WO2015163621A1 - 하이브리드형 히트펌프 장치 - Google Patents

하이브리드형 히트펌프 장치 Download PDF

Info

Publication number
WO2015163621A1
WO2015163621A1 PCT/KR2015/003683 KR2015003683W WO2015163621A1 WO 2015163621 A1 WO2015163621 A1 WO 2015163621A1 KR 2015003683 W KR2015003683 W KR 2015003683W WO 2015163621 A1 WO2015163621 A1 WO 2015163621A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
air
heat exchanger
water
hot water
Prior art date
Application number
PCT/KR2015/003683
Other languages
English (en)
French (fr)
Inventor
이동근
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP15783561.2A priority Critical patent/EP3136022B1/en
Priority to CN201580021135.9A priority patent/CN106255858B/zh
Priority to JP2016563091A priority patent/JP6348987B2/ja
Priority to US15/305,594 priority patent/US9951963B2/en
Publication of WO2015163621A1 publication Critical patent/WO2015163621A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • F24F2003/1464Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators using rotating regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/021Compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present invention relates to a hybrid heat pump device that can be performed by performing a dehumidification and cooling function and a heating function.
  • Electric heat pump is disclosed as a conventional cold and heating device. Electric heat pumps are commonly used as cooling and heating devices because of their advantages such as rapid cooling and heating, low product prices, and simple installation.
  • the electric heat pump has a disadvantage in that the electrical performance is large and the heating performance is drastically lowered as the outside temperature is lowered. In addition, there is a problem that heating operation is impossible during the defrost mode operation.
  • Dehumidification cooling technology is a technique for performing the cooling by using the latent heat load treatment by the dehumidifier and the temperature decrease by the evaporation heat.
  • the dehumidification cooling technology uses a dehumidifier to remove the latent heat load by removing moisture contained in the air, and supplies the moisture to the dehumidified dry air to lower the air temperature by the heat of evaporation by evaporation.
  • the cooling cycle is performed by configuring a circulation cycle to repeat the process.
  • the dehumidification and cooling technology has been continuously developed as a renewable energy technology in terms of low energy consumption and environmental friendliness.
  • the patent discloses a dehumidification rotor rotatably installed over a housing, a first casing in which interior and outdoor flow paths are formed by partition walls, and an interior and outdoor flow path of the first casing.
  • a dehumidification module including a second casing disposed inside the housing and having an indoor side and an outdoor side flow path formed by a partition wall, and a regeneration unit for heating air passing through one of the indoor side and outdoor side flow paths.
  • a cooling module including a regeneration module and a third casing disposed inside the housing and having an inner side and an outer side passage formed by the partition wall, and a sensible heat rotor rotatably installed over the inner side and the outer side passage.
  • the structure should be further provided with a separate blower to allow the cooling air to circulate smoothly along the supply path of the cooling air.
  • This blower should usually be a high static pressure high airflow blower.
  • the conventional dehumidifying air conditioner also has the disadvantage of increasing the electricity consumption.
  • the conventional dehumidifying air conditioner can be used only for indoor cooling, there is a problem in that a heating device such as the electric heat pump or the like must be separately provided for indoor heating.
  • the present invention is to solve the above problems of the prior art, provided with a heat pump device to which the dehumidification cooling technology is applied, can be applied even if the structure is not provided with an air circulation duct, and also provides a cooling function and heating function It is to provide a hybrid type heat pump apparatus that can perform both.
  • a hybrid heat pump device includes a housing, a first channel through which first air passes through the housing, a second channel through which second air passes through the housing, and A dehumidification rotor rotatably disposed within the housing and disposed to span the first channel and the second channel and to absorb moisture from the second air dried and passed by the first air passed therethrough, the first channel A heating unit arranged to be closer to the inlet side of the first air than the dehumidification rotor in the heating unit, and closer to the outlet side of the second air than the dehumidifying rotor in the second channel in the second channel And a cooling unit configured to selectively cool the second air disposed and passed therethrough.
  • a first heat exchanger, a second heat exchanger, and a four-way valve disposed closer to the discharge side of the second air than the cooling unit in the second channel in the second channel, wherein the refrigerant is controlled by the four-way valve.
  • the refrigerant circulation unit circulated in the compressor, the first heat exchanger, the second heat exchanger, and the compressor, or vice versa, and water circulated and circulated in the refrigerant in the second heat exchanger.
  • a water circulation tube connected to the second heat exchanger to exchange heat with the second heat exchanger.
  • a hybrid heat pump device includes a housing, a first channel formed to pass first air in the housing, a second channel formed to pass second air in the housing, A third channel formed to pass a third air in the housing, the first channel disposed to be rotatable in the housing and disposed to pass over the first channel, the second channel, and the third channel;
  • a dehumidification rotor that absorbs moisture from the second air and the third air dried and passed by air, the first passage being disposed closer to the inlet side of the first air than the dehumidification rotor in the first channel; 1 is a heating unit for heating the air, the second air in the second channel is disposed closer to the discharge side of the second air than the dehumidification rotor and selectively passes through the second air
  • the third channel for cooling may comprise a second cooling unit for cooling the third air passage is disposed closer to the discharge side of the third air than the dehumidification rotor.
  • a first heat exchanger, a second heat exchanger, and a four-way valve disposed closer to the discharge side of the second air than the cooling unit in the second channel.
  • the compressor the first heat exchanger, the second heat exchanger, and the compressor, or vice versa, and a refrigerant circulated in the water and the water circulated in the second heat exchanger. It may include a water circulation pipe connected to the second heat exchanger to exchange heat with the refrigerant.
  • the water circulation pipe is connected and heat exchanged with a heat source selectively supplied with water circulating through the water circulation tube passing through the second heat exchanger.
  • the third heat exchanger may be further included.
  • the third heat exchanger is connected to a hot water pipe to which hot water is selectively supplied, and the water circulating in the water circulation pipe is connected to the hot water pipe.
  • the flowing hot water may be heat exchanged using the heat source.
  • the water circulation pipe is connected and heat exchanged with a heat source selectively supplied with water circulating through the water circulation tube passing through the second heat exchanger.
  • a third heat exchanger is further included, wherein the heating unit includes a hot water coil, wherein the third heat exchanger is connected to a hot water pipe to which hot water is selectively supplied, and the water circulating in the water circulation pipe is
  • the hot water flowing through the hot water pipe as the heat source, the inlet pipe to which the hot water is introduced, the supply side pipe of the hot water pipe connected to the third heat exchanger, and the inlet side pipe connected to the inlet side of the hot water coil are three-way. It can be connected to each other by a valve.
  • a first blower disposed in the first channel and forcing the first air to pass through, or disposed in the second channel, the second air It may further comprise a second blower forcing the passage.
  • a first blower disposed in the first channel to force the first air to pass therethrough, and a second blower disposed in the second channel to allow the second air to pass through. It may further include a second blower forcing to, or a third blower disposed in the third channel forcing the third air to pass through.
  • the first blower or the second blower and the hybrid type heat pump device according to the second embodiment of the present invention, may be selectively started or stopped by the controller.
  • At least part of the water circulation pipe may be embedded in at least one of a floor, a ceiling, and a wall of the room.
  • At least part of the water circulation pipe may be disposed in a fan coil unit.
  • the first air is air introduced into the first channel from the outside, and the first air passing through the first channel is outdoors. Can be discharged.
  • the second air is air introduced into the second channel from the outside, and the second air heat exchanged in the first heat exchanger is It can be discharged outdoors.
  • the apparatus may further include a water supply unit disposed in the second channel and operable to spray water to the surface of the first heat exchanger. .
  • the heating part may include a hot water coil through which hot water flows.
  • the third air is air introduced into the third channel from the room, and the third air passing through the third channel is discharged to the room. Can be.
  • a damper is disposed between the second channel and the third channel, and a damper that opens and closes so that the second channel and the third channel communicate with each other. ) May be further included.
  • the air filter may further include an air filter disposed in the third channel.
  • the conventional dehumidification cooling technology is applied to perform a function as an energy-efficient and eco-friendly cooling device, as well as to perform a function as a heating device without additional heating device.
  • the dehumidified and cooled air is not supplied to the room during the cooling mode operation, but is used for condensation of the refrigerant.
  • the water circulating in the water circulation pipe is cooled, and the cooled water is circulated. Since the room is cooled by utilizing the water circulation pipe, it provides an advantage that can be applied to the structure for indoor cooling even if a separate air circulation duct is not provided.
  • the hot water supplied to the hot water coil in the cooling mode operation, or hot water supplied through the hot water pipe in the heating mode operation, when using the hot water recycled by heating the waste heat provides an advantage that the energy efficiency is improved.
  • FIG. 1 is a configuration diagram schematically showing a hybrid heat pump apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cooling mode operation state diagram illustrating a state during cooling mode operation of the heat pump apparatus illustrated in FIG. 1.
  • FIG. 3 is an operation state diagram illustrating a state during the first heating mode operation of the heat pump apparatus illustrated in FIG. 1.
  • FIG. 4 is an operation state diagram showing the state during defrost mode operation of the heat pump apparatus shown in FIG.
  • FIG. 5 is an operation state diagram illustrating the state at the time of the second heating mode operation of the heat pump apparatus shown in FIG. 1;
  • FIG. 6 is an operation state diagram illustrating the state during the third heating mode operation of the heat pump apparatus illustrated in FIG. 1.
  • FIG. 1 is a configuration diagram schematically showing a hybrid heat pump apparatus according to an embodiment of the present invention.
  • the hybrid type heat pump apparatus 1 includes a housing 100, a dehumidifying rotor 101, a heating unit 111, a cooling unit 121, and a refrigerant circulation.
  • the housing 100 is formed by partitioning the first channel 110 and the second channel 120 through which the air passes through the partition wall 102.
  • the air passing through the first channel 110 may be defined as the first air.
  • the first air may be, for example, air introduced into the first channel 110 from the outdoors.
  • the first air may be discharged to the outside after passing through the first channel 110.
  • the heating part 111 is disposed in the first channel 110.
  • the heating unit 111 is disposed closer to the left side of the first channel 110 based on the inflow side of the first air, that is, as shown, than the dehumidifying rotor 101 to be described later.
  • the first air passing through the first channel 110 passes through the heating part 111 and then passes through a dehumidifying rotor 101 to be described later.
  • the heating unit 111 may provide heat due to electrical resistance, for example, by including a heat coil.
  • the hot water coil 113 may be provided to provide heat by hot water.
  • the inlet side pipe 114 may be formed at the inlet side of the hot water coil 113.
  • the outlet side pipe 115 may be formed on the outlet side of the hot water coil 113.
  • Inlet side pipe 114 is connected to the inlet pipe (50).
  • the hot water supplied through the inlet pipe 50 is supplied to the hot water coil 113 through the inlet side pipe 114, and flows out of the hot water coil 113 and then is discharged through the outlet side pipe 115.
  • the hot water supplied through the water inlet pipe 50 may be district heating hot water heated by using waste heat generated during a factory or heat combined cycle power generation. In this case, there is an advantage of efficiently using energy by recycling waste heat.
  • the first air passing through the heating unit 111 is heated while heat-exchanging with hot water flowing through the hot water coil 113.
  • the first air heated by the heater 111 dries the dehumidifying rotor 101 while passing through the dehumidifying rotor 101 to be described later.
  • the dehumidifying rotor 101 is arranged to be rotatable in the housing 100.
  • the first channel 110 and the second channel 120 are disposed to span.
  • the dehumidifying rotor 101 may absorb moisture from the air passing through the dehumidifying rotor 101 by forming an adsorbent such as silica gel or zeolite on the contact surface with air.
  • an adsorbent such as silica gel or zeolite
  • the air passing through the second channel 120 may be defined as second air.
  • the second air can be, for example, air introduced from outside. Moisture is removed by the dehumidification rotor 101 in the process of passing the second air through the dehumidification rotor 101.
  • the cooling unit 121 is disposed in the second channel 120. At this time, the cooling unit 121 is disposed closer to the left side of the second channel 120 on the discharge side of the second air, that is, as shown, than the dehumidification rotor 101. The second air passing through the second channel 120 passes through the dehumidification rotor 101 and then passes through the cooling unit 121.
  • the cooling unit 121 cools the dehumidified second air while passing through the dehumidification rotor 101.
  • the cooling unit 121 may be, for example, an evaporative cooler that injects water into the second air passing through the cooling unit 121 to cool the second air in the evaporation process of the injected water.
  • the cooling unit 121 is selectively operated to cool the second air by being operated to spray water or stopped by the control unit. In other words, when the cooling unit 121 is controlled to be operated by the control unit, the second air passing through the cooling unit 121 is cooled by the cooling unit 121. However, when the cooling unit 121 is controlled to be stopped by the control unit, the second air passing through the cooling unit 121 is not cooled.
  • the cooling unit 121 is stopped, and the second air passing through the dehumidification rotor 101 is not cooled and will be described later.
  • the first heat exchanger 142 to be directed.
  • the coolant circulation unit 140 constitutes a circuit in which the coolant is circulated.
  • the refrigerant circulation unit 140 includes a compressor 141 for compressing the refrigerant, a first heat exchanger 142 for condensation or evaporation of the refrigerant through heat exchange, and a process for evaporating or condensing the refrigerant through heat exchange. And a second heat exchanger (144).
  • the first heat exchanger 142 is disposed in the second channel 120.
  • the first heat exchanger 142 is disposed closer to the discharge side of the second air than the cooling unit 121.
  • An expansion valve 143 may be disposed between the first heat exchanger 142 and the second heat exchanger 144 to allow the refrigerant to expand.
  • the refrigerant circulation unit 140 includes a four-way valve 145 to change the circulation direction of the refrigerant when the cooling mode or the heating mode of the heat pump device 1 is switched.
