WO2015186345A1 - 真空断熱体、ならびに、これを用いた断熱容器および断熱壁 - Google Patents

真空断熱体、ならびに、これを用いた断熱容器および断熱壁 Download PDF

Info

Publication number
WO2015186345A1
WO2015186345A1 PCT/JP2015/002773 JP2015002773W WO2015186345A1 WO 2015186345 A1 WO2015186345 A1 WO 2015186345A1 JP 2015002773 W JP2015002773 W JP 2015002773W WO 2015186345 A1 WO2015186345 A1 WO 2015186345A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
core material
vacuum
vacuum heat
heat insulation
Prior art date
Application number
PCT/JP2015/002773
Other languages
English (en)
French (fr)
Inventor
平野 俊明
秀司 河原崎
智章 北野
平井 剛樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/311,751 priority Critical patent/US20170096284A1/en
Priority to CN201590000673.5U priority patent/CN206347259U/zh
Priority to DE212015000150.4U priority patent/DE212015000150U1/de
Priority to JP2016525698A priority patent/JPWO2015186345A1/ja
Publication of WO2015186345A1 publication Critical patent/WO2015186345A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3823Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of different materials, e.g. laminated or foam filling between walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/122Insulation with respect to heat using an insulating packing material of loose fill type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/124Insulation with respect to heat using an insulating packing material of fibrous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/126Insulation with respect to heat using an insulating packing material of cellular type
    • F25D2201/1262Insulation with respect to heat using an insulating packing material of cellular type with open cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to a vacuum heat insulating body, and a heat insulating container and a heat insulating wall using the same.
  • a material selected from fiber materials such as glass wool and foams such as urethane foam is used.
  • fiber materials such as glass wool and foams such as urethane foam.
  • it is necessary to increase the thickness of the heat insulating material but when there is a limit to the space to be filled with the heat insulating material, for example, space saving or effective use of the space If it is necessary, it cannot be applied.
  • vacuum heat insulating materials have been proposed as high performance heat insulating materials.
  • This is a heat insulator in which a core material serving as a spacer is inserted into an outer packaging material having gas barrier properties, and the inside is decompressed and sealed.
  • This vacuum heat insulating material has a heat insulating performance approximately 20 times that of urethane foam, and has an excellent characteristic that a sufficient heat insulating performance can be obtained even if the thickness is reduced.
  • this vacuum heat insulating material is attracting attention as an effective means for improving the energy saving performance by improving the heat insulating performance while satisfying the customer demand for increasing the inner volume of the heat insulating box.
  • urethane foam is foam-filled in a heat insulating space between the inner and outer boxes in a heat insulating box constituting the refrigerator main body.
  • the vacuum heat insulating material is additionally installed in the space for heat insulation, the heat insulation is improved, and the internal volume of the heat insulation box is enlarged.
  • the heat insulating space of the heat insulating box generally has a complicated shape. For this reason, there is a limit to improving the area that the vacuum heat insulating material can cover, in other words, the ratio of the area of the vacuum heat insulating material to the total heat transfer area of the heat insulating box.
  • the insulation space of the heat insulation box is filled with open cell urethane and foamed, and then the inside of the heat insulation box is made by a vacuum exhaust device connected to the air inlet.
  • a technique has been proposed in which the heat insulating box body itself is made into a vacuum heat insulating material (see, for example, Patent Document 1).
  • Patent Document 2 the applicant also filled and foamed open-cell urethane in the heat insulation space of the heat insulation box serving as the refrigerator body, and made the heat insulation box itself a vacuum heat insulating material.
  • a heat insulating box body configured by vacuum-sealing the open cell urethane foam filled and foamed in the heat insulating space described in Patent Document 1 and Patent Document 2 described above, in other words, the vacuum heat insulator is an open cell urethane foam.
  • the vacuum heat insulator configured by vacuum-sealing open-cell urethane described in Patent Document 2, even if its external shape is complicated like a heat insulation box, The entire area can be vacuum insulated. Therefore, for example, by using it for a refrigerator, the thickness of the heat insulation box itself can be reduced, and the internal volume (storage space) can be further increased.
  • an LNG storage tank for storing ultra-low temperature substances such as liquefied natural gas (LNG), or an LNG transport tanker tank or the like.
  • LNG liquefied natural gas
  • LNG transport tanker tank or the like.
  • the above-mentioned vacuum heat insulating material configured by vacuum-sealing open-cell urethane has a very small open-cell pore size of 30 to 200 ⁇ m, and it takes time for evacuation, resulting in low productivity and high cost. There is a problem of becoming.
  • the present invention has been made in view of the above-described problems, and provides a vacuum heat insulating body with improved evacuation efficiency and increased productivity, and a heat insulating container and a heat insulating wall using the same. is there.
  • the vacuum heat insulator of the present invention includes a core material and an outer packaging material for vacuum-sealing the core material. And the core material has the 1st heat insulation core material and 2nd heat insulation core material which have air permeability. The first heat insulating core material has a larger ventilation resistance than the second heat insulating core material.
  • the heat insulating container of the present invention can be used as a heat insulating container that holds a substance that is 100 ° C. lower than normal temperature, and the heat insulating container includes the above-described vacuum heat insulating body. And the vacuum heat insulating body is comprised so that the heat insulation core material with low heat conductivity may be arrange
  • the heat insulating wall of the present invention can be used as a heat insulating wall used in an environment of 0 ° C. or lower, and the heat insulating wall includes the above-described vacuum heat insulating body. And the vacuum heat insulating body is comprised so that the heat insulation core material with low heat conductivity may be arrange
  • the first heat insulating core material having a large airflow resistance for example, the open cell resin such as open cell urethane
  • the second heat insulating core material having a low airflow resistance such as glass wool or rock wool.
  • the gas itself that gradually emerges from the inside of the open cell resin can be reduced by shortening the open cell passage, which is shortened by the thickness of the first heat insulation core material having a large ventilation resistance.
  • the gas can be dispersed throughout the passage composed of continuous bubbles, so that deformation due to a local pressure increase can also be suppressed.
  • the fall of heat insulation can also be suppressed by reducing the quantity of the gas emitted from the 1st heat insulation core material with large ventilation resistance.
  • FIG. 1 is a front view of a vacuum heat insulating box of a refrigerator using the vacuum heat insulating body according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a part of the wall surface of the vacuum heat insulation box in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the vacuuming performance of open-cell urethane in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the vacuuming performance of the vacuum heat insulator in the first embodiment of the present invention.
  • FIG. 5A is a diagram showing a structure example of a vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 5B is a diagram illustrating a structure example of the vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 5C is a diagram illustrating a structure example of the vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 5D is a diagram showing a structure example of the vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 5E is a diagram showing a structure example of the vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 6A is a diagram illustrating an example of a manufacturing method of a vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 6A is a diagram illustrating an example of a manufacturing method of a vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 6B is a diagram showing an example of a manufacturing method of the vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • FIG. 7 is a diagram showing a schematic cross-sectional configuration of a membrane-type LNG transport tanker including an inboard tank using a vacuum heat insulator in the second embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a two-layer structure of the inner surface of the inboard tank of the LNG transport tanker in the second embodiment of the present invention.
  • FIG. 9 is an enlarged cross-sectional view of a vacuum heat insulator used for a heat insulating structure of an inboard tank of an LNG transport tanker in the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a cross-sectional configuration of a laminated sheet that is an outer packaging material of a vacuum heat insulator in the second embodiment of the present invention.
  • FIG. 11 is sectional drawing seen from the side which shows the structure of the refrigerator using the vacuum heat insulating body in the 3rd Embodiment of this invention.
  • FIG. 12 is a perspective view showing a schematic configuration of a refrigerator door in the third embodiment of the present invention.
  • FIG. 13A is a cross-sectional view showing a configuration of a vacuum heat insulator of a comparative example in the third embodiment of the present invention.
  • FIG. 13B is a cross-sectional view showing a configuration of a vacuum heat insulator of a comparative example in the third embodiment of the present invention.
  • FIG. 14A is a cross-sectional view showing the configuration of the first example of the vacuum heat insulating body in the third exemplary embodiment of the present invention.
  • FIG. 14B is a cross-sectional view showing the configuration of the first example of the vacuum heat insulating body in the third exemplary embodiment of the present invention.
  • FIG. 15A is a cross-sectional view showing the configuration of the second example of the vacuum heat insulating body in the third exemplary embodiment of the present invention.
  • FIG. 15B is a cross-sectional view showing the configuration of the second example of the vacuum heat insulator in the third exemplary embodiment of the present invention.
  • FIG. 16A is a cross-sectional view showing the configuration of the third example of the vacuum heat insulator in the third exemplary embodiment of the present invention.
  • FIG. 16B is a cross-sectional view showing the configuration of the third example of the vacuum heat insulator in the third exemplary embodiment of the present invention.
  • FIG. 17 is sectional drawing which shows an example of arrangement
  • FIG. 18 is sectional drawing which shows the structure of the vacuum heat insulating body of the 1st example in the 3rd Embodiment of this invention.
  • FIG. 19 is sectional drawing which shows another example of a structure of the vacuum heat insulating body of the 1st example in the 3rd Embodiment of this invention.
  • FIG. 17 is sectional drawing which shows an example of arrangement
  • FIG. 18 is sectional drawing which shows the structure of the vacuum heat insulating body of the 1st example in the 3rd Embodiment of this invention.
  • FIG. 20 is a cross-sectional view showing still another example of the configuration of the vacuum heat insulating body of the first example in the third exemplary embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing still another example of the configuration of the vacuum heat insulator of the first example according to the third embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing still another example of the configuration of the vacuum heat insulating body of the first example in the third exemplary embodiment of the present invention.
  • FIG. 23 is a diagram for explaining a manufacturing method of the vacuum heat insulation box in the third embodiment of the present invention.
  • FIG. 24 is a diagram comparing the internal pressures of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 25 is a diagram comparing the thermal conductivity of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 26 is a diagram comparing the internal pressures of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 27 is a diagram comparing the thermal conductivity due to the difference in the thickness of inclusions in the third example of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 28 is a diagram comparing the internal pressure due to the difference in the diameters of the through holes of the inclusions in the third example of the vacuum heat insulating body in the third embodiment of the present invention.
  • FIG. 29 is a diagram comparing internal pressures due to differences in pitches of through-holes of inclusions in the third example of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 30 is a diagram comparing the thermal conductivities due to the difference in the diameters of the exhaust holes in the third example of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 31 is a diagram comparing the compression strength due to the difference in pitch when a plurality of exhaust holes are provided in the third example of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 1 is a front view of a vacuum heat insulation box 7 of the refrigerator 1 using the vacuum heat insulator in the first embodiment of the present invention
  • FIG. 2 is a part of the wall surface of the vacuum heat insulation box 7. It is sectional drawing which shows this structure.
  • the refrigerator 1 As shown in FIG. 1, the refrigerator 1 according to the present embodiment includes an outer box 2 made of metal (for example, iron) and an inner box 3 made of hard resin (for example, ABS resin). And after filling the space 5 for heat insulation between the outer box 2 and the inner box 3 with the core material 5 and the gas adsorbing material 6, it vacuum-seals, and the heat insulation box body (henceforth, vacuum) used as a refrigerator main body. (Referred to as a heat insulation box).
  • vacuum sealing includes a state in which the pressure in the space for heat insulation is lower than atmospheric pressure.
  • the internal space of the vacuum heat insulation box 7 is partitioned by a partition plate 8 into an upper refrigerator compartment 9 and a lower freezer compartment 10.
  • the refrigerator compartment 9 and the freezer compartment 10 are each provided with a door (not shown). These doors are also configured by vacuum-sealing after the core material 5 and the gas adsorbing material 6 are loaded in the space for heat insulation similarly to the vacuum heat insulating box described above.
  • the refrigerator 1 is equipped with components (compressor, evaporator, condenser, etc.) according to the cooling principle.
  • the internal space of the vacuum heat insulation box 7 is not limited to an example in which the internal space is divided into two compartments, a refrigeration room 9 and a freezing room 10.
  • a plurality of storage rooms having different uses are used. Room, vegetable room, etc.).
  • the core material 5 is vacuum-sealed in the heat insulating space 4 in the outer box 2 and the inner box 3 that serve as the outer packaging material of the vacuum heat insulating box 7 as described above.
  • the vacuum-sealed core material 5 is composed of two layers of a first heat-insulating core material 11 and a second heat-insulating core material 12 having air permeability.
  • one first heat insulating core member 11 has a larger airflow resistance than the second heat insulating core member 12
  • the other second heat insulating core member 12 has a larger airflow resistance than that of the first heat insulating core member 11. Is also small.
  • an open-cell resin is used as one first heat insulating core material 11 and a fiber material is used as the other second heat insulating core material 12.
  • the open-cell resin which is an example of the first heat insulating core material 11 having relatively high ventilation resistance, is described in detail in Patent Document 2 of the present applicant, which is exemplified as a prior document. Therefore, although detailed description is abbreviate
  • the open cell resin is constituted by an open cell urethane foam formed by, for example, a copolymerization reaction, which is filled in the heat insulating space 4 between the outer box 2 and the inner box 3 by integral foaming.
  • a large number of bubbles existing in the core layer at the center of the heat insulating space 4 communicate with each other through the first through holes.
  • the air bubbles existing in the skin layer in the vicinity of the interface between the outer box 2 and the inner box 3 in the heat insulating space 4 communicate with each other through the second through-hole formed by powder having low affinity with the urethane resin.
  • the open cell resin of the present embodiment is an open cell resin in which the bubbles in all regions communicate with each other through the first through hole and the second through hole from the core layer to the skin layer.
  • the open cell resin constituting the first heat insulating core 11 supports the outer box 2 and the inner box 3 while keeping the shape of the vacuum heat insulating box 7 while insulating between the outer box 2 and the inner box 3. It has a function to do. That is, the 1st heat insulation core material 11 has contributed to the improvement of physical properties, such as the intensity
  • the bubble size is set to 30 ⁇ m to 200 ⁇ m.
  • the second heat insulating core material 12 having a relatively small ventilation resistance is made of a fiber material.
  • an inorganic fiber material is employed as the second heat insulating core material 12 in terms of heat insulating performance and the like.
  • glass wool fiber, ceramic fiber, slag wool fiber, rock wool fiber, etc. are selected, and in this embodiment, glass wool having an average fiber diameter in the range of 4 ⁇ m to 10 ⁇ m. Fibers (glass fibers having a relatively large fiber diameter) are further fired and used.
  • the fiber material constituting the second heat insulation core material 12 is enclosed in a breathable bag material (not shown), and is configured to conform to the shape of the heat insulation space 4. This can be effectively achieved by mixing a binder material into the fiber material, but even in that case, the fiber material is configured to occupy a ratio of at least 5% to 90%.
  • the first heat insulation core member 11 faces the inner space side serving as the storage chamber of the vacuum heat insulation box member 7 and the second heat insulation core member 12 faces the outside. Are arranged respectively.
  • the vacuum heat insulating box 7 should be a vacuum heat insulating body in which a two-layer core material of a first heat insulating core material 11 made of open-cell resin and a second heat insulating core material 12 made of a fiber material is vacuum-sealed. .
  • the manufacturing method of the vacuum heat insulating box 7 is first provided with a wrapping material in which a fiber core material is placed in the space 4 for heat insulation, and is provided at several places in the outer box 2 or the inner box 3.
  • the urethane liquid is injected from the urethane liquid inlet 13 (see FIG. 1).
  • the vacuum inlet portion such as the urethane liquid inlet 13 is hermetically sealed. It is manufactured by.
  • the air vent holes 14 are dispersedly arranged at appropriate positions in at least one of the outer box 2 and the inner box 3, and the urethane liquid injection port Similarly to 13, after being evacuated, it is hermetically sealed.
  • the manufacturing method of this vacuum heat insulation box 7 uses the method similar to the method described in the above-mentioned patent document 2, Furthermore, before the urethane injection
  • the vacuum sealing or the like of the heat insulating space 4 may be performed in a vacuum chamber, and the details of the description of Patent Document 2 are used for details, and the detailed description thereof is omitted.
  • the vacuum heat insulation box 7 has a two-layer structure in which a core material vacuum-sealed in the heat insulation space 4 is composed of a first heat insulation core material 11 made of an open cell resin and a second heat insulation core material 12 made of a fiber material. It is said. Thereby, compared with the case where it consists of the conventional open cell resin single layer, the heat insulation performance can be made high.
  • the open cell resin constituting the first heat insulating core 11 has small bubbles of 30 ⁇ m to 200 ⁇ m in the present embodiment. For this reason, when the inside of the heat insulation space 4 is evacuated, the ventilation resistance (exhaust resistance) of the open cell resin increases, and it may take a long time to decompress the internal space of the open cell resin. is there.
  • the heat insulating space 4 is loaded with the second heat insulating core material 12 made of fiber material together with the first heat insulating core material 11 made of open cell resin. Yes.
  • the thickness of the 1st heat insulation core material 11 can be made thin by the thickness of the 2nd heat insulation core material 12.
  • FIG. 1 As a result, as the thickness is reduced, the open cell passage of the open cell resin constituting the first heat insulating core material 11 is shortened, the ventilation resistance is reduced, the evacuation time is shortened, and the productivity is improved. be able to.
  • FIG. 3 is a diagram showing the vacuuming performance of open-cell urethane in the first embodiment of the present invention.
  • an internal pressure change A in the case of an open-cell urethane having a thickness of 30 mm and an internal pressure change B of an open-cell urethane having a thickness halved to 15 mm are shown.
  • the time required to reach the same internal pressure, for example, 200 Pa was “C” in the case of the open-cell urethane A having a thickness of 30 mm, but “ It can be seen that the “D” is shortened.
  • the vacuum heat insulation box 7 of the present embodiment has been improved from the inside of the open cell resin due to the reduced thickness of the open cell resin core material of the open cell resin having a large ventilation resistance and the shortening of the open cell passage.
  • the gas that gradually emerges can be reduced, and the gas can be dispersed throughout the passage composed of open bubbles.
  • a decrease in the heat insulation performance can be suppressed by the amount of gas, and deformation due to a local pressure increase can be suppressed by the amount of gas dispersed.
  • the glass wool, rock wool, or the like constituting the second heat insulating core 12 of the vacuum heat insulating box 7 has a low thermal conductivity and good heat insulating properties. For this reason, even if the thickness of the 1st heat insulation core material 11 is made thin, the heat insulation of the vacuum heat insulation box 7 can be made excellent. Further, as described above, the vacuum heat insulating box 7 can reduce the amount of gas coming out of the heat insulating core material such as open cell resin having a large ventilation resistance, and thus can suppress a decrease in heat insulating property. it can.
