WO2015172710A1 - 电池防爆电路、充电电路以及充、放电保护电路 - Google Patents

电池防爆电路、充电电路以及充、放电保护电路 Download PDF

Info

Publication number
WO2015172710A1
WO2015172710A1 PCT/CN2015/078782 CN2015078782W WO2015172710A1 WO 2015172710 A1 WO2015172710 A1 WO 2015172710A1 CN 2015078782 W CN2015078782 W CN 2015078782W WO 2015172710 A1 WO2015172710 A1 WO 2015172710A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
resistor
mos transistor
channel mos
voltage
Prior art date
Application number
PCT/CN2015/078782
Other languages
English (en)
French (fr)
Inventor
宋小平
马昂
李凤石
Original Assignee
北京拓盛电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410201103.4A external-priority patent/CN103956721B/zh
Priority claimed from CN201420725910.1U external-priority patent/CN204205573U/zh
Priority claimed from CN201420727061.3U external-priority patent/CN204216632U/zh
Application filed by 北京拓盛电子科技有限公司 filed Critical 北京拓盛电子科技有限公司
Priority to EP15792078.6A priority Critical patent/EP3145043B1/en
Priority to US15/310,520 priority patent/US20170170653A1/en
Publication of WO2015172710A1 publication Critical patent/WO2015172710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • H02H11/003Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection using a field effect transistor as protecting element in one of the supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits

Definitions

  • the present invention relates to the field of battery circuit technology, and in particular to a battery explosion-proof circuit, a charging circuit, a charging protection circuit, and a discharge protection circuit.
  • the battery During the use of the battery, there are usually two situations that can cause the battery to explode: first, the internal expansion of the battery causes the battery to explode; second, the battery's load current is too large to cause the battery to explode.
  • the battery In the first case, the battery is equipped with an explosion-proof device inside, which can effectively prevent the battery from exploding.
  • the second case it is necessary to avoid excessive load current to avoid battery explosion.
  • Chinese patent document CN202759272U discloses an explosion-proof battery limiting current circuit, which mainly comprises: a first comparator U1 and a second comparator U2, a first electronic switch Q1 and a second electronic switch Q2, which are protected.
  • the circuit converts the load current value into a certain proportion of the voltage value VR2 through the current sampling resistor R2, the first comparator U1 compares the magnitude of the voltage VR2 with the reference voltage V1 to control the electronic switch Q1 to be turned off; the second comparator U2 compares The output voltage VOUT of the two electronic switches Q2 and the reference voltage V2 are used to control the electronic switch Q2 to be turned off.
  • the load current flows through the first electronic switch Q1 and the second electronic switch Q2; when the load is short-circuited, the voltage VR2 gradually Increasing, after comparing the output through the first comparator U1, the dynamic resistance of the first electronic switch Q1 is gradually increased, which avoids excessive load current, and at the same time, the dynamic resistance of the first electronic switch Q1 gradually increases.
  • the voltage VOUT will gradually decrease, and after the output is compared by the second comparator U2, the electronic switch Q2 will be turned off, which cuts off the load current and protects the first electronic switch Q1.
  • the explosion-proof battery limiting current circuit disclosed in the above patent document after the battery fails, before the fault is removed, since the limiting current circuit is in an off state, the battery power is stored in the battery and cannot be released, and the battery may be generated twice.
  • the circuit design of the battery charging power source sold in the market is relatively simple, so when the charging power source is abnormal, the battery being charged may be damaged and unsafe, or when the charging power source and the battery are not connected, the battery charging may occur.
  • the reverse discharge of the power supply is not conducive to the safety of the battery charging process and will shorten the battery life.
  • the current limiting circuit in the prior art may cause secondary damage to the battery and may not function to limit the load current and cause the electronic switch to be overheated.
  • the present invention provides a battery explosion-proof circuit comprising: at least one current limiting module, the limiting current module comprising an input end and an output end, the input end of the current limiting module and the positive electrode of the battery
  • the limiting current module specifically includes: a current limiting resistor R7, a protection resistor R10, a control resistor R9, a feedback resistor R15, a control resistor R13, a power electronic switch Q1 and a feedback control switch Q3, wherein the power electronic switch Q1 and The feedback control switch Q3 includes an input end, an output end, and a control end, and when the relative voltage between the input end and the control end of the power electronic switch Q1 is greater than a threshold voltage threshold thereof, the power electronic switch Q1 leads When the relative voltage between the input end and the control end of the feedback control switch Q3 is greater than the threshold voltage threshold thereof, the feedback control switch Q3 is turned on; one end of the current limiting resistor R7 and the protection resistor R10 One ends are connected and their connection points
  • the limiting current module is two, and the two limiting current modules are connected in series.
  • the battery explosion-proof circuit further includes an overvoltage protection module, the overvoltage protection module includes an input end, an output end, and a ground end, and the input end and the output end of the overvoltage protection module are The output end of the current limiting module is connected, and the grounding end of the overvoltage protection module is connected to the negative pole of the battery.
  • the overvoltage protection module includes an input end, an output end, and a ground end, and the input end and the output end of the overvoltage protection module are The output end of the current limiting module is connected, and the grounding end of the overvoltage protection module is connected to the negative pole of the battery.
  • the battery explosion-proof circuit further includes an overcurrent protection module, the overcurrent protection module includes an input end and an output end, and an input end of the overcurrent protection module is connected to an output end of the limiting current module.
  • the output of the overcurrent protection module is used to connect to one end of the load.
  • the battery explosion-proof circuit further includes a filter capacitor C8, one end of the filter capacitor C8 is connected to the anode of the battery, and the other end of the filter capacitor C8 is connected to the cathode of the battery.
  • the overvoltage protection module includes: a capacitor C9, a capacitor C10, and an overvoltage protection diode D3, wherein one end of the capacitor C9, one end of the capacitor C10, and a cathode of the overvoltage protection diode D3 are connected And their connection points serve as the input and output of the overvoltage protection module; the other end of the capacitor C9, the other end of the capacitor C10 and the anode of the overvoltage protection diode D3 are connected and their The connection point serves as the ground of the overvoltage protection module.
  • the overvoltage protection module further includes an overvoltage protection diode D4, the cathode of the overvoltage protection diode D4 is connected to the cathode of the overvoltage protection diode D3, and the anode and the anode of the overvoltage protection diode D4 The anode of the overvoltage protection diode D3 is connected.
  • the overcurrent protection module is a self-recovering fuse F1
  • one end of the self-recovering fuse F1 serves as an input end of the overcurrent protection module
  • the other end of the self-recovering fuse F1 serves as the overcurrent protection module.
  • the output is a self-recovering fuse F1
  • the power electronic switch Q1 is a P-channel enhancement type MOS transistor
  • the feedback control switch Q3 is a PNP type triode.
  • the present invention also provides a battery charging circuit comprising the battery explosion-proof circuit of any of the above.
  • the battery charging circuit further comprises: a rectifier diode D1, an anode of the rectifier diode D1 is connected to an output end of an external DC charging power source, and a cathode of the rectifier diode D1 is connected to an input end of the charging chip.
  • the battery charging circuit further comprises a rectifier diode D2, the anode of the rectifier diode D2 is directly connected to the cathode of the rectifier diode D1, and the cathode of the rectifier diode D2 is connected to the input end of the charging chip.
  • the battery charging circuit further includes a capacitor C1, one end of the capacitor C1 is directly connected to the cathode of the rectifier diode D2, and the other end of the capacitor C1 is grounded.
  • the battery charging circuit further includes a capacitor C2, and the capacitor C2 is connected in parallel with the capacitor C1.
  • the present invention further provides a battery discharge protection circuit, comprising at least one current limiting protection module for limiting current flowing through a load, the current limiting protection module comprising: a first comparison unit, configured to determine flow through Whether the current of the load exceeds a first discharge threshold of the battery, outputs a first level when the current is greater than the first discharge threshold, and outputs a second power when the current is less than or equal to the first discharge threshold a current limiting unit comprising a controlled switch and a current limiting power resistor connected in parallel with both ends of the controlled switch, the controlled end of the controlled switch being connected to the first comparing unit when the controlled The controlled terminal of the switch receives the first level to turn the controlled switch off, and when the second level is received, turns the controlled switch on.
  • a first comparison unit configured to determine flow through Whether the current of the load exceeds a first discharge threshold of the battery, outputs a first level when the current is greater than the first discharge threshold, and outputs a second power when the current is less than or equal to the first
  • the first comparison unit comprises a comparator (U3), the first input of the comparator (U3) receives a voltage value on a current limiting detection resistor connected in series with the load, and the second input receives a preset a voltage value, when the voltage value on the current limiting detecting resistor is greater than the preset voltage value, outputting the first level, when a voltage value on the current limiting detecting resistor is less than or equal to the preset voltage value The second level is output.
  • the comparator (U3) receives a voltage value on a current limiting detection resistor connected in series with the load
  • the second input receives a preset a voltage value, when the voltage value on the current limiting detecting resistor is greater than the preset voltage value, outputting the first level, when a voltage value on the current limiting detecting resistor is less than or equal to the preset voltage value
  • the second level is output.
  • the controlled switch of the current limiting unit comprises: a first resistor (R31), a second resistor (R32), a third resistor (R35), a first N-channel MOS transistor (Q11), and a second N-channel. a MOS transistor (Q13) and a reference voltage source (U7); wherein one end of the third resistor (R35) serves as a controlled end of the controlled switch, and the other end is respectively associated with the second resistor (R32) One end, a gate of the second N-channel MOS transistor (Q13) is connected; the other end of the second resistor (R32) is respectively connected to a source of the first N-channel MOS transistor (Q11), a source of the second N-channel MOS transistor (Q13) is connected; a drain of the second N-channel MOS transistor (Q13) is respectively connected to a gate of the first N-channel MOS transistor (Q11), One end of the first resistor (R31) is connected; the other end of the first resistor (R
  • the current limiting protection module is multiple, and the current limiting units of the current limiting protection module are connected in series.
  • the battery discharge protection circuit further includes: at least one secondary current limiting protection module, wherein the secondary current limiting protection module comprises: a second comparing unit, configured to determine that the controlled switch of the current limiting unit is disconnected Whether the current flowing through the load exceeds a second discharge threshold of the battery, and outputs an overcurrent signal when the current is greater than the second discharge threshold; the first controlled switch, the controlled of the first controlled switch The terminal is connected to the second comparison unit, and when the first controlled switch receives the overcurrent signal, disconnecting turns off the discharge of the battery road.
  • the secondary current limiting protection module comprises: a second comparing unit, configured to determine that the controlled switch of the current limiting unit is disconnected Whether the current flowing through the load exceeds a second discharge threshold of the battery, and outputs an overcurrent signal when the current is greater than the second discharge threshold; the first controlled switch, the controlled of the first controlled switch The terminal is connected to the second comparison unit, and when the first controlled switch receives the overcurrent signal, disconnecting turns off the discharge of the battery road.
  • the second comparison unit comprises: a fifth resistor (R43), a sixth resistor (R45), a seventh resistor (R47), an eighth resistor (R49), a ninth resistor (R51), and a first diode a tube (D4), a fourth P-channel MOS transistor (Q15), and a fifth N-channel MOS transistor (Q18), wherein one end of the fifth resistor (R43) is connected to the anode of the battery; Connected to one end of the sixth resistor (R45) and the source of the fourth P-channel MOS transistor (Q15); the other end of the sixth resistor (R45) and the seventh resistor (R47), respectively One end of the fourth P-channel MOS transistor (Q15) is connected; the drain of the fourth P-channel MOS transistor (Q15) serves as an output of the second comparison unit; The other end of the resistor (R47) is connected to the anode of the first diode (D4); the cathode of the first diode (D4);
  • the secondary current limiting protection module is plural, and when any one of the plurality of secondary current limiting protection modules outputs the overcurrent signal, controlling the corresponding The first controlled switch cuts off the discharge circuit of the battery.
  • the battery discharge protection circuit further includes: at least one temperature protection module, the temperature protection module includes: a temperature detecting unit, configured to determine whether a temperature of the battery exceeds a temperature allowable threshold of the battery, when Outputting an over temperature signal when the temperature of the battery is greater than the temperature allowable threshold; the second controlled switch, the controlled end of the second controlled switch is connected to the temperature detecting unit, when the second controlled switch receives When the over temperature signal is turned off, the discharge circuit of the battery is cut off.
  • the temperature protection module includes: a temperature detecting unit, configured to determine whether a temperature of the battery exceeds a temperature allowable threshold of the battery, when Outputting an over temperature signal when the temperature of the battery is greater than the temperature allowable threshold; the second controlled switch, the controlled end of the second controlled switch is connected to the temperature detecting unit, when the second controlled switch receives When the over temperature signal is turned off, the discharge circuit of the battery is cut off.
  • the temperature detecting unit includes: a third P-channel MOS transistor (Q20), a positive temperature coefficient thermistor (R56), a negative temperature coefficient thermistor (R58), and a fourth resistor (R72), wherein a gate of the third P-channel MOS transistor (Q20) is respectively connected to one end of the negative temperature coefficient thermistor (R58) and one end of the positive temperature coefficient thermistor (R56); a source of the P-channel MOS transistor (Q20) is respectively connected to the other end of the positive temperature coefficient thermistor (R56) and one end of the fourth resistor (R72); the third P-channel MOS transistor ( a drain of Q20) as an output of the temperature detecting unit; the other end of the negative temperature coefficient thermistor (R58) is connected to a negative pole of the battery; and the other end of the fourth resistor (R72) The positive connection of the battery.
  • a third P-channel MOS transistor Q20
  • the temperature protection module is plural, and when the temperature detecting unit of any one of the plurality of temperature protection modules outputs the over temperature signal, controlling the corresponding second controlled switch to cut off the battery The discharge circuit.
  • the battery discharge protection circuit further includes: at least one over-discharge protection module, the over-discharge protection module includes: a voltage detection unit, configured to determine whether a voltage of the battery is less than an over-discharge voltage threshold of the battery, Outputting an over-discharge signal when a voltage of the battery is less than the over-discharge voltage threshold; a third controlled switch, a controlled end of the third controlled switch is connected to the voltage detecting unit, when the third When the control switch is turned off when receiving the over-discharge signal, the discharge circuit of the battery is cut off.
  • the over-discharge protection module includes: a voltage detection unit, configured to determine whether a voltage of the battery is less than an over-discharge voltage threshold of the battery, Outputting an over-discharge signal when a voltage of the battery is less than the over-discharge voltage threshold; a third controlled switch, a controlled end of the third controlled switch is connected to the voltage detecting unit, when the third When the control switch is turned off when receiving the over-dis
  • the voltage detecting unit is further configured to determine whether a voltage of the battery when the third controlled switch is off is greater than an over-discharge release voltage threshold of the battery, when a voltage of the battery is greater than the over-discharge release voltage The threshold is controlled to turn the third controlled switch back on to turn on the discharge circuit of the battery.
  • the battery discharge protection circuit further includes an equalization discharge protection module, configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is a two-cell battery in series, when the battery is larger than the preset When the value is set, the two batteries are equalized and discharged, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped.
  • an equalization discharge protection module configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is a two-cell battery in series, when the battery is larger than the preset When the value is set, the two batteries are equalized and discharged, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped.
  • Another technical problem to be solved by the present invention is that the battery charging protection circuit in the prior art cannot effectively ensure the safety of the battery charging process and prolong the service life of the battery.
  • the present invention provides a battery charging protection circuit, comprising: at least one anti-battery reverse discharge module for preventing reverse discharge of a charging power source by the battery, the anti-battery reverse discharging module comprising: detecting a charging power module, configured to determine whether the charging power source and the battery are correctly connected, output a first level when the charging power source is correctly connected, and output a second level when the charging power source is not properly connected; a switch, an input end of the controlled switch is connected to a positive pole of the charging power source, an output end of the controlled switch is connected to a positive pole of the battery, a controlled end of the controlled switch and the detecting charging power source
  • the module is connected, turned on when the controlled switch receives the first level, and turned off when the second level is received.
  • the detecting charging power supply module includes: a Hall sensor, a first P-channel MOS transistor, and a first resistor, wherein an input end of the Hall sensor and a positive pole of the charging power source, respectively, the first One end of the resistor is connected to the source of the first P-channel MOS transistor, and the output end of the Hall sensor is respectively connected to the other end of the first resistor and the gate of the first P-channel MOS transistor And detecting whether the charging power source and the battery are correctly connected; the drain of the first P-channel MOS tube serving as an output end of the detecting charging power supply module.
  • the controlled switch includes: a second P-channel MOS transistor, a third N-channel MOS transistor, a second resistor, a third resistor, and a fourth resistor, wherein one end of the fourth resistor serves as a controlled end of the controlled switch; the other end is connected to a gate of the third N-channel MOS transistor; a source of the third N-channel MOS transistor is connected to a negative terminal of the charging power source; a drain of the N-channel MOS transistor is connected to one end of the third resistor; and the other end of the third resistor is respectively connected to a gate of the second P-channel MOS transistor and the second resistor One end is connected; the other end of the second resistor is connected to a source of the second P-channel MOS transistor; the drain of the second P-channel MOS transistor is an input end of the controlled switch; The source of the second P-channel MOS transistor serves as the output of the controlled switch.
  • the anti-battery reverse discharge module is plural, and the controlled switches of the anti-battery reverse discharge module are connected in series.
  • the battery charging protection circuit further includes: a charging power source overvoltage protection module, configured to cut off a charging circuit of the battery when the voltage of the charging power source is greater than a preset threshold, wherein the charging power source overvoltage protection module includes a fourth P a channel MOS transistor, a first diode, and a fifth resistor, wherein a source of the fourth P-channel MOS transistor is respectively connected to a positive electrode of the charging power source and a cathode of the first diode; The drain of the fourth P-channel MOS transistor is connected to the anode of the battery; the gate of the fourth P-channel MOS transistor is respectively connected to the anode of the first diode and one end of the fifth resistor Connecting; the other end of the fifth resistor is connected to the negative pole of the charging power source.
  • a charging power source overvoltage protection module includes a fourth P a channel MOS transistor, a first diode, and a fifth resistor, wherein a source of the fourth P-channel MOS
  • the battery charging protection circuit further includes at least one overcharge protection module for limiting a voltage when the battery is charged
  • the overcharge protection module includes: a voltage detecting unit, configured to determine whether the voltage of the battery is greater than An overcharge detection voltage threshold of the battery, outputting an overcharge signal when the voltage of the battery is greater than the overcharge detection voltage threshold; a first controlled switch, a controlled end of the first controlled switch, and the voltage The detecting unit is connected, and when the controlled end of the first controlled switch receives the overcharge signal, the battery is turned off to cut off the charging circuit of the battery.
  • the overcharge protection module is a plurality of, the first controlled switches of the overcharge protection module are connected in series, and the voltage detection unit outputs the output of any one of the plurality of overcharge protection modules When the charging signal is described, the corresponding first controlled switch is controlled to cut off the charging circuit of the battery.
  • the voltage detecting unit is further configured to determine whether the voltage of the battery when the first controlled switch is off is less than an overcharge protection release voltage threshold of the battery, when the voltage of the battery is less than the overcharge protection The first controlled switch is controlled to be turned back on to turn on the charging circuit of the battery when the voltage threshold is released.
  • the battery charging protection circuit further includes an equalization charging protection module, configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is two batteries connected in series, when the battery is larger than the preset When the value is set, the two batteries are equalized and discharged, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped.
  • an equalization charging protection module configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is two batteries connected in series, when the battery is larger than the preset When the value is set, the two batteries are equalized and discharged, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped.
  • the voltage at the output of the power electronic switch Q1 is close to the voltage of the negative pole of the battery, and the control resistor R9 and the feedback resistor R15 divide the voltage of the battery, so that the relative voltage between the input end and the control end of the feedback control switch Q3 is greater than
  • the threshold voltage threshold is turned on and the feedback control switch Q3 is turned on. Due to the conduction of the feedback control switch Q3, a part of the current flows through the protection resistor R10, the feedback control switch Q3 and the control resistor R13 to the battery negative terminal, and at the same time, due to the conduction of the feedback control switch Q3, a high voltage is generated on the control resistor R13.
  • the level that is, the control end of the power electronic switch Q1 is a high level, and as the high level continues to rise, the power electronic switch Q1 will be in an incomplete state or an off state.
  • the internal resistance of the power electronic switch Q1 will be large, and the current flowing through the current limiting resistor R7 and the power electronic switch Q1 to the load will be limited, thereby playing a role.
  • Limiting the effect of excessive load current when the power electronic switch Q1 is in the off state, the load current is directly cut off, and the power electronic switch Q1 is protected from being destroyed.
  • the battery power is regulated by the current limiting resistor R7 and the control resistor R9.
  • the feedback resistor R15 is released with a small safe current, which prevents the battery from being discharged in the battery and may cause secondary damage of the battery.
  • the battery power of the invention is released by the current limiting resistor R7, the control resistor R9 and the feedback resistor R15 with a small safe current, thereby avoiding the problem that the battery power cannot be released in the battery, resulting in secondary damage of the battery, and at the same time, There is no need to specify an accurate reference voltage, which ensures that the circuit can reliably limit the load current and does not cause all power consumption to be loaded on the electronic switch, causing the electronic switch to overheat and damage.
