WO2015196932A1 - 一种硬币检测*** - Google Patents

一种硬币检测*** Download PDF

Info

Publication number
WO2015196932A1
WO2015196932A1 PCT/CN2015/081290 CN2015081290W WO2015196932A1 WO 2015196932 A1 WO2015196932 A1 WO 2015196932A1 CN 2015081290 W CN2015081290 W CN 2015081290W WO 2015196932 A1 WO2015196932 A1 WO 2015196932A1
Authority
WO
WIPO (PCT)
Prior art keywords
coin
tested
magnetic field
detecting system
radial
Prior art date
Application number
PCT/CN2015/081290
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
郭海平
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2016574264A priority Critical patent/JP6388672B2/ja
Priority to EP15811990.9A priority patent/EP3159854B1/en
Priority to US15/321,156 priority patent/US10777031B2/en
Publication of WO2015196932A1 publication Critical patent/WO2015196932A1/zh

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the present invention relates to a coin detecting system, and more particularly to a coin detecting system for forming a magnetic gradiometer using a magnetoresistive sensor.
  • Coins are an indispensable part of modern society and a necessary tool for material exchange between people. They have a huge amount of liquidity in daily life. As coins are used more and more widely, the dependence of coins on the face value, authenticity judgment and coin inventory application in transportation, finance and other institutions is increasing. At present, there are mainly the following methods for coin counting and authenticity identification: (1) judging the authenticity of the coin by applying an alternating magnetic field to the coin and then measuring its induced eddy current field, and then distinguishing the authenticity. The axial magnetic field of the coin is measured by using an induction coil or a combination of an induction coil and a Hall sensor, which can only measure a distinguishing characteristic signal for different coins having similar resonant frequencies, amplitudes or phases.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a coin detecting system which is simple in structure, high in accuracy, high in sensitivity, and wide in dynamic linear range.
  • a coin detecting system including an excitation coil, a radial magnetic gradiometer and an axial magnetic gradiometer;
  • the excitation coil is configured to provide an axial excitation magnetic field to the coin to be tested, and the excitation magnetic field induces a vortex inside the coin to be tested, and the eddy current generates an induced magnetic field;
  • the radial magnetic gradiometer includes at least two radial magnetoresistive sensors and the axial magnetic gradiometer includes at least two axial reluctance sensors, the radial reluctance sensor and the axial reluctance sensor Separatingly distributed symmetrically with respect to a center plane or a center point of the excitation coil; the radial magnetic gradiometer is configured to detect a magnetic field component of the induced magnetic field on opposite sides of the excitation coil and along a radial direction of the coin to be tested a difference between the magnetic field components of the induced magnetic field on opposite sides of the excitation coil and along the axial direction of the coin to be tested, wherein the corresponding sides are The opposite sides of the excitation coil in the axial direction;
  • the excitation coil is positioned in such a manner that a surface of the coin to be tested is parallel to a center plane of the excitation coil, and a distance between a surface of the coin to be tested and the center plane is at least the excitation Half the height of the coil.
  • the coin detecting system further comprises: a signal excitation source and a driving circuit for exciting the excitation coil for amplifying a simulation of signals generated by the radial magnetic gradiometer and the axial magnetic gradiometer a front end circuit, and a processor for calculating a real portion and a imaginary portion of the amplified signal output by the analog front end circuit.
  • the signal generated by the signal excitation source contains an alternating current signal
  • the alternating current signal includes at least one frequency component
  • the processor calculates a real partial quantity and a imaginary partial quantity of the amplified signal corresponding to each frequency component.
  • the signal excitation source is further configured to apply a DC signal during the duration of the AC signal, and the excitation magnetic field generated by the excitation coil is a superposition field of a DC magnetic field and an AC magnetic field.
  • the material of the coin to be tested is a ferromagnetic material or the surface of the coin to be tested is coated with a ferromagnetic material, after the DC magnetic field is applied, the amplitude of the output signal is lowered; When the material of the coin is measured as a conductor, the DC magnetic field does not affect the amplitude of the output signal.
  • the coin detecting system is capable of detecting the magnitudes of the real and imaginary components corresponding to each type of coin.
  • the excitation coil is an array of a single coil or a plurality of coils, and the excitation coil has a circumferential diameter greater than or equal to a diameter of the coin to be tested.
  • the radial magnetic gradiometer is located at an inner edge of the excitation coil and below the edge of the coin to be tested, the radial magnetoresistive sensor being symmetrical with respect to a center of the excitation coil;
  • a gradiometer is located inside the excitation coil and located below or near the center of the coin to be tested, and the axial reluctance sensor is symmetrically distributed along the axial direction of the excitation coil with respect to the center of the excitation coil.
  • the coin detecting system further includes a first PCB and a second PCB, wherein the radial magnetoresistive sensors are respectively located on the first PCB and the second PCB, and the axial magnetoresistive sensors are respectively located in the first On a PCB and a second PCB, the excitation coil is fixed between the first PCB and the second PCB; the coin to be tested is located above the first PCB and the second PCB.
  • the radial magnetoresistive sensor is an X-axis linear sensor
  • the axial magnetoresistive sensor is a Z-axis linear sensor
  • a sensitive direction of the X-axis linear sensor is parallel to a radial direction of the coin to be tested.
  • the sensitive direction of the Z-axis linear sensor is parallel to the axial direction of the coin to be tested.
  • the X-axis linearity sensor, the Z-axis linearity sensor is a single resistance, a half bridge or a full bridge structure, and the single resistance, the half bridge bridge arm or the full bridge bridge arm is electrically connected by one or more The connected magnetoresistive element is composed.
  • the magnetic resistance element is a Hall, SMRE (semiconductor magnetoresistive element), AMR, GMR or TMR element.
