WO2015190637A1 - 대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정 - Google Patents

대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정 Download PDF

Info

Publication number
WO2015190637A1
WO2015190637A1 PCT/KR2014/005645 KR2014005645W WO2015190637A1 WO 2015190637 A1 WO2015190637 A1 WO 2015190637A1 KR 2014005645 W KR2014005645 W KR 2014005645W WO 2015190637 A1 WO2015190637 A1 WO 2015190637A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium arsenide
nanowire array
semiconductor nanowire
compound semiconductor
present
Prior art date
Application number
PCT/KR2014/005645
Other languages
English (en)
French (fr)
Inventor
이우
신정호
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to CN201480079794.3A priority Critical patent/CN106794985B/zh
Priority to US15/317,922 priority patent/US10147789B2/en
Priority to JP2016572503A priority patent/JP6391716B2/ja
Publication of WO2015190637A1 publication Critical patent/WO2015190637A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • H01L21/30635Electrolytic etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0019Forming specific nanostructures without movable or flexible elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • Y10S977/819III-As based compounds, e.g. AlxGayInzAs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching

Definitions

  • the present invention relates to a method for economically manufacturing a metal mesh thin film.
  • the present invention also relates to a method for manufacturing a vertically aligned gallium arsenide semiconductor nanowire array using the above method.
  • the present invention provides an anode comprising a metal thin film having aligned nanosized holes.
  • the present invention relates to a method for fabricating a vertically aligned gallium arsenide semiconductor nanowire array.
  • gallium arsenide an I I I-V semiconductor
  • it can handle high frequency band up to 250GHz, and it is less influenced by temperature change, so it has the advantage of less noise when operating compared to silicon.
  • gallium arsenide nanowires can be classified into a top-down approach and a bottom-up approach.
  • Bottom-up approaches include molecular beam epitaxy (MBE), organometallics It can be grown using a chemical vapor deposition (Metal Organic Chemical Vapor Deposition), MOCVD.
  • MBE molecular beam epitaxy
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the top-down approach can be divided into dry etching and wet etching.
  • Reactive ion etching (RIE) which is represented by dry etching, requires expensive equipment and can only damage materials during the process.
  • RIE reactive ion etching
  • the surface is uneven and may contain a large amount of impurities. Therefore, it is not preferable because it can greatly affect the physical and chemical properties and can be a variable in the device design.
  • wet etching represented by metal-assisted chemical etching
  • metal-assisted chemical etching is currently being actively researched in the manufacture of silicon nanowires, and the patterned thin film is used as an oxidizing agent. It is a method of obtaining nanowires with controlled length and diameter in a short time by inducing a spontaneous reaction by being immersed in an etchant containing. This method is expanding the scope of research in the production of ⁇ - ⁇ semiconductor nanowires containing gallium arsenide.
  • the objective of the present invention is to overcome the technical limitations of the gallium arsenide semiconductor nanowire array manufacturing process by chemically wet etching a gallium arsenide semiconductor substrate using a metal as a catalyst. To provide a gallium arsenide semiconductor nanowire array having a length
  • another object of the present invention is to suppress the side etching to produce a large aspect ratio nanowire having a uniform diameter to overcome the length limitation due to the side etching effect commonly found in II IV semiconductor substrates. To provide a way.
  • the present invention also provides a method for producing a vertically aligned gallium arsenide nanowire array irrespective of the doping concentration and the type of doping of the gallium arsenide substrate.
  • the present invention provides a method for manufacturing a vertically aligned gallium arsenide nanowire array having the same orientation as the substrate irrespective of the substrate having different crystallographic orientations.
  • gallium arsenide nanowire arrays having one or more crystallographic orientations may be manufactured by controlling the etching direction of gallium arsenide or a route manufactured on a gallium arsenide substrate having one crystallographic orientation.
  • the present invention provides a method of manufacturing a gallium arsenide nanowire array as well as a gallium arsenide nanowire array in a periodically crossed zigzag form.
  • the step (a) comprises the steps of (al) forming a monolayer array of organic particles on the gallium arsenide substrate; (a2) depositing a metal thin film on the organic particle monolayer array; And 3) removing the organic particle monoulator array to prepare a metal mesh. It may be made to include more.
  • the step (al) may further comprise the step of first pre-treating the gallium arsenide substrate.
  • step (a2) heat or plasma treatment in an oxygen atmosphere (air or oxygen or ozone atmosphere) to shrink the organic particles of the organic particle array and the array and The gap between arrays can be widened to control the distance of nanowire formation.
  • an oxygen atmosphere air or oxygen or ozone atmosphere
  • One aspect of the present invention provides a method for preparing a metal nanomesh, comprising the steps of: (a) preparing a patterned metal nanomesh on a surface of an I I IV-V compound semiconductor substrate; And (b) applying an external bias to the metal mesh to wet etch the gallium arsenide substrate in the etchant; It provides a I I I-V compound semiconductor nanowire array manufacturing method comprising a.
  • aspects of the present invention include the steps of (a) forming (a) forming a monolayer array of organic particles on a gallium arsenide substrate; (a2) depositing a metal thin film on the organic particle monolayer array; And (a3) the organic particle monoulator array Preparing a metal mesh by removing the metal mesh; Further comprising is to provide a method for producing a III ⁇ V group compound semiconductor nanowire array.
  • the aspect of the present invention further provides a step of widening the gap between the arrays by applying heat after the step (a2) or by plasma treatment in an air, oxygen or ozone atmosphere to shrink the particles of the organic particle array. It provides a method for producing a III-V compound semiconductor nanowire array comprising.
  • the conductive mesh hole has a circular, elliptical, square, rectangular, fibrous, and polygonal shape of at least one of the group III-V compound semiconductor nanowire array. It is.
  • An aspect of the present invention also provides a method for producing a III-V group compound semiconductor nanowire array by applying a voltage or a current to the conductive mesh as an anode.
  • the conductive mesh comprises a metal that does not corrode in the etchant, such as silver (Ag), gold (Au), palladium (Pd) or platinum (Pt). It is to provide a method for manufacturing a semiconductor nanowire array.
  • the conductive mesh of the present invention may be an alloy having two or more elements, or may be a method of manufacturing a group III-V compound semiconductor nanowire array using two or more metals deposited in multiple layers.
  • the conductive mesh may be manufactured through various patterning methods in addition to a manufacturing method using organic particles.
  • the present invention is characterized in that the length of the nanowire is controlled by the size of the bias applied or controlled by the time the wet etching is performed.
  • the etching solution of the present invention may be to provide a method for producing a group III-V compound semiconductor nanowire array comprising hydrofluoric acid (HF), hydrochloric acid (HC1) or nitric acid (HN0 3 ).
  • the present invention may be a method for manufacturing a ⁇ - ⁇ compound semiconductor nanowire array manufactured in the wet etching step such that the nanowires have a vertical or zigzag shape from the substrate.
  • the present invention may be a method of manufacturing a group III-V compound semiconductor nanowire array to induce a nanowire to have a porous surface by biasing the substrate in the wet etching step.
  • the present invention may be a method of manufacturing a III-V compound semiconductor nanowire array in which the short length of the nanowires in the wet etching step is adjusted according to the pore size of the porous conductive mesh.
  • the II-IV compound semiconductor may be gallium arsenide.
  • the formation of the organic particle monolayer array in the (al) step is based on the entire formation of the gallium arsenide substrate, but only a part of the organic particle array may be formed if necessary, and the organic particle array may be formed.
  • Two or three layers may be used to produce the gallium arsenide nanowire in a non-vertical form.
  • Such a plurality of layers may also be formed in whole or in part only as necessary and may be formed so as to be common to each other.
  • pretreatment of the gallium arsenide substrate is preferable for uniformity of nanowires formed by removing contaminants.
  • Pretreatment is preferably done by washing with alternating organic solvents and deionized water.
  • the organic solvent is not limited as long as it does not damage the gallium arsenide substrate, and examples thereof include, but are not limited to, acetone, ketone, ethane, methanol, ethyl ether, ethyl acetate or tetrahydrofuran.
  • Pretreatment can take a variety of means, such as vortexing or just flowing.
  • the organic particles are dispersed in the form of a monoator on the surface of a solvent or water, and then transferred to the gallium arsenide substrate.
  • Transfer methods can be adopted in various ways.
  • a gallium arsenide substrate may be introduced into a liquid medium in which organic particles are dispersed, and then the substrate may be gradually removed from the liquid medium to form a monolayer array on the surface of the substrate.
  • the liquid medium may adopt various media depending on the nature of the organic particles.
  • water or organic solvents used in the pretreatment may be adopted, but is not limited thereto.
  • the organic particles may be controlled in various sizes from 1 nm to 5000 m, preferably from 10 nm to 100! M, more preferably from 10 nm to 10, but are not limited thereto.
  • the type of the organic particles for example, polystyrene, polymethyl methacrylate, polyolefin, polyvinylacetate, polybutadiene, crosslinked acrylic particles, epoxy particles or other rubber particles may be adopted. It is not. Polystyrene particles are low in specific gravity, floating in water and There are many, so it is good to adopt this, but it is not limited to this.
  • the organic particles may have various shapes such as circular, elliptical, square, rectangular, fibrous or plate-shaped, and the shape of the nanowires manufactured in the present invention may also be variously shaped. It can have This is because the shape of the holes of the metal mesh is determined according to the shape of the organic particles, and the shape of the nanowires is determined according to the shape of the metal mesh.
  • step 2) heat is applied or plasma treatment is performed in an oxygen atmosphere (air, oxygen, or ozone atmosphere) to shrink the organic particles of the organic particle array to close the gap between the array and the array.
  • an oxygen atmosphere air, oxygen, or ozone atmosphere
  • the phenomenon that the organic particles shrink by having such a step is because the expanded volume inside the particles is densely shrunk or crosslinked by a full-lasma treatment or heat treatment. In the case of heat treatment, the organic particles should not be melted. Therefore, heat treatment at a temperature above the glass transition temperature and below the melting temperature is preferable.
  • the deposition step of the metal thin film of the present invention may adopt various existing metal thin film forming methods adopted by this technique or the adjacent technique, and is not limited thereto. .
  • the deposition of metal is thermal evaporat ion. ), Plasma sputtering or e-baem evaporat ion.
  • Step (a3) of the present invention is a process of removing organic particles after deposition of metal.
  • the organic particles attached on the gallium arsenide substrate are generated in the mesh position.
  • the removal of the organic particles may be removed by dissolving with a solvent or removing the organic particles, or physically detaching the same through ultrasonic treatment, but is not limited to any one method.
  • the porous metal mesh may be manufactured by removing the polystyrene nanoparticles aligned on the surface of the gallium arsenide substrate by putting in styrene or chloroform and sonicating.
  • the cross section of the hole of the porous metal mesh may have a shape of at least one of a circle, an ellipse, a square, a rectangle, and a regular polygon.
  • the material of the porous mesh used in the present invention gold (Au), silver (Ag), palladium (Pd) or platinum (Pt) has excellent characteristics, but is not limited to this, in addition to the specific etching solution It may include a metal that does not corrode in, but is not limited thereto.
  • step (b) according to one aspect of the present invention will be described.
  • the step (b) may be characterized in that the nanowires are formed by wet etching the gallium arsenide substrate using the porous metal mesh prepared through the step (a).
  • the step (b) is applied to the gallium arsenide substrate by directly applying an external bias to the porous metal mesh to form a hole (h +) in the wetted gallium arsenide substrate in the etching solution Nanowires are formed in a top-down manner.