  • the battery explosion-proof circuit and the battery charging circuit provided by the invention provide two current limiting modules to further ensure the reliability of the circuit, and when one of the limiting current modules fails, the circuit can accurately ensure the load current. Make restrictions.
  • the battery explosion-proof circuit and the battery charging circuit provided by the invention are provided with an overvoltage protection module to avoid excessive voltage generated in the circuit and to damage the device.
  • the battery explosion-proof circuit and the battery charging circuit provided by the invention are provided with an overcurrent protection module. When a large current occurs in the circuit, the load is cut off in time to ensure the safety of the circuit.
  • the battery explosion-proof circuit and the battery charging circuit provided by the invention are provided with a filter capacitor C8, so that the current outputted by the battery is more stable, which is favorable for the stability of the load.
  • the battery explosion-proof circuit and the battery charging circuit provided by the invention have simple circuit, that is, two capacitors and one over-voltage protection diode, which saves cost.
  • the battery explosion-proof circuit and the battery charging circuit provided by the invention provide two overvoltage protection diodes in the overvoltage protection module to improve the reliability of the overvoltage protection module.
  • a battery explosion-proof circuit and a battery charging circuit provided by the present invention, in the overcurrent protection module, using a self-recovering fuse F1 achieves the purpose of overcurrent protection.
  • the load is cut off in time to ensure the safety of the circuit.
  • the power supply is restored and it is convenient to use.
  • the power electronic switch Q1 is a P-channel enhancement type MOS tube
  • the feedback control switch Q3 is a PNP type transistor. Since the power control electronics are not required at the feedback control switch Q3, the price of the triode is lower than that of the power electronic device, which saves cost.
  • the battery charging circuit provided by the present invention avoids the occurrence of the burning of the charging chip due to the polarity reversal of the external DC charging power supply by setting the rectifying diode; ensuring the rectification by setting two rectifying diodes When the diode fails, the polarity of the external DC charging power supply can be avoided, and the charging chip is burnt out, which improves the safety of the circuit.
  • a battery charging circuit provided by the present invention filters a charging current by setting a capacitor C1; by setting two parallel capacitors, the filtering effect is better, and when one of the capacitors fails, the filtering is ensured. Going smoothly.
  • a battery discharge protection circuit provided by the present invention includes at least one current limiting protection module for limiting a current flowing through a load, the current limiting protection module comprising: a first comparison unit for determining a flow through the load Whether the current exceeds a first discharge threshold of the battery, outputs a first level when the current is greater than the first discharge threshold, and outputs a second level when the current is less than or equal to the first discharge threshold a current limiting unit comprising a controlled switch and a current limiting power resistor connected in parallel with both ends of the controlled switch, the controlled end of the controlled switch being connected to the first comparison unit, when the controlled switch The controlled terminal turns the controlled switch off when receiving the first level, and turns the controlled switch on when receiving the second level.
  • the battery discharge protection circuit provided by the present invention, when the current flowing through the load is normal, the controlled switch is turned on, and the circuit is normally turned on; when the current value flowing through the load exceeds the first discharge threshold of the battery, The controlled switch is disconnected, so that a current flows through the current limiting power resistor to form a current limiting circuit, and the battery power is consumed by the current limiting power resistor, so that the battery power can be released with a small safe current, thereby avoiding the battery.
  • the battery is not released in the battery, which may cause secondary damage to the battery.
  • it ensures that the circuit can reliably limit the current flowing through the load, and does not cause all power consumption to be loaded on the electronic switch, resulting in electronics. The thermal damage of the switch is destroyed.
  • the battery charging protection circuit provided by the present invention ensures that the charging circuit of the battery is turned on only when the battery is correctly connected to the charging power source by setting the anti-battery reverse discharging module, thereby ensuring the safety of charging the battery. It does not reverse discharge the charging power supply, which extends the battery life.
  • Figure 1 is a known explosion-proof battery limiting current circuit
  • FIG. 2 is a circuit configuration diagram of a battery explosion-proof circuit including a current limiting module according to an embodiment of the present invention
  • FIG. 3 is a circuit configuration diagram of a battery explosion-proof circuit including two current limiting modules according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of an overvoltage protection circuit including an overvoltage protection diode according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of an overvoltage protection circuit including two overvoltage protection diodes, in accordance with one embodiment of the present invention.
  • FIG. 6 is a structural diagram of a battery charging circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a battery discharge protection circuit in accordance with one embodiment of the present invention.
  • FIG. 8 is a circuit configuration diagram of a current limiting protection module in a battery discharge protection circuit according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a battery discharge protection circuit including two current limiting protection modules according to an embodiment of the invention.
  • FIG. 10 is a schematic diagram of a battery discharge protection circuit in accordance with one embodiment of the present invention.
  • FIG. 11 is a circuit configuration diagram of a second comparison unit in a battery discharge protection circuit according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a battery discharge protection circuit in accordance with one embodiment of the present invention.
  • FIG. 13 is a circuit configuration diagram of a temperature detecting unit in a battery discharge protection circuit according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a battery discharge protection circuit in accordance with one embodiment of the present invention.
  • 15 is a circuit configuration diagram of an over-discharge protection module of a battery discharge protection circuit according to an embodiment of the present invention.
  • 16 is a circuit configuration diagram of an equalization discharge protection module of a battery discharge protection circuit according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram of a battery charging protection circuit in accordance with one embodiment of the present invention.
  • FIG. 18 is a circuit configuration diagram of an anti-battery reverse discharge module in a battery charging protection circuit according to an embodiment of the present invention.
  • 19 is a circuit configuration diagram including two anti-battery reverse discharge modules according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a battery charging protection circuit in accordance with one embodiment of the present invention.
  • 21 is a circuit configuration diagram of a charging power supply overvoltage protection module in a battery charging protection circuit according to an embodiment of the present invention.
  • 22 is a schematic diagram of a battery charging protection circuit in accordance with one embodiment of the present invention.
  • FIG. 23 is a circuit configuration diagram of an overcharge protection module of a battery charging protection circuit according to an embodiment of the present invention.
  • Figure 24 is a circuit diagram showing an equalization charging protection module of a battery charging protection circuit according to an embodiment of the present invention.
  • 11-current limiting protection module 12-level current limiting protection module, 13-temperature protection module, 14-over-discharge protection module, 101- First comparison unit, 102-current limiting unit, 102a-controlled switch, 121-second comparison unit, 122-first controlled switch, 131-temperature detecting unit, 132-second controlled switch, 141-voltage detection Unit, 142 - third controlled switch, 21 - anti-battery reverse discharge module, 22 - charging power over voltage protection module, 23 - overcharge protection module, 211 - detection charging power module, 212 - controlled switch, 231- Voltage detection unit, 232 - first controlled switch.
  • the power electronic switch Q1 shown in the figure is a P-channel enhancement type MOS tube, and the feedback control switch Q3 is a PNP type transistor.
  • the battery explosion-proof circuit of this embodiment includes:
  • a current limiting module includes an input and an output, the input of the current limiting module being coupled to the positive terminal of the battery.
  • the limiting current module specifically includes: a current limiting resistor R7, a protection resistor R10, a control resistor R9, a feedback resistor R15, a control resistor R13, a power electronic switch Q1, and a feedback control switch Q3, wherein
  • the power electronic switch Q1 and the feedback control switch Q3 each include an input end, an output end, and a control end, and when a relative voltage between the input end and the control end of the power electronic switch Q1 is greater than a threshold voltage threshold thereof, The power electronic switch Q1 is turned on; when the relative voltage between the input end and the control end of the feedback control switch Q3 is greater than a threshold voltage threshold thereof, the feedback control switch Q3 is turned on;
  • One end of the current limiting resistor R7 is connected to one end of the protection resistor R10 and their connection point serves as an input end of the current limiting module;
  • the other end of the current limiting resistor R7 is connected to one end of the control resistor R9 and their connection point is connected to the input end of the power electronic switch Q1;
  • the other end of the protection resistor R10 is connected to the input end of the feedback control switch Q3;
  • control resistor R9 is connected to the control end of the feedback control switch Q3 and their connection point is connected to one end of the feedback resistor R15;
  • the other end of the feedback resistor R15 is connected to the output end of the power electronic switch Q1, and their connection point serves as an output end of the current limiting module;
  • control resistor R13 One end of the control resistor R13 is connected to the output end of the feedback control switch Q3, and their connection point is connected to the control end of the power electronic switch Q1;
  • control resistor R13 is connected to the negative electrode of the battery.
  • the utility model provides a battery explosion-proof circuit.
  • the load is normal, since the control resistor R9 is pulled up, the feedback control switch Q3 is in an off state, and at the same time, since the control resistor R13 is pulled down to the ground, the power electronic switch Q1 is turned on, current Flow through current limiting resistor R7 and power electronic switch Q1 to the load.
  • the load is short-circuited, the voltage at the output of the power electronic switch Q1 is close to the voltage of the negative pole of the battery, and the control resistor R9 and the feedback resistor R15 divide the voltage of the battery, so that the relative voltage between the input end and the control end of the feedback control switch Q3 is greater than
  • the threshold voltage threshold is turned on and the feedback control switch Q3 is turned on.
  • the feedback control switch Q3 Due to the conduction of the feedback control switch Q3, a part of the current flows through the protection resistor R10, the feedback control switch Q3 and the control resistor R13 to the battery negative terminal, and at the same time, due to the conduction of the feedback control switch Q3, a high voltage is generated on the control resistor R13.
  • the level, that is, the control end of the power electronic switch Q1 is a high level, and as the high level continues to rise, the power electronic switch Q1 will be in an incomplete state or an off state.
  • the internal resistance of the power electronic switch Q1 When the power electronic switch Q1 is in an incomplete conduction state, the internal resistance of the power electronic switch Q1 will be large, and the current flowing through the current limiting resistor R7 and the power electronic switch Q1 to the load will be limited, thereby playing a role.
  • the battery power of the invention is released by the current limiting resistor R7, the control resistor R9 and the feedback resistor R15 with a small safe current, thereby avoiding the problem that the battery power cannot be released in the battery, resulting in secondary damage of the battery, and at the same time, There is no need to specify an accurate reference voltage, which ensures that the circuit can reliably limit the load current and does not cause all power consumption to be loaded on the electronic switch, causing the electronic switch to overheat and damage.
  • the current limiting module is two, and the two limiting current modules are connected in series.
  • the invention provides a battery explosion-proof circuit, and two limiting current modules are arranged to further ensure the reliability of the circuit. When one of the limiting current modules fails, the circuit can accurately ensure the load current is limited.
  • An explosion-proof circuit for a battery further includes an overvoltage protection module, wherein the overvoltage protection module includes an input end, an output end, and a ground end.
  • the input end and the output end of the overvoltage protection module are both connected to the output end of the limiting current module, and the ground end of the overvoltage protection module is connected to the negative pole of the battery.
  • the invention provides a battery explosion-proof circuit, which is provided with an overvoltage protection module to avoid excessive voltage generated in the circuit and to damage the device.
  • An explosion-proof circuit for a battery further includes an overcurrent protection module, wherein the overcurrent protection module includes an input end and an output end, and the overcurrent protection module The input end is connected to the output end of the current limiting module, and the output end of the overcurrent protection module is connected to one end of the load.
  • the utility model provides a battery explosion-proof circuit, which is provided with an overcurrent protection module. When a large current occurs in the circuit, the load is cut off in time to ensure the safety of the circuit.
  • An explosion-proof circuit for a battery according to an embodiment of the present invention further includes a filter capacitor C8, one end of the filter capacitor C8 is connected to the anode of the battery, and the filter capacitor C8 is One end is connected to the negative electrode of the battery.
  • the battery explosion-proof circuit provided by the invention is provided with a filter capacitor C8, so that the current outputted by the battery is more stable, which is favorable for the stability of the load.
  • the overvoltage protection module includes: a capacitor C9, a capacitor C10, and an overvoltage protection diode D3, wherein
  • One end of the capacitor C9, one end of the capacitor C10 and the cathode of the overvoltage protection diode D3 are connected, and their connection points serve as an input end and an output end of the overvoltage protection module;
  • the other end of the capacitor C9, the other end of the capacitor C10, and the anode of the overvoltage protection diode D3 are connected and their connection points serve as ground terminals of the overvoltage protection module.
  • the invention provides a battery explosion-proof circuit, and the circuit of the overvoltage protection module is simple, that is, two capacitors and one overvoltage protection diode, which saves cost.
  • the overvoltage protection module further includes an overvoltage protection diode D4, and the overvoltage protection diode D4.
  • the cathode is connected to the cathode of the overvoltage protection diode D3, and the anode of the overvoltage protection diode D4 is connected to the anode of the overvoltage protection diode D3.
  • the battery explosion-proof circuit provided by the invention provides two overvoltage protection diodes in the overvoltage protection module to improve the reliability of the overvoltage protection module.
  • the overcurrent protection module is a self-recovering fuse F1, and one end of the self-recovering fuse F1 serves as the overcurrent protection module. At the input end, the other end of the self-recovering fuse F1 serves as an output end of the overcurrent protection module.
  • the utility model provides a battery explosion-proof circuit.
  • the self-recovering fuse F1 is used to realize the purpose of overcurrent protection.
  • the load is cut off in time to ensure the safety of the circuit.
  • the medium current returns to normal, the power supply is restored and it is convenient to use.
  • the power electronic switch Q1 is a P-channel enhancement type MOS transistor
  • the feedback control switch Q3 is a PNP type triode.
  • the invention provides a battery explosion-proof circuit
  • the power electronic switch Q1 is a P-channel enhancement type MOS tube
  • the feedback control switch Q3 is a PNP type triode. Since the power control electronics are not required at the feedback control switch Q3, the price of the triode is lower than that of the power electronic device, which saves cost.
  • the battery charging circuit includes the battery explosion-proof circuit of any of the above 1-9 embodiments.
  • a battery charging circuit according to an embodiment of the present invention, further comprising:
  • the rectifier diode D1 has an anode connected to an output of an external DC charging power source, and a cathode of the rectifier diode D1 is connected to an input end of the charging chip. The situation that the charging chip is burned out due to the polarity reversal of the external DC charging power source is avoided.
  • a battery charging circuit further includes a rectifier diode D2, and an anode of the rectifier diode D2 is directly connected to a cathode of the rectifier diode D1, and the rectifier diode is connected to the rectifier diode D1.
  • the cathode of D2 is connected to the input of the charging chip.
  • the invention provides a battery charging circuit, which is provided with two rectifying diodes, so that when a rectifying diode fails, the polarity reversal of the external DC charging power source can be avoided, the charging chip is burned out, and the circuit is improved. safety.
  • a battery charging circuit further includes a capacitor C1 connected to one end of the rectifier diode D2 and the other end of the capacitor C1. Ground. Capacitor C1 filters the charging current to make the charging current smooth.
  • a battery charging circuit according to an embodiment of the present invention, based on the above-described Embodiment 13, includes a capacitor C2, and the capacitor C2 is connected in parallel with the capacitor C1.
  • the invention provides a battery charging circuit, which is provided with two capacitors connected in parallel, so that the filtering effect is better, and when one of the capacitors fails, the smoothing of the filtering is ensured.
  • each functional circuit in the above embodiment is included, as shown in FIG. 6.
  • a battery discharge protection circuit provided by the present invention includes: at least one current limiting protection module 11 for limiting current flowing through a load, and the current limiting protection module 11 includes:
  • a first comparing unit 101 configured to determine whether a current flowing through the load exceeds a first discharging threshold of the battery, and output a first level when the current is greater than the first discharging threshold, when the current is less than or equal to Outputting a second level when the first discharge threshold is;
  • the current limiting unit 102 includes a controlled switch 102a (illustrated schematically by a MOS tube, other controlled switches are also possible) and a current limiting power resistor R25 connected in parallel with both ends of the controlled switch 102a.
  • the controlled end of the controlled switch 102a is connected to the first comparison unit 101, and when the controlled end of the controlled switch 102a receives the first level, the controlled switch 102a is turned off, when receiving the second The controlled switch 102a is turned on when level.
  • the controlled switch 102a when the current flowing through the load is normal, the controlled switch 102a is turned on, and the circuit is normally turned on; when the current value flowing through the load exceeds the first discharge threshold of the battery
  • the controlled switch 102a is disconnected, so that a current flows through the current limiting power resistor R25 to form a current limiting circuit, and the battery power is consumed by the current limiting power resistor R25, so that the battery power can be released with a small safe current. It avoids the problem that the battery's power storage cannot be released in the battery, which may cause secondary damage to the battery.
  • it ensures that the circuit can reliably limit the current flowing through the load, and does not cause all power consumption to be loaded in the electronic On the switch, the overheating damage of the electronic switch is caused.
  • the current limiting protection module 11 is preferably disposed between the negative electrode of the battery and the negative end of the load.
  • the first comparison unit 101 may include a comparator U3, and the first input terminal (the non-inverting input terminal in FIG. 3) of the comparator U3 receives the limit in series with the load.
  • the voltage value on the current detecting resistor R29, the second input terminal (inverting input terminal in FIG. 3) receives a preset voltage value (the preset voltage value can be provided by the reference voltage source U7) when the current limiting detection Outputting the first level when a voltage value on the resistor R29 is greater than the preset voltage value, and outputting the second power when a voltage value on the current limiting detection resistor R29 is less than or equal to the preset voltage value level.
  • Those skilled in the art should understand that it is also possible to use other comparison circuits, such as a single-chip microcomputer, as long as the function of comparing the magnitudes of the two voltages can be realized.
  • the controlled switch 102a of the current limiting unit 102 may include: a first resistor R31, a second resistor R32, a third resistor R35, and a first N-channel MOS transistor.
  • Q11 a second N-channel MOS transistor Q13 and a reference voltage source U7; wherein one end of the third resistor R35 serves as a controlled end of the controlled switch 102a, and the other end is respectively connected to one end of the second resistor R32
  • the second N-channel MOS transistor Q13 is connected to the gate; the other end of the second resistor R32 is respectively connected to the source of the first N-channel MOS transistor Q11 and the second N-channel MOS transistor.
  • a source of Q13 is connected; a drain of the second N-channel MOS transistor Q13 is respectively connected to a gate of the first N-channel MOS transistor Q11 and an end of the first resistor R31; the first resistor The other end of R31 is connected to the output terminal of the reference voltage source U7; the source and the drain of the first N-channel MOS transistor Q11 serve as both ends of the controlled switch 102a.
  • the first N-channel MOS The tube Q11 when the current value flowing through the load is normal, that is, when the controlled end of the controlled switch 102a receives the second level, the first N-channel MOS The tube Q11 is turned on, a current flows through the first N-channel MOS transistor Q11 to form a loop; when the current value flowing through the load is greater than the first discharge threshold, that is, the controlled end of the controlled switch 102a receives the When the first level is described, the first N-channel MOS transistor Q11 is turned off, and a current flows through the current limiting power resistor R25 to form a current limiting loop.
  • the current limiting protection module 11 in this embodiment may be two, as shown in FIG. 9, the current limiting by the two current limiting protection modules 11
  • the units 102 are connected in series to further ensure the reliability of the circuit. When one of the current limiting protection modules 11 fails, the circuit can still accurately limit the load current.
  • Those skilled in the art will appreciate that it is also feasible to employ more current limiting protection modules.
  • the secondary current limiting protection module 12 includes: a second comparing unit 121, configured to determine whether the current flowing through the load when the controlled switch 102a of the current limiting unit 102 is disconnected exceeds the second of the battery a discharge threshold, when the current is greater than the second discharge threshold, an overcurrent signal is output; the first controlled switch 122, the controlled end of the first controlled switch 122 is connected to the second comparison unit 121, when When the first controlled switch 122 receives the overcurrent signal, the battery is disconnected to cut off the discharge circuit of the battery.
  • the secondary current limiting protection module 12 By setting the secondary current limiting protection module 12 to continue detecting the current flowing through the load when the controlled switch 102a in the current limiting unit 102 is disconnected, and performing the current value detected at this time and the second discharging threshold of the battery. In comparison, if the current value continues to increase beyond the second discharge threshold of the battery, the first controlled switch 122 is turned off to shut off the discharge circuit of the battery. This further ensures that the current flowing through the load is within the safe range.
  • the second comparison unit 121 in this embodiment may include: a fifth resistor R43, a sixth resistor R45, a seventh resistor R47, an eighth resistor R49, a ninth resistor R51, and the first two. a diode D4, a fourth P-channel MOS transistor Q15, and a fifth N-channel MOS transistor Q18, wherein one end of the fifth resistor R43 is connected to the anode of the battery; the other end is respectively connected to the sixth resistor R45 One end of the fourth P-channel MOS transistor Q15 is connected; the other end of the sixth resistor R45 is respectively connected to one end of the seventh resistor R47 and the gate of the fourth P-channel MOS transistor Q15.