  • the coin detecting system further comprises a positioning device for positioning a position at which the coin to be tested is placed such that the coin to be tested is close to the radial magnetic gradiometer and the shaft To one side of the magnetic gradiometer.
  • the present invention has the following technical effects:
  • Figure 1 is a schematic view showing the structure of a coin detecting system in the present invention.
  • Figure 2 is a partial cross-sectional view showing a portion of the coin detecting system of the present invention.
  • Figure 3 is a partial plan view showing a portion of the coin detecting system of the present invention.
  • 4A-4B are graphs showing the relationship between the real and imaginary parts of the magnetic field around the coin and the measured position when the measurement frequency is 1 kHz.
  • 5A-5B are graphs showing the relationship between the real and imaginary parts of the magnetic field around the coin and the measured position when the measurement frequency is 10 kHz.
  • 6A-6D are calculation results of the relationship between the real part amount and the imaginary part quantity and frequency of the eddy current field induced by coins of different materials.
  • Figures 7A-7B are test result curves for 1- and 0.1-dollar coins.
  • Figure 8 shows the measurement results of 10 types of coins at frequencies of 160 Hz and 9800 Hz.
  • Figures 9A-9B are output curves of two types of coins measured by an axial magnetic gradiometer and a radial magnetic gradiometer, respectively.
  • Figure 10 is a graph showing the measurement of the magnetic field components of the radial and axial directions of different types of coins at different frequencies.
  • Figure 1 is in the present invention Schematic diagram of a coin detecting system including a signal excitation source 1, a driving circuit 2, an exciting coil 3, a coin to be tested 4, a radial magnetic gradient meter 5, an axial magnetic gradient meter 6, an analog front end circuit 7, and Processor 8.
  • the excitation coil 3 In operation, after the signal excitation source 1 and the driving circuit 2 excite the excitation coil 3, the excitation coil 3 generates an excitation magnetic field 10 parallel to the axial direction of the coin 4 to be tested, under the action of the excitation magnetic field 10, A vortex is generated inside the coin 4 to induce a magnetic field 11, and the radial magnetic gradiometer 5 and the axial magnetic gradiometer 6 respectively detect the magnetic field components of the corresponding sides of the excitation coil 3 in the radial and axial directions of the coin 4 to be tested.
  • the difference between the two sides here refers to the opposite sides along the axial direction of the excitation coil (shown by the dashed line in the longitudinal direction of FIG.
  • the processor 8 processes the amplified signal sent by the analog front end circuit 7 and outputs it through the output terminal 9.
  • the processor 8 can include an MCU or a DSP, and the output signal is a voltage signal, which can be converted.
  • the magnetic field signal includes a real part and an imaginary part, and the output signal is related to the material, size, color of the coin, and the position of the coin relative to the radial magnetic gradiometer 5 and the axial magnetic gradiometer 6 in order to avoid the position. Do not And the impact, so that the coin to be tested with the positioning post is positioned. Different coins have their standard values.
  • the signal excitation source 1 is a sinusoidal signal, but it may also be another AC signal containing one or more frequency components.
  • the detection is performed, and the measurement result is compared with the standard value.
  • a DC magnetic field is applied to the coin 4 to be tested.
  • the DC magnetic field can be generated by an applied permanent magnet, and a DC signal can be generated by applying the DC excitation signal to the excitation coil 3. In the present embodiment, the latter is used, and then the output signal is detected again.
  • the measurement result has no effect on the coin of the material, but the material is ferromagnetic material or the surface is coated with a ferromagnetic layer (such as nickel).
  • the measurement result of the coin will change, and the amplitude of the output signal will show a decreasing trend, which can further improve the accuracy of distinguishing the authenticity of the coin.
  • excitation coils which respectively comprise two X-axis magnetoresistive sensors 15, 15' and two Z-axis magnetoresistive sensors 16, 16' , where X
  • the linear magnetoresistive sensors 15, 15' are located not only at the inner edge of the excitation coil 3 but also symmetrically with respect to the center of the excitation coil 3, and are also symmetrically distributed below the edge of the coin 4 to be tested, and the Z-axis magnetoresistive sensors 16, 16' are not only Relative to the center of the excitation coil, it is also distributed below the center of the coin 4 to be tested, or may be located below the center of the coin 4 to be tested, and the X-axis magnetoresistive sensor 15, 15'
  • the radial magnetic gradiometer and the axial magnetic gradiometer can measure the corresponding magnetic field gradient.
  • the X-axis magnetoresistive sensors 15, 15' may also be distributed on the same left or right side of the excitation coil 3, and are vertically symmetrical.
  • the radial magnetic gradiometer and the axial magnetic gradiometer can also be located outside the excitation coil, which is not limited in the present invention.
  • the X-axis magnetoresistive sensor 15 and the Z-axis linear magnetoresistive sensor 16 are disposed on the PCB 13 adjacent to the coin to be tested, X The linear magnetoresistive sensor 15' and the Z-axis linear magnetoresistive sensor 16' are disposed on the PCB 14 away from the coin 4 to be tested, and the PCB 13 and the PCB 14 are the same.
  • the sensitive direction of the linear magnetoresistive sensor 15, 15' is parallel to the radial direction of the coin 4 to be tested, that is, from the center of the coin 4 to be tested to the edge thereof, and the sensitive direction of the Z-axis magnetoresistive sensor 16, 16' is to be tested.
  • the axial direction of the coin 4 is parallel, that is, from the center of the coin 4 to be tested, and in FIG. 2, since the PCB 13 and the PCB 14 are placed in opposite directions, the X-axis magnetoresistive sensor 15, 15' and the Z-axis magnetoresistive sensor 16 are provided.
  • the sensitive directions of 16' are each anti-parallel.
  • the X-axis linearity sensors 15, 15' and the Z-axis linear magnetoresistive sensors 16, 16' are gradient full bridge structures, the bridge arms of which are comprised of one or more TMR elements that are electrically connected to each other.
