WO2015169569A1 - Procédé de détermination de débit de fuite - Google Patents

Procédé de détermination de débit de fuite Download PDF

Info

Publication number
WO2015169569A1
WO2015169569A1 PCT/EP2015/058463 EP2015058463W WO2015169569A1 WO 2015169569 A1 WO2015169569 A1 WO 2015169569A1 EP 2015058463 W EP2015058463 W EP 2015058463W WO 2015169569 A1 WO2015169569 A1 WO 2015169569A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
test object
housing
enclosed space
test gas
Prior art date
Application number
PCT/EP2015/058463
Other languages
German (de)
English (en)
Inventor
Holger Leonhard
Dieter SENN
Franz Glatz
Original Assignee
Endress+Hauser Gmbh+Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Gmbh+Co. Kg filed Critical Endress+Hauser Gmbh+Co. Kg
Publication of WO2015169569A1 publication Critical patent/WO2015169569A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2884Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/223Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for pipe joints or seals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/225Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2853Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipe joints or seals

Definitions

  • the invention relates to a method for Bestinnnnung the leakage rate in a leak test of a test object.
  • DIN EN 1779 specifies criteria for the selection of test methods for leak testing.
  • a leak test depends on the selection of the test method. Before selecting the test method, it must be clarified what the specified permissible leakage rate for the test object is and whether the test object has sufficient mechanical resistance to the test pressure. Furthermore, it must be clarified whether a leak should be found or whether the overall tightness of the test object is required, or whether the size of the leakage rate should be determined.
  • test costs should be considered when selecting the method. This is not only about the time required, but also about the costs of test equipment and possibly the type and quantity of the used
  • Test gas In the leak test a variety of methods and methods are known. For leak tests with detectable test gases such as
  • Vacuum method and the overpressure method In the vacuum method, the test object is evacuated.
  • the test gas is located outside the test object and is sucked into the test object by possible leaks.
  • a test gas detector connected to the vacuum such as a
  • Mass spectrometer measures the amount of test gas that has entered the test object.
  • the test object is filled from inside with test gas, while a defined overpressure is set. Exiting test gas is detected, for example, by a sniffer probe, and the amount of leaked test gas is measured.
  • Both the vacuum method and the overpressure method use two test methods: a local and an integral method.
  • the test gas is sprayed with a gun at the point to be tested (vacuum method), or the area to be tested is traversed with a sniffer probe (overpressure method).
  • the integral method the test object is in a shell that is enriched with test gas (vacuum method), or in the corresponding shell of the increase in concentration of emerging from the test object test gas is measured (overpressure method).
  • the local method is used to locate leaks.
  • the measurement of the leakage rate is due to air currents on the test object only very inaccurate or not possible.
  • the test gas concentration in the ambient air increases using the vacuum method
  • a plastic film is placed around the area to be tested and sealed at the ends with adhesive tape.
  • the test gas is then sprayed or sniffed into this casing.
  • the volume of the shell is small, but undefined.
  • the attachment of the shell is time consuming and cumbersome. Tape residues may interfere with later use. Due to these problems, the sheath is generally dispensed with in practice and simply tested locally. This results in a very high consumption of helium and a completely undefined test process which, moreover, does not comply with the standard.
  • the invention is based on the object, a method and an apparatus for determining the leakage rate in a leak test of a
  • the invention relates to a method for determining the leakage rate in a leak test of a test object.
  • the method comprises the method steps, generating a negative pressure in the test object,
  • the negative pressure in the test object can be arbitrarily small. However, the smaller the negative pressure, the more effective the method according to the invention is. The most effective method works under vacuum or high vacuum. As a test gas helium is usually used. However, there are also hydrogen and other detectable gases in question.
  • the wrapping device defines a clear volume into which the test gas flows, the test gas concentration in the Determine wrapping device. This will make it possible for the first time
  • test gas concentration in the enclosed space of the housing remains approximately constant, so that when determining the leakage rate does not constantly have to be reckoned with a modified test gas concentration in the enclosed space.
  • the wrapping device is placed at a connecting region of two tubular components of the test object. Since welded together tubular components form a circumferential weld and the round weld particularly often tends to form leaks, it is advantageous to attach the wrapping device at this point.
  • the object of the invention is also achieved by a wrapping apparatus which is suitable for carrying out the method according to the invention.
  • the wrapping device comprises a housing, wherein a surface of the housing facing the test object is adapted at least in sections to a surface of the test object facing the housing, and wherein the housing has at least one first opening through which the test gas can be filled into the housing.
  • the housing on a surface facing the test object at least partially on a permeable to the test gas layer. Between the permeable layer and the housing At least one intermediate space is provided in which the test gas