  • a drain of the fourth P-channel MOS transistor Q15 as an output of the second comparison unit 21; the other end of the seventh resistor R47 is connected to an anode of the first diode D4; a cathode of the first diode D4 is connected to a drain of the fifth N-channel MOS transistor Q18; a gate of the fifth N-channel MOS transistor Q18 is respectively connected to one end of the ninth resistor R51, One end of the eighth resistor R49 is connected; the source of the fifth N-channel MOS transistor Q18 is opposite to the other end of the ninth resistor R51, and the cathode of the battery Bonding; the other end is connected to the negative terminal of a resistor R49 and an eighth load.
  • the capacitor C46 and the resistor R45 in FIG. 11 are connected in parallel for filtering, and the capacitor C71, the capacitor C49 and the resistor R51 are connected in parallel, and also function as a filter.
  • the second comparison unit 121 when the current flowing through the load does not exceed the second discharge threshold of the battery, the fifth N-channel MOS transistor Q18 and the fourth P-channel MOS transistor Q15 are not turned on.
  • the second comparison unit 121 does not output an overcurrent signal; when the current flowing through the load continues to increase beyond the second discharge threshold of the battery, the fifth N-channel MOS transistor Q18 is turned on, resulting in the fourth P-channel.
  • the MOS transistor Q15 is also turned on, and the second comparison unit 121 outputs a high level, that is, an output overcurrent signal.
  • the secondary current limiting protection module 12 in this embodiment may be two or more, and when any one of the multiple secondary current limiting protection modules 12 is used, the second comparison unit 121 outputs When the current signal is over, the corresponding first controlled switch 122 is controlled to cut off the discharge circuit of the battery.
  • the reliability of the circuit is further ensured. When one of the secondary current limiting protection modules 12 fails, the circuit can still accurately limit the load current.
  • the temperature protection module 13 includes: a temperature detecting unit 131, configured to: determine whether the temperature of the battery exceeds a temperature allowable threshold of the battery, when the temperature of the battery is greater than the temperature An over-temperature signal is output when the threshold is allowed; the second controlled switch 132, wherein the controlled switch can be implemented by using a MOS tube, and the controlled end of the second controlled switch 132 is connected to the temperature detecting unit 131. When the second controlled switch 132 is turned off when receiving the over-temperature signal, the discharge circuit of the battery is cut off.
  • the temperature protection module 13 By setting the temperature protection module 13, the temperature of the battery is detected to ensure that the temperature of the battery is not too high, and the safety of the battery is ensured.
  • the temperature detecting unit 131 in this embodiment includes: a third P-channel MOS transistor Q20, a positive temperature coefficient thermistor R56, a negative temperature coefficient thermistor R58, and a fourth resistor R72.
  • the gate of the third P-channel MOS transistor Q20 is respectively connected to one end of the negative temperature coefficient thermistor R58 and one end of the positive temperature coefficient thermistor R56; the third P-channel The source of the MOS transistor Q20 is respectively connected to the other end of the positive temperature coefficient thermistor R56 and one end of the fourth resistor R72; the drain of the third P-channel MOS transistor Q20 serves as the temperature detecting unit
  • the other end of the negative temperature coefficient thermistor R58 is connected to the negative electrode of the battery; the other end of the fourth resistor R72 is connected to the positive electrode of the battery.
  • the resistor R71 in FIG. 13 is connected in series with the drain of the third P-channel MOS transistor Q20 to protect the third P-channel MOS transistor Q20.
  • the temperature detecting unit 131 in this embodiment collects the change of the battery temperature through the positive temperature coefficient thermistor R56 and the negative temperature coefficient thermistor R58.
  • the third P groove The MOS transistor Q20 is turned on, and the temperature detecting unit 131 outputs a high level, that is, outputs the over-temperature signal.
  • the temperature protection module 13 provided by the embodiment may be two or more.
  • the temperature detecting unit 131 of any one of the plurality of temperature protection modules 13 outputs the over temperature signal, Then, the corresponding second controlled switch 131 is controlled to cut off the discharge circuit of the battery.
  • the reliability of the circuit is further ensured, and when one of the temperature protection modules 13 fails, the circuit can still accurately limit the temperature of the battery.
  • the method includes: at least one over-discharge protection module 14,
  • the over-discharge protection module 14 includes: a voltage detecting unit 141, configured to determine whether a voltage of the battery is less than an over-discharge voltage threshold of the battery, and output over-discharge when a voltage of the battery is less than the over-discharge voltage threshold a third controlled switch 142, the controlled end of the third controlled switch 142 is connected to the voltage detecting unit 141, and when the third controlled switch 142 receives the over-discharge signal, it is turned off.
  • the discharge circuit of the battery was cut off.
  • the over-discharge protection module 14 By setting the over-discharge protection module 14, it is ensured that the voltage of the battery is not less than the over-discharge voltage threshold of the battery, and the excessive discharge of the battery will shorten the life of the battery, and the design is designed to effectively extend the service life of the battery.
  • the voltage detecting unit 141 in this embodiment is further configured to determine whether the voltage of the battery when the third controlled switch 142 is off is greater than an over-discharge release voltage threshold of the battery, when the voltage of the battery When the over-discharge release voltage threshold is greater than the discharge threshold, the third controlled switch is controlled to be turned on to turn on the discharge circuit of the battery. This can turn on the discharge circuit of the battery in time when the voltage of the battery rises to be greater than the over-discharge release voltage threshold of the battery, so as to facilitate timely recovery of the external discharge of the battery.
  • the over-discharge protection module 14 may also be two or more, and the third controlled switch 142 of the over-discharge protection module 14 may be connected in series, when the over-discharge protection module When the voltage detecting unit 141 of any one of 14 outputs the over-discharge signal, the corresponding third controlled switch 142 is controlled to cut off the discharge circuit of the battery.
  • the reliability of the circuit is improved by providing a plurality of over-discharge protection modules 14.
  • the voltage detecting unit 141 can be implemented by using a chip R5460, and the third controlled switch 142 is an N-channel MOS transistor Q7.
  • the gate of the N-channel MOS transistor Q7 is connected to the over-discharge control pin (Dout) of the chip R5460; the source of the N-channel MOS transistor Q7 is connected to the negative terminal of the battery; the N-channel MOS The drain of the tube Q7 is connected to the negative terminal of the load.
  • V_BAT_V1 represents the voltage of one of the batteries
  • V_BAT_V2 represents the voltage sum of the two series connected batteries.
  • the over-discharge signal is output through the over-discharge control pin (Dout), and the N-channel MOS transistor Q7 is turned off to cut off the discharge circuit of the battery;
  • the over-discharge control pin (Dout) outputs an over-discharge release signal to control the N-channel MOS transistor Q7 to be turned on again. Through the battery's discharge circuit.
  • the connection relationship of the other pins of the chip R5460 is not related to the inventive point of the present invention, and will not be described in detail herein, and the original connection relationship may be maintained.
  • the first controlled switch 122 and the second controlled switch 132 may also be the N-channel MOS transistor Q7, and then the output end of the second comparing unit 121 and the temperature.
  • the output of the detecting unit 131 is connected to the overcurrent detecting pin (V-) of the chip R5460.
  • the overcurrent detection pin (V-) of the chip R5460 detects that the second comparison unit 121 outputs an overcurrent signal
  • the chip R5460 controls the N-channel MOS transistor Q7 to be turned off by the over-discharge control pin (Dout).
  • the chip R5460 In order to cut off the discharge circuit of the battery; when the overcurrent detection pin (V-) of the chip R5460 detects that the temperature detecting unit 131 outputs an over temperature signal, the chip R5460 controls the N through the overdischarge control pin (Dout). The channel MOS transistor Q7 is turned off to cut off the discharge circuit of the battery. This is used to save cost and integrate miniaturization of circuits. Those skilled in the art should understand that other chips or circuits are also possible. When the battery is a battery, the chip R5402 can be used, and the connection relationship of the chip R5402 pins can be referred to the above chip R5460.
  • the battery discharge protection circuit provided in this embodiment may further include an equalization discharge protection module, configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is a battery connected in series. When the value is greater than the preset value, the two batteries are equalized and discharged, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped. The equalization discharge is performed on the two batteries to ensure that the power of the two batteries is the same.
  • an equalization discharge protection module configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is a battery connected in series. When the value is greater than the preset value, the two batteries are equalized and discharged, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped. The equalization discharge is performed on the two batteries to ensure that the power of the two batteries is the same.
  • the equalization discharge protection module can detect the power of the two batteries. When detecting that the pressure difference between the two batteries is greater than a preset value, the equalization discharge protection module performs two sets of batteries with a preset equalization current value. Equilibrium discharge, when it is detected that the pressure difference between the two batteries is less than or equal to the preset value, the two batteries stop equalizing discharge.
  • the equalization discharge protection module can be implemented by using the chip BQ29209.
  • a battery charging protection circuit includes: at least one anti-battery reverse discharge module 21 for preventing reverse discharge of a charging power source by the battery, and the anti-battery reverse discharging module 21 include:
  • Detecting the charging power module 211 determining whether the charging power source and the battery are correctly connected, outputting a first level when the charging power source is correctly connected, and outputting a second level when the charging power source is not properly connected;
  • a controlled switch 212 the input of the controlled switch 212 (illustrated schematically by a MOS tube, which is also possible with other controlled switches) is connected to the positive pole of the charging power source, the controlled switch 212 The output end is connected to the positive pole of the battery, the controlled end of the controlled switch 212 is connected to the detecting charging power supply module 211, and is turned on when the controlled switch 212 receives the first level, when receiving Disconnected when the second level is described.
  • the correct connection between the charging power source and the battery means: if the charging power source is a large-capacity battery, the large-capacity battery and the need The charged battery is matched and the contact is good after connection. Good; if the charging power source is a charger, the charger and battery match and the charger plug is properly connected, the charger and battery are properly connected and in good contact. It should be understood by those skilled in the art that the charging power source and the battery are properly connected to a wide range of connection charging power sources, and the connection conditions required for correctly charging the battery, such as the voltage of the charging power source within a certain preset range, that the charging power source can be considered Charge the battery.
  • the battery is only turned on when the battery is properly connected to the charging power source, thereby ensuring the safety of the battery charging and not charging the battery. Reverse discharge extends battery life and saves energy.
  • the battery charging protection circuit the detecting charging power module 211 may include: a Hall sensor U11, a first P-channel MOS transistor Q24, and a first resistor R74, wherein An input end of the Hall sensor U11 is respectively connected to a positive pole of the charging power source (indicated by V_BAT_IN in FIG. 2), one end of the first resistor R74, and a source of the first P-channel MOS transistor Q24.
  • the output end of the Hall sensor U11 is respectively connected to the other end of the first resistor R74 and the gate of the first P-channel MOS transistor Q24 for detecting whether the charging power source and the battery are correctly connected;
  • the drain of the first P-channel MOS transistor Q24 serves as an output terminal of the detection charging power supply module 11.
  • the capacitor C75 in FIG. 2 is connected between the positive pole and the negative pole of the charging power source to function as a filter.
  • the Hall sensor U11 can be realized, for example, by using the chip WSH131, and the Hall sensor U11 detects whether the charging power source and the battery are correctly connected; and facilitates integration and miniaturization of the circuit.
  • the controlled switch 212 may include: a second P-channel MOS transistor Q2, a third N-channel MOS transistor Q5, a second resistor R1, a third resistor R3, and a fourth resistor R8.
  • One end of the fourth resistor R8 serves as a controlled end of the controlled switch 12; the other end is connected to the gate of the third N-channel MOS transistor Q5; the third N-channel MOS transistor a source of Q5 is connected to a cathode of the charging power source; a drain of the third N-channel MOS transistor Q5 is connected to one end of the third resistor R3; and the other end of the third resistor R3 is respectively a gate of the second P-channel MOS transistor Q2 and one end of the second resistor R1 are connected; the other end of the second resistor R1 is connected to a source of the second P-channel MOS transistor Q2; The drain of the two P-channel MOS transistor Q2 serves as an input terminal of the controlled switch; the source of the
  • the controlled switch 212 when the controlled end of the controlled switch 212 receives the first level, that is, when the charging power source and the battery are properly connected, the second P-channel MOS transistor Q2 and the third N-channel The MOS transistor Q5 is turned on, and the battery is normally charged; when the controlled end of the controlled switch 212 receives the second level, that is, when the charging power source and the battery are not properly connected, the third N-channel MOS transistor Q5 is turned off. At the same time, the second P-channel MOS transistor Q2 is turned off, and the circuit for reverse discharging the battery to the charging power source is cut off.
  • the second P-channel MOS transistor Q2 is used on the main circuit of the battery charging, and the voltage drop on the main circuit is reduced compared with the circuit using the diode as the anti-reverse charging in the prior art, because the MOS transistor is turned on.
  • the voltage drop is much smaller than the voltage drop when the diode is turned on, which helps to better charge the battery.
  • the anti-battery reverse discharge module 21 may be two or more, and the controlled switch 212 of the anti-battery reverse discharge module is connected in series.
  • the detection charging power supply module 211 outputs the second level according to any one of the plurality of anti-battery reverse discharge modules 21, the corresponding controlled switch 212 is controlled to cut off the charging circuit of the battery.
  • the reliability of the circuit is further ensured.
  • the circuit can be accurately prevented from being reversely discharged by the battery to the charging power source.
  • the Hall sensor detects whether the battery is correctly connected to the charging power source with high reliability
  • the detecting charging power source module 211 in the plurality of anti-battery reverse discharging modules 21 can be used in common, and only a plurality of controlled switches are set. 212 can be.
  • FIG. 19 shows an embodiment in which one charging power supply module 211 and two controlled switches 212 are employed.
  • the detection charging power supply module 211 detects that the battery and the charging power supply are correctly connected, and outputs the first level, the second P-channel MOS transistor Q2, the third N-channel MOS transistor Q5, the P-channel MOS transistor Q3, and the N-channel
  • the MOS transistor Q6 is turned on, and the battery is normally charged; when the detection charging power supply module 211 detects that the battery and the charging power supply are not properly connected, and outputs the second level, the second P-channel MOS transistor Q2 and the third N-channel
  • the MOS transistor Q5, the P-channel MOS transistor Q3, and the N-channel MOS transistor Q6 are all turned off, the charging circuit of the battery is cut off, that is, the circuit in which the battery is reversely discharged to the charging power source is cut off.
  • FIG. 20 is a schematic diagram of the battery charging protection circuit of the embodiment, which is different from the schematic diagram of the battery charging protection circuit of the embodiment 19 shown in FIG. 17.
  • the battery charging protection circuit shown in FIG. 20 further includes:
  • the charging power overvoltage protection module 22 is configured to cut off the charging circuit of the battery when the voltage of the charging power source is greater than a preset threshold.
  • the charging power supply overvoltage protection module 22 may include a fourth P-channel MOS transistor Q1, a first diode D1, and a fifth resistor R7, wherein the fourth P-channel MOS transistor Q1
  • the source is respectively connected to the anode of the charging power source (indicated by V_BAT_IN in FIG.
  • a positive electrode is connected;
  • a gate of the fourth P-channel MOS transistor Q1 is respectively connected to an anode of the first diode D1 and one end of the fifth resistor R7; and the other end of the fifth resistor R7 is The negative connection of the charging power supply.
  • the capacitor C9 in parallel with the first diode D1 in Fig. 21 functions as a filter.
  • the charging power supply overvoltage protection module 22 when the voltage of the charging power source is not greater than a preset threshold, the fourth P-channel MOS transistor Q1 is turned on, and the battery is normally charged; when the voltage of the charging power source is greater than a preset At the threshold, the first diode D1 will be broken down, causing the fourth P-channel MOS transistor Q1 to be turned off, and the charging circuit of the battery is cut off.
  • the charging power supply overvoltage protection module 22 When the voltage of the charging power source is abnormal, the charging circuit of the battery is cut off in time to protect the battery.
  • the battery charging protection circuit shown in FIG. 22 is a schematic diagram of the battery charging protection circuit of the present embodiment, which is different from the schematic diagram of the battery charging protection circuit of the embodiment 19 shown in FIG. 17 in that the battery charging protection circuit shown in FIG. 22 further includes at least An overcharge protection module 23 is configured to limit the voltage when the battery is charged, and the overcharge protection module 23 includes: a voltage detection unit 231, configured to determine whether the voltage of the battery is greater than an overcharge detection voltage threshold of the battery, And outputting an overcharge signal when the voltage of the battery is greater than the overcharge detection voltage threshold; the first controlled switch 232, the controlled end of the first controlled switch 232 is connected to the voltage detecting unit 231, When the controlled end of the first controlled switch 232 is turned off when receiving the overcharge signal, the charging circuit of the battery is cut off.
  • a voltage detection unit 231 configured to determine whether the voltage of the battery is greater than an overcharge detection voltage threshold of the battery, And outputting an overcharge signal when the voltage of the battery is greater than the overcharge detection voltage threshold
  • overcharge protection module 23 illustrated in FIG. 22 is disposed between the negative pole of the charging power source and the cathode of the battery, those skilled in the art should understand that the overcharge protection module 23 is disposed between the anode of the charging power source and the anode of the battery. It is also possible, as long as the function of cutting off the charging circuit of the battery can be achieved.
  • overcharge protection module 23 By setting the overcharge protection module 23, it is ensured that the voltage of the battery is not greater than the overcharge detection voltage threshold of the battery, and overcharging of the battery will shorten the life of the battery, and the design is designed to effectively extend the service life of the battery.
  • the overcharge protection module 23 may be two or more, and the first controlled switch 232 of the overcharge protection module 23 is connected in series, when any of the plurality of overcharge protection modules 23 When one of the voltage detecting units 231 outputs the overcharge signal, the corresponding first controlled switch 232 is controlled to cut off the charging circuit of the battery.
  • the reliability of the circuit is further ensured, and when one of the overcharge protection modules 23 fails, the circuit can still accurately limit the voltage of the battery.
  • the voltage detecting unit 231 in this embodiment may be further configured to determine whether the voltage of the battery when the first controlled switch 232 is off is less than an overcharge protection release voltage threshold of the battery, when the battery The voltage of the first controlled switch 232 is controlled to be turned on to turn on the charging circuit of the battery when the voltage is less than the overcharge protection release voltage threshold. This can turn on the charging circuit of the battery in time when the voltage of the battery is reduced to less than the overcharge protection release voltage threshold of the battery, so that the battery can be charged in time.
  • the voltage detecting unit 231 can be implemented by using a chip R5460, and the first controlled switch 232 is an N-channel MOS transistor Q8.
  • the gate of the N-channel MOS transistor Q8 is connected to the overcharge control pin (Cout) of the chip R5460, and the source of the N-channel MOS transistor Q8 is connected to the cathode of the charging power source, the N-channel The drain of the MOS transistor Q8 is connected to the negative electrode of the battery.
  • V_BAT_V1 represents the voltage of one of the batteries
  • V_BAT_V2 represents the voltage sum of the two series-connected batteries.
  • the overcharge signal is output through the overcharge control pin (Cout), and the N-channel MOS transistor Q8 is turned off to cut off the charging circuit of the battery;
  • the overcharge release signal is output through the overcharge control pin (Cout), and the N-channel MOS transistor Q8 is controlled to be turned on again.
  • the connection relationship of the other pins of the chip R5460 is not related to the inventive point of the present invention, and will not be described in detail herein, and the original connection relationship may be maintained. Those skilled in the art should understand that other chips or circuits are also possible.
  • the chip R5402 can be used, and the connection relationship of the chip R5402 pins can be referred to the above chip R5460.
  • the battery charging protection circuit provided in this embodiment may further include a balanced charging protection module, configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is a battery connected in series. When it is greater than the preset value, the two batteries are equalized discharge, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped.
  • a balanced charging protection module configured to determine whether the pressure difference between the two batteries exceeds a preset value when the battery is a battery connected in series. When it is greater than the preset value, the two batteries are equalized discharge, and when less than or equal to the preset value, the equalization discharge of the two batteries is stopped.
  • the equalization charging protection module can detect the power of two batteries. When detecting that the pressure difference between the two batteries is greater than a preset value, the equalization discharge protection module performs two sets of batteries with a preset equalization current value. Equilibrium discharge, when it is detected that the pressure difference between the two batteries is less than or equal to the preset value, the two batteries stop equalizing discharge.
  • the equalization discharge protection module can be implemented by using the chip BQ29209.
  • the chip BQ29209 can detect the voltage of the battery.
  • the second-stage overcharge signal is output to the fourth P-channel MOS transistor via the N-channel MOS transistor Q23.
  • Q1 in order to turn off the fourth P-channel MOS transistor Q1, the charging circuit of the battery is cut off. This further ensures safety during battery charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池防爆电路、充电电路以及充/放电保护电路,其中在所述电池防爆电路以及充电电路中,当负载短路时,电力电子开关(Q1)的输出端的电压接近电池负极的电压,通过控制电阻(R9)和反馈电阻(R15)分压,使得反馈控制开关(Q3)导通,进而使电力电子开关(Q1)处于截止状态,切断负载电流以保护电力电子开关(Q1)不会被损毁,同时电池电量经限流电阻(R7)、控制电阻(R9)和反馈电阻(R15)以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,导致电池产生二次危害的问题。由于无需给定精确的基准电压,保证了电路能可靠地限制负载电流,并且不会造成所有的功耗加载在电子开关上,导致电子开关过热损毁。