  • the X-axis linearity sensors 15, 15' and the Z-axis linear magnetoresistive sensors 16, 16' are single-resistor or gradient half-bridge structures, and the bridge arms may also be connected by one or more Halls, AMRs or GMRs that are electrically connected to each other.
  • the excitation coil 3 is located between the two PCBs 13, 14 and encloses the X-axis linearity sensors 15, 15' and the Z-axis linear magnetoresistive sensors 16, 16'.
  • the excitation coil 3 is a single coil, but if necessary, the signal is enhanced, and The magnetic field generated around the coin 4 to be tested is made more uniform.
  • an array composed of a plurality of coils may be used, and the circumference diameter of the excitation coil 3 is greater than or equal to the diameter of the coin 4 to be tested, and the excitation is performed.
  • the coil 3 is positioned by the upper and lower PCBs 13, 14 such that the coin 4 to be tested is located on one side thereof.
  • the coin 4 to be tested is located above it, in detail, the surface of the coin 4 to be tested and the excitation coil 3
  • the center faces shown by the horizontal dashed lines in Fig. 2) are parallel, and the distance between the surface of the coin 4 to be tested and the center plane of the exciting coil 3 is at least half of the height H of the exciting coil.
  • the direction of the current in the excitation coil 3 is as shown by 17, 18 in Fig. 2, that is, from 17, from 18, the current direction is parallel to the center plane of the excitation coil, and is generated at the X-axis magnetoresistive sensors 15 and 15'.
  • the direction of the magnetic field is the same, and the directions of the magnetic fields generated at the Z-axis magnetoresistive sensors 16 and 16' are also the same, but their sensitive directions are opposite, so that they can cancel each other by calculation, and the measurement results are not affected.
  • X-axis magnetoresistive sensor 15 and Z-axis magnetoresistive sensor 16 from the coin to be tested 4 More recently, the eddy current field induced by the coin 4 is measured to form a gradient magnetic field measurement.
  • the positioning post 12 of Figures 2 and 3 is used to position the coin 4 to be tested, thereby The influence of the position at which the coin 4 to be tested is placed is not affected, and the position at which the positioning post 12 is placed is not limited to that shown in the drawing, and may be placed, for example, on the opposite side of the position shown in the drawing.
  • FIGS. 4A-4B are graphs showing the relationship between the real part and the imaginary part of the eddy current field induced by the stainless steel and the nickel-plated coin when the measurement frequency is 1 kHz, and the measured position. Position in the figure 0 Represents the center point of the coin. Among them, curves 19 and 22 are simulation results of an axial magnetic gradiometer, and curves 20 and 21 are simulation results of a radial magnetic gradiometer. As can be seen from Fig. 4A, the axial magnetic field component near the center of the coin is largest and evenly distributed, and the radial magnetic field component is largest at the edge of the coin. As can be seen by comparing Figs. 4A and 4B, the real part of the eddy current field induced by the coin The amount is more affected by the measured position.
  • 5A-5B are graphs showing the relationship between the real part and the imaginary part of the magnetic field around the coin made of stainless steel and nickel plated at a measurement frequency of 10 kHz, respectively.
  • curves 23 and 26 are simulation results of an axial magnetic gradiometer
  • curves 24 and 25 are simulation results of a radial magnetic gradiometer. The same conclusion as in Fig. 4 can also be drawn from Fig. 5.
  • the coin in Figure 6A is made of pure nickel.
  • the coin in Figure 6B is made of stainless steel with a thickness of 100um.
  • the coin in Figure 6C is made of stainless steel with a thickness of 10um.
  • the material in Figure 6D is pure.
  • Stainless steel, curves 27, 31, 35, 39 are the real part measured by the radial magnetic gradiometer, curves 28, 32, 36, 40 are the imaginary parts measured by the radial magnetic gradiometer, curve 29, 33 37, 41 is the real part measured by the axial magnetic gradiometer, and curves 30, 34, 38, 42 are the imaginary parts measured by the axial magnetic gradiometer.
  • Figures 7A-7B are test result curves for 1- and 0.1-element coins, respectively.
  • the curves 44, 45 and the curves 48, 49 are the real part and the imaginary part measured by the axial magnetic gradiometer, respectively; the curves 43, 46 and 47, 50 are respectively measured by the radial magnetic gradiometer. Real part and imaginary part. Comparing the two figures, it can be seen that the coins with different denominations have different output results. By comparing the measurement results with the standard values, the face value and its true and false can be judged. Some coins have the same or very similar measurement results at a certain frequency and in a certain direction, which makes it difficult to judge the face value and its true and false. In this case, it is necessary to combine the output results corresponding to multiple frequencies to judge.
  • FIG. 10 and FIG. 8 corresponding to FIG.
  • FIG. 9A is a graph showing the relationship between the amplitude and the frequency of the magnetic field component in the Z-axis direction using an axial magnetic gradiometer
  • FIG. 9B is a graph showing the relationship between the amplitude and the frequency of the magnetic field component in the X-axis direction using a radial magnetic gradiometer.
  • the measurement results of the two coins in the axial direction are very similar, in the radial direction (ie, the X-axis direction).
  • the measurement results are different in the frequency range of 2.5 to 10 kHz. If only the axial magnetic field component is measured, it is difficult to judge the surface value, and only the measurement result in the X-axis direction can accurately determine the face value of the coin.
  • Some coins may have different measurement results in the axial direction, and the measurement results are similar in the radial direction. It can be seen that only when the magnetic field components in the radial and axial directions are simultaneously measured, the face value of the coin can be more accurately distinguished. Then compare with the standard results, and then you can judge its authenticity.
  • the coin detecting system of the present invention simultaneously measures the radial and axial magnetic field components, so the measurement result is used to judge the face value and authenticity of the coin to be higher.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种硬币检测***,包括激励线圈(3)、径向磁梯度计(5)、轴向磁梯度计(6)、信号激励源(1)、驱动电路(2)、模拟前端电路(7)及处理器(8)。在信号激励源(1)和驱动电路(2)对激励线圈(3)进行激励后,激励线圈(3)产生了平行于硬币(4)轴向的激励磁场(10),在激励磁场(10)的作用下,硬币(4)通过内部产生的涡流进而产生感生磁场(11),径向磁梯度计(5)和轴向磁梯度计(6)检测该磁场(11)在硬币(4)径向和轴向的磁场分量,并将检测到的信号输送给模拟前端电路(7)进行放大,处理器(8)对模拟前端电路(7)输送的放大信号进行处理并输出,根据输出信号的谐振幅度以及相位等信息,获知硬币(4)的材料、花色、面值等。

