A (ja) 細胞懸濁液の濃縮方法
JP2015012837A (ja) 細胞濃縮液の製造方法
JP6169972B2 (ja) 幹細胞分離方法
JP6615577B2 (ja) 細胞分離フィルターを用いた細胞濃縮液の製造方法
JP5923292B2 (ja) 骨髄液処理方法
JP2020195330A (ja) 細胞分離フィルター装置、及び細胞濃縮液の製造方法
JP2018186813A (ja) 単球を含む細胞含有液の取得方法
JP2019024426A (ja) 細胞分離装置、及び単核球を含む細胞含有液を取得する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815983

Country of ref document: EP

Kind code of ref document: A1