Description

电池防爆电路、充电电路以及充、放电保护电路
相关申请的交叉引用
本申请要求2014年5月13日提交的、申请号为201410201103.4、名称为“电池防爆电路以及电池充电电路”的中国专利申请,2014年11月27日提交的、申请号为201420727061.3、名称为“电池放电保护电路”的中国实用新型专利申请,以及2014年11月27日提交的、申请号为201420725910.1、名称为“电池充电保护电路”的中国实用新型专利申请的优先权权益,并将上述申请的内容通过引用并入本文中。
技术领域
本发明涉及电池电路技术领域,具体地说涉及一种电池防爆电路、充电电路、充电保护电路以及放电保护电路。
背景技术
电池的使用过程中,通常有两种情况会导致电池的***:第一,电池内部胀气引起电池***;第二,电池的负载电流过大引起电池***。对于第一种情况,电池内部均设有防爆装置,可以有效的避免电池***;对于第二种情况,则需要避免负载电流过大来避免电池***。
如图1所示,中国专利文献CN202759272U公开了一种防爆电池限制电流电路,该电路主要包括:第一比较器U1和第二比较器U2,第一电子开关Q1和第二电子开关Q2,保护电阻R1和电流采样电阻R2;同时,给定第一比较器U1的基准电压为V1,给定第二比较器U2的基准电压为V2。该电路通过电流采样电阻R2将负载电流值转变为一定比例的电压值VR2,第一比较器U1比较电压VR2与基准电压V1的大小,来控制电子开关Q1关断;第二比较器U2比较第二电子开关Q2的输出端电压VOUT与基准电压V2的大小,来控制电子开关Q2关断。当负载正常的情况下,第一电子开关Q1和第二电子开关Q2处于饱和导通的情况,负载电流流经第一电子开关Q1和第二电子开关Q2;当负载短路时,则电压VR2逐渐增大,通过第一比较器U1比较输出后,将会导致第一电子开关Q1的动态电阻逐渐增大,这便避免了负载电流过大,同时,随着第一电子开关Q1的动态电阻逐渐增大,电压VOUT将会逐渐下降,通过第二比较器U2比较输出后,将会导致电子开关Q2的关断,这便切断了负载电流并且保护了第一电子开关Q1。
上述专利文献公开的防爆电池限制电流电路中,当电池发生故障后、切除故障前,由于所述限制电流电路处于截止状态,导致电池的电量存储在电池中无法释放,有可能产生电池的二次危害;同时,由于上述专利文献公开的防爆电池限制电流电路中,需要首先给定两个精准的基准电压,才能精准的控制电子开关的关断,如果给定的基准电压不准确,则不能精准的控制电子开关的关断,将会造成所述限制电流电路不能起到限制负载电流的作用,以及将会造成所有的功耗加载在电子开关上,导致电子开关过热损毁。
此外,市面上销售的电池充电电源的电路设计相对简单,因此当充电电源出现异常时,会对正在充电的电池造成损害且不安全,或者当充电电源和电池未连接时,会发生电池对充电电源进行反向放电的情况,这都不利于电池充电过程的安全,且会缩短电池的使用寿命。
发明内容
本发明所要解决的技术问题之一是现有技术中的限制电流电路可能产生电池的二次危害以及可能不能起到限制负载电流的作用和导致电子开关过热损毁。
为解决该技术问题,本发明提供了一种电池防爆电路,包括:至少一个限制电流模块,所述限制电流模块包括一个输入端和一个输出端,所述限制电流模块的输入端与电池的正极相连;所述限制电流模块具体包括:限流电阻R7,保护电阻R10,控制电阻R9,反馈电阻R15,控制电阻R13,电力电子开关Q1和反馈控制开关Q3,其中,所述电力电子开关Q1和所述反馈控制开关Q3均包括输入端、输出端和控制端,并当所述电力电子开关Q1的输入端和控制端之间的相对电压大于其门限电压阈值时,所述电力电子开关Q1导通;所述反馈控制开关Q3的输入端和控制端之间的相对电压大于其门限电压阈值时,所述反馈控制开关Q3导通;所述限流电阻R7的一端与所述保护电阻R10的一端相连且它们的连接点作为所述限制电流模块的输入端;所述限流电阻R7的另一端与所述控制电阻R9的一端相连且它们的连接点与所述电力电子开关Q1的输入端相连;所述保护电阻R10的另一端与所述反馈控制开关Q3的输入端 相连;所述控制电阻R9的另一端与所述反馈控制开关Q3的控制端相连且它们的连接点与所述反馈电阻R15的一端相连;所述反馈电阻R15的另一端与所述电力电子开关Q1的输出端相连,且它们的连接点作为所述限制电流模块的输出端;所述控制电阻R13的一端与所述反馈控制开关Q3的输出端相连,且它们的连接点与所述电力电子开关Q1的控制端相连;所述控制电阻R13的另一端与电池的负极相连。
优选地,所述限制电流模块为两个,两个所述限制电流模块串联连接。
优选地,所述电池防爆电路还包括过压保护模块,所述过压保护模块包括一个输入端、一个输出端和一个接地端,所述过压保护模块的输入端和输出端均与所述限制电流模块的输出端相连,所述过压保护模块的接地端与电池负极相连。
优选地,所述电池防爆电路还包括过流保护模块,所述过流保护模块包括一个输入端和输出端,所述过流保护模块的输入端与所述限制电流模块的输出端相连,所述过流保护模块的输出端用于与负载的一端相连。
优选地,所述电池防爆电路还包括滤波电容C8,所述滤波电容C8的一端与所述电池的正极相连,所述滤波电容C8的另一端与所述电池的负极相连。
优选地,所述过压保护模块包括:电容C9,电容C10,过压保护二极管D3,其中,所述电容C9的一端、所述电容C10的一端和所述过压保护二极管D3的阴极均相连,且它们的连接点作为所述过压保护模块的输入端和输出端;所述电容C9的另一端、所述电容C10的另一端和所述过压保护二极管D3的阳极均相连且它们的连接点作为所述过压保护模块的接地端。
优选地,所述过压保护模块中还包括过压保护二极管D4,所述过压保护二极管D4的阴极与所述过压保护二极管D3的阴极相连,所述过压保护二极管D4的阳极与所述过压保护二极管D3的阳极相连。
优选地,所述过流保护模块为自恢复保险丝F1,所述自恢复保险丝F1的一端作为所述过流保护模块的输入端,所述自恢复保险丝F1的另一端作为所述过流保护模块的输出端。
优选地,所述电力电子开关Q1为P沟道增强型MOS管,所述反馈控制开关Q3为PNP型三极管。
本发明还提供了一种电池充电电路,所述电池充电电路包括上述任一所述的电池防爆电路。
优选地,所述电池充电电路还包括:整流二极管D1,所述整流二极管D1的阳极与外接直流充电电源的输出端相连,所述整流二极管D1的阴极与充电芯片的输入端相连。
优选地,所述电池充电电路还包括整流二极管D2,所述整流二极管D2的阳极与所述整流二极管D1的阴极直接相连,所述整流二极管D2的阴极与所述充电芯片的输入端相连。
优选地,所述电池充电电路还包括电容C1,所述电容C1一端直接与所述整流二极管D2的阴极相连,所述电容C1的另一端接地。
优选地,所述电池充电电路还包括电容C2,所述电容C2与所述电容C1并联连接。
进一步地,本发明还提出了一种电池放电保护电路,包括至少一个限流保护模块,用于限制流过负载的电流,所述限流保护模块包括:第一比较单元,用于判断流过负载的电流是否超出所述电池的第一放电阈值,当所述电流大于所述第一放电阈值时输出第一电平,当所述电流小于或等于所述第一放电阈值时输出第二电平;限流单元,包括受控开关和与所述受控开关两端并联连接的限流功率电阻,所述受控开关的受控端与所述第一比较单元连接,当所述受控开关的受控端接收到第一电平时使所述受控开关断开,当接收第二电平时使所述受控开关导通。
优选地,所述第一比较单元包括比较器(U3),所述比较器(U3)的第一输入端接收与负载串联的限流检测电阻上的电压值,第二输入端接收一预设电压值,当所述限流检测电阻上的电压值大于所述预设电压值时输出所述第一电平,当所述限流检测电阻上的电压值小于或等于所述预设电压值时输出所述第二电平。
优选地,所述限流单元的受控开关包括:第一电阻(R31)、第二电阻(R32)、第三电阻(R35)、第一N沟道MOS管(Q11)、第二N沟道MOS管(Q13)以及基准电压源(U7);其中,所述第三电阻(R35)的一端作为所述受控开关的受控端,另一端分别与所述第二电阻(R32)的一端、所述第二N沟道MOS管(Q13)的栅极连接;所述第二电阻(R32)的另一端分别与所述第一N沟道MOS管(Q11)的源极、所述第二N沟道MOS管(Q13)的源极连接;所述第二N沟道MOS管(Q13)的漏极分别与所述第一N沟道MOS管(Q11)的栅极、所述第一电阻(R31)的一端连接;所述第一电阻(R31)的另一端与基准电压源(U7)输出端连接;所述第一N沟道MOS管(Q11)的源极和漏极作为所述受控开关的两端。
优选地,所述限流保护模块为多个,所述限流保护模块的限流单元串联连接。
优选地,所述电池放电保护电路还包括:至少一个二级限流保护模块,所述二级限流保护模块包括:第二比较单元,用于判断所述限流单元的受控开关断开时流过负载的电流是否超出所述电池的第二放电阈值,当所述电流大于所述第二放电阈值时输出过电流信号;第一受控开关,所述第一受控开关的受控端与所述第二比较单元连接,当所述第一受控开关接收到所述过电流信号时断开则切断了电池的放电回 路。
优选地,所述第二比较单元包括:第五电阻(R43)、第六电阻(R45)、第七电阻(R47)、第八电阻(R49)、第九电阻(R51)、第一二极管(D4)、第四P沟道MOS管(Q15)以及第五N沟道MOS管(Q18),其中,所述第五电阻(R43)的一端与所述电池的正极相连;另一端分别与所述第六电阻(R45)的一端、所述第四P沟道MOS管(Q15)的源极连接;所述第六电阻(R45)的另一端分别与所述第七电阻(R47)的一端、所述第四P沟道MOS管(Q15)的栅极连接;所述第四P沟道MOS管(Q15)的漏极作为所述第二比较单元的输出端;所述第七电阻(R47)的另一端与所述第一二极管(D4)的阳极连接;所述第一二极管(D4)的阴极与所述第五N沟道MOS管(Q18)的漏极连接;所述第五N沟道MOS管(Q18)的栅极分别与所述第九电阻(R51)的一端、所述第八电阻(R49)的一端连接;所述第五N沟道MOS管(Q18)的源极分别与所述第九电阻(R51)的另一端、所述电池的负极连接;所述第八电阻(R49)的另一端与负载的负端相连。
优选地,所述二级限流保护模块为多个,当所述多个二级限流保护模块中的任一个所述第二比较单元输出所述过电流信号时,则控制对应的所述第一受控开关切断电池的放电回路。
优选地,所述电池放电保护电路还包括:至少一个温度保护模块,所述温度保护模块包括:温度检测单元,用于判断所述电池的温度是否超出所述电池的温度允许阈值,当所述电池的温度大于所述温度允许阈值时输出过温信号;第二受控开关,所述第二受控开关的受控端与所述温度检测单元连接,当所述第二受控开关接收到所述过温信号时断开则切断了电池的放电回路。
优选地,所述温度检测单元包括:第三P沟道MOS管(Q20)、正温度系数热敏电阻(R56)、负温度系数热敏电阻(R58)和第四电阻(R72),其中,所述第三P沟道MOS管(Q20)的栅极分别与所述负温度系数热敏电阻(R58)的一端、所述正温度系数热敏电阻(R56)的一端连接;所述第三P沟道MOS管(Q20)的源极分别与所述正温度系数热敏电阻(R56)的另一端、所述第四电阻(R72)的一端连接;所述第三P沟道MOS管(Q20)的漏极作为所述温度检测单元的输出端;所述负温度系数热敏电阻(R58)的另一端与所述电池的负极连接;所述第四电阻(R72)的另一端与所述电池的正极连接。
优选地,所述温度保护模块为多个,当所述多个温度保护模块中的任一个所述温度检测单元输出所述过温信号时,则控制对应的所述第二受控开关切断电池的放电回路。
优选地,所述电池放电保护电路还包括:至少一个过放保护模块,所述过放保护模块包括:电压检测单元,用于判断所述电池的电压是否小于所述电池的过放电电压阈值,当所述电池的电压小于所述过放电电压阈值时输出过放信号;第三受控开关,所述第三受控开关的受控端与所述电压检测单元连接,当所述第三受控开关接收到所述过放信号时断开则切断了电池的放电回路。
优选地,所述电压检测单元还用于判断所述第三受控开关断开时电池的电压是否大于所述电池的过放电解除电压阈值,当所述电池的电压大于所述过放电解除电压阈值时控制所述第三受控开关重新导通以导通电池的放电回路。
优选地,所述电池放电保护电路还包括均衡放电保护模块,用于在所述电池为两节串联的电池时,判断所述两节电池的压差是否超过预设值,当大于所述预设值时,则对两节电池进行均衡放电,当小于或者等于所述预设值时,停止对两节电池进行均衡放电。
本发明所要解决的另一技术问题是现有技术中的电池充电保护电路不能有效的保证电池充电过程的安全、延长电池的使用寿命。
为解决该技术问题,本发明提供了一种电池充电保护电路,包括:至少一个防电池反向放电模块,用于防止电池对充电电源反向放电,所述防电池反向放电模块包括:检测充电电源模块,用于判断所述充电电源和所述电池是否正确连接,当所述充电电源正确连接时输出第一电平,当所述充电电源未正确连接时输出第二电平;受控开关,所述受控开关的输入端与所述充电电源的正极连接,所述受控开关的输出端与所述电池的正极连接,所述受控开关的受控端和所述检测充电电源模块连接,当所述受控开关接收所述第一电平时导通,当接收所述第二电平时断开。
优选地,所述检测充电电源模块包括:霍尔传感器、第一P沟道MOS管以及第一电阻,其中,所述霍尔传感器的输入端分别与所述充电电源的正极、所述第一电阻的一端、所述第一P沟道MOS管的源极连接,所述霍尔传感器的输出端分别与所述第一电阻的另一端、所述第一P沟道MOS管的栅极连接,用于检测所述充电电源和所述电池是否正确连接;所述第一P沟道MOS管的漏极作为所述检测充电电源模块的输出端。
优选地,所述受控开关包括:第二P沟道MOS管、第三N沟道MOS管、第二电阻、第三电阻以及第四电阻,其中,所述第四电阻的一端作为所述受控开关的受控端;另一端与所述第三N沟道MOS管的栅极连接;所述第三N沟道MOS管的源极与所述充电电源的负极连接;所述第三N沟道MOS管的漏极与所述第三电阻的一端连接;所述第三电阻的另一端分别与所述第二P沟道MOS管的栅极、所述第二电阻的 一端连接;所述第二电阻的另一端与所述第二P沟道MOS管的源极连接;所述第二P沟道MOS管的漏极作为所述受控开关的输入端;所述第二P沟道MOS管的源极作为所述受控开关的输出端。
优选地,所述防电池反向放电模块为多个,所述防电池反向放电模块的所述受控开关串联连接。
优选地,所述电池充电保护电路还包括:充电电源过电压保护模块,用于当充电电源的电压大于预设阈值时,切断电池的充电回路,所述充电电源过电压保护模块包括第四P沟道MOS管、第一二极管以及第五电阻,其中,所述第四P沟道MOS管的源极分别与所述充电电源的正极、所述第一二极管的阴极连接;所述第四P沟道MOS管的漏极和所述电池的正极连接;所述第四P沟道MOS管的栅极分别与所述第一二极管的阳极、所述第五电阻的一端连接;所述第五电阻的另一端与所述充电电源的负极连接。
优选地,所述电池充电保护电路还包括至少一个过充电保护模块,用于限制电池充电时的电压,所述过充电保护模块包括:电压检测单元,用于判断所述电池的电压是否大于所述电池的过充电检测电压阈值,当所述电池的电压大于所述过充电检测电压阈值时输出过充电信号;第一受控开关,所述第一受控开关的受控端与所述电压检测单元相连,当所述第一受控开关的受控端接收到所述过充电信号时断开则切断电池的充电回路。
优选地,所述过充电保护模块为多个,所述过充电保护模块的所述第一受控开关串联连接,当所述多个过充电保护模块中的任一个所述电压检测单元输出所述过充电信号时,则控制对应的所述第一受控开关切断电池的充电回路。
优选地,所述电压检测单元还用于判断所述第一受控开关断开时电池的电压是否小于所述电池的过充电保护解除电压阈值,当所述电池的电压小于所述过充电保护解除电压阈值时控制所述第一受控开关重新导通以导通电池的充电回路。
优选地,所述电池充电保护电路还包括均衡充电保护模块,用于在所述电池为两节串联的电池时,判断所述两节电池的压差是否超过预设值,当大于所述预设值时,则对两节电池进行均衡放电,当小于或者等于所述预设值时,停止对两节电池进行均衡放电。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明提供的一种电池防爆电路以及电池充电电路,当负载正常时,因为控制电阻R9上拉,所以反馈控制开关Q3处于截止状态,同时,由于控制电阻R13下拉到地,使得电力电子开关Q1导通,电流流经限流电阻R7和电力电子开关Q1到负载。当负载短路时,电力电子开关Q1输出端的电压接近电池负极的电压,控制电阻R9和反馈电阻R15对电池的电压进行分压,使得反馈控制开关Q3的输入端与控制端之间相对电压大于其门限电压阈值,反馈控制开关Q3导通。由于反馈控制开关Q3的导通,一部分电流流经保护电阻R10、反馈控制开关Q3和控制电阻R13到电池负极,同时,由于反馈控制开关Q3的导通,将会在控制电阻R13上产生一个高电平,即电力电子开关Q1的控制端为高电平,随着此高电平的不断抬高,电力电子开关Q1将会出现不完全导通状态或者截止状态。当电力电子开关Q1处于不完全导通的状态时,电力电子开关Q1的内阻会很大,此时流经限流电阻R7和电力电子开关Q1到负载的电流将会被限制,则起到了限制负载电流过大的作用;当电力电子开关Q1处于截止状态时,则直接切断了负载电流,保护了电力电子开关Q1不会被损毁,同时,电池电量经限流电阻R7、控制电阻R9和反馈电阻R15以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,有可能产生电池的二次危害的问题。本发明电池电量经限流电阻R7、控制电阻R9和反馈电阻R15以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,导致电池产生二次危害的问题,同时,由于无需给定精确的基准电压,保证了电路能可靠的限制负载电流,并且不会造成所有的功耗加载在电子开关上,导致电子开关过热损毁。
(2)本发明提供的一种电池防爆电路以及电池充电电路,设置两个限制电流模块,进一步保证了电路的可靠性,当其中一个限制电流模块失效时,依然能保证电路准确的对负载电流进行限制。
(3)本发明提供的一种电池防爆电路以及电池充电电路,设置过压保护模块,避免电路中产生过高电压,击坏器件。
(4)本发明提供的一种电池防爆电路以及电池充电电路,设置过流保护模块,当电路中出现大电流时,及时切断负载,保证了电路的安全。
(5)本发明提供的一种电池防爆电路以及电池充电电路,设置滤波电容C8,使得电池输出的电流更平稳,利于负载的稳定。
(6)本发明提供的一种电池防爆电路以及电池充电电路,过压保护模块的电路简单,即两个电容和一个过压保护二极管,节约了成本。
(7)本发明提供的一种电池防爆电路以及电池充电电路,在过压保护模块中,设置两个过压保护二极管,提高过压保护模块的可靠性。
(8)本发明提供的一种电池防爆电路以及电池充电电路,在过流保护模块中,利用自恢复保险丝 F1来实现过流保护的目的,当电路中出现大电流时,及时切断负载,保证了电路的安全,当电路中电流恢复正常时,恢复供电,方便使用。
(9)本发明提供的一种电池防爆电路以及电池充电电路,电力电子开关Q1为P沟道增强型MOS管,所述反馈控制开关Q3为PNP型三极管。由于反馈控制开关Q3处不需要使用电力电子器件,三极管的价格低于电力电子器件,节约了成本。
(10)本发明提供的一种电池充电电路,通过设置整流二极管,避免了由于外接直流充电电源的极性接反,烧坏充电芯片的情况发生;通过设置两个整流二极管保证了在一个整流二极管失效时,仍能避免由于外接直流充电电源的极性接反,烧坏充电芯片的情况发生,提高了电路的安全性。
(11)本发明提供的一种电池充电电路,通过设置电容C1,对充电电流进行滤波;通过设置两个并联的电容,使得滤波效果更好,并且当其中一个电容失效时,保证了滤波的顺利进行。
(12)本发明提供的一种电池放电保护电路,包括至少一个限流保护模块,用于限制流过负载的电流,所述限流保护模块包括:第一比较单元,用于判断流过负载的电流是否超出所述电池的第一放电阈值,当所述电流大于所述第一放电阈值时输出第一电平,当所述电流小于或等于所述第一放电阈值时输出第二电平;限流单元,包括受控开关和与所述受控开关两端并联连接的限流功率电阻,所述受控开关的受控端与所述第一比较单元连接,当所述受控开关的受控端接收到第一电平时使所述受控开关断开,当接收第二电平时使所述受控开关导通。本发明提供的电池放电保护电路,当流过负载的电流正常时,所述受控开关导通,电路正常导通;当流过负载的电流值超过所述电池的第一放电阈值时,所述受控开关断开,使得电流流经所述限流功率电阻形成限流回路,电池的电量通过限流功率电阻消耗,使得电池的电量能以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,有可能产生电池的二次危害的问题,同时,保证了电路能可靠的限制流过负载的电流,并且不会造成所有的功耗加载在电子开关上,导致电子开关的过热损毁坏。
(13)本发明提供的电池充电保护电路,通过设置防电池反向放电模块,保证了电池仅在与充电电源正确连接时,才导通电池的充电回路,保证了所述电池充电的安全性且不会对充电电源反向放电,延长了电池的使用寿命。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是已知的防爆电池限制电流电路;
图2是根据本发明一个实施例的包含一个限制电流模块的电池防爆电路的电路结构图;
图3是根据本发明一个实施例的包含两个限制电流模块的电池防爆电路的电路结构图;
图4是根据本发明一个实施例的包含一个过压保护二极管的过压保护电路结构图;
图5是根据本发明一个实施例的包含两个过压保护二极管的过压保护电路结构图;
图6是根据本发明一个实施例的电池充电电路的结构图;
图7是根据本发明一个实施例的电池放电保护电路的示意图;
图8是根据本发明一个实施例的电池放电保护电路中的限流保护模块的电路结构图;
图9是根据本发明一个实施例的电池放电保护电路中包含两个限流保护模块的示意图;
图10是根据本发明一个实施例的电池放电保护电路的示意图;
图11是根据本发明一个实施例的电池放电保护电路中的第二比较单元的电路结构图;
图12是根据本发明一个实施例的电池放电保护电路的示意图;
图13是根据本发明一个实施例的电池放电保护电路中的温度检测单元的电路结构图;
图14是根据本发明一个实施例的电池放电保护电路的示意图;
图15是根据本发明一个实施例的电池放电保护电路的过放保护模块的电路结构图;
图16是根据本发明一个实施例的电池放电保护电路的均衡放电保护模块的电路结构图;
图17是根据本发明一个实施例的电池充电保护电路的示意图;
图18是根据本发明一个实施例的电池充电保护电路中的防电池反向放电模块的电路结构图;
图19是根据本发明一个实施例的包含两个防电池反向放电模块的电路结构图;
图20是根据本发明一个实施例的电池充电保护电路的示意图;
图21是根据本发明一个实施例的电池充电保护电路中充电电源过电压保护模块的电路结构图;
图22是根据本发明一个实施例的电池充电保护电路的示意图;
图23是根据本发明一个实施例的电池充电保护电路的过充电保护模块的电路结构图;
图24根据本发明一个实施例的电池充电保护电路的均衡充电保护模块的电路结构图。
附图标记:11-限流保护模块,12-二级限流保护模块,13-温度保护模块,14-过放保护模块,101- 第一比较单元,102-限流单元,102a-受控开关,121-第二比较单元,122-第一受控开关,131-温度检测单元,132-第二受控开关,141-电压检测单元,142-第三受控开关,21-防电池反向放电模块,22-充电电源过电压保护模块,23-过充电保护模块,211-检测充电电源模块,212-受控开关,231-电压检测单元,232-第一受控开关。
具体实施方式
实施例1
作为本发明一个实施例的一种电池防爆电路,如图2所示,图中所示的电力电子开关Q1为P沟道增强型MOS管,所述反馈控制开关Q3为PNP型三极管。本实施例的电池防爆电路包括:
一个限制电流模块,所述限制电流模块包括一个输入端和一个输出端,所述限制电流模块的输入端与电池的正极相连。
所述限制电流模块具体包括:限流电阻R7,保护电阻R10,控制电阻R9,反馈电阻R15,控制电阻R13,电力电子开关Q1和反馈控制开关Q3,其中,
所述电力电子开关Q1和所述反馈控制开关Q3均包括输入端、输出端和控制端,并当所述电力电子开关Q1的输入端和控制端之间的相对电压大于其门限电压阈值时,所述电力电子开关Q1导通;所述反馈控制开关Q3的输入端和控制端之间的相对电压大于其门限电压阈值时,所述反馈控制开关Q3导通;
所述限流电阻R7的一端与所述保护电阻R10的一端相连且它们的连接点作为所述限制电流模块的输入端;
所述限流电阻R7的另一端与所述控制电阻R9的一端相连且它们的连接点与所述电力电子开关Q1的输入端相连;
所述保护电阻R10的另一端与所述反馈控制开关Q3的输入端相连;
所述控制电阻R9的另一端与所述反馈控制开关Q3的控制端相连且它们的连接点与所述反馈电阻R15的一端相连;
所述反馈电阻R15的另一端与所述电力电子开关Q1的输出端相连,且它们的连接点作为所述限制电流模块的输出端;
所述控制电阻R13的一端与所述反馈控制开关Q3的输出端相连,且它们的连接点与所述电力电子开关Q1的控制端相连;
所述控制电阻R13的另一端与电池负极相连。
本发明提供的一种电池防爆电路,当负载正常时,因为控制电阻R9上拉,所以反馈控制开关Q3处于截止状态,同时,由于控制电阻R13下拉到地,使得电力电子开关Q1导通,电流流经限流电阻R7和电力电子开关Q1到负载。当负载短路时,电力电子开关Q1输出端的电压接近电池负极的电压,控制电阻R9和反馈电阻R15对电池的电压进行分压,使得反馈控制开关Q3的输入端与控制端之间相对电压大于其门限电压阈值,反馈控制开关Q3导通。由于反馈控制开关Q3的导通,一部分电流流经保护电阻R10、反馈控制开关Q3和控制电阻R13到电池负极,同时,由于反馈控制开关Q3的导通,将会在控制电阻R13上产生一个高电平,即电力电子开关Q1的控制端为高电平,随着此高电平的不断抬高,电力电子开关Q1将会出现不完全导通状态或者截止状态。当电力电子开关Q1处于不完全导通的状态时,电力电子开关Q1的内阻会很大,此时流经限流电阻R7和电力电子开关Q1到负载的电流将会被限制,则起到了限制负载电流过大的作用;当电力电子开关Q1处于截止状态时,则直接切断了负载电流,保护了电力电子开关Q1不会被损毁,同时,电池电量经限流电阻R7、控制电阻R9和反馈电阻R15以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,有可能产生电池的二次危害的问题。本发明电池电量经限流电阻R7、控制电阻R9和反馈电阻R15以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,导致电池产生二次危害的问题,同时,由于无需给定精确的基准电压,保证了电路能可靠的限制负载电流,并且不会造成所有的功耗加载在电子开关上,导致电子开关过热损毁。
实施例2
如图3所示,作为本发明一个实施例的一种电池防爆电路,在上述实施例1的基础上,所述限制电流模块为两个,两个所述限制电流模块串联连接。
本发明提供的一种电池防爆电路,设置两个限制电流模块,进一步保证了电路的可靠性,当其中一个限制电流模块失效时,依然能保证电路准确的对负载电流进行限制。
实施例3
作为本发明一个实施例的一种电池防爆电路,在上述实施例1或2的基础上,还包括过压保护模块,所述过压保护模块包括一个输入端、一个输出端和一个接地端,所述过压保护模块的输入端和输出端均与所述限制电流模块的输出端相连,所述过压保护模块的接地端与电池负极相连。
本发明提供的一种电池防爆电路,设置过压保护模块,避免电路中产生过高电压,击坏器件。
实施例4