Description

一种硬币检测*** 技术领域
本发明涉及一种硬币检测***,尤其涉及一种使用磁阻传感器形成磁梯度计的硬币检测***。
背景技术
[0002] 硬币是现代社会不可缺少的一部分,是人与人进行物质交换的必要工具,在日常生活中具有庞大的流通量。随着硬币使用越来越广泛,交通、金融等机构中对于硬币的面值、真伪判断以及硬币的清点应用的依赖程度越来越高。目前,对于硬币清点及真伪鉴定主要有以下几种方式:(1)通过对硬币施加交变磁场,然后测量其感生涡流场来判断硬币的材料,进而辨其真伪,这种方法主要是通过采用感应线圈或者是感应线圈和霍尔传感器组合来测量硬币的轴向磁场,这只能测得一种辨别特征信号,对于那些具有相似谐振频率、振幅或相位的不同硬币,这种方法明显不能准确判断真伪。(2)使用多个磁阻传感器构成传感单元阵列来检测硬币周围的磁场分布,从而来判断硬币面值及其真伪,如专利申请CN103617669A公开的一种硬币检测装置,这种装置也只能检测一个方向的信号,对于那些具有相似直径,并在同一方向上具有相似响应的硬币,这种方法的判断结果精确度也不够高,并且其测量结果包含有所施加的脉冲场所产生新的信号,需要后续处理来将该信号去除,操作过程相对比较复杂,并且会降低其分辨率。(3)采用对发射线圈进行可变频率输入,在不同频率点测量接收器的输出来检验硬币的真伪,如美国专利申请US4086527所公开的检验方法,该方法虽然能获知输出信号的振幅、相位、谐振频率等信息,但其仍然采用的是单轴传感器,很难辨别一些具有相似特征的硬币。此外,还有采用脉冲场激励再移除脉冲场以及相移等方法来检验真伪,这些方法都只能提供一种辨别特征的信号,不能准确分辨出那些具有该种相似特征的硬币。随着硬币伪造技术变得越来越高超,现有的硬币检测装置不能满足现代交通和金融等机构中对硬币检测的高精度要求。
发明内容
[0003] 本发明的目的在于克服现有技术所存在的缺陷,提供一种结构简单、准确度高、灵敏度高、动态线性范围宽的硬币检测***。
为实现上述目的,本发明采用以下技术方案:一种硬币检测***,该硬币检测***包括激励线圈,径向磁梯度计和轴向磁梯度计;
所述激励线圈用于向待测硬币提供轴向的激励磁场,所述激励磁场在所述待测硬币内部感生涡流,所述涡流产生感生磁场;
所述径向磁梯度计包括至少两个径向磁阻传感器且所述轴向磁梯度计包括至少两个轴向磁阻传感器,所述径向磁阻传感器和所述轴向磁阻传感器各自分别相对所述激励线圈的中心面或中心点对称分布;所述径向磁梯度计用于检测所述感生磁场在所述激励线圈对应两侧且沿所述待测硬币径向上的磁场分量之差,所述轴向磁梯度计用于检测所述感生磁场在所述激励线圈对应两侧且沿所述待测硬币轴向上的磁场分量之差,所述对应两侧是指沿着所述激励线圈轴向上相对的两侧;
所述激励线圈被定位,其定位方式使得所述待测硬币的表面与所述激励线圈的中心面平行,并且所述待测硬币的表面与所述中心面之间的距离至少为所述激励线圈高度的一半。
优选的,所述硬币检测***进一步包括:用于激励所述激励线圈的信号激励源和驱动电路,用于放大所述径向磁梯度计和所述轴向磁梯度计所产生的信号的模拟前端电路,以及用于计算所述模拟前端电路输出的放大信号的实部分量和虚部分量的处理器。
优选的,所述信号激励源所产生的信号含有交流信号,所述交流信号包含有至少一个频率分量;所述处理器计算与每一频率分量相对应的放大信号的实部分量和虚部分量。
优选的,所述信号激励源还用于在所述交流信号存续期间施加直流信号,所述激励线圈所产生的激励磁场为直流磁场和交流磁场的叠加场。
优选的,当所述待测硬币的材料为铁磁材料或所述待测硬币的表面涂覆有铁磁材料时,施加所述直流磁场后,输出信号的幅值会降低;当所述待测硬币的材料为导体时,所述直流磁场不影响输出信号的幅值。
优选的,所述硬币检测***能检测出每种类型的硬币所对应的实部分量和虚部分量的幅值。
优选的,所述激励线圈为单个线圈或多个线圈相叠加组成的阵列,所述激励线圈所围成的圆周直径大于或等于所述待测硬币的直径。
优选的,所述径向磁梯度计位于所述激励线圈的内部边缘且位于所述待测硬币边缘的下方,所述径向磁阻传感器相对所述激励线圈的中心对称;所述轴向磁梯度计位于所述激励线圈的内部且位于或接近所述待测硬币的中心的下方,所述轴向磁阻传感器沿所述激励线圈的轴向相对所述激励线圈的中心对称分布。
优选的,所述硬币检测***还包括第一PCB和第二PCB,所述径向磁阻传感器分别位于所述第一PCB和第二PCB上,所述轴向磁阻传感器分别位于所述第一PCB和第二PCB上,所述激励线圈被固定于所述第一PCB和第二PCB之间;所述待测硬币位于第一PCB和第二PCB的上方。
优选的,所述径向磁阻传感器为X轴线性传感器,所述轴向磁阻传感器为Z轴线性传感器,所述X轴线性传感器的敏感方向与所述待测硬币的径向平行,所述Z轴线性传感器的敏感方向与所述待测硬币的轴向平行。
优选的,所述X轴线性传感器、所述Z轴线性传感器为单电阻、半桥或全桥结构,所述单电阻、半桥的桥臂或全桥的桥臂由一个或多个相互电连接的磁电阻元件组成。
优选的,所述磁性电阻元件为Hall, SMRE(半导体磁电阻元件), AMR,GMR或TMR元件。
优选的,所述硬币检测***还包括一定位装置,所述定位装置用于定位所述待测硬币所放置的位置,使得所述待测硬币接近于所述径向磁梯度计和所述轴向磁梯度计的一侧。
与现有技术相比,本发明具有以下技术效果:
  1. (1) 使用径向和轴向磁梯度计来感测待测硬币所感生的涡流磁场的径向和轴向磁场分量,实现双轴测量,并且不受激励磁场的影响,这能大大提高测量的准确度;
  1. (2) 在没有放置待测硬币时,两个磁梯度计不会显示任何激励信号,这能使得激励信号不会产生饱和效应,并能尽可能的提高增益,从而提高分辨率;
  1. (3) 径向和轴向磁梯度计是由线性磁阻传感器构成,例如TMR传感器,这能提高硬币检测***的灵敏度以及增大动态线性范围;此外,相对于线圈,磁阻传感器体积更小、成本更低,这使得硬币检测***的结构更加紧凑,还能节省成本;
  1. (4) 本发明中的两个磁梯度计能温度补偿***响应,消除热漂移误差。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中硬币检测***的结构示意图。
图2为本发明中硬币检测***部分细节剖面图。
图3为本发明中硬币检测***部分细节俯视图。
图4A-4B为测量频率为1KHz时,硬币周围磁场的实部和虚部分量与测量位置的关系曲线。
图5A-5B为测量频率为10KHz时,硬币周围磁场的实部和虚部分量与测量位置的关系曲线。
图6A-6D为不同材质的硬币所感生的涡流场的实部分量和虚部分量与频率之间关系的计算结果。
图7A-7B为1元和0.1元硬币的测试结果曲线。
图8为10种类型硬币在频率为160Hz和9800Hz时的测量结果。
图9A-9B分别为轴向磁梯度计和径向磁梯度计对两种类型硬币进行测量得到的输出曲线。
图10为不同类型的硬币在不同频率下径向和轴向的磁场分量测量结果图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例