  • the four-way valve 145 is controlled by the control unit to switch the circulation direction of the refrigerant.
  • the refrigerant is transferred to the compressor 141 through the compressor 141, the first heat exchanger 142, the expansion valve 143, and the second heat exchanger 144. Can be cycled to return.
  • the first heat exchanger 142 then functions as a condenser and the second heat exchanger 144 functions as an evaporator.
  • the refrigerant is transferred to the compressor 141 through the compressor 141, the second heat exchanger 144, the expansion valve 143, and the first heat exchanger 142. Can be cycled to return.
  • the first heat exchanger 142 serves as the evaporator and the second heat exchanger 144 serves as the condenser.
  • the heat pump apparatus 1 in order to further lower the condensation temperature of the refrigerant in the first heat exchanger 142 functioning as a condenser in the cooling mode operation, water in the first heat exchanger 142 It may further include a water supply unit 123 to operate to spray.
  • the water supply unit 123 is disposed in the second channel 120 and may be controlled to be activated or stopped by the controller.
  • the heat of the second air passing through the second channel 120 may be removed during the process of passing through the first heat exchanger 142. 1 is absorbed as latent heat of evaporation of water injected onto the surface of the heat exchanger 142, and is further cooled. As a result, the condensation temperature of the refrigerant heat-exchanged with the second air may be further lowered, thereby improving the condensation efficiency.
  • the water supply unit 123 is stopped by the controller.
  • the water circulation pipe 151 is a pipe through which water is circulated and is connected to the second heat exchanger 144.
  • the second heat exchanger 144 may be a plate type heat exchanger. Water circulated through the water circulation pipe 151 may be heat-exchanged with the refrigerant in the second heat exchanger 144.
  • the second heat exchanger 144 serves as an evaporator or a condenser under the control of the four-way valve 145.
  • the water circulating in the water circulation pipe 151 is cooled while being heat exchanged in the second heat exchanger 144.
  • the water circulation pipe 151 through which the cooled water is circulated may be used for cooling the interior of the structure.
  • the water circulating in the water circulation pipe 151 is heated while being heat-exchanged in the second heat exchanger 144.
  • the water circulation pipe 151 through which the heated water is circulated may be used for heating the interior of the structure.
  • the heat pump apparatus in the heating mode operation of the heat pump apparatus 1, the heat pump apparatus according to the present embodiment so that the water of the water circulation pipe 151 heated by heat exchange in the second heat exchanger 144 can be further heated ( 1) may further include a third heat exchanger 161.
  • the third heat exchanger 161 is connected to the water circulation pipe 151. Water circulating in the water circulation pipe 151 passes through the third heat exchanger 161 after passing through the second heat exchanger 144. The water circulating in the water circulation pipe 151 may be heated by heat exchange with a heat source supplied to the third heat exchanger 161, which may be, for example, hot water.
  • the third heat exchanger 161 may be connected to the hot water pipe 170. Water circulating in the water circulation pipe 151 may be heated while being heat-exchanged in the third heat exchanger 161 with hot water flowing through the hot water pipe 170.
  • the third heat exchanger 161 may be a plate heat exchanger like the second heat exchanger 144.
  • the heat source supplied to the third heat exchanger 161 is supplied only in the heating mode operation and not in the cooling mode operation.
  • the hot water supply through the above-described hot water pipe 170 is selectively made.
  • the hot water may be controlled to be supplied to the hot water pipe 170 only during the heating mode operation and not to supply the hot water during the cooling mode operation, for example, by opening and closing a valve to allow or block the supply of the hot water to the hot water pipe 170. have.
  • the supply side pipe 171 of the hot water pipe 170 connected to the third heat exchanger 161 may be connected to the inlet pipe 50 described above to receive hot water.
  • the water supply pipe 50, the supply side pipe 171 of the hot water pipe 170, and the inlet side pipe 114 connected to the inlet side of the hot water coil 113 may be connected by a three-way valve (51).
  • the hot water introduced through the water inlet pipe 50 is controlled by the three-way valve 51 to the hot water coil 113 through the inlet side pipe 114 or the third heat exchanger 161 through the supply side pipe 171. Can be supplied to the side. Alternatively, the supply to both the inlet side pipe 114 and the supply side pipe 171 may be blocked under the control of the three-way valve 51.
  • Water circulating in the water circulation pipe 151 passes through the second heat exchanger 144 or the second heat exchanger 144 and the third heat exchanger 161 according to the operation mode of the heat pump apparatus 1. Cooled or heated while passing through.
  • the water circulation pipe 151 through which the cooled or heated water is circulated may be utilized for cooling or heating indoors, and the following examples may be presented as specific applications.
  • the water circulation tube 151 may be embedded in at least one of the floor, the ceiling, and the wall of the room.
  • the room may be cooled or heated by radiant cooling or radiant heating.
  • At least a portion of the water circulation pipe 151 may be disposed in a fan coil unit 180 that may be provided in the interior of the structure, and by operating the fan coil unit 180 The room can be cooled or heated.
  • the passage of the first air in the first channel 110 may be forced by the operation of the first blower 112 disposed in the first channel 110.
  • the passage of the second air in the second channel 120 may be forced by the operation of the second blower 122 disposed in the second channel 120.
  • Each of the first blower 112 and the second blower 122 may be controlled to be started or stopped by a controller (not shown).
  • the heat pump apparatus 1 may further include a third channel 130 formed to allow air to pass through the housing 100.
  • the third channel 130 may be partitioned by the second channel 120 and the partition 103.
  • the above-described dehumidifying rotor 101 may include the first channel 110, the second channel 120, and the third channel 130 as shown. Disposed within the housing 100.
  • the cooling unit 131 is disposed in the third channel 130, and the cooling unit 131 has a third channel 130 based on the discharge side of the third air, that is, as shown in the drawing, rather than the dehumidifying rotor 101. Are arranged closer to the left side of the
  • the air passing through the third channel 130 may be defined as third air.
  • the third air may be air introduced into the third channel 130 from the room.
  • the third channel 130 may be connected to an indoor ventilation duct formed in the structure so that indoor air may be supplied to the third channel 130 and then supplied to the room again.
  • the third air introduced into the third channel 130 may be dehumidified and cooled while passing through the dehumidification rotor 101 and the cooling unit 131, and then cooled and supplied to the room to dehumidify and cool the room.
  • An air filter 133 may be disposed in the third channel 130 to remove dust, foreign matter, etc. in the third air passing through the third channel 130.
  • the third blower 132 may be disposed in the third channel 130 to force the third air to pass therethrough.
  • the third blower 132 may be controlled to be started or stopped by the controller similarly to the first blower 112 and the second blower 122.
  • the controller may control only the first blower 112 and the second blower 122 to operate, or, as necessary, the first blower 112, the second blower 122, and the third blower for cooling and dehumidifying the room.
  • the blowers 132 may all be controlled to operate. Alternatively, the first blower 112 and the second blower 122 may be stopped, and only the third blower 132 may be operated.
  • the heat pump apparatus 1 in order to allow the room to be ventilated during the cooling mode operation of the heat pump apparatus 1, is a damper disposed between the second channel 120 and the third channel 130. It may further include (damper, 191).
  • the damper 191 allows the second channel 120 and the third channel 130 to selectively communicate with each other according to the opening and closing operation. As illustrated, when the damper 191 is opened, a part of outdoor air introduced into the second channel 120 may flow into the third channel 130, and indoor air flows into the third channel 130. A portion of may exit to the second channel 120.
  • the air supplied to the room through the third channel 130 is air in which the indoor air and the outdoor air are mixed.
  • the room can be ventilated by supplying this mixed air to the room.
  • FIG. 2 is an operation state diagram showing the state during the cooling mode operation of the heat pump apparatus 1 shown in FIG. 1.
  • the hot water introduced into the inlet pipe 50 flows only to the hot water coil 113 side.
  • the first air passing through the first channel 110 is heated by the heating unit 111 including the hot water coil 113, and the heated first air passes through the dehumidifying rotor 101 which is rotating. 101) is dried.
  • the first air passing through the dehumidification rotor 101 is discharged to the outside.
  • the second air introduced into the second channel 120 from the outside is dehumidified while passing through the dehumidifying rotor 101 which is rotating.
  • the dehumidifying rotor 101 absorbing the moisture of the second air is regenerated while being dried by the heated first air passing through the first channel 110 in the process of rotating.
  • the second air dehumidified through the dehumidification rotor 101 is cooled while passing through the cooling unit 121.
  • the cooled second air is directed to the first heat exchanger 142.
  • the refrigerant compressed by the compressor 141 is circulated toward the first heat exchanger 142 under the control of the four-way valve 145.
  • the cooled second air causes the refrigerant to condense while passing through the first heat exchanger 142 and then is discharged to the outside.
  • the refrigerant condensed in the first heat exchanger 142 is circulated to the second heat exchanger 144 via the expansion valve 143.
  • Water circulating in the water circulation pipe 151 is cooled while being heat-exchanged with the refrigerant in the second heat exchanger 144.
  • a portion of the water circulation tube 151 through which the cooled water circulates is disposed in the fan coil unit 180, whereby the room may be cooled by the operation of the fan coil unit 180.
  • the heat pump apparatus 1 when the heat pump apparatus 1 according to the present embodiment further includes the third channel 130 as described above, the dehumidification and the while passing through the third channel 130 by operating the third blower 132.
  • the cooled third air may be supplied to the room again to cool and dehumidify the room.
  • the damper 191 is opened to allow a part of the indoor air to be discharged to the outside through the second channel 120 and at the same time a part of the outdoor air is supplied to the room through the third channel 130.
  • the room can be ventilated.
  • 3 is an operation state diagram in the first heating mode operation, and the supply of hot water to the hot water coil 113 side and the third heat exchanger 161 side is cut off under the control of the three-way valve 51.
  • the inflow of air from the first channel 110 and the third channel 130 is blocked by stopping the operation of the first blower 112 and the third blower 132.
  • the damper 191 is closed.
  • the refrigerant circulation unit 140 the refrigerant is circulated in a direction opposite to that of the cooling mode operation described above under the control of the four-way valve 145. That is, the refrigerant compressed by the compressor 141 is circulated to the second heat exchanger 144 and then circulated to the first heat exchanger 142 via the expansion valve 143.
  • the refrigerant circulating in the first heat exchanger 142 is evaporated while being heat exchanged with the second air, and then flows into the compressor 141 and is compressed.
  • the refrigerant compressed by the compressor 141 is circulated to the second heat exchanger 144.
  • the second heat exchanger 144 functions as a condenser so that water circulating in the water circulation pipe 151 is transferred to the second heat exchanger 144. Heat the heat in).
  • a portion of the water circulation pipe 151 through which the heated water circulates is disposed in the fan coil unit 180, whereby the room may be heated by the operation of the fan coil unit 180.
  • FIG. 4 is an operation state diagram illustrating a state during defrost mode operation of the heat pump apparatus illustrated in FIG. 1.
  • Defrost may occur in the first heat exchanger 142 which functions as an evaporator during the first heating mode operation.
  • the heat pump apparatus 1 may be subjected to defrost mode operation for removing frost.
  • the first blower 112, the second blower 122, and the third blower 132 are all stopped.
  • the hot water introduced into the water inlet pipe 50 is supplied to the third heat exchanger 161 through the hot water pipe 170 under the control of the three-way valve 51.
  • Water circulating in the water circulation pipe 151 is heated by heat exchange in the third heat exchanger 161. Therefore, when the fan coil unit 180 is operated, the room may be heated.
  • Water circulating in the water circulation pipe 151 passes through the second heat exchanger 144 after passing through the fan coil unit 180.
  • the refrigerant circulating in the refrigerant circulation unit 140 is circulated in the same direction as the refrigerant circulation direction during the cooling mode operation under the control of the four-way valve 145.
  • the second heat exchanger 144 functions as an evaporator, and the heated water with the water circulation passing through the second heat exchanger 144 evaporates the refrigerant circulating through the second heat exchanger 144.
  • the evaporated refrigerant is introduced into the compressor 141, compressed, and then circulated to the first heat exchanger 142.
  • the refrigerant circulating in the first heat exchanger 142 is heat-exchanged with the frost formed in the first heat exchanger 142, and in this process, the castle is heated and removed.
  • the heat pump apparatus 1 according to the present embodiment thus provides an advantage that the heating of the room is performed without interruption even in the defrost mode operation.
  • FIG. 5 is an operation state diagram illustrating a state during the second heating mode operation of the heat pump apparatus illustrated in FIG. 1.
  • the heat pump apparatus 1 heats the room by directly using hot water supplied from the outside.
  • the hot water may be district heating hot water heated by recycling waste heat as described above.
  • the water circulating in the water circulation pipe 151 is exchanged with the hot water supplied through the hot water pipe 170 and the third heat exchanger 161. Heated.
  • the heated water passes through the fan coil unit 180, and the room may be heated by operating the fan coil unit 180.
  • the second heating mode has a difference in that the operation of the refrigerant circulation unit 140 is stopped as compared with the defrost mode operation shown in FIG. 4.
  • FIG. 6 is an operation state diagram illustrating a state of the heat pump apparatus illustrated in FIG. 1 when the third heating mode is operated.
  • the cooling unit 121 is maintained in a suspended state.
  • the refrigerant circulation unit 140 the refrigerant is circulated in the same direction as the refrigerant circulation direction during the first heating mode operation under the control of the four-way valve 145. Therefore, the first heat exchanger 142 functions as an evaporator for allowing the refrigerant to evaporate using outdoor air passing through the second channel 120 as a heat source.
  • the refrigerant evaporated in the first heat exchanger 142 is compressed in the compressor 141 and then circulated to the second heat exchanger 144, where the second heat exchanger 144 functions as a condenser. Water circulating in the water circulation pipe 151 is first heated while passing through the second heat exchanger 144.
  • the water of the first heated water circulation tube 151 passes through the third heat exchanger 161.
  • hot water is supplied through the hot water pipe 170 under the control of the three-way valve 51.
  • the water of the first heated water circulation pipe 151 is secondarily heated while being heated with hot water in the third heat exchanger 161.
  • the heat pump apparatus 1 can heat a room quickly by operating in a 3rd heating mode.
  • heat pump device 50 inlet pipe
  • first blower 113 hot water coil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