作为本发明一个实施例的一种电池防爆电路,在上述实施例3的基础上,还包括过流保护模块,所述过流保护模块包括一个输入端和输出端,所述过流保护模块的输入端与所述限制电流模块的输出端相连,所述过流保护模块的输出端用于与负载的一端相连。
本发明提供的一种电池防爆电路,设置过流保护模块,当电路中出现大电流时,及时切断负载,保证了电路的安全。
实施例5
作为本发明一个实施例的一种电池防爆电路,在上述实施例4的基础上,还包括滤波电容C8,所述滤波电容C8的一端与所述电池的正极相连,所述滤波电容C8的另一端与所述电池的负极相连。
本发明提供的一种电池防爆电路,设置滤波电容C8,使得电池输出的电流更平稳,利于负载的稳定。
实施例6
如图4所示,作为本发明一个实施例的一种电池防爆电路,在上述实施例3的基础上,所述过压保护模块包括:电容C9,电容C10,过压保护二极管D3,其中,
所述电容C9的一端、所述电容C10的一端和所述过压保护二极管D3的阴极均相连,且它们的连接点作为所述过压保护模块的输入端和输出端;
所述电容C9的另一端、所述电容C10的另一端和所述过压保护二极管D3的阳极均相连且它们的连接点作为所述过压保护模块的接地端。
本发明提供的一种电池防爆电路,过压保护模块的电路简单,即两个电容和一个过压保护二极管,节约了成本。
实施例7
如图5所示,作为本发明一个实施例的一种电池防爆电路,在上述实施例6的基础上,所述过压保护模块中还包括过压保护二极管D4,所述过压保护二极管D4的阴极与所述过压保护二极管D3的阴极相连,所述过压保护二极管D4的阳极与所述过压保护二极管D3的阳极相连。
本发明提供的一种电池防爆电路,在过压保护模块中,设置两个过压保护二极管,提高过压保护模块的可靠性。
实施例8
作为本发明一个实施例的一种电池防爆电路,在上述实施例4的基础上,所述过流保护模块为自恢复保险丝F1,所述自恢复保险丝F1的一端作为所述过流保护模块的输入端,所述自恢复保险丝F1的另一端作为所述过流保护模块的输出端。
本发明提供的一种电池防爆电路,在过流保护模块中,利用自恢复保险丝F1来实现过流保护的目的,当电路中出现大电流时,及时切断负载,保证了电路的安全,当电路中电流恢复正常时,恢复供电,方便使用。
实施例9
作为本发明一个实施例的一种电池防爆电路,在上述实施例1的基础上,所述电力电子开关Q1为P沟道增强型MOS管,所述反馈控制开关Q3为PNP型三极管。
本发明提供的一种电池防爆电路,电力电子开关Q1为P沟道增强型MOS管,所述反馈控制开关Q3为PNP型三极管。由于反馈控制开关Q3处不需要使用电力电子器件,三极管的价格低于电力电子器件,节约了成本。
实施例10
作为本发明一个实施例的一种电池充电电路,所述电池充电电路包括上述1-9任一实施例的电池防爆电路。
实施例11
作为本发明一个实施例的一种电池充电电路,在上述实施例10的基础上,还包括:
整流二极管D1,所述整流二极管D1的阳极与外接直流充电电源的输出端相连,所述整流二极管D1的阴极与充电芯片的输入端相连。避免了由于外接直流充电电源的极性接反,烧坏充电芯片的情况发生。
实施例12
作为本发明一个实施例的一种电池充电电路,在上述实施例11的基础上,还包括整流二极管D2,所述整流二极管D2的阳极与所述整流二极管D1的阴极直接相连,所述整流二极管D2的阴极与所述充电芯片的输入端相连。
本发明提供的一种电池充电电路,设置两个整流二极管,使得在一个整流二极管失效时,仍能避免由于外接直流充电电源的极性接反,烧坏充电芯片的情况发生,提高了电路的安全性。
实施例13
作为本发明一个实施例的一种电池充电电路,在上述实施例12的基础上,还包括电容C1,所述电容C1一端直接与所述整流二极管D2的阴极相连,所述电容C1的另一端接地。电容C1对充电电流进行滤波,使得充电电流平稳。
实施例14
作为本发明一个实施例的一种电池充电电路,在上述实施例13的基础上,包括电容C2,所述电容C2与所述电容C1并联连接。
本发明提供的一种电池充电电路,设置两个并联的电容,使得滤波效果更好,并且当其中一个电容失效时,保证了滤波的顺利进行。
作为一种具体实现方式,包括上述实施例中的各个功能电路,参见图6所示。
实施例15
如图7所示,本发明的提供的一种电池放电保护电路,包括:至少一个限流保护模块11,用于限制流过负载的电流,所述限流保护模块11包括:
第一比较单元101,用于判断流过负载的电流是否超出所述电池的第一放电阈值,当所述电流大于所述第一放电阈值时输出第一电平,当所述电流小于或等于所述第一放电阈值时输出第二电平;
限流单元102,包括受控开关102a(图中示意性的用MOS管表示,采用其他受控开关也是可以的)和与所述受控开关102a两端并联连接的限流功率电阻R25,所述受控开关102a的受控端与所述第一比较单元101连接,当所述受控开关102a的受控端接收到第一电平时使所述受控开关102a断开,当接收第二电平时使所述受控开关102a导通。本实施例提供的电池放电保护电路,当流过负载的电流正常时,所述受控开关102a导通,电路正常导通;当流过负载的电流值超过所述电池的第一放电阈值时,所述受控开关102a断开,使得电流流经所述限流功率电阻R25形成限流回路,电池的电量通过限流功率电阻R25消耗,使得电池的电量能以较小的安全的电流释放,避免了电池的电量存储在电池中无法释放,有可能产生电池的二次危害的问题,同时,保证了电路能可靠的限制流过负载的电流,并且不会造成所有的功耗加载在电子开关上,导致电子开关的过热损毁坏。
实际使用中,由于电池的负极回路比电池的正极回路容易控制,所以优选地将所述限流保护模块11设置于电池的负极和负载的负端之间。
优选地,如图8所示,根据本实施例的第一比较单元101可以包括比较器U3,所述比较器U3的第一输入端(图3中为同相输入端)接收与负载串联的限流检测电阻R29上的电压值,第二输入端(图3中为反相输入端)接收一预设电压值(该预设电压值可以由基准电压源U7提供),当所述限流检测电阻R29上的电压值大于所述预设电压值时输出所述第一电平,当所述限流检测电阻R29上的电压值小于或等于所述预设电压值时输出所述第二电平。本领域技术人员应当理解,采用其他比较电路也是可以的,如采用单片机等实现,只要能实现比较两个电压的大小的功能即可。
通过比较与负载串联的限流检测电阻R29上的电压值与预设电压值的大小来实现比较流过负载的电流与所述电池的第一放电阈值,简单易行,且比较器的成本较低,方便使用。
优选地,如图8所示,根据本实施例的所述限流单元102的受控开关102a可以包括:第一电阻R31、第二电阻R32、第三电阻R35、第一N沟道MOS管Q11、第二N沟道MOS管Q13以及基准电压源U7;其中,所述第三电阻R35的一端作为所述受控开关102a的受控端,另一端分别与所述第二电阻R32的一端、所述第二N沟道MOS管Q13的栅极连接;所述第二电阻R32的另一端分别与所述第一N沟道MOS管Q11的源极、所述第二N沟道MOS管Q13的源极连接;所述第二N沟道MOS管Q13的漏极分别与所述第一N沟道MOS管Q11的栅极、所述第一电阻R31的一端连接;所述第一电阻R31的另一端与基准电压源U7输出端连接;所述第一N沟道MOS管Q11的源极和漏极作为所述受控开关102a的两端。
本实施例提供的所述受控开关102a中,当流过负载的电流值正常时,即所述受控开关102a的受控端接收所述第二电平时,所述第一N沟道MOS管Q11导通,电流流经所述第一N沟道MOS管Q11形成回路;当流过负载的电流值大于所述第一放电阈值时,即所述受控开关102a的受控端接收所述第一电平时,所述第一N沟道MOS管Q11关断,电流流经所述限流功率电阻R25形成限流回路。
虽然图7中仅示出了一个限流保护模块11,但是本实施例中的所述限流保护模块11可以为两个,如图9所示,通过两个限流保护模块11的限流单元102串联连接,进一步保证了电路的可靠性,当其中一个限流保护模块11失效时,依然能保证电路准确的对负载电流进行限制。本领域技术人员应当理解,采用更多个限流保护模块也是可行的。
实施例16
图10是本实施例的电池放电保护电路的示意图,与图7所示的实施例15中的电池放电保护电路的示意图的不同之处在于,图10所示的电池放电保护电路的示意图,还包括:至少一个二级限流保护模 块12,所述二级限流保护模块12包括:第二比较单元121,用于判断所述限流单元102的受控开关102a断开时流过负载的电流是否超出所述电池的第二放电阈值,当所述电流大于所述第二放电阈值时输出过电流信号;第一受控开关122,所述第一受控开关122的受控端与所述第二比较单元121连接,当所述第一受控开关122接收到所述过电流信号时断开则切断电池的放电回路。
通过设置二级限流保护模块12在所述限流单元102中的受控开关102a断开时继续检测流过负载的电流,并将此时检测到的电流值与电池的第二放电阈值进行比较,若此电流值持续增大至超出电池的第二放电阈值,则关断第一受控开关122以切断电池的放电回路。这便进一步保证了流过负载的电流在安全范围的大小。
优选地,如图11所示,本实施例中的第二比较单元121可以包括:第五电阻R43、第六电阻R45、第七电阻R47、第八电阻R49、第九电阻R51、第一二极管D4、第四P沟道MOS管Q15以及第五N沟道MOS管Q18,其中,所述第五电阻R43的一端与所述电池的正极相连;另一端分别与所述第六电阻R45的一端、所述第四P沟道MOS管Q15的源极连接;所述第六电阻R45的另一端分别与所述第七电阻R47的一端、所述第四P沟道MOS管Q15的栅极连接;所述第四P沟道MOS管Q15的漏极作为所述第二比较单元21的输出端;所述第七电阻R47的另一端与所述第一二极管D4的阳极连接;所述第一二极管D4的阴极与所述第五N沟道MOS管Q18的漏极连接;所述第五N沟道MOS管Q18的栅极分别与所述第九电阻R51的一端、所述第八电阻R49的一端连接;所述第五N沟道MOS管Q18的源极分别与所述第九电阻R51的另一端、所述电池的负极连接;所述第八电阻R49的另一端与负载的负端相连。图11中的电容C46和电阻R45并联连接起滤波作用,电容C71、电容C49和电阻R51并联连接,也起滤波作用。
本实施例中的第二比较单元121,当流过负载的电流不超过电池的第二放电阈值时,则第五N沟道MOS管Q18和第四P沟道MOS管Q15均不导通,所述第二比较单元121不输出过电流信号;当流过负载的电流持续增大至超过电池的第二放电阈值时,则第五N沟道MOS管Q18导通,导致第四P沟道MOS管Q15也导通,所述第二比较单元121输出高电平,即输出过电流信号。
优选地,本实施例中的所述二级限流保护模块12可以为两个或更多个,当所述多个二级限流保护模块12中的任一个所述第二比较单元121输出所述过电流信号时,则控制对应的所述第一受控开关122切断电池的放电回路。通过设置至少两个二级限流保护模块12,进一步保证了电路的可靠性,当其中一个二级限流保护模块12失效时,依然能保证电路准确的对负载电流进行限制。
实施例17
图12是本实施例的电池放电保护电路的示意图,与图7所示的实施例15中的电池放电保护电路的示意图的不同之处在于,图12所示的电池放电保护电路的示意图,还包括:至少一个温度保护模块13,所述温度保护模块13包括:温度检测单元131,用于判断所述电池的温度是否超出所述电池的温度允许阈值,当所述电池的温度大于所述温度允许阈值时输出过温信号;第二受控开关132,其中该受控开关可以采用MOS管来实现,所述第二受控开关132的受控端与所述温度检测单元131连接,当所述第二受控开关132接收到所述过温信号时断开则切断了电池的放电回路。
通过设置温度保护模块13,检测电池的温度,保证了电池的温度不至于过高,保证了电池使用的安全性。
优选地,如图13所示,本实施中的所述温度检测单元131包括:第三P沟道MOS管Q20、正温度系数热敏电阻R56、负温度系数热敏电阻R58和第四电阻R72,其中,所述第三P沟道MOS管Q20的栅极分别与所述负温度系数热敏电阻R58的一端、所述正温度系数热敏电阻R56的一端连接;所述第三P沟道MOS管Q20的源极分别与所述正温度系数热敏电阻R56的另一端、所述第四电阻R72的一端连接;所述第三P沟道MOS管Q20的漏极作为所述温度检测单元31的输出端;所述负温度系数热敏电阻R58的另一端与所述电池的负极连接;所述第四电阻R72的另一端与所述电池的正极连接。图13中的电阻R71与所述第三P沟道MOS管Q20的漏极串联,起到保护所述第三P沟道MOS管Q20的作用。
本实施例中的温度检测单元131,通过正温度系数热敏电阻R56和负温度系数热敏电阻R58采集电池温度的变化,当电池的温度大于所述温度允许阈值时,所述第三P沟道MOS管Q20导通,所述温度检测单元131输出高电平,即输出所述过温信号。
优选地,本实施例提供的所述温度保护模块13可以为两个或更多个,当所述多个温度保护模块13中的任一个所述温度检测单元131输出所述过温信号时,则控制对应的所述第二受控开关131切断电池的放电回路。通过设置至少两个温度保护模块13,进一步保证了电路的可靠性,当其中一个温度保护模块13失效时,依然能保证电路准确的对电池的温度进行限制。
实施例18
图14是本实施例的电池放电保护电路的示意图,与图7所示的实施例15中的电池放电保护电路的示意图的不同之处在于,图14所示的电池放电保护电路的示意图,还包括:至少一个过放保护模块14, 所述过放保护模块14包括:电压检测单元141,用于判断所述电池的电压是否小于所述电池的过放电电压阈值,当所述电池的电压小于所述过放电电压阈值时输出过放信号;第三受控开关142,所述第三受控开关142的受控端与所述电压检测单元141连接,当所述第三受控开关142接收到所述过放信号时断开则切断了电池的放电回路。
通过设置过放保护模块14,保证了电池的电压不小于电池的过放电电压阈值,电池过度放电将会缩短电池的寿命,如此设计,有效的延长了电池的使用寿命。
优选地,本实施例中的所述电压检测单元141还用于判断所述第三受控开关142断开时电池的电压是否大于所述电池的过放电解除电压阈值,当所述电池的电压大于所述过放电解除电压阈值时控制所述第三受控开关重新导通以导通电池的放电回路。这便可以在电池的电压升高至大于电池的过放电解除电压阈值,及时导通电池的放电回路,便于及时恢复电池对外放电。
在实际使用中,所述过放保护模块14也可以为两个或更多个,所述过放保护模块14的所述第三受控开关142串联连接即可,当所述过放保护模块14中的任一个所述电压检测单元141输出所述过放信号时,则控制对应的所述第三受控开关142切断电池的放电回路。通过设置多个过放保护模块14提高了电路的可靠性。
作为具体实现方式,如图15所示,当所述电池为两节串联的电池时,所述电压检测单元141可以采用芯片R5460实现,所述第三受控开关142采用N沟道MOS管Q7实现,其中,N沟道MOS管Q7的栅极和芯片R5460的过放控制引脚(Dout)连接;所述N沟道MOS管Q7的源极和电池的负极连接;所述N沟道MOS管Q7的漏极和负载的负端连接。图15中V_BAT_V1表示其中一节电池的电压,V_BAT_V2表示两节串联的电池的电压和。当所述芯片R5460检测到电池的电压小于所述过放电电压阈值时通过过放控制引脚(Dout)输出过放信号,控制N沟道MOS管Q7关断,以切断电池的放电回路;当所述芯片R5460检测到电池的电压大于所述电池的过放电解除电压阈值时,则通过过放控制引脚(Dout)输出过放解除信号,控制N沟道MOS管Q7重新导通,以导通电池的放电回路。芯片R5460的其他引脚的连接关系,与本发明的发明点无关,在此不做详细说明,保持其原有连接关系即可。
实际使用中,所述的第一受控开关122、所述第二受控开关132也可以是所述N沟道MOS管Q7,则将所述第二比较单元121的输出端以及所述温度检测单元131的输出端连接至芯片R5460的过电流检测引脚(V-)即可。当芯片R5460的过电流检测引脚(V-)检测到所述第二比较单元121输出过电流信号时,所述芯片R5460通过过放控制引脚(Dout)控制N沟道MOS管Q7关断,以切断电池的放电回路;当芯片R5460的过电流检测引脚(V-)检测到所述温度检测单元131输出过温信号时,所述芯片R5460通过过放控制引脚(Dout)控制N沟道MOS管Q7关断,以切断电池的放电回路。如此使用,利于节约成本,和电路的集成小型化。本领域技术人员应该可以理解,采用其他芯片或者电路也是可以的,当电池为一节电池的时候,可以采用芯片R5402来实现,芯片R5402引脚的连接关系参照上述芯片R5460即可。
优选地,本实施例提供的电池放电保护电路还可以包括均衡放电保护模块,用于在所述电池为两节串联的电池时,判断所述两节电池的压差是否超过预设值,当大于所述预设值时,则对两节电池进行均衡放电,当小于或者等于所述预设值时,停止对两节电池进行均衡放电。通过对所述两节电池进行均衡放电,以保证两节电池的电量相同。
两节电池串联使用的过程中,电池的电压会不相同,即电池的电量不均衡。如果两节电池长期处于不均衡状态下使用,则有可能造成电池损坏的危险。所述的均衡放电保护模块可以检测两节电池的电量,当检测到两节电池的压差大于预设值时,则所述的均衡放电保护模块以预设置的均衡电流值对两节电池进行均衡放电,当检测到两节电池的压差小于或者等于预设值时,则对两节电池停止均衡放电。
作为一种具体实现方式,如图16所示,均衡放电保护模块可以采用芯片BQ29209来实现。
实施例19
如图17所示,本实施例提供的一种电池充电保护电路,包括:至少一个防电池反向放电模块21,用于防止电池对充电电源反向放电,所述防电池反向放电模块21包括:
检测充电电源模块211,用于判断所述充电电源和所述电池是否正确连接,当所述充电电源正确连接时输出第一电平,当所述充电电源未正确连接时输出第二电平;
受控开关212,所述受控开关212(图中示意性的用MOS管表示,采用其他受控开关也是可以的)的输入端与所述充电电源的正极连接,所述受控开关212的输出端与所述电池的正极连接,所述受控开关212的受控端和所述检测充电电源模块211连接,当所述受控开关212接收所述第一电平时导通,当接收所述第二电平时断开。
市面上的充电电源的型号有很多种,不同的电池对应不同型号的充电电源,所述充电电源和所述电池正确连接是指:如果充电电源为大容量电池时,所述大容量电池和需充电的电池匹配且连接后接触良 好;如果充电电源为充电器时,所述充电器和电池匹配且充电器插头已正确连接、充电器和电池正确连接且接触良好。本领域技术人员应该理解,所述充电电源和所述电池正确连接广泛的指充电电源能正确给电池充电所需要的连接条件,如充电电源的电压在某预设范围内,认为此充电电源可以给电池充电。
通过设置防电池反向放电模块21保证了所述电池仅在与所述充电电源正确连接时,才导通电池的充电回路,保证了所述电池充电的安全性且不会对所述充电电源反向放电,延长了电池的使用寿命,并且节约了能源。
优选地,如图18所示,所述的电池充电保护电路,所述检测充电电源模块211可以包括:霍尔传感器U11、第一P沟道MOS管Q24以及第一电阻R74,其中,所述霍尔传感器U11的输入端分别与所述充电电源的正极(图2中用V_BAT_IN表示)、所述第一电阻R74的一端、所述第一P沟道MOS管Q24的源极连接,所述霍尔传感器U11的输出端分别与所述第一电阻R74的另一端、所述第一P沟道MOS管Q24的栅极连接,用于检测所述充电电源和所述电池是否正确连接;所述第一P沟道MOS管Q24的漏极作为所述检测充电电源模块11的输出端。图2中的电容C75连接于充电电源的正极和负极之间,起到滤波的作用。霍尔传感器U11例如可以采用芯片WSH131实现,通过霍尔传感器U11检测所述充电电源和所述电池是否正确连接;有利于电路的集成小型化。
优选地,如图18所示,所述受控开关212可以包括:第二P沟道MOS管Q2、第三N沟道MOS管Q5、第二电阻R1、第三电阻R3以及第四电阻R8,其中,所述第四电阻R8的一端作为所述受控开关12的受控端;另一端与所述第三N沟道MOS管Q5的栅极连接;所述第三N沟道MOS管Q5的源极与所述充电电源的负极连接;所述第三N沟道MOS管Q5的漏极与所述第三电阻R3的一端连接;所述第三电阻R3的另一端分别与所述第二P沟道MOS管Q2的栅极、所述第二电阻R1的一端连接;所述第二电阻R1的另一端与所述第二P沟道MOS管Q2的源极连接;所述第二P沟道MOS管Q2的漏极作为所述受控开关的输入端;所述第二P沟道MOS管Q2的源极作为所述受控开关的输出端。图2中的电阻R73和第四电阻R8串联后连接充电电源的负极,起到保护第三N沟道MOS管Q5的作用。
本实施例提供的受控开关212中,当受控开关212的受控端接收第一电平时,即充电电源和所述电池正确连接时,第二P沟道MOS管Q2和第三N沟道MOS管Q5均导通,电池正常充电;当受控开关212的受控端接收第二电平时,即充电电源和所述电池未正确连接时,第三N沟道MOS管Q5关断,同时,第二P沟道MOS管Q2关断,则切断了电池向充电电源反向放电的回路。同时,在电池充电的主回路上采用第二P沟道MOS管Q2相对于现有技术中采用二极管作为防反充的电路来说,降低了主回路上的压降,因为MOS管导通时的压降远小于二极管导通时候的压降,从而有利于更好的对电池进行充电。
优选地,所述防电池反向放电模块21可以为两个或多个,所述防电池反向放电模块的1所述受控开关212串联。当所述多个防电池反向放电模块21中的任一个所述检测充电电源模块211输出第二电平时,则控制对应的所述受控开关212切断电池的充电回路。通过设置至少两个防电池反向放电模块21,进一步保证了电路的可靠性,当其中一个防电池反向放电模块21失效时,依然能保证电路准确的防止电池对充电电源反向放电。
在实际使用中,由于霍尔传感器检测电池是否与充电电源正确连接的可靠性较高,所以多个防电池反向放电模块21中的检测充电电源模块211可以通用,仅设置多个受控开关212即可。图19示出了采用一个检测充电电源模块211和两个受控开关212的实施方式。当检测充电电源模块211检测到电池和充电电源正确连接时,输出第一电平,则第二P沟道MOS管Q2、第三N沟道MOS管Q5、P沟道MOS管Q3、N沟道MOS管Q6均导通,电池正常充电;当当检测充电电源模块211检测到电池和充电电源不正确连接时,输出第二电平,则第二P沟道MOS管Q2、第三N沟道MOS管Q5、P沟道MOS管Q3、N沟道MOS管Q6均关断,则切断了电池的充电回路,即切断了电池向充电电源反向放电的回路。
实施例20
图20是本实施例的电池充电保护电路的示意图,与图17所示的实施例19中的电池充电保护电路的示意图的不同之处在于,图20所示的电池充电保护电路,还包括:充电电源过电压保护模块22,用于当充电电源的电压大于预设阈值时,切断电池的充电回路。如图21所示,所述充电电源过电压保护模块22可以包括第四P沟道MOS管Q1、第一二极管D1以及第五电阻R7,其中,所述第四P沟道MOS管Q1的源极分别与所述充电电源的正极(图21中用V_BAT_IN表示)、所述第一二极管D1的阴极连接;所述第四P沟道MOS管Q1的漏极和所述电池的正极连接;所述第四P沟道MOS管Q1的栅极分别与所述第一二极管D1的阳极、所述第五电阻R7的一端连接;所述第五电阻R7的另一端与所述充电电源的负极连接。图21中与第一二极管D1并联的电容C9起到滤波的作用。
本实施例中的充电电源过电压保护模块22,当充电电源的电压不大于预设阈值时,所述第四P沟道MOS管Q1导通,电池正常充电;当充电电源的电压大于预设阈值时,所述第一二极管D1将会被击穿,则导致所述第四P沟道MOS管Q1关断,则切断了电池的充电回路。通过设置充电电源过电压保护模块 22,在充电电源的电压异常时,及时切断了电池的充电回路,保护了电池。
实施例21
图22是本实施例的电池充电保护电路的示意图,与图17所示的实施例19中的电池充电保护电路的示意图的不同之处在于,图22所示的电池充电保护电路,还包括至少一个过充电保护模块23,用于限制电池充电时的电压,所述过充电保护模块23包括:电压检测单元231,用于判断所述电池的电压是否大于所述电池的过充电检测电压阈值,当所述电池的电压大于所述过充电检测电压阈值时输出过充电信号;第一受控开关232,所述第一受控开关232的受控端与所述电压检测单元231相连,当所述第一受控开关232的受控端接收到所述过充电信号时断开则切断电池的充电回路。虽然图22示意出的过充电保护模块23设置于充电电源的负极和电池的负极之间,本领域技术人员应当可以理解所述过充电保护模块23设置于充电电源的正极和电池的正极之间也是可以的,只要能实现切断电池的充电回路的功能则可以。
通过设置过充电保护模块23,保证了电池的电压不大于电池的过充电检测电压阈值,电池过度充电将会缩短电池的寿命,如此设计,有效的延长了电池的使用寿命。
优选地,所述过充电保护模块23可以为两个或多个,所述过充电保护模块23的所述第一受控开关232串联连接,当所述多个过充电保护模块23中的任一个所述电压检测单元231输出所述过充电信号时,则控制对应的所述第一受控开关232切断电池的充电回路。通过设置至少多个过充电保护模块23,进一步保证了电路的可靠性,当其中一个过充电保护模块23失效时,依然能保证电路准确的对电池的电压进行限制。
优选地,本实施例中的所述电压检测单元231还可以用于判断所述第一受控开关232断开时电池的电压是否小于所述电池的过充电保护解除电压阈值,当所述电池的电压小于所述过充电保护解除电压阈值时控制所述第一受控开关232重新导通以导通电池的充电回路。这便可以在电池的电压降低至小于电池的过充电保护解除电压阈值时,及时导通电池的充电回路,便于及时对电池的充电。
作为具体实现方式,如图23所示,当所述电池为两节串联的电池时,所述电压检测单元231可以采用芯片R5460实现,所述第一受控开关232采用N沟道MOS管Q8实现,其中,N沟道MOS管Q8的栅极与芯片R5460的过充控制引脚(Cout)连接,所述N沟道MOS管Q8的源极和充电电源的负极连接,所述N沟道MOS管Q8的漏极和电池的负极连接。图23中V_BAT_V1表示其中一节电池的电压,V_BAT_V2表示两节串联的电池的电压和。当所述芯片R5460检测到电池的电压大于所述过充电检测电压阈值时通过过充控制引脚(Cout)输出过充信号,控制N沟道MOS管Q8关断,以切断电池的充电回路;当所述芯片R5460检测到电池的电压小于所述电池的过充电保护解除电压阈值时,则通过过充控制引脚(Cout)输出过充解除信号,控制N沟道MOS管Q8重新导通,以导通电池的充电回路。芯片R5460的其他引脚的连接关系,与本发明的发明点无关,在此不做详细说明,保持其原有连接关系即可。本领域技术人员应该可以理解,采用其他芯片或者电路也是可以的,当电池为一节电池的时候,可以采用芯片R5402来实现,芯片R5402引脚的连接关系参照上述芯片R5460即可。
优选地,本实施例提供的电池充电保护电路,还可以包括均衡充电保护模块,用于在所述电池为两节串联的电池时,判断所述两节电池的压差是否超过预设值,当大于所述预设值时,则对两节电池进行均衡放电,当小于或者等于所述预设值时,停止对两节电池进行均衡放电。
两节电池串联使用的过程中,电池的电压会不相同,即电池的电量不均衡。如果两节电池长期处于不均衡状态下使用,则有可能造成电池损坏的危险。所述的均衡充电保护模块可以检测两节电池的电量,当检测到两节电池的压差大于预设值时,则所述的均衡放电保护模块以预设置的均衡电流值对两节电池进行均衡放电,当检测到两节电池的压差小于或者等于预设值时,则对两节电池停止均衡放电。
作为一种具体实现方式,如图24所示,均衡放电保护模块可以采用芯片BQ29209来实现。同时,芯片BQ29209可以检测电池的电压,当所述电池的电压大于二级过充电保护电压阈值时,则经N沟道MOS管Q23输出二级过充电信号给所述第四P沟道MOS管Q1,以关断所述第四P沟道MOS管Q1,则切断电池的充电回路。这进一步确保了电池充电过程中的安全。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (36)