图 1 为本发明中 的硬币检测***的结构示意图,该硬币检测***包括信号激励源1、驱动电路2、激励线圈3、待测硬币4、径向磁梯度计5、轴向磁梯度计6、模拟前端电路7以及处理器8。工作时,在信号激励源1和驱动电路2对激励线圈3进行激励后,激励线圈3产生了平行于待测硬币4轴向的激励磁场10,在该激励磁场10的作用下,在待测硬币4内部产生涡流进而感生磁场11,径向磁梯度计5和轴向磁梯度计6分别检测该磁场在待测硬币4的径向和轴向方向上激励线圈3对应两侧的磁场分量之差,这里的对应两侧是指沿着激励线圈轴向(如图2中纵向的虚线所示)上相对的两侧,在本实施例中是指上下两侧,然后将检测到的信号输送给模拟前端电路7进行放大,处理器8对模拟前端电路7输送的放大信号进行处理并通过输出端9输出,处理器8可包含有MCU或DSP,所输出的信号为电压信号,可转换为磁场信号,该磁场信号包含有实部和虚部,输出信号与硬币的材质、大小、花色以及硬币相对于径向磁梯度计5和轴向磁梯度计6的位置有关,为了避免因位置不同而造成的影响,故用定位柱将待测硬币定位。不同的硬币具有其标准数值,通过将检测结果与标准数值对比分析,便能判断出面值及其真伪。在本实施例中,信号激励源1为正弦信号,但其也可为其他包含有一个或多个频率分量的交流信号,在交流信号激励成功后进行检测,将测量结果与标准数值对比分析,还可以在交流信号激励成功并检测输出信号后,再对待测硬币4施加个直流磁场,该直流磁场可由外加的永磁体产生,还可通过信号激励源1对激励线圈3施加直流信号产生,在本实施例中为后者,然后又再次检测输出信号,这种情况下对材质为导体的硬币,其测量结果没有影响,但对材质为铁磁材料或表面涂覆有铁磁层(例如镍)的硬币,其测量结果将会有所改变,输出信号的幅值会呈现降低的趋势,这样能进一步提高分辨硬币真伪的准确度。
图2和图3分别为本硬币检测***中激励线圈、待测硬币、径向、轴向磁梯度计等的细节剖视图和俯视图。径向磁梯度计和轴向磁梯度计被激励线圈所包围,它们分别包含有两个X轴线性磁阻传感器15,15'和两个Z轴线性磁阻传感器16,16' ,其中 X 轴线性磁阻传感器15,15'不仅位于激励线圈3的内部边缘并相对于激励线圈3的中心对称,也对称分布在待测硬币4边缘的下方,Z轴线性磁阻传感器16,16'不仅相对于激励线圈的中心相对称,也分布在待测硬币4中心的下方,也可以位于接近待测硬币4中心的下方,X轴线性磁阻传感器15,15' 和Z轴线性磁阻传感器16,16'对称分布的目的在于:(1)无待测硬币,但具有激励磁场时,径向磁梯度计和轴向磁梯度计的输出信号均为 0 ;(2)在有待测硬币时,径向磁梯度计和轴向磁梯度计能测量对应的磁场梯度。本发明中,X轴线性磁阻传感器15,15'还可以分布在激励线圈3的同一左侧或右侧,且上下对称。当然径向磁梯度计和轴向磁梯度计也可位于激励线圈的外部,本发明对此不做限制。
X 轴线性磁阻传感器 15 和 Z 轴线性磁阻传感器 16 设置在靠近待测硬币的 PCB 13 上, X 轴线性磁阻传感器 15' 和 Z 轴线性磁阻传感器 16' 设置在远离待测硬币 4 的 PCB14 上, PCB13 和 PCB14 相同。 X 轴线性磁阻传感器15,15'的敏感方向与待测硬币4的径向平行,即从待测硬币4的中心指向其边缘,Z轴线性磁阻传感器16,16'的敏感方向与待测硬币4的轴向平行,即从待测硬币4的中心指向外,在图2中由于PCB13和PCB14的放置方向相反,所以X轴线性磁阻传感器15,15'和Z轴线性磁阻传感器16,16'的敏感方向分别各自相互反平行。在本实例中,X轴线性传感器15,15'和Z轴线性磁阻传感器16,16'为梯度全桥结构,其桥臂由一个或多个相互电连接的TMR元件组成。此外,X轴线性传感器15,15'和Z轴线性磁阻传感器16,16'为单电阻或梯度半桥结构,其桥臂也可以由一个或多个相互电连接的Hall,AMR或GMR等磁电阻元件组成。激励线圈3位于两个PCB13,14之间,将X轴线性传感器15,15'和Z轴线性磁阻传感器16,16'围住,激励线圈3为单个线圈,但如有需要增强信号,并使得其所产生的在待测硬币4周围的磁场更加均匀,这时也可以使用多个线圈相叠加组成的阵列,激励线圈3所围成的圆周直径大于或等于待测硬币4的直径,激励线圈3被上下两个PCB13,14定位,使得待测硬币4位于其一侧,在本实施例中,待测硬币4位于其上方,详细来说,就是待测硬币4的表面与激励线圈3的中心面(图2中的横向虚线所示)平行,并且待测硬币4的表面与激励线圈3中心面之间的距离至少为激励线圈高度H的一半。激励线圈3中的电流方向如图2中的17,18所示,即从17进入,从18出来,电流方向与激励线圈的中心面平行,在X轴线性磁阻传感器15和15'处所产生的磁场方向相同,在Z轴线性磁阻传感器16和16'处所产生的磁场方向也相同,但它们的敏感方向分别相反,所以通过运算可以使其相互抵消,对测量结果不造成影响。而相比X 轴线性磁阻传感器 15' 和 Z 轴线性磁阻传感器 16' , X 轴线性磁阻传感器 15 和 Z 轴线性磁阻传感器 16 离待测硬币 4 更近,从而对待测硬币 4 所感生的涡流场形成梯度磁场测量。图 2 和图 3 的定位柱 12 是用于对待测硬币 4 进行定位,从而 避免因待测硬币4所放置的位置不同而造成的影响, 定位柱 12 的放置位置并不限于图中所示,例如,也可以放置在图中所示位置的对侧。
图4A-4B分别为测量频率为1KHz时,材质为不锈钢、表面镀有镍的硬币所感生的涡流场的实部分量和虚部分量与测量位置的关系曲线。图中的位置 0 代表着硬币的中心点。其中,曲线19,22为轴向磁梯度计的模拟结果,曲线20,21为径向磁梯度计的模拟结果。从图4A中可以看出,在硬币中心附近的轴向磁场分量最大并且分布均匀,而径向磁场分量在硬币边缘最大,对比图4A和图4B可以发现,硬币所感生的涡流场的实部分量受测量位置的影响更大。
图5A-5B分别为测量频率为10KHz时,材质为不锈钢、表面镀有镍的硬币周围磁场的实部分量和虚部分量与测量位置的关系曲线。其中,曲线23,26为轴向磁梯度计的模拟结果,曲线24,25为径向磁梯度计的模拟结果。从图5中也可以得出与图4中相同的结论。
图6A-6D为不同材质的硬币所感生的涡流场的实部分量和虚部分量与频率之间关系的计算结果。其中,图6A中硬币材质为纯镍,图6B中硬币材质为不锈钢表面镀有厚度为100um的镍,图6C中硬币材质为不锈钢表面镀有厚度为10um的镍,图6D中硬币材质为纯不锈钢,曲线27,31,35,39为径向磁梯度计所测得的实部分量,曲线28,32,36,40为径向磁梯度计所测得的虚部分量,曲线29,33,37,41为轴向磁梯度计所测得的实部分量,曲线30,34,38,42为轴向磁梯度计所测得的虚部分量。从这几幅图中可以看出,不同材质的硬币,其测量结果也不同,实部分量对可磁导的材料更加敏感,而虚部分量敏感于涡流,根据各频率所对应的实、虚部分量便可获知硬币的面值、材质等信息。