본 발명은 제1 채널 및 제2 채널이 형성된 하우징, 하우징 내에 배치되는 제습로터, 제1 채널 내에 배치되어 통과되는 공기를 가열시키는 가열부, 제 2 채널 내에서 배치되어 통과되는 공기를 선택적으로 냉각시키는 냉각부, 압축기, 제2 채널 내에 배치되는 제1 열교환기, 제2 열교환기, 및 사방밸브를 포함하는 냉매 순환부, 및 물이 순환되며 순환하는 물이 제2 열교환기에서 냉매와 열교환되도록 제2 열교환기와 연결되는 물순환관을 포함하는 하이브리드형 히트펌프 장치에 관한 것이다.

Description

하이브리드형 히트펌프 장치
본 발명은 제습 및 냉방 기능과 난방 기능을 겸하여 수행할 수 있는 하이브리드형 히트펌프 장치에 관한 것이다.
종래 냉, 난방 장치로서 전기식 히트펌프가 개시되어 있다. 전기식 히트펌프는 신속하게 냉, 난방할 수 있는 점, 제품 가격이 저렴하고 설치가 간단한 점 등의 장점이 있어 냉, 난방 장치로서 흔히 사용되고 있다.
그러나, 전기식 히트펌프는 전기 에너지 소비가 크고, 외기온도가 낮아질수록 난방성능이 급격하게 저하되는 단점이 있다. 또한 제상모드 운전시에 난방운전이 불가능한 문제점도 지니고 있다.
한편, 실내 냉방을 위한 기술로서 제습 냉방 기술에 관한 연구가 활발히 진행되고 있다. 제습 냉방 기술은 제습기에 의한 잠열 부하 처리와, 증발열에 의한 기온 저하를 이용하여 냉방을 수행하는 기술이다.
더욱 구체적으로, 제습 냉방 기술은 제습기를 이용하여 공기 중에 포함된 습기를 제거함으로써 잠열 부하를 제거하고, 제습된 건조 공기에 수분을 공급하여 증발이 일어나도록 함으로써 증발열에 의해 공기 온도를 낮추는 것으로, 이러한 과정이 반복적으로 이루어지도록 순환 사이클을 구성하여 냉방을 수행하게 된다.
이러한 제습 냉방 기술은 에너지 소비가 적고, 환경 친화적인 점에서 신 재생 에너지 기술로서 지속적인 개발이 이루어지고 있다.
제습 냉방 기술을 이용하는 구체적인 장치의 일례로는, 한국공개특허 제10-2012-0022684호 "제습 냉방 장치"를 들 수 있다.
상기 공개특허는, 하우징, 상기 하우징의 내부에 배치되고 격벽에 의해 실내측 및 실외측 유로가 형성되는 제1 케이싱 및 상기 제1 케이싱의 실내측 및 실외측 유로에 걸쳐 회전 가능하게 설치되는 제습로터를 포함하는 제습모듈, 상기 하우징의 내부에 배치되고 격벽에 의해 실내측 및 실외측 유로가 형성되는 제2 케이싱 및 실내측 및 실외측 유로 중 하나의 유로를 통과하는 공기를 가열하는 재생부를 포함하는 재생모듈, 및 상기 하우징의 내부에 배치되고 격벽에 의해 실내측 및 실외측 유로가 형성되는 제3 케이싱 및 실내측 및 실외측 유로에 걸쳐 회전 가능하게 설치되는 현열로터를 포함하는 냉각모듈을 포함하고, 상기 제1 내지 제3 케이싱이 서로 착탈가능하게 장착되는 것에 의해 상기 하우징 내에 서로 구획되는 두 개의 채널이 형성되는 것을 특징으로 하는 제습 냉방 장치를 개시하고 있다.
상기한 공개특허를 비롯한 종래의 제습 냉방 장치는 전술한 바와 같이 에너지 소비가 적고 친환경적인 점에서 장점이 있다.
그러나, 제습통로를 통과하면서 냉각된 공기가 다시 실내로 공급될 수 있는 구조(예컨대, 공기 순환용 덕트)를 갖는 구조물에만 적용 가능한 단점이 있다.
또한, 구조물에는 냉각 공기의 공급 경로를 따라 냉각 공기가 원활하게 순환될 수 있도록 하는 별도의 송풍기가 더 마련되어야 한다. 그리고, 이 송풍기는 보통 고정압(high static pressure) 대풍량(high airflow) 송풍기이어야 한다. 이로 인해 종래의 제습 냉방 장치는 전기 소비량을 증가시키는 단점도 지니고 있다.
뿐만 아니라, 종래의 제습 냉방 장치는 실내의 냉방용으로만 사용될 수 있기 때문에, 실내의 난방을 위해 상기한 전기식 히트펌프 등과 같은 난방장치가 별도로 마련되어야 하는 문제점을 지니고 있다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 제습 냉방 기술이 적용된 히트펌프 장치를 제공하되, 구조물에 공기 순환용 덕트가 마련되지 않은 경우에도 적용될 수 있고, 또한 냉방 기능 및 난방 기능을 모두 수행할 수 있는 하이브리드형 히트펌프 장치를 제공하기 위한 것이다.
본 발명의 제1 실시예에 따른 하이브리드형 히트펌프 장치는 하우징, 상기 하우징 내에서 제1 공기가 통과되도록 형성되는 제1 채널, 상기 하우징 내에서 제2 공기가 통과되도록 형성되는 제2 채널, 상기 하우징 내에서 회전 가능하도록 배치되고 상기 제1 채널 및 상기 제2 채널에 걸치도록 배치되며 통과되는 상기 제1 공기에 의해 건조되고 통과되는 상기 제2 공기로부터 습기를 흡수하는 제습로터, 상기 제1 채널 내에서 상기 제습로터보다 상기 제1 공기의 유입측에 더 가깝게 배치되며 통과되는 상기 제1 공기를 가열시키는 가열부, 상기 제 2 채널 내에서 상기 제습로터보다 상기 제2 공기의 배출측에 더 가깝게 배치되며 통과되는 상기 제2 공기를 선택적으로 냉각시키는 냉각부를 포함한다. 그리고 압축기, 상기 제2 채널 내에서 상기 냉각부보다 상기 제2 공기의 배출측에 더 가깝게 배치되는 제1 열교환기, 제2 열교환기, 및 사방밸브를 포함하며 냉매가 상기 사방밸브의 제어에 따라 상기 압축기, 상기 제1 열교환기, 상기 제2 열교환기, 및 상기 압축기 순으로, 또는 그 반대의 순으로 순환되는 냉매 순환부, 및 물이 순환되며 순환하는 물이 상기 제2 열교환기에서 상기 냉매와 열교환되도록 상기 제2 열교환기와 연결되는 물순환관을 포함한다.
본 발명의 제2 실시예에 따른 하이브리드형 히트펌프 장치는, 하우징, 상기 하우징 내에서 제1 공기가 통과되도록 형성되는 제1 채널, 상기 하우징 내에서 제2 공기가 통과되도록 형성되는 제2 채널, 상기 하우징 내에서 제3 공기가 통과되도록 형성되는 제3 채널, 상기 하우징 내에서 회전 가능하도록 배치되고 상기 제1 채널, 상기 제2 채널, 및 상기 제3 채널에 걸치도록 배치되며 통과되는 상기 제1 공기에 의해 건조되고 통과되는 상기 제2 공기 및 상기 제3 공기로부터 습기를 흡수하는 제습로터, 상기 제1 채널 내에서 상기 제습로터보다 상기 제1 공기의 유입측에 더 가깝게 배치되며 통과되는 상기 제1 공기를 가열시키는 가열부, 상기 제2 채널내에서 상기 제습로터보다 상기 제2 공기의 배출측에 더 가깝게 배치되며 통과되는 상기 제2 공기를 선택적으로 냉각시키는 제1 냉각부, 상기 제3 채널내에서 상기 제습로터보다 상기 제3 공기의 배출측에 더 가깝게 배치되며 통과되는 상기 제3 공기를 냉각시키는 제2 냉각부를 포함할 수 있다. 그리고, 압축기, 상기 제2 채널 내에서 상기 냉각부보다 상기 제2 공기의 배출측에 더 가깝게 배치되는 제1 열교환기, 제2 열교환기, 및 사방밸브를 포함하며 냉매가 상기 사방밸브의 제어에 따라 상기 압축기, 상기 제1 열교환기, 상기 제2 열교환기, 및 상기 압축기 순으로, 또는 그 반대의 순으로 순환되는 냉매 순환부, 및 물이 순환되며 순환되는 물이 상기 제2 열교환기에서 상기 냉매와 열교환되도록 상기 제2 열교환기와 연결되는 물순환관을 포함할 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 물순환관이 연결되며, 상기 제2 열교환기를 거친 상기 물순환관을 순환하는 물이 선택적으로 공급되는 열원과 열교환되도록 하는 제3 열교환기를 더 포함할 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제3 열교환기는 선택적으로 온수가 공급되는 온수관과 연결되며, 상기 물순환관을 순환하는 물은 상기 온수관을 유동하는 온수를 상기 열원으로 하여 열교환될 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 물순환관이 연결되며, 상기 제2 열교환기를 거친 상기 물순환관을 순환하는 물이 선택적으로 공급되는 열원과 열교환되도록 하는 제3 열교환기를 더 포함하고, 상기 가열부는 온수코일(hot water coil)을 포함하며, 상기 제3 열교환기는 선택적으로 온수가 공급되는 온수관과 연결되고, 상기 물순환관을 순환하는 물은 상기 온수관을 유동하는 온수를 상기 열원으로 하여 열교환되며, 온수가 유입되는 입수관과, 상기 제3 열교환기에 연결되는 상기 온수관의 공급측관, 및 상기 온수코일의 입구측에 연결된 입구측관은 삼방밸브에 의해 서로 연결될 수 있다.
본 발명의 제1 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제1 채널 내에 배치되어 상기 제1 공기가 통과되도록 강제하는 제1 송풍기, 또는 상기 제2 채널 내에 배치되어 상기 제2 공기가 통과되도록 강제하는 제2 송풍기를 더 포함할 수 있다.
본 발명의 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제1 채널 내에 배치되어 상기 제1 공기가 통과되도록 강제하는 제1 송풍기, 상기 제2 채널 내에 배치되어 상기 제2 공기가 통과되도록 강제하는 제2 송풍기, 또는 상기 제3 채널 내에 배치되어 상기 제3 공기가 통과되도록 강제하는 제3 송풍기를 더 포함할 수 있다.