  • the spaces serve as a test gas storage and release the stored test gas to a constant educagaskonzentration in the
  • the housing at one
  • the sealing material ensures that the test gas does not escape through a gap between the housing and the test object.
  • the housing has a deposit on a surface facing the test object, which comprises the layer permeable to the test gas and / or the edge-side sealing material.
  • the insert comprises both the permeable layer for the test gas and the edge-side sealing material.
  • the insert consists of
  • the housing comprises a first half-shell and a second half-shell, and the first and the second
  • Half shell are connected by a hinge. In this way, the housing can be easily mounted on the test object and disassemble again.
  • the housing has at least one second opening for the outflow of the test gas from the housing.
  • the second opening serves to allow the test gas to flow out of the enclosed space of the housing in a targeted manner.
  • Fig. 1 a plan view of a wrapping device with unfolded
  • Fig. 2 a side view of a wrapping device with folded
  • FIG. 1 shows a plan view of a wrapping apparatus 1 for carrying out the method according to the invention.
  • the wrapping apparatus 1 is suitable for fastening to a test object 2.
  • the test object 2 is tubular and consists of a first and a second component 14, 15, which in a
  • Connecting region 4 are welded together.
  • the welding together of the first and the second tubular component 14, 15 leads to a circumferential weld 16 in the connection region 4.
  • the method according to the invention is suitable for carrying out a leak test of the circumferential weld 16 and, if the circumferential weld 16 has a leak, the leakage rate with which the test gas flows through the leak to determine.
  • the wrapping device 1 comprises a housing 5 with a first and a second half-shell 1 1, 12.
  • the first half-shell 1 1 has a hollow-shaped inner region with a first insert 10 and the second half-shell 12 has a hollow-shaped inner region with a second insert 17.
  • the Height Iförm igen inner regions with the inserts 10, 17 of the first and second half-shell 1 1, 12 form the test object 2 facing surface of the housing 5 and are adapted to a housing 5 facing surface of the test object 2.
  • the first and second inserts 10, 17 are made of silicone rubber and each extend from the inner region to an edge region of the first and the second half-shell 1 1, 12.
  • the first half-shell 1 1 has a first opening 6, which through the first Insert 10 connects a space enclosed by the first insert 10 space 3 with the environment.
  • the second half-shell 1 1 has a second opening (not shown) which connects through the second insert 17 a space 3 enclosed by the second insert 17 with the surroundings.
  • the first and the second half-shell 1 1, 12 are connected to each other by means of a hinge 13, so that the first and the second half-shell 1 1, 12 can be opened and closed, wherein Fig. 1, the first and second
  • Half shell 1 1, 12 in the unfolded state shows.
  • the tubular test object 2 is arranged in the second half-shell 12.
  • Fig. 2 shows a side view of a wrapping device 1, wherein the first and the second half-shell 1 1, 12 are closed, wherein the tubular
  • first and the second half-shell 1 1, 12 each one
  • Interspace 8 which is located between the first and the second insert 10, 17 and the first and the second half-shell 1 1, 12.
  • the inventive method can be performed only in the closed state of the half-shells 1 1, 12. In this state, a negative pressure is first generated in the test object 2. The negative pressure is so great that a high vacuum is created in the test object 2. Subsequently, helium, which acts as a test gas, is filled through the first opening 6 into the housing 5. The helium spreads in the housing 5 and escapes through the second Opening (not shown). Since the first and second inserts 10, 17 off
  • Silicone rubber and silicone rubber are made up to one
  • the edge region of the first and second half-shell 1 1, 12 extends, the silicone rubber acts as a sealant at the edge region and seals a gap between the first and the second half-shell 1 1, 12 and the
  • Test object 2 so that the helium can not escape through this gap. After a certain time, the helium concentration in the housing 5 reaches an approximately constant value.
  • connection region 4 If the circular weld in the connection region 4 has a leak, the helium is due to the high vacuum in the test object. 2
  • a helium detector (not shown) is connected, which constantly measures and monitors the helium concentration.
  • the helium concentration in the test object 2 rises above the helium concentration in the air.
  • the helium concentration in the test object 2 can be compared with the helium concentration in the housing 5 of the wrapping apparatus 1. From this comparison, it is possible to deduce the leakage rate of helium through the leak.
  • the gaps 8 have no access to the first or second opening 6.
  • the helium concentration in a space 3 enclosed by the first and second inserts 10, 17 reaches a constant value. Since the silicone rubber is permeable to helium, the helium diffuses through the first and second inserts 10, 17 and reaches the interstices 8. In this way, the same helium concentration sets in the spaces 8 as in the enclosed space 3. Indicates the circular weld 16 of the
  • connection area 4 leaks, helium flows through the leak and the helium concentration in enclosed space 3 decreases. Since the original helium concentration still prevails in the intermediate spaces 8, the helium diffuses from the gaps 8 through the permeable layer of the first and second inserts 10, 17 in the direction of
  • Gaps 8 as helium storage, which keep the helium concentration in the housing 5 constant.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