  • FIG. 4 is a diagram showing the vacuuming performance of the vacuum heat insulator in the first embodiment of the present invention.
  • the comparison (2) in which the core material is only open-cell urethane foam, and the core material is a two-layer structure of a fiber material and integrally-opened open-cell urethane foam.
  • the thickness of the product (2) is made the same, and for example, evacuation is performed in a vacuum chamber for 30 minutes, and the internal pressure is measured after 10 days.
  • the comparative product (2) rises to 450 Pa, but in the case of the present product (2), it becomes 250 Pa, and the effect of suppressing the increase in internal pressure and the deterioration of the heat insulation performance is seen. This is presumed to be because the thickness of the open-cell urethane foam is reduced by the amount of the fiber material in this embodiment product (2), and the amount of gas released from the open-cell urethane foam is reduced accordingly.
  • the experimental results in this case were as follows: a rectangular parallelepiped core material having a size of 198 ⁇ 130 ⁇ thickness 30 mm was evacuated with a mechanical booster pump for 30 minutes in a sealed container composed of a liquid crystal polymer and an aluminum foil laminate film. It is the result of having performed the pressure measurement for every elapsed days with the spinning rotor gauge about the experimental product obtained by heat-welding the film.
  • the vacuum heat insulating box 7 of the present embodiment has a two-layer structure of the first heat insulating core material 11 made of open cell resin and the second heat insulating core material 12 made of fiber material. , Its heat insulation can be enhanced. And the vacuum evacuation time of the 1st heat insulation core material 11 can be shortened and productivity can be improved, without impairing the heat insulation performance.
  • the vacuum heat insulation box 7 has one of the heat insulating cores made of an open cell resin, and the other heat insulating core is a fiber having a smaller ventilation resistance than the heat insulating core made of open cell resin. Consists of materials.
  • the open cell resin may be poured in the state where the fiber material is put in the heat insulation space 4, and the foamed material may be integrally foamed and evacuated, thereby greatly improving the productivity and reducing the production cost.
  • the product can be provided at low cost.
  • the flexible and easily deformable fiber material can be easily converted into a space for heat insulation. 4 can be loaded. Thereby, productivity can further be improved and cost reduction can be aimed at.
  • productivity can further be improved and cost reduction can be aimed at.
  • shape of the vacuum heat insulation box 7 is complicated, since it can be arranged along this shape, it can also cope with a heat insulation structure having a complicated shape.
  • the gas adsorbing material 6 is vacuum-sealed together with the core material 5 in the vacuum heat insulating box 7. Thereby, the gas which is contained in the open cell resin to be the first heat insulating core material 11 and is gradually released, and the gas remaining in the second heat insulating core material 12 are adsorbed to the gas adsorbing material 6. Can be made. As a result, it is possible to reliably suppress an increase in internal pressure due to gas, prevent deformation of the vacuum heat insulation box 7, and at the same time maintain its heat insulation well.
  • the gas adsorbing material 6 is disposed on the open cell resin side constituting the first heat insulating core material 11 (see FIG. 2). With this configuration, the gas released from the open cell resin over time can be efficiently adsorbed via the open cell passage, and it is possible to efficiently prevent the increase in internal pressure and suppress the decrease in heat insulation and maintain high heat insulation performance. Can be made.
  • the gas adsorbent 6 plays a role of adsorbing a mixed gas such as water vapor and air that remains or enters the sealed space such as the heat insulating space 4 and is limited to a specific one. Is not to be done.
  • a chemical adsorption material such as calcium oxide or magnesium oxide, a physical adsorption material such as zeolite, or a mixture thereof can be used.
  • ZSM-5 type zeolite exchanged with copper ions and having adsorption performance having both chemical adsorption properties and physical adsorption properties and a large adsorption capacity can also be used.
  • the above-described gas adsorbent 6 containing ZSM-5 type zeolite subjected to copper ion exchange is used.
  • the ZSM-5 type zeolite that has undergone copper ion exchange has a high adsorption performance and a large adsorption capacity, even if an open-cell resin, which tends to keep releasing gas with time, is used as the core material.
  • the gas adsorption can be reliably continued over a long period of time, and the increase in the internal pressure of the vacuum heat insulation box 7 and the suppression of the decrease in the heat insulation can be reliably performed over a long period.
  • an inorganic fiber material such as glass wool or rock wool is used.
  • the amount of water generated can be kept low and the heat insulation can be maintained well. That is, since the inorganic fiber itself has a low water absorption (hygroscopic property), the moisture content inside the vacuum heat insulating box 7 can be kept low. Thereby, it can suppress that the adsorption
  • the inorganic fibers are baked, even if the vacuum heat insulation box 7 is damaged due to some influence, the fiber material does not swell greatly, and the shape as the vacuum heat insulation box 7 is maintained. can do.
  • the swelling at the time of breakage of the vacuum heat insulating box 7 can be 2 to 3 times that before the breakage, depending on various conditions.
  • the expansion at the time of breakage can be suppressed to within 1.5 times, the expansion at the time of breakage can be effectively suppressed, and the dimension retention can be enhanced.
  • the vacuum heat insulation box 7 configured as described above is arranged so that the first heat insulation core 11 faces the internal space of the vacuum heat insulation box 7, that is, the internal space side serving as a storage chamber. Thereby, the vacuum heat insulation box 7 can be insulated more efficiently, and the heat insulation can be made high.
  • the open-cell urethane foam constituting the vacuum-insulated first heat insulating core 11 has a lower thermal conductivity ⁇ than the glass wool or rock wool or the like constituting the vacuum-insulated second heat-insulating core 12.
  • the first heat insulating core material 11 having a low thermal conductivity ⁇ strongly insulates the low temperature from the internal space
  • the second heat insulating core material 12 positioned outside thereof is The heat insulation is performed in the low temperature region where the temperature is relatively high after the first heat insulation core material 11 having a low thermal conductivity ⁇ .
  • FIG. 5A to FIG. 5E are diagrams showing an example of the structure of the vacuum heat insulating body in the first exemplary embodiment of the present invention.
  • positioning form of the 1st heat insulation core material 11 and the 2nd heat insulation core material 12 is shown.
  • one surface, for example, the lower surface (which may be the upper surface) of the vacuum heat insulating body is a first heat insulating core material 11 made of open cell resin.
  • the second heat insulating core material 12 is disposed on the other surface.
  • FIG. 5B shows the second heat insulating core material 12 made of a fiber core material sandwiched by the first heat insulating core material 11 made of an open cell resin.
  • FIG. 5C shows the first heat insulating core 11 made of open-cell resin arranged on the outer periphery so as to surround the outer periphery of the second heat insulating core 12 made of the fiber core.
  • FIG. 5D divides
  • FIG. 5E shows a case where a second heat insulating core 12 made of a fiber core material is disposed at a corner portion of the first heat insulating core 11 made of an open cell resin.
  • a core material having a relatively low airflow resistance is installed so as to reduce the thickness of the core material having a relatively high airflow resistance. Can be reduced.
  • the first heat insulating core material 11 made of open-cell resin is disposed in the vicinity of the inner surface of the vacuum heat insulating box 7, and the second heat insulating core made of a fiber core material is provided on the outer side.
  • the material 12 is provided. Then, in addition to the effect of reducing the airflow resistance, the first heat insulating core 11 made of open cell resin is formed into the free unevenness even if the inner surface of the vacuum heat insulating box 7 is not flat but has free unevenness. Can be formed along. For this reason, there exists an effect that the vacuum heat insulation box which suppressed the heat leak by the clearance gap between a core material and a box can be obtained.
  • FIG. 5C is similar to the above-described example, in addition to the effect of reducing the overall ventilation resistance, even if any of the six surfaces of the vacuum heat insulating box is not flat and has free irregularities, The 1st heat insulation core material 11 which becomes can be formed along the free unevenness
  • the first heat insulating core material 11 is subdivided, the passage made of open cells can be further shortened, and the evacuation time can be shortened.
  • FIG. 5E may be realized in combination with any of the examples of FIGS. 5A to 5D described above.
  • FIG. 6A and FIG. 6B are diagrams showing an example of the manufacturing method of the vacuum heat insulating body in the first embodiment of the present invention.
  • FIG. 6A shows a manufacturing method in which the exhaust pipe 15 is connected to the housing of the vacuum heat insulating box 7 which is an outer packaging material of the vacuum heat insulating body, and vacuuming is performed as described above.
  • 6B shows that a part of the housing of the vacuum heat insulation box 7, for example, the upper surface is opened, is put in the vacuum chamber 16 and evacuated, and then a sealing plate is welded or bonded to the opening of the container.
  • the manufacturing method which carries out vacuum sealing by equalizing is shown.
  • vacuum heat insulator is used for a heat insulating structure of an LNG inboard tank in an LNG transport tanker.
  • FIG. 7 is a diagram showing a schematic cross-sectional configuration of a membrane-type LNG transport tanker including an inboard tank using a vacuum heat insulator in the second embodiment of the present invention.
  • FIG. 8 is an explanatory view showing a two-layer structure of the inner surface of the inboard tank of the LNG transport tanker, showing a schematic perspective view and a partially enlarged sectional view thereof.
  • FIG. 9 is an enlarged cross-sectional view of a vacuum heat insulator used for the heat insulation structure of the inboard tank.
  • FIG. 7 shows a heat insulating container 21 constituted by the hull itself. Inside the container serving as the tank, a double heat insulation structure called primary heat insulation and secondary heat insulation is adopted.
  • the heat insulating container 21 includes a container outer tank 22 and a container inner tank 24 provided inside the container outer tank 22 via an intermediate tank 23.
  • Both the inner tank 24 and the intermediate tank 23 are made of a stainless steel membrane or invar (nickel steel containing 36% nickel), and are resistant to heat shrinkage.
  • a first heat insulation box 25, which is a heat insulation structure disposed between the container inner tank 24 and the intermediate tank 23, has a wooden box frame body 26 such as a plywood plate having an open surface, and a box frame body 26. It is comprised with the powder heat insulating materials 27, such as the filled pearlite. In addition, as the powder heat insulating material 27, you may comprise glass wool etc. instead of pearlite, and in this Embodiment, pearlite is used as a powder heat insulating material and demonstrated.
  • the second heat insulation box 28 arranged between the intermediate tank 23 and the container outer tank 22 is vacuum insulated on the bottom surface of the wooden box frame body 26 whose one surface is opened.
  • a body 29 is laid, and a powder heat insulating material 27 such as pearlite similar to the first heat insulating box 25 is filled in the opening side portion.
  • the second heat insulating box 28 is arranged so that the vacuum heat insulating body 29 faces the outside, that is, the container outer tub 22 side.
  • FIG. 9 shows the vacuum insulator 29.
  • the vacuum heat insulating body 29 has the same configuration as that of the first embodiment, but the outer packaging material corresponding to the vacuum heat insulating box 7 has a simple flat plate shape and is stainless steel or equivalent to this.
  • a pair of concave thin metal plates 30 and 30 having a small ionization tendency and high corrosion resistance are fitted together, their periphery is welded, and the inside is vacuum-sealed.
  • the vacuum heat insulating body 29 of the second embodiment also has the same effect as the vacuum heat insulating box 7 described in the first embodiment. Although the description of the overlapping effect is omitted, when the vacuum heat insulating body 29 is used as a heat insulating material for the LNG inboard tank, the metal thin plate 30 serving as an outer packaging material for vacuum-sealing the core material 5 is a conventional, Compared to a laminated sheet outer packaging material having an aluminum vapor deposition layer, its corrosion resistance is remarkably high. Thereby, even if exposed to seawater, for example, there is an advantage that it can be prevented from being broken and broken or damaged, and its reliability can be increased.
  • the core material 5 has a two-layer structure of the first heat insulating core material 11 made of open-cell resin and the second heat insulating core material 12 made of fiber material such as glass wool, the heat insulating performance is high. ing. Therefore, the amount of the powder heat insulating material 27 in the second heat insulating box 28 using the vacuum heat insulating body 29 can be reduced and the thickness of the second heat insulating box 28 itself can be reduced. The capacity can be increased.
  • the vacuum heat insulating body 29 used as a heat insulating material for the LNG inboard tank is similar to the first embodiment in that the first heat insulating core 11 is made of an internal space of the container inner tank 24, that is, a substance such as LNG. It is arranged to be on the side facing the stored internal space. Thereby, the heat insulation container 21 can be insulated more efficiently and the heat insulation can be made high.
  • the 1st heat insulation core material 11 with low heat conductivity (lambda) strongly insulates the low temperature from internal space, and the 2nd heat insulation core located in the outer side
  • the material 12 is strongly insulated by the first heat insulating core material 11 having a low thermal conductivity ⁇
  • the material 12 is insulated in a low temperature region where the temperature is relatively high.
  • the temperature of a substance such as LNG stored in the heat insulating container 21 is an extremely low temperature of ⁇ 162 ° C., which is effective.
  • the ZSM-5 type zeolite used as the gas adsorbent 6 has a chemical adsorption action, the adsorbed gas is not easily separated. Thereby, the vacuum degree inside the vacuum heat insulating body 29 can be kept favorable. Thus, when handling flammable fuel such as LNG, even if the gas adsorbent adsorbs the flammable gas due to some influence, the gas is not re-released due to the influence of the subsequent temperature rise or the like.
  • the explosion-proof property of the vacuum heat insulating body 29 can be improved and the safety can be improved.
  • the aspects shown in the first embodiment and the second embodiment provide a high-quality vacuum heat insulator that is inexpensive and has high heat insulation performance.
  • the present invention is not limited to these examples, and various modifications can be made within the scope of achieving the object of the present invention.
  • the vacuum heat insulating box 7 of the refrigerator 1 and the vacuum heat insulating body 29 of the heat insulating container 21 for the LNG hull tank have been described as examples.
  • the structure and shape of the structure are not limited to these. That is, the heat insulating structure may be used as a heat insulating wall such as a door having a substantially flat plate shape instead of a container shape.
  • the heat insulating structure may be used as a heat insulating wall such as a door having a substantially flat plate shape instead of a container shape.
  • the tank for LNG hull it is not necessarily limited to the tank for LNG hull, For example, it may apply to the housing
  • the open cell resin of the present invention is not limited to this.
  • an open-celled phenol foam or a copolymer resin containing any one of a continuous urethane foam and a continuous phenol foam may be used.
  • the open cell resin is effective as long as it is an open cell resin in which bubbles are formed in the skin layer as well as the core layer as described in Japanese Patent No. 5310928.
  • an inorganic fiber material such as glass wool is exemplified as a heat insulating material having a smaller airflow resistance than the open cell resin
  • the present invention is not limited to this example, and a known organic fiber other than the inorganic fiber is used.
  • a powder material such as pearlite may be used.
  • the outer packaging material of the vacuum heat insulator the one constituted by a combination of a metal outer box and a resin inner box and the one constituted by combining metal thin plates were exemplified. It is not limited, A resin molded product may be sufficient, for example, you may use the lamination sheet 31 as is shown by FIG.
  • FIG. 10 is a diagram showing an example of a cross-sectional configuration of a laminated sheet 31 that is an outer packaging material of a vacuum heat insulator in the second embodiment of the present invention.
  • the laminated sheet 31 is obtained by laminating and integrating a surface protective layer 32, a gas barrier layer 33, and a heat welding layer 34.
  • the surface protective layer 32 is selected from a nylon film, a polyethylene terephthalate film, a polypropylene film, and the like.
  • the gas barrier layer 33 is a metal foil selected from aluminum foil, copper foil, stainless steel foil, and the like, a vapor-deposited film in which a metal or a metal oxide is vapor-deposited on a resin film serving as a base material,
  • the surface is made of a film having a known coating treatment.
  • the heat welding layer 34 is made of a thermoplastic resin film such as low density polyethylene.
  • FIG. 11 is a cross-sectional view seen from the side, showing the configuration of the refrigerator 101 using the vacuum heat insulator in the third embodiment of the present invention.
  • the refrigerator 101 includes an outer box 102 made of metal (for example, iron) and an inner box 103 made of hard resin (for example, ABS resin). And in the heat insulation space 104 between the outer box 102 and the inner box 103, after the core material and the gas adsorbing material are loaded, the heat insulation box body (hereinafter, (Referred to as a vacuum heat insulation box).
  • vacuum sealing includes a state where the pressure in the space for heat insulation is lower than atmospheric pressure.
  • the configuration of the vacuum heat insulating box 107 the one described in the first embodiment can be used.
  • the internal space of the vacuum heat insulation box 107 is partitioned into an upper refrigerator compartment 110 and a lower freezer compartment 109 by a partition plate 108.
  • the freezer compartment 109 is provided in two stages, and a refrigerator compartment 110 is further provided under the freezer compartment 109 in the lower stage.
  • Each of the refrigerator compartment 110 and the freezer compartment 109 includes a door 125.
  • the vacuum heat insulation box body 113 of the present embodiment is configured.
  • the refrigerator 101 is equipped with components (compressor 117, evaporator 118, evaporating dish 119, etc.) according to the cooling principle.
  • the internal space of the vacuum heat insulation box 107 is not limited to the above example, and may be partitioned into a plurality of storage rooms (refrigeration room, freezer room, ice making room, vegetable room, etc.) having different uses, for example. .
  • FIG. 12 is a perspective view showing a schematic configuration of the door 125 of the refrigerator 101 in the third embodiment of the present invention.
  • FIG. 13A and FIG. 13B are sectional drawings which show the structure of the vacuum heat insulating body of the comparative example in the same embodiment.
  • FIG. 14A and FIG. 14B are sectional drawings which show the structure of the 1st example of the vacuum heat insulating body in the embodiment.
  • FIG. 15A and FIG. 15B are cross-sectional views showing the configuration of the second example of the vacuum heat insulator in the same embodiment.
  • FIG. 16A and FIG. 16B are sectional drawings which show the structure of the 3rd example of a vacuum heat insulating body in the embodiment.
  • a vacuum heat insulating material is formed in the heat insulating space in the outer box 102 and the inner box 103 which are the outer packaging materials of the vacuum heat insulating box body 113. Further, on the surface side of the outer box 102, an external component 114 such as glass is disposed.
  • the open-cell urethane foam covered with the gas barrier layer 131 in the heat insulation space in the outer box 102 and the inner box 103 that serve as the outer packaging material of the vacuum heat insulation box 113. 121 is configured.
  • a heat-welded layer 132 is formed at the boundary between the inner box 103 and the outer box 102 to maintain airtightness.
  • evacuation is performed from the exhaust port 115, and then the exhaust pipe 116 is sealed to maintain airtightness.
  • the vacuum heat insulating box 113 one type of vacuum heat insulating material, here, open-cell urethane foam 121 is used as the vacuum heat insulating box 113.
  • the heat insulation space in the outer box 102 and the inner box 103 which is the outer packaging material of the vacuum heat insulation box 113, is covered with a gas barrier layer 131.
  • An open-cell urethane foam 121 and a fiber material 122 are formed.
  • the open-cell urethane foam 121 is arranged on the surface appearance component 114 side.
  • a heat-welded layer 132 is formed at the boundary between the inner box 103 and the outer box 102 to maintain airtightness.
  • evacuation is performed from the exhaust port 115, and then the exhaust pipe 116 is sealed to maintain airtightness.
  • the vacuum heat insulating box body 113 two types of vacuum heat insulating materials, here, the open-cell urethane foam 121 and the fiber material 122 are formed.
  • the first example is an example in which the vacuum heat insulating material is constituted by the two layers of the first heat insulating core material 11 and the second heat insulating core material 12 described in the first embodiment, and the detailed description thereof is provided. Will be omitted.