본 발명의 제1 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제1 송풍기 또는 제2 송풍기, 본 발명의 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제1 송풍기, 제2 송풍기 또는 제3 송풍기 각각은 제어부에 의해 선택적으로 가동 또는 중지될 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 물순환관의 적어도 일부는, 실내의 바닥, 천장, 및 벽 중 적어도 어느 하나의 내부에 매설될 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 물순환관의 적어도 일부는, 팬 코일 유닛(fan coil unit) 내에 배치될 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제1 공기는 실외로부터 상기 제1 채널 내로 유입된 공기이며, 상기 제1 채널을 통과한 상기 제1 공기는 실외로 배출될 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제2 공기는 실외로부터 상기 제2 채널 내로 유입된 공기이며, 상기 제1 열교환기에서 열교환된 상기 제2 공기는 실외로 배출될 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제2 채널 내에 배치되며, 상기 제1 열교환기의 표면으로 물을 분사하도록 작동하는 물공급부를 더 포함할 수 있다.
본 발명의 제1, 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 가열부는 온수가 유동하는 온수코일(hot water coil)을 포함할 수 있다.
본 발명의 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제3 공기는 실내로부터 상기 제3 채널 내로 유입된 공기이며, 상기 제3 채널을 통과한 상기 제3 공기는 실내로 배출될 수 있다.
본 발명의 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제2 채널 및 상기 제3 채널 사이에 배치되며, 상기 제2 채널과 상기 제3 채널이 서로 연통되도록 개폐 작동되는 댐퍼(damper)를 더 포함할 수 있다.
본 발명의 제2 실시예에 따른 하이브리드형 히트펌프 장치에 있어서, 상기 제3 채널 내에 배치되는 공기필터를 더 포함할 수 있다.
상기한 본 발명의 특징은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
본 발명에 따르면, 종래의 제습 냉방 기술이 적용되어 에너지 효율이 높고 친환경적인 냉방 장치로서의 기능을 수행함은 물론이고, 별도의 난방 장치를 더 마련하지 않더라도 난방 장치로서의 기능도 함께 수행하는 장점이 있다.
또한, 냉방모드 운전시 제습 및 냉각된 공기가 실내로 공급되는 것이 아니라 냉매가 응축되도록 하는 용도로 사용되고, 이러한 냉매의 순환 과정에서 물순환관을 순환하는 물이 냉각되도록 하며, 냉각된 물이 순환되는 물순환관을 활용하여 실내를 냉방시키게 되므로, 별도의 공기순환용 덕트가 마련되지 않더라도 실내 냉방용으로 구조물에 적용될 수 있는 이점을 제공한다.
또한, 냉방모드 운전시 온수코일로 공급되는 온수, 또는 난방모드 운전시 온수관을 통해 공급되는 온수로서, 폐열을 재활용하여 가열시킨 온수를 활용하는 경우 에너지 효율이 향상되는 이점을 제공한다.
또한, 난방모드 운전 중 필요한 제상운전시, 난방이 중단되지 않고 계속하여 행해지므로 난방이 중단되어 겪는 불편이 해소된다.
또한, 난방모드 운전시 온수와 실외 공기를 열원으로 적절하게 이용함으로써 필요한 난방성능을 효율적으로 수행할 수 있기 때문에 에너지가 절약되는 이점을 제공한다.
도 1은 본 발명의 실시예에 따른 하이브리드형 히트펌프 장치를 개략적으로 도시한 구성도.
도 2는 도 1에 도시된 히트 펌프 장치의 냉방모드 운전시의 상태를 알 수 있는 냉방모드 운전 상태도.
도 3은 도 1에 도시된 히트 펌프 장치의 제1 난방모드 운전시의 상태를 알 수 있는 운전 상태도.
도 4는 도 1에 도시된 히트 펌프 장치의 제상모드 운전시의 상태를 알 수 있는 운전 상태도.
도 5는 도 1에 도시된 히트 펌프 장치의 제2 난방모드 운전시의 상태를 알 수 있는 운전 상태도.
도 6은 도 1에 도시된 히트 펌프 장치의 제3 난방모드 운전시의 상태를 알 수 있는 운전 상태도.
이하, 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 하이브리드형 히트펌프 장치에 관하여 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 하이브리드형 히트펌프 장치를 개략적으로 도시한 구성도이다.
도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 하이브리드형 히트펌프 장치(1)는 하우징(100), 제습로터(101), 가열부(111), 냉각부(121), 냉매 순환부(140), 및 물순환관(151)을 포함한다.
하우징(100)은 내부에 공기가 통과되는 제1 채널(110) 및 제2 채널(120)이 격벽(102)에 의해 구획되어 형성된다.
제1 채널(110)을 통과하는 공기는 제1 공기로서 정의될 수 있다. 제1 공기는 예컨대 실외로부터 제1 채널(110) 내로 유입된 공기일 수 있다. 제1 공기는 제1 채널(110)을 통과한 후 실외로 배출될 수 있다.
제1 채널(110) 내에는 가열부(111)가 배치된다. 이때 가열부(111)는 후술할 제습로터(101)보다, 제1 공기의 유입측, 즉 도시된 바를 기준으로 제1 채널(110)의 좌측에 더 가깝게 배치된다. 제1 채널(110)을 통과하는 제1 공기는 가열부(111)를 거친 다음 후술할 제습로터(101)를 거치게 된다.
가열부(111)는 예컨대 히트코일을 포함함으로써 전기 저항에 의한 열을 제공할 수 있다. 또는 예컨대 온수코일(113)을 포함함으로써 온수에 의한 열을 제공할 수도 있다.
가열부(111)가 온수코일(113)을 포함하는 경우, 온수코일(113)의 입구측에는 입구측관(114)이 형성될 수 있다. 그리고 온수코일(113)의 출구측에는 출구측관(115)이 형성될 수 있다.
입구측관(114)은 입수관(50)과 연결된다. 입수관(50)을 통해 공급되는 온수는 입구측관(114)을 거쳐 온수코일(113)로 공급되며, 온수코일(113)을 유동한 후 출구측관(115)을 통해 배출된다.
여기서 입수관(50)을 통해 공급되는 온수는 공장 또는 열 병합 발전시 발생되는 폐열을 이용하여 가열된 지역난방용 온수일 수 있다. 이 경우 폐열을 재활용함으로써 에너지를 효율적으로 사용하는 이점을 갖는다.
가열부(111)를 거쳐가는 제1 공기는 온수코일(113)을 유동하는 온수와 열교환되면서 가열된다. 가열부(111)에 의해 가열된 제1 공기는 후술할 제습로터(101)를 거치면서 제습로터(101)를 건조시킨다.
제습로터(101)는 하우징(100) 내에서 회전 가능하도록 배치된다. 그리고 제1 채널(110) 및 제2 채널(120)을 걸치도록 배치된다.
제습로터(101)는 공기와의 접촉면에 예컨대 실리카젤 또는 제오라이트 등과 같은 흡착제가 형성되어 제습로터(101)를 거쳐 지나가는 공기로부터 습기를 흡수할 수 있다.
제2 채널(120)을 통과하는 공기는 제2 공기로 정의될 수 있다. 제2 공기는 예컨대 실외로부터 유입된 공기일 수 있다. 제2 공기는 제습로터(101)를 통과하는 과정에서 제습로터(101)에 의해 습기가 제거된다.
냉각부(121)는 제2 채널(120) 내에 배치된다. 이때, 냉각부(121)는 제습로터(101)보다, 제2 공기의 배출측, 즉 도시된 바를 기준으로 제2 채널(120)의 좌측에 더 가깝게 배치된다. 제2 채널(120)을 통과하는 제2 공기는 제습로터(101)를 거친 다음 냉각부(121)를 통과하게 된다.
냉각부(121)는 제습로터(101)를 통과하면서 제습된 제2 공기를 냉각시킨다. 냉각부(121)는 예컨대, 냉각부(121)를 거쳐가는 제2 공기에 물을 분사하여 분사된 물의 증발 과정에서 제2 공기가 냉각되도록 하는 증발식 냉각기일 수 있다.
냉각부(121)는 제어부에 의해 물을 분사하도록 작동되거나 또는 작동이 중단됨으로써 제2 공기를 선택적으로 냉각시킨다. 다시 말해, 냉각부(121)가 제어부에 의해 작동되도록 제어된 경우에 냉각부(121)를 거치는 제2 공기는 냉각부(121)에 의해 냉각된다. 하지만, 냉각부(121)가 제어부에 의해 작동 중단되도록 제어된 경우에는 냉각부(121)를 거치는 제2 공기는 냉각되지 않는다.
하기에서 더욱 자세히 설명되겠지만, 본 실시예에 따른 히트펌프 장치(1)의 난방모드 운전시, 냉각부(121)는 작동 중단되며, 제습로터(101)를 통과한 제2 공기는 냉각되지 않고 후술할 제1 열교환기(142)로 향하게 된다.
냉매 순환부(140)는 냉매가 순환되는 회로를 구성한다. 냉매 순환부(140)는 냉매를 압축하는 압축기(141)와, 열교환 작용으로 냉매의 응축 또는 증발 과정이 진행되는 제1 열교환기(142)와, 열교환 작용으로 냉매의 증발 또는 응축되는 과정이 진행되는 제2 열교환기(144)를 포함한다.
이때, 제1 열교환기(142)는 제2 채널(120) 내에 배치된다. 제1 열교환기(142)는 냉각부(121)보다, 제2 공기의 배출측에 더 가깝게 배치된다.
제1 열교환기(142)와 제2 열교환기(144) 사이에 냉매가 팽창되도록 하는 팽창밸브(143)가 배치될 수 있다.
냉매 순환부(140)는 히트펌프 장치(1)의 냉방모드 또는 난방모드 전환시 냉매의 순환 방향이 전환되도록 하는 사방밸브(145)를 포함한다. 사방밸브(145)는 제어부에 의해 제어되면서 냉매의 순환 방향을 전환시킨다.