L'invention concerne un procédé de détermination du débit de fuite lors d'un essai d'étanchéité d'un objet à contrôler (2), comprenant les étapes consistant à : générer une pression négative dans l'objet à contrôler (2); envelopper une partie au moins de la surface de l'objet à contrôler (2) au moyen d'un dispositif d'enveloppement (1) de telle façon que l'espace (3) inclus entre le dispositif d'enveloppement (1) et l'objet à contrôler (2) définit un volume déterminé; remplir l'espace inclus (3) avec un gaz d'essai; détecter la fraction du gaz d'essai dans l'objet à contrôler (2); comparer la fraction du gaz d'essai dans l'espace inclus (3) à la fraction du gaz d'essai dans l'objet à contrôler (2); déterminer le débit de fuite sur la base de la comparaison de la fraction du gaz d'essai dans l'espace inclus (3) avec la fraction du gaz d'essai dans l'objet à contrôler (2).
PCT/EP2015/058463 2014-05-05 2015-04-20 Procédé de détermination de débit de fuite WO2015169569A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014106191.8A DE102014106191B4 (de) 2014-05-05 2014-05-05 Umhüllvorichtung zum Durchführen eines Verfahrens zur Bestimmung der Leckagerate
DE102014106191.8 2014-05-05

Publications (1)

Publication Number Publication Date
WO2015169569A1 true WO2015169569A1 (fr) 2015-11-12

Family

ID=52997434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/058463 WO2015169569A1 (fr) 2014-05-05 2015-04-20 Procédé de détermination de débit de fuite

Country Status (2)

Country Link
DE (1) DE102014106191B4 (fr)
WO (1) WO2015169569A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098309A1 (fr) 2016-11-22 2018-05-31 Redline Detection, Llc Procédé et appareil de détection de fuite de fluide
CN110595698A (zh) * 2019-10-21 2019-12-20 哈电集团(秦皇岛)重型装备有限公司 管管对接焊缝氦质谱检漏装置及检漏方法
CN110822296A (zh) * 2018-08-13 2020-02-21 波音公司 用于检测管道中的泄漏的外部泄漏检测***
CN110873629A (zh) * 2020-01-16 2020-03-10 潍坊东方钢管有限公司 管道外用压力检测装置
US20210041325A1 (en) * 2019-08-08 2021-02-11 Advanced Pressure Technology Method for pressurized leak testing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726508A (zh) * 2019-10-31 2020-01-24 广东合立鼎峰科技有限公司 一种基于自动抽空***的真空度及真空泄露的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1225895B (de) * 1963-06-28 1966-09-29 Felten & Guilleaume Carlswerk Verfahren und Vorrichtung zum Pruefen der Rundschweissnaht von Rohren auf Dichtigkeit
US3842659A (en) * 1971-12-30 1974-10-22 Pont A Mousson Method and apparatus for testing the helium tightness of tubular bodies
US20030233866A1 (en) * 1999-12-22 2003-12-25 Inficon Gmbh Method for operating a film leak indicator and a corresponding film leak indicator for carrying out said method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282743A (en) * 1979-09-18 1981-08-11 The United States Of America As Represented By The United States Department Of Energy Leak test fitting
US4507954A (en) * 1983-06-27 1985-04-02 Tubing Testors, Inc. Wraparound used for testing tubing with premixed gases
DE4137070C2 (de) * 1991-11-12 1995-03-09 Dresden Vakuumtech Gmbh Verfahren zur Dichtheitsprüfung von Prüfkörpern mit Fügestellen und Einrichtung dazu
DE19820913A1 (de) * 1998-05-09 2000-09-28 Jochen Meisel Verfahren zur hochgenauen Messung der Emissionen von Flanschverbindungen
DE102005007609A1 (de) * 2005-02-18 2006-08-31 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Kaltleckprüfung an einer Vakuumeinrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1225895B (de) * 1963-06-28 1966-09-29 Felten & Guilleaume Carlswerk Verfahren und Vorrichtung zum Pruefen der Rundschweissnaht von Rohren auf Dichtigkeit
US3842659A (en) * 1971-12-30 1974-10-22 Pont A Mousson Method and apparatus for testing the helium tightness of tubular bodies
US20030233866A1 (en) * 1999-12-22 2003-12-25 Inficon Gmbh Method for operating a film leak indicator and a corresponding film leak indicator for carrying out said method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098309A1 (fr) 2016-11-22 2018-05-31 Redline Detection, Llc Procédé et appareil de détection de fuite de fluide
EP3545119A4 (fr) * 2016-11-22 2020-10-28 Redline Detection, LLC Procédé et appareil de détection de fuite de fluide
CN110822296A (zh) * 2018-08-13 2020-02-21 波音公司 用于检测管道中的泄漏的外部泄漏检测***
EP3633342A1 (fr) * 2018-08-13 2020-04-08 The Boeing Company Système de détection de fuite externe pour détecter une fuite dans un conduit
US11009423B2 (en) 2018-08-13 2021-05-18 The Boeing Company External leak detection system to detect a leak in a conduit
CN110822296B (zh) * 2018-08-13 2023-02-17 波音公司 用于检测管道中的泄漏的外部泄漏检测***
US20210041325A1 (en) * 2019-08-08 2021-02-11 Advanced Pressure Technology Method for pressurized leak testing
US11519813B2 (en) * 2019-08-08 2022-12-06 Advanced Pressure Technology Method for pressurized leak testing
CN110595698A (zh) * 2019-10-21 2019-12-20 哈电集团(秦皇岛)重型装备有限公司 管管对接焊缝氦质谱检漏装置及检漏方法
CN110873629A (zh) * 2020-01-16 2020-03-10 潍坊东方钢管有限公司 管道外用压力检测装置

Also Published As

Publication number Publication date
DE102014106191B4 (de) 2021-11-18
DE102014106191A1 (de) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015169569A1 (fr) Procédé de détermination de débit de fuite
DE102011086486B4 (de) Vorrichtung und Verfahren zur schnellen Lecksuche an formsteifen/schlaffen Verpackungen ohne Zusatz von Prüfgas
EP3198251B1 (fr) Dispositif et procédé d'étalonnage une chambre à membrane pour la détection de fuite
EP3394588B1 (fr) Mesure approximative de fuite d'un échantillon incompressible dans une chambre à film
EP3194922B1 (fr) Chambre à parois souples comportant un volume de mesure pour détecter de manière approximative une fuite
DE102014211228A1 (de) Differenzdruckmessung mit Folienkammer
DE102012217945A1 (de) Folienkammer und Verfahren zur Leckagedetektion an einem nicht formstarren Prüfling
EP3120128A1 (fr) Chambre de test de fuites sous vide souple
DE102018118208A1 (de) Prüfverfahren zum Prüfen eines Kabels auf Dichtheit sowie Dichtheitsprüfeinrichtung zur Durchführung des Verfahrens
DE112017002705T5 (de) Verfahren zur Dichtheitsprüfung und Referenzleckvorrichtung zur Dichtheitsprüfung
EP1519186B1 (fr) Méthode et appareil de test pour des matériaux perméables à l'air
DE2403360A1 (de) Leckpruefverfahren
DE102018202451B4 (de) Pouchzellen-Dichtheitsmessanordnung und Verfahren zur Messung einer Dichtheit von Pouchzellen
EP1119753A1 (fr) Procede pour actionner un detecteur de fuites pelliculaire et detecteur de fuites pelliculaire adapte audit procede
DE102011050162A1 (de) Prüfvorrichtung zur Prüfung der Dichtigkeit eines hochwasserdichten Fensters
EP1240491B1 (fr) Procede d'exploitation d'un detecteur pelliculaire de fuites et detecteur pelliculaire de fuites correspondant pour mettre ledit procede en oeuvre
EP1388003B1 (fr) Systeme pour le controle de systemes servant a verifier l'etancheite d'un corps creux
DE4412762C2 (de) Verfahren und Einrichtung zur Prüfung der Wasserdichtigkeit von Uhrengehäusen
DE102017201004A1 (de) Folienkammer mit Doppelfolie
DE102022120483B3 (de) Verfahren und system zur dichtheitsprüfung eines batteriegehäuses
DE102015011232A1 (de) Prüfkammer zur Verwendung in einem Gas- und Feuchtigkeitsdichteprüfstand
DE102012000610A1 (de) Vorrichtung zur Leckageprüfung einer Druckgasanlage
DE2418795C3 (de) Testkammer für Lecksuchgeräte
DE102022116897A1 (de) System und Verfahren zum Detektieren der inneren Leckage eines Brennstoffzellenstapels
DD241124A1 (de) Einrichtung zur dynamischen dichtheitspruefung von konstruktionselementen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15717876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15717876

Country of ref document: EP

Kind code of ref document: A1