  1. 一种电池防爆电路,其特征在于,包括:
    至少一个限制电流模块,所述限制电流模块包括一个输入端和一个输出端,所述限制电流模块的输入端与电池的正极相连;
    所述限制电流模块具体包括:限流电阻R7,保护电阻R10,控制电阻R9,反馈电阻R15,控制电阻R13,电力电子开关Q1和反馈控制开关Q3,其中,
    所述电力电子开关Q1和所述反馈控制开关Q3均包括输入端、输出端和控制端,并当所述电力电子开关Q1的输入端和控制端之间的相对电压大于其门限电压阈值时,所述电力电子开关Q1导通;所述反馈控制开关Q3的输入端和控制端之间的相对电压大于其门限电压阈值时,所述反馈控制开关Q3导通;
    所述限流电阻R7的一端与所述保护电阻R10的一端相连且它们的连接点作为所述限制电流模块的输入端;
    所述限流电阻R7的另一端与所述控制电阻R9的一端相连且它们的连接点与所述电力电子开关Q1的输入端相连;
    所述保护电阻R10的另一端与所述反馈控制开关Q3的输入端相连;
    所述控制电阻R9的另一端与所述反馈控制开关Q3的控制端相连且它们的连接点与所述反馈电阻R15的一端相连;
    所述反馈电阻R15的另一端与所述电力电子开关Q1的输出端相连,且它们的连接点作为所述限制电流模块的输出端;
    所述控制电阻R13的一端与所述反馈控制开关Q3的输出端相连,且它们的连接点与所述电力电子开关Q1的控制端相连;
    所述控制电阻R13的另一端与电池的负极相连。
  2. 根据权利要求1所述的一种电池防爆电路,其特征在于,所述限制电流模块为两个,两个所述限制电流模块串联连接。
  3. 根据权利要求1或2所述的一种电池防爆电路,其特征在于,还包括过压保护模块,所述过压保护模块包括一个输入端、一个输出端和一个接地端,所述过压保护模块的输入端和输出端均与所述限制电流模块的输出端相连,所述过压保护模块的接地端与电池负极相连。
  4. 根据权利要求3所述的一种电池防爆电路,其特征在于,还包括过流保护模块,所述过流保护模块包括一个输入端和输出端,所述过流保护模块的输入端与所述限制电流模块的输出端相连,所述过流保护模块的输出端用于与负载的一端相连。
  5. 根据权利要求4所述的一种电池防爆电路,其特征在于,还包括滤波电容C8,所述滤波电容C8的一端与所述电池的正极相连,所述滤波电容C8的另一端与所述电池的负极相连。
  6. 根据权利要求3所述的一种电池防爆电路,其特征在于,所述过压保护模块包括:电容C9,电容C10,过压保护二极管D3,其中,
    所述电容C9的一端、所述电容C10的一端和所述过压保护二极管D3的阴极均相连,且它们的连接点作为所述过压保护模块的输入端和输出端;
    所述电容C9的另一端、所述电容C10的另一端和所述过压保护二极管D3的阳极均相连且它们的连接点作为所述过压保护模块的接地端。
  7. 根据权利要求6所述的一种电池防爆电路,其特征在于,所述过压保护模块中还包括过压保护二极管D4,所述过压保护二极管D4的阴极与所述过压保护二极管D3的阴极相连,所述过压保护二极管D4的阳极与所述过压保护二极管D3的阳极相连。
  8. 根据权利要求4所述的一种电池防爆电路,其特征在于,所述过流保护模块为自恢复保险丝F1,所述自恢复保险丝F1的一端作为所述过流保护模块的输入端,所述自恢复保险丝F1的另一端作为所述过流保护模块的输出端。
  9. 根据权利要求1所述的一种电池防爆电路,其特征在于,所述电力电子开关Q1为P沟道增强型MOS管,所述反馈控制开关Q3为PNP型三极管。
  10. 一种电池充电电路,其特征在于,所述电池充电电路包括权利要求1-9任一所述的电池防爆电路。
  11. 根据权利要求10所述的一种电池充电电路,其特征在于,还包括:
    整流二极管D1,所述整流二极管D1的阳极与外接直流充电电源的输出端相连,所述整流二极管D1 的阴极与充电芯片的输入端相连。
  12. 根据权利要求11所述的一种电池充电电路,其特征在于,还包括整流二极管D2,所述整流二极管D2的阳极与所述整流二极管D1的阴极直接相连,所述整流二极管D2的阴极与所述充电芯片的输入端相连。
  13. 根据权利要求12所述的一种电池充电电路,还包括电容C1,所述电容C1一端直接与所述整流二极管D2的阴极相连,所述电容C1的另一端接地。
  14. 根据权利要求13所述的一种电池充电电路,包括电容C2,所述电容C2与所述电容C1并联连接。
  15. 一种电池放电保护电路,其特征在于,包括至少一个限流保护模块,用于限制流过负载的电流,所述限流保护模块包括:
    第一比较单元,用于判断流过负载的电流是否超出所述电池的第一放电阈值,当所述电流大于所述第一放电阈值时输出第一电平,当所述电流小于或等于所述第一放电阈值时输出第二电平;
    限流单元,包括受控开关和与所述受控开关两端并联连接的限流功率电阻,所述受控开关的受控端与所述第一比较单元连接,当所述受控开关的受控端接收到第一电平时使所述受控开关断开,当接收第二电平时使所述受控开关导通。
  16. 根据权利要求15所述的电池放电保护电路,其特征在于,所述第一比较单元包括比较器(U3),所述比较器(U3)的第一输入端接收与负载串联的限流检测电阻上的电压值,第二输入端接收一预设电压值,当所述限流检测电阻上的电压值大于所述预设电压值时输出所述第一电平,当所述限流检测电阻上的电压值小于或等于所述预设电压值时输出所述第二电平。
  17. 根据权利要求15所述的电池放电保护电路,其特征在于,所述限流单元的受控开关包括:第一电阻(R31)、第二电阻(R32)、第三电阻(R35)、第一N沟道MOS管(Q11)、第二N沟道MOS管(Q13)以及基准电压源(U7);其中,
    所述第三电阻(R35)的一端作为所述受控开关的受控端,另一端分别与所述第二电阻(R32)的一端、所述第二N沟道MOS管(Q13)的栅极连接;
    所述第二电阻(R32)的另一端分别与所述第一N沟道MOS管(Q11)的源极、所述第二N沟道MOS管(Q13)的源极连接;
    所述第二N沟道MOS管(Q13)的漏极分别与所述第一N沟道MOS管(Q11)的栅极、所述第一电阻(R31)的一端连接;
    所述第一电阻(R31)的另一端与基准电压源(U7)输出端连接;
    所述第一N沟道MOS管(Q11)的源极和漏极作为所述受控开关的两端。
  18. 根据权利要求15所述的电池放电保护电路,其特征在于,所述限流保护模块为多个,所述限流保护模块的限流单元串联连接。
  19. 根据权利要求15所述的电池放电保护电路,其特征在于,还包括:至少一个二级限流保护模块,所述二级限流保护模块包括:
    第二比较单元,用于判断所述限流单元的受控开关断开时流过负载的电流是否超出所述电池的第二放电阈值,当所述电流大于所述第二放电阈值时输出过电流信号;
    第一受控开关,所述第一受控开关的受控端与所述第二比较单元连接,当所述第一受控开关接收到所述过电流信号时断开则切断了电池的放电回路。
  20. 根据权利要求19所述的电池放电保护电路,其特征在于,所述第二比较单元包括:第五电阻(R43)、第六电阻(R45)、第七电阻(R47)、第八电阻(R49)、第九电阻(R51)、第一二极管(D4)、第四P沟道MOS管(Q15)以及第五N沟道MOS管(Q18),其中,
    所述第五电阻(R43)的一端与所述电池的正极相连;另一端分别与所述第六电阻(R45)的一端、所述第四P沟道MOS管(Q15)的源极连接;
    所述第六电阻(R45)的另一端分别与所述第七电阻(R47)的一端、所述第四P沟道MOS管(Q15)的栅极连接;
    所述第四P沟道MOS管(Q15)的漏极作为所述第二比较单元的输出端;
    所述第七电阻(R47)的另一端与所述第一二极管(D4)的阳极连接;
    所述第一二极管(D4)的阴极与所述第五N沟道MOS管(Q18)的漏极连接;
    所述第五N沟道MOS管(Q18)的栅极分别与所述第九电阻(R51)的一端、所述第八电阻(R49)的一端连接;
    所述第五N沟道MOS管(Q18)的源极分别与所述第九电阻(R51)的另一端、所述电池的负极连接;
    所述第八电阻(R49)的另一端与负载的负端相连。
  21. 根据权利要求19所述的电池放电保护电路,其特征在于,所述二级限流保护模块为多个,当 所述多个二级限流保护模块中的任一个所述第二比较单元输出所述过电流信号时,则控制对应的所述第一受控开关切断电池的放电回路。
  22. 根据权利要求15所述的电池放电保护电路,其特征在于,还包括:至少一个温度保护模块,所述温度保护模块包括:
    温度检测单元,用于判断所述电池的温度是否超出所述电池的温度允许阈值,当所述电池的温度大于所述温度允许阈值时输出过温信号;
    第二受控开关,所述第二受控开关的受控端与所述温度检测单元连接,当所述第二受控开关接收到所述过温信号时断开则切断了电池的放电回路。
  23. 根据权利要求22所述的电池放电保护电路,其特征在于,所述温度检测单元包括:第三P沟道MOS管(Q20)、正温度系数热敏电阻(R56)、负温度系数热敏电阻(R58)和第四电阻(R72),其中,
    所述第三P沟道MOS管(Q20)的栅极分别与所述负温度系数热敏电阻(R58)的一端、所述正温度系数热敏电阻(R56)的一端连接;
    所述第三P沟道MOS管(Q20)的源极分别与所述正温度系数热敏电阻(R56)的另一端、所述第四电阻(R72)的一端连接;
    所述第三P沟道MOS管(Q20)的漏极作为所述温度检测单元的输出端;
    所述负温度系数热敏电阻(R58)的另一端与所述电池的负极连接;
    所述第四电阻(R72)的另一端与所述电池的正极连接。
  24. 根据权利要求22所述的电池放电保护电路,其特征在于,所述温度保护模块为多个,当所述多个温度保护模块中的任一个所述温度检测单元输出所述过温信号时,则控制对应的所述第二受控开关切断电池的放电回路。
  25. 根据权利要求15所述的电池放电保护电路,其特征在于,还包括:至少一个过放保护模块,所述过放保护模块包括:
    电压检测单元,用于判断所述电池的电压是否小于所述电池的过放电电压阈值,当所述电池的电压小于所述过放电电压阈值时输出过放信号;
    第三受控开关,所述第三受控开关的受控端与所述电压检测单元连接,当所述第三受控开关接收到所述过放信号时断开则切断了电池的放电回路。
  26. 根据权利要求25所述的电池放电保护电路,其特征在于,所述电压检测单元还用于判断所述第三受控开关断开时电池的电压是否大于所述电池的过放电解除电压阈值,当所述电池的电压大于所述过放电解除电压阈值时控制所述第三受控开关重新导通以导通电池的放电回路。
  27. 根据权利要求15所述的电池放电保护电路,其特征在于,还包括均衡放电保护模块,用于在所述电池为两节串联的电池时,判断所述两节电池的压差是否超过预设值,当大于所述预设值时,则对两节电池进行均衡放电,当小于或者等于所述预设值时,停止对两节电池进行均衡放电。
  28. 一种电池充电保护电路,其特征在于,包括:至少一个防电池反向放电模块,用于防止电池对充电电源反向放电,所述防电池反向放电模块包括:
    检测充电电源模块,用于判断所述充电电源和所述电池是否正确连接,当所述充电电源正确连接时输出第一电平,当所述充电电源未正确连接时输出第二电平;
    受控开关,所述受控开关的输入端与所述充电电源的正极连接,所述受控开关的输出端与所述电池的正极连接,所述受控开关的受控端和所述检测充电电源模块连接,当所述受控开关接收所述第一电平时导通,当接收所述第二电平时断开。
  29. 根据权利要求28所述的电池充电保护电路,其特征在于,所述检测充电电源模块包括:霍尔传感器(U11)、第一P沟道MOS管(Q24)以及第一电阻(R74),其中,
    所述霍尔传感器(U11)的输入端分别与所述充电电源的正极、所述第一电阻(R74)的一端、所述第一P沟道MOS管(Q24)的源极连接,所述霍尔传感器(U11)的输出端分别与所述第一电阻(R74)的另一端、所述第一P沟道MOS管(Q24)的栅极连接,用于检测所述充电电源和所述电池是否正确连接;
    所述第一P沟道MOS管(Q24)的漏极作为所述检测充电电源模块的输出端。
  30. 根据权利要求28所述的电池充电保护电路,其特征在于,所述受控开关包括:第二P沟道MOS管(Q2)、第三N沟道MOS管(Q5)、第二电阻(R1)、第三电阻(R3)以及第四电阻(R8),其中,
    所述第四电阻(R8)的一端作为所述受控开关的受控端;另一端与所述第三N沟道MOS管(Q5)的栅极连接;
    所述第三N沟道MOS管(Q5)的源极与所述充电电源的负极连接;所述第三N沟道MOS管(Q5)的漏极与所述第三电阻(R3)的一端连接;
    所述第三电阻(R3)的另一端分别与所述第二P沟道MOS管(Q2)的栅极、所述第二电阻(R1)的 一端连接;
    所述第二电阻(R1)的另一端与所述第二P沟道MOS管(Q2)的源极连接;
    所述第二P沟道MOS管(Q2)的漏极作为所述受控开关的输入端;
    所述第二P沟道MOS管(Q2)的源极作为所述受控开关的输出端。
  31. 根据权利要求28所述的电池充电保护电路,其特征在于,所述防电池反向放电模块为多个,所述防电池反向放电模块的所述受控开关串联连接。
  32. 根据权利要求28所述的电池充电保护电路,其特征在于,还包括:充电电源过电压保护模块,用于当充电电源的电压大于预设阈值时,切断电池的充电回路,所述充电电源过电压保护模块包括第四P沟道MOS管(Q1)、第一二极管(D1)以及第五电阻(R7),其中,
    所述第四P沟道MOS管(Q1)的源极分别与所述充电电源的正极、所述第一二极管(D1)的阴极连接;
    所述第四P沟道MOS管(Q1)的漏极和所述电池的正极连接;
    所述第四P沟道MOS管(Q1)的栅极分别与所述第一二极管(D1)的阳极、所述第五电阻(R7)的一端连接;
    所述第五电阻(R7)的另一端与所述充电电源的负极连接。
  33. 根据权利要求28所述的电池充电保护电路,其特征在于,还包括至少一个过充电保护模块,用于限制电池充电时的电压,所述过充电保护模块包括:
    电压检测单元,用于判断所述电池的电压是否大于所述电池的过充电检测电压阈值,当所述电池的电压大于所述过充电检测电压阈值时输出过充电信号;
    第一受控开关,所述第一受控开关的受控端与所述电压检测单元相连,当所述第一受控开关的受控端接收到所述过充电信号时断开则切断电池的充电回路。
  34. 根据权利要求33所述的电池充电保护电路,其特征在于,所述过充电保护模块为多个,所述过充电保护模块的所述第一受控开关串联连接,当所述多个过充电保护模块中的任一个所述电压检测单元输出所述过充电信号时,则控制对应的所述第一受控开关切断电池的充电回路。
  35. 根据权利要求33或34所述的电池充电保护电路,其特征在于,所述电压检测单元还用于判断所述第一受控开关断开时电池的电压是否小于所述电池的过充电保护解除电压阈值,当所述电池的电压小于所述过充电保护解除电压阈值时控制所述第一受控开关重新导通以导通电池的充电回路。
  36. 根据权利要求28所述的电池充电保护电路,其特征在于,还包括均衡充电保护模块,用于在所述电池为两节串联的电池时,判断所述两节电池的压差是否超过预设值,当大于所述预设值时,则对两节电池进行均衡放电,当小于或者等于所述预设值时,停止对两节电池进行均衡放电。
PCT/CN2015/078782 2014-05-13 2015-05-12 电池防爆电路、充电电路以及充、放电保护电路 WO2015172710A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15792078.6A EP3145043B1 (en) 2014-05-13 2015-05-12 Explosion-proof circuit, charging circuit and charging/discharging protection circuit of battery
US15/310,520 US20170170653A1 (en) 2014-05-13 2015-05-12 Explosion-proof circuit, charging circuit and charging/discharging protection circuit of battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410201103.4A CN103956721B (zh) 2014-05-13 2014-05-13 电池防爆电路以及电池充电电路
CN201410201103.4 2014-05-13
CN201420725910.1U CN204205573U (zh) 2014-11-27 2014-11-27 电池充电保护电路
CN201420727061.3 2014-11-27
CN201420727061.3U CN204216632U (zh) 2014-11-27 2014-11-27 电池放电保护电路
CN201420725910.1 2014-11-27