  • the portion of the non-contact mesh type is lowered by the etching of the gallium arsenide substrate and is not etched as it is in the non-etched mesh position. Form is created.
  • the power applied from the outside may include a DC current, a voltage, and a pulse type thereof.
  • the etching solution used in the step (b) may include any solution capable of etching gallium arsenide, such as hydrofluoric acid (HF), hydrochloric acid (HC1) or nitric acid (HN0 3 ). Therefore, the present invention is not limited thereto.
  • the gallium arsenide etching solution used in the present invention may include an etching solution diluted in deionized water and may be a mixture of deionized water and anhydrous ethanol (C 2 3 ⁇ 40H), but is not limited thereto.
  • the bias applied to the metal thin film may be applied within a current of 0.5 to 50 mA (current density: 2.5 to 250 mA / cm 2 ) or a voltage of 0.2 to 10V.
  • the present invention may also be targeted to the doped gallium arsenide substrate.
  • the present invention which manufactures gallium arsenide nanowires by inducing electrochemical etching of a gallium arsenide substrate with a direct current or voltage applied from the outside, has electrical characteristics above a certain doping concentration, regardless of its doping concentration and type.
  • the advantage is that nanowires can be fabricated and do not require additional doping because they directly etch wafers with the necessary doping concentrations without the need for a separate doping process to produce gallium arsenide substrates with desired electrical properties. Has an advantage.
  • the gallium arsenide nanowire array having one or more crystallographic orientations can be prepared by controlling the etching direction of the gallium arsenide nanowires prepared on the gallium arsenide substrate having one crystallographic orientation, and the crystallographic orientations periodically cross each other.
  • one or more crystallographic properties are controlled by controlling the etching direction of the nanowires manufactured on the gallium arsenide substrate having a given crystallographic orientation.
  • the gallium arsenide nanowire array having an orientation can be prepared, and a zigzag-shaped gallium arsenide nanowire array in which crystallographic orientations are periodically crossed can be manufactured.
  • a porous gallium arsenide nanowire array may also be manufactured by directly applying a direct current or voltage to a gallium arsenide substrate rather than a metal mesh.
  • the gallium arsenide nanowire array can be vertically aligned regardless of the doping concentration and the doping type of the gallium arsenide substrate, it is necessary to implement the device without additional doping process.
  • Nanowires can be manufactured directly using a substrate having a doping concentration and type.
  • vertically aligned gallium arsenide nanowire arrays having the same orientation as the substrates may be manufactured regardless of substrates having different crystallographic orientations.
  • vertically aligned gallium arsenide nanowire arrays having the same orientation as the substrate can be produced regardless of substrates having different crystallographic orientations.
  • gallium arsenide nanowire arrays having one or more crystallographic orientations may be manufactured by controlling the etching direction of gallium arsenide or a route manufactured on a gallium arsenide substrate having one crystallographic orientation. It is possible to fabricate zigzag-shaped gallium arsenide nanowire arrays that are periodically crossed, as well as porous gallium arsenide nanowires. Arrays can be made.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a gallium arsenide semiconductor nanowire array according to an aspect of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a polystyrene nanoparticle monolayer array formed on a surface of deionized water according to an aspect of the present invention.
  • FIG. 3 is a cross-sectional view showing a polystyrene nanoparticle monolayer array transfer method on a gallium arsenide substrate surface according to an aspect of the present invention
  • Figure 4 is a cross-sectional view showing a method for reducing the size of the polystyrene nanoparticles according to an aspect of the present invention
  • FIG. 5 is a cross-sectional view showing a metal thin film deposited on a polystyrene nanoparticle monolayer array formed on a gallium arsenide substrate according to an aspect of the present invention
  • FIG. 6 is a cross-sectional view showing a polystyrene removal process according to an aspect of the present invention
  • FIG. 7 is a scanning micrograph showing a porous metal mesh formed on a gallium arsenide substrate according to an aspect of the present invention.
  • FIG. 8 is a schematic view showing a method of manufacturing a gallium arsenide nanowire array according to an aspect of the present invention
  • FIG. 9 is a scanning electron micrograph showing a gallium arsenide nanowire array prepared by wet etching an N-type (100) gallium arsenide substrate in accordance with an aspect of the present invention
  • FIG. 10 is a scanning electron micrograph showing a gallium arsenide nanowire array prepared by wet etching an N-type (111) gallium arsenic substrate according to an aspect of the present invention
  • FIG. 11 is a scanning electron micrograph showing a gallium arsenide nanowire array fabricated by wet etching a P-type (100) gallium arsenide substrate according to an aspect of the present invention.
  • FIG. 12 is a scanning electron micrograph showing a zigzag-type gallium arsenide nanowire array prepared by wet etching an n′-type (100) gallium arsenide substrate according to an aspect of the present invention.
  • FIG. 13 is a scanning electron micrograph showing a porous gallium arsenide nanowire array prepared by wet etching an n′-type (100) gallium arsenide substrate according to an aspect of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • a monolayer array of polystyrene particles having a heavi-dense structure (when the closest layer is formed) is formed on the surface of deionized water, and then the polystyrene monolayer array is transferred onto a gallium arsenide substrate, followed by a polarization treatment such as oxygen.
  • a polarization treatment such as oxygen.
  • Gallium arsenide nanowires are generated in a top-down fashion.
  • a porous metal mesh should be prepared.
  • polystyrene nanoparticles 20 are dispersed in mono-ion in deionized water 30 as shown in FIG. 2. Subsequently, the gallium arsenide substrate 10 is impregnated and pulled as shown in FIG. 3 to form the polystyrene nanoparticle monolayer array 20 on the surface of the substrate 10. That is, the polystyrene nanoparticle monolayer array 10 formed on the surface of the deionized water 30 of FIG. 2 is arranged in a dense structure on the surface of the deionized water as shown in FIG. 3. Is killed.
  • various means may be adopted. For example, various methods such as spin coating and knife coating may be used.
  • the polystyrene nanoparticle monolayer array transferred to the gallium arsenide substrate surface should be reduced in diameter through polyoxygen plasma treatment.
  • the polystyrene monolayer array 20 deposits a metal on the aligned substrate.
  • metal deposition methods include thermal evaporat ion, plasma sputter, or e-beam evaporat i on.
  • the substrate is supported by toluene or chloroform to remove the polystyrene nanoparticle monolayer array 20 to prepare a porous metal mesh 40.
  • 7 is a scanning electron micrograph of a porous metal mesh 40 prepared according to an embodiment of the present invention.
  • the holes in the metal mesh 50 can be scaled from nanometers (nra) to micrometers ( ⁇ ⁇ ), depending on the size of the polystyrene or the oxygen plasma treatment time, and the cross sections of the holes can be round, oval, square or rectangular. Various shapes such as regular polygons are possible.
  • porous metal mesh 40 fabricated on the surface of the gallium arsenide substrate 10 is anode.
  • a gallium arsenide semiconductor nanowire 60 is formed by wet biasing the gallium arsenide substrate in an etchant using an anode.
  • ⁇ 95> 8 is a schematic diagram of a method of manufacturing a gallium arsenide semiconductor nanowire 60 using a porous metal mesh 40 according to an embodiment of the present invention.
  • the porous metal mesh 40 is wet etched, the porous metal mesh 40 is biased to the anode to attract electrons from the gallium arsenide substrate 10 to thereby remove the gallium arsenide substrate 10 under the porous metal mesh 40.
  • Oxidation is performed to form an oxide film layer under the metal, and the oxide film layer is etched by the etching solution used for the wet etching.
  • the formation of the oxide film layer and the cycle of the etching are continuously performed, and only the region of the gallium arsenide substrate 10 in contact with the porous metal mesh 40 is selectively removed by etching.
  • the porous metal mesh 40 serving as the anode remains on the surface of the gallium arsenide substrate 10 so that the lower gallium arsenide substrate is continuously etched, and the unetched mesh portion is topped with nanowires. It is formed in a beautiful way.
  • the diameter of the through hole 50 of the porous metal mesh 40 is transferred to the short axis diameter of the gallium arsenide nanowire 60, and the diameter of the through hole 50 formed in the metal mesh 40 is reduced.
  • the number of nanowires 60 formed on the gallium arsenide substrate 10 is controlled by the number, and the arrangement of the through holes 50 of the metal mesh 40 is formed on the gallium arsenide substrate 10. Is transferred to an array of bovine nanowires 60.
  • the length of the gallium arsenide nanowire 60 is controlled by the depth to be etched of the gallium arsenide substrate 10 and the etching depth of the gallium arsenide substrate 10 is the time when the wet etching is performed, the size of the external bias applied Can be easily adjusted by adjusting.
  • the etchant used for the wet etching may be hydrofluoric acid (HF), sulfuric acid (H 2 S0 4 ), hydrochloric acid (HC1), nitric acid (HN0 3 ), or the like.
  • the etchant may include an etchant diluted in deionized water and may be a mixture of deionized water and anhydrous ethanol (C 2 H 5 0H).
  • FIG. 9 shows scanning electron micrographs of vertically aligned gallium arsenide nanowires (60) arrays formed by wet n-type (100) gallium arsenide substrate (10) by the above method. It can be confirmed that it is formed uniformly.
  • FIG. 10 is a scanning electron micrograph of a vertically aligned gallium arsenide nanowire (60) array formed by wet etching an n-type (111) gallium arsenide substrate (10) in this manner.
  • FIG. 11 is a scanning electron micrograph of a vertically aligned gallium arsenide nanowire (60) array formed by wet etching a p-type (100) gallium arsenide substrate (10) in this manner.
  • a bias is applied to the porous metal mesh 40 using the wet etching method to form a vertically aligned array of gallium arsenide nanowires 60, and then a bias is applied to the substrate.
  • a bias is applied to the substrate.
  • FIG. 13 is a scanning micrograph of a vertically aligned array of gallium arsenide nanowires 60 having a porous surface prepared by the above method.
  • Example 1 The vertical nanowire forming method of FIG. 9.
  • iNexus gallium arsenide N type (100), N type (111) and P type (100) substrates are washed and dried in the order of acetone, ethanol and deionized water to remove contaminants on the surface and oxygen plasma (Oxygen: 100 sccm, plasma power: 300 W, time: 20 minutes) is used to improve the wettability on the surface.
  • Oxygen 100 sccm, plasma power: 300 W, time: 20 minutes
  • Polystyrene nanoparticles (average particle size 250 nm) of Micropart i Cles were mixed with propanol (C 3 H 7 0H), and then injected onto the surface of deionized water in a beaker using a syringe pump to form polystyrene nanoparticles with hexagonal dense structure.
  • the monolayer array is uniformly formed on the surface of deionized water, soaked using a pretreated gallium arsenide substrate, and slowly pulled to transfer the polystyrene nanoparticles to the surface of the gallium arsenide substrate.
  • Polystyrene nanoparticle monolayer (monolayer) arrays arranged in a hexagonal dense structure transferred to a gallium arsenide substrate were subjected to oxygen plasma treatment (oxygen: 100 sccm, plasma power 300 W, time: 20 minutes). Was reduced and deposited a parallax (Pd) used as an electrode in the fabrication of the nanowire array.
  • Deposition of the metal can be via plasma deposition. After deposition of the metal, toluene was loaded and sonicated to prepare a porous metal mesh by completely removing polystyrene nanoparticles aligned on the surface of the gallium arsenide substrate.
  • the gallium arsenide substrate located on the surface of the metal mesh obtained by the above method is supported by hydrofluoric acid (HF) and vertically applied by applying voltage or current to the metal mesh through an external conductor (0.5 to 50.0 mA or 0.2 to 10.0 V).
  • HF hydrofluoric acid
  • An ordered large area gallium arsenide nanowire array was formed.
  • Example 2 The vertical nanowire forming method of FIG. 10.
  • Example 3 A vertical nanowire forming method of FIG.
  • Example 4 The method of forming the vertical nanowire of FIG. 12.
  • n-type (100) substrate as in Example 1 was used except that the shape of the current was changed to the fill current.
  • Example 2 The same procedure as in Example 1 was performed except that the vertically aligned nanowires were formed and the current or voltage was changed to a GaAs substrate instead of a metal mesh. All. As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Accordingly, the scope of the present invention will be defined by the appended claims and their equivalents.