예컨대, 히트펌프 장치(1)의 냉방모드 운전시, 냉매는 압축기(141), 제1 열교환기(142), 팽창밸브(143), 및 제2 열교환기(144)를 거쳐 압축기(141)로 회귀되도록 순환될 수 있다. 이때 제1 열교환기(142)는 응축기로서, 그리고 제2 열교환기(144)는 증발기로서 기능한다.
예컨대, 히트펌프 장치(1)의 난방모드 운전시, 냉매는 압축기(141), 제2 열교환기(144), 팽창밸브(143), 및 제1 열교환기(142)를 거쳐 압축기(141)로 회귀되도록 순환될 수 있다. 여기서 제1 열교환기(142)가 증발기로서, 그리고 제2 열교환기(144)가 응축기로서 기능한다.
한편, 본 실시예에 따른 히트펌프 장치(1)는, 냉방모드 운전시 응축기로서 기능하는 제1 열교환기(142)에서의 냉매의 응축온도를 더욱 낮추기 위하여, 제1 열교환기(142)에 물을 분사하도록 작동하는 물공급부(123)를 더 포함할 수 있다.
물공급부(123)는 제2 채널(120) 내에 배치되며, 제어부에 의해 작동되거나 또는 작동 중단되도록 제어될 수 있다.
물공급부(123)의 작동으로 제1 열교환기(142)의 표면에 물이 분사되면, 제2 채널(120)을 통과하는 제2 공기의 열은 제1 열교환기(142)를 거치는 과정에서 제1 열교환기(142) 표면으로 분사된 물의 증발잠열로서 흡수되어 더욱 냉각된다. 이로 인해 제2 공기와 열교환되는 냉매의 응축온도는 더욱 낮아질 수 있어, 응축효율을 제고시킬 수 있다.
다만, 제1 열교환기(142)가 증발기로서 기능하는 난방모드 운전시에는 물공급부(123)는 제어부에 의해 작동이 중단된다.
물순환관(151)은 물이 순환되는 관으로, 제2 열교환기(144)와 연결된다. 제2 열교환기(144)는 판형 열교환기(plate type heat exchanger)일 수 있다. 물순환관(151)을 통해 순환되는 물은 제2 열교환기(144)에서 냉매와 열교환될 수 있다.
제2 열교환기(144)는 전술한 바와 같이 사방밸브(145)의 제어에 따라 증발기 또는 응축기로서의 역할을 수행하게 된다.
제2 열교환기(144)가 증발기로서 기능하는 경우, 물순환관(151)을 순환하는 물은 제2 열교환기(144)에서 열교환되면서 냉각된다. 냉각된 물이 순환되는 물순환관(151)은 구조물의 실내를 냉방하는 용도로 사용될 수 있다.
제2 열교환기(144)는 응축기로서 기능하는 하는 경우, 물순환관(151)을 순환하는 물은 제2 열교환기(144)에서 열교환되면서 가열된다. 가열된 물이 순환되는 물순환관(151)은 구조물의 실내를 난방하는 용도로 사용될 수 있다.
한편, 히트펌프 장치(1)의 난방모드 운전시, 제2 열교환기(144)에서 열교환되어 가열된 물순환관(151)의 물이 더욱 가열될 수 있도록, 본 실시예에 따른 히트펌프 장치(1)는 제3 열교환기(161)를 더 포함할 수 있다.
제3 열교환기(161)는 물순환관(151)과 연결된다. 물순환관(151)을 순환하는 물은 제2 열교환기(144)를 거친 이후 제3 열교환기(161)를 거치게 된다. 물순환관(151)을 순환하는 물은 제3 열교환기(161)에 공급되는 열원과 열교환되어 가열될 수 있는데, 이 열원으로는 예컨대 온수일 수 있다.
구체적으로, 제3 열교환기(161)는 온수관(170)과 연결될 수 있다. 물순환관(151)을 순환하는 물은 온수관(170)을 통해 유동되는 온수와 제3 열교환기(161)에서 열교환되면서 가열될 수 있다.
이때, 제3 열교환기(161)는 제2 열교환기(144)와 마찬가지로 판형 열교환기일 수 있다.
한편, 제3 열교환기(161)에서의 열교환 작용은 난방모드 운전시에 이루어지므로, 제3 열교환기(161)로 공급되는 열원은 난방모드 운전시에만 공급되고 냉방모드 운전시에는 공급되지 않는다.
즉, 전술한 온수관(170)을 통한 온수의 공급은 선택적으로 이루어진다. 온수는, 예컨대 온수관(170)으로의 온수의 공급을 허용 또는 차단하는 밸브의 개폐에 의해 난방모드 운전시에만 온수관(170)으로 공급되고 냉방모드 운전시에는 온수가 공급되지 않도록 제어될 수 있다.
이때, 제3 열교환기(161)에 연결되는 온수관(170)의 공급측관(171)은 전술한 입수관(50)과 연결되어 온수를 공급받을 수 있다. 이 경우, 입수관(50), 온수관(170)의 공급측관(171), 및 온수코일(113)의 입구측에 연결된 입구측관(114)은 삼방밸브(51)에 의해 연결될 수 있다.
입수관(50)을 통해 유입되는 온수는, 삼방밸브(51)의 제어에 따라 입구측관(114)을 통해 온수코일(113) 측으로, 또는 공급측관(171)을 통해 제3 열교환기(161) 측으로 공급될 수 있다. 또는 삼방밸브(51)의 제어에 따라 입구측관(114) 및 공급측관(171) 모두로의 공급이 차단될 수 있다.
물순환관(151)을 순환하는 물은, 히트펌프 장치(1)의 운전모드에 따라 제2 열교환기(144)를 거치거나, 또는 제2 열교환기(144) 및 제3 열교환기(161)를 거치면서 냉각 또는 가열된다. 냉각 또는 가열된 물이 순환되는 물순환관(151)은 실내의 냉방 또는 난방을 위하여 활용될 수 있는데, 구체적인 활용예로서 다음과 같은 예가 제시될 수 있다.
도시되어 있지는 않지만, 물순환관(151)의 적어도 일부는 실내의 바닥, 천장, 및 벽 중 적어도 어느 하나의 내부에 매설될 수 있다. 실내의 바닥, 천장, 또는 벽의 내부에 물순환관(151)이 매설됨으로써, 실내는 복사 냉방 또는 복사 난방에 의해 냉방 또는 난방될 수 있다.
또는, 도시된 바와 같이, 물순환관(151)의 적어도 일부는 구조물의 실내에 마련될 수 있는 팬 코일 유닛(fan coil unit, 180) 내에 배치될 수 있으며, 팬 코일 유닛(180)을 가동시킴으로써 실내는 냉방 또는 난방될 수 있다.
한편, 제1 채널(110) 내에서의 제1 공기의 통과는 제1 채널(110) 내에 배치되는 제1 송풍기(112)의 가동으로써 강제될 수 있다. 마찬가지로, 제2 채널(120) 내에서의 제2 공기의 통과는 제2 채널(120) 내에 배치되는 제2 송풍기(122)의 가동으로써 강제될 수 있다.
상기한 제1 송풍기(112)와 제2 송풍기(122) 각각은 제어부(미도시)에 의해 가동 또는 중지되도록 제어될 수 있다.
본 실시예에 따른 히트펌프 장치(1)는, 하우징(100) 내에 공기가 통과되도록 형성되는 제3 채널(130)을 더 포함할 수 있다. 하우징(100) 내에서 제3 채널(130)은 제2 채널(120)과 격벽(103)에 의해 구획 형성될 수 있다.
하우징(100) 내에 제3 채널(130)이 더 형성되는 경우, 전술한 제습로터(101)는 도시된 바와 같이 제1 채널(110), 제2 채널(120) 및 제3 채널(130)을 걸치도록 하우징(100) 내에 배치된다.
그리고, 제3 채널(130) 내에도 냉각부(131)가 배치되며, 냉각부(131)는 제습로터(101)보다, 제3 공기의 배출측, 즉 도시된 바를 기준으로 제3 채널(130)의 좌측에 더 가깝도록 배치된다.
제3 채널(130)을 통과하는 공기는 제3 공기로 정의될 수 있다. 제3 공기는 실내로부터 제3 채널(130) 내로 유입되는 공기일 수 있다.
실내 공기가 제3 채널(130)로 유입된 후 다시 실내로 공급될 수 있도록, 제3 채널(130)은 구조물에 형성되어 있는 실내 환기 덕트와 연결될 수 있다. 제3 채널(130)로 유입된 제3 공기는 제습로터(101) 및 냉각부(131)를 차례로 거치면서 제습 및 냉각될 수 있으며, 냉각된 이후 다시 실내로 공급되어 실내를 제습 및 냉방시킨다.
제3 채널(130) 내에는 공기필터(133)를 배치하여, 제3 채널(130)을 통과하는 제3 공기 내의 먼지, 이물질 등이 제거되도록 할 수 있다.
제3 채널(130) 내에는 제3 공기가 통과되도록 강제하는 제3 송풍기(132)가 배치될 수 있다. 제3 송풍기(132)는 제1 송풍기(112) 및 제2 송풍기(122)와 마찬가지로 제어부에 의해 가동 또는 중지되도록 제어될 수 있다.
제어부는 제1 송풍기(112) 및 제2 송풍기(122)만이 가동되도록 제어할 수도 있고, 또는 필요에 따라 실내의 냉방 및 제습을 위하여 제1 송풍기(112), 제2 송풍기(122) 및 제3 송풍기(132)가 모두 가동되도록 제어할 수도 있다. 또는, 제1 송풍기(112) 및 제2 송풍기(122)는 중지되도록 하고, 제3 송풍기(132)만이 가동되도록 제어할 수도 있다.
한편, 히트펌프 장치(1)의 냉방모드 운전시 실내가 환기되도록 하기 위하여, 본 실시예에 따른 히트펌프 장치(1)는 제2 채널(120)과 제3 채널(130) 사이에 배치되는 댐퍼(damper,191)를 더 포함할 수 있다.
댐퍼(191)는 개폐 작동에 따라 제2 채널(120)과 제3 채널(130)이 선택적으로 연통되도록 한다. 도시된 바와 같이 댐퍼(191)의 개방 작동시는 제2 채널(120)로 유입되는 실외 공기의 일부가 제3 채널(130)로 유입될 수 있으며, 제3 채널(130)로 유입되는 실내 공기의 일부가 제2 채널(120)로 빠져 나갈수 있다.
그 결과, 제3 채널(130)을 통과하여 실내로 공급되는 공기는 실내 공기와 실외 공기가 혼합된 공기이다. 이 혼합된 공기가 실내로 공급됨으로써 실내는 환기될 수 있다.
이하에서는 본 실시예에 따른 히트펌프 장치(1)의 운전모드별 상태에 관하여 도 2 내지 도 6을 참조하여 설명하기로 한다.