Publications (1)

Publication Number Publication Date
WO2015172710A1 true WO2015172710A1 (zh) 2015-11-19

Family

ID=54479333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078782 WO2015172710A1 (zh) 2014-05-13 2015-05-12 电池防爆电路、充电电路以及充、放电保护电路

Country Status (3)

Country Link
US (1) US20170170653A1 (zh)
EP (1) EP3145043B1 (zh)
WO (1) WO2015172710A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108454445A (zh) * 2018-04-19 2018-08-28 上海充加新能源科技有限公司 一种双枪充电桩
CN108891263A (zh) * 2018-06-27 2018-11-27 珠海银隆电器有限公司 一种高压控制电路以及高压控制箱
CN110212488A (zh) * 2019-06-28 2019-09-06 上海鼎充新能源技术有限公司 一种简易直流防过电压电路
CN112737055A (zh) * 2021-01-13 2021-04-30 南昌嘉信高科技有限公司 充电保护电路及电子设备
CN116388116A (zh) * 2023-04-20 2023-07-04 深圳市乐祺微电子科技有限公司 一种自动识别电动工具类型设置过流保护参数电路

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447045B2 (en) * 2015-01-30 2019-10-15 Sony Corporation Power control device, power control method, and power control system
KR102296132B1 (ko) * 2015-02-16 2021-08-31 삼성에스디아이 주식회사 배터리 팩 및 그의 구동방법
CN108281991A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种线路保护电路、方法及供电线缆
JP6966864B2 (ja) * 2017-04-20 2021-11-17 エイブリック株式会社 バッテリ装置
CN107153387B (zh) * 2017-06-30 2023-11-24 深圳市睿立科技有限公司 一种共享充电宝
CN107394851B (zh) * 2017-08-30 2019-08-23 深圳可立克科技股份有限公司 充电器输出端短路快速保护电路及蓄电池充电器
CN109450031A (zh) * 2018-12-03 2019-03-08 京信通信***(中国)有限公司 一种电池过放电保护电路
CN111835048B (zh) * 2019-04-22 2022-07-15 添可智能科技有限公司 充放电切换电路及电子设备
CN109980621B (zh) * 2019-04-29 2024-05-14 杭州协能科技股份有限公司 电池组热插拔保护电路及保护方法
CN110661313B (zh) * 2019-09-26 2023-06-02 宁夏电通物联网科技股份有限公司 一种基于分立元件的窗口电压控制蓄电池放电保护电路
KR20210087813A (ko) * 2020-01-03 2021-07-13 주식회사 엘지에너지솔루션 릴레이 제어 장치
CN111293755B (zh) * 2020-03-20 2021-11-16 烟台艾睿光电科技有限公司 一种并联电池组均衡放电的保护电路及可充电装置
CN113517726A (zh) * 2020-04-09 2021-10-19 宁德时代新能源科技股份有限公司 开关关断电路
CN113533926B (zh) * 2020-04-15 2022-12-13 宇通客车股份有限公司 一种电池***充电回路及其故障检测方法、装置
CN113721160B (zh) * 2020-05-26 2022-12-13 宇通客车股份有限公司 一种电池***加热回路及其故障检测方法
CN111835069A (zh) * 2020-07-24 2020-10-27 维沃移动通信有限公司 充电装置
CN114256939B (zh) * 2022-02-25 2022-08-12 荣耀终端有限公司 过放保护电路、电池保护板和电子设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343137A (en) * 1992-01-28 1994-08-30 Sanyo Electric Co., Ltd. Apparatus to prevent complete battery discharge
CN200973022Y (zh) * 2006-09-14 2007-11-07 郑州市联合能源电子有限公司 单体电池或子电池组保护电路及电池组均衡放电控制装置
CN101908755A (zh) * 2009-06-02 2010-12-08 鸿富锦精密工业(深圳)有限公司 电池过放电保护装置
CN101916887A (zh) * 2003-10-14 2010-12-15 布莱克和戴克公司 电池组
CN102025177A (zh) * 2010-12-07 2011-04-20 中国农业大学 蓄电池组电压均衡器
CN102111007A (zh) * 2011-03-18 2011-06-29 青岛海信移动通信技术股份有限公司 带保护功能的电池充电电路及座式充电器
US20130148246A1 (en) * 2011-12-12 2013-06-13 Samsung Sdi Co., Ltd Protection circuit of battery pack and battery pack using the same
CN203063859U (zh) * 2012-11-27 2013-07-17 深圳市德塔电动汽车科技有限公司 矿用隔爆兼本安型电源控制器
CN203104067U (zh) * 2013-03-26 2013-07-31 卧龙电气集团股份有限公司 一种恒压限流充电器
CN103618014A (zh) * 2013-12-05 2014-03-05 深圳英利新能源有限公司 一种额定功率不超过5w的防爆太阳能组件
CN103956721A (zh) * 2014-05-13 2014-07-30 北京拓盛电子科技有限公司 电池防爆电路以及电池充电电路
CN203826946U (zh) * 2014-05-13 2014-09-10 北京拓盛电子科技有限公司 电池防爆电路以及电池充电电路
CN204205573U (zh) * 2014-11-27 2015-03-11 北京拓盛电子科技有限公司 电池充电保护电路
CN204216632U (zh) * 2014-11-27 2015-03-18 北京拓盛电子科技有限公司 电池放电保护电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2915133B2 (ja) * 1990-11-19 1999-07-05 キヤノン株式会社 モータの給電回路
JPH0525945U (ja) * 1991-09-13 1993-04-02 日本無線株式会社 電流制限回路
US5726505A (en) * 1995-01-13 1998-03-10 Omron Corporation Device to prevent reverse current flow, rectifier device and solar generator system
US5684663A (en) * 1995-09-29 1997-11-04 Motorola, Inc. Protection element and method for protecting a circuit
KR100263551B1 (ko) * 1996-10-12 2000-08-01 윤종용 2차 배터리 충전 회로
ATE239999T1 (de) * 1999-03-31 2003-05-15 Pepperl & Fuchs Sicherheitsbarriere zum begrenzen von strom und spannung
FR2830379B1 (fr) * 2001-10-03 2004-08-06 Agence Spatiale Europeenne Dispositif de protection d'une source de tension et d'une charge alimentee par la source de tension
US6841059B1 (en) * 2002-04-25 2005-01-11 Brunswick Corporation Hull potential monitor device having a plurality of annunciators
JP3981886B2 (ja) * 2003-03-11 2007-09-26 株式会社デンソー 整流回路
US7145313B2 (en) * 2004-06-29 2006-12-05 Motorola Inc. Battery protection circuit for simulating an overcurrent condition based on battery current flow
GB2425852B (en) * 2005-05-05 2007-05-09 Compxs Uk Ltd Battery voltage regulator
CN202034757U (zh) * 2011-04-27 2011-11-09 北京立华莱康平台科技有限公司 保护电路
JP2013165631A (ja) * 2012-01-13 2013-08-22 Sanyo Electric Co Ltd スイッチ回路及びパック電池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343137A (en) * 1992-01-28 1994-08-30 Sanyo Electric Co., Ltd. Apparatus to prevent complete battery discharge
CN101916887A (zh) * 2003-10-14 2010-12-15 布莱克和戴克公司 电池组
CN200973022Y (zh) * 2006-09-14 2007-11-07 郑州市联合能源电子有限公司 单体电池或子电池组保护电路及电池组均衡放电控制装置
CN101908755A (zh) * 2009-06-02 2010-12-08 鸿富锦精密工业(深圳)有限公司 电池过放电保护装置
CN102025177A (zh) * 2010-12-07 2011-04-20 中国农业大学 蓄电池组电压均衡器
CN102111007A (zh) * 2011-03-18 2011-06-29 青岛海信移动通信技术股份有限公司 带保护功能的电池充电电路及座式充电器
US20130148246A1 (en) * 2011-12-12 2013-06-13 Samsung Sdi Co., Ltd Protection circuit of battery pack and battery pack using the same
CN203063859U (zh) * 2012-11-27 2013-07-17 深圳市德塔电动汽车科技有限公司 矿用隔爆兼本安型电源控制器
CN203104067U (zh) * 2013-03-26 2013-07-31 卧龙电气集团股份有限公司 一种恒压限流充电器
CN103618014A (zh) * 2013-12-05 2014-03-05 深圳英利新能源有限公司 一种额定功率不超过5w的防爆太阳能组件
CN103956721A (zh) * 2014-05-13 2014-07-30 北京拓盛电子科技有限公司 电池防爆电路以及电池充电电路
CN203826946U (zh) * 2014-05-13 2014-09-10 北京拓盛电子科技有限公司 电池防爆电路以及电池充电电路
CN204205573U (zh) * 2014-11-27 2015-03-11 北京拓盛电子科技有限公司 电池充电保护电路
CN204216632U (zh) * 2014-11-27 2015-03-18 北京拓盛电子科技有限公司 电池放电保护电路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108454445A (zh) * 2018-04-19 2018-08-28 上海充加新能源科技有限公司 一种双枪充电桩
CN108891263A (zh) * 2018-06-27 2018-11-27 珠海银隆电器有限公司 一种高压控制电路以及高压控制箱
CN110212488A (zh) * 2019-06-28 2019-09-06 上海鼎充新能源技术有限公司 一种简易直流防过电压电路
CN112737055A (zh) * 2021-01-13 2021-04-30 南昌嘉信高科技有限公司 充电保护电路及电子设备
CN112737055B (zh) * 2021-01-13 2022-11-01 南昌嘉信高科技有限公司 充电保护电路及电子设备
CN116388116A (zh) * 2023-04-20 2023-07-04 深圳市乐祺微电子科技有限公司 一种自动识别电动工具类型设置过流保护参数电路
CN116388116B (zh) * 2023-04-20 2024-05-14 深圳市乐祺微电子科技有限公司 一种自动识别电动工具类型设置过流保护参数电路

Also Published As

Publication number Publication date
EP3145043A4 (en) 2017-10-18
US20170170653A1 (en) 2017-06-15
EP3145043B1 (en) 2020-04-22
EP3145043A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2015172710A1 (zh) 电池防爆电路、充电电路以及充、放电保护电路
CN104600676B (zh) 电池保护电路、电能提供装置与电子装置
JP5061935B2 (ja) 電池パック
US7902794B2 (en) Over-voltage protected battery charger with bypass
JP6510674B2 (ja) リチウムイオン二次電池の保護回路及び電池パック
US20200221780A1 (en) Overheat protection circuit, electronic cigarette and electronic equipment
TW200529532A (en) Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack
WO2019169968A1 (zh) 电池保护电路及电子烟
US9130371B2 (en) Portable power with available AC power
CN204216632U (zh) 电池放电保护电路
WO2017201740A1 (zh) 电池保护板、电池和移动终端
CN107346912B (zh) 一种充放电管理集成ic
GB2563311A (en) Circuits, systems and methods for protecting batteries
WO2021063288A1 (zh) 一种电池及汽车诊断平板
US20150180091A1 (en) Accumulator battery protected against external short-circuits
WO2021253848A1 (zh) 电池保护电路、电池管理***、电池装置及其控制方法
CN105471018A (zh) 充放电控制装置及电池装置
WO2017201735A1 (zh) 电池保护板、电池和移动终端
WO2004070908A1 (ja) バイパス抵抗付き二次電池と二次電池の保護方法
CN203690903U (zh) 电池欠压保护电路
CN210137202U (zh) 电池保护电路及机器人
CN209419247U (zh) 一种锂电池高温自动保护板
CN210350810U (zh) 电源充电保护装置
CN113541257A (zh) 充电输入保护装置及该装置的充电过压过温保护方法
WO2016082149A1 (zh) 一种电池过放保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015792078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015792078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15310520

Country of ref document: US