图7A-7B分别为1元和0.1元硬币的测试结果曲线。其中,曲线44,45和曲线48,49分别为轴向磁梯度计所测得的实部分量与虚部分量;曲线43,46和曲线47,50分别为径向磁梯度计所测得的实部分量与虚部分量。对比这两图可以看出,不同面值的硬币,其输出结果也不同。将测量结果与标准数值对比,便可判断出面值及其真假。有些硬币在某个频率处、某个方向上的测量结果相同或者很相近,导致不好判断面值及其真假,这时需要结合多个频率所对应的输出结果来进行判断。如图10及与图10相对应的图8所示。
从图10和图8中可以看出,面值为1JPY和10JPY在频率为9800Hz时,轴向磁梯度计的测量结果相同,需要结合径向磁梯度计的测量结果,才能分辨出面值。此外,面值为0.1CNY和0.5CNY的硬币在频率为9800Hz时,其在径向和轴向的磁场分量幅值很相近,不容易分辨,这时结合频率为160Hz时的测量结果,便能准确分辨出硬币的面值,面值为100JPY和US5CENT的硬币恰恰与前者相反。在频率为160Hz时的径向、轴向的磁场分量幅值很相近,需要结合频率为9800Hz时的测量结果才能准确分辨。
有些硬币在某个方向上的磁场分量幅度很相近,使用单轴磁梯度计测量,很难辨别,以面值为100JPY和5 US cent这两种硬币为例,如图9A-9B所示。图9A为使用轴向磁梯度计测量Z轴方向上磁场分量幅值与频率之间的关系曲线,图9B为使用径向磁梯度计测量X轴方向上磁场分量幅值与频率之间的关系曲线,从这两图可以看出,在频率为0~10KHz的范围内,这两种硬币在轴向(即Z轴方向)上的测量结果很相近,在径向(即X轴方向)上的测量结果在2.5~10KHz的频率范围内则有所差异,如果只测量轴向的磁场分量,则很难判断出面值,只有结合X轴方向上的测量结果,才能准确判断出硬币的面值。而有些硬币可能在轴向上测量结果有差异,而在径向上测量结果则很相近,由此可见,只有同时测量径向和轴向上的磁场分量,才能更准确的分辨出硬币的面值,再与标准结果进行对比,进而可以判断其真伪。本发明中的硬币检测***同时对径向和轴向磁场分量进行测量,所以利用其测量结果来判断硬币的面值和真伪的准确度更高。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种硬币检测***,其特征在于,该硬币检测***包括激励线圈,径向磁梯度计和轴向磁梯度计;
    所述激励线圈用于向待测硬币提供轴向的激励磁场,所述激励磁场在所述待测硬币内部感生涡流,所述涡流产生感生磁场;
    所述径向磁梯度计包括至少两个径向磁阻传感器且所述轴向磁梯度计包括至少两个轴向磁阻传感器,所述径向磁阻传感器和所述轴向磁阻传感器各自分别相对所述激励线圈的中心面或中心点对称分布;所述径向磁梯度计用于检测所述感生磁场在所述激励线圈对应两侧且沿所述待测硬币径向上的磁场分量之差,所述轴向磁梯度计用于检测所述感生磁场在所述激励线圈对应两侧且沿所述待测硬币轴向上的磁场分量之差,所述对应两侧是指沿着所述激励线圈轴向上相对的两侧;
    所述激励线圈被定位,其定位方式使得所述待测硬币的表面与所述激励线圈的中心面平行,并且所述待测硬币的表面与所述中心面之间的距离至少为所述激励线圈高度的一半。
  2. 根据权利要求1所述的硬币检测***,其特征在于,所述硬币检测***进一步包括:用于激励所述激励线圈的信号激励源和驱动电路,用于放大所述径向磁梯度计和所述轴向磁梯度计所产生的信号的模拟前端电路,以及用于计算所述模拟前端电路输出的放大信号的实部分量和虚部分量的处理器。
  3. 根据权利要求2所述的硬币检测***,其特征在于,所述信号激励源所产生的信号含有交流信号,所述交流信号包含有至少一个频率分量;所述处理器计算与每一频率分量相对应的放大信号的实部分量和虚部分量。
  4. 根据权利要求3所述的硬币检测***,其特征在于,所述信号激励源还用于在所述交流信号存续期间施加直流信号,所述激励线圈所产生的激励磁场为直流磁场和交流磁场的叠加场。
  5. 根据权利要求4所述的硬币检测***,其特征在于,当所述待测硬币的材料为铁磁材料或所述待测硬币的表面涂覆有铁磁材料时,施加所述直流磁场后,输出信号的幅值会降低;当所述待测硬币的材料为导体时,所述直流磁场不影响输出信号的幅值。
  6. 根据权利要求3所述的硬币检测***,其特征在于,所述硬币检测***能检测出每种类型的硬币所对应的实部分量和虚部分量的幅值。
  7. 根据权利要求1或2所述的硬币检测***,其特征在于,所述激励线圈为单个线圈或多个线圈相叠加组成的阵列,所述激励线圈所围成的圆周直径大于或等于所述待测硬币的直径。
  8. 根据权利要求1 所述的硬币检测***,其特征在于,所述径向磁梯度计位于所述激励线圈的内部边缘且位于所述待测硬币边缘的下方,所述径向磁阻传感器相对所述激励线圈的中心对称;所述轴向磁梯度计位于所述激励线圈的内部且位于或接近所述待测硬币的中心的下方,所述轴向磁阻传感器沿所述激励线圈的轴向相对所述激励线圈的中心对称分布。
  9. 根据权利要求1 所述的硬币检测***,其特征在于,所述硬币检测***还包括第一PCB和第二PCB,所述径向磁阻传感器分别位于所述第一PCB和第二PCB上,所述轴向磁阻传感器分别位于所述第一PCB和第二PCB上,所述激励线圈被固定于所述第一PCB和第二PCB之间;所述待测硬币位于第一PCB和第二PCB的上方。
  10. 根据权利要求1、2、7或8任一项所述的硬币检测***,其特征在于,所述径向磁阻传感器为X轴线性传感器,所述轴向磁阻传感器为Z轴线性传感器,所述X轴线性传感器的敏感方向与所述待测硬币的径向平行,所述Z轴线性传感器的敏感方向与所述待测硬币的轴向平行。
  11. 根据权利要求10所述的硬币检测***,其特征在于,所述X轴线性传感器、所述Z轴线性传感器为单电阻、半桥或全桥结构,所述单电阻、半桥的桥臂或全桥的桥臂由一个或多个相互电连接的磁电阻元件组成。
  12. 根据权利要求11所述的硬币检测***,其特征在于,所述磁性电阻元件为Hall, AMR,GMR,TMR或半导体磁电阻元件。
  13. 根据权利要求1、2、7或8任一项所述的硬币检测***,其特征在于,所述硬币检测***还包括一定位装置,所述定位装置用于定位所述待测硬币所放置的位置,使得所述待测硬币接近于所述径向磁梯度计和所述轴向磁梯度计的一侧。
PCT/CN2015/081290 2014-06-23 2015-06-12 一种硬币检测*** WO2015196932A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016574264A JP6388672B2 (ja) 2014-06-23 2015-06-12 硬貨検出システム
EP15811990.9A EP3159854B1 (en) 2014-06-23 2015-06-12 Coin detection system
US15/321,156 US10777031B2 (en) 2014-06-23 2015-06-12 Coin detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410284349.2A CN104134269B (zh) 2014-06-23 2014-06-23 一种硬币检测***
CN201410284349.2 2014-06-23