도 2는 도 1에 도시된 히트 펌프 장치(1)의 냉방모드 운전시의 상태를 알 수 있는 운전 상태도이다.
도시된 바와 같이, 냉방모드 운전시 삼방밸브(51)의 제어에 따라 입수관(50)으로 유입된 온수는 온수코일(113) 측으로만 유동한다.
제1 채널(110)을 통과하는 제1 공기는 온수코일(113)을 포함하는 가열부(111)에 의해 가열되고, 가열된 제1 공기는 회전 중인 제습로터(101)를 거치면서 제습로터(101)를 건조시킨다. 제습로터(101)를 거친 제1 공기는 실외로 배출된다.
실외로부터 제2 채널(120) 내로 유입된 제2 공기는 회전 중인 제습로터(101)를 거치면서 제습된다. 제2 공기의 습기를 흡수한 제습로터(101)는 회전하는 과정에서 제1 채널(110)을 통과하는 가열된 제1 공기에 의해 건조되면서 다시 재생된다.
제습로터(101)를 통과하여 제습된 제2 공기는 냉각부(121)를 거치면서 냉각된다. 냉각된 제2 공기는 제1 열교환기(142)를 향한다. 이때, 사방밸브(145)의 제어에 따라 압축기(141)에서 압축된 냉매는 제1 열교환기(142) 쪽으로 순환된다.
냉각된 제2 공기는 제1 열교환기(142)를 거치면서 냉매가 응축되도록 한 다음 실외로 배출된다.
이때, 물공급부(123)가 제어부에 의해 작동되도록 제어되면, 제1 열교환기(142) 표면으로 물이 분사되며, 제1 열교환기(142)를 통과하는 제2 공기의 열은 제1 열교환기(142) 표면으로 분사된 물의 증발잠열로 흡수되어 더욱 냉각된다. 이로 인해 제1 열교환기(142)를 순환하는 냉매의 응축온도가 더욱 낮아질 수 있고, 그 결과 압축기(141)의 소비전력을 더욱 줄일 수 있다.
제1 열교환기(142)에서 응축된 냉매는 팽창밸브(143)를 거쳐 제2 열교환기(144)로 순환된다.
물순환관(151)을 순환하는 물은 제2 열교환기(144)에서 냉매와 열교환되면서 냉각된다. 냉각된 물이 순환하는 물순환관(151)의 일부가 팬 코일 유닛(180) 내에 배치됨으로써, 팬 코일 유닛(180)의 가동에 의해 실내는 냉방될 수 있다.
이때, 본 실시예에 따른 히트펌프 장치(1)가 전술한 바와 같이 제3 채널(130)을 더 포함하는 경우에는 제3 송풍기(132)를 가동시킴으로써 제3 채널(130)을 통과하면서 제습 및 냉각된 제3 공기가 실내로 다시 공급되도록 하여 실내를 냉방 및 제습시킬 수 있다.
또한, 도시된 바와 같이 댐퍼(191)가 개방 작동함으로써 실내 공기의 일부가 제2 채널(120)을 통해 실외로 배출되는 동시에 실외 공기의 일부가 제3 채널(130)을 통해 실내로 공급되도록 함으로써 실내가 환기될 수 있다.
도 3, 도 5 및 도 6은 도 1에 도시된 히트 펌프 장치의 다양한 난방모드 운전시의 상태를 알 수 있는 운전 상태도이다.
도 3은 제1 난방모드 운전시의 운전 상태도로서, 삼방밸브(51)의 제어에 따라 온수코일(113) 측 및 제3 열교환기(161) 측으로의 온수의 공급이 차단된다.
제1 송풍기(112) 및 제3 송풍기(132)의 가동을 중단하여 제1 채널(110) 및 제3 채널(130)에서의 공기의 유입은 차단된다. 그리고 댐퍼(191)는 폐쇄 작동된다.
제2 송풍기(122)를 가동시킴으로써 제2 채널(120)로 실외 공기가 유입되는데, 유입된 실외 공기는 제습로터(101)를 거친 후 제1 열교환기(142)로 향한다. 이때 냉각부(121)는 가동이 중지되어 제습로터(101)를 거친 실외 공기가 냉각되지 않도록 한다.
냉매 순환부(140)에서 냉매는 사방밸브(145)의 제어에 따라 전술한 냉방모드 운전시와는 반대 방향으로 순환된다. 즉, 압축기(141)에서 압축된 냉매는 제2 열교환기(144)로 순환되며, 이후 팽창밸브(143)를 거쳐 제1 열교환기(142)로 순환된다.
제1 열교환기(142)를 순환하는 냉매는 제2 공기와 열교환되면서 증발한 후 압축기(141)로 유입되어 압축된다. 압축기(141)에서 압축된 냉매는 제2 열교환기(144)로 순환되고, 이때 제2 열교환기(144)는 응축기로서 기능하여 물순환관(151)을 순환하는 물이 제2 열교환기(144)에서 열교환되면서 가열되도록 한다.
가열된 물이 순환하는 물순환관(151)의 일부가 팬 코일 유닛(180) 내에 배치됨으로써, 팬 코일 유닛(180)의 가동에 의해 실내는 난방될 수 있다.
도 4는 도 1에 도시된 히트 펌프 장치의 제상모드 운전시의 상태를 알 수 있는 운전 상태도이다.
제1 난방모드 운전시 증발기로서 기능하는 제1 열교환기(142)에 성에가 발생할 수 있다. 이 경우, 히트펌프 장치(1)는 성에를 제거하기 위한 제상모드 운전이 행해질 수 있다.
제상모드 운전시, 제1 송풍기(112), 제2 송풍기(122), 및 제3 송풍기(132)는 모두 가동이 중단된다.
입수관(50)으로 유입된 온수는 삼방밸브(51)의 제어에 따라 온수관(170)을 통해 제3 열교환기(161)로 공급된다. 물순환관(151)을 순환하는 물은 제3 열교환기(161)에서 열교환되어 가열된다. 따라서, 팬 코일 유닛(180)을 가동시키면 실내는 난방될 수 있다.
물순환관(151)을 순환하는 물은 팬 코일 유닛(180)을 거친 이후 제2 열교환기(144)를 거치게 된다.
이때, 냉매 순환부(140)를 순환하는 냉매는 사방밸브(145)의 제어에 따라 냉방모드 운전시의 냉매 순환 방향과 동일한 방향으로 순환된다.
제2 열교환기(144)는 증발기로서 기능하게 되며, 제2 열교환기(144)를 거치는 물순환과의 가열된 물은 제2 열교환기(144)를 순환하는 냉매를 증발시키게 된다.
증발된 냉매는 압축기(141)로 유입되어 압축된 후 제1 열교환기(142)로 순환된다. 제1 열교환기(142)를 순환하는 냉매는 제1 열교환기(142)에 형성된 성에와 열교환되며, 이 과정에서 성에는 가열되어 제거된다.
본 실시예에 따른 히트펌프 장치(1)는 이처럼 제상모드 운전시에도 실내의 난방이 중단됨이 없이 행해지는 이점을 제공한다.
도 5는 도 1에 도시된 히트 펌프 장치의 제2 난방모드 운전시의 상태를 알 수 있는 운전 상태도이다.
본 실시예에 따른 히트펌프 장치(1)는 외부로부터 공급되는 온수를 직접적으로 이용하여 실내를 난방시킨다다. 여기서 온수는 전술한 바와 같이 폐열을 재활용하여 가열시킨 지역난방용 온수일 수 있다.
제2 난방모드에서는 도 4에서 도시된 제상모드 운전시와 마찬가지로, 물순환관(151)을 순환하는 물이, 온수관(170)을 통해 공급되는 온수와 제3 열교환기(161)에서 열교환되어 가열된다.
가열된 물은 팬 코일 유닛(180)을 거치게 되며, 팬 코일 유닛(180)을 가동시킴으로써 실내는 난방될 수 있다.
다만, 제2 난방 모드는 도 4에 도시된 제상모드 운전시와 비교하여, 냉매 순환부(140)의 작동이 중단되는 점에서 차이가 있다.
도 6은 도 1에 도시된 히트 펌프 장치의 제3 난방모드 운전시의 상태를 알 수 있는 운전 상태도이다.
제3 난방모드에서는 제1 송풍기(112) 및 제3 송풍기(132)의 가동이 중단된 채 제2 송풍기(122)만이 가동됨으로써 제2 채널(120)로 실외 공기가 유입된다. 이때 냉각부(121)는 가동이 중단된 상태로 유지된다.
냉매 순환부(140)에서 냉매는 사방밸브(145)의 제어에 따라 제1 난방모드 운전시의 냉매 순환방향과 동일한 방향으로 순환된다. 따라서, 제1 열교환기(142)는 제2 채널(120)을 통과하는 실외 공기를 열원으로 하여 냉매가 증발되도록 하는 증발기로서 기능한다.
제1 열교환기(142)에서 증발된 냉매는 압축기(141)에서 압축된 후 제2 열교환기(144)로 순환되며, 이때 제2 열교환기(144)는 응축기로서 기능한다. 물순환관(151)을 순환하는 물은 제2 열교환기(144)를 거치면서 1차 가열된다.
1차 가열된 물순환관(151)의 물은 제3 열교환기(161)를 거친다. 제3 열교환기(161)에서는 삼방밸브(51)의 제어에 따라 온수관(170)을 통해 온수가 공급된다. 1차 가열된 물순환관(151)의 물은 제3 열교환기(161)에서 온수와 열교환되면서 2차 가열된다.
2차 가열된 물은 팬 코일 유닛(180)을 거친다. 따라서, 팬 코일 유닛(180)을 가동시키면 실내는 난방될 수 있다.
제3 난방모드는 이처럼 물순환관(151)을 순환하는 물이 제2 열교환기(144) 및 제3 열교환기(161)를 거치면서 이중으로 가열되므로, 물을 신속하게 가열시킬 수 있다. 히트펌프 장치(1)는 제3 난방모드로 운전됨으로써 실내를 신속하게 난방시킬 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명은 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
1: 히트펌프 장치 50: 입수관
51: 삼방밸브 100: 하우징
101: 제습로터 102,103: 격벽
110: 제1 채널 111: 가열부
112: 제1 송풍기 113: 온수코일
114: 입구측관 115: 출구측관
120: 제2 채널 121: 냉각부
122: 제2 송풍기 123: 물공급부
130: 제3 채널 131: 냉각부
132: 제3 송풍기 133: 공기필터
140: 냉매 순환부 141: 압축기
142: 제1 열교환기 143: 팽창밸브
144: 제2 열교환기 145: 사방밸브
151: 물순환관 161: 제3 열교환기
170: 온수관 171: 공급측관
180: 팬 코일 유닛 191: 댐퍼

