WO2015192443A1 - 一种回收废硬质合金的方法 - Google Patents

一种回收废硬质合金的方法 Download PDF

Info

Publication number
WO2015192443A1
WO2015192443A1 PCT/CN2014/083316 CN2014083316W WO2015192443A1 WO 2015192443 A1 WO2015192443 A1 WO 2015192443A1 CN 2014083316 W CN2014083316 W CN 2014083316W WO 2015192443 A1 WO2015192443 A1 WO 2015192443A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
molten salt
tungsten
cemented carbide
anode
Prior art date
Application number
PCT/CN2014/083316
Other languages
English (en)
French (fr)
Inventor
聂祚仁
席晓丽
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to GB1607316.5A priority Critical patent/GB2537510B8/en
Priority to US14/908,495 priority patent/US10519556B2/en
Priority to JP2016537102A priority patent/JP6239117B2/ja
Priority to UAA201606205A priority patent/UA114061C2/uk
Publication of WO2015192443A1 publication Critical patent/WO2015192443A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts

Definitions

  • the invention belongs to the field of metallurgy, and in particular relates to a method for recovering metal from waste cemented carbide. Background technique
  • Cemented carbide is a powder metallurgy product in which a tungsten carbide powder is used as a main component and cobalt or nickel is used as a binder in a vacuum furnace or a hydrogen reduction furnace.
  • the technologies for recycling used cemented carbide mainly include: acid leaching method [1] , zinc melting method [2] , mechanical crushing method [3] and selective electrochemical dissolution method [4] .
  • the acid leaching recovery process is relatively simple, but the NO and S0 2 gases emitted during the reaction process cause serious harm to the environment, and the equipment needs anti-corrosion treatment, and the operation must pay special attention to safety.
  • the zinc dissolution method is widely used, it has problems such as zinc residue, high energy consumption, and complicated equipment.
  • the mechanical crushing method is difficult to break due to the hard alloy scrap, so strong crushing and abrasive equipment is needed, and the oxidation of the material during the crushing ball milling process easily causes the composition of the mixture to change, making it difficult to recycle and produce a high quality alloy. .
  • the selective electrochemical dissolution method is to use the waste cemented carbide as an anode and put it into the electrolytic cell with acid as the electrolyte to conduct electrolysis.
  • the cobalt in the alloy turns into cobalt ions into the solution, and the tungsten carbide which loses the bound metal cobalt becomes loose.
  • the alloy, the cobalt-containing solution is precipitated by ammonium oxalate, and the cobalt powder is obtained by calcination reduction, and the tungsten carbide can be used for the production of the cemented carbide after being properly treated by ball milling.
  • Molten salt electrolysis is the method of electrochemically reducing the pure metal tungsten or obtaining an alloy product on the working electrode in an electrolyte of a molten salt.
  • molten salt electrolysis has unique advantages such as less equipment resource occupation, simple process operation and small side effects on the environment in the preparation of metals and their alloys.
  • LIU Yanhong [5] used Na 2 W0 4 -ZnO-W0 3 system to prepare tungsten coating by using tungsten plate as anode molten salt.
  • the obtained product has a particle size of about 3 ⁇ , and zinc is easier to deposit while tungsten is deposited.
  • the technology for recycling used cemented carbide has many shortcomings such as long production process, high energy consumption, unfriendly environment, and defects in products. Therefore, it is necessary to find a process that is short-flow, efficient, and high-quality recycling of waste cemented carbide.
  • the method of directly recovering nano tungsten powder by using molten salt electrolysis as the anode and using molten salt electrolysis has not been reported yet. The method greatly shortens the existing waste carbide recovery process, does not generate waste gas, is environmentally friendly, and has low energy consumption, and the size of the recovered tungsten powder particles can reach the nanometer level.
  • Tungsten-titanium-cobalt-based cemented carbides such as YT15.
  • Tungsten-titanium-tantalum ( ⁇ ) type hard alloy such as YT15.
  • the method specifically includes the following steps:
  • molten salt dielectric vacuum dehydration wherein the molten salt dielectric composition is (X) A-( y ) B- ( z ) NaCl, wherein x is the molar percentage content of A, y is the molar percentage content of B, and z is The molar percentage of NaCl; X ranges from 5 to 70 mol%, y ranges from 0 to 60 mol%, and z ranges from 0 to 50 mol%; and A is CaCl 2 , KC1, LiCl
  • B is one or more of WC1 6 , WC1 4 , WC1 2 , Na 2 W0 4 , K 2 W0 4 , CaW0 4 ; 2) using waste cemented carbide as anode and inert electrode as cathode, electrolysis in molten molten salt dielectric, electrolysis temperature is 350-1000 °C;
  • a titanium plate, a stainless steel plate, a carbon plate, or graphite carbon is used as a cathode.
  • step 2) electrolysis is performed by means of controlling current, and the current density is controlled at 0.02-1. OA/cm 2 ; or electrolysis is performed by means of a control voltage, and the cell voltage is controlled at 1.0 to 10V.
  • the temperature of the electrolysis is from 500 to 780 °C.
  • the kind of the product can be controlled accordingly.
  • gas protection is used for electrolysis, and for the W, W-Co product powder, the shielding gas is one or more mixed gases of oxygen, air, nitrogen, and argon, and the mixed gas
  • the volume of oxygen in the medium is 10-20%, and the electrolysis is carried out by means of a control voltage, and the cell voltage is controlled at 2.8 to 3.2V.
  • the WC product powder is protected by a non-oxidizing gas during the electrolysis, and the non-oxidizing gas is nitrogen or argon, and electrolysis is performed by controlling the current, and the electrolysis is performed by controlling the magnitude of the current.
  • the cell voltage is constant at 1.0 ⁇ 3.0V during the process.
  • a mixed gas containing oxygen is used for the W, W-Co product powder, the volume ratio of oxygen in the mixed gas is 10 to 20%, and the other gases in the mixed gas are nitrogen or argon, and the use is controlled.
  • the current is electrolyzed, and the cell voltage during electrolysis is constant at 1.0 to 3.0 V by controlling the magnitude of the current.
  • the separation of the molten salt medium and the product powder is carried out by using, pickling, water washing, filtering and vacuum drying.
  • the vacuum condition can be set to a degree of vacuum of 0.1 to 2.0 MPa.
  • the drying temperature is 20-50 °C.
  • the tungsten and cobalt ions can be directly dissolved into the molten salt medium from the anode material-waste carbide, and deposited on the cathode plate by the electrolysis voltage to obtain the metal powder particles.
  • the continuous electrolytic treatment of waste cemented carbide materials can be directly prepared to obtain simple or composite nano-powder materials such as tungsten and cobalt by controlling the electrolysis conditions. Electrolytic products such as tungsten and cobalt can be obtained. It is used as raw materials for cemented carbide materials, high-temperature structural materials, weapon materials, and photocatalytic materials, and is applied to fields such as production and processing, aerospace, military industry, and environmental energy. This method has short process flow, no solid/liquid/gas waste discharge, and is environmentally friendly.
  • the method for preparing nano tungsten powder by using the molten salt electrolysis method for recovering waste cemented carbide is proposed by the invention.
  • the tungsten metal powder obtained by electrolysis can be a nanometer and micron powder, and the powder particle size range thereof is
  • This method can also be used to recover other refractory metal alloys (super-specific alloys, etc.), and directly prepare elemental metal materials, high-temperature structural materials, cemented carbide materials, and high specific gravity alloy materials.
  • Figure 1 is a schematic view showing the structure of an electrolytic cell of the present invention
  • Fig. 2 is a graph showing the XRD curve of the product powder obtained by electrolyzing the YG6 type waste cemented carbide anode material of Example 1.
  • Fig. 3 is a FESEM photograph of the surface morphology of the product powder obtained by electrolyzing the YG6 type waste cemented carbide anode material of Example 1.
  • Fig. 4 is a XRD graph showing the product powder obtained by electrolyzing WC waste cemented carbide anode material of Example 2.
  • Fig. 5 is a FESEM photograph of the surface morphology of the product powder obtained by electrolyzing WC waste cemented carbide anode material of Example 2.
  • Fig. 6 is a XRD chart of the product powder obtained by the electrolytic zinc alloy anode material of the electrolytic YG16 type of Example 3.
  • Fig. 7 is a FESEM photograph of the surface morphology of the product powder obtained by electrolysis of the YG16 type waste cemented carbide anode material of Example 3.
  • the present invention can be electrolyzed using apparatus conventional in the art.
  • Figure 1 is used.
  • the electrolytic cell 3 is placed in a closed vessel 1 which provides gas protection and electrical heating.
  • the sealed container 1 is provided with a pressure detecting device, a temperature detecting device, an intake port 6, and an exhaust port 2.
  • the anode 4 and the cathode 5 extend into the electrolytic cell.
  • the electrolytic cell is protected by 10% oxygen + argon (volume ratio) gas.
  • the molten salt system consists of NaCl-52mol% CaCl 2 , the electrolysis temperature is 750 °C, the titanium metal plate is used as the cathode, the YG6 type waste cemented carbide is the anode material, the pole pitch is 3cm, the control voltage is electrolyzed, and the tank voltage is controlled.
  • the cell current is stable at 1.3 A during electrolysis, and the cell current increases with the consumption of anode material.
  • the metal powder obtained by electrolysis and the molten salt medium are separated and collected by the method of pickling, water washing, filtration and vacuum drying to melt the salt medium and the product powder.
  • the vacuum is 0.5 MPa, and the drying temperature is 50 °C.
  • the purity of the tungsten metal powder obtained by electrolysis reaches 98.2 wt%, and the morphology of the metal tungsten powder is agglomerated spherical particles, and the particle size of the agglomerated particles is distributed in the range of 40 to 400 nm.
  • XRD and FESEM photographs of the obtained tungsten metal powder by electrolysis are shown in Figs. 1 and 2.
  • 1 is the XRD curve of the obtained product powder
  • FIG. 2 is a FESEM photograph of the product powder having a magnification of 30,000 times.
  • a method for directly recovering WC powder powder by using molten salt electrolysis to treat waste WC cemented carbide The electrolytic cell is protected by argon gas.
  • the molten salt system consists of NaCl-50mol% KCl, electrolysis temperature is 750 °C, graphite carbon is used as cathode, WC is anode material, pole pitch is 3cm, control current electrolysis, electrolysis current density is controlled at 0.3 A/cm 2 , electrolysis The cell voltage is stable at 2.2 V during the process.
  • the metal powder obtained by electrolysis and the molten salt medium are subjected to acid washing, water washing, filtration and vacuum drying to separate and collect the molten salt medium and the product powder.
  • the vacuum is 0.5 MPa, and the drying temperature is 50 °C.
  • the WC powder particles were obtained by electrolysis to a purity of 99.1 wt%.
  • the XRD pattern and FESEM photograph of the product are shown in Figure 4 and Figure 5.
  • a method for directly preparing tungsten-cobalt alloy powder by using molten salt electrolysis waste cemented carbide The electrolytic cell is protected by a mixed gas of 20% oxygen + argon gas.
  • the composition of the molten salt system is NaCl-50mol% Na 2 W0 4 -26mol% CaCl 2 , the electrolysis temperature is 750 °C, the titanium metal plate is used as the cathode, YG16 type
  • the waste cemented carbide is an anode material with a pole pitch of 3 cm, controlled current electrolysis, the electrolysis current density is controlled at 0.5 A/cm 2 , and the cell voltage is stable at 2.9 V during electrolysis.
  • the W-Co composite powder particles were obtained by electrolysis.
  • the metal powder obtained by electrolysis and the molten salt medium are subjected to acid washing, water washing, filtration and vacuum drying to separate and collect the molten salt medium and the product powder.
  • the vacuum is 0.5 MPa, and the drying temperature is 40 °C.
  • the XRD pattern and FESEM photograph of the product are shown in Fig. 6 and Fig. 7.
  • a method for directly preparing tungsten powder by using molten salt electrolysis waste cemented carbide The electrolytic cell is protected by a mixture of 20% oxygen + argon gas.
  • Molten salt system consisting of LiCl-5mol% NaCl- 10mol% Na 2 WO 4 -36mol% CaCl 2, electrolysis temperature of 500 ° C, the stainless steel plate as a cathode, an anode YG3 type carbide scrap material, pole pitch of 3cm
  • Control current electrolysis the electrolysis current density is controlled at 0.05 A/cm 2 , and the cell voltage is stable at 1.2 V during electrolysis.
  • the metal powder obtained by electrolysis and the molten salt medium are separated and collected by the method of pickling, water washing, filtration and vacuum drying to melt the salt medium and the product powder.
  • the vacuum is 0.5 MPa and the drying temperature is 40 °C.
  • the tungsten metal nanoparticles were obtained by electrolysis with a purity of 99.3 wt%.
  • the electrolyzer is protected by nitrogen gas.
  • the composition of the molten salt system is NaCl-4 mol% WCl 2 -40 mol% KCl, the electrolysis temperature is 780 °C, the carbon plate is used as the cathode, the WC is the anode material, the pole pitch is 3 cm, and the electrolysis current density is controlled at 0.3 A/cm 2 .
  • the cell voltage was stable at 2.2 V during electrolysis.
  • the metal powder obtained by electrolysis and the molten salt medium are subjected to acid washing, water washing, filtration and vacuum drying to separate and collect the molten salt medium and the product powder.
  • the vacuum is 0.5 MPa, and the drying temperature is 50 °C.
  • the WC powder particles were obtained by electrolysis to a purity of 98.1% by weight.
  • the electrolytic cell is protected by a mixed gas of 10% oxygen + argon gas.
  • the composition of the molten salt system is LiCl-10 mol% NaCl-5 mol% Na 2 WO 4 -36 mol% CaCl 2
  • the electrolysis temperature is 500 °C
  • the stainless steel plate is used as the cathode
  • the YG3 waste cemented carbide is the anode material
  • the pole pitch is 3 cm.
  • the electrolysis current density is controlled at 0.1 A/cm 2
  • the cell voltage is stable at 1.6 V during electrolysis.
  • Electrolytic metal powder and melting The salt medium is subjected to acid washing, water washing, filtration and vacuum drying to separate and collect the molten salt medium and the product powder.
  • the vacuum is 0.5 MPa and the drying temperature is 50 °C.
  • the tungsten metal nanoparticles were obtained by electrolysis with a purity of 99.3 wt%.
  • the electrolytic cell is protected by a mixed gas of 10% oxygen + argon gas.
  • the molten salt system consists of LiCl-26mol% KCl-5mol% Na 2 WO 4 -10mol% CaCl 2 , the electrolysis temperature is 500 °C, the stainless steel plate is used as the cathode, and the YG3 waste cemented carbide is the anode material, the pole pitch is 3cm.
  • the electrolysis current density is controlled at 0.08 A/cm 2 , and the cell voltage is stable at 1.4 V during electrolysis.
  • the metal powder obtained by electrolysis and the molten salt medium are subjected to acid washing, water washing, filtration and vacuum drying to separate and collect the molten salt medium and the product powder.
  • the vacuum is 0.5 MPa, and the drying temperature is 50 °C.
  • the tungsten metal nanoparticles were obtained by electrolysis with a purity of 98.7 wt%.
  • the above embodiments are merely illustrative of the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention.
  • Various modifications of the technical solutions of the present invention will be made by those skilled in the art without departing from the spirit of the invention. And improvements are intended to fall within the scope of protection defined by the claims of the invention.
  • the method for recovering waste cemented carbide disclosed in the present invention directly electrolyzes a molten cemented carbide as an anode in a molten salt, which comprises the following steps: 1) vacuum dehydration of molten salt dielectric; 2) using waste cemented carbide as an anode, inert
  • the electrode is a cathode and is electrolyzed in a molten molten salt dielectric at an electrolysis temperature of 350 to 1000 ° C. 3) Separation and collection of the metal powder obtained by electrolysis from the molten salt medium.
  • tungsten and cobalt ions can be directly dissolved into the molten salt medium from the anode material-waste cemented carbide, and deposited on the cathode plate under the driving of the electrolytic voltage to obtain metal powder particles.
  • This process has short process flow, no solid/liquid/gas waste discharge, and is environmentally friendly.
  • Electrolytic products such as tungsten and cobalt can be used as hard alloy materials, high-temperature structural materials, weapon materials, photocatalytic materials, etc., and have a wide range of applications, and are important in the fields of production and processing, aerospace, military industry, environmental energy, etc. effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明提供一种回收废硬质合金的方法,直接以废硬质合金作为阳极在熔盐中电解,具体包括以下步骤:1)熔盐电介质真空脱水;2)将废硬质合金作为阳极,惰性电极为阴极,在熔融的熔盐电介质中电解,电解温度为350~1000℃;3)电解所得金属粉末与熔盐介质的分离与收集。采用本发明的技术方案,钨、钴离子可以直接从阳极材料-废硬质合金中溶解进入熔盐介质中,在电解电压的驱动下沉积到阴极板上,获得金属粉体颗粒。电解所得钨、钴等产品材料可作为硬质合金材料、高温结构材料、武器材料、光催化材料等,应用到生产加工、航空航天、军事工业、环境能源等领域。此法工艺流程短、没有固/液/气废弃物的排放,环境友好。

Description

一种回收废硬质合金的方法
技术领域
本发明属于冶金领域, 具体涉及一种从废硬质合金中回收金属的方法。 背景技术
硬质合金是以碳化钨粉为主要成分, 以钴或镍为粘结剂, 在真空炉或氢 气还原炉中烧结而成的粉末冶金制品。
我国钴资源短缺, 每年需大量进口, 钨资源虽较丰富, 但随着近年来的 产量大增, 储藏量和可采量日益减少。 而废旧硬质合金的含钨量可达
40%~95%, 远高于硬质合金生产用原料 APT的含钨量, 具有非常高的利用价 值。 因此, 回收废硬质合金对合理利用和保护现有资源, 提高资源的利用率 有着十分重要的意义。 目前回收废旧硬质合金的技术主要包括: 酸浸法 [1], 锌熔法 [2], 机械破碎法 [3]和选择性电化学溶解法 [4]
酸浸法回收处理工艺较简单, 但反应过程中排放出的 NO、 S02气体对环 境造成严重危害, 且设备需要防腐处理, 操作要特别注意安全。 锌溶法虽应 用较广, 但存在锌残余, 能耗高, 设备复杂等问题。 机械破碎法在实际操作 中由于硬质合金废料不易破碎, 因此需要强有力的破碎和磨料设备, 而且在 破碎球磨过程中物料的氧化易造成混合料成分的变化, 难以回收制造出高质 量的合金。 选择性电化学溶解法是将废硬质合金做阳极, 放进以酸为电解质 的电解槽中通电电解, 合金中的钴变成钴离子进入溶液, 失去粘结金属钴的 碳化钨变成疏松的合金, 含钴的溶液经草酸氨沉淀, 煅烧还原后制得钴粉, 碳化钨经球磨破碎适当处理后可用于硬质合金的生产。 电化学溶解法回收废 硬质合金虽工艺简单, 但阳极会出现钝化现象, 使电流效率大大降低, 且电 解过程中产生的废液的后续处理增加了回收成本。
熔盐电解法是在熔融盐的电解质中通过电化学方法, 在工作电极上还原 出纯金属钨或获得合金产品。 在冶金工业发展要求短流程、 低成本、 环境友 好的大趋势下, 熔盐电解法在制备金属及其合金方面由于具有设备资源占用 少, 工艺操作简单, 同时对环境的副作用小等独特优势而备受关注。 LIU Yanhong[5]采用 Na2W04-ZnO-W03体系, 以钨板为阳极熔盐电解制备 钨涂层, 所得产物粒度在 3 μπι左右, 且在钨沉积的同时锌也较容易沉积下来, 造成产物不纯。 ERD00AN Μ [6] 以石墨棒为阳极, CaW04为阴极, 在 CaCl2-NaCl熔盐体系氩气气氛中电解还原制备钨粉, 颗粒尺寸接近 100 nm。 而 Tao Wang[7]以石墨棒为阳极, 以 WS2块为阴极, 在 NaCl-KCl熔盐体系氩气 气氛中电解制备纳米钨粉, 产物颗粒尺寸为 50-100 nm, 电流效率达到 94%。 王旭等采用 CaCl2 - Naa - Na2W04体系, 以石墨棒为阳极直接熔融电解制备 钨粉, 虽缩短了传统的制钨流程, 但是所得钨粉颗粒较大, 平均粒度在 2μπι 左右, 未达到纳米级别, 且在阴极产物中出现有 、 WC和 W2C等杂质, 采用 后续工艺很难将它们分离。
就以上的研究成果来看, 利用熔盐电解法来制备纳米钨粉的研究多集中 在对含钨活性物的电解。 相比于以含钨活性物来制备钨粉, 利用熔盐电解废 旧硬质合金制备纳米钨粉, 一方面原料成本更低, 另一方面其技术关键在于 阳极硬质合金中钨的溶解, 以及电解过程中钨与活性碳原子的有效隔离。
目前回收废旧硬质合金的技术, 多存在着生产工艺流程长、 能耗大、 环 境不友好、 产品存在缺陷等缺点。 因此, 探寻一种短流程、 高效、 优质回收 废硬质合金的工艺十分必要。 而直接以废旧硬质合金为阳极, 采用熔盐电解 在阴极回收获得纳米钨粉的方法目前还未见报道。 该方法大大缩短了现有的 废旧硬质合金回收工艺, 不产生废液废气, 对环境友好, 且能耗较低, 回收 制备的钨粉颗粒尺寸可以达到纳米级别。
参考文献
[ 1 ] KOJIMA T, SHIMIZU T, SASAI , et al. Recycling process of WC-Co cermets by hydrothermal treatment [J]. Journal of materials science, 2005, 40(19): 5167-5172.
[2] GURMEN S, F IED ICH B . Recovery of cobalt powder and tungsten carbide from cemented carbide scrap-Part I: Kinetics of cobalt acid leaching [J]. Erzmetall, 2004, 57(143-147).
[3] EDTMAIE C, SCHIESSE R, MEISSL C, et al. Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching [J]. Hydrometallurgy, 2005, 76(1): 63-71.
[4] LIN J-C, LIN J-Y, JOU S-P. Selective dissolution of the cobalt binder from scraps of cemented tungsten carbide in acids containing additives [J]. Hydrometallurgy, 1996, 43(1): 47-61.
[5] LIU Y, ZHANG Y, LIU Q, et al. Electro-deposition tangsten coating on low activation steel substrates from Na2W04-ZnO-W03 melt salt [J] . Rare Metals, 2012, 31(4): 350-354.
[6] ERDOGAN M, KARAKAYA I. Electrochemical reduction of tungsten compounds to produce tungsten powder [J]. Metallurgical and Materials Transactions B, 2010, 41(4): 798-804.
[7] WANG T, GAO H, JIN X, et al. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl [J]. Electrochemistry Communications, 2011, 13(12): 1492-1495. 发明内容
针对本技术领域现状所存在的不足之处, 本发明的目的是提出一种回收 废硬质合金的方法。
实现本发明上述目的技术方案为:
一种回收废硬质合金的方法,直接以废硬质合金作为阳极在熔盐中电解, 所述硬质合金可以是钨钴类硬质合金,例如 YG3、 YG6、 YG8、 YG10、 YG16、 YG20。 钨钛钴类硬质合金, 例如 YT15。 钨钛钽(铌) 类硬质合金。
所述的方法具体包括以下步骤:
1 ) 熔盐电介质真空脱水; 其中所述熔盐电介质组成为 (X ) A- ( y ) B- ( z ) NaCl, 其中 x为 A的摩尔百分比含量, y为 B的摩尔百分比含量, z 为 NaCl 的摩尔百分比含量; X 的取值范围为 5~70mol%, y 的取值范围为 0~60mol%, z的取值范围为 0~50mol%; 所述 A为 CaCl2、 KC1、 LiCl中的一 种或多种, B为 WC16、 WC14、 WC12、 Na2W04、 K2W04、 CaW04中的一种或 多种 ; 2 )将废硬质合金作为阳极, 惰性电极为阴极, 在熔融的熔盐电介质中电 解, 电解温度为 350-1000 °C ;
3 ) 电解所得金属粉末与熔盐介质的分离与收集。
, 所述步骤 2 ) 中以钛板、 不锈钢板、 碳板、 或石墨碳作为阴极。
Figure imgf000006_0001
其中, 所述步骤 2 ) 中采用控制电流的方式进行电解, 电流密度控制在 0.02-1. OA/cm2; 或采用控制电压的方式进行电解, 槽电压控制在 1.0~10V。
优选电解的温度为 500-780°C。
进一步地, 通过控制电解时的电压、 保护气体, 可相应控制产物的种类。 具体地, 所述步骤 2 ) 中, 电解时使用气体保护, 针对 W、 W-Co产品粉 末, 所述保护气体为氧气、 空气、 氮气、 氩气中的一种以上的混合气体, 且 混合气体中氧气的体积含量为 10-20% , 使用控制电压的方式进行电解, 槽 电压控制在 2.8~3.2V 。
或者, 所述步骤 2 ) 中, 电解时针对 WC产品粉末, 使用非氧化性气体 保护, 所述非氧化性气体为氮气或氩气, 使用控制电流的方式进行电解, 通 过控制电流的大小使电解过程中槽电压恒定在 1.0~3.0V。
或者, 所述步骤 2 )中, 针对 W、 W-Co产品粉末使用含有氧气的混合气 体, 混合气体中氧气的体积比例为 10~20%, 混合气体中其他气体为氮气或氩 气, 使用控制电流的方式进行电解, 通过控制电流的大小使电解过程中槽电 压恒定在 1.0~3.0V。
其中, 所述步骤 3 ) 中, 采用、 酸洗、 水洗、 过滤及真空烘干进行熔盐 介质与产品粉末的分离。 进一步地, 真空的条件可设定为真空度 0.1-2.0MPa。 真空烘干时, 烘干的温度为 20-50 °C。
本发明的有益效果在于:
采用本发明的技术方案, 钨、 钴离子可以直接从阳极材料-废硬质合金中 溶解进入熔盐介质中, 在电解电压的驱动下沉积到阴极板上, 获得金属粉体 颗粒, 此法可以实现连续电解处理废硬质合金材料, 通过控制电解条件可以 直接制备获得钨、 钴等单质或复合纳米粉体材料。 电解所得钨、 钴等产品可 作为硬质合金材料、 高温结构材料、 武器材料、 光催化材料等方面的原材料 使用, 应用到生产加工、 航空航天、 军事工业、 环境能源等领域。 此法工艺 流程短、 没有固 /液 /气废弃物的排放, 环境友好。
本发明提出的采用熔盐电解法回收废硬质合金制备纳米钨粉末的方法, 电解所获得的钨金属粉末可为纳米级及微米级粉末, 其粉末粒径尺寸范围为
20ηπι~500 μ πι。 也可采用该方法对其他难熔金属合金(超比重合金等)进行 回收处理, 直接制备单质金属材料、 高温结构材料、 硬质合金材料以及高比 重合金材料等。
附图说明
图 1为本发明的电解槽结构示意图;
图 2为实施例 1电解 YG6型的废硬质合金阳极材料获得产品粉末的 XRD 曲线图。
图 3为实施例 1电解 YG6型的废硬质合金阳极材料获得产品粉末表面形 貌的 FESEM照片。
图 4为实施例 2电解 WC废硬质合金阳极材料获得产品粉末的 XRD曲 线图。
图 5为实施例 2电解 WC废硬质合金阳极材料获得产品粉末表面形貌的 FESEM照片。
图 6为实施例 3 电解 YG16型的废硬质合金阳极材料获得产品粉末的 XRD曲线图。
图 7为实施例 3电解 YG16型的废硬质合金阳极材料获得产品粉末表面 形貌的 FESEM照片。
图中: 1. 密闭容器, 2. 排气口, 3. 电解池, 4. 阳极, 5.阴极, 6.进气口。 具体实施方式
下面通过最佳实施例来说明本发明。 本领域技术人员所应知的是, 实施 例只用来说明本发明而不是用来限制本发明的范围。
实施例中, 如无特别说明, 所用手段均为本领域常规的手段。
本发明可以采用本领域常规的装置进行电解。 以下实施例中, 使用图 1 所示的装置: 电解池 3置于一个密闭容器 1中, 该密闭容器提供气体保护和电 加热。 密闭容器 1上设置有压力检测装置、 温度检测装置、进气口 6、排气口 2。 阳极 4和阴极 5伸入电解槽中。
实施例 1
采用熔盐电解法回收废硬质合金制备纳米钨粉末的方法: 电解槽采用 10%氧气 +氩气 (体积比) 气体保护。 熔盐体系组成为 NaCl-52mol% CaCl2, 电解温度为 750 °C, 以金属钛板为阴极, YG6型的废硬质合金为阳极材料, 极距为 3cm, 控制电压电解, 槽电压控制为 3.2V, 电解过程中槽电流平稳在 1.3 A, 随着阳极材料的消耗, 槽电流有所增加。 电解 8个小时。 电解所得金 属粉末与熔盐介质采用酸洗、 水洗、 过滤及真空烘干的方法进行熔盐介质与 产品粉末的分离与收集。 真空度 0.5MPa, 烘干的温度为 50°C。
电解得到的钨金属粉末纯度达到 98.2 wt%, 金属钨粉末的形貌为团聚球 形颗粒, 团聚颗粒粒径在 40~400 nm 范围内分布。 电解获得钨金属粉体的 XRD和 FESEM照片如图 1和图 2所示。 其中图 1是获得产品粉末的 XRD 曲线; 图 2是获得产品粉末放大倍数为 30000倍的 FESEM照片。
实施例 2
一种采用熔盐电解处理废 WC硬质合金直接回收 WC粉末粉末的方法: 电解槽采用氩气气体保护。 熔盐体系组成为 NaCl-50mol%KCl, 电解温度为 750 °C, 以石墨碳为阴极, WC为阳极材料, 极距为 3cm, 控制电流电解, 电解电流密度控制在 0.3 A/cm2, 电解过程中槽电压平稳在 2.2 V。 电解所得 金属粉末与熔盐介质采用酸洗、 水洗、 过滤及真空烘干方法进行熔盐介质与 产品粉末的分离与收集。 真空度 0.5MPa, 烘干的温度为 50°C。
电解获得 WC粉末颗粒, 其纯度达到 99.1 wt%。 产品的 XRD 图谱和 FESEM照片见图 4、 图 5。
实施例 3
一种采用熔盐电解废硬质合金直接制备钨钴合金粉末的方法: 电解槽采 用 20%氧气 +氩气混合气体保护。 熔盐体系组成为 NaCl-50mol% Na2W04-26mol% CaCl2, 电解温度为 750 °C, 以金属钛板为阴极, YG16型 废硬质合金为阳极材料, 极距为 3cm, 控制电流电解, 电解电流密度控制在 0.5 A/cm2, 电解过程中槽电压平稳在 2.9 V。 电解获得 W-Co复合粉末颗粒。 电解所得金属粉末与熔盐介质采用酸洗、 水洗、 过滤及真空烘干方法进行熔 盐介质与产品粉末的分离与收集。 真空度 0.5MPa, 烘干的温度为 40°C。 产品的 XRD图谱和 FESEM照片见图 6、 图 7。
实施例 4
一种采用熔盐电解废硬质合金直接制备钨粉末的方法: 电解槽采用 20% 氧 气 + 氩 气 混 合 气 体 保 护 。 熔 盐 体 系 组 成 为 LiCl-5mol%NaCl- 10mol%Na2WO4-36mol%CaCl2 , 电解温度为 500 °C, 以不 锈钢板为阴极, YG3型废硬质合金为阳极材料,极距为 3cm,控制电流电解, 电解电流密度控制在 0.05 A/cm2, 电解过程中槽电压平稳在 1.2 V。 电解所得 金属粉末与熔盐介质采用酸洗、 水洗、 过滤及真空烘干的方法进行熔盐介质 与产品粉末的分离与收集。 真空度 0.5MPa, 烘干的温度为 40 °C。
电解获得钨金属纳米颗粒, 其纯度达到 99.3 wt%。
实施例 5
采用熔盐电解处理废 YG10硬质合金直接回收 WC纳米粉末的方法: 电 解槽采用氮气气体保护。熔盐体系组成为 NaCl- 4mol%WCl2-40mol%KCl, 电 解温度为 780 °C, 以碳板为阴极, WC为阳极材料, 极距为 3cm, 电解电流 密度控制在 0.3 A/cm2, 电解过程中槽电压平稳在 2.2 V。 电解所得金属粉末 与熔盐介质采用酸洗、 水洗、 过滤及真空烘干方法进行熔盐介质与产品粉末 的分离与收集。 真空度 0.5MPa, 烘干的温度为 50°C。
电解获得 WC粉末颗粒, 其纯度达到 98.1wt%。
实施例 6
采用熔盐电解废硬质合金直接制备钨粉末的方法: 电解槽采用 10%氧气 + 氩 气 混 合 气 体 保 护 。 熔 盐 体 系 组 成 为 LiCl- 10mol%NaCl-5mol%Na2WO4-36mol%CaCl2 , 电解温度为 500 °C, 以不 锈钢板为阴极, YG3型废硬质合金为阳极材料, 极距为 3cm, 电解电流密度 控制在 0.1 A/cm2, 电解过程中槽电压平稳在 1.6 V。 电解所得金属粉末与熔 盐介质采用酸洗、 水洗、 过滤及真空烘干方法进行熔盐介质与产品粉末的分 离与收集。 真空度 0.5MPa, 烘干的温度为 50 °C。
电解获得钨金属纳米颗粒, 其纯度达到 99.3 wt%。
实施例 7
采用熔盐电解废硬质合金直接制备钨粉末的方法: 电解槽采用 10%氧气 + 氩 气 混 合 气 体 保 护 。 熔 盐 体 系 组 成 为 LiCl-26mol%KCl-5mol%Na2WO4-10mol%CaCl2, 电解温度为 500 °C, 以不锈 钢板为阴极, YG3型废硬质合金为阳极材料, 极距为 3cm, 电解电流密度控 制在 0.08 A/cm2, 电解过程中槽电压平稳在 1.4 V。 电解所得金属粉末与熔盐 介质采用酸洗、 水洗、 过滤及真空烘干方法进行熔盐介质与产品粉末的分离 与收集。 真空度 0.5MPa, 烘干的温度为 50°C。
电解获得钨金属纳米颗粒, 其纯度达到 98.7 wt%。 以上的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明 的范围进行限定, 在不脱离本发明设计精神的前提下, 本领域普通工程技术 人员对本发明的技术方案作出的各种变型和改进, 均应落入本发明的权利要 求书确定的保护范围内。 工业实用性
本发明公开的回收废硬质合金的方法, 直接以废硬质合金作为阳极在熔 盐中电解, 其包括以下步骤: 1 )熔盐电介质真空脱水; 2 )将废硬质合金作 为阳极,惰性电极为阴极,在熔融的熔盐电介质中电解, 电解温度为 350~1000 °C ; 3 )电解所得金属粉末与熔盐介质的分离与收集。采用本发明的技术方案, 钨、 钴离子可以直接从阳极材料-废硬质合金中溶解进入熔盐介质中, 在电解 电压的驱动下沉积到阴极板上, 获得金属粉体颗粒。 此法工艺流程短、 没有 固 /液 /气废弃物的排放, 环境友好。 电解所得钨、 钴等产品材料可作为硬质合 金材料、 高温结构材料、 武器材料、 光催化材料等, 具有广泛的应用领域, 在生产加工、 航空航天、 军事工业、 环境能源等领域具有重要的作用。

Claims

权 利 要 求 书
1、 一种回收废硬质合金的方法, 其特征在于, 直接以废硬质合金作为阳 极在熔盐中电解, 具体包括以下步骤:
1 ) 熔盐电介质真空脱水; 其中所述熔盐电介质组成为 (X ) A- ( y ) B- ( z ) NaCl, 其中 x为 A的摩尔百分比含量, y为 B的摩尔百分比含量, z 为 NaCl 的摩尔百分比含量; X 的取值范围为 5~70mol%, y 的取值范围为 0~60mol%, z的取值范围为 0~50mol%; 所述 A为 CaCl2、 KC1、 LiCl中的一 种或多种, B为 WC16、 WC14、 WC12、 Na2W04、 K2W04、 CaW04中的一种或 多种;
2 )将废硬质合金作为阳极, 惰性电极为阴极, 在熔融的熔盐电介质中电 解, 电解温度为 350-1000 °C ;
3 ) 电解所得金属粉末与熔盐介质的分离与收集。
2、 根据权利要求 1所述的方法, 其特征在于, 所述步骤 2 ) 中以钛板、 不锈钢板、 碳棒、 石墨棒或板中的一种作为阴极。
3、 根据权利要求 1所述的方法, 其特征在于, 所述步骤 2 ) 中采用控制 电流的方式进行电解, 电流密度控制在 0.02~1.0A/cm2; 或采用控制电压的方 式进行电解, 槽电压控制在 1.0~10V。
4、 根据权利要求 1-3任一所述的方法, 其特征在于, 所述步骤 2 ) 中, 电解时使用气体保护, 针对 W、 W-Co产品粉末, 所述气体为氧气、 空气、 氮气、 氩气中的一种以上的混合气体, 且混合气体中氧气的体积含量为 10-20%, 使用控制电压的方式进行电解, 槽电压控制在 2.8~3.2V。
5、 根据权利要求 1-3任一所述的方法, 其特征在于, 所述步骤 2 ) 中, 电解时针对 WC产品粉末使用非氧化性气体保护, 所述非氧化性气体为氮气 或氩气, 使用控制电流的方式进行电解, 通过控制电流的大小使电解过程中 槽电压恒定在 1.0~3.0V。
6、 根据权利要求 1-3任一所述的方法, 其特征在于, 所述步骤 2 ) 中, 针对 W、 W-Co产品粉末使用含有氧气的混合气体, 混合气体中氧气的体积 比例为 10~20%, 混合气体中其他气体为氮气或氩气,使用控制电流的方式进 行电解, 通过控制电流的大小使电解过程中槽电压恒定在 1.0~3.0V。
7、 根据权利要求 1-3任一所述的方法, 其特征在于, 所述步骤 3 ) 中 采用酸洗、水洗、过滤及真空烘干的方法进行熔盐电介质与产品粉末的分离
PCT/CN2014/083316 2014-06-17 2014-07-30 一种回收废硬质合金的方法 WO2015192443A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1607316.5A GB2537510B8 (en) 2014-06-17 2014-07-30 A process for recycling waste carbide
US14/908,495 US10519556B2 (en) 2014-06-17 2014-07-30 Process for recycling waste carbide
JP2016537102A JP6239117B2 (ja) 2014-06-17 2014-07-30 廃棄超硬合金を回収する方法
UAA201606205A UA114061C2 (xx) 2014-06-17 2014-07-30 Спосіб переробки відходів твердих сплавів

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410269955.7 2014-06-17
CN201410269955.7A CN104018190B (zh) 2014-06-17 2014-06-17 一种回收废硬质合金的方法

Publications (1)

Publication Number Publication Date
WO2015192443A1 true WO2015192443A1 (zh) 2015-12-23

Family

ID=51435174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083316 WO2015192443A1 (zh) 2014-06-17 2014-07-30 一种回收废硬质合金的方法

Country Status (6)

Country Link
US (1) US10519556B2 (zh)
JP (1) JP6239117B2 (zh)
CN (1) CN104018190B (zh)
GB (1) GB2537510B8 (zh)
UA (1) UA114061C2 (zh)
WO (1) WO2015192443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201769A (zh) * 2021-03-15 2021-08-03 北京工业大学 一种熔盐电解过程中精准加料装置及其方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177635B (zh) * 2015-09-12 2017-08-25 北京工业大学 一种连续制备钨粉的***及方法
CN105458284B (zh) * 2015-11-27 2018-01-02 王娜 一种熔盐中金属热还原合成纳米硬质合金粉末的方法
CN105648465B (zh) * 2016-01-13 2017-09-19 江西理工大学 一种熔盐电解制备碳化钨的方法
CN106795580B (zh) * 2016-01-27 2018-07-06 王娜 一种熔盐化学法回收废硬质合金的方法
CN106222703A (zh) * 2016-08-25 2016-12-14 北京工业大学 多步选择性电解回收废硬质合金中金属的方法
CN106544701B (zh) * 2016-10-11 2018-08-24 北京工业大学 用氟化物电解回收碳化钨废料中的金属的方法
US10940538B2 (en) * 2017-08-11 2021-03-09 Kennametal Inc. Grade powders and sintered cemented carbide compositions
CN108149279A (zh) * 2017-11-30 2018-06-12 北京工业大学 电解废弃硬质合金直接制备钨基合金粉末的方法
CN109208046B (zh) * 2018-09-29 2020-02-21 北京工业大学 一种熔盐原位电沉积碳化钨/钨复合涂层的方法
CN109368613A (zh) * 2018-10-17 2019-02-22 北京工业大学 一种利用废硬质合金制备多孔碳的方法
CN110565120B (zh) * 2019-10-18 2021-09-07 东北大学 一种在含铜铁液中脱除并回收铜的方法
CN110938838B (zh) * 2019-11-06 2021-12-31 东北大学 利用NaCl熔盐萃取法处理铝电解槽阳极炭渣的方法
CN111748828B (zh) * 2020-06-05 2022-05-06 北京科技大学 一种铜阳极泥熔盐电解回收铜银硒碲的方法
CN113136585B (zh) * 2021-03-10 2022-04-22 北京工业大学 一种原位合成碳化钨粉的方法
CN113463137A (zh) * 2021-07-01 2021-10-01 江西理工大学 一种从硬质合金废料中回收钨的方法
CN113718268A (zh) * 2021-07-21 2021-11-30 北京工业大学 一种回收钨废料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541202A (en) * 1977-06-07 1979-01-08 Mitsubishi Metal Corp Method of recovering waste material of ultra hard alloy
US5384016A (en) * 1993-11-10 1995-01-24 National Science Council Process for recovering tungsten carbide from cemented tungsten carbide scraps by selective electrolysis
CN102127778A (zh) * 2011-04-19 2011-07-20 河北联合大学 一种由wo3制备金属钨的方法
CN103773959A (zh) * 2014-01-13 2014-05-07 聂华平 一种电化学法回收处理低钴WC-Co硬质合金废料的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731402A (en) * 1952-07-03 1956-01-17 Horizons Titanium Corp Production of metallic titanium
US2722509A (en) * 1952-11-12 1955-11-01 Horizons Titanium Corp Production of titanium
US2923672A (en) * 1959-08-04 1960-02-02 Norton Co Process for the extraction of relatively pure chromium, molybdenum, and tungsten
FR2579230B1 (fr) * 1985-03-19 1990-05-25 Pechiney Procede d'amelioration de la purete des metaux de transition obtenus par electrolyse de leurs halogenures en bain de sels fondus
SU1650781A1 (ru) * 1988-06-20 1991-05-23 Институт электрохимии Уральского отделения АН СССР Способ получени оксидных бронз вольфрама или молибдена
JP2670836B2 (ja) * 1989-02-15 1997-10-29 株式会社 ジャパンエナジー 高純度チタンターゲット材
JPH0653954B2 (ja) * 1990-04-10 1994-07-20 株式会社ジャパンエナジー 高純度チタンの製造方法
US5951844A (en) * 1996-04-23 1999-09-14 Agfa Gevaert Process and apparatus for desilvering a silver-containing solution
JP4649591B2 (ja) * 2004-12-27 2011-03-09 日立金属株式会社 希土類合金の製造方法
JP2007016293A (ja) * 2005-07-08 2007-01-25 Kyoto Univ 懸濁電解による金属の製造方法
JP5153403B2 (ja) * 2008-03-28 2013-02-27 アイ’エムセップ株式会社 金属回収装置及び方法
SE532674C2 (sv) * 2008-05-13 2010-03-16 Salt Extraction Ab Förfarande för klorering av malmer, slagger, glödspån, skrot, pulver och andra tillgångar som innehåller utvinnbara metaller
CN101985763B (zh) * 2010-10-29 2012-04-18 江西理工大学 一种熔盐电解制备钨基合金粉末的方法
CN101974767B (zh) * 2010-10-29 2012-07-04 江西理工大学 一种熔盐电解制备钨粉的方法
JP2013117064A (ja) * 2011-11-04 2013-06-13 Sumitomo Electric Ind Ltd 溶融塩電解によるタングステンの製造方法及びその製造方法に使用する装置
US20140291161A1 (en) * 2011-11-04 2014-10-02 Sumitomo Electric Industries, Ltd. Method for producing metal by molten salt electrolysis and apparatus used for the production method
CN103436904B (zh) * 2013-07-29 2016-05-04 燕山大学 一种熔盐电解法制备碳化物衍生碳的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541202A (en) * 1977-06-07 1979-01-08 Mitsubishi Metal Corp Method of recovering waste material of ultra hard alloy
US5384016A (en) * 1993-11-10 1995-01-24 National Science Council Process for recovering tungsten carbide from cemented tungsten carbide scraps by selective electrolysis
CN102127778A (zh) * 2011-04-19 2011-07-20 河北联合大学 一种由wo3制备金属钨的方法
CN103773959A (zh) * 2014-01-13 2014-05-07 聂华平 一种电化学法回收处理低钴WC-Co硬质合金废料的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201769A (zh) * 2021-03-15 2021-08-03 北京工业大学 一种熔盐电解过程中精准加料装置及其方法

Also Published As

Publication number Publication date
US20160208398A1 (en) 2016-07-21
GB2537510B (en) 2020-05-20
GB2537510A (en) 2016-10-19
JP6239117B2 (ja) 2017-11-29
UA114061C2 (xx) 2017-04-10
GB2537510B8 (en) 2020-10-28
CN104018190A (zh) 2014-09-03
US10519556B2 (en) 2019-12-31
CN104018190B (zh) 2016-06-08
JP2016529401A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6239117B2 (ja) 廃棄超硬合金を回収する方法
CN109628731B (zh) 一种短流程处理含钒原料提取制备钒及合金粉末的方法
WO2017127950A1 (zh) 一种熔盐化学法回收废硬质合金的方法
WO2008053616A1 (fr) Procédé pour recueillir un métal de valeur à partir de fragments d'ito
Zhang et al. Electrochemical dissolution of cemented carbide scrap and electrochemical preparation of tungsten and cobalt metals
CN109763148B (zh) 一种连续电解制备高纯金属钛粉的装置和方法
CN108977664B (zh) 回收废旧硬质合金中碳化钨和钴的方法
Sun et al. Recovery of WC and Co from cemented carbide scraps by remelting and electrodissolution
WO2019104809A1 (zh) 电解废弃硬质合金直接制备钨基合金粉末的方法
Katiyar et al. An overview on different processes for recovery of valuable metals from tungsten carbide scrap.
Li et al. Recovery of tungsten from WC–Co hard metal scraps using molten salts electrolysis
CN102978406B (zh) 一种含铼的高温合金废料的再生方法
CN113106496A (zh) 一种钒碳氧固溶体阳极熔盐电解高纯金属钒方法
CN108642522A (zh) 一种含铟废料的回收方法
CN109055997B (zh) 熔盐电解法制备超细Al3Zr金属间化合物颗粒的方法
WO2020147464A1 (zh) 一种低温制备含钛复合阳极的方法
Xi et al. Electrochemical preparation of tungsten and cobalt from cemented carbide scrap in NaF–KF molten salts
Pérez et al. Electrochemical production of cobalt powder by using a modified hydrocyclone with ultrasonic assistance
CN105458284B (zh) 一种熔盐中金属热还原合成纳米硬质合金粉末的方法
Kartal et al. One-step electrochemical reduction of stibnite concentrate in molten borax
WO2008144967A1 (fr) Procédé pour la récupération et la production de poudre de zinc ultrafine
Xu et al. Current efficiency of recycling aluminum from aluminum scraps by electrolysis
CN104611720A (zh) 一种由锡镍铁合金废料生产电解镍并回收锡和铁的方法
CN110699552B (zh) 从scr催化剂中选择性提取高纯金属钛的方法
Meifeng et al. Effect of electrolysis voltage on electrochemical reduction of titanium oxide to titanium in molten calcium chloride

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14908495

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537102

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201607316

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140730

WWE Wipo information: entry into national phase

Ref document number: A201606205

Country of ref document: UA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894979

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14894979

Country of ref document: EP

Kind code of ref document: A1