Publications (1)

Publication Number Publication Date
WO2015196932A1 true WO2015196932A1 (zh) 2015-12-30

Family

ID=51806935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081290 WO2015196932A1 (zh) 2014-06-23 2015-06-12 一种硬币检测***

Country Status (5)

Country Link
US (1) US10777031B2 (zh)
EP (1) EP3159854B1 (zh)
JP (1) JP6388672B2 (zh)
CN (1) CN104134269B (zh)
WO (1) WO2015196932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777031B2 (en) 2014-06-23 2020-09-15 MultiDimension Technology Co., Ltd. Coin detection system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296967A (zh) * 2016-08-04 2017-01-04 南京中钞长城金融设备有限公司 一种基于单线圈的双频检测硬币识别装置及识别方法
CN106600808B (zh) * 2016-12-09 2022-12-02 深圳市倍量电子有限公司 硬币鉴别方法及其装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086527A (en) * 1975-03-25 1978-04-25 Crouzet Method and apparatus for monetary articles authentification
CN1650191A (zh) * 2002-03-01 2005-08-03 株式会社三协精机制作所 物体检测传感器和具有该传感器的ic卡输入机
CN103003711A (zh) * 2010-07-30 2013-03-27 三菱电机株式会社 磁传感器装置
CN103617669A (zh) * 2013-11-05 2014-03-05 无锡乐尔科技有限公司 一种硬币检测装置
CN104134269A (zh) * 2014-06-23 2014-11-05 江苏多维科技有限公司 一种硬币检测***
CN204129826U (zh) * 2014-06-23 2015-01-28 江苏多维科技有限公司 一种硬币检测***