Claims (16)

  1. 하우징;
    상기 하우징 내에서 제1 공기가 통과되도록 형성되는 제1 채널;
    상기 하우징 내에서 제2 공기가 통과되도록 형성되는 제2 채널;
    상기 하우징 내에서 회전 가능하도록 배치되고, 상기 제1 채널 및 상기 제2 채널에 걸치도록 배치되며, 통과되는 상기 제1 공기에 의해 건조되고, 통과되는 상기 제2 공기로부터 습기를 흡수하는 제습로터;
    상기 제1 채널 내에서 상기 제습로터보다 상기 제1 공기의 유입측에 더 가깝게 배치되며, 통과되는 상기 제1 공기를 가열시키는 가열부;
    상기 제 2 채널 내에서 상기 제습로터보다 상기 제2 공기의 배출측에 더 가깝게 배치되며, 통과되는 상기 제2 공기를 선택적으로 냉각시키는 냉각부;
    압축기, 상기 제2 채널 내에서 상기 냉각부보다 상기 제2 공기의 배출측에 더 가깝게 배치되는 제1 열교환기, 제2 열교환기, 및 사방밸브를 포함하며, 냉매가 상기 사방밸브의 제어에 따라 상기 압축기, 상기 제1 열교환기, 상기 제2 열교환기, 및 상기 압축기 순으로, 또는 그 반대의 순으로 순환되는 냉매 순환부; 및
    물이 순환되며, 순환하는 물이 상기 제2 열교환기에서 상기 냉매와 열교환되도록 상기 제2 열교환기와 연결되는 물순환관을 포함하는 하이브리드형 히트펌프 장치.
  2. 하우징;
    상기 하우징 내에서 제1 공기가 통과되도록 형성되는 제1 채널;
    상기 하우징 내에서 제2 공기가 통과되도록 형성되는 제2 채널;
    상기 하우징 내에서 제3 공기가 통과되도록 형성되는 제3 채널;
    상기 하우징 내에서 회전 가능하도록 배치되고, 상기 제1 채널, 상기 제2 채널, 및 상기 제3 채널에 걸치도록 배치되며, 통과되는 상기 제1 공기에 의해 건조되고, 통과되는 상기 제2 공기 및 상기 제3 공기로부터 습기를 흡수하는 제습로터;
    상기 제1 채널 내에서 상기 제습로터보다 상기 제1 공기의 유입측에 더 가깝게 배치되며, 통과되는 상기 제1 공기를 가열시키는 가열부;
    상기 제2 채널내에서 상기 제습로터보다 상기 제2 공기의 배출측에 더 가깝게 배치되며, 통과되는 상기 제2 공기를 선택적으로 냉각시키는 제1 냉각부;
    상기 제3 채널내에서 상기 제습로터보다 상기 제3 공기의 배출측에 더 가깝게 배치되며, 통과되는 상기 제3 공기를 냉각시키는 제2 냉각부;
    압축기, 상기 제2 채널 내에서 상기 냉각부보다 상기 제2 공기의 배출측에 더 가깝게 배치되는 제1 열교환기, 제2 열교환기, 및 사방밸브를 포함하며, 냉매가 상기 사방밸브의 제어에 따라 상기 압축기, 상기 제1 열교환기, 상기 제2 열교환기, 및 상기 압축기 순으로, 또는 그 반대의 순으로 순환되는 냉매 순환부; 및
    물이 순환되며, 순환되는 물이 상기 제2 열교환기에서 상기 냉매와 열교환되도록 상기 제2 열교환기와 연결되는 물순환관을 포함하는 하이브리드형 히트펌프 장치.
  3. 청구항 1 또는 2에 있어서,
    상기 물순환관이 연결되며, 상기 제2 열교환기를 거친 상기 물순환관을 순환하는 물이 선택적으로 공급되는 열원과 열교환되도록 하는 제3 열교환기를 더 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  4. 청구항 3에 있어서,
    상기 제3 열교환기는 선택적으로 온수가 공급되는 온수관과 연결되며, 상기 물순환관을 순환하는 물은 상기 온수관을 유동하는 온수를 상기 열원으로 하여 열교환되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  5. 청구항 1 또는 2에 있어서,
    상기 물순환관이 연결되며, 상기 제2 열교환기를 거친 상기 물순환관을 순환하는 물이 선택적으로 공급되는 열원과 열교환되도록 하는 제3 열교환기를 더 포함하고,
    상기 가열부는 온수코일(hot water coil)을 포함하며,
    상기 제3 열교환기는 선택적으로 온수가 공급되는 온수관과 연결되고, 상기 물순환관을 순환하는 물은 상기 온수관을 유동하는 온수를 상기 열원으로 하여 열교환되며,
    온수가 유입되는 입수관과, 상기 제3 열교환기에 연결되는 상기 온수관의 공급측관, 및 상기 온수코일의 입구측에 연결된 입구측관은 삼방밸브에 의해 서로 연결되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  6. 청구항 1에 있어서,
    상기 제1 채널 또는 상기 제2 채널 내에 배치되어 공기가 통과되도록 강제하는 송풍기를 더 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  7. 청구항 2에 있어서,
    상기 제1 채널, 상기 제2 채널, 또는 상기 제3 채널 내에 배치되어 공기가 통과되도록 강제하는 송풍기를 더 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  8. 청구항 1 또는 2에 있어서,
    상기 물순환관의 적어도 일부는, 실내의 바닥, 천장, 및 벽 중 적어도 어느 하나의 내부에 매설되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  9. 청구항 1 또는 2에 있어서,
    상기 물순환관의 적어도 일부는, 팬 코일 유닛(fan coil unit) 내에 배치되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  10. 청구항 1 또는 2에 있어서,
    상기 제1 공기는 실외로부터 상기 제1 채널 내로 유입된 공기이며, 상기 제1 채널을 통과한 상기 제1 공기는 실외로 배출되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  11. 청구항 1 또는 2에 있어서,
    상기 제2 공기는 실외로부터 상기 제2 채널 내로 유입된 공기이며, 상기 제1 열교환기에서 열교환된 상기 제2 공기는 실외로 배출되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  12. 청구항 1 또는 2에 있어서,
    상기 제2 채널 내에 배치되며, 상기 제1 열교환기의 표면으로 물을 분사하도록 작동하는 물공급부를 더 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  13. 청구항 1 또는 2에 있어서,
    상기 가열부는 온수가 유동하는 온수코일(hot water coil)을 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  14. 청구항 2에 있어서,
    상기 제3 공기는 실내로부터 상기 제3 채널 내로 유입된 공기이며, 상기 제3 채널을 통과한 상기 제3 공기는 실내로 배출되는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  15. 청구항 2에 있어서,
    상기 제2 채널 및 상기 제3 채널 사이에 배치되며, 상기 제2 채널과 상기 제3 채널이 서로 연통되도록 개폐 작동되는 댐퍼(damper)를 더 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
  16. 청구항 2에 있어서,
    상기 제3 채널 내에 배치되는 공기필터를 더 포함하는 것을 특징으로 하는 하이브리드형 히트펌프 장치.
PCT/KR2015/003683 2014-04-21 2015-04-13 하이브리드형 히트펌프 장치 WO2015163621A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15783561.2A EP3136022B1 (en) 2014-04-21 2015-04-13 Hybrid heat pump apparatus
CN201580021135.9A CN106255858B (zh) 2014-04-21 2015-04-13 混合热泵设备
JP2016563091A JP6348987B2 (ja) 2014-04-21 2015-04-13 ハイブリッド型ヒートポンプ装置
US15/305,594 US9951963B2 (en) 2014-04-21 2015-04-13 Hybrid heat pump apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140047256A KR101560823B1 (ko) 2014-04-21 2014-04-21 하이브리드형 히트펌프 장치
KR10-2014-0047256 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015163621A1 true WO2015163621A1 (ko) 2015-10-29