  • the outer box 102 and the inner box 103 that serve as the outer packaging material of the vacuum heat insulating box body 113 are provided.
  • An open cell urethane foam 121 and a fiber material 122 covered with a gas barrier layer 131 are formed in the heat insulating space.
  • positioned between the open cell urethane foam 121 and the fiber material 122 differs from a 1st example.
  • a resin sheet or a resin film can be used as the inclusion.
  • resin it is desirable that it is the structure which does not have functional groups, such as OH.
  • a polyethylene film 123 as an inclusion is interposed between the open-cell urethane foam 121 which is an example of the first heat insulating core material and the fiber material 122 which is an example of the second heat insulating core material. The reason for the arrangement will be described.
  • the manufacturing method of the vacuum heat insulating box 113 is first a wrapping material in which the fiber material 122 is placed in the space for heat insulation between the outer box 102 and the inner box 103. After that, urethane liquid is injected. At this time, depending on the conditions, the urethane liquid enters between the fibers of the fiber core material, a boundary layer is formed, and the internal gas cannot be exhausted well, and as a result, the heat insulation performance cannot be demonstrated well. there is a possibility. In order to prevent this, the first heat insulating core material and the second heat insulating core material are physically separated by inclusions, and each performance is sufficiently exhibited.
  • the outer box 102 and the inner box 103 that serve as the outer packaging material of the vacuum heat insulating box body 113 are provided.
  • An open cell urethane foam 121 and a fiber material 122 covered with a gas barrier layer 131 are formed in the heat insulating space.
  • a polyethylene film 123 is disposed between the open cell urethane foam 121 and the fiber material 122.
  • the third example is different from the second example in that a plurality of through holes 124 are provided in the polyethylene film 123.
  • the polyethylene film 123 which is an inclusion does not have air permeability, air cannot be exchanged between the first heat insulating core material and the second heat insulating core material.
  • the through hole 124 is provided in order to make the inclusions have a slight air permeability.
  • the example in which the first heat insulating core material and the second heat insulating core material are arranged in the entire width direction of the space for heat insulation is shown.
  • the present invention is not limited to this example.
  • FIG. 17 is a cross-sectional view showing an example of the arrangement of the open-cell urethane foam 121 of the comparative example in the third embodiment of the present invention.
  • the gas adsorbent 106 is disposed at a substantially central portion on the surface side of the door 125.
  • the open-cell urethane foam 121 is formed uniformly in the space between the inner box 103 and the outer box 102.
  • the exhaust port 115 is provided at a substantially central portion inside the inner box 103.
  • FIG. 18 is a cross-sectional view showing the configuration of the vacuum heat insulator of the first example in the third embodiment of the present invention.
  • the fiber material 122 as the second heat insulating core material is provided in the entire outer region including the portion where the gas adsorbent 106 is arranged in the comparative example shown in FIG. 17.
  • the arrangement of the second example and the third example can be realized by disposing the polyethylene film 123 as an inclusion between the first heat insulating core material and the second heat insulating core material.
  • FIG. 19 is a cross-sectional view showing another example of the configuration of the vacuum heat insulating body of the first example according to the third embodiment of the present invention.
  • the fiber material 122 which is a 2nd heat insulation core material is arrange
  • the example without an inclusion is shown between the 1st heat insulation core material and the 2nd heat insulation core material.
  • the polyethylene film 123 that is an inclusion is disposed between the first heat insulating core material and the second heat insulating core material.
  • the second heat insulating core material so as to be wrapped with the inclusion.
  • FIG. 20 is a cross-sectional view showing still another example of the configuration of the vacuum heat insulating body of the first example according to the third embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing still another example of the configuration of the vacuum heat insulating body of the first example according to the third embodiment of the present invention.
  • the fiber material that is the second heat-insulating core material in the region of the outer corner portion that does not include the portion where the gas adsorbent 106 is arranged. 122 is arranged.
  • the fiber material 122 is arranged.
  • FIG. 22 is a cross-sectional view showing still another example of the configuration of the vacuum heat insulator of the first example in the third embodiment of the present invention.
  • the fiber material 122 which is the second heat insulating core material, is disposed inside from the exhaust port 115 on the surface of the inner inner box 103.
  • An example in which an exhaust hole 225 is provided so as to reach is shown. According to this example, as shown by the arrows in the figure, when evacuation is performed, the residual gas is exhausted from the exhaust port 115 through the exhaust hole 225, so that the degree of vacuum can be further increased. is there.
  • a plurality of exhaust holes 225 may be provided.
  • FIG. 23 is a diagram for explaining a method of manufacturing the vacuum heat insulating box 113 in the third embodiment of the present invention.
  • each of the inner box 103 and the outer box 102 is manufactured by producing and molding a sheet having gas barrier properties (S301 to S304).
  • a urethane liquid is injected into the mold and foamed (S305). Then, a fiber material 122 (for example, glass wool) is added. At this time, if necessary, the fiber material 122 is wrapped with the polyethylene film 123 or the polyethylene film 123 is sandwiched so that inclusions exist between the first heat insulating core material and the second heat insulating core material. Can do. Thereafter, the mold is released from the mold (S307).
  • a fiber material 122 for example, glass wool
  • the inner box 103, the outer box 102, and the open-cell urethane foam 121 produced in this way are assembled (S308), and the inner box 103 and the outer box 102 are welded together to maintain airtightness (S309). Then, the inside of the inner box 103 and the outer box 102 is evacuated, or the whole of the inner box 103 and the outer box 102 is put in a vacuum chamber and evacuated (S310), and the mouth portion of the exhaust pipe to be evacuated is hermetically sealed. Stop (S311). Thereby, a vacuum heat insulating body can be produced.
  • FIG. 24 is a diagram comparing the internal pressures of the vacuum heat insulator in the third embodiment of the present invention.
  • FIG. 24 a first example in which the internal pressure (state before the gas adsorbent 106 is made to function) when the vacuum heat insulator is configured with only the open-cell urethane foam 121 (comparative example) is set as “1”, The internal pressure of the structure of the 2nd example and the 3rd example is shown.
  • the internal pressure in the first example (a configuration that does not include inclusions between the first heat insulating core material and the second heat insulating core material) is vacuum only by the first heat insulating core material. It is higher than the internal pressure when the heat insulator is configured (comparative example). This is because, as described above, the open-cell urethane foam 121 as the first heat insulating core material enters between the fiber materials 122 as the second heat insulating core material, and a boundary layer is formed. This is thought to be because it is an obstacle to exhausting residual gas.
  • the inclusion is a polyethylene film 123 having a thickness of 100 ⁇ m.
  • the hole diameter of the through hole 124 is 1. It is assumed that 0 mm and the pitch are 10 mm.
  • FIG. 25 is a diagram comparing the thermal conductivities of the vacuum heat insulator in the third embodiment of the present invention.
  • the vacuum heat insulator when configured with only the open-cell urethane foam 121 (comparative example), the heat conductivity of the first example, the second example, and the third example is relativized as “1”. Indicates the internal pressure.
  • the inclusion is a polyethylene film 123 having a thickness of 100 ⁇ m.
  • the hole diameter of the through holes 124 is 1.0 mm and the pitch is 10 mm. To do.
  • the thermal conductivity lower than the thermal conductivity of the comparative example can be realized, and the first heat insulation is achieved.
  • the heat insulation performance as a vacuum heat insulating material is improving.
  • FIG. 26 is a diagram comparing the internal pressures of the vacuum heat insulator in the third embodiment of the present invention.
  • the internal pressure (state when the gas adsorbent 106 is made to function) when the vacuum heat insulator is configured by only the open-cell urethane foam 121 (comparative example) is relativized as “1”, and the first The internal pressure of an example, a 2nd example, and a 3rd example is shown.
  • the internal pressure in the first example is higher than the internal pressure when the vacuum heat insulating body is composed of only the first heat insulating core material (comparative example). This is because, as described above, the open-cell urethane foam 121 as the first heat insulating core material enters between the fiber materials 122 as the second heat insulating core material, and a boundary layer is formed. This is thought to be because it is an obstacle to exhausting residual gas.
  • the second example a configuration including inclusions between the first heat insulating core material and the second heat insulating core material
  • the third example a configuration in which the through holes 124 are open in the inclusions.
  • the internal pressure is equal to or less than that of the comparative example.
  • FIG. 27 is a diagram comparing the thermal conductivity due to the difference in the thickness of inclusions in the third example of the vacuum heat insulator in the third embodiment of the present invention.
  • the thermal conductivity when the thickness of the polyethylene film as an inclusion is 100 ⁇ m is shown as relative to “1”.
  • the inclusions are formed with through-holes 124 having a hole diameter of 1.0 mm and a pitch of 10 mm.
  • the greater the thickness of the inclusion the higher the thermal conductivity. Specifically, when the thickness is larger than 500 ⁇ m, the heat insulation performance is lowered. Conversely, if the inclusions are made too thin, specifically, if the thickness is made thinner than 30 ⁇ m, the film may be broken by the foaming pressure when the open cell resin is foamed. This does not depend on the presence or absence of the through hole 124.
  • the configurations of the second example and the third example can exhibit more performance than the thickness before and after that.
  • FIG. 28 is a diagram comparing the internal pressure due to the difference in the diameter of the through-hole 124 of the inclusion in the third example of the vacuum heat insulating body in the third embodiment of the present invention.
  • the thickness of the polyethylene film as an inclusion is 100 ⁇ m, and the hole pitch is 10 mm.
  • the internal pressure when there is no hole is shown as “1” in a relative manner.
  • the inclusion through-hole 124 is preferably in the range of 0.1 mm to 4 mm.
  • the hole diameter is smaller than 0.1 mm, the exhaust efficiency is not improved.
  • the hole diameter exceeds 4 mm, the open cell resin as the first heat insulating core material penetrates into the fiber material as the second heat insulating core material, resulting in an increase in internal pressure. More preferably, a hole diameter in the range of 0.3 mm to 2 mm is desirable because the internal pressure is the lowest.
  • FIG. 29 is a diagram comparing the internal pressure due to the difference in pitch of the through-holes 124 of the inclusion in the third example of the vacuum heat insulating body in the third embodiment of the present invention.
  • the thickness of the polyethylene film as an inclusion is 100 ⁇ m, and the hole diameter is 1 mm. Further, the internal pressure when there is no hole shown in FIG. 28 is shown as relative to “1” in FIG. 29 as well.
  • the pitch of the through-holes 124 of inclusions is preferably in the range of 2 mm to 90 mm. If the pitch is smaller than 2 mm, the strength of the film becomes weak, and the film may be broken by the foaming pressure when the open-cell resin is foamed. On the other hand, if the pitch exceeds 90 mm, it is difficult to obtain the effect of improving the exhaust efficiency.
  • FIG. 30 is a diagram comparing the thermal conductivity of the third example of the vacuum heat insulator in the third embodiment of the present invention due to the difference in the diameter of the exhaust holes.
  • the number of exhaust holes is “one”. Then, the thermal conductivity when there is no hole is shown as “1” in a relative manner.
  • the exhaust hole preferably has a hole diameter in the range from 0.3 mm to 5 mm from the viewpoint of thermal conductivity.
  • the hole diameter is smaller than 0.3 mm, improvement in exhaust efficiency cannot be seen.
  • the hole diameter exceeds 5 mm, the thermal conductivity cannot be lowered, and the heat insulation performance is not improved.
  • FIG. 31 is a diagram comparing the compressive strength due to the difference in pitch when a plurality of exhaust holes are provided in the third example of the vacuum heat insulator in the third embodiment of the present invention.
  • the hole diameter of the exhaust hole is 1 mm.
  • the compression strength when the pitch is 1 mm is shown as “1” in a relative manner.
  • the pitch is preferably in the range of 1 mm or more. This is because if the pitch is smaller than 1 mm, the compressive strength is lowered.
  • the vacuum heat insulating body includes the core material and the outer packaging material for vacuum-sealing the core material.
  • the core material has a first heat-insulating core material 11 and a second heat-insulating core material 12 having air permeability, and the first heat-insulating core material 11 has a larger airflow resistance than the second heat-insulating core material 12.
  • the first heat insulating core material having a high airflow resistance for example, the open cell resin such as open cell urethane
  • the second heat insulating core material having a low airflow resistance for example, glass wool.
  • the thickness can be reduced by the presence of a fiber material such as rock wool. And, since the thickness is reduced, the passage made of continuous bubbles is shortened, the ventilation resistance is reduced, the evacuation time is shortened, and the productivity can be improved.
  • the gas that gradually emerges from the inside of the open cell resin can be reduced at the same time by shortening the open cell passage, which is shortened accordingly. It is possible to disperse the gas throughout the passage composed of continuous bubbles, and to suppress deformation due to a local pressure increase. In addition, by reducing the amount of gas coming out of the heat insulating core material such as the first open-cell resin having a large ventilation resistance, it is possible to suppress a decrease in heat insulating properties.
  • first heat insulating core material may be made of an open cell resin
  • second heat insulating core material may be made of a fiber material or a powder material having a lower airflow resistance than the open cell resin
  • this heat insulating body can be produced by pouring open cell resin into the wrapping material with the fiber material or powder material put in, foaming it integrally, and evacuating it. Therefore, the productivity can be greatly improved, the production cost can be reduced, and the product can be provided at a lower cost.
  • positioned in the boundary of a 1st heat insulation core material and a 2nd heat insulation core material may be sufficient.
  • the fiber material or the powder material may be packaged in a bag form.
  • the entire packaging material can be filled without impairing the filling property of the open cell resin.
  • the inclusion may be a resin sheet or a resin film.
  • the resin sheet or the resin film may be configured to be a resin having no functional group.
  • the thickness of the resin sheet or resin film may be in the range of 30 to 500 ⁇ m.
  • the thickness of the inclusion the higher the thermal conductivity. Specifically, when the thickness is larger than 500 ⁇ m, the heat insulation performance is lowered. Conversely, if the inclusions are made too thin, specifically, if the thickness is made thinner than 30 ⁇ m, the film may be broken by the foaming pressure when the open cell resin is foamed. In other words, by setting the thickness of the inclusions to 30 to 500 ⁇ m, more performance can be exhibited compared to the thickness before and after the inclusion.
  • the structure which further has the through-hole formed in the resin sheet or the resin film may be sufficient.
  • the second heat insulating core material and the first heat insulating core material having a low airflow resistance can be ventilated through the through hole. Therefore, when evacuating, the first heat insulating core material can be efficiently exhausted through the second heat insulating core material having a low airflow resistance and the through hole.
  • the diameter of the through hole may be in the range of 0.1 to 4 mm.
  • the exhaust efficiency is not improved, and if the diameter exceeds 4 mm, the first heat insulating core material may permeate the second heat insulating core material.
  • the exhaust efficiency can be further improved by setting the diameter in the range of 0.3 to 2 mm.
  • a configuration in which a plurality of through holes are provided and a pitch between each of the plurality of through holes is in a range of 2 to 90 mm may be employed.
  • the pitch When the pitch is smaller than 2 mm, the strength of the film becomes weak, and the film may be broken by the foaming pressure when the first heat insulating core material is foamed. Further, if the pitch exceeds 90 mm, the effect of improving the exhaust efficiency cannot be seen.
  • the outer packaging material may have an inner box and an outer box, and the first heat insulating core material may be arranged on the inner box side.
  • an exhaust hole may be provided from the surface of the first heat insulating core member toward the second heat insulating core member.
  • the position of the exhaust port can be freely provided, and the open cell resin having a large ventilation resistance can be efficiently exhausted from the surroundings using the exhaust hole.
  • the exhaust hole may have a diameter in the range of 1 to 5 mm.
  • a plurality of exhaust holes may be provided, and a pitch between each of the plurality of exhaust holes may be 1 mm or more.
  • the pitch is smaller than 1 mm, the compressive strength may be lowered.
  • the pitch is 1 mm or more, it is possible to obtain the effect of providing the exhaust holes without deformation of the container even after evacuation.
  • the second heat insulating core material may be loaded into a wrapping material, and the wrapping material may be constituted by inclusions.
  • the inclusions can be shared as a packaging material for packaging the second heat insulating core material.
  • the fiber material may be composed of an inorganic fiber material including glass wool or rock wool.
  • the residual gas from the fiber material released inside the vacuum heat insulator is reduced, and the decrease in the degree of vacuum can be suppressed, and the water absorption (hygroscopicity) of the fiber material itself can be lowered. . Therefore, the moisture content inside the vacuum heat insulator can be kept low, and the heat insulation can be further improved.
  • the outer packaging material may have a gas adsorbing material sealed together with the core material, and the gas adsorbing material may be arranged on the first heat insulating core material side in the outer packaging material.
  • the gas adsorbent efficiently converts the gas that remains in the open cell resin without being fully evacuated and gradually emerges from the open cell resin. Can be adsorbed well. Therefore, it can prevent that a heat insulating body deform
  • the outer packaging material may be composed of a pair of thin metal plates, and may be configured by adhering the peripheral edges of the pair of thin metal plates and vacuum-sealing the inside.
  • the outer packaging material made of a thin metal plate in which the core material is vacuum-sealed has a much higher corrosion resistance than the multilayer outer packaging material including an aluminum vapor deposition layer of a general vacuum heat insulating material. Therefore, even if it is used as a heat-insulating wall such as an LNG tanker and exposed to seawater, it can be prevented from corroding and damaging the outer packaging material, greatly improving its reliability. Can be made.
  • the heat insulating container of the embodiment is a heat insulating container that holds a substance that is 100 ° C. lower than normal temperature
  • the heat insulating container includes the above-described vacuum heat insulating body
  • the vacuum heat insulating body is on the low temperature side of the heat insulating container.
  • a heat insulating core material having a low thermal conductivity may be arranged.
  • room temperature means the atmospheric temperature.
  • the heat insulating core material with low thermal conductivity first strongly insulates the low temperature from the low temperature substance, and the heat insulating core material located outside thereof is strongly insulated with the heat insulating core material with low thermal conductivity. Insulating in a low temperature region where the temperature is relatively high. Thereby, the thermal insulation characteristic of each container can be efficiently preserve
  • the heat insulating wall of the embodiment is a heat insulating wall used in an environment of 0 ° C. or lower, and the heat insulating wall includes the above-described vacuum heat insulating body, and the vacuum heat insulating body is disposed on the low temperature side of the heat insulating wall.
  • the 1 heat insulation core material and the 2nd heat insulation core material you may be comprised so that the heat insulation core material with low heat conductivity may be arrange
  • the heat insulating core material with low thermal conductivity first strongly insulates the low temperature from the low temperature substance, and the heat insulating core material located outside thereof is strongly insulated with the heat insulating core material with low thermal conductivity. Insulating the low temperature region where the temperature is relatively high. Thereby, it can insulate efficiently, utilizing each heat insulation characteristic.
  • the present invention can be widely applied as a vacuum heat insulator, and a heat insulating container and a heat insulating wall using the same, from a consumer device such as a refrigerator to an industrial use such as an LNG storage tank. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

 真空断熱体であって、芯材(5)と、芯材(5)を真空封止する外包材とを備えている。そして、芯材(5)は、通気性を有する、第1断熱芯材(11)および第2断熱芯材(12)を有している。さらに、第1断熱芯材(11)は、第2断熱芯材(12)よりも通気抵抗が大きい。第1断熱芯材(11)は、連続気泡樹脂で構成され、第2断熱芯材(12)は、連続気泡樹脂よりも通気抵抗の小さい、繊維材料または粉体材料で構成されている。

Description

真空断熱体、ならびに、これを用いた断熱容器および断熱壁
 本発明は、真空断熱体、ならびに、これを用いた断熱容器および断熱壁に関する。
 近年、地球温暖化防止の観点から、省エネルギー性の向上が強く望まれており、家庭用電化製品においても、緊急の課題となっている。特に、冷蔵庫、冷凍庫および自動販売機等の保温保冷機器では、熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材が求められている。
 一般的な断熱材として、グラスウール等の繊維材、および、ウレタンフォーム等の発泡体から選択されるものが用いられている。これらの断熱材の断熱性能を向上させるためには、断熱材の厚さを増す必要があるが、断熱材を充填すべき空間に制限があるような場合、例えば省スペース化または空間の有効利用が必要な場合には、適用することができない。
 そこで、高性能な断熱材として、真空断熱材が提案されている。これは、スペーサの役割を持つ芯材を、ガスバリア性を有する外包材中に挿入し、内部を減圧して封止した断熱体である。
 この真空断熱材は、ウレタンフォームと比べると、約20倍の断熱性能を有しており、厚さを薄くしても十分な断熱性能が得られるという優れた特性を有している。
 したがって、この真空断熱材は、断熱箱体の内容積を大きくしたい顧客要望を満たしつつ、断熱性能の向上による省エネルギー性の向上を図るための有効な手段として注目されている。
 例えば、冷蔵庫では、冷蔵庫本体を構成する断熱箱体において、ウレタンフォームを、内外箱間の断熱用空間に発泡充填している。そして、その断熱用空間に真空断熱材を追加設置して、その断熱性を高め、断熱箱体の内容積を大きくしている。
 しかしながら、冷蔵庫等に使用する場合、一般的に、その断熱箱体の断熱用空間は、複雑な形状を呈している。このため、真空断熱材が被覆できる面積、言い換えると、断熱箱体の伝熱総面積に対して真空断熱材の面積が占める割合の向上には限界がある。
 そこで、例えば断熱箱体のブロー成形用のエアー送入口から、断熱箱体の断熱用空間に連続気泡ウレタンを充填し、発泡させた後、エアー送入口に接続された真空排気装置によって断熱箱体内を排気して真空化し、断熱箱体自体を真空断熱材とする技術が提案されている(例えば、特許文献1参照)。
 また、本出願人も、特許文献1と同様に、冷蔵庫本体となる断熱箱体の断熱用空間に、連続気泡ウレタンを充填発泡させて真空引きし、断熱箱体自体を真空断熱材としたものを提案している。さらに、断熱用空間に連続気泡ウレタンを充填発泡させた時に生じる、箱体内面近傍のスキン層に残る独立気泡をも連続気泡化して連続気泡率を高め、その断熱性を更に向上させた技術を提案している(例えば、特許文献2参照)。
 上述した特許文献1および特許文献2に記載された、断熱用空間に充填発泡させた連続気泡ウレタンフォームを真空封止して構成された断熱箱体、換言すると真空断熱体は、連続気泡ウレタンフォームの空隙率が高くなるほど、連続気泡ウレタンフォームの内部の表面積が増える。外部からの熱は、この連続気泡ウレタンフォームの表面に沿って伝わることになるから、その表面積が増えることによって断熱性が向上する。
 なお、連続気泡が熱の移動方向に整列形成されてしまえば、断熱性が向上することはない。しかしながら、気泡は、発泡によって無秩序に形成されるものであるから、熱の移動方向に整列形成される可能性はほとんどなく、内部の表面積が増えると断熱性は向上する。よって、特許文献2に記載の真空断熱体技術によれば、箱体内面近傍のスキン層に残る独立気泡をも連続気泡化して、その表面積を増加させることができるので、断熱性が向上する。
 以上述べたように、上記特許文献2に記載の、連続気泡ウレタンを真空封止して構成された真空断熱体は、その外観形状が、断熱箱体のように複雑なものであっても、その全域を真空断熱することができる。よって、例えば、冷蔵庫に用いることにより、断熱箱体自体の厚みを薄くして、内容積(貯蔵空間)を更に大きくすることができる。
 また、形状の複雑さはないものの、断熱性を強く期待される用途、例えば、液化した天然ガス(LNG)等の超低温物質を貯蔵するLNG貯蔵タンク、または、LNG輸送タンカーのタンク等の断熱容器用パネルに適用することにより、断熱容器壁厚を薄くしつつ、断熱容器内への熱の侵入を有効に抑制することが可能となる。よって、LNGタンクであれば、ボイルオフガス(BOG)の発生を有効に軽減させることができ、LNGの自然気化率(ボイルオフレート、BOR)を低下させることが可能となる。
 しかしながら、上述した連続気泡ウレタンを真空封止して構成した真空断熱体は、その連続気泡の孔径が30~200μmと非常に小さく、真空引きに時間がかかり、生産性が低下し、コスト高になるという課題がある。
特開平9-119771号公報 特許第5310928号公報
 本発明は、上述したような課題に鑑みてなされたものであり、真空引き効率を向上させ、生産性を高めた真空断熱体、ならびに、これを用いた断熱容器および断熱壁を提供するものである。
 本発明の真空断熱体は、芯材と、芯材を真空封止する外包材とを備えている。そして、芯材は、通気性を有する、第1断熱芯材および第2断熱芯材を有している。第1断熱芯材は、第2断熱芯材よりも通気抵抗が大きい。
 また、本発明の断熱容器は、常温よりも100℃以上低い物質を保持する断熱容器として使用することが可能であり、断熱容器は、上述した真空断熱体を備えている。そして、真空断熱体は、断熱容器の低温側に、第1断熱芯材および前記第2断熱芯材のうち、熱伝導率の低い断熱芯材が配置されるように構成されている。
 また、本発明の断熱壁は、0℃以下の環境で使用される断熱壁として使用することが可能であり、断熱壁は、上述した真空断熱体を備えている。そして、真空断熱体は、断熱壁の低温側に、第1断熱芯材および第2断熱芯材のうち、熱伝導率の低い断熱芯材が配置されるように構成されている。
 これにより、断熱体内を真空引きする際、通気抵抗の大きい第1断熱芯材、例えば連続気泡ウレタンのような連続気泡樹脂は、通気抵抗の小さな第2断熱芯材、例えばグラスウールまたはロックウール等のような繊維材料の存在によって、その厚みを薄くすることができる。これにより、厚みが薄くなった分、連続気泡からなる通路が短くなって、通気抵抗が減少し、真空引き時間が短縮されて生産性を向上させることができる。
 また、通気抵抗の大きな第1断熱芯材の厚みが薄くなった分、それによって短くなる連続気泡通路の短縮によって、連続気泡樹脂の内部から徐々に出てくるガス自体も低減させることができる。これと同時に、そのガスを、連続気泡で構成される通路全体へと分散させることができるので、局部的な圧力上昇による変形も抑制することができる。しかも、通気抵抗の大きな第1断熱芯材から出るガスの量を少なくしたことによって、断熱性の低下をも抑制することができる。
 このように、本発明によれば、真空引き効率を向上させ、生産性を高めた真空断熱体、ならびに、これを用いた断熱容器および断熱壁を提供することができる。
図1は、本発明の第1の実施の形態における真空断熱体を用いた、冷蔵庫の真空断熱箱体の正面図である。 図2は、本発明の第1の実施の形態における真空断熱箱体の壁面の一部の構成を示す断面図である。 図3は、本発明の第1の実施の形態における、連続気泡ウレタンの真空引き性能を示す図である。 図4は、本発明の第1の実施の形態における、真空断熱体の真空引き性能を示す図である。 図5Aは、本発明の第1の実施の形態における、真空断熱体の構造例を示す図である。 図5Bは、本発明の第1の実施の形態における、真空断熱体の構造例を示す図である。 図5Cは、本発明の第1の実施の形態における、真空断熱体の構造例を示す図である。 図5Dは、本発明の第1の実施の形態における、真空断熱体の構造例を示す図である。 図5Eは、本発明の第1の実施の形態における、真空断熱体の構造例を示す図である。 図6Aは、本発明の第1の実施の形態における、真空断熱体の製法の例を示す図である。 図6Bは、本発明の第1の実施の形態における、真空断熱体の製法の例を示す図である。 図7は、本発明の第2の実施の形態における、真空断熱体を用いた船内タンクを備える、メンブレン方式のLNG輸送タンカーの概略断面構成を示す図である。 図8は、本発明の第2の実施の形態における、LNG輸送タンカーの船内タンクの内面の二層構造を示す説明図である。 図9は、本発明の第2の実施の形態における、LNG輸送タンカーの船内タンクの断熱構造体に用いられる真空断熱体の拡大断面図である。 図10は、本発明の第2の実施の形態における、真空断熱体の外包材である積層シートの断面構成の一例を示す図である。 図11は、本発明の第3の実施の形態における真空断熱体を用いた冷蔵庫の構成を示す、側方から見た断面図である。 図12は、本発明の第3の実施の形態における、冷蔵庫の扉の概略構成を示す斜視図である。 図13Aは、本発明の第3の実施の形態における、比較例の真空断熱体の構成を示す断面図である。 図13Bは、本発明の第3の実施の形態における、比較例の真空断熱体の構成を示す断面図である。 図14Aは、本発明の第3の実施の形態における、真空断熱体の第1の例の構成を示す断面図である。 図14Bは、本発明の第3の実施の形態における、真空断熱体の第1の例の構成を示す断面図である。 図15Aは、本発明の第3の実施の形態における、真空断熱体の第2の例の構成を示す断面図である。 図15Bは、本発明の第3の実施の形態における、真空断熱体の第2の例の構成を示す断面図である。 図16Aは、本発明の第3の実施の形態における、真空断熱体の第3の例の構成を示す断面図である。 図16Bは、本発明の第3の実施の形態における、真空断熱体の第3の例の構成を示す断面図である。 図17は、本発明の第3の実施の形態における、比較例の、連続気泡ウレタンフォームの配置の一例を示す断面図である。 図18は、本発明の第3の実施の形態における第1の例の真空断熱体の構成を示す断面図である。 図19は、本発明の第3の実施の形態における第1の例の真空断熱体の構成の別の例を示す断面図である。 図20は、本発明の第3の実施の形態における第1の例の真空断熱体の構成のさらに別の例を示す断面図である。 図21は、本発明の第3の実施の形態における第1の例の真空断熱体の構成のさらにまた別の例を示す断面図である。 図22は、本発明の第3の実施の形態における第1の例の真空断熱体の構成のさらにまた別の例を示す断面図である。 図23は、本発明の第3の実施の形態における、真空断熱箱体の製造方法について説明するための図である。 図24は、本発明の第3の実施の形態における真空断熱体の内圧を比較した図である。 図25は、本発明の第3の実施の形態における真空断熱体の熱伝導率を比較した図である。 図26は、本発明の第3の実施の形態における真空断熱体の内圧を比較した図である。 図27は、本発明の第3の実施の形態における真空断熱体の第3の例における、介在物の厚みの違いによる熱伝導率を比較した図である。 図28は、本発明の第3の実施の形態における真空断熱体の第3の例における、介在物の貫通孔の孔径の違いによる内圧を比較した図である。 図29は、本発明の第3の実施の形態における真空断熱体の第3の例における、介在物の貫通孔のピッチの違いによる内圧を比較した図である。 図30は、本発明の第3の実施の形態における真空断熱体の第3の例における、排気用孔の孔径の違いによる熱伝導率を比較した図である。 図31は、本発明の第3の実施の形態における真空断熱体の第3の例における、排気用孔が複数設けられているときに、そのピッチの違いによる圧縮強度を比較した図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって本発明が限定されるものではない。
 (第1の実施の形態)
 まず、本発明の第1の実施の形態について説明する。本実施の形態では、冷蔵庫1の断熱箱体自体を真空断熱体で構成した場合を例として説明する。しかしながら、これはあくまでも一例であって、本実施の形態の真空断熱体の構成を、扉の部分に使用することもできる。
 図1は、本発明の第1の実施の形態における真空断熱体を用いた、冷蔵庫1の真空断熱箱体7の正面図であり、図2は、同真空断熱箱体7の壁面の一部の構成を示す断面図である。
 [冷蔵庫の構成]
 まず、本実施の形態の冷蔵庫1の構成について説明する。
 図1に示されるように、本実施の形態に係る冷蔵庫1は、金属(例えば、鉄)製の外箱2と、硬質樹脂(例えば、ABS樹脂)製の内箱3とを備えている。そして、外箱2と内箱3との間の断熱用空間4に、芯材5と気体吸着材6とを装填した後に、真空封止して、冷蔵庫本体となる断熱箱体(以下、真空断熱箱体と称する)が形成されている。ここで「真空封止」とは、断熱用空間の圧力が大気圧よりも低い圧力である状態を含むものである。
 真空断熱箱体7の内部空間は、仕切り板8によって、上側の冷蔵室9と下側の冷凍室10とに区画されている。冷蔵室9と冷凍室10とは、それぞれ扉(図示せず)を備えている。これらの扉も、上述した真空断熱箱体と同様に、その断熱用空間に、芯材5と気体吸着材6とを装填した後に、真空封止することによって構成されている。
 また、冷蔵庫1には、その冷却原理に応じた部品(圧縮器、蒸発器、および凝縮器等)が取り付けられている。なお、真空断熱箱体7の内部空間は、冷蔵室9と冷凍室10との二つの区画に分割される例に限られず、例えば、用途の異なる複数の貯蔵室(冷蔵室、冷凍室、製氷室、および野菜室等)に区画されていてもよい。
 [真空断熱体の構成]
 次に、真空封止して構成した真空断熱箱体7、すなわち、真空断熱体の構成について、図2を用いて説明する。
 図2に示されるように、真空断熱箱体7の外包材となる外箱2および内箱3内の断熱用空間4には、上述したように、芯材5が真空封止されている。この真空封止された芯材5は、通気性を有する二層の、第1断熱芯材11および第2断熱芯材12によって構成されている。ここで、一方の第1断熱芯材11は、その通気抵抗が第2断熱芯材12よりも大きく、他方の第2断熱芯材12の通気抵抗は、第1断熱芯材11の通気抵抗よりも小さい。例えば、本実施の形態において、一方の第1断熱芯材11としては連続気泡樹脂を用いており、他方の第2断熱芯材12としては繊維材料を用いている。
 比較的通気抵抗の大きい第1断熱芯材11の一例である連続気泡樹脂については、先行文献として例示した、本出願人の特許文献2に詳しく記載されている。よって、その記載を援用して詳細な説明は省略するが、簡単に記載しておくと次のとおりである。
 すなわち、連続気泡樹脂は、外箱2と内箱3との間の断熱用空間4に一体発泡により充填された、例えば共重合反応により形成される連続気泡ウレタンフォームによって構成されている。断熱用空間4の中心部のコア層に存在する多数の気泡は、第1貫通孔によって連通している。さらに、断熱用空間4の、外箱2および内箱3それぞれとの界面付近のスキン層に存在する気泡は、ウレタン樹脂と親和性の低い粉体によって形成される第2貫通孔により連通している。このように、本実施の形態の連続気泡樹脂は、コア層からスキン層に至るまで、全ての領域の気泡が、第1貫通孔および第2貫通孔により連通した連続気泡樹脂となっている。
 第1断熱芯材11を構成する連続気泡樹脂は、外箱2と内箱3との間を断熱しながら、外箱2および内箱3を支持して、真空断熱箱体7の形状を保持する機能を有している。つまり、第1断熱芯材11は、真空断熱体の強度および剛性等の、物性の向上に寄与している。しかしながら、第1断熱芯材11は、空隙率が高くなるほど形状保持力が低下する。その一方で、第1断熱芯材11は、空隙率が高くなるほど、連続気泡樹脂の断熱性が向上する。したがって、断熱性と機械的な強度とを考慮して、連続気泡樹脂の空隙率を定めればよい。本実施の形態では、空隙率を95%以上としている。
 また、気泡は、サイズが小さいほど、連続気泡樹脂の内部の表面積が増えるので、断熱性が向上する。つまり、気泡のサイズが小さいほど、連続気泡樹脂の断熱性は向上する。よって、強度確保と断熱性向上との兼ね合いから、本実施の形態では、気泡のサイズを30μmから200μmとしている。
 また、比較的通気抵抗の小さい第2断熱芯材12は、繊維材料で構成されている。第2断熱芯材12としては、断熱性能等の面から、特に無機系の繊維材料を採用している。具体的には、例えば、グラスウール繊維、セラミック繊維、スラグウール繊維、およびロックウール繊維等から選択されるものであり、本実施の形態では、平均繊維径が4μm~10μmの範囲内にある、グラスウール繊維(繊維径が比較的太いガラス繊維)を、さらに焼成して用いている。
 さらに、第2断熱芯材12を構成する繊維材料は、通気性の包袋材(図示せず)に封入され、断熱用空間4の形状に沿う形に構成されている。これは、繊維材料にバインダー材を混入させることにより、効果的に達成できるが、その場合でも、繊維材料が少なくとも5%~90%の割合を占めるように構成されている。
 以上のように構成された真空断熱箱体7は、第1断熱芯材11が真空断熱箱体7の貯蔵室となる内部空間側に面し、第2断熱芯材12が外側に面するように、それぞれ配置されている。
 [真空断熱箱体の製造方法]
 真空断熱箱体7は、連続気泡樹脂からなる第1断熱芯材11と、繊維材料からなる第2断熱芯材12との二層芯材が真空封止された真空断熱体というべきものである。その真空断熱箱体7の製造方法は、まず、断熱用空間4内に、繊維芯材が入れられた包袋材をセットして、外箱2または内箱3の適所数か所に設けられたウレタン液注入口13(図1参照)から、ウレタン液を注入する。そして、その後、ウレタン液注入口13から真空引き、または、真空断熱箱体7全体を真空チャンバー内に入れて真空引きして、ウレタン液注入口13等の真空引き口部分を密閉封止することにより製造されている。なお、ウレタン注入時に、断熱用空間4内の空気をスムーズに排気するために、空気抜き孔14が、外箱2および内箱3の少なくともいずれかの適所に分散配置されており、ウレタン液注入口13と同様に、真空引きされた後に、密閉封止されている。
 この真空断熱箱体7の製造方法は、先の特許文献2に記載されている方法と同様の方法を用いており、さらに、この方法のウレタン注入前に、第2断熱芯材12を断熱用空間4に装填する工程を加えたものである。ここで、断熱用空間4の真空封止等は、真空チャンバー内で行ってもよいものであり、詳細は特許文献2の記載を援用し、その詳細な説明は省略する。
 [真空断熱体の作用効果]
 次に、上記のようにして構成された真空断熱箱体7、すなわち真空断熱体の作用効果について説明する。
 真空断熱箱体7は、その断熱用空間4に真空封止された芯材を、連続気泡樹脂からなる第1断熱芯材11と、繊維材料からなる第2断熱芯材12との二層構造としている。これにより、従来の連続気泡樹脂一層で構成した場合に比べて、その断熱性能を高いものとすることができる。
 例えば、実験によると、連続気泡ウレタン芯材のみの比較品と、繊維材料、および、一体発泡させた連続気泡ウレタンフォームの二層芯材の本実施品との熱伝達率λを比較すると、比較品の熱伝導率λは0.007W/mKであったのに対して、本実施品の熱伝導率λは0.004W/mKであった。これは、連続気泡ウレタンによる断熱効果に、繊維材料からなる第2断熱芯材12の断熱効果が加わった結果である。
 なお上述の実験結果は、大きさが198×130×厚み30mmの直方体状の芯材を、ABS樹脂製の密閉容器中で、内圧10Paで作製し、厚み方向の温度差38℃/10℃における熱伝導率を測定した結果である。
 一方、第1断熱芯材11を構成する連続気泡樹脂は、その気泡が、本実施の形態では、30μmから200μmと小さい。このため、断熱用空間4内を真空引きする際、連続気泡樹脂の通気抵抗(排気抵抗)が大きくなり、連続気泡樹脂の内部空間を減圧するのに多大な時間を要することになる可能性がある。
 しかしながら、本実施の形態の真空断熱箱体7においては、その断熱用空間4内に、連続気泡樹脂からなる第1断熱芯材11とともに、繊維材料からなる第2断熱芯材12が装填されている。これにより、第2断熱芯材12の厚み分だけ、第1断熱芯材11の厚みを薄くすることができる。その結果、厚みが薄くなった分、第1断熱芯材11を構成する連続気泡樹脂の連続気泡通路が短くなって、通気抵抗が減少し、真空引き時間を短縮させて、生産性を向上させることができる。
 図3は、本発明の第1の実施の形態における、連続気泡ウレタンの真空引き性能を示す図である。
 ここでは、厚さ30mmの連続気泡ウレタンの場合の内圧変化A、および、厚さを15mmと半分にした連続気泡ウレタンの内圧変化Bが示されている。ここで、同じ内圧、例えば200Paに達するまでの時間は、厚さ30mmの連続気泡ウレタンAの場合は「C」であったものが、厚さ15mmと半分にした連続気泡ウレタンBの場合は「D」、と短くなることがわかる。
 また、本実施の形態の真空断熱箱体7は、通気抵抗の大きな連続気泡樹脂の断熱芯材の厚みが薄くなったこと、および、それによる連続気泡通路の短縮によって、連続気泡樹脂の内部から徐々に出てくるガス自体も低減できるとともに、そのガスを連続気泡で構成される通路全体へと分散させることができる。これにより、ガスが少なくなった分、その断熱性能の低下を抑制することができるとともに、ガスが分散する分、局部的な圧力上昇による変形を抑制することができる。
 しかも、真空断熱箱体7の第2断熱芯材12を構成するグラスウールまたはロックウール等は、それ自体の熱伝導率が低くて断熱性がよい。このため、第1断熱芯材11の厚さを薄くしても、真空断熱箱体7の断熱性を優れたものとすることができる。さらに、真空断熱箱体7は、上述したように、通気抵抗の大きな連続気泡樹脂等の断熱芯材から出てくるガスの量を少なくすることができるので、断熱性の低下も抑制することができる。
 図4は、本発明の第1の実施の形態における、真空断熱体の真空引き性能を示す図である。
 図4に示されるように、芯材を連続気泡ウレタンフォームのみとした比較品(2)と、芯材を、繊維材料、および、一体発泡させた連続気泡ウレタンフォームの二層構造とした本実施品(2)との厚み寸法を同じにして、例えば真空チャンバーで30分排気し、その内圧を10日後に測定する。そうすると、比較品(2)は450Paまで上昇してしまうが、本実施品(2)の場合は250Paとなり、内圧上昇、および、断熱性能の劣化を抑制する効果が見られる。これは、本実施品(2)が、繊維材料の分だけ連続気泡ウレタンフォームの厚みが薄くなり、その分、連続気泡ウレタンフォームから放出されるガス量が少なくなるからであると推察される。
 なお、この場合の実験結果は、大きさ198×130×厚み30mmの直方体状の芯材を、液晶ポリマーおよびアルミ箔ラミネートフィルムで構成された密閉容器中で、メカニカルブースターポンプにて30分間排気し、フィルムを熱溶着することで得られた実験品について、スピニングローターゲージによって経過日数ごとに圧力測定を行った結果である。
 以上述べたように、本実施の形態の真空断熱箱体7は、連続気泡樹脂からなる第1断熱芯材11と、繊維材料からなる第2断熱芯材12との二層構造とすることにより、その断熱性を高めることができる。そして、その断熱性能を損なうことなく、第1断熱芯材11の真空引き時間を短縮させて、生産性を向上させることができる。
 また、真空断熱箱体7は、その断熱芯材のうちの一方が連続気泡樹脂で構成されているとともに、他方の断熱芯材は、連続気泡樹脂製の断熱芯材よりも通気抵抗の小さい繊維材料で構成されている。これにより、既述したように、断熱用空間4に繊維材料を入れた状態で連続気泡樹脂を流し込み、これを一体発泡させて真空引きすればよく、生産性を大幅に向上させ、生産コストを低減させ、製品を安価に提供することができる。
 また、第2断熱芯材12を構成する繊維材料を、通気性の良い包袋材に封入された構成とすることにより、柔軟性があって型崩れしやすい繊維材料を、容易に断熱用空間4内に装填することができる。これにより、生産性をさらに向上させてコストダウンを図ることができる。また、真空断熱箱体7の形状が複雑なものであっても、この形状に沿わせて配置することができるので、複雑な形状の断熱構造体にも対応することができる。
 また、本実施の形態では、真空断熱箱体7内に、芯材5とともに、気体吸着材6が真空封止されている。これにより、第1断熱芯材11となる連続気泡樹脂中に含まれていて、徐々に放出されるガス、および、第2断熱芯材12に残存しているガスを、気体吸着材6に吸着させることができる。その結果、ガスによる内圧上昇を確実に抑制し、真空断熱箱体7の変形を防止すると同時に、その断熱性を長期にわたって良好に維持することができる。特に本実施の形態では、気体吸着材6が、第1断熱芯材11を構成する連続気泡樹脂側に配置されている(図2参照)。この構成により、連続気泡樹脂から経時的に放出されるガスを、連続気泡通路経由で効率よく吸着することができ、内圧上昇防止と断熱性低下抑制とを効率よく行って、高い断熱性能を維持させることができる。
 なお、気体吸着材6は、上記したように、断熱用空間4のような密閉空間に残存または進入する、水蒸気および空気等の混合ガスを吸着する役割を果たすものであり、特定のものに限定されるものではない。例えば、酸化カルシウムあるいは酸化マグネシウム等の化学吸着物質、ゼオライトのような物理吸着物質、または、それらの混合物を使用することができる。また、化学吸着性と物理吸着性とを併せ持った吸着性能を有し、吸着容量の大きい、銅イオン交換されたZSM-5型ゼオライトも使用することができる。
 本実施の形態では、上述した、銅イオン交換されたZSM-5型ゼオライトを含む気体吸着材6を用いている。これにより、時の経過とともに、ガスが放出され続ける傾向のある連続気泡樹脂を芯材として用いていても、銅イオン交換されたZSM-5型ゼオライトが有する、高い吸着性能と大きな吸着容量とによって、長期にわたり確実に気体吸着を続け、真空断熱箱体7の内圧上昇防止および断熱性低下抑制を、長期間に亘って確実に行うことができる。
 さらに、第2断熱芯材12を構成する繊維材料としては、グラスウールまたはロックウール等の無機系繊維材料を用いている。これにより、発生する水分量を低く維持して、断熱性を良好に保持することができる。すなわち、無機系繊維はそれ自体の吸水性(吸湿性)が低いので、真空断熱箱体7の内部の水分量を低く維持することができる。これにより、気体吸着材6の吸着能力が水分吸着によって低減してしまうことを抑制でき、気体吸着材6に良好な気体吸着機能を発揮させて断熱性能を良好なものとすることができる。
 また、無機系繊維は焼成されているので、仮に、真空断熱箱体7が何らかの影響で破損した場合であっても、繊維材料が大きく膨らむことがなく、真空断熱箱体7としての形状を保持することができる。例えば、無機系繊維を焼成せずに密封すると、諸条件にもよるが、真空断熱箱体7の破損時の膨らみは破損前の2~3倍となり得る。これに対して、無機系繊維を焼成することにより、破損時の膨張を1.5倍以内に抑えることができ、破損時の膨張を有効に抑制し、寸法保持性を高めることができる。
 以上のように構成された真空断熱箱体7は、第1断熱芯材11が、真空断熱箱体7の内部空間、すなわち貯蔵室となる内部空間側に面するように配置されている。これにより、真空断熱箱体7を、より効率よく断熱することができ、その断熱性を高いものとすることができる。真空引きされた第1断熱芯材11を構成する連続気泡ウレタンフォームは、同じく真空引きされた第2断熱芯材12を構成するグラスウールまたはロックウール等よりも、熱伝導率λが低い。したがって、上述したような配置構成とすることによって、まず熱伝導率λの低い第1断熱芯材11が内部空間からの低温を強力に断熱し、その外側に位置する第2断熱芯材12は、熱伝導率λの低い第1断熱芯材11で強力断熱された後の、比較的温度が高い低温領域で断熱することになる。これにより、熱伝導率λが若干高い第2断熱芯材12であっても、強力に断熱することができ、それぞれの断熱特性を活かして、効率よく真空断熱箱体内の冷気を断熱保存することができる。
 [真空断熱体の構造例と製法]
 図5A~図5Eは、本発明の第1の実施の形態における、真空断熱体の構造例を示す図である。ここでは、第1断熱芯材11と第2断熱芯材12との配置形態が示されている。図5Aは、真空断熱体の一方の面、例えば下面(上面であってもよい)を、連続気泡樹脂からなる第1断熱芯材11としたものである。他方の面には、第2断熱芯材12が配置されている。また、図5Bは、連続気泡樹脂からなる第1断熱芯材11によって、繊維芯材からなる第2断熱芯材12を挟み込んだものである。図5Cは、繊維芯材からなる第2断熱芯材12の外周を囲みこむように、連続気泡樹脂からなる第1断熱芯材11が外周に配置されたものである。また、図5Dは、連続気泡樹脂からなる第1断熱芯材11を細かく分割して、これらの間に、繊維芯材からなる第2断熱芯材12が配置されたものである。また、図5Eは、連続気泡樹脂からなる第1断熱芯材11のコーナ部に、繊維芯材からなる第2断熱芯材12が配置されたものである。
 図5Aの構成によれば、真空チャンバー内で断熱箱体を真空引きする際に、比較的通気抵抗の高い芯材の厚みを減らすように、比較的通気抵抗の低い芯材を設置することにより、全体の通気抵抗を減らすことができるという効果がある。
 また、図5Bの構成も、図5Aの構成と同様に、比較的通気抵抗の高い芯材の厚みを減らすように、比較的通気抵抗の低い芯材が設置されることにより、全体の通気抵抗を減らすことができる、という効果がある。
 上述した図5Aおよび図5Bの構成において、連続気泡樹脂からなる第1断熱芯材11を、真空断熱箱体7の内面近傍に配置して、その外側に、繊維芯材からなる第2断熱芯材12を設けた構成とする。そうすると、通気抵抗を減らす効果に加えて、真空断熱箱体7内面が平面ではなく、自由な凹凸を形成していても、連続気泡樹脂からなる第1断熱芯材11を、その自由な凹凸に沿って形成することができる。このため、芯材と箱体との隙間による熱リークを抑制した真空断熱箱体を得ることができる、という効果がある。
 図5Cは、上述した例と同様に、全体の通気抵抗を減らす効果に加えて、真空断熱箱体の六面いずれもが平面ではなく、自由な凹凸を形成していても、連続気泡樹脂からなる第1断熱芯材11を、その自由な凹凸に沿って形成することができる。このため、芯材と箱体との隙間による熱リークを抑制した真空断熱箱体7を得ることができる、という効果がある。
 また、図5Dの構成によれば、第1断熱芯材11が細分化され、連続気泡からなる通路を更に短くすることができ、真空引き時間を短縮させることができる。
 また、図5Eの構成によれば、連続気泡樹脂が充填されにくいコーナ部分に第2断熱芯材12を配置することにより、コーナ部分の断熱性を良好なものとすることができるという利点がある。
 なお、図5Eの構成は、上述した図5A~図5Dまでのいずれかの例に組み合わせて実現されるものであってもよい。
 次に、図6Aおよび図6Bは、本発明の第1の実施の形態における、真空断熱体の製法の例を示す図である。図6Aは、上述したように、真空断熱体の外包材となる真空断熱箱体7の筐体に、排気用管15を接続して真空引きする製法を示している。また、図6Bは、真空断熱箱体7の筐体の一部、例えば上面を開口させた状態で真空チャンバー16に入れて、真空引きした後に、容器の開口に封止板を溶着、または接着等して真空封止する製法を示している。
 (第2の実施の形態)
 次に、本発明の第2の実施の形態について説明する。
 本実施の形態においては、真空断熱体を、LNG輸送タンカーにおけるLNG船内タンクの断熱構造体に用いた例について説明する。
 図7は、本発明の第2の実施の形態における、真空断熱体を用いた船内タンクを備える、メンブレン方式のLNG輸送タンカーの概略断面構成を示す図である。図8は、同LNG輸送タンカーの船内タンクの内面の二層構造を示す説明図で、模式的斜視図、および、その部分拡大断面図を示す。図9は、同船内タンクの断熱構造体に用いられる真空断熱体の拡大断面図である。
 図7には、船体自体によって構成される断熱容器21が示されている。タンクとなる容器の内側には、一次防熱、および二次防熱と称される、内外二重の断熱構造が採用されている。
 図8、および図9において、断熱容器21は、容器外槽22と、容器外槽22の内方に、中間槽23を介して設けられた容器内槽24とを備えている。容器内槽24および中間槽23は、いずれもステンレス鋼製のメンブレン、またはインバー(36%のニッケルを含有するニッケル鋼)で構成されており、熱収縮に強い構成となっている。
 容器内槽24と中間槽23との間に配された断熱構造体である第1の断熱箱25は、一面が開口されたベニヤ板等の木製の箱枠体26と、箱枠体26内に充填されたパーライト等の粉末断熱材27とによって構成されている。なお、粉末断熱材27としては、パーライトの代わりに、グラスウール等で構成してもよく、本実施の形態では、粉末断熱材としてパーライトを用いたとして説明する。
 中間槽23と容器外槽22との間に配された第2の断熱箱28は、第1の断熱箱25と同様に、一面が開口された木製の箱枠体26の底面に、真空断熱体29が敷設され、その開口側部分に、第1の断熱箱25と同様のパーライト等の粉末断熱材27が充填されて構成されている。
 また、本実施の形態では、第2の断熱箱28は、真空断熱体29が外側、すなわち、容器外槽22側に面するように配置されている。
 図9は、この真空断熱体29を示している。真空断熱体29は、第1の実施の形態と同様の構成となっているが、真空断熱箱体7に相当する外包材は、単純な平板状となっていて、ステンレス、または、これと同等以下のイオン化傾向の小さく、耐腐食性の高い、一対の凹状の金属薄板30,30を嵌め合わせて、その周囲を溶着し、内部を真空封止した構成としてある。
 第2の実施の形態の真空断熱体29も、第1の実施の形態で説明した真空断熱箱体7と同様の効果を奏する。重複する効果の説明は省略するが、真空断熱体29をLNG船内タンクの断熱材として用いた場合、芯材5を真空密閉する外包材となる金属薄板30は、従来から存在する、一般的なアルミニウム蒸着層を有する積層シート外包材に比べて、その耐腐食性能が格段に高い。これにより、例えば海水に曝されることがあっても、腐食して破袋または破損することを防止することができ、その信頼性を高いものとすることができるという利点がある。
 また、芯材5を、連続気泡樹脂からなる第1断熱芯材11と、グラスウール等の繊維材からなる第2断熱芯材12との二層構造としているので、その断熱性能は高いものとなっている。よって、真空断熱体29を用いる第2の断熱箱28内の粉末断熱材27量を少なくして、第2の断熱箱28自体の厚みを薄くすることができるので、その分、断熱容器21の容量の大型化が可能となる。
 さらに、LNG船内タンクの断熱材として用いられる真空断熱体29は、第1の実施の形態と同様に、その第1断熱芯材11が、容器内槽24の内部空間、すなわちLNG等の物質が貯蔵されている内部空間と面する側になるように配置されている。これにより、断熱容器21を、より効率よく断熱することができ、その断熱性を高いものとすることができる。すなわち、このような構成とすることにより、上述した通り、まず、熱伝導率λの低い第1断熱芯材11が内部空間からの低温を強力に断熱し、その外側に位置する第2断熱芯材12が、熱伝導率λの低い第1断熱芯材11で強力断熱された後の、比較的温度が高い低温領域で断熱することになる。これにより、熱伝導率λが若干高い第2断熱芯材12であっても、強力に断熱することができ、それぞれの断熱特性を活かして、効率よく容器内の極低温物質を断熱保存することができる。特に、本実施の形態の例においては、断熱容器21に貯蔵されるLNG等の物質の温度が、-162℃と超低温であるため、効果的である。
 さらに、気体吸着材6として用られるZSM-5型ゼオライトは、化学吸着作用を有するので、吸着したガスが容易に離脱しない。これにより、真空断熱体29の内部の真空度を、良好に保持することができる。これにより、LNG等の可燃性燃料等を扱う場合に、何らかの影響で、気体吸着材が可燃性ガスを吸着したとしても、その後の温度上昇等の影響によって、ガスが再放出されることがなく、真空断熱体29の防爆性を高めて、安全性を向上させることができる。
 (その他の変形例)
 以上説明してきたように、第1の実施の形態および第2の実施の形態に示される態様は、安価で断熱性能の高い、高品質な真空断熱体を提供するものである。しかしながら、本発明はこれらの例に限定されるものではなく、本発明の目的を達成する範囲で、種々変更可能である。
 例えば、上記各実施の形態においては、冷蔵庫1の真空断熱箱体7およびLNG船体タンク用の断熱容器21の真空断熱体29を一例として説明したが、真空断熱体、ならびに、それを応用した断熱構造体の構成および形状等はこれらに限定されない。すなわち、断熱構造体が容器状のものではなく、実質的に平板形状である扉等の断熱壁等として用いられてもよい。また容器であれば、必ずしもLNG船体用タンクに限定されるものではなく、例えば、携帯用保冷庫の筐体、恒温槽の筐体、および貯湯タンクの筐体等に適用してもよいものである。
 また、上記全ての実施の形態では、連続気泡樹脂として、連続気泡ウレタンフォームを用いた例を示したが、本発明の連続気泡樹脂はこれに限定されない。例えば、連続気泡フェノールフォーム、または、連続ウレタンフォームおよび連続フェノールフォームのうち、いずれか一方を含んだ共重合体樹脂等であってもよい。そして、この連続気泡樹脂は、上述した、特許第5310928号公報に記載されているような、コア層とともにスキン層にも気泡が形成された連続気泡樹脂であれば効果的であるが、スキン層が連続気泡となっていない、一般的な連続気泡樹脂のスキン層を切除してコア層のみとしたものを用いてもよい。同様に、連続気泡樹脂よりも通気抵抗の小さな断熱材として、グラスウール等の無機系繊維材料を例示したが、本発明はこの例に限定されず、無機系繊維以外の公知の有機系繊維を用いてもよいし、パーライト等のような粉体材料を用いてもよい。
 さらに、真空断熱体の外包材としては、金属製外箱と樹脂製内箱との組み合わせで構成したもの、および、金属薄板同士を組み合わせて構成したものを例示したが、本発明はこの例に限定されず、樹脂成形品であってもよいし、例えば図10に示されるような積層シート31を用いてもよい。
 図10は、本発明の第2の実施の形態における、真空断熱体の外包材である積層シート31の断面構成の一例を示す図である。
 この積層シート31は、表面保護層32と、ガスバリア層33と、熱溶着層34とを積層一体化したものである。表面保護層32は、ナイロンフィルム、ポリエチレンテレフタレートフィルム、および、ポリプロピレンフィルム等から選択される。ガスバリア層33は、アルミニウム箔、銅箔、およびステンレス箔等から選択される金属箔、基材となる樹脂フィルムに対して、金属または金属酸化物が蒸着された蒸着フィルム、ならびに、この蒸着フィルムの表面に、さらに公知のコーティング処理が施されたフィルム等からなる。熱溶着層34は、低密度ポリエチレン等の熱可塑性樹脂フィルム等からなる。
 (第3の実施の形態)
 次に、本発明の第3の実施の形態について説明する。
 図11は、本発明の第3の実施の形態における真空断熱体を用いた冷蔵庫101の構成を示す、側方から見た断面図である。
 [冷蔵庫の構成]
 本実施の形態の冷蔵庫101の構成について説明する。
 図11に示されるように、本実施の形態に係る冷蔵庫101は、金属(例えば、鉄)製の外箱102と、硬質樹脂(例えば、ABS樹脂)製の内箱103とを備えている。そして、外箱102と内箱103との間の断熱用空間104には、芯材と気体吸着材とが装填された後に、真空封止することによって、冷蔵庫本体となる断熱箱体(以下、真空断熱箱体と称する)が形成されている。ここで「真空封止」とは、断熱用空間の圧力が大気圧より低い圧力である状態を含むものである。この真空断熱箱体107の構成としては、第1の実施の形態で説明したとおりのものを用いることができる。
 真空断熱箱体107の内部空間は、仕切り板108によって、上側の冷蔵室110と下側の冷凍室109とに区画されている。冷凍室109は、二段に亘って設けられ、下段の冷凍室109の下にはさらに、冷蔵室110が設けられている。冷蔵室110と冷凍室109とは、それぞれ扉125を備えている。この扉125の断熱用空間には、本実施の形態の真空断熱箱体113が構成されている。
 また、冷蔵庫101には、その冷却原理に応じた部品(圧縮器117、蒸発器118、および蒸発皿119等)が取り付けられている。なお、真空断熱箱体107の内部空間は、上述の例に限られず、例えば、用途の異なる複数の貯蔵室(冷蔵室、冷凍室、製氷室、および野菜室等)に区画されていてもよい。
 [真空断熱体の構成]
 次に、本実施の形態の真空断熱箱体113、すなわち、真空断熱体の構成について説明する。
 図12は、本発明の第3の実施の形態における、冷蔵庫101の扉125の概略構成を示す斜視図である。また、図13Aおよび図13Bは、同実施の形態における、比較例の真空断熱体の構成を示す断面図である。また、図14Aおよび図14Bは、同実施の形態における、真空断熱体の第1の例の構成を示す断面図である。図15Aおよび図15Bは、同実施の形態における、真空断熱体の第2の例の構成を示す断面図である。また、図16Aおよび図16Bは、同実施の形態における、真空断熱体の第3の例の構成を示す断面図である。
 図12に示されるように、真空断熱箱体113の外包材となる外箱102および内箱103内の、断熱用空間には、真空断熱材が形成されている。また、外箱102の表面側には、例えばガラス等の外観部品114が配置されている。
 まず、図13Aおよび図13Bに示される比較例においては、真空断熱箱体113の外包材となる外箱102および内箱103内の断熱用空間に、ガスバリア層131で覆われた連続気泡ウレタンフォーム121が構成されている。内箱103と外箱102との境目には、熱溶着層132が形成され、気密が保たれている。その製造段階においては、排気口115から真空引きがなされて、その後、排気用管116が封止され、気密が保たれる。このように、比較例においては、真空断熱箱体113として、一種類の真空断熱材、ここでは連続気泡ウレタンフォーム121が用いられている。
 次に、図14Aおよび図14Bに示されるように、第1の例においては、真空断熱箱体113の外包材となる外箱102および内箱103内の断熱用空間に、ガスバリア層131で覆われた、連続気泡ウレタンフォーム121および繊維材料122が構成されている。ここで、連続気泡ウレタンフォーム121が、表面の外観部品114側に配置されている。内箱103と外箱102との境目には、熱溶着層132が形成され、気密が保たれている。その製造段階においては、排気口115から真空引きがなされて、その後、排気用管116が封止され、気密が保たれる。このように、第1の例においては、真空断熱箱体113として、二種類の真空断熱材、ここでは連続気泡ウレタンフォーム121および繊維材料122が形成されている。第1の例は、第1の実施の形態において説明した、二層の、第1断熱芯材11および第2断熱芯材12によって真空断熱材が構成されている例であり、その詳細な説明は割愛する。
 次に、図15Aおよび図15Bに示されるように、第2の例においては、前述の第1の例と同様に、真空断熱箱体113の外包材となる外箱102および内箱103内の断熱用空間に、ガスバリア層131で覆われた、連続気泡ウレタンフォーム121および繊維材料122が構成されている。ここでは、連続気泡ウレタンフォーム121と繊維材料122との間に、介在物であるポリエチレンフィルム123が配置されている点が第1の例とは異なる。ここで、介在物としては、樹脂シートまたは樹脂フィルムを用いることができる。そして、樹脂としては、OH等の官能基を有しない構成であることが望ましい。
 ここで、第2の例において、第1断熱芯材の一例である連続気泡ウレタンフォーム121と、第2断熱芯材の一例である繊維材料122との間に、介在物であるポリエチレンフィルム123が配置されている理由について説明する。
 第1の実施の形態でも説明したように、真空断熱箱体113の製造方法は、まず、外箱102と内箱103との間の断熱用空間内に、繊維材料122を入れた包袋材をセットして、その後、ウレタン液を注入するものである。このとき、条件によっては、ウレタン液が、繊維芯材の繊維間に入り込んでしまい、境界層が形成されてしまい、うまく内部のガスを排気することができない、その結果、断熱性能がうまく発揮できない可能性がある。それを防止するために、介在物によって第1断熱芯材と第2断熱芯材とを物理的に隔離して、それぞれの性能を十分に発揮させるための構成である。
 次に、図16Aおよび図16Bに示されるように、第3の例においては、前述の第2の例と同様に、真空断熱箱体113の外包材となる外箱102および内箱103内の断熱用空間に、ガスバリア層131で覆われた、連続気泡ウレタンフォーム121および繊維材料122が構成されている。また、連続気泡ウレタンフォーム121と繊維材料122との間には、ポリエチレンフィルム123が配置されている。ここで、第3の例においては、ポリエチレンフィルム123に複数の貫通孔124が設けられている点が、第2の例とは異なる。
 前述のように、第2の例の構成によれば、介在物を配置することによる、ウレタン液が繊維芯材の繊維間に入り込んでしまい、うまく内部のガスを排気することができない、という現象を防止することができる。しかしながら、介在物であるポリエチレンフィルム123は通気性を有しないので、第1断熱芯材と第2断熱芯材との間で、空気のやり取りを行うことができない。このことから、逆に、介在物が、真空断熱体からの排気の邪魔をしてしまう可能性がある。そこで、この例においては、介在物にも若干の通気性を有させるために、貫通孔124を設けているものである。
 なお、上述の第1の例から第3の例においては、真空断熱箱体113の外包材となる外箱102および内箱103内の断熱用空間に、ガスバリア層131で覆われた、連続気泡ウレタンフォーム121および繊維材料122が構成されている例を示した。それぞれの例においては、第1断熱芯材および第2断熱芯材が、断熱用空間の、幅方向の全域に配置される例を示した。しかしながら、本発明は、この例に限定されるものではない。
 図17は、本発明の第3の実施の形態における、比較例の、連続気泡ウレタンフォーム121の配置の一例を示す断面図である。
 図17から図22においては、紙面に向かって左側が、扉125の表面側であり、右側が、冷蔵庫101の内側を向いているものとする。
 図17に示されるように、比較例においては、扉125の表面側の略中央部分に気体吸着材106が配置されている。そして、内箱103と外箱102との間の空間に、満遍なく、連続気泡ウレタンフォーム121が形成されている。また、排気口115は、内箱103の内側の略中央部分に設けられている。
 図18は、本発明の第3の実施の形態における第1の例の真空断熱体の構成を示す断面図である。
 図18に示されるように、この例では、図17に示される比較例の、気体吸着材106が配置された部分を含む、外側の全領域に、第2断熱芯材である繊維材料122が配置されている。図18に示される例では、第1断熱芯材と第2断熱芯材との間に、介在物がない例が示されている。しかしながら、第1断熱芯材と第2断熱芯材との間に、介在物であるポリエチレンフィルム123を配置することによって、第2の例および第3の例の構成を実現することができる。
 図19は、本発明の第3の実施の形態における第1の例の真空断熱体の構成の別の例を示す断面図である。
 図19に示されるように、この例では、図17に示される比較例の、気体吸着材106が配置された部分を含む、外側から内側にかけての厚み方向の全領域、かつ、幅方向には一部の領域に、第2断熱芯材である繊維材料122が配置されている。なお、図19に示される例では、第1断熱芯材と第2断熱芯材との間に、介在物がない例が示されている。しかしながら、第1断熱芯材と第2断熱芯材との間に、介在物であるポリエチレンフィルム123を配置する、具体的には、第2断熱芯材を介在物でくるむように配置することによって、第2の例および第3の例の構成を実現することができる。
 図20は、本発明の第3の実施の形態における第1の例の真空断熱体の構成のさらに別の例を示す断面図である。
 図20に示されるように、この例では、図17に示される比較例の、気体吸着材106が配置された部分を含まない、外側から内側にかけての厚み方向の一部の領域、かつ、幅方向にも一部の領域に、第2断熱芯材である繊維材料122が配置されている。なお、図20に示される例では、第1断熱芯材と第2断熱芯材との間に、介在物がない例が示されている。しかしながら、第1断熱芯材と第2断熱芯材との間に、介在物であるポリエチレンフィルム123を配置する、具体的には、第2断熱芯材を介在物でくるむように配置することによって、第2の例および第3の例の構成を実現することができる。
 図21は、本発明の第3の実施の形態における第1の例の真空断熱体の構成のさらにまた別の例を示す断面図である。
 図21に示されるように、この例では、図17に示される比較例の、気体吸着材106が配置された部分を含まない、外側隅部の領域に、第2断熱芯材である繊維材料122が配置されている。このように繊維材料122を配置することによって、連続気泡ウレタンフォーム121が充填されにくい外側隅部においても、十分な断熱効果を奏させることができる。なお、図21に示される例では、第1断熱芯材と第2断熱芯材との間に、介在物がない例が示されている。しかしながら、第1断熱芯材と第2断熱芯材との間に、介在物であるポリエチレンフィルム123を配置する、具体的には、第2断熱芯材を介在物でくるむように配置することによって、第2の例および第3の例の構成を実現することができる。
 図22は、本発明の第3の実施の形態における第1の例の真空断熱体の構成のさらにまた別の例を示す断面図である。
 図22に示される例においては、図18に示された例の構成に加えて、内側の内箱103表面の排気口115から、内部に配置された、第2断熱芯材である繊維材料122に届くように、排気用孔225が設けられた例が示されている。この例によれば、図中矢印で示したように、真空引きを行った際、残留ガスが排気用孔225を介して排気口115から排気されるので、より真空度を高めることが可能である。なお、排気用孔225は複数設けられていてもよい。
 なお、図22に示された例においては、図18の構成に排気用孔225が設けられた例を示したが、本発明はこの例に限定されるものではない。例えば、図19から図21までの構成に加えて、排気用孔225を設けることによっても、同様に真空引き後の真空度を高めることができる。
 [真空断熱箱体の製造法]
 次に、本実施の形態の真空断熱箱体113の製造方法について説明する。
 図23は、本発明の第3の実施の形態における、真空断熱箱体113の製造方法について説明するための図である。
 まず、内箱103および外箱102それぞれを、ガスバリア性を有するシートを作製し、成形することによって製造する(S301~S304)。
 また、別途、金型内に、ウレタン液を注入し、発泡させる(S305)。そして、繊維材料122(例えばグラスウール)を添加する。このとき、必要に応じて、ポリエチレンフィルム123で繊維材料122をくるむ、または、ポリエチレンフィルム123を挟むことによって、第1断熱芯材と第2断熱芯材との間に、介在物を存在させることができる。その後、金型から離型させる(S307)。
 このようにして作製された内箱103、外箱102および連続気泡ウレタンフォーム121を組み立て(S308)、内箱103と外箱102との間を溶着し、気密性を保つ(S309)。そして、内箱103および外箱102内を真空引き、または、内箱103および外箱102全体を真空チャンバー内に入れて真空引きして(S310)、真空引きする排気管の口部分を密閉封止する(S311)。これにより、真空断熱体を作製することができる。
 [真空断熱体の作用効果]
 次に、上記のようにして作製された真空断熱箱体113、すなわち真空断熱体の作用効果について説明する。
 図24は、本発明の第3の実施の形態における真空断熱体の内圧を比較した図である。
 図24においては、連続気泡ウレタンフォーム121のみで真空断熱体を構成したとき(比較例)の内圧(気体吸着材106を機能させる前の状態)を「1」として相対化して第1の例、第2の例および第3の例の構成の内圧を示している。
 図24に示されているように、第1の例(第1断熱芯材と第2断熱芯材との間に介在物を含まない構成)での内圧は、第1断熱芯材のみで真空断熱体を構成したとき(比較例)の内圧よりも高くなっている。これは、前述のように、第2断熱芯材である繊維材料122の間に、第1断熱芯材である連続気泡ウレタンフォーム121が入り込んでしまい、境界層が形成され、真空引きの際の残留ガスの排気の邪魔になっているからだと考えられる。
 これに対して、第2の例(第1断熱芯材と第2断熱芯材との間に介在物を含む構成)および第3の例(介在物に貫通孔124が空いている構成)では、内圧は、それぞれ、比較例と同等および比較例よりも半分以下となっており、実用性が高いといえる。なお、本実施の形態においては、第2の例および第3の例において、介在物は、厚みが100μmのポリエチレンフィルム123であり、第3の例においては、貫通孔124の孔径は直径1.0mm、ピッチは10mmであるものとする。
 図25は、本発明の第3の実施の形態における真空断熱体の熱伝導率を比較した図である。
 図25においては、連続気泡ウレタンフォーム121のみで真空断熱体を構成したとき(比較例)の熱伝導率を「1」として相対化して第1の例、第2の例および第3の例の内圧を示している。第2の例および第3の例において、介在物は、厚みが100μmのポリエチレンフィルム123であり、第3の例においては、貫通孔124の孔径は直径1.0mm、ピッチは10mmであるものとする。
 図25に示されているように、第1の例、第2の例および第3の例のいずれにおいても、比較例の熱伝導率よりも低い熱伝導率が実現できており、第1断熱芯材および第2断熱芯材を用いることにより、真空断熱材としての断熱性能は、向上しているものといえる。
 図26は、本発明の第3の実施の形態における真空断熱体の内圧を比較した図である。
 図26においては、連続気泡ウレタンフォーム121のみで真空断熱体を構成したとき(比較例)の内圧(気体吸着材106を機能させたときの状態)を「1」として相対化して、第1の例、第2の例および第3の例の内圧を示している。
 図26に示されているように、第1の例での内圧は、第1断熱芯材のみで真空断熱体を構成したとき(比較例)の内圧よりも高くなっている。これは、前述のように、第2断熱芯材である繊維材料122の間に、第1断熱芯材である連続気泡ウレタンフォーム121が入り込んでしまい、境界層が形成され、真空引きの際の残留ガスの排気の邪魔になっているからだと考えられる。
 これに対して、第2の例(第1断熱芯材と第2断熱芯材との間に介在物を含む構成)および第3の例(介在物に貫通孔124が空いている構成)では、内圧は、それぞれ、比較例と同等以下となっている。
 ここで、図26の例においては、いずれの値も実用的には許容範囲の値となっている。つまり、本実施の形態の第1の例、第2の例および第3の例の真空断熱材の真空性は、気体吸着剤106を機能させた後には、実用的に許容される範囲となっており、実用性に問題はない。
 次に、本実施の形態の真空断熱材の介在物の一例であるポリエチレンフィルム123を用いた場合の、第3の例、すなわち、貫通孔124を有する場合の最適な構成について検討する。
 図27は、本発明の第3の実施の形態における真空断熱体の第3の例における、介在物の厚みの違いによる熱伝導率を比較した図である。
 図27においては、介在物であるポリエチレンフィルムの厚みが100μmであるときの熱伝導率を「1」として相対化して示している。なお、介在物には貫通孔124が形成されており、その孔径は1.0mmであり、ピッチは10mmとしている。
 図27に示されているように、介在物の厚みを厚くするほど、熱伝導率は高くなる。具体的には、厚みを500μmよりも大きくすると、断熱性能の低下の影響が出てしまう。逆に、介在物を薄くしすぎると、具体的には、厚みを30μmよりも薄くすると、連続気泡樹脂の発泡時にフィルムが発泡圧で破れる可能性がある。なお、このことは、貫通孔124の有無によらない。
 すなわち、介在物の厚みを30~500μmとすることにより、第2の例および第3の例の構成は、その前後の厚みと比較して、より性能を発揮することができる。
 次に、本実施の形態の真空断熱材の介在物の一例であるポリエチレンフィルム123を用いた場合の、第3の例、すなわち、貫通孔124を有する場合の最適な孔径について検討する。
 図28は、本発明の第3の実施の形態における真空断熱体の第3の例における、介在物の貫通孔124の孔径の違いによる内圧を比較した図である。
 図28においては、介在物であるポリエチレンフィルムの厚みが100μmであり、孔ピッチを10mmとしている。そして、孔がないときの内圧を「1」として相対化して示している。
 図28に示されているように、介在物の貫通孔124は、0.1mmから4mmまでの範囲であることが好ましい。孔径が0.1mmよりも小さくなると、排気効率の向上が見られなくなる。一方、孔径が4mmを超えると、第1断熱芯材である連続気泡樹脂が、第2断熱芯材である繊維材料に浸透してしまい、結果的に内圧が高くなってしまうからである。なお、さらに好ましくは、0.3mmから2mmの範囲の孔径とすることが最も内圧が低くなり、望ましい。
 図29は、本発明の第3の実施の形態における真空断熱体の第3の例における、介在物の貫通孔124のピッチの違いによる内圧を比較した図である。
 図29においては、介在物であるポリエチレンフィルムの厚みが100μmであり、孔径を1mmとしている。また、図28に示された、孔がないときの内圧を、図29においても「1」として相対化して示している。
 図29に示されているように、介在物の貫通孔124のピッチは、2mmから90mmまでの範囲であることが好ましい。ピッチが2mmよりも小さくなると、フィルムの強度が弱くなり、連続気泡樹脂の発泡時にフィルムが発泡圧で破れてしまう可能性がある。一方、ピッチが90mmを超えると、排気効率を向上させる効果を得ることが難しくなってしまう。
 図30は、本発明の第3の実施の形態における真空断熱体の第3の例における、排気用孔の孔径の違いによる熱伝導率を比較した図である。
 図30においては、排気用孔の数を「1つ」としている。そして、孔がないときの熱伝導率を「1」として相対化して示している。
 図30に示されているように、排気用孔は、熱伝導率の観点から見て、その孔径が0.3mmから5mmまでの範囲であることが好ましい。孔径が0.3mmよりも小さくなると、排気効率の向上が見られなくなる。一方、孔径が5mmを超えると、熱伝導率が下がらなくなってしまい、断熱性能が向上しないからである。
 図31は、本発明の第3の実施の形態における真空断熱体の第3の例における、排気用孔が複数設けられているときに、そのピッチの違いによる圧縮強度を比較した図である。
 図31においては、排気用孔の孔径を1mmとしている。そして、ピッチが1mmのときの圧縮強度を「1」として相対化して示している。
 図31に示されているように、排気用孔は、複数設けられているときに、そのピッチが1mm以上の範囲であることが好ましい。ピッチが1mmよりも小さくなると、圧縮強度の低下を招くためである。
 このように、当業者にとっては、各実施の形態の説明から本発明の多くの改良や他の実施の形態が明らかである。従って、各実施の形態における説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および機能の少なくともいずれかの詳細を実質的に変更することができる。
 以上述べたように、本発明の実施の形態の真空断熱体は、芯材と、芯材を真空封止する外包材とを備えている。そして、芯材は、通気性を有する、第1断熱芯材11および第2断熱芯材12を有し、第1断熱芯材11は、第2断熱芯材12よりも通気抵抗が大きい。
 このような構成によれば、断熱体内を真空引きする際、通気抵抗の大きい第1断熱芯材、例えば連続気泡ウレタンのような連続気泡樹脂は、通気抵抗の小さな第2断熱芯材、例えばグラスウールまたはロックウール等のような繊維材料の存在によってその厚みを薄くすることができる。そして、厚みが薄くなった分、連続気泡からなる通路が短くなって通気抵抗が減少し、真空引き時間を短縮させて生産性を向上させることができる。
 また、通気抵抗の大きな第1断熱芯材の厚みが薄くなった分、それによって短くなる連続気泡通路の短縮によって、連続気泡樹脂の内部から徐々に出てくるガス自体も低減できると同時に、そのガスを連続気泡で構成される通路全体へと分散させることができ、局部的な圧力上昇による変形も抑制することができる。しかも、通気抵抗の大きな第1連続気泡樹脂等の断熱芯材から出てくるガスの量を少なくすることによって、断熱性の低下も抑制することができる。
 また、第1断熱芯材は、連続気泡樹脂で構成され、第2断熱芯材は、連続気泡樹脂よりも通気抵抗の小さい、繊維材料または粉体材料で構成されていてもよい。
 これにより、この断熱体は、その包袋材内に、繊維材料または粉体材料を入れた状態で連続気泡樹脂を流し込み、これを一体発泡させて真空引きすれば作製できる。よって、生産性を大幅に向上させて、生産コストを低減させ、さらに安価に提供することができる。
 また、第1断熱芯材および第2断熱芯材の境界に配置された介在物をさらに有する構成であってもよい。
 このような構成によれば、連続気泡樹脂を発泡させる際に、繊維材料または粉体材料に、発泡前の液体が浸透することを防ぐことができる。発泡前の液体が浸透すると、断熱性能の劣化を招く境界層が形成されてしまう。なお、このとき、繊維材料または粉体材料が、袋形態になるように包装された状態であってもかまわない。
 このように、連続気泡樹脂の充填性が損なわれることなく、外包材全体にわたって充填させることができる。
 また、介在物は、樹脂シートまたは樹脂フィルムである構成であってもよい。
 このような樹脂を用いることにより、熱リークを抑えることができ、断熱性能を損なうことがない。
 また、樹脂シートまたは樹脂フィルムは、官能基を有しない樹脂である構成であってもよい。
 このような構成によれば、官能基(例えば、OH基)を有しない樹脂を用いることによって、第1断熱芯材との間で、新たな境界層が形成されることによる、断熱性能の劣化を防ぐことができる。
 また、樹脂シートまたは樹脂フィルムの厚みは、30~500μmの範囲にある構成であってもよい。
 介在物の厚みを厚くするほど、熱伝導率は高くなる。具体的には、厚みを500μmよりも大きくすると、断熱性能の低下の影響が出てしまう。逆に、介在物を薄くしすぎると、具体的には、厚みを30μmよりも薄くすると、連続気泡樹脂の発泡時にフィルムが発泡圧で破れる可能性がある。すなわち、介在物の厚みを30~500μmとすることにより、その前後の厚みと比較して、より性能を発揮することができる。
 また、樹脂シートまたは樹脂フィルムに形成された貫通孔をさらに有する構成であってもよい。
 このような構成によれば、通気抵抗の小さい第2断熱芯材と第1断熱芯材とが、貫通孔を通じて通気することができる。よって、真空排気する際に、通気抵抗の小さい第2断熱芯材、および、貫通孔を通じて、第1断熱芯材の排気を効率よく行うことができる。
 また、貫通孔の直径は、0.1~4mmの範囲にあってもよい。
 貫通孔の直径が0.1mmよりも小さいと、排気効率の向上が見られなくなり、直径が4mmを超えると、第1断熱芯材が第2断熱芯材に浸透してしまう可能性がある。なお、直径を0.3~2mmの範囲とすることにより、さらに排気の効率性を向上させることができる。
 また、貫通孔を複数有し、複数の貫通孔それぞれの間のピッチが、2~90mmの範囲にある構成であってもよい。
 ピッチが2mmよりも小さくなると、フィルムの強度が弱くなり、第1断熱芯材の発泡時にフィルムが発泡圧で破れてしまう可能性もある。また、ピッチが90mmを超えると、排気効率向上の効果が見られなくなる。
 また、外包材は、内箱および外箱を有し、第1断熱芯材は、内箱側に配置される構成であってもよい。
 これにより、真空断熱体の内箱を、平面以外の曲面で構成することができる。これは、第1断熱芯材が、より柔軟に変形して空間内を充填することができるからである。これにより、断熱体または断熱壁に用いた場合に、真空断熱体と外観部品等との間の隙間による断熱性の低下を防ぐことができる。
 また、第1断熱芯材の表面から、第2断熱芯材に向かって、排気用孔が設けられた構成であってもよい。
 このような構成により、排気口の位置を自由に設けることができるとともに、通気抵抗の大きな連続気泡樹脂を、排気用孔を用いて、周囲から効率よく排気することができる。
 また、排気用孔の直径は、1~5mmの範囲にある構成であってもよい。
 排気用孔の直径が0.3mmよりも小さくなると、排気効率の向上が見られなくなるとともに、直径が5mmを超えると、断熱性能の低下を招く可能性があるからである。
 また、排気用孔は複数設けられ、複数の排気用孔それぞれの間のピッチが、1mm以上である構成であってもよい。
 ピッチが1mmよりも小さくなると、圧縮強度の低下を招く可能性があるからである。一方で、ピッチが1mm以上であれば、真空引き後でも容器の変形なく排気用孔を設けた効果を奏することができる。
 また、第2断熱芯材は、包袋材に装填され、包袋材は、介在物によって構成されていてもよい。
 このような構成により、介在物を有する構成において、介在物を、第2断熱芯材を包装する包装材として共用することができる。
 また、繊維材料は、グラスウールまたはロックウールを含む無機繊維材料によって構成されていてもよい。
 これにより、真空断熱体の内部で放出される繊維材料からの残留ガスが少なくなり、真空度の低下を抑制することができるとともに、繊維材料自体の吸水性(吸湿性)が低くすることができる。よって、真空断熱体の内部の水分量を低く維持することができ、断熱性をより向上させることができる。
 また、外包材の内部には、芯材とともに密封された気体吸着材を有し、気体吸着材は、外包材内の第1断熱芯材側に配置される構成であってもよい。
 このような構成により、外包材内に残存しているガスを吸着する際に、真空引きしきれずに連続気泡樹脂中に残って、連続気泡樹脂から徐々に出てくるガスを気体吸着材に効率よく吸着させることができる。よって、連続気泡樹脂からのガスによる内圧上昇によって断熱体が変形したり、断熱性が低下したりすることを防止することができる。
 また、外包材は、一対の金属薄板で構成され、一対の金属薄板同士の周縁部を固着して、内部を真空封止することによって構成されていてもよい。
 これにより、芯材を真空密閉している金属薄板製の外包材は、一般的な真空断熱材のアルミニウム蒸着層を含む多層外包材に比べて、その耐腐食性能が格段に高くなる。よって、腐食しやすい環境、例えばLNGタンカー等の断熱壁として用いられて海水に曝されるようなことがあっても、腐食して外包材が破損することを防止でき、その信頼性を大きく向上させることができる。
 また、実施の形態の断熱容器は、常温よりも100℃以上低い物質を保持する断熱容器であって、断熱容器は、上述した真空断熱体を備え、真空断熱体は、断熱容器の低温側に、第1断熱芯材および第2断熱芯材のうち、熱伝導率の低い断熱芯材が配置されるように構成されていてもよい。なお、本明細書中において、「常温」とは、大気温度のことを意味するものとする。
 これにより、まず熱伝導率の低い断熱芯材が、低温物質からの低温を強力に断熱し、その外側に位置する断熱芯材が、熱伝導率の低い断熱芯材で強力断熱された後の、比較的温度が高い低温領域で断熱することになる。これにより、それぞれの断熱特性を活かして、効率よく容器内の物質を断熱保存することができる。
 また、実施の形態の断熱壁は、0℃以下の環境で使用される断熱壁であって、断熱壁は、上述した真空断熱体を備え、真空断熱体は、断熱壁の低温側に、第1断熱芯材および第2断熱芯材のうち、熱伝導率の低い断熱芯材が配置されるように構成されていてもよい。
 これにより、まず熱伝導率の低い断熱芯材が、低温物質からの低温を強力に断熱し、その外側に位置する断熱芯材が、熱伝導率の低い断熱芯材で強力断熱された後の、比較的温度が高い低温領域を断熱することになる。これにより、それぞれの断熱特性を活かして、効率よく断熱することができる。
 以上述べたように、本発明によれば、安価で断熱性能の高い、高品質な真空断熱体、具体的には、真空引き効率を向上させ、生産性を高める、という格別な効果を奏することができる。よって、本発明は、冷蔵庫等の民生用機器から、LNG貯蔵タンク等の工業用に至る、真空断熱体、ならびに、これを用いた断熱容器および断熱壁等として幅広く適用することができ、有用である。
 1  冷蔵庫
 2  外箱
 3  内箱
 4  断熱用空間
 5  芯材
 6  気体吸着材
 7  真空断熱箱体
 8  仕切り板
 9  冷蔵室
 10  冷凍室
 11  第1断熱芯材
 12  第2断熱芯材
 13  ウレタン液注入口
 14  空気抜き孔
 15  排気用管
 16  真空チャンバー
 21  断熱容器
 22  容器外槽
 23  中間槽
 24  容器内槽
 25  第1の断熱箱
 26  箱枠体
 27  粉末断熱材
 28  第2の断熱箱
 29  真空断熱体
 30  金属薄板
 31  積層シート
 32  表面保護層
 33  ガスバリア層
 34  熱溶着層
 101  冷蔵庫
 102  外箱
 103  内箱
 104  断熱用空間
 106  気体吸着材
 107  真空断熱箱体
 108  仕切り板
 109  冷凍室
 110  冷蔵室
 113  真空断熱箱体
 114  外観部品
 115  排気口
 116  排気用管
 117  圧縮器
 118  蒸発器
 119  蒸発皿
 121  連続気泡ウレタンフォーム
 122  繊維材料
 123  ポリエチレンフィルム
 124  貫通孔
 125  扉
 131  ガスバリア層
 132  熱溶着層
 225  排気用孔

Claims (19)

  1. 芯材と、
    前記芯材を真空封止する外包材とを備え、
    前記芯材は、通気性を有する、第1断熱芯材および第2断熱芯材を有し、
    前記第1断熱芯材は、前記第2断熱芯材よりも通気抵抗が大きい
    真空断熱体。
  2. 前記第1断熱芯材は、連続気泡樹脂で構成され、
    前記第2断熱芯材は、前記連続気泡樹脂よりも通気抵抗の小さい、繊維材料または粉体材料で構成された
    請求項1に記載の真空断熱体。
  3. 前記第1断熱芯材および前記第2断熱芯材の境界に配置された介在物をさらに有する
    請求項2に記載の真空断熱体。
  4. 前記介在物は、樹脂シートまたは樹脂フィルムである
    請求項3に記載の真空断熱体。
  5. 前記樹脂シートまたは前記樹脂フィルムは、官能基を有しない樹脂である
    請求項4に記載の真空断熱体。
  6. 前記樹脂シートまたは前記樹脂フィルムの厚みは、30~500μmの範囲にある
    請求項4または請求項5に記載の真空断熱体。
  7. 前記樹脂シートまたは前記樹脂フィルムに形成された貫通孔をさらに有する
    請求項4または請求項5に記載の真空断熱体。
  8. 前記貫通孔の直径は、0.1~4mmの範囲にある
    請求項7に記載の真空断熱体。
  9. 前記貫通孔を複数有し、前記複数の貫通孔それぞれの間のピッチが、
    2~90mmの範囲にある
    請求項7または請求項8に記載の真空断熱体。
  10. 前記外包材は、内箱および外箱を有し、
    前記第1断熱芯材は、前記内箱側に配置される
    請求項1から請求項9までのいずれか1項に記載の真空断熱体。
  11. 前記第1断熱芯材の表面から、前記第2断熱芯材に向かって、排気用孔が設けられた
    請求項1から請求項10までのいずれか1項に記載の真空断熱体。
  12. 前記排気用孔の直径は、
    1~5mmの範囲にある
    請求項11に記載の真空断熱体。
  13. 前記排気用孔は複数設けられ、
    前記複数の排気用孔それぞれの間のピッチが、1mm以上である
    請求項11または請求項12に記載の真空断熱体。
  14. 前記第2断熱芯材は、包袋材に装填され、
    前記包袋材は、前記介在物によって構成された
    請求項3から請求項9までのいずれか1項に記載の真空断熱体。
  15. 前記第2断熱芯材は、グラスウールまたはロックウールを含む無機繊維材料によって構成された
    請求項1から請求項14までのいずれか1項に記載の真空断熱体。
  16. 前記外包材の内部には、前記芯材とともに密封された気体吸着材を有し、
    前記気体吸着材は、前記外包材内の前記第1断熱芯材側に配置される
    請求項2から請求項15までのいずれか1項に記載の真空断熱体。
  17. 前記外包材は、一対の金属薄板で構成され、
    前記一対の金属薄板同士の周縁部を固着して、内部を真空封止することによって構成された
    請求項1から請求項5までのいずれか1項に記載の真空断熱体。
  18. 常温よりも100℃以上低い物質を保持する断熱容器として使用することが可能な断熱容器であって、
    前記断熱容器は、請求項1から請求項7までのいずれか1項に記載の真空断熱体を備え、
    前記真空断熱体は、前記断熱容器の低温側に、前記第1断熱芯材および前記第2断熱芯材のうち、熱伝導率の低い断熱芯材が配置されるように構成された
    断熱容器。
  19. 0℃以下の環境で使用される断熱壁として使用することが可能な断熱壁であって、
    前記断熱壁は、請求項1から請求項7までのいずれか1項に記載の真空断熱体を備え、
    前記真空断熱体は、前記断熱壁の低温側に、前記第1断熱芯材および前記第2断熱芯材のうち、熱伝導率の低い断熱芯材が配置されるように構成された
    断熱壁。
PCT/JP2015/002773 2014-06-03 2015-06-02 真空断熱体、ならびに、これを用いた断熱容器および断熱壁 WO2015186345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/311,751 US20170096284A1 (en) 2014-06-03 2015-06-02 Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
CN201590000673.5U CN206347259U (zh) 2014-06-03 2015-06-02 真空隔热体以及使用其的隔热容器和隔热壁
DE212015000150.4U DE212015000150U1 (de) 2014-06-03 2015-06-02 Vakuum-Wärmedämmkörper und Wärmedämmbehälter und Wärmedämmwand, die selbigen verwenden
JP2016525698A JPWO2015186345A1 (ja) 2014-06-03 2015-06-02 真空断熱体、ならびに、これを用いた断熱容器および断熱壁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014114565 2014-06-03
JP2014-114565 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186345A1 true WO2015186345A1 (ja) 2015-12-10

Family

ID=54766428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002773 WO2015186345A1 (ja) 2014-06-03 2015-06-02 真空断熱体、ならびに、これを用いた断熱容器および断熱壁

Country Status (4)

Country Link
US (1) US20170096284A1 (ja)
JP (1) JPWO2015186345A1 (ja)
DE (1) DE212015000150U1 (ja)
WO (1) WO2015186345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132619A1 (ja) * 2019-12-26 2021-07-01 パナソニックIpマネジメント株式会社 定温容器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746343B2 (en) 2018-09-28 2020-08-18 Whirlpool Corporation Channel system for a vacuum insulated structure
CN113074509A (zh) * 2020-01-06 2021-07-06 青岛海尔电冰箱有限公司 真空绝热体及冰箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145489U (ja) * 1982-03-26 1983-09-30 松下冷機株式会社 真空断熱材パツク
JPS62156793U (ja) * 1986-03-28 1987-10-05
JPH09145240A (ja) * 1995-11-20 1997-06-06 Fujitsu General Ltd 真空断熱材
JP2004162914A (ja) * 2002-10-24 2004-06-10 Nisshinbo Ind Inc 真空断熱材及びその製造方法
JP2007239771A (ja) * 2006-03-06 2007-09-20 Nisshinbo Ind Inc 真空断熱材とそれを用いた断熱箱体
JP2010242875A (ja) * 2009-04-07 2010-10-28 Kurabo Ind Ltd 真空断熱材の製造方法および該製造方法によって作製された真空断熱材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779066A (en) * 1952-05-23 1957-01-29 Gen Motors Corp Insulated refrigerator wall
JPS5310928A (en) 1976-07-19 1978-01-31 Hitachi Ltd Automatic cut-off adjusting device
JP2948764B2 (ja) 1996-08-29 1999-09-13 シャープ株式会社 断熱箱体および断熱構造の製造方法
US6109712A (en) * 1998-07-16 2000-08-29 Maytag Corporation Integrated vacuum panel insulation for thermal cabinet structures
JP3781598B2 (ja) * 1999-12-28 2006-05-31 日清紡績株式会社 真空断熱材の変形方法、真空断熱材の固定方法、冷凍・冷蔵容器及び断熱箱体
JP2009018826A (ja) * 2007-07-11 2009-01-29 Panasonic Corp 真空断熱箱体
JP2011002033A (ja) * 2009-06-18 2011-01-06 Hitachi Appliances Inc 真空断熱材およびこれを用いた断熱箱体並びに冷蔵庫
JP2011058538A (ja) * 2009-09-08 2011-03-24 Hitachi Appliances Inc 真空断熱材及びそれを用いた冷却機器または断熱容器
JP3171480U (ja) * 2011-08-22 2011-11-04 帝人ファイバー株式会社 真空断熱材
JP5945708B2 (ja) * 2011-08-31 2016-07-05 パナソニックIpマネジメント株式会社 冷蔵庫
KR20140137108A (ko) * 2013-05-22 2014-12-02 엘지전자 주식회사 냉장고 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145489U (ja) * 1982-03-26 1983-09-30 松下冷機株式会社 真空断熱材パツク
JPS62156793U (ja) * 1986-03-28 1987-10-05
JPH09145240A (ja) * 1995-11-20 1997-06-06 Fujitsu General Ltd 真空断熱材
JP2004162914A (ja) * 2002-10-24 2004-06-10 Nisshinbo Ind Inc 真空断熱材及びその製造方法
JP2007239771A (ja) * 2006-03-06 2007-09-20 Nisshinbo Ind Inc 真空断熱材とそれを用いた断熱箱体
JP2010242875A (ja) * 2009-04-07 2010-10-28 Kurabo Ind Ltd 真空断熱材の製造方法および該製造方法によって作製された真空断熱材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132619A1 (ja) * 2019-12-26 2021-07-01 パナソニックIpマネジメント株式会社 定温容器
JPWO2021132619A1 (ja) * 2019-12-26 2021-07-01
JP7296606B2 (ja) 2019-12-26 2023-06-23 パナソニックIpマネジメント株式会社 定温容器

Also Published As

Publication number Publication date
DE212015000150U1 (de) 2017-01-09
US20170096284A1 (en) 2017-04-06
JPWO2015186345A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US20180266620A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
KR100507783B1 (ko) 단열 상자 및 이것에 이용하는 진공 단열재
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
KR101495127B1 (ko) 진공 단열재 및 그것을 사용한 냉장고
JP5624305B2 (ja) 断熱容器
CN201787277U (zh) 超真空绝热板
JP2007211884A (ja) 真空断熱箱体
JP2011241988A (ja) 断熱箱体および冷蔵庫
JP2007238141A (ja) 真空容器
WO2015186345A1 (ja) 真空断熱体、ならびに、これを用いた断熱容器および断熱壁
WO2015186358A1 (ja) 真空断熱体及びこれを用いた断熱容器、断熱壁
WO2015186346A1 (ja) 断熱体および断熱容器
US20180252464A1 (en) Vacuum heat insulator; and heat-insulating container, heat-insulating wall, and refrigerator using same
CN206347259U (zh) 真空隔热体以及使用其的隔热容器和隔热壁
CN206449358U (zh) 真空隔热体和使用其的隔热容器、隔热壁
JP6486079B2 (ja) 真空断熱パネルの断熱性能を維持する方法及び冷蔵庫の断熱性能を維持する方法
JP2007093164A (ja) 冷蔵庫
JP7474921B2 (ja) 真空断熱体及びそれを用いた断熱容器と断熱壁
JP5377451B2 (ja) 真空断熱材およびこの真空断熱材を用いた断熱箱
JP2020034115A (ja) 真空断熱体及びそれを用いた断熱容器、断熱壁
JP6778774B2 (ja) 真空断熱パネルの製造方法
JP7499435B2 (ja) 真空断熱体ならびにそれを用いた断熱容器および断熱壁
JP2004212042A (ja) クーラーボックス
JP2004012125A (ja) 断熱箱体
JP2013194761A (ja) 真空断熱材および断熱箱体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15311751

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016525698

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 212015000150

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802748

Country of ref document: EP

Kind code of ref document: A1