Abstract

본 발명은 하향식 방식으로 GaAs 반도체 나노선을 제조하는 방법에 관한 것으로, 메쉬형태의 금속박막을 대면적으로 제작하는 경제적인 방법을 통해 만들어진 금속박막을 양극 (anode)으로 이용하여 외부로부터 전압 및 전류를 인가하여 갈륨비소 기판에 정공 (h+)을 주입시킴으로써 습식 에칭공정을 지속적으로 유도하여 수직 정렬된 갈륨비소 반도체 나노선 어레이를 대면적으로 제작하는 방법과 관련이 있다. 얻어지는 대면적의 수직 정렬된 갈륨비소 반도체 나노선은 태양전지, 트랜지스터, 발광다이오드 등 나노소자 제작에 응용될 수 있다. 본 발명에서 갈륨비소 반도체 나노선의 직경은 금속박막의 메쉬 크기의 제어를 통해 조절이 가능하며, 나노선의 길이는 에칭시간, 인가전압 및 인가전류 제어를 통해 자유롭게 조절될 뿐 아니라 다른 I I I-V 반도체 나노선 어레이의 제조에 응용될 수 있다.

Description

【명세서】
【발명의명칭】
대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정 【기술분야】
<1> 본 발명은 금속메쉬 박막올 경제적으로 제조하는 방법에 관한 것이다.
<2> 또한 본 발명은 상기 방법을 이용한 수직 정렬된 갈륨비소 반도체 나노선 어 레이 제조방법에 관한 것이다.
<3> 상세하게는 본 발명은 정렬된 나노크기의 구멍들을 갖는 금속박막을 양극
(anode)로 사용하여 외부로부터 전압 또는 전류를 인가해 갈륨비소 기판에 정공 (h+) 을 주입시키고 결정학적 배향을 갖는 반도체 기판을 습식 에칭함으로써 직경과 길 이가 제어된 넓은 표면적과 큰 종횡비를 갖는 수직 정렬된 갈륨비소 반도체 나노선 어레이를 대면적으로 제조하는 방법에 관한 것이다.
【배경기술】
<4> 최근, 저차원 반도체 나노구조물의 독특한 물리적, 구조적 특성으로 인하여 반도체 나노선을 이용한 고성능 소자로 응용하려는 연구가 활발히 진행되고 있다. 실리콘 (Si )이나 게르마늄 (Ge) 등 단일원소로 구성된 단결정 반도체에 비하여 2종류 이상의 원소로 결합된 화합물 반도체는 다양한 원소의 조합방법과 조성비를 이용해 목적에 맞는 여러 종류의 반도체 나노소자를 구현해 낼 수 있다.
<5> 이 중 , I I I-V 반도체인 갈륨비소는 실리콘에 비해 전자의 이동속도가 5배 이 상 빠를 뿐 아니라 트랜지스터 구조가 간단하여 많은 고속 집적회로를 만들 수 있 다. 또한 250GHz에 이르는 고주파 대역까지 처리할 수 있으며, 온도변화에 영향을 적게 받기 때문에 실리콘과 비교해 동작 시 노이즈가 적은 장점이 있다.무엇보다도 직접천이형 (direct bandgap) 반도체 특성을 갖고 있어 발광효율이 우수해 최근 급 격한 성장을 보이는 발광다이오드 (LED) 또는 태양전지 모들의 소재로 각광받고 있 다.
<6> 따라서 갈륨비소 나노선올 실제 소자로 이용하기 위해서는 나노선의 직경과 길이를 균일하게 제어하는 것이 필수적일 뿐 아니라 넓은 표면적과 큰 종횡비를 갖 는 고품질의 수직 정렬된 갈륨비소 나노선 어레이를 공간적으로 잘 정렬시키고 그 밀도를 조절하는 것이 선행되어야 한다.
<7> 지금까지 보고된 바에 따르면 갈륨비소 나노선의 성장법으로는 크게 상향식 접근법 (Top-down)과 하향식 접근법 (Bottom-up)으로 분류할 수 있다.
<8> 상향식 접근법으로는 분자선증착법 (Molecular Beam Epitaxy, MBE) , 유기금속 화학증착법 (Metal Organic Chemical Vapor Deposi t ion, MOCVD) 등을 이용하여 성장 시킬 수 있다. 그러나 상기의 상향식 접근법에서는 나노선 성장 시 트원과 같은 결 함이 발생할 뿐 아니라 균일한 길이와 직경을 갖는 나노선을 기판으로부터 수직 정 렬시키는데 있어 어려움이 있다. 또한 하향식 접근법으로는 건식에칭과 습식에칭으 로 나눌 수 있는데 건식에칭으로 대표되는 이온범 에칭 (React ive Ion Etching, RIE)은 고가의 장비를 필요로 하고 공정 과정에서 재료에 손상을 줄 수 있을 뿐 아 니라 표면이 불균일하고 다량의 블순물을 포함할 수 있는 단점이 있다. 따라서 물 리적, 화학적 특성에 크게 영향올 줄 수 있어 소자설계에 있어 변수가 될 수 있기 때문에 바람직하지 못한다.
<9> 한편, 금속을 촉매로한 화학적에칭 (Metal-assi sted chemical etching)으로 대표되는 습식에칭은 현재 실리콘 나노선 제조에 있어 그 연구가 가장 활발히 진행 되고 있으며 패터닝된 박막을 촉매로 사용하여 산화제가 포함된 에칭액에 담지시킴 으로써 자발적인 반응을 유도시켜 짧은 시간에 길이와 직경이 제어된 나노선올 얻 어내는 방법이다. 이러한 방법은 갈륨비소를 포함한 ι π-ν 반도체 나노선 제조에 있어 그 연구범위가 확대되고 있다.
<ιο> 하지만 갈륨비소를 포함한 I I I-V 반도체 기판의 경우 이러한 금속을 촉매로 한 화학적 에칭 시 수직 에칭과 동시에 측면 에칭이 활발히 일어나 균일한 직경과 길이를 갖는 나노선올 제조하기가 어려울 뿐 아니라 종회비가 큰 나노선올 제조하 는데 있어 어려움이 있다.
【발명의 내용】
【기술적 과제】
<π> 본 발명의 목적은 종래 금속을 촉매로 사용하는 갈륨비소 반도체 기판의 화 학적 습식에칭을 통한 갈륨비소 반도체 나노선 어레이 제작공정이 갖는 여러 가지 기술적 한계를 극복함으로써 수직 정렬된 균일한 직경과 길이를 갖는 갈륨비소 반 도체 나노선 어레이를 제공하는 것이다
<12> 또한 본 발명의 목적은 상기 수직 정렬된 균일한 직경과 길이를 갖는 갈륨비 소 반도체 나노선 어레이를 대면적으로 제작하는 기술올 제공하는 것이다.
<13> 또한 본 발명의 또 다른 목적은 측면 에칭을 억제하여 균일한 직경을 갖는 종횡비가 큰 나노선을 제조함으로써 I I I-V 반도체 기판에서 보편적으로 나타나는 측면 에칭 효과에 의한 길이적 한계를 극복할 수 있는 방법을 제공하는 것이다.
<14> 또한 본 발명은 갈륨비소 기판의 도핑 농도 및 도핑 종류에 상관없이 수직 정렬된 갈륨비소 나노선 어레이를 제조할 수 있는 방법을 제공하는 것이다. <15> 또한, 결정학적 배향이 다른 기판에 상관없이 기판과 동일한 방향성을 갖는 수직정렬된 갈륨비소 나노선 어레이를 제조할 수 있는 방법을 제공하는 것이다.
<16> 또한, 한 가지 결정학적 배향을 갖는 갈륨비소 기판에서 제조된 갈륨비소 나 노선의 에칭방향을 제어하여 한 가지 이상의 결정학적 배향을 갖는 갈륨비소 나노 선 어레이를 제조할 수 있으며 결정학적 배향이 주기적으로 교차된 지그재그 형태 의 갈륨비소 나노선 어레이를 제조할 수 있을 뿐 아니라 다공성 갈륨비소 나노선 어레이를 제조하는 방법을 제공하는 것이다.
【기술적 해결방법】
<17> 상기의 목적을 달성하기 위하여 본 발명의 일 측면에 따르면 (a) 갈륨비소 기판 표면에 패터닝된 금속메쉬를 준비하는 단계; 및 (b) 금속메쉬에 외부 바이어 스를 인가해 에칭액에서의 갈륨비소 기판을 습식에칭시키는 단계; 를 포함하는 갈 륨비소 나노선 어레이 제조방법이 제공된다.
<18> 본 발명의 일 양태에 따르면, 상기 (a) 단계는 (al) 갈륨비소 기판 상에 유 기계입자의 모노레이어 어레이를 형성하는 단계; (a2) 상기 유기계 입자 모노레이 어 어레이 상에 금속박막을 증착하는 단계; 및 3) 상기 유기입자 모노레이터 어 레이를 제거하여 금속메쉬를 제조하는 단계; 를 더 포함하여 이루어질 수 있다.
<19> 또한 본 발명의 일 양태에 따르면, 상기 (al) 단계는 먼저 갈륨비소 기판을 전처리하는 단계를 더 포함하여 이루어질 수 있다.
<20> 또한 본 발명의 일 양태에 따르면, 상기 (a2)단계 이후에 열을 가하거나 또 는 산소분위기 (공기 또는 산소나 오존 분위기)에서 플라즈마 처리하여 유기계 입자 어레이의 유기입자를 수축시켜서 어레이와 어레이 사이의 간극을 넓혀 주어 나노선 의 형성 거리를 조절할 수도 있다.
<21>
<22>
<23> 이하 본 발명의 양태를 구체적으로 살피면 다음과 같다.
<24> 본 발명의 일 양태는 (a) I I Iᅳ V족 화합물 반도체 기판 표면에 패터닝된 금속 나노 메쉬를 준비하는 단계; 및 (b) 금속메쉬에 외부 바이어스를 인가해 에칭액에 서의 갈륨비소 기판을 습식에칭시키는 단계; 를 포함하는 I I I-V족 화합물 반도체 나노선 어레이 제조방법을 제공하는 것이다.
<25> 본 발명의 양태는 상기 양태에서 (a) 단계는 (al) 갈륨비소 기판 상에 유기 계입자의 모노레이어 어레이를 형성하는 단계; (a2) 상기 유기계 입자 모노레이어 어레이 상에 금속박막을 증착하는 단계; 및 (a3) 상기 유기입자 모노레이터 어레이 를 제거하여 금속메쉬를 제조하는 단계; 를 더 포함는 IIIᅳ V족 화합물 반도체 나노 선 어레이의 제조방법을 제공하는 것이다.
<26> 본 발명의 양태는 또한 상기 (a2)단계 후에 열을 가하거나 또는 공기나 산 소나 오존 분위기에서 플라즈마처리하여 유기계 입자 어레이의 입자를 수축시켜서 어레이와 어레이 사이의 간극을 넓혀 주는 단계를 더 포함하는 III-V족 화합물 반 도체 나노선 어레이의 제조방법을 제공하는 것이다.
<27> 본 발명의 양태에선 상기 전도성 메쉬 구멍의 모양이 원형, 타원형, 정사각 형, 직사각형, 섬유형 및 다각형 중 적어도 어느 하나의 형상인 III-V족 화합물 반 도체 나노선 어레이의 제조방법올 제공하는 것이다.
<28> 본 발명의 양태는 또한 상기 전도성 메쉬를 양극 (anode)으로 전압 또는 전류 를 인가하여 III-V족 화합물 반도체 나노선 어레이의 제조방법을 제공하는 것이다.
<29> 본 발명의 양태에서 전도성 메쉬는 에칭액에 부식되지 않는 금속, 예를 들어 은 (Ag), 금 (Au), 팔라듐 (Pd) 또는 백금 (Pt)을 포함하는 것인 III-V족 화합물 반도 체 나노선 어레이의 제조방법을 제공하는 것이다. 본 발명의 상기의 전도성 메쉬는 둘 이상의 원소를 갖는 합금이거나, 둘 이상의 금속을 다층으로 증착하여 사용하는 III-V족 화합물 반도체 나노선 어레이의 제조방법일 수 있다. 또한, 상기의 전도성 메쉬는 유기계 입자를 이용한 제조 방법 이외에 다양한 패터닝 방법을 통해서도 제 조될 수 있다.
<30> 또한 본 발명은 상기 나노선의 길이는 상기 습식 에칭이 수행되는 시간에 의 해 제어되거나 인가된 바이어스의 크기에 의해 제어되는 것을 특징으로 하는 III-
V족 화합물 반도체 나노선 어레이의 제조방법올 제공하는 것일 수 있다.
<3ΐ> 또한 본 발명의 상기 에칭액이 불산 (HF), 염산 (HC1) 또는 질산 (HN03)을 포함 하는 것인 III-V족 화합물 반도체 나노선 어레이의 제조방법을 제공하는 것일 수 있다.
<32> 또한 본 발명은 상기 습식에칭단계에서 나노선의 형태가 기판으로부터 수직 하거나 지그재그 형태를 갖도록 제조하는 ιπ-ν족 화합물 반도체 나노선 어레이의 제조방법일 수 있다. 또한 본 발명은 상기 습식에칭단계에서 기판에 바이어스를 가 해 나노선이 다공성 표면을 갖도록 유도하는 III-V족 화합물 반도체 나노선 어레이 의 제조방법일 수 있다.
<33> 또한 본 발명은 상기 습식에칭단계에서 나노선의 단축길이는 다공성 전도성 메쉬의 구멍 크기를 변화에 따라 조절되는 III-V족 화합물 반도체 나노선 어레이의 제조방법일 수 있다. <34> 본 발명에서 상기 I I I-V족 화합물 반도체가 갈륨비소인 것일 수 있다.
<35>
<36> 이하 본 발명의 제조방법의 단계에 대하여 설명한다 .
<37> 본 발명에서 상기 ( al ) 단계의 유기계 입자 모노레이어 어레이의 형성은 갈 륨비소기판의 전체에 형성하는 것을 기본으로 하지만, 필요에 의해서 일부만을 형 성할 수 있고, 또한 상기 유기계 입자 에레이를 2층 또는 3층 등의 복수층으로 하 여 갈륨비소나노선의 형태를 수직형이 아닌 부정형으로 제조할 수도 있다. 이러한 복수층은 또한 전부 또는 필요에 의해 일부만을 형성할 수 있으며 서로 흔재하도록 형성할 수도 있다. 본 발명에서 확률적으로 모노레이어 어레이를 형성하는 경우라 도 일부 결함 (디펙트)를 가질 수도 있음은 당업자에게 자명하지만 가장 좋게는 최 밀충진된 형태의 모노레이어로 하는 것이 가장 좋다.
<38> 본 발명에서 갈륨비소 기판의 전처리를 하는 것이 오염물질을 제거하여 형성 되는 나노선의 균일성을 위하여 좋다. 전처리는 유기용제 및 이온수를 번갈아가며 수세하여 전처리하는 것이 좋다. 유기용제는 상기 갈륨비소 기판을 손상하지 않는 것이라면 제한되지 않고 예를 들면 아세톤, 케톤, 에탄을, 메탄올, 에틸에테르, 에 틸아세테이트 또는 테트라하이드로퓨란 등올 예로들 수 있지만 이에 한정하지 않는 다. 전처리는 와류에서 할 수도 있고 그냥 흘러줄 수도 있는 등 다양한 수단을 채 택할 수 있다.
<39> 본 발명에 따르는 상기 유기계 입자 모노레이어 어레이를 갈륨비소 기판에 형성하는 방법은 유기계 입자를 용매나 물의 표면에 모노레이터 형태로 분산시킨 후 갈륨비소 기판에 이송하여 형성한다. 전사방법은 다양하게 채택할 수 있는데, 예를 들면 갈륨비소 기판을 유기계 입자가 분산된 액상 매체에 투입한 후 기판을 액상 매체로부터 서서히 빼냄으로써 유기계 입자가 기판표면에 모노레이어 어레이 를 형성할 수 있다. 상기 액상매체는 유기계 입자의 성질에 따라서 다양한 매체를 채택할 수 있음은 자명하다. 예를 들면 물이나 상기 전처리에 사용하는 유기계 용 매들올 채택할 수도 있지만 이에 한정하는 것은 아니다.
<40> 본 발명에서 상기 유기계 입자는 크기가 1 nm 내지 5000 m , 좋게는 10 nm 내지 100 !M , 더욱 좋게는 10 nm 내지 10 까지 다양하게 조절할 수 있지만 이에 한정하는 것은 아니다. 유기계 입자의 종류로는 예를 들면 폴리스티렌, 폴리메틸메 타크릴레이트, 폴리올레핀, 폴리비닐아세테이트, 폴리부타디엔, 가교아크릴입자, 에폭시 입자 또는 기타 고무입자 등의 다양한 것을 채택할 수 있으며, 이에 한정하 는 것은 아니다. 폴리스티렌입자가 비중이 낮아서 물에 부유하고 또한 상업화 된 것이 많이 있으므로 이를 채택하는 것도 좋지만 이에 한정하는 것은 아니다. <41> 또한 본 발명에서 상기 유기계 입자의 형태는 원형, 타원형, 정사각형, 직사 각형, 섬유형 또는 판상형 등 다양한 형태를 가질 수 있으며, 이러한 형태에 따라 본 발명에서 제조되는 나노선의 형태도 다양한 형태를 가질 수 있다. 이는 유기계 입자의 형태에 따라서 금속메쉬의 구멍의 형태가 결정되고, 금속메쉬의 형태에 따 라서 나노선의 형태가 결정되기 때문이다.
<42> 한편, 본 발명에서는 상기 2)단계 이후에 열을 가하거나 또는 산소분위기( 공기 또는 산소나 오존 분위기)에서 플라즈마 처리하여 유기계 입자 어레이의 유기 계 입자를 수축시켜서 어레이와 어레이 사이의 간극을 넓혀 주어 나노선의 형성 거 리를 조절할 수도 있다. 이러한 단계를 가짐으로써 유기계 입자가 수축하는 현상은 풀라즈마 처리나 또는 열처리에 의해서 가교되거나 또는 입자 내부의 팽창된 부피 가 치밀하게 수축하기 때문이다. 열처리를 하는 경우에는 유기계 입자가 용융되지 않아야 하므로, 유리전이온도 이상 용융온도 미만의 온도에서 열처리하는 것이 좋 다.
<43>
<44> 본 발명이 상기 (a2)단계에서 채택되는 금속박막의 증착단계는 이 기술 또는 인접기술에서 채택하는 기존의 다양한 금속박막 형성방법을 채택할 수 있는 것이어 서 여기서 특별한 방법으로 한정하지 않는다. 예를 들면 나노선 어레이의 제작 시 전극으로 사용되는 팔라듐 (Pd) , 금 (Au) , 백금 (Pt ) , 또는 은 (Ag)을 증착시킬 수 있 는데, 금속의 증착은 열증착 (thermal evaporat ion) , 플라즈마 증착 (plasma sputter) 또는 전자범 증착 (e-baem evaporat ion)을 통해 이루어질 수 있다.
<45> 다음으로 본 발명의 (a3)단계에 대하여 설명한다. 본 발명의 (a3)단계는 금 속의 증착 후 유기계 입자를 제거하는 공정이다. 상기 유기계 입자를 제거함으로써 갈륨비소 기판상에 부착된 유기계 입자가 부착위치가 메쉬형태로 생성되게 된다. 유기계 입자의 제거는 용매로 용해시켜 제거하거나 또는 비용매에 넣은 후 초음파 처리등올 통하여 물리적으로 탈리시킬 수도 있지만 어느 하나의 방법에 한정하는 것은 아니다. 예로서 본 발명에서 폴리스티렌 입자를 채택하는 경우에는 를루엔 또 는 클로로포름에 넣은 후 초음파 처리를 하여 갈륨비소 기판의 표면에 정렬되어 있 는 플리스티렌 나노입자를 제거함으로써 다공성 금속메쉬를 제조할 수 있다.
<46> 상기와 같이 유기계 입자를 제거하면 , 금속박막이 증착된 갈륨비소 기판 상 에 금속박막의 두께와 상기 유기계 입자의 부착장소의 높이 편차에 의해 메쉬가 형 성된다. <47> 본 발명의 일 실시예에 따르면, 상기 다공성 금속메쉬의 구멍의 단면은 원 형, 타원형, 정사각형, 직사각형 및 정다각형 중 적어도 어느 하나의 형상일 수 있 다.
<48> 또한 본 발명에서 사용된 다공성 메쉬의 재료는 금 (Au) , 은 (Ag) , 팔라듐 (Pd) 또는 백금 (Pt ) 이 우수한 특성을 가지지만 이에 한정하는 것이 아니고, 그 이외에 도 특정 에칭액에 부식되지 않는 금속을 포함할 수 있으므로 이에 한정하는 것은 아니다.
<49>
<50> 다음 본 발명의 하나의 양태에 따른 상기 (b) 단계에 대하여 설명한다 .
<51> 상기 (b)단계는 상기 (a) 단계를 통해 준비된 다공성 금속메쉬를 이용해 갈 륨비소 기판을 습식에칭하여 나노선을 형성하는 것을 특징으로 할 수 있다. 본 발 명의 일 양태에 따르면, 상기 (b) 단계는 외부 바이어스를 다공성 금속메쉬로 직접 인가해 금속메쉬 하부에 접촉되어 있는 갈륨비소 기판에 정공 (h+)을 형성시킴으로써 에칭액에서 갈륨비소 기판을 습식에칭하여 탑 -다운 방식으로 나노선이 형성되게 된 다,
<52> 즉, 금속기판과 접촉되는 갈륨비소기판이 에칭되면서 상기 접촉되지 않은 메 쉬형태의 부분은 갈륨비소기판의 에칭에 의해 낮아지면서 에칭되지 않은 메쉬 위치 에서는 나노선 그대로 에칭되지 않고 있으므로 나노선 형태가 생성되게 되는 것이 다.
<53> 본 발명에서는 외부에서 인가되는 파워는 직류 전류, 전압 및 이들의 펄스형 태를 포함할 수 있다.
<54> 이때 얻어지는 갈륨비소 나노선의 종횡비 (=길이 /지름)는 인가된 산화 전압, 산화 전류, 에칭액의 농도 및 에칭시간의 조절을 통해 제어된다.
<55> 본 발명의 일 양태에 따르면, 상기 (b)단계에 사용되는 에칭액은 불산 (HF) , 염산 (HC1 ) 또는 질산 (HN03) 등 갈륨비소를 에칭할 수 있는 모든 용액을 포함할 수 있으므로 이에 한정하는 것은 아니다. 또한, 본 발명에 사용된 갈륨비소 에칭액은 탈이온수에 희석된 에칭액을 포함할 수 있으며 탈이온수 및 무수에탄올 (C2¾0H)의 흔합액일 수 있지만 이에 한정되는 것은 아니다.
<56> 본 발명에서 상기 금속박막에 인가하는 바이어스는 0.5 내지 50 mA의 전류 ( 전류밀도 : 2.5 내지 250 mA/cm2) 또는 0.2 내지 10V의 전압 내에서 인가할 수 있 다. <57> 한편 , 본 발명에서는 또한 갈륨비소 기판의 도핑된 것을 대상으로 할 수도 있다. 외부에서 가해지는 직류 전류 또는 전압으로 갈륨비소 기판의 전기화학적 에 칭을 유도하여 갈륨비소 나노선을 제조하는 본 발명은 일정 도핑 농도 이상에서 전 기적 특성을 갖는다면 그 이상의 도핑 농도와 타입에 무관하게 나노선을 제조할 수 있다는 장점을 가지며, 일반적으로 원하는 전기적 특성을 갖는 갈륨비소 기판을 제 조하기 위해 별도의 도핑공정 없이도 필요한 도핑 농도를 갖는 웨이퍼를 직접적으 로 에칭하기 때문에 추가 도핑공정이 필요 없다는 장점을 가진다.
<58> 한 가지 결정학적 배향을 갖는 갈륨비소 기판에서 제조된 갈륨비소 나노선의 에칭방향을 제어하여 한 가지 이상의 결정학적 배향을 갖는 갈륨비소 나노선 어레 이를 제조할 수 있으며 결정학적 배향이 주기적으로 교차된 지그재그 형태의 갈륨 비소 나노선 어레이를 제조할 수 있을 뿐 아니라 다공성 갈륨비소 나노선 어레이를 제조할 수 있다.
<59> 즉, 금속박막에 인가하는 직류전압 또는 전류의 크기 및 필스형태를 조절함 으로써, 주어진 결정학적 배향의 갈륨비소 기판에서 제조된 나노선의 에칭방향을 제어하여 한 가지 또는 한 가지 이상의 결정학적 배향을 갖는 갈륨비소 나노선 어 레이를 제조할 수 있으며, 결정학적 배향이 주기적으로 교차된 지그재그 형태의 갈 륨비소 나노선 어레이를 제조 할 수 있다는 것이다.
<60> 뿐만 아니라, 금속메쉬가 아닌 갈륨비소 기판에 직접 직류전류 또는 전압을 인가하여 다공성 갈륨비소 나노선 어레이 역시 제조할 수 있다.
【유리한 효과】
<61> 본 발명의 갈륨비소 나노선 어레이 제조방법에 따르면 갈륨비소 기판의 도핑 농도 및 도핑 종류에 상관없이 수직 정렬된 갈륨비소 나노선 어레이를 제조할 수 있기 때문에 추가적인 도핑공정 없이 소자 구현에 있어 필요한 도핑농도와 종류를 갖는 기판을 이용하여 나노선을 직접 제작할 수 있다.
<62> 또한, 결정학적 배향이 다른 기판에 상관없이 기판과 동일한 방향성을 갖는 수직정렬된 갈륨비소 나노선 어레이를 제조할 수 있다.
<63> 또한, 결정학적 배향이 다른 기판에 상관없이 기판과 동일한 방향성을 갖는 수직 정렬된 갈륨비소 나노선 어레이를 제조할 수 있다.
<64> 또한, 한 가지 결정학적 배향을 갖는 갈륨비소 기판에서 제조된 갈륨비소 나 노선의 에칭방향을 제어하여 한 가지 이상의 결정학적 배향을 갖는 갈륨비소 나노 선 어레이를 제조할 수 있으며 결정학적 배향이 주기적으로 교차된 지그재그 형태 의 갈륨비소 나노선 어레이를 제조할 수 있올 뿐 아니라 다공성 갈륨비소 나노선 어레이를 제조할 수 있다.
이와 더불어, 측면 에칭을 억제하여 균일한 직경을 갖는 종횡비가 큰 나노선 을 제조함으로써 I I I-V 반도체 기판에서 보편적으로 나타나는 측명 에칭 효과에 의 한 길이적 한계를 극복할 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 일 측면에 따른 갈륨비소 반도체 나노선 어레이의 제조방법 을 나타낸 순서도이고,
도 2는 본 발명의 일 측면에 따른 탈이온수 표면에 형성시킨 폴리스티렌 나노 입자 모노레이어 어레이를 나타내는 단면도이고,
도 3은 본 발명의 일 측면에 따른 갈륨비소 기판 표면에 폴리스티렌 나노입자 모노레이어 어레이 전사방법을 나타내는 단면도이고,
도 4는 본 발명의 일 측면에 따른 폴리스티렌 나노입자의 크기를 감소시키는 방법을 나타내는 단면도이고,
도 5는 본 발명의 일 측면에 따른 갈륨비소 기판에 형성된 폴리스티렌 나노입 자 모노레이어 어레이 위에 증착된 금속박막을 나타내는 단면도이고,
도 6은 본 발명의 일 측면에 따른 폴리스티렌 제거과정을 나타내는 단면도이 고,
도 7은 본 발명의 일 측면에 따른 갈륨비소 기판 위에 형성된 다공성 금속메 쉬를 보여주는 주사현미경 사진이고,
도 8은 본 발명의 일 측면에 따른 갈륨비소 나노선 어레이의 제조방법을 나타 내는 모식도이고,
도 9는 본 발명의 일 측면에 따라 N타입 (100) 갈륨비소 기판을 습식에칭하여 제조한 갈륨비소 나노선 어레이를 나타낸 주사전자현미경 사진이고,
도 10은 본 발명의 일 측면에 따른 N타입 (111) 갈륨.비소 기판을 습식에칭하 여 제조한 갈륨비소 나노선 어레이를 나타낸 주사전자현미경 사진이고,
도 11은 본 발명의 일 측면에 따른 P-타입 (100) 갈륨비소 기판을 습식에칭하 여 제조한 갈륨비소 나노선 어레이를 나타낸 주사전자현미경 사진이고,
도 12는 본 발명의 일 측면에 따른 nᅳ타입 ( 100) 갈륨비소 기판을 습식에칭하 여 제조한 지그재그 형태의 갈륨비소 나노선 어레이를 나타낸 주사전자현미경 사진 이고,
도 13은 본 발명의 일 측면에 따른 nᅳ타입 (100) 갈륨비소 기판을 습식에칭하 여 제조한 다공성 갈륨비소 나노선 어레이를 나타낸 주사전자현미경 사진이다. 【발명의 실시를 위한 형태】
<79> 본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명올 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해 되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대해 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한 다.
<80> 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나 의 구성요소를 다른 구성요소로부터 구별하는 목적으로만사용된다.
<81> 본 출원에서 사용된 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것 으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르 게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 " 가지" 등의 용어는 명세서 상에 기재된 특징, 슷자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 독작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또 는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
<82> 이하, 본 발명을 일 양태에 해당하는 도면을 참조하여 더욱 상세하게 설명하 기로 하며, 도면을 참조하여 설명함에 있어, 동일하거나 대웅되는 구성 요소는 동 일한 도면번호를 부여하고 이에 대한 증복되는 설명은 생략하기로 한다.
<83>
<84> 먼저 도 1을 이용하여 본 발명에 따른 갈륨비소 반도체 나노선 어레이의 제 조방법을 상술한다.
<85> 먼저, 탈이온수의 표면에 육가조밀구조 (최밀층전일 경우)를 갖는 폴리스티렌 입자의 모노레이어 어레이를 형성하고 , 이어서 갈륨비소 기판으로 폴리스티렌모노 레이어 어레이를 전사하고, 산소 등의 폴라즈마 처리하여 상기 폴리스티렌 입자를 수축시켜주고, 이어서 통상의 증착방법으로 금속박막을 증착하고, 폴리스티렌입자 를 제한다. 이어서 다공성 금속매쉬를 양극 ( anode)로 하여 바이어스를 인가하여 에 칭액을 이용하여 갈륨비소 기판과 금속박막의 접촉면을 에칭하고 상기 갈륨비소 기 판과 금속박막의 비접촉부분인 메쉬 부분에는 에칭이 되지 않아 갈륨비소 나노선이 톱 -다운 방식으로 생성되게 된다. <86>
<87> 이하, 도 2 내지 도 6로부터 도 7의 금속메쉬를 제조하는 단계에 대하여 설 명한다ᅳ
<88> 본 발명에 따른 갈륨비소 나노선 어레이 제조방법에 의하면 , 우선 다공성 금 속메쉬가 준비되어야 한다.
<89> 다공성 금속메쉬를 제조하기 위해서 도 2와 같이 탈이온수 (30)에 폴리스티 렌 나노입자 (20)를 모노레이어로 분산한다. 이어서 도 3과 같이 갈륨비소 기판 ( 10) 을 함침시켜 끌어 을림으로써, 상기 기판 ( 10) 표면에 폴리스티렌 나노입자 모노레 이어 어레이 (20)를 형성한다. 즉, 도 2의 탈이온수 (30) 표면에 형성된 폴리스티렌 나노입자 모노레이어 어레이 ( 10)를 도 3과 같이 탈이온수 표면에 조밀구조 형태로 정렬된 폴리스티렌 나노입자 모노레이어 어레이를 갈륨비소 기판 ( 10)으로 전사한 다. 이러한 전사방식 이외에 다양한 수단을 채택할 수 있는데, 예를 들면 스핀코팅 (spin coat ing) , 나이프코팅 등 다양한 방법을 예로들 수 있으므로 이에 한정하지 않는다.
<90> 다음으로, 도 4와 같이 갈륨비소 기판 표면에 전사된 폴리스티렌 나노입자 모노레이어 어레이를 산소 플라즈마 처리를 통해 폴리스티렌의 직경을 감소시켜야 한다.
<9i> 이어서, 도 5와 같이 폴리스티렌 모노레이어 어레이 (20)가 정렬된 기판 위에 금속을 증착시킨다. . 금속의 증착 방법의 예로, 열증착 (thermal evaporat ion) , 플 라즈마 증착 (plasma sputter ) 또는 전자범 증착 (e-beam evaporat i on) 등을 들 수 있다.
<92> 다음으로, 도 6과 같이 를루엔 또는 클로로포름에 기판을 담지시켜 폴리스티 렌 나노입자 모노레이어 어레이 (20)를 제거하여 다공성 금속메쉬 (40)를 제조한다. <93> 도 7은 본 발명의 일 실시예에 따라 제조된 다공성 금속메쉬 (40)의 주사전자 현미경 사진이다. 금속메쉬의 구멍 (50)은 나노미터 (nra)에서 마이크로미터 ( μ ιη) 크 기로 폴리스티렌의 크기 또는 산소 플라즈마 처리 시간에 따라 크기 조절이 가능하 며, 구멍의 단면은 원형, 타원형, 정사각형, 직사각형 또는 정다각형 등 다양한 형 상이 가능하다.
<94> 다음으로 갈륨비소 기판 ( 10) 표면에 제조된 다공성 금속메쉬 (40)를 양극
(anode)으로 사용하여 외부에서 바이어스를 인가해 갈륨비소 기판을 에칭액에서 습 식에칭하여 갈륨비소 반도체 나노선 (60)을 형성한다.
<95> <96> 도 8은 본 발명의 일 실시예에 따른 다공성 금속메쉬 (40)를 이용한 갈륨비소 반도체 나노선 (60)을 제조하는 방법에 대한 개략도이다. 상기 다공성 금속메쉬 (40)는 습식 에칭시, 다공성 금속메쉬 (40)를 양극으로 바이어스를 가해 갈륨비소 기판 (10)으로부터 전자를 끌여 들여 다공성 금속메쉬 (40) 하부의 갈륨비소 기판 ( 10)을 산화시켜 금속 하부에 산화막층을 형성하고, 상기 산화막층이 상기 습식 에 칭에 사용되는 에칭액에 의해 에칭된다. 이러한 산화막층의 형성 및 에칭의 순환반 웅이 연속적으로 수행되며, 상기 다공성 금속메쉬 (40)와 접촉하는 갈륨비소 기판 (10) 영역만이 선택적으로 에칭에 의해 제거된다. 에칭 과정에서, 양극으로 작용하 는 다공성 금속메쉬 (40)는 상기 갈륨비소 기판 ( 10) 표면에 잔존하게 되어 지속적으 로 하부의 갈륨비소 기판이 에칭되고 에칭되지 않은 메쉬부위는 나노선으로 탑-다 운 방식으로 형성된다.
<97> 이에 따라, 상기 다공성 금속메쉬 (40)의 관통 구멍 (50)의 직경은 갈륨비소 나노선 (60)의 단축 직경으로 전사되고, 상기 금속메쉬 (40)에 형성된 관통 구멍 (50) 의 수에 의해 상기 갈륨비소 기판 ( 10)상 형성되는 나노선 (60)의 수가 제어되며, 상 기 금속메쉬 (40)의 관통 구멍 (50)의 배열이 갈륨비소 기판 ( 10)상 형성되는 갈륨비 소 나노선 (60)의 배열에 전사된다. 또한, 갈륨비소 나노선 (60)의 길이는 갈륨비소 기판 ( 10)의 에칭되는 깊이에 의해 조절되며 상기 갈륨비소 기판 ( 10)의 에칭 깊이는 습식 에칭이 수행되는 시간, 외부 바이어스의 인가 크기를 조절하여 용이하게 조절 될 수 있다.
<98> 상기 습식 에칭에 사용되는 에칭액은 불산 (HF) , 황산 (H2S04) , 염산 (HC1 ) 또 는 질산 (HN03) 등이 가능하다. 또한, 에칭액은 탈이온수에 희석된 에칭액을 포함할 수 있으며 탈이온수 및 무수에탄올 (C2H50H)의 흔합액일 수 있다.
<99>
<ιοο> 도 9 내지 도 11은 갈륨비소 기판 ( 10)의 타입과 결정배향성에 상관없이 기판 으로부터 수직정렬된 갈륨비소 반도체 나노선 (60) 어레이를 제조한 사진을 보여주 고 있다.
<ιοι> 상세하게는 도 9는 n-타입 (100) 갈륨비소 기판 (10)을 상기 방법으로 습식에 칭해 형성한 수직 정렬된 갈륨비소 나노선 (60) 어레이의 주사전자현미경 사진으로 나노선이 균일하게 형성된 것을 확인할 수 있다.
=102> 도 10은 n-타입 ( 111) 갈륨비소 기판 ( 10)을 상기 방법으로 습식에칭해 형성 한 수직 정렬된 갈륨비소 나노선 (60) 어레이의 주사전자현미경 사진이다. 도 11은 p-타입 ( 100) 갈륨비소 기판 ( 10)을 상기 방법으로 습식에칭해 형성 한 수직 정렬된 갈륨비소 나노선 (60) 어레이의 주사전자현미경 사진이다.
또한, 본 발명의 일 측면에 따르면 상기 방법을 이용해 갈륨비소 기판 ( 10)을 습식에칭하는 방법에서 다공성 금속메쉬 (40)에 인가된 바이어스의 형태를 제어함으 로써 수직 정렬된 갈륨비소 나노선 (60) 어레이가 아닌 다양한 형상 및 결정학적 배 향이 제어된 갈륨비소 나노선 (60) 어레이를 제조할 수 있다. 도 12는 n-타입 ( 100) 갈륨비소 기판 ( 10)올 상기 방법으로 습식에칭 시 다공성 금속메쉬 (40)에 의해 제조 된 지그재그 형태의 갈륨비소 나노선 (60) 어레이의 주사전자현미경 사진이다.
더 나아가, 본 발명의 또 다른 일 실시예로 상기 습식에칭 방법을 이용해 다 공성 금속메쉬 (40)에 바이어스를 인가해 수직 정렬된 갈륨비소 나노선 (60) 어레이 를 형성시킨 후 기판에 바이어스를 인가함으로써 다공성 표면을 갖는 수직 정렬된 갈륨비소 나노선 (60) 어레이를 제조할 수 있다. 도 13는 상기 방법으로 제조된 다 공성 표면을 갖는 수직정렬된 갈륨비소 나노선 (60) 어레이의 주사현미경 사진이다. 이하에서는 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 한다. 다 만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다. 이하는 본 발명의 실시예에 의해서 구체적으로 본 발명의 실현 예를 설명한 다.
(실시예 1)도 9의 수직형 나노선 형성방법.
갖륙비소 기판의 전처리
iNexus사의 갈륨비소 N타입 ( 100) 기판, N타입 ( 111) 기판 및 P타입 ( 100) 기 판을 아세톤, 에탄올 및 탈이온수의 순서로 세척하여 건조시킴으로써 표면에 존재 하는 오염물질을 제거하고 산소 플라즈마 (산소 : 100 sccm, 플라즈마 파워 : 300 W, 시간 : 20 분)를 이용해 표면에 젖음성을 향상시킨다. 폴리스티렌 나노입자 모노레이어 어레이 제작
Micropart i cles사의 폴리스티렌 나노입자 (평균입경 250 nm)를 프로판올 (C3H70H)과 흔합한 후, 주사기 펌프를 이용하여 비커에 담긴 탈이온수의 표면에 주 사하여 육각 조밀구조 갖는 폴리스티렌 나노입자 모노레이어 어레이를 탈이온수의 표면에 균일하게 형성시키고 전처리된 갈륨비소 기판을 사용하여 담근 후 천천히 끌어 을려 폴리스티렌 나노입자를 갈륨비소 기판의 표면에 전사한다. <115>
<1 16> 금속메쉬의 제작
<U7> 갈륨비소 기판에 전사된 육각 조밀구조 형태로 정렬된 폴리스티렌 나노입자 단층 (모노레이어) 어레이를 산소 플라즈마 처리 (산소 : 100 sccm, 플라즈마 파워 300 W, 시간 : 20분)를 통해 폴리스티렌의 사이즈를 감소시키고 나노선 어레이의 제작 시 전극으로 사용되는 팔라듬 (Pd)를 증착시켰다. 금속의 증착은 플라즈마 증 착 (plasma sputter)올 통해 이루어질 수 있다. 금속의 증착 후 를루엔을 담지시키 고 초음파 처리를 하여 갈륨비소 기판의 표면에 정렬되어 있는 폴리스티렌 나노입 자를 완전히 제거함으로써 다공성 금속메쉬를 제조하였다.
<118>
<119> 갈륨비소 나노선 어레이의 제작
<120> 상기 방법으로 얻어진 금속메쉬의 표면에 위치된 갈륨비소 기판을 불산 (HF) 에 담지하고 외부 도선을 통해 금속 메쉬에 전압 또는 전류를 인가 (0.5 ~ 50.0 mA 또는 0.2 ~ 10.0V)하여 수직정렬된 대면적의 갈륨비소 나노선 어레이를 형성하였 다. 이때 얻어지는 갈륨비소 나노선의 종횡비 (= 길이 /지름)는 인가된 전압, 전류, 에칭액의 농도 및 에칭시간의 조절을 통해 제어된다.
<121>
<122> (실시예 2)도 10의 수직형 나노선 형성방법.
<123> 상기 실시예 1에서 n-타입 (100) 갈륨비소 기판을 n-타입 (111) 갈륨비소 기 판으로을 변경한 것을 제외하고는 동일하게 하였다.
<124>
<125> (실시예 3)도 11의 수직형 나노선 형성방법 .
<126> 상기 실시예 1에서 n-타입 (100) 갈륨비소 기판을 P-타입 (100) 갈륨비소 기 판으로 변경한 것을 제외하고는 동일하게 하였다.
<127>
<128> (실시예 4)도 12의 수직형 나노선 형성방법.
<129> 상기 실시예 1과 동일한 n-타입 ( 100) 기판을 사용하여 전류의 형태를 필스 전류로 변경한 것을 제외하고는 동일하게 하였다.
<130>
<i 3i> (실시예 5)도 13의 수직형 나노선 형성방법 .
<132> 상기 실시예 1과 동일한 방법으로 수직 정렬된 나노선을 형성시키고 전류 또 는 전압을 금속메쉬가 아닌 GaAs 기판으로 변경한 것을 제외하고는 동일하게 하였 다. 이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통 상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따 라서 본 발명의 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
<135>
<136> *도면의 주요부분에 대한 부호의 설명 *
<137> 10 갈륨비소 기판
<138> 20 폴리스티렌 나노입자 모노레이어 어레이
<139> 30 탈이온수
<140> 40 다공성 금속메쉬
<141> 50 다공성 금속메쉬의 구멍
<142> 60 갈륨비소 반도체 나노선

Claims

【청구의 범위】
【청구항 1】
(a) III-V족 화합물 반도체 기판 표면에 패터닝된 금속나노 메쉬를 준비하는 단계; 및 (b) 금속메쉬에 외부 바이어스를 인가해 에칭액에서의 갈륨비소 기판을 습식에칭시키는 단계; 를 포함하는 III-V족 화합물 반도체 나노선 어레이 제조방 법.
【청구항 2】
제 1항에 있어서,
상기 전도성 메쉬를 양극 (anode)으로 전압 또는 전류를 인가하여 III-V족 화합물 반도체 나노선 어레이의 제조방법.
【청구항 3】
제 1항에 있어서,
전도성 메쉬는 에칭액에 부식되지 않는 금속, 예를 들어 은 (Ag), 금 (Au), 팔 라듐 (Pd) 또는 백금 (Pt)을 포함하는 것인 III-V족 화합물 반도체 나노선 어레이의 제조방법 .
【청구항 4】
제 1항에 있어서,
전도성 메쉬는 둘 이상의 원소를 갖는 합금이거나, 둘 이상의 금속을 다층으 로 증착하여 사용하는 III-V족 화합물 반도체 나노선 어레이의 제조방법 .
【청구항 5】
제 1항에 있어서
상기 나노선의 길이는 상기 습식 에칭이 수행되는 시간에 의해 제어되거나 인가된 바이어스의 크기에 의해 제어되는 것을 특징으로 하는 III-V족 화합물 반 도체 나노선 어레이의 제조방법.
【청구항 6】
제 1항에 있어서,
상기 에칭액은 불산 (HF), 염산 (HC1) 또는 질산 (HN03)을 포함하는 것인 III-V 족 화합물 반도체 나노선 어레이의 제조방법.
【청구항 7】
제 1항에 있어서,
상기 습식에칭단계에서 나노선의 형태가 기판으로부터 수직하거나 지그재그 형태를 갖도록 제조하는 ΠΙ-V족 화합물 반도체 나노선 어레이의 제조방법.
【청구항 8]
제 1항에 있어서,
상기 습식에칭단계에서 기판에 바이어스를 가해 나노선이 다공성 표면을 갖 도록 유도하는 I I I-V족 화합물 반도체 나노선 어레이의 제조방법.
【청구항 9]
제 1항 내지 제 8항에서 선택되는 어느 한 항에 있어서,
상기 습식에칭단계에서 나노선의 단축길이는 다공성 전도성 메쉬의 구멍 크 기를 변화에 따라 조절되는 I I I-V족 화합물 반도체 나노선 어레이의 제조방법. 【청구항 10]
제 1항 내지 제 8항에서 선택되는 어느 한 항에 있어서,
I I I-V족 화합물 반도체가 갈륨비소인 ίπ-ν족 화합물 반도체 나노선 어레이 의 제조방법 .
PCT/KR2014/005645 2014-06-11 2014-06-25 대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정 WO2015190637A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480079794.3A CN106794985B (zh) 2014-06-11 2014-06-25 垂直对齐的GaAs半导体纳米线阵列的大面积制造方法
US15/317,922 US10147789B2 (en) 2014-06-11 2014-06-25 Process for fabricating vertically-aligned gallium arsenide semiconductor nanowire array of large area
JP2016572503A JP6391716B2 (ja) 2014-06-11 2014-06-25 大面積の垂直整列されたガリウムヒ素半導体ナノワイヤーアレイの作製工程

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0070745 2014-06-11
KR1020140070745A KR101588577B1 (ko) 2014-06-11 2014-06-11 대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정

Publications (1)

Publication Number Publication Date
WO2015190637A1 true WO2015190637A1 (ko) 2015-12-17

Family

ID=54833712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005645 WO2015190637A1 (ko) 2014-06-11 2014-06-25 대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정

Country Status (5)

Country Link
US (1) US10147789B2 (ko)
JP (1) JP6391716B2 (ko)
KR (1) KR101588577B1 (ko)
CN (1) CN106794985B (ko)
WO (1) WO2015190637A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181121A1 (en) * 2013-07-25 2016-06-23 The Board Of Trustees Of The Leland Stanford Junior University Electro-assisted transfer and fabrication of wire arrays
CN106128957A (zh) * 2016-07-29 2016-11-16 东莞华南设计创新院 一种GaAs纳米线的制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960589B1 (ko) * 2017-02-20 2019-03-21 연세대학교 산학협력단 벌크 패턴의 습식 형성 방법 및 이를 위한 식각 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500250A (ja) * 2000-03-01 2004-01-08 ヒューレット・パッカード・カンパニー 広範囲なワイヤを形成するためのナノスケール・パターン形成
KR20100002486A (ko) * 2008-06-30 2010-01-07 서울옵토디바이스주식회사 패턴된 기판 및 질화물 반도체층 제조방법
KR20110024892A (ko) * 2009-09-03 2011-03-09 한국표준과학연구원 반도체 나노선 어레이과 그 제조방법
JP2012246216A (ja) * 2011-05-25 2012-12-13 Agency For Science Technology & Research 基板上にナノ構造を形成させる方法及びその使用
KR20130017684A (ko) * 2011-08-11 2013-02-20 한국과학기술연구원 Colloidal lithorgraphy를 이용한 GaAs 나노선

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404072A (en) * 1981-06-22 1983-09-13 Bell Telephone Laboratories, Incorporated Photoelectrochemical processing of III-V semiconductors
US5773369A (en) * 1996-04-30 1998-06-30 The Regents Of The University Of California Photoelectrochemical wet etching of group III nitrides
US6647796B2 (en) * 2000-08-11 2003-11-18 California Institue Of Technology Semiconductor nitride pressure microsensor and method of making and using the same
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
CN101427415A (zh) * 2004-04-27 2009-05-06 特拉维夫大学未来技术研发有限公司 基于交错的微容器结构的三维微电池
EP1769545A4 (en) * 2004-04-27 2010-04-07 Univ Tel Aviv Future Tech Dev 3D MICROBATTERIES BASED ON NESTED MICROCONTAINER STRUCTURES
US8178165B2 (en) * 2005-01-21 2012-05-15 The Regents Of The University Of California Method for fabricating a long-range ordered periodic array of nano-features, and articles comprising same
GB0702560D0 (en) * 2007-02-09 2007-03-21 Univ Bath Production of Semiconductor devices
JP4756708B2 (ja) 2007-03-23 2011-08-24 シャープ株式会社 被加工物の加工方法および配線形成方法並びに半導体基板の製造方法
US7846751B2 (en) * 2007-11-19 2010-12-07 Wang Nang Wang LED chip thermal management and fabrication methods
CN101229912B (zh) * 2007-12-26 2010-06-16 中国科学院上海微***与信息技术研究所 采用干法刻蚀制备氮化镓纳米线阵列的方法
CN101307452B (zh) * 2008-05-23 2010-09-01 华东师范大学 一种Ni/Si纳米线阵列的制备方法以及基于这种纳米线阵列的微纳湿度传感器
KR20110067046A (ko) * 2008-10-09 2011-06-20 더 리전츠 오브 더 유니버시티 오브 캘리포니아 발광 다이오드의 칩 형상화를 위한 광전기화학 식각
WO2010114887A1 (en) * 2009-03-31 2010-10-07 Georgia Tech Research Corporation Metal-assisted chemical etching of substrates
KR101706915B1 (ko) * 2009-05-12 2017-02-15 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 변형가능 및 반투과 디스플레이를 위한 초박형, 미세구조 무기발광다이오드의 인쇄 어셈블리
EP2631950A4 (en) * 2010-10-20 2015-10-21 Fujitsu Ltd SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
GB2500163B (en) * 2011-08-18 2016-02-24 Nexeon Ltd Method
GB201122315D0 (en) 2011-12-23 2012-02-01 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
CN102593261A (zh) * 2012-03-14 2012-07-18 中国科学院微电子研究所 一种用于太阳电池的硅基纳米结构及其制备方法
US8951430B2 (en) * 2012-04-18 2015-02-10 The Board Of Trustees Of The University Of Illinois Metal assisted chemical etching to produce III-V semiconductor nanostructures
US9583353B2 (en) * 2012-06-28 2017-02-28 Yale University Lateral electrochemical etching of III-nitride materials for microfabrication
CN102956774B (zh) * 2012-11-05 2015-06-24 中国科学院半导体研究所 制作纳米级柱形阵列氮化镓基正装结构发光二级管的方法
US20150108632A1 (en) * 2013-10-23 2015-04-23 Nano And Advanced Materials Institute Limited Thin film with negative temperature coefficient behavior and method of making thereof
WO2015157501A1 (en) * 2014-04-10 2015-10-15 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
US9704712B1 (en) * 2015-12-30 2017-07-11 Infineon Technologies Ag Method of making a semiconductor device formed by thermal annealing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500250A (ja) * 2000-03-01 2004-01-08 ヒューレット・パッカード・カンパニー 広範囲なワイヤを形成するためのナノスケール・パターン形成
KR20100002486A (ko) * 2008-06-30 2010-01-07 서울옵토디바이스주식회사 패턴된 기판 및 질화물 반도체층 제조방법
KR20110024892A (ko) * 2009-09-03 2011-03-09 한국표준과학연구원 반도체 나노선 어레이과 그 제조방법
JP2012246216A (ja) * 2011-05-25 2012-12-13 Agency For Science Technology & Research 基板上にナノ構造を形成させる方法及びその使用
KR20130017684A (ko) * 2011-08-11 2013-02-20 한국과학기술연구원 Colloidal lithorgraphy를 이용한 GaAs 나노선

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181121A1 (en) * 2013-07-25 2016-06-23 The Board Of Trustees Of The Leland Stanford Junior University Electro-assisted transfer and fabrication of wire arrays
US10037896B2 (en) * 2013-07-25 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Electro-assisted transfer and fabrication of wire arrays
CN106128957A (zh) * 2016-07-29 2016-11-16 东莞华南设计创新院 一种GaAs纳米线的制作方法

Also Published As

Publication number Publication date
US10147789B2 (en) 2018-12-04
KR101588577B1 (ko) 2016-01-28
KR20150142266A (ko) 2015-12-22
CN106794985A (zh) 2017-05-31
JP6391716B2 (ja) 2018-09-19
US20170125519A1 (en) 2017-05-04
JP2017517897A (ja) 2017-06-29
CN106794985B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
US7741197B1 (en) Systems and methods for harvesting and reducing contamination in nanowires
US9281206B2 (en) Semiconductor processing by magnetic field guided etching
JP5009993B2 (ja) ナノワイヤの配列方法および堆積方法
Togonal et al. Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching
JP2011523902A (ja) ナノワイヤアレイを製造するためのプロセス
WO2001018866A1 (en) Strongly textured atomic ridges and dots
US20170243751A1 (en) Self-Anchored Catalyst Metal-Assisted Chemical Etching
KR101620981B1 (ko) 기판 식각 방법
Morag et al. “Bottom-up” transparent electrodes
Shinde et al. Oriented colloidal-crystal thin films of polystyrene spheres via spin coating
KR101353373B1 (ko) 촉매 금속 식각 방법을 이용한 수직 나노 구조체의 제작방법, 이를 이용하여 제조된 수직 실리콘 나노 구조체, 및 이를 포함하는 소자
WO2015190637A1 (ko) 대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정
JP5475339B2 (ja) 単結晶半導体ナノワイヤの形成
US10037896B2 (en) Electro-assisted transfer and fabrication of wire arrays
Chen et al. Silicon carbide nano-via arrays fabricated by double-sided metal-assisted photochemical etching
KR101671627B1 (ko) 그래핀을 촉매로 한 실리콘의 화학적 식각 방법
CN102157371B (zh) 一种制作单晶硅纳米结构的方法
KR20070104034A (ko) 전계방출용 팁의 제조방법, 이에 의해 제조된 전계방출용팁 및 이를 포함하는 소자
US9691849B2 (en) Ultra-long silicon nanostructures, and methods of forming and transferring the same
KR101164113B1 (ko) 다직경 실리콘 와이어 구조체의 제조방법
Xia et al. Effect of catalyst shape on etching orientation in metal-assisted chemical etching of silicon
CN102650069B (zh) 一种制备大尺寸硅孔阵列的方法
KR101313176B1 (ko) 길이가 제어된 반도체 나노와이어의 연속적 대량생산방법
KR101220522B1 (ko) 다공성 다층 금속박막을 이용한 실리콘 나노선 어레이 제조방법
KR101199753B1 (ko) 나노전극 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572503

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15317922

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894309

Country of ref document: EP

Kind code of ref document: A1