Family

ID=54332733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003683 WO2015163621A1 (ko) 2014-04-21 2015-04-13 하이브리드형 히트펌프 장치

Country Status (6)

Country Link
US (1) US9951963B2 (ko)
EP (1) EP3136022B1 (ko)
JP (1) JP6348987B2 (ko)
KR (1) KR101560823B1 (ko)
CN (1) CN106255858B (ko)
WO (1) WO2015163621A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3030732C (en) * 2018-02-01 2021-02-16 Kimura Kohki Co., Ltd. Air conditioning system
US11096337B1 (en) * 2018-06-18 2021-08-24 Zea BioSciences Corp Method and apparatus for a heating, ventilating, and air conditioning system for indoor farming
SE543617C2 (en) * 2019-09-13 2021-04-20 Munters Europe Ab A dehumidification system and a method operating said dehumidification system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040057265A (ko) * 2002-12-26 2004-07-02 엘지전자 주식회사 공기조화시스템
JP2007278594A (ja) * 2006-04-07 2007-10-25 Tokyo Gas Co Ltd デシカント空調システム
JP2012172880A (ja) * 2011-02-21 2012-09-10 Takasago Thermal Eng Co Ltd デシカントロータを用いた外気処理装置およびその運転方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165952A (en) * 1977-04-21 1979-08-28 Motorola, Inc. Heat energized vapor adsorbent pump
IL64915A (en) * 1982-02-02 1985-04-30 Joel Harband Apparatus and method for temperature and humidity control
JPS59208347A (ja) * 1983-05-11 1984-11-26 Yamaha Motor Co Ltd 貯湯槽付の熱ポンプ式室温調節装置
US6077158A (en) * 1998-11-12 2000-06-20 Daimlerchrysler Corporation Air handling controller for HVAC system for electric vehicles
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
JP2002022291A (ja) * 2000-07-03 2002-01-23 Daikin Ind Ltd 空気調和装置
JP4508456B2 (ja) * 2001-03-30 2010-07-21 三洋電機株式会社 空調システム
JP3559255B2 (ja) 2001-06-08 2004-08-25 株式会社ア−スクリ−ン東北 間接型熱交換装置を備えたデシカント空調装置
JP2006052914A (ja) * 2004-08-16 2006-02-23 Sanden Corp 空気調和装置
JP2006189189A (ja) * 2005-01-05 2006-07-20 Mitsubishi Heavy Ind Ltd 空気調和機
JP2006341217A (ja) * 2005-06-10 2006-12-21 Tokyo Gas Co Ltd 除湿機
JP4848480B2 (ja) 2006-09-14 2011-12-28 株式会社前川製作所 デシカント空調機の処理空気温度制御方法及び装置
KR100773434B1 (ko) * 2007-02-01 2007-11-05 한국지역난방공사 지역난방용 제습냉방장치
CN101169296A (zh) * 2007-11-28 2008-04-30 广东工业大学 带除湿功能的热泵热水装置及其控制方法
JP5417213B2 (ja) * 2010-02-10 2014-02-12 株式会社朝日工業社 間接蒸発冷却型外調機システム
US9046283B2 (en) * 2010-02-10 2015-06-02 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5285734B2 (ja) * 2011-03-30 2013-09-11 大阪瓦斯株式会社 空調システム
KR101229676B1 (ko) * 2011-04-27 2013-02-04 주식회사 경동나비엔 하이브리드 냉방 장치
KR101207947B1 (ko) 2011-12-19 2012-12-05 한국과학기술연구원 제습 냉방 장치
JP6057573B2 (ja) 2012-07-09 2017-01-11 株式会社前川製作所 除湿空調方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040057265A (ko) * 2002-12-26 2004-07-02 엘지전자 주식회사 공기조화시스템
JP2007278594A (ja) * 2006-04-07 2007-10-25 Tokyo Gas Co Ltd デシカント空調システム
JP2012172880A (ja) * 2011-02-21 2012-09-10 Takasago Thermal Eng Co Ltd デシカントロータを用いた外気処理装置およびその運転方法

Also Published As

Publication number Publication date
EP3136022A4 (en) 2017-12-27
KR101560823B1 (ko) 2015-10-16
US9951963B2 (en) 2018-04-24
US20170045242A1 (en) 2017-02-16
EP3136022A1 (en) 2017-03-01
CN106255858A (zh) 2016-12-21
CN106255858B (zh) 2019-01-01
EP3136022B1 (en) 2020-11-11
JP2017511462A (ja) 2017-04-20
JP6348987B2 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2017086679A1 (ko) 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
WO2021215695A1 (ko) 자동차용 히트 펌프 시스템
WO2017086680A1 (ko) 냉방과 습도 조절이 가능한 공기조화기와 그 제어방법
WO2017086677A1 (ko) 환기와 습도 조절이 가능한 공기조화기와 그 제어방법
WO2015008978A1 (en) Drying machine
WO2019212275A1 (ko) 차량용 열관리 시스템
KR100487381B1 (ko) 환기겸용 공기조화시스템
WO2018012818A1 (ko) 차량용 히트 펌프 시스템
WO2016148476A1 (ko) 차량용 히트 펌프 시스템
WO2020130518A1 (ko) 열관리 시스템
WO2012020943A2 (en) Clothes dryer
WO2020040418A1 (ko) 열관리 시스템
WO2012148110A2 (ko) 하이브리드 냉방 장치
WO2020071803A1 (ko) 열관리 시스템
WO2016036079A1 (ko) 차량용 히트 펌프 시스템
WO2018190548A1 (ko) 차량용 공조장치
WO2015163621A1 (ko) 하이브리드형 히트펌프 장치
WO2019160294A1 (ko) 차량용 열관리 시스템
WO2018016902A1 (ko) 차량용 공조 시스템 및 그 제어방법
WO2022045820A1 (ko) 육구 공조기
WO2018155871A1 (ko) 차량용 히트펌프 시스템
WO2015160159A1 (ko) 제습 냉방 장치
WO2016129880A1 (en) Air conditioner
WO2020045878A1 (ko) 차량용 공조장치
WO2021154047A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783561

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015783561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783561

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016563091

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE