WO2015182711A1 - 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 - Google Patents

硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 Download PDF

Info

Publication number
WO2015182711A1
WO2015182711A1 PCT/JP2015/065424 JP2015065424W WO2015182711A1 WO 2015182711 A1 WO2015182711 A1 WO 2015182711A1 JP 2015065424 W JP2015065424 W JP 2015065424W WO 2015182711 A1 WO2015182711 A1 WO 2015182711A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
average
nitride
composite nitride
Prior art date
Application number
PCT/JP2015/065424
Other languages
English (en)
French (fr)
Inventor
翔 龍岡
健志 山口
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP15800683.3A priority Critical patent/EP3150310B1/en
Priority to US15/314,050 priority patent/US10329671B2/en
Priority to CN201580040260.4A priority patent/CN106573311B/zh
Priority to KR1020167035765A priority patent/KR20170012355A/ko
Publication of WO2015182711A1 publication Critical patent/WO2015182711A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.
  • WC tungsten carbide
  • TiCN titanium carbonitride
  • cBN cubic boron nitride
  • the conventional coated tool formed with the Ti—Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.
  • Patent Document 1 discloses a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base, and the hard coating layer is configured by one or a plurality of layers and is cut in a specific plane.
  • the hard coating layer when T1 is the thickness of the thinnest part of the edge of the cutting edge and T2 is a thickness 1 mm away from the edge of the cutting edge in the rake face direction, the surface of the hard coating layer satisfies T1 ⁇ T2.
  • Patent Document 2 discloses a composite nitriding of Al and Ti that satisfies the composition formula (Al 1-x Ti x ) N (wherein x is 0.35 to 0.60) on the tool base surface.
  • the crystal orientation ⁇ 100> is within a range of 0 to 15 degrees from the normal direction of the surface polished surface.
  • the area ratio of the crystal grains is 50% or more, and the ratio of the small-angle grain boundaries (0 ⁇ ⁇ 15 °) is 50% or more when the angle formed between adjacent crystal grains is measured. It is disclosed that excellent fracture resistance can be obtained in heavy cutting by forming a hard coating layer with a composite nitride layer of Al and Ti showing a crystal arrangement.
  • Patent Document 3 discloses that a chemical vapor deposition is performed in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 in a temperature range of 650 to 900 ° C., so that the value of the Al content ratio x is 0.65 to
  • this reference further describes an Al 2 O 3 layer on the (Ti 1-x Al x ) N layer. Therefore, the value of the Al content ratio x is increased from 0.65 to 0.95 to form a (Ti 1-x Al x ) N layer. It is not clear what kind of influence the cutting performance has.
  • Patent Document 4 a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a cubic structure (Ti 1-x Al) having a cubic structure or a hexagonal structure is formed thereon by chemical vapor deposition.
  • x ) N layer (wherein x is 0.65 to 0.90 in atomic ratio) is coated as an outer layer, and a compressive stress of 100 to 1100 MPa is applied to the outer layer, whereby the heat resistance and fatigue strength of the coated tool It has been proposed to improve.
  • Japanese Unexamined Patent Publication No. 2012-20391 Japanese Unexamined Patent Publication No. 2009-56540 (A) Japan Special Table 2011-516722 Publication (A) Japanese National Table 2011-513594 (A)
  • the Al content ratio x can be increased and a cubic structure can be formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the toughness is inferior. Furthermore, although the coated tool described in Patent Document 4 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
  • the technical problem to be solved by the present invention that is, the purpose of the present invention is to provide excellent toughness even when used for high-speed interrupted cutting of alloy steel and the like, over a long-term use.
  • the object is to provide a coated tool exhibiting excellent chipping resistance and wear resistance.
  • the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter referred to as “(Ti, Al) (C, N)” or “(Ti 1-x Al x ) ( CyN 1-y ) ”), a hard coating layer containing a hard coating layer formed by chemical vapor deposition. Results of extensive research to improve chipping resistance and wear resistance. The following findings were obtained.
  • the conventional hard coating layer including at least one (Ti 1-x Al x ) (C y N 1-y ) layer and having a predetermined average layer thickness is (Ti 1-x Al x ) (
  • the C y N 1-y ) layer When the C y N 1-y ) layer is formed in a columnar shape in the direction perpendicular to the tool base, it has high wear resistance.
  • the present inventors have conducted intensive research on the (Ti 1-x Al x ) (C y N 1-y ) layer constituting the hard coating layer, and found that (Ti 1-x Al x ) (C y N 1 ).
  • -Y The cubic crystal structure is obtained by a completely new idea that the layer contains crystal grains having a cubic crystal structure, and the average orientation difference within the crystal grains of the crystal grains having the cubic crystal structure is 2 degrees or more.
  • the inventors have succeeded in increasing the hardness and toughness by causing distortion in the crystal grains, and as a result, have found a novel finding that the chipping resistance and fracture resistance of the hard coating layer can be improved.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al formed by chemical vapor deposition, and has a composition formula: (Ti 1-x Al x ) (C y N 1 ⁇ y ), the average content ratio x avg in the total amount of Ti and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are either Also satisfy 0.60 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively, and a cubic structure is formed in the crystal grains constituting the composite nitride or composite carbonitride layer.
  • the average orientation within the crystal grain The crystal grains whose difference is 2 degrees or more are 20 in terms of the area ratio of the composite nitride or composite carbonitride layer
  • the presence or can cause distortions in the cubic grains Furthermore, wear resistance is improved while maintaining toughness by increasing the ratio of the ⁇ 100 ⁇ orientation on the film surface side compared to the tool substrate surface side of the crystal grains.
  • a cutting tool having such a hard coating layer has improved chipping resistance and fracture resistance and exhibits excellent wear resistance over a long period of time.
  • the (Ti 1-x Al x ) (C y N 1-y ) layer having the above-described configuration is formed by, for example, the following chemical vapor deposition method that periodically changes the reaction gas composition on the tool base surface. can do.
  • the chemical vapor deposition reactor to be used includes a gas group A composed of NH 3 and H 2 and a gas group B composed of TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , N 2 , and H 2, respectively.
  • the gas group A and the gas group B are supplied into the reactor from, for example, a constant cycle time interval so that the gas flows for a time shorter than the cycle.
  • the reaction gas composition on the tool base surface is changed to the gas group A (first reaction gas), the gas group A and The gas group B can be changed in time with the mixed gas (second reaction gas) and the gas group B (third reaction gas).
  • the gas supply port is rotated, the tool base is rotated, the tool base is reciprocated, the reaction gas composition on the surface of the tool base is changed to the gas group A as the main.
  • the mixed gas (first reaction gas), the mixed gas of gas group A and gas group B (second reaction gas), and the mixed gas mainly composed of gas group B (third reaction gas) are changed over time. But it can be realized.
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 4.0 to 6.0% as the gas group A, H 2 : 65 to 75.
  • reaction atmosphere pressure 4.5 to 5.0 kPa
  • reaction atmosphere temperature 700 to 900 ° C
  • gas supply time per cycle 0.15 to (Ti 1-x Al x ) having a predetermined target layer thickness by performing a thermal CVD method for a predetermined time with a phase difference of 0.10 to 0.20 seconds between gas supply A and gas supply B for 0.25 seconds
  • a (C y N 1-y ) layer is formed.
  • the gas group A and the gas group B are supplied so as to have a difference in time to reach the tool base surface, and the nitrogen source gas in the gas group A is set to NH 3 : 4.0 to 6.0%.
  • AlCl 3 0.6 to 0.9%
  • TiCl 4 0.2 to 0.3%
  • Al (CH 3 ) 3 0 to 0.5, which is a metal chloride raw material or carbon raw material in gas group B %
  • Local compositional irregularities in the crystal grains, local distortion of the crystal lattice due to the introduction of dislocations and point defects, and the crystal grains on the tool substrate surface side and the film surface side are formed.
  • the degree of ⁇ 100 ⁇ orientation can be changed.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 2 to 20 ⁇ m formed by chemical vapor deposition, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the average content ratio x avg as the atomic ratio of the total amount of Ti and Al in the composite nitride or composite carbonitride layer and the composite nitride or composite The average content ratio y avg as an atomic ratio in the total amount of C and N in the carbonitride layer
  • the composite nitride or composite carbonitride layer includes at least a phase of a composite nitride or composite carbonitride of Ti and Al having a NaCl-type face-centered cubic structure
  • (C) Further, the crystal orientation of the crystal grains having the NaCl-type face-centered cubic structure in the crystal grains constituting the composite nitride or composite carbonitride layer is determined in the longitudinal section direction using an electron beam backscatter diffractometer. When the average orientation difference in crystal grains of each crystal grain is calculated, the crystal grains showing the average orientation difference in crystal grains of 2 degrees or more are 20% or more in terms of the area ratio of the composite nitride or composite carbonitride layer.
  • the inclination angle formed by the normal line of the ⁇ 100 ⁇ plane which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grain is equal to the composite nitride or the composite carbonitride layer in the layer thickness direction. Measured separately into the divided interface side area and surface side area, and the measured inclination angle within the range of 0 to 45 degrees with respect to the normal direction among the measured inclination angles is 0.25 degree pitch.
  • the surface-coated cutting tool N deg is characterized in that it is a M deg + 10 ⁇ M deg + 30%.
  • Ti and Al composite nitride or composite carbonitride having the NaCl type face-centered cubic structure is represented by the above (Ti 1-x Al x ) (C y N 1-y ) Ti and Al
  • the composite nitride or the composite carbonitride layer is a cubic crystal in the composite nitride or the composite carbonitride layer when the composite nitride or the composite carbonitride layer is observed from the longitudinal section direction.
  • each crystal grain having a structure has a columnar structure having an average grain width W of 0.1 to 2 ⁇ m and an average aspect ratio A of 2 to 10.
  • Coated cutting tool (4) Of the carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer of Ti between the tool base and the composite nitride or composite carbonitride layer of Ti and Al
  • the surface-coated cutting tool of the present invention which is an aspect of the present invention
  • the surface-coated cutting tool of the present invention provided with a hard coating layer on the surface of the tool base.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 2 to 20 ⁇ m formed by chemical vapor deposition, and has a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content x avg in the total amount of Ti and Al in Al and the average content y avg in the total amount of C and N in C (where x avg , Y avg are atomic ratios) satisfying 0.60 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively, and constituting the composite nitride or composite carbonitride layer Some of them have a cubic structure, and the crystal Is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference in each crystal grain is obtained.
  • the compound or composite carbonitride layer is present in an area ratio of 20% or more, and the inclination angle formed by the normal of the ⁇ 100 ⁇ plane, which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grain, is the composite Measured by dividing the nitride or composite carbonitride layer into an area on the interface side and an area on the surface side which are divided into two in the thickness direction, and 0 to 45 degrees with respect to the normal direction among the measured inclination angles
  • a) exists within the range of 0 to 12 degrees in the area on the interface side total power is, to a rate with respect to the entire frequency in the inclination angle frequency distribution and M deg
  • M deg is 10-40%, in the region of b) surface, the highest peak is present in the tilt angle sections of the range of 0 to 12 degrees, it exists within the range of the 0-12
  • the average grain width W of each crystal grain having a cubic structure in the composite nitride or composite carbonitride layer is 0.1 to 2 ⁇ m, and the average aspect ratio A is 2 to 10.
  • the schematic explanatory drawing of the measuring method of the crystal grain average orientation difference of the crystal grain which has the NaCl type face center cubic structure (cubic crystal) of the composite nitride of Ti and Al of this invention coated tool or a composite carbonitride layer is shown.
  • the average grain orientation difference (GOS value) of individual grains having a cubic structure An example of the histogram about an area ratio is shown.
  • the dotted line in the vertical direction in the histogram indicates a boundary line having an average orientation difference within the grain of 2 °.
  • the bar on the right side of the dotted line in the vertical direction has an average orientation difference within the grain of 2 ° or more.
  • the average grain orientation difference (GOS value) of individual grains having a cubic structure An example of the histogram about an area ratio is shown.
  • the dotted line in the vertical direction in the histogram indicates a boundary line having an average orientation difference within the grain of 2 °, and the bar on the right side of the dotted line in the vertical direction in FIG.
  • the count frequency is shown as a relative value normalized with the maximum count frequency as 100. It is an example of the inclination angle number distribution graph of the ⁇ 100 ⁇ plane created in the area
  • Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer Hard layer having a surface-coated cutting tool of the present invention, chemical vapor deposited composition formula: (Ti 1-x Al x ) (C y N 1-y) Ti-Al composite nitride represented by or composite At least a carbonitride layer is included.
  • This composite nitride or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 2 to 20 ⁇ m.
  • the average layer thickness is set to 2 to 20 ⁇ m.
  • composition of composite nitride or composite carbonitride layer constituting hard coating layer has an average content ratio x avg in the total amount of Ti and Al in Al and the total amount of C and N in C
  • the average content ratio y avg (where x avg and y avg are atomic ratios) is controlled so as to satisfy 0.60 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively. To do.
  • the average content ratio x avg of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness, so that it was subjected to high-speed intermittent cutting of alloy steel and the like. In some cases, the wear resistance is not sufficient.
  • the average content ratio x avg of Al exceeds 0.95, the content ratio of Ti is relatively decreased, so that embrittlement is caused and chipping resistance is deteriorated. Therefore, the average Al content ratio x avg was determined to be 0.60 ⁇ x avg ⁇ 0.95.
  • the content ratio (atomic ratio) y avg of the C component contained in the composite nitride or the composite carbonitride layer is a minute amount in the range of 0 ⁇ y avg ⁇ 0.005
  • the composite nitride or the composite carbonitride The adhesion between the material layer and the tool base or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. As a result, the fracture resistance and resistance of the composite nitride or composite carbonitride layer are reduced. Chipping property is improved.
  • the average content ratio y avg of the component C deviates from the range of 0 ⁇ y avg ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer decreases, so that the chipping resistance and chipping resistance are reversed. Since it falls, it is not preferable. Therefore, the average content ratio y avg of the C component was set to 0 ⁇ y avg ⁇ 0.005.
  • Mean crystal orientation difference (GOS value) of individual crystal grains of the cubic crystal grains constituting the composite nitride or composite carbonitride layer First, in the present invention, an electron beam backscattering diffraction apparatus is used to analyze at an interval of 0.1 ⁇ m from the longitudinal cross-sectional direction, and as shown in FIG. 1, at least 5 degrees between adjacent measurement points P (hereinafter referred to as pixels). If there is a misorientation, this is defined as the grain boundary B.
  • the longitudinal section direction means a direction perpendicular to the longitudinal section.
  • a longitudinal section means a section of a tool perpendicular to the tool base surface.
  • a region surrounded by the grain boundary is defined as one crystal grain.
  • a single pixel that has an orientation difference of 5 degrees or more with all adjacent pixels is not a crystal grain, and a pixel having two or more pixels connected is treated as a crystal grain. Then, an orientation difference is calculated between a certain pixel in the crystal grain and all other pixels in the same crystal grain, and an average of these is defined as a GOS (Grain Orientation Spread) value.
  • GOS Gram Orientation Spread
  • a schematic diagram is shown in FIG. The GOS value is described in, for example, the document “The Journal of the Japan Society of Mechanical Engineers (A) 71: 712 (2005-12) Paper No. 05-0367 1722-1728”.
  • “inside crystal grain average orientation difference” means this GOS value.
  • the number of pixels in the same crystal grain is n
  • the numbers assigned to different pixels in the crystal grain are i and j (where 1 ⁇ i and j ⁇ n)
  • the crystal orientation difference obtained from the crystal orientation at pixel j as ⁇ ij (i ⁇ j) can be written by the following equation.
  • Analysis is performed at intervals of 0.1 ⁇ m from the longitudinal cross-section direction using an electron beam back-scattering diffractometer, the width is 10 ⁇ m, and the vertical measurement is performed in the vertical cross-section direction within the measurement range of the film thickness in five fields of view.
  • the total number of pixels belonging to the cubic crystal grains constituting the material or the composite carbonitride layer is obtained, the average orientation difference within the crystal grain is divided at intervals of 1 degree, and the average orientation difference within the grain is included within the range of the value.
  • the histogram showing the area ratio of the average orientation difference in the crystal grains can be created by counting the crystal grain pixels to be divided by the total number of pixels.
  • the crystal orientation within the crystal grains varies, and when the histogram is obtained, the crystal grains showing an average orientation difference within the crystal grains of 2 degrees or more are compared with the composite nitride or composite carbonitride layer of Al and Ti. It was found that the area ratio was 20% or more (see FIGS. 3 and 4).
  • the crystal grains constituting the composite nitride or composite carbonitride layer of Al and Ti included in the surface-coated cutting tool of the present invention are compared with the crystal grains constituting the conventional TiAlN layer. In this, the crystal orientation varies greatly, that is, there is distortion, and this contributes to the improvement of hardness and toughness.
  • the area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 30 to 60%.
  • the area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 35 to 55%.
  • the area ratio of the crystal grains in which the average orientation difference in the crystal grains is 2 degrees or more with respect to the area of the composite nitride or composite carbonitride layer is 40 to 50%.
  • Crystal orientation in the region on the interface side and the region on the surface side when the composite nitride or composite carbonitride layer is divided into two equal parts in the layer thickness direction The crystal grains constituting the composite nitride or composite carbonitride layer are such that the surface side is directed to the normal direction of the tool base surface, that is, the ⁇ 100 ⁇ plane, rather than the tool base surface (interface) side.
  • An effect peculiar to the present invention that wear resistance is improved while maintaining toughness is exhibited.
  • the increase rate of the ⁇ 100 ⁇ plane orientation degree on the surface side relative to the interface side is less than 10%, the increase rate of the ⁇ 100 ⁇ plane orientation degree is small, and the wear resistance while maintaining the toughness expected in the present invention. The effect of improving is not fully achieved.
  • the inclination angle formed by the normal of the ⁇ 100 ⁇ plane which is the crystal plane with respect to the normal direction of the tool substrate surface of the crystal grains, is divided into two in the thickness direction of the composite nitride or composite carbonitride layer.
  • the frequencies existing in each section are tabulated, a) In the region on the interface side, the sum of the frequencies existing in the range of 0 to 12 degrees represents the ratio of the total frequencies in the gradient angle frequency distribution to M deg Then, M deg is 10 to 40%, and b) in the region on the surface side, the highest peak exists in the inclination angle section within the range of 0 to 12 degrees, and exists within the range of 0 to 12 degrees.
  • the total frequency is the ratio of the total frequency in the tilt angle frequency distribution to N d
  • N deg was determined to be M deg +10 to M deg + 30%.
  • Ti and Al composite nitride or composite carbonitride layer represented by (Ti 1-x Al x ) (C y N 1-y ) is a composite nitride of Ti and Al having a NaCl type face centered cubic structure.
  • excellent wear resistance is exhibited by including at least a composite carbonitride phase, and particularly excellent wear resistance is exhibited when the area ratio exceeds 70%.
  • Average grain width W and average aspect ratio A of individual grains having a cubic structure in a composite nitride or composite carbonitride layer of Ti and Al A columnar structure having an average grain width W of 0.1 to 2 ⁇ m and an average aspect ratio A of 2 to 10 for each crystal grain having a cubic structure in the composite nitride or composite carbonitride layer of Ti and Al.
  • the average particle width W is set to 0.1 to 2 ⁇ m because, if it is less than 0.1 ⁇ m, the proportion of atoms belonging to the TiAlCN crystal grain boundary in the atoms exposed on the surface of the coating layer is relatively large.
  • the average particle width W is preferably 0.1 to 2 ⁇ m.
  • the average aspect ratio A is less than 2, since the columnar structure is not sufficient, the equiaxed crystal having a small aspect ratio is dropped, and as a result, sufficient wear resistance cannot be exhibited.
  • the average aspect ratio A exceeds 10
  • the strength of the crystal grains themselves cannot be maintained, and the chipping resistance is lowered.
  • the average aspect ratio A is preferably 2-10.
  • the average aspect ratio A means the surface of the tool base when the longitudinal section of the hard coating layer is observed in a range of 100 ⁇ m in width and including the entire hard coating layer using a scanning electron microscope.
  • required about each crystal grain was calculated as the average aspect ratio A, and the average value of the particle width w calculated
  • the composite nitride or composite carbonitride layer included in the surface-coated cutting tool of the present invention alone has a sufficient effect, but the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbon
  • a lower layer having a total average layer thickness of 0.1 to 20 ⁇ m is provided, or it has an average layer thickness of 1 to 25 ⁇ m.
  • an upper layer including an aluminum oxide layer it is possible to create better characteristics in combination with the effects of these layers.
  • the total average layer of the lower layer If the thickness is less than 0.1 ⁇ m, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 ⁇ m, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 ⁇ m, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25 ⁇ m, the crystal grains are likely to be coarsened and chipping is likely to occur. . In addition, the figure which represented typically the cross section of the composite nitride or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention is shown in FIG.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as NH 3 : 4.0 to 6.0% as the gas group A, H 2 : 65 to 75%, gas group B as AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 to 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, gas per cycle Supply time 0.15 to 0.25 seconds, phase difference between
  • the coated tools 1 to 15 of the present invention were manufactured by forming a hard coating layer composed of a (Ti 1-x Al x ) (C y N 1-y ) layer having a target layer thickness shown in FIG.
  • the lower layer shown in Table 6 and / or the upper layer shown in Table 7 were formed under the formation conditions shown in Table 3.
  • the surfaces of the tool bases A to D are the same as the coated tools 1 to 15 of the present invention under the conditions shown in Tables 3, 4 and 5 and the target layer thickness ( ⁇ m) shown in Table 8. Then, a hard coating layer including at least a composite nitride or composite carbonitride layer of Ti and Al was formed by vapor deposition. At this time, a comparison is made by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the process of forming the (Ti 1-x Al x ) (C y N 1-y ) layer. Coated tools 1-13 were produced. Similar to the coated tools 6 to 13 of the present invention, the comparative coated tools 6 to 13 are formed with the lower layer shown in Table 6 and / or the upper layer shown in Table 8 under the forming conditions shown in Table 3. did.
  • the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus.
  • the reference coated tools 14 and 15 shown in Table 8 were produced by vapor-depositing with a target layer thickness.
  • the arc ion plating conditions used for the vapor deposition in the reference example are as follows.
  • the tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus.
  • an Al—Ti alloy having a predetermined composition is disposed as a cathode electrode (evaporation source),
  • B First, the inside of the apparatus is evacuated and kept at a vacuum of 10 ⁇ 2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is set to ⁇ 1000 V. A DC bias voltage is applied and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, and Al and Ti ions are generated in the apparatus.
  • the cross sections in the direction perpendicular to the tool base of the constituent layers of the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference coated tools 14 and 15 are measured using a scanning electron microscope (5000 magnifications).
  • 5000 magnifications 5000 magnifications.
  • the average Al content x avg of the composite nitride or composite carbonitride layer was measured using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. Irradiation was performed from the sample surface side, and an average Al content ratio x avg was obtained from an average of 10 points of the analysis results of the obtained characteristic X-rays.
  • the average C content y avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass- Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average content ratio y avg of C indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti and Al.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio.
  • the inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied.
  • the value was determined as yavg .
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction apparatus, and adjacent pixels are analyzed. If there is a misorientation of 5 degrees or more between them, this is the grain boundary, and the region surrounded by the grain boundary is one crystal grain.
  • One pixel in the crystal grain and all other pixels in the same crystal grain The difference in orientation within the grain is calculated between 0 degree and less than 1 degree, 1 degree and less than 2 degree, 2 degree and less than 3 degree, 3 degree and less than 4 degree, and so on. The range of 10 degrees was divided and mapped every 1 degree.
  • FIG. 3 shows an example of a histogram of the average orientation difference in crystal grains (that is, the GOS value) measured for the coated tool 2 of the present invention
  • FIG. 4 shows the average orientation difference in crystal grains measured for the comparative coated tool 2. An example of the histogram is shown.
  • the column of the field emission scanning electron microscope with the cross section of the hard coating layer made of a composite carbonitride layer of Ti and Al having a cubic structure as a polished surface The surface of the tool base (interface) side divided into two layers in the layer thickness direction and the surface side region were analyzed, and an electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees was 1 nA.
  • the measurement results in the interface-side area and the surface-side area are 10 ⁇ m in the horizontal direction and the tool base in the horizontal direction at a spacing of 0.1 ⁇ m / step for 5 fields of view.
  • each crystal grain having a cubic crystal lattice existing within the measurement range Irradiate each crystal grain having a cubic crystal lattice existing within the measurement range, and use the electron beam backscatter diffraction image apparatus to normalize the tool base surface (direction perpendicular to the tool base surface on the cross-section polished surface)
  • the crystal plane of the crystal grain Measure the inclination angle formed by the normal of the ⁇ 100 ⁇ plane, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is 0.25 degree pitch.
  • the ratio of the frequencies existing in the range of 0 to 12 degrees was obtained by classifying every time and counting the frequencies existing in each section. The results are shown in Table 7 and Table 8.
  • analysis was performed at intervals of 0.1 ⁇ m from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 ⁇ m, and the vertical measurement within the measurement range of the film thickness was performed in five fields of view.
  • the total number of pixels belonging to the cubic crystal grains constituting the nitride or composite carbonitride layer is obtained, and the composite nitride or composite is determined according to the ratio to the total number of measured pixels in the measurement of the hard coating layer in the five fields of view.
  • the area ratio of cubic crystal grains constituting the carbonitride layer was determined.
  • the coated tools 1 to 15 according to the present invention, the comparative coated tools 1 to 13 and the reference coated tool are used in the state where each of the various coated tools is clamped to the tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig. 14 and 15 were subjected to a dry high-speed face milling and center-cut cutting test, which is a kind of high-speed interrupted cutting of alloy steel, and the flank wear width of the cutting edge was measured.
  • the results are shown in Table 9.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm, Rotational speed: 955 min ⁇ 1 Cutting speed: 375 m / min, Cutting depth: 1.2 mm, Single-blade feed rate: 0.15 mm / tooth, Cutting time: 8 minutes.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 ⁇ m are prepared.
  • Compounded in the formulation shown in Table 10 added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa.
  • vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm.
  • Tool bases ⁇ to ⁇ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder Ni powder each having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases ⁇ to ⁇ and tool base ⁇ , and at least (Ti 1-x Al) under the conditions shown in Tables 3 and 4 by the same method as in Example 1.
  • the coated tools 16 to 30 according to the present invention shown in Table 13 were manufactured by vapor-depositing a hard coating layer containing x ) (C y N 1-y ) layer at a target layer thickness.
  • the coated tools 34 to 38 of the present invention the lower layer as shown in Table 17 and / or the upper layer as shown in Table 18 were formed under the formation conditions shown in Table 3.
  • the coated tools 19 to 28 of the present invention the lower layer shown in Table 12 and / or the upper layer shown in Table 13 were formed under the formation conditions shown in Table 3.
  • the present invention was also applied to the tool bases ⁇ to ⁇ and the tool base ⁇ using normal chemical vapor deposition equipment under the conditions shown in Tables 3 and 4 and the target layer thicknesses shown in Table 14.
  • Comparative coating tools 16 to 28 shown in Table 14 were manufactured by vapor-depositing a hard coating layer in the same manner as the coating tool.
  • the comparative coated tools 19 to 28 are formed with the lower layer shown in Table 12 and / or the upper layer shown in Table 14 under the forming conditions shown in Table 3. did.
  • the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base ⁇ and the tool base ⁇ by arc ion plating using a conventional physical vapor deposition apparatus.
  • the reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
  • the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.
  • the cross-sections of the constituent layers of the inventive coated tools 16 to 30, the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 were measured using a scanning electron microscope (magnification 5000 times), and 5 in the observation field of view.
  • a scanning electron microscope magnification 5000 times
  • 5 in the observation field of view When the layer thicknesses of the points were measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target layer thickness shown in Table 13 and Table 14.
  • each crystal grain having a cubic structure constituting a composite nitride or composite carbonitride layer of Ti and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction apparatus, The difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having an average orientation difference within the grain and an orientation difference within the grain of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti and Al was obtained. The results are shown in Table 13 and Table 14.
  • the column of the field emission scanning electron microscope with the cross section of the hard coating layer made of a composite carbonitride layer of Ti and Al having a cubic structure as a polished surface The surface of the tool base (interface) side divided into two layers in the layer thickness direction and the surface side region were analyzed, and an electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees was 1 nA.
  • the crystal grains having a cubic crystal lattice existing within the measurement range of the interface-side region and the surface-side region are irradiated individually with an irradiation current of the electron beam, and the tool substrate is horizontally aligned with an electron beam backscatter diffraction image apparatus.
  • a crystal plane of the crystal grain with respect to the normal of the tool base surface (direction perpendicular to the tool base surface in the cross-section polished surface) at an interval of 0.1 ⁇ m / step with a width of 10 ⁇ m in the direction and five fields of view.
  • Measure the tilt angle formed by the normal of ⁇ 100 ⁇ plane Based on the measurement results, the measurement inclination angles within the range of 0 to 45 degrees out of the measurement inclination angles are divided into pitches of 0.25 degrees, and the frequency existing in each division is determined. By counting, the ratio of the frequencies existing in the range of 0 to 12 degrees was obtained. The results are shown in Table 13 and Table 14.
  • the coated tools 16 to 30 of the present invention the comparative coated tools 16 to 28, the reference coated tool 29, About 30, the dry high speed intermittent cutting test of the carbon steel and the wet high speed intermittent cutting test of cast iron which were shown below were implemented, and all measured the flank wear width of the cutting edge.
  • Cutting condition 1 Work material: JIS ⁇ S45C lengthwise equal 4 round grooved round bars, Cutting speed: 370 m / min, Incision: 1.5mm, Feed: 0.1 mm / rev, Cutting time: 5 minutes (Normal cutting speed is 220 m / min),
  • Cutting condition 2 Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove, Cutting speed: 320 m / min, Cutting depth: 1.2mm, Feed: 0.2mm / rev, Cutting time: 5 minutes (Normal cutting speed is 200 m / min). Table 15 shows the results of the cutting test.
  • cBN powder, TiN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 ⁇ m were prepared. These raw material powders are shown in Table 16. After blending into the blended composition, wet mixing with a ball mill for 80 hours, drying, and press-molding into a green compact with a diameter of 50 mm ⁇ thickness: 1.5 mm at a pressure of 120 MPa, and then this green compact Is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece, and this presintered body is separately prepared.
  • a normal ultra high pressure sintering apparatus in a state of being superposed on a support piece made of WC base cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm ⁇ thickness: 2 mm
  • Normal pressure 4 Pa
  • temperature Presence at a predetermined temperature in the range of 1200 to 1400 ° C.
  • Holding time 0.8 hours under high pressure sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and used in a wire electric discharge machine.
  • the brazing part (corner part) of the insert body made of a WC-base cemented carbide having a diamond) is Ti- having a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the remainder in mass%.
  • the cutting edge is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and further subjected to final polishing to achieve ISO.
  • Standard CNGA12 Tool substrate 2A having the insert shape of 408, 2B was prepared respectively.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases 2A and 2B, and at least (Ti 1-x Al x ) (C) under the conditions shown in Tables 3 and 4 by the same method as in Example 1.
  • the coated tools 31 to 40 of the present invention shown in Table 18 were manufactured by vapor-depositing a hard coating layer including a y N 1-y ) layer with a target layer thickness.
  • the coated tools 34 to 38 of the present invention the lower layer as shown in Table 17 and / or the upper layer as shown in Table 18 were formed under the formation conditions shown in Table 3.
  • a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases 2A and 2B, and at least (Ti 1-x Al x ) (C y N 1 ) under the conditions shown in Tables 3 and 4.
  • Comparative coating tools 31 to 38 shown in Table 19 were manufactured by vapor-depositing a hard coating layer including a -y ) layer at a target layer thickness. Similar to the coated tools 34 to 38 of the present invention, the comparative coated tools 34 to 38 have the formation conditions shown in Table 3 and the lower layer as shown in Table 17 and / or the upper layer as shown in Table 19. Formed.
  • the (Ti 1-x Al x ) (C y N 1-y ) layer is formed at the target layer thickness on the surfaces of the tool bases 2A and 2B by arc ion plating using a conventional physical vapor deposition apparatus.
  • Reference coating tools 39 and 40 shown in Table 19 were manufactured by vapor deposition.
  • the arc ion plating conditions are the same as those shown in Example 1, and the (Al, Ti) N layer having the target composition and target layer thickness shown in Table 19 is formed on the surface of the tool base.
  • the reference coating tools 39 and 40 were manufactured by vapor deposition.
  • the average content of Al x avg , the average content ratio of C y avg , and the average orientation difference in the crystal grains of the cubic grains constituting the (Ti 1-x Al x ) (C y N 1-y ) layer is 2 degrees or more.
  • the area ratio of the crystal grains, the average grain width W, and the average aspect ratio A were calculated. The results are shown in Table 18 and Table 19.
  • the inclination angle number distribution of the inclination angle formed by the normal line of the ⁇ 100 ⁇ plane in the interface side region and the surface side region is obtained.
  • the ratio of the total frequency existing in the range to the total frequency was determined. The results are shown in Table 18 and Table 19.
  • the coated tools 31 to 40 of the present invention, the comparative coated tools 31 to 38, and the reference coated tools 39 and 40 are mounted in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig.
  • the dry high-speed intermittent cutting test of carburized and quenched alloy steel shown below was performed, and the flank wear width of the cutting edge was measured.
  • Tool substrate Cubic boron nitride-based ultra-high pressure sintered body
  • Cutting test Dry high-speed intermittent cutting of carburized and quenched alloy steel
  • Work material JIS ⁇ SCr420 (Hardness: HRC60) lengthwise equidistant four round grooved round bars
  • Cutting speed 240 m / min
  • Cutting depth 0.12 mm
  • Feed 0.12 mm / rev
  • Cutting time 4 minutes. Table 20 shows the results of the cutting test.
  • the coated tool of the present invention is in the cubic crystal grains constituting the composite nitride or composite carbonitride layer of Al and Ti constituting the hard coating layer,
  • the crystal has a predetermined in-grain average orientation difference and the tilt angle formed by the normal of the ⁇ 100 ⁇ plane in the interface side region and the surface side region of the crystal grain has a predetermined tilt angle number distribution.
  • Grain distortion improves hardness and improves toughness while maintaining high wear resistance.
  • even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
  • the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 硬質被覆層が、組成式:(Ti1-xAl)(C1-y)で表される複合窒化物または複合炭窒化物層を少なくとも含み、Alの平均含有割合xavgおよびCの平均含有割合yavg(xavg、yavgはいずれも原子比)が、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒は、立方晶構造を有するものが存在し、立方晶構造を有する結晶粒内に所定の結晶粒内平均方位差および傾斜角度数分布が存在する。

Description

硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
 本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
 本願は、2014年5月28日に、日本に出願された特願2014-109881号、および2015年5月21日に、日本に出願された特願2015-104042号に基づき優先権を主張し、その内容をここに援用する。
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti-Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
 ただ、前記従来のTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
 例えば、特許文献1には、工具基体表面に硬質被覆層を形成した表面被覆切削工具であって、硬質被覆層が、1層または複数の層により構成され、特定の平面で切断した断面において、硬質被覆層のうち、刃先稜線部において最も薄くなる部分の厚みをT1、刃先稜線からすくい面方向に1mm離れた地点における厚みをT2とする場合、T1<T2を満たし、かつ、硬質被覆層表面において、刃先稜線からすくい面方向に距離Da離れた地点をaとし、逃げ面方向に距離Db離れた地点をbとする場合、DaおよびDbは特定の数値範囲を満たすものであって、地点aから地点bまでの硬質被覆層における、表面から厚み0.1T1~0.9T1を占める領域Eの10%以上の領域において、硬質被覆層を構成する結晶粒の結晶方位のずれが5度以上10度未満となることによって、すぐれた耐摩耗性と耐欠損性が得られることが開示されている。
 また、特許文献2には、工具基体表面に、組成式(Al1-xTi)N(ただし、原子比で、xは0.35~0.60)を満足するAlとTiの複合窒化物層からなり、かつ、該層についてEBSD(電子線後方散乱回折装置)による結晶方位解析を行った場合、表面研磨面の法線方向から0~15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上であり、また、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0<θ≦15゜)の割合が50%以上であるような結晶配列を示すAlとTiの複合窒化物層で硬質被覆層を構成することによって、重切削加工において、すぐれた耐欠損性が得られることが開示されている。
 ただ、前述した被覆工具は、硬質被覆層としてTiAlNを蒸着形成することについて開示されているものの、Alの含有割合を0.65以上にすることについては、開示も示唆もされていない。
 このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合を、0.9程度にまで高める技術も提案されている。
 例えば、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650~900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65~0.95である(Ti1-xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1-xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Alの含有割合xの値を0.65~0.95まで高めた(Ti1-xAl)N層の形成によって、切削性能にどのような影響を及ぼしているかについては明らかでない。
 また、例えば、特許文献4には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1-xAl)N層(ただし、原子比で、xは0.65~0.90)を外層として被覆するとともに該外層に100~1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。
日本国特開2012-20391号公報(A) 日本国特開2009-56540号公報(A) 日本国特表2011-516722号公報(A) 日本国特表2011-513594号公報(A)
 近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
 しかし、前記特許文献1、2に記載されている被覆工具は、(Ti1-xAl)N層からなる硬質被覆層のAlの含有割合xを高めることについて考慮されていないため、合金鋼の高速断続切削に供した場合には、耐摩耗性、耐チッピング性が十分であるとは言えないという課題があった。
 一方、前記特許文献3に記載されている化学蒸着法で蒸着形成した(Ti1-xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、靭性に劣るという課題があった。
 さらに、前記特許文献4に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
 そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、合金鋼等の高速断続切削等に供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することである。
 そこで、本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1-xAl)(C1-y)」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。
 即ち、従来の少なくとも1層の(Ti1-xAl)(C1-y)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Ti1-xAl)(C1-y)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Ti1-xAl)(C1-y)層の異方性が高くなるほど(Ti1-xAl)(C1-y)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
 そこで、本発明者らは、硬質被覆層を構成する(Ti1-xAl)(C1-y)層について鋭意研究したところ、(Ti1-xAl)(C1-y)層が立方晶結晶構造を有する結晶粒を含有し該立方晶結晶構造を有する結晶粒の結晶粒内平均方位差を2度以上とするという全く新規な着想により、立方晶結晶構造を有する結晶粒内に歪みを生じさせ、硬さと靭性の双方を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
 さらに、柱状の結晶粒において、工具基体表面側に比べ皮膜表面側の方が、{100}配向の割合を高くすることにより、靱性を維持しつつ、耐摩耗性が向上するという新規な知見を見出した。
 具体的には、硬質被覆層が、化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-xAl)(C1-y)で表した場合、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%以上存在することにより、立方晶結晶粒に歪みを生じさせることができる。さらに、結晶粒の工具基体表面側に比べ皮膜表面側の方の{100}配向の割合を高くすることにより、靭性を維持しつつ、耐摩耗性が向上する。その結果、このような硬質被覆層を形成した切削工具は、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。
 そして、前述のような構成の(Ti1-xAl)(C1-y)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。
 用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、ガス群A(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群B(第三反応ガス)と時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、ガス群Aを主とする混合ガス(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群Bを主とする混合ガス(第三反応ガス)、と時間的に変化させることでも実現する事が可能である。
 工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:4.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス供給Aとガス供給Bの位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1-xAl)(C1-y)層を成膜する。
 前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給し、ガス群Aにおける窒素原料ガスとしてNH:4.0~6.0%と設定し、ガス群Bにおける金属塩化物原料あるいは炭素原料であるAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%と設定する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、なおかつ結晶粒の工具基体表面側と皮膜表面側での{100}配向の度合いを変化させることが出来る。その結果、耐摩耗性を維持しつつ靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。
 本願発明は、前記知見に基づいてなされたものであって、以下に示す態様を有する。
 (1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
 (a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚2~20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-xAl)(C1-y)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める原子比としての平均含有割合xavgおよび複合窒化物または複合炭窒化物層のCのCとNの合量に占める原子比としての平均含有割合yavgが、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、
 (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
 (c)また、前記複合窒化物または複合炭窒化物層を構成する結晶粒中のNaCl型の面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%以上存在し、
 (d)さらに、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二等分した界面側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、
 界面側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、
 表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であることを特徴とする表面被覆切削工具。
 (2)前記NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物が前記(Ti1-xAl)(C1-y)で表されるTiとAlの複合窒化物または複合炭窒化物層に占める面積割合は70%以上であることを特徴とする前記(1)に記載の表面被覆切削工具。
 (3)前記複合窒化物または複合炭窒化物層は、前記複合窒化物または複合炭窒化物層について、前記縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
 (4)前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする前記(1)から(3)のいずれかに記載の表面被覆切削工具。
 (5)前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする前記(1)から(4)のいずれかに記載の表面被覆切削工具。
 (6)前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする前記(1)から(5)のいずれかに記載の表面被覆切削工具。
 なお、“結晶粒内平均方位差”とは、後述するGOS(Grain Orientation Spread)値のことを意味する。
 本願発明の態様である表面被覆切削工具(以下、「本願発明の表面被覆切削工具」または「本願発明の切削工具」と称する)では、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、化学蒸着法により成膜された平均層厚2~20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-xAl)(C1-y)で表した場合、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で20%以上存在し、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二等分した界面側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、a)界面側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、b)表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であり、前記複合窒化物または複合炭窒化物層について、皮膜断面側から観察した場合に、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さおよび靭性が向上する。その結果、耐摩耗性を損なうことなく耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
本発明被覆工具のTiとAlの複合窒化物または複合炭窒化物層のNaCl型の面心立方構造(立方晶)を有する結晶粒の結晶粒内平均方位差の測定方法の概略説明図を示す。 本願発明の表面被覆切削工具が有する硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面を模式的に表した膜構成模式図である。 本発明被覆工具の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、立方晶構造を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。ヒストグラム中の垂直方向の点線は結晶粒内平均方位差が2°の境界線を示し、図3中でこの垂直方向の点線よりも右側のバーは、結晶粒内平均方位差が2°以上のものを示す。 比較例被覆工具の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、立方晶構造を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。ヒストグラム中の垂直方向の点線は結晶粒内平均方位差が2°の境界線を示し、図4中でこの垂直方向の点線よりも右側のバーは、結晶粒内平均方位差が2°以上のものを示す。 本発明被覆工具の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の界面側の領域において、作成した{100}面の傾斜角度数分布グラフの一例である。集計度数は最大集計度数を100として規格化した相対値で示している。 本発明被覆工具の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の表面側の領域において、作成した{100}面の傾斜角度数分布グラフの一例である。集計度数は最大集計度数を100として規格化した相対値で示している。
 本願発明を実施するための形態について、以下に説明する。
 硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
 本願発明の表面被覆切削工具が有する硬質被覆層は、化学蒸着された組成式:(Ti1-xAl)(C1-y)で表されるTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が2~20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が2μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を2~20μmと定めた。
 硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
 本願発明の表面被覆切削工具が有する硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足するように制御する。
 その理由は、Alの平均含有割合xavgが0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合xavgが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合xavgは、0.60≦xavg≦0.95と定めた。
 また、複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)yavgは、0≦yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yavgが0≦yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、C成分の平均含有割合yavgは、0≦yavg≦0.005と定めた。
 複合窒化物または複合炭窒化物層を構成する立方晶結晶粒の結晶粒個々の結晶粒内平均方位差(GOS値):
 まず、本願発明において電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、図1に示すように、隣接する測定点P(以下、ピクセルという)間で5度以上の方位差がある場合、そこを粒界Bと定義する。縦断面方向とは、縦断面に垂直な方向を意味する。縦断面とは、工具基体表面に垂直な工具の断面を意味する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。
 そして、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で方位差を計算し、これを平均化したものをGOS(Grain Orientation Spread)値として定義する。概略図を図1に示す。GOS値については、例えば文献「日本機械学会論文集(A編) 71巻712号(2005-12) 論文No.05-0367 1722~1728」に説明がなされている。なお、本願発明における“結晶粒内平均方位差”とは、このGOS値を意味する。GOS値を数式で表す場合、同一結晶粒内のピクセル数をn、結晶粒内の異なるピクセルにおのおの付けた番号をiおよびj(ここで 1≦i、j≦nとなる)、ピクセルiでの結晶方位とピクセルjでの結晶方位から求められる結晶方位差をαij(i≠j)として、下記式により書ける。
 
Figure JPOXMLDOC01-appb-M000001
 電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶結晶粒に属する全ピクセル数を求め、結晶粒内平均方位差を1度間隔で分割し、その値の範囲内に結晶粒内平均方位差が含まれる結晶粒のピクセルを集計して上記全ピクセル数で割ることによって、結晶粒内平均方位差の面積割合を示すヒストグラムを作成する事が出来る。その結果、結晶粒内の結晶方位がばらついており、そのヒストグラムを求めると結晶粒内平均方位差が2度以上を示す結晶粒がAlとTiの複合窒化物または複合炭窒化物層全体に対して面積割合で20%以上存在していることが分かった(図3、図4参照)。
 このように本願発明の表面被覆切削工具が有するAlとTiの複合窒化物または複合炭窒化物層を構成する結晶粒は、従来のTiAlN層を構成している結晶粒と比較して、結晶粒内で結晶方位のばらつきが大きく、すなわち、歪みがあるため、このことが硬さや靭性の向上に寄与している。
 好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は30~60%である。より好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は35~55%である。さらにより複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は40~50%である。
 複合窒化物または複合炭窒化物層を層厚方向に二等分した界面側の領域と表面側の領域における結晶方位:
 複合窒化物または複合炭窒化物層を構成する結晶粒は、工具基体表面(界面)側よりも表面側の方が、工具基体表面の法線方向、すなわち{100}面に向いていることにより、靱性を維持しつつ、耐摩耗性が向上するという本発明に特有の効果が奏される。
 しかしながら、界面側よりも表面側の{100}面配向度の増加割合が10%未満であると{100}面配向度の増加割合が少なく、本発明において期待する靱性を維持しつつ耐摩耗性を向上するという効果が十分に奏されない。一方、30%を超えると配向の急激な変化により結晶のエピタキシャル成長を阻害し、かえって靭性が低下する。また界面側の{100}面配向度が10%以下では表面側の{100}面配向度の増加割合が30%以上となり、界面側の{100}面配向度が40%以上では表面側の{100}面配向度の増加割合が10%未満となる事が分かった。したがって、結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を複合窒化物または複合炭窒化物層を層厚方向に二等分した界面側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、a)界面側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、b)表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であると定めた。
 TiとAlの複合窒化物または複合炭窒化物層の面積割合:
 (Ti1-xAl)(C1-y)で表されるTiとAlの複合窒化物または複合炭窒化物層はNaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含むことで優れた耐摩耗性を発揮し、その面積割合が70%を超えることで特に優れた耐摩耗性を発揮する。
 TiとAlの複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅W、平均アスペクト比A:
 TiとAlの複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10となる柱状組織となるように構成することにより、靭性および耐摩耗性が向上するという前述した効果をより一層、発揮させることができる。
 すなわち、平均粒子幅Wを0.1~2μmとしたのは、0.1μm未満では、被覆層表面に露出した原子におけるTiAlCN結晶粒界に属する原子の占める割合が相対的に大きくなることにより、被削材との反応性が増し、その結果、耐摩耗性を十分に発揮することができず、また、2μmを超えると被覆層全体におけるTiAlCN結晶粒界に属する原子の占める割合が相対的に小さくなることにより、靭性が低下し、耐チッピング性を十分に発揮することができなくなる。したがって、平均粒子幅Wを0.1~2μmとすることが好ましい。
 また、平均アスペクト比Aが2未満の場合、十分な柱状組織となっていないため、アスペクト比の小さな等軸結晶の脱落を招き、その結果、十分な耐摩耗性を発揮することができない。一方、平均アスペクト比Aが10を超えると結晶粒そのものの強度を保つ事が出来ず、かえって、耐チッピング性が低下するため好ましくない。したがって、平均アスペクト比Aを2~10とすることが好ましい。
 なお、本願発明では、平均アスペクト比Aとは、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行った際に、工具基体表面と垂直な皮膜断面側から観察し、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。
 下部層および上部層:
 また、本願発明の表面被覆切削工具が有する複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層を設けた場合、あるいは、1~25μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
 なお、本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面を模式的に表した図を図2に示す。
 つぎに、本発明の被覆工具を実施例により具体的に説明する。
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。
 つぎに、これらの工具基体A~Dの表面に、化学蒸着装置を用い、
(a)表4、表5に示される形成条件A~J、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:4.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス供給Aとガス供給Bの位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表7に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表7に示される面積割合存在し、表7に示される目標層厚を有する(Ti1-xAl)(C1-y)層からなる硬質被覆層を形成することにより本発明被覆工具1~15を製造した。
 なお、本発明被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表7に示される上部層を形成した。
 また、比較の目的で、工具基体A~Dの表面に、表3および表4、表5に示される条件かつ表8に示される目標層厚(μm)で本発明被覆工具1~15と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Ti1-xAl)(C1-y)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具1~13を製造した。
 なお、本発明被覆工具6~13と同様に、比較被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表8に示される上部層を形成した。
 参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表8に示される参考被覆工具14、15を製造した。
 なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
 (a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、また、カソード電極(蒸発源)として、所定組成のAl-Ti合金を配置し、
 (b)まず、装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に-1000Vの直流バイアス電圧を印加し、かつAl-Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
 (c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に-50Vの直流バイアス電圧を印加し、かつ、前記Al-Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Ti,Al)N層を蒸着形成し、参考被覆工具14、15を製造した。
 また、本発明被覆工具1~15、比較被覆工具1~13および参考被覆工具14、15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標層厚と実質的に同じ平均層厚を示した。
 また、複合窒化物または複合炭窒化物層のAlの平均含有割合xavgについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合xavgを求めた。Cの平均含有割合yavgについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合yavgはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をyavgとして求めた。
 さらに、電子線後方散乱回折装置を用いてTiとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がTiとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。
その結果を表7および表8に示す。
 図3に、本発明被覆工具2について測定した結晶粒内平均方位差(すなわちGOS値)のヒストグラムの一例を示し、また、図4には、比較被覆工具2について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
 また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面を層厚方向に二分した工具基体表面(界面)側の領域と表面側の領域に分けて解析し、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体と垂直方向に関しては前記界面側の領域と表面側の領域の測定範囲内、工具基体と水平方向には幅10μm、5視野分について、0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~12度の範囲内に存在する度数の割合を求めた。その結果を表7および表8に示す。
 さらに電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成する立方晶結晶粒の面積割合を求めた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~15、比較被覆工具1~13および参考被覆工具14,15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表9に示す。
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・SCM440幅100mm、長さ400mmのブロック材、
 回転速度:955 min-1
 切削速度:375 m/min、
 切り込み:1.2 mm、
 一刃送り量:0.15 mm/刃、
 切削時間:8分。
Figure JPOXMLDOC01-appb-T000010
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。
 つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくとも(Ti1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表13に示される本発明被覆工具16~30を製造した。
 なお、本発明被覆工具34~38については、表3に示される形成条件で、表17に示すような下部層および/または表18に示すような上部層を形成した。
 なお、本発明被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表13に示される上部層を形成した。
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件かつ表14に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具16~28を製造した。
 なお、本発明被覆工具19~28と同様に、比較被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表14に示される上部層を形成した。
 参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
 なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
 また、本発明被覆工具16~30、比較被覆工具16~28および参考被覆工具29,30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される目標層厚と実質的に同じ平均層厚を示した。
 さらに、電子線後方散乱回折装置を用いてTiとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がTiとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表13および表14に示す。
 また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面を層厚方向に二分した工具基体表面(界面)側の領域と表面側の領域に分けて解析し、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、前記界面側の領域と表面側の領域の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体と水平方向に幅10μm、5視野分について、0.1μm/stepの間隔で、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~12度の範囲内に存在する度数の割合を求めた。その結果を表13および表14に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16~30、比較被覆工具16~28および参考被覆工具29,30について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:370m/min、
 切り込み:1.5mm、
 送り:0.1mm/rev、
 切削時間:5分、
(通常の切削速度は、220m/min)、
 切削条件2:
 被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:320m/min、
 切り込み:1.2mm、
 送り:0.2mm/rev、
 切削時間:5分、
(通常の切削速度は、200m/min)。
 表15に、前記切削試験の結果を示す。
Figure JPOXMLDOC01-appb-T000016
 原料粉末として、いずれも0.5~4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900~1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200~1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120408の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi-Zr-Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120408のインサート形状をもった工具基体2A、2Bをそれぞれ製造した。
Figure JPOXMLDOC01-appb-T000017
 つぎに、これらの工具基体2A、2Bの表面に、化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくとも(Ti1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31~40を製造した。
 なお、本発明被覆工具34~38については、表3に示される形成条件で、表17に示すような下部層および/または表18に示すような上部層を形成した。
 また、比較の目的で、同じく工具基体2A、2Bの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件で、少なくとも(Ti1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表19に示される比較被覆工具31~38を製造した。
 なお、本発明被覆工具34~38と同様に、比較被覆工具34~38については、表3に示される形成条件で、表17に示すような下部層および/または表19に示すような上部層を形成した。
 参考のため、工具基体2A、2Bの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、(Ti1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表19に示される参考被覆工具39,40を製造した。
 なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表19に示される目標組成、目標層厚の(Al,Ti)N層を蒸着形成し、参考被覆工具39,40を製造した。
 また、本発明被覆工具31~40、比較被覆工具31~38および参考被覆工具39,40の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18および表19に示される目標層厚と実質的に同じ平均層厚を示した。
 また、前記本発明被覆工具31~40、比較被覆工具31~38および参考被覆工具39,40の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、Alの平均含有割合xavg、Cの平均含有割合yavg、(Ti1-xAl)(C1-y)層を構成する立方晶構造を有する結晶粒の結晶粒内平均方位差が2度以上となる結晶粒の面積割合、平均粒子幅W、平均アスペクト比Aを算出した。その結果を、表18および表19に示す。
 さらに、実施例1に示される方法と同様の方法を用いて、界面側の領域と表面側の領域における{100}面の法線がなす傾斜角の傾斜角度数分布を求め、0~12度の範囲に存在する度数の合計が度数全体に対して占める割合を求めた。その結果を、表18および表19に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31~40、比較被覆工具31~38および参考被覆工具39,40について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
 工具基体:立方晶窒化ホウ素基超高圧焼結体、
 切削試験:浸炭焼入れ合金鋼の乾式高速断続切削加工、
 被削材:JIS・SCr420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:240 m/min、
 切り込み:0.12mm、
 送り:0.12mm/rev、
 切削時間:4分。
 表20に、前記切削試験の結果を示す。
Figure JPOXMLDOC01-appb-T000021
 表9、表15および表20に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiの複合窒化物または複合炭窒化物層を構成する立方晶結晶粒内において、所定の結晶粒内平均方位差が存在するとともに、結晶粒の界面側の領域と表面側の領域で{100}面の法線がなす傾斜角が所定の傾斜角度数分布を有することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。
 これに対して、硬質被覆層を構成するAlとTiの複合窒化物または複合炭窒化物層を構成する立方晶結晶粒内において、所定の結晶粒内平均方位差が存在していないか、結晶粒の界面側の領域と表面側の領域で{100}面の法線がなす傾斜角が所定の傾斜角度数分布を有していない比較被覆工具1~13、16~28,31~38および参考被覆工具14、15、29、30、39、40については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。
 前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
 P  測定点(ピクセル)
 B  粒界
 1  工具基体
 2  硬質被覆層
 3  複合窒化物または複合炭窒化物層

Claims (6)

  1.  炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
     (a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚2~20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-xAl)(C1-y)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める原子比としての平均含有割合xavgおよび複合窒化物または複合炭窒化物層のCのCとNの合量に占める原子比としての平均含有割合yavgが、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、
     (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
     (c)また、前記複合窒化物または複合炭窒化物層を構成する結晶粒中のNaCl型の面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%以上存在し、
     (d)さらに、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二分した界面側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、
     界面側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、
     表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であることを特徴とする表面被覆切削工具。
  2.  前記NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物が前記(Ti1-xAl)(C1-y)で表されるTiとAlの複合窒化物または複合炭窒化物層に占める面積割合は70%以上であることを特徴とする請求項1に記載の表面被覆切削工具。
  3.  前記複合窒化物または複合炭窒化物層は、前記複合窒化物または複合炭窒化物層について、前記縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする請求項1または2に記載の表面被覆切削工具。
  4.  前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至請求項3のいずれかに記載の表面被覆切削工具。
  5.  前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする請求項1乃至請求項4のいずれかに記載の表面被覆切削工具。
  6.  前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至請求項5のいずれかに記載の表面被覆切削工具。
PCT/JP2015/065424 2014-05-28 2015-05-28 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 WO2015182711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15800683.3A EP3150310B1 (en) 2014-05-28 2015-05-28 Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
US15/314,050 US10329671B2 (en) 2014-05-28 2015-05-28 Surface-coated cutting tool having hard coating layer that exhibits excellent chipping resistance
CN201580040260.4A CN106573311B (zh) 2014-05-28 2015-05-28 硬质包覆层发挥优异的耐崩刀性的表面包覆切削工具
KR1020167035765A KR20170012355A (ko) 2014-05-28 2015-05-28 경질 피복층이 우수한 내치핑성을 발휘하는 표면 피복 절삭 공구

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014109881 2014-05-28
JP2014-109881 2014-05-28
JP2015-104042 2015-05-21
JP2015104042A JP6548073B2 (ja) 2014-05-28 2015-05-21 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Publications (1)

Publication Number Publication Date
WO2015182711A1 true WO2015182711A1 (ja) 2015-12-03

Family

ID=54699034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065424 WO2015182711A1 (ja) 2014-05-28 2015-05-28 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Country Status (6)

Country Link
US (1) US10329671B2 (ja)
EP (1) EP3150310B1 (ja)
JP (1) JP6548073B2 (ja)
KR (1) KR20170012355A (ja)
CN (1) CN106573311B (ja)
WO (1) WO2015182711A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160332236A1 (en) * 2015-05-13 2016-11-17 Kennametal Inc. Cutting Tool Made by Additive Manufacturing
JP2017047526A (ja) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2017038840A1 (ja) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931453B2 (ja) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6931452B2 (ja) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具
JP2017154239A (ja) * 2016-03-04 2017-09-07 三菱マテリアル株式会社 硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具およびその製造方法
JP6037256B1 (ja) * 2016-04-14 2016-12-07 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP7098932B2 (ja) * 2017-01-18 2022-07-12 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP6850997B2 (ja) * 2017-06-30 2021-03-31 三菱マテリアル株式会社 硬質皮膜層が優れた耐チッピング性・耐熱亀裂性・耐酸化性を発揮する表面被覆切削工具
JP6784345B1 (ja) * 2019-02-19 2020-11-11 住友電工ハードメタル株式会社 切削工具
JP7125013B2 (ja) * 2019-03-22 2022-08-24 三菱マテリアル株式会社 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具
CN117921042B (zh) * 2024-03-22 2024-06-25 赣州澳克泰工具技术有限公司 一种cvd复合涂层刀具及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513594A (ja) * 2008-03-12 2011-04-28 ケンナメタル インコーポレイテッド 硬質材料で被覆された物体
JP2011516722A (ja) * 2008-03-12 2011-05-26 ケンナメタル インコーポレイテッド 硬質材料で被覆された物体
WO2013057136A2 (en) * 2011-10-17 2013-04-25 Sandvik Intellectual Property Ab Method of making a cemented carbide or cermet body
JP2013139065A (ja) * 2012-01-04 2013-07-18 Mitsubishi Materials Corp 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2013248675A (ja) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502174C2 (sv) * 1993-12-23 1995-09-04 Sandvik Ab Sätt och alster vid beläggning av ett skärande verktyg med ett aluminiumoxidskikt
EP1323847A3 (en) * 2001-12-28 2005-09-14 Seco Tools Ab Coated cemented carbide body and method for use
JP4466848B2 (ja) * 2004-10-19 2010-05-26 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
SE529838C2 (sv) * 2005-12-08 2007-12-04 Sandvik Intellectual Property Belagt hårdmetallskär, sätt att framställa detta samt dess användning för fräsning i stål
JP5207109B2 (ja) 2007-08-31 2013-06-12 三菱マテリアル株式会社 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP5454924B2 (ja) * 2010-05-12 2014-03-26 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5124793B2 (ja) 2010-07-16 2013-01-23 住友電工ハードメタル株式会社 表面被覆切削工具
JP5939508B2 (ja) * 2012-07-25 2016-06-22 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6268530B2 (ja) * 2013-04-01 2018-01-31 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5753288B2 (ja) * 2014-02-19 2015-07-22 ヤフー株式会社 ユーザ情報提供装置、ユーザ情報提供方法、ユーザ情報提供プログラムおよび広告配信システム
JP6548071B2 (ja) * 2014-04-23 2019-07-24 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513594A (ja) * 2008-03-12 2011-04-28 ケンナメタル インコーポレイテッド 硬質材料で被覆された物体
JP2011516722A (ja) * 2008-03-12 2011-05-26 ケンナメタル インコーポレイテッド 硬質材料で被覆された物体
WO2013057136A2 (en) * 2011-10-17 2013-04-25 Sandvik Intellectual Property Ab Method of making a cemented carbide or cermet body
JP2013139065A (ja) * 2012-01-04 2013-07-18 Mitsubishi Materials Corp 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2013248675A (ja) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160332236A1 (en) * 2015-05-13 2016-11-17 Kennametal Inc. Cutting Tool Made by Additive Manufacturing
US9975182B2 (en) * 2015-05-13 2018-05-22 Kennametal Inc. Cutting tool made by additive manufacturing
US11123801B2 (en) 2015-05-13 2021-09-21 Kennametal Inc. Cutting tool made by additive manufacturing
JP2017047526A (ja) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2017038840A1 (ja) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
US20180257147A1 (en) * 2015-08-31 2018-09-13 Mitsubishi Materials Corporation Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
US10710168B2 (en) 2015-08-31 2020-07-14 Mitsubishi Materials Corporation Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance

Also Published As

Publication number Publication date
CN106573311B (zh) 2018-12-21
KR20170012355A (ko) 2017-02-02
EP3150310A1 (en) 2017-04-05
US10329671B2 (en) 2019-06-25
EP3150310B1 (en) 2020-12-16
EP3150310A4 (en) 2018-01-17
US20170198400A1 (en) 2017-07-13
CN106573311A (zh) 2017-04-19
JP6548073B2 (ja) 2019-07-24
JP2016005863A (ja) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5924507B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6402662B2 (ja) 表面被覆切削工具及びその製造方法
JP6478100B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6268530B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2015182711A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5939508B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6548071B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6296294B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2014034730A1 (ja) 表面被覆切削工具
JP6391045B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6150109B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6590255B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2016047584A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016068252A (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP2017080883A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5946016B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6931454B2 (ja) 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具
JP2020196128A (ja) 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP6726403B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2017038840A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2017080882A (ja) 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具
WO2017073787A1 (ja) 表面被覆切削工具およびその製造方法
WO2016084938A1 (ja) 表面被覆切削工具
WO2017073790A1 (ja) 表面被覆切削工具およびその製造方法
WO2017073789A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167035765

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015800683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800683

Country of ref document: EP