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2425803A1 (de) * 1974-05-28 1975-12-11 Pruemm Geb Heuser Margot Elektronischer muenzpruefer
ATE41070T1 (de) * 1981-10-02 1989-03-15 Univ Cardiff Verfahren und einrichtung zur identifizierung von muenzen.
GB8510181D0 (en) * 1985-04-22 1985-05-30 Aeronautical General Instr Moving coin validation
JPH01226093A (ja) * 1988-03-07 1989-09-08 Mitsubishi Heavy Ind Ltd 硬貨判別装置
JP2567654B2 (ja) * 1988-03-31 1996-12-25 株式会社 日本コンラックス 硬貨選別方法および装置
GB2234619B (en) * 1989-07-28 1993-04-14 Mars Inc Coin validators
GB2235559A (en) * 1989-08-21 1991-03-06 Mars Inc Coin testing apparatus
GB2253297B (en) * 1991-02-27 1994-11-16 Mars Inc Coin validation
GB2266400B (en) * 1991-09-28 1995-11-22 Anritsu Corp Coin discriminating apparatus
JP2909683B2 (ja) * 1992-03-13 1999-06-23 アンリツ株式会社 硬貨直径判別装置
US5630494A (en) 1995-03-07 1997-05-20 Cummins-Allison Corp. Coin discrimination sensor and coin handling system
JPH10500515A (ja) * 1995-03-07 1998-01-13 カミンズ−アリソン・コーポレーション 硬貨識別センサ及び硬貨ハンドリングシステム
US5568855A (en) * 1995-10-02 1996-10-29 Coin Mechanisms, Inc. Coin detector and identifier apparatus and method
US6520308B1 (en) * 1996-06-28 2003-02-18 Coinstar, Inc. Coin discrimination apparatus and method
US6822443B1 (en) * 2000-09-11 2004-11-23 Albany Instruments, Inc. Sensors and probes for mapping electromagnetic fields
US6150809A (en) 1996-09-20 2000-11-21 Tpl, Inc. Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
JPH10111966A (ja) * 1996-10-03 1998-04-28 Omron Corp 検出装置
US6288538B1 (en) * 1997-12-16 2001-09-11 Sankyo Seiki Mfg. Co., Ltd. Recess and protrusion surface detecting device for an object and for coin identification
SE512200C2 (sv) * 1998-01-30 2000-02-14 Scan Coin Ind Ab Anordning och metod för äkthetskontroll av bimetalliska mynt
JP3773689B2 (ja) * 1999-03-17 2006-05-10 株式会社日本コンラックス コイン検査方法及び装置
US6340082B1 (en) * 1999-10-22 2002-01-22 Japan Tobacco Inc. Coin discriminating apparatus
US6667615B2 (en) * 2000-02-10 2003-12-23 Sankyo Seiki Mfg. Co., Ltd. Coin identifying device using magnetic sensors
US6382386B1 (en) * 2000-05-22 2002-05-07 Cashcode Company Inc. Eddy-current sensor for coin evaluation
JP3718619B2 (ja) * 2000-06-09 2005-11-24 グローリー工業株式会社 硬貨識別装置
US6739444B2 (en) * 2001-02-20 2004-05-25 Cubic Corp Inductive coin sensor with position correction
JP3976232B2 (ja) * 2001-11-20 2007-09-12 株式会社アヅマシステムズ 表面形状検出センサおよび表面形状検出装置
JP4022583B2 (ja) * 2002-03-11 2007-12-19 旭精工株式会社 コインセレクタ
JP5167470B2 (ja) * 2006-06-30 2013-03-21 旭精工株式会社 コイン識別センサおよびコインセレクタのコイン識別装置
JP5034573B2 (ja) * 2006-09-03 2012-09-26 富士電機リテイルシステムズ株式会社 硬貨識別方法および識別装置
US8729889B2 (en) * 2008-01-18 2014-05-20 C-Sigma S.R.L. Method and apparatus for magnetic contactless measurement of angular and linear positions
JP5178243B2 (ja) * 2008-03-05 2013-04-10 ローレル精機株式会社 硬貨識別装置
JP2009234457A (ja) 2008-03-27 2009-10-15 Toyota Motor Corp 収納ケース
US9562986B2 (en) * 2011-07-01 2017-02-07 Rapiscan Systems, Inc. Walk through metal detection system
CN202916902U (zh) * 2012-10-31 2013-05-01 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头
JP2013101129A (ja) * 2012-12-25 2013-05-23 Hamamatsu Koden Kk 渦電流センサ及び検出物判別回路
DE202014011507U1 (de) * 2013-09-11 2021-07-20 Blau Product Development Inc. Vorrichtung zum Erkennen von gefälschten oder veränderten Barren, Münzen oder Metall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086527A (en) * 1975-03-25 1978-04-25 Crouzet Method and apparatus for monetary articles authentification
CN1650191A (zh) * 2002-03-01 2005-08-03 株式会社三协精机制作所 物体检测传感器和具有该传感器的ic卡输入机
CN103003711A (zh) * 2010-07-30 2013-03-27 三菱电机株式会社 磁传感器装置
CN103617669A (zh) * 2013-11-05 2014-03-05 无锡乐尔科技有限公司 一种硬币检测装置
CN104134269A (zh) * 2014-06-23 2014-11-05 江苏多维科技有限公司 一种硬币检测***
CN204129826U (zh) * 2014-06-23 2015-01-28 江苏多维科技有限公司 一种硬币检测***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159854A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777031B2 (en) 2014-06-23 2020-09-15 MultiDimension Technology Co., Ltd. Coin detection system

Also Published As

Publication number Publication date
CN104134269A (zh) 2014-11-05
JP6388672B2 (ja) 2018-09-12
EP3159854B1 (en) 2019-08-07
CN104134269B (zh) 2017-07-07
JP2017520849A (ja) 2017-07-27
US20170193725A1 (en) 2017-07-06
US10777031B2 (en) 2020-09-15
EP3159854A1 (en) 2017-04-26
EP3159854A4 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2019109870A1 (zh) 一种磁感应颗粒检测装置及浓度检测方法
JP6209674B2 (ja) 磁気抵抗技術に基づいて磁気パターンの表面磁界を検出する磁気ヘッド
JP6060278B2 (ja) 鋼板の内部欠陥検出装置及び方法
JP5620076B2 (ja) 電力計測装置
WO2012075887A1 (zh) 电流测量装置及电流测量方法
JP2014524572A (ja) 自身の周辺の磁気的な特性を測定するための測定装置
WO2015196932A1 (zh) 一种硬币检测***
CN103675094A (zh) 一种无损探伤装置
CN204129826U (zh) 一种硬币检测***
Reutov et al. Possibilities for the selection of magnetic field transducers for nondestructive testing.
Ripka et al. AMR proximity sensor with inherent demodulation
CN213903409U (zh) 一种旋转磁场激励的漏磁检测传感器
JPH04296663A (ja) 電流測定装置
CN204883909U (zh) 一种硬币检测探头及其检测***
CN103617669A (zh) 一种硬币检测装置
JP2012198202A (ja) 微小磁性金属異物の検査装置
JPH0784021A (ja) 微弱磁気測定装置及びそれを用いた非破壊検査方法
JP2009069005A (ja) 磁界校正方法
Majima et al. Thickness measurements using extremely low frequency eddy current testing via TMR Sensors operated with AC modulation
RU2737677C1 (ru) Устройство регистрации петель гистерезиса тонких магнитных пленок
CN203616286U (zh) 一种无损探伤装置
Pelkner et al. Local magnetization unit for GMR array based magnetic flux leakage inspection
CN114764086A (zh) 基于偏置磁化下涡流检测差动磁导率的管道内检测方法
CN203552338U (zh) 一种硬币检测装置
CN116735939A (zh) 一种磁通门电流检测装置和磁通门电流检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574264

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15321156

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015811990

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811990

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE