WO2015163321A1 - Block polymer - Google Patents

Block polymer Download PDF

Info

Publication number
WO2015163321A1
WO2015163321A1 PCT/JP2015/062112 JP2015062112W WO2015163321A1 WO 2015163321 A1 WO2015163321 A1 WO 2015163321A1 JP 2015062112 W JP2015062112 W JP 2015062112W WO 2015163321 A1 WO2015163321 A1 WO 2015163321A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymerizable monomer
meth
molecular weight
polymerization
Prior art date
Application number
PCT/JP2015/062112
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 一雅
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016514947A priority Critical patent/JPWO2015163321A1/en
Priority to KR1020167026306A priority patent/KR20160147722A/en
Priority to CN201580020336.7A priority patent/CN106232652A/en
Publication of WO2015163321A1 publication Critical patent/WO2015163321A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof

Definitions

  • the present invention relates to a (meth) acrylic block polymer obtained by polymerizing a monomer having three or more components.
  • (Meth) acrylic polymers can be easily produced by radical polymerization of (meth) acrylic monomers, and resin properties can be improved by copolymerizing several (meth) acrylic monomers depending on the purpose. Since it can be widely changed, it is widely manufactured industrially. In addition, bulk polymerization, solution polymerization, suspension polymerization, and the like are widespread as methods for producing (meth) acrylic polymers, and are selected in view of the molecular weight or cost of the (meth) acrylic polymer to be produced. Conventionally, since (meth) acrylic polymers are generally produced by free radical polymerization, (meth) acrylic polymers obtained from multi-component monomers are random copolymers and have a wide molecular weight distribution.
  • (Meth) acrylic polymers can exhibit characteristics such as transparency, adhesiveness, low elasticity, and high hardness by selecting monomer types, and are being developed in the fields of optics, electronic materials, and structural materials. Further, acrylic acid or methacrylic acid is copolymerized as a component of (meth) acrylic polymer to impart alkali aqueous solubility, and is used as a photosensitive resist material. Further, it is possible to incorporate curing reactivity by copolymerizing glycidyl methacrylate, and it is possible to incorporate photoreactivity by introducing a photoreactive group. Thereby, for example, it is possible to increase the heat resistance of the adhesive or to impart photosensitivity.
  • RAFT reversible addition-fragmentation chain transfer
  • RAFT polymerization can polymerize acrylic acid or methacrylic acid without a protective group, and enables copolymerization with various acrylic esters, methacrylic esters, styrene, and the like (see Patent Documents 1 and 2 below). reference).
  • the present invention provides a block polymer in which the block properties of other monomers are improved so that the physical properties of the polymer resulting from a specific polymerizable monomer in a multi-component copolymer polymer of three or more components are not changed by the sequence of the polymer. Is an issue.
  • the present invention is a (meth) acrylic polymer obtained by polymerizing a polymerizable monomer having three or more components, and includes a structural unit derived from a first polymerizable monomer and a structural unit derived from a second polymerizable monomer.
  • the present invention also relates to the block polymer in which the second polymer unit is bonded to one end or both ends of the first polymer unit.
  • the present invention also relates to the block polymer, wherein the first polymerizable monomer is (meth) acrylic acid (acrylic acid or methacrylic acid).
  • the present invention also relates to the block polymer, wherein the second polymerizable monomer is styrene.
  • the present invention also relates to the block polymer, wherein the third polymerizable monomer is a (meth) acrylic acid ester (acrylic acid ester or methacrylic acid ester).
  • the present invention also relates to the above block polymer having a weight average molecular weight of 10,000 to 200,000. Furthermore, the present invention relates to the block polymer having a molecular weight dispersity of 1.2 to 4.0.
  • the block polymer of the present invention is a multi-component copolymer polymer having three or more components, in which the block properties of other monomers are enhanced so that the physical properties of the polymer resulting from a specific polymerizable monomer do not change due to the sequence of the polymer. .
  • the obtained (meth) acrylic block polymer is applicable as a photosensitive resist, an adhesive, a photo-curing resin and the like exhibiting good characteristics.
  • FIG. 1 shows a gel permeation chromatogram during synthesis of the first polymer unit of Example 1 and after elongation of the second polymer unit chain.
  • FIG. 2 shows the 1 H-NMR spectrum obtained when the first polymer unit of Example 1 was synthesized.
  • FIG. 3 shows the 1 H-NMR spectrum after extension of the second polymer unit chain of Example 1.
  • (meth) acrylic acid means acrylic acid or methacrylic acid corresponding thereto.
  • (meth) acrylic acid ester means acrylic acid or methacrylic acid corresponding thereto.
  • a or B only needs to include either A or B, and may include both.
  • the materials exemplified below may be used singly or in combination of two or more unless otherwise specified.
  • the block polymer of this embodiment is a (meth) acrylic polymer obtained by polymerizing a polymerizable monomer having three or more components, and a structural unit derived from the first polymerizable monomer and a structural unit derived from the second polymerizable monomer.
  • a second polymer unit comprising: a first polymer unit comprising: a structural unit derived from the first polymerizable monomer; and a structural unit derived from a third polymerizable monomer different from the second polymerizable monomer. It has a polymer unit.
  • the third polymerizable monomer is different from the first polymerizable monomer.
  • the three or more polymerizable monomers contain at least (meth) acrylic acid.
  • the block polymer of this embodiment is a multi-component copolymer polymer having three or more components, in which the block properties of other monomers are enhanced so that the physical properties of the polymer due to a specific polymerizable monomer do not change due to the sequence of the polymer. is there.
  • the block polymer of the present embodiment is a (meth) acrylic block polymer obtained by polymerizing a polymerizable monomer containing at least three components including (meth) acrylic acid, and other than (meth) acrylic acid. It is a block polymer that can block a structural unit derived from a polymerizable monomer and is excellent in solubility in a solvent and an aqueous alkali solution.
  • the block polymer of the present embodiment has a first polymer unit as a block, and a second polymer unit is bonded as a block to one end (one end) or both ends of the first polymer unit (first block). It is preferable to have a second polymer unit at one or both ends of one polymer unit).
  • the first polymerizable monomer is a block polymer that is (meth) acrylic acid (acrylic acid or methacrylic acid).
  • the second polymerizable monomer is styrene.
  • the third polymerizable monomer is a (meth) acrylic acid ester (acrylic acid ester or methacrylic acid ester).
  • the molecular weight of the block polymer of this embodiment is not particularly limited, but the weight average molecular weight of the block polymer of this embodiment is preferably 10,000 to 200,000.
  • the molecular weight dispersity of the block polymer of this embodiment is preferably 1.2 to 4.0.
  • the ratio of each monomer and the ratio of each polymer unit are not particularly limited, and various types can be mentioned.
  • the ratio of the first polymerizable monomer and the second polymerizable monomer in the block polymer of the present embodiment is the former (first polymerizable monomer) / the latter from the viewpoint of solubility in a solvent, compatibility control, and the like.
  • the molar ratio of (second polymerizable monomer) may be 1/99 to 80/20, 3/97 to 70/30, or 5/95 to 60/40. Good.
  • the ratio of the first polymerizable monomer to the third polymerizable monomer is determined by the former (first polymerizable monomer) / the latter (third polymerizable monomer) from the viewpoints of solubility in a solvent and compatibility control.
  • the ratio of the first polymer unit and the second polymer unit is the molar ratio of the former (first polymer unit) / the latter (second polymer unit) from the viewpoints of high elongation, high strength, high adhesion, etc. It may be 10/90 to 90/10, 20/80 to 80/20, or 30/70 to 70/30.
  • the amount of each polymerizable monomer in the above ratio is the total amount in the entire block polymer.
  • the ratio of the first polymerizable monomer and the second polymerizable monomer in the block polymer of this embodiment is 1 / (molar ratio of the former (first polymerizable monomer) / the latter (second polymerizable monomer)). 99 to 80/20, and the ratio of the first polymerizable monomer to the third polymerizable monomer is 1 in terms of a molar ratio of the former (first polymerizable monomer) / the latter (third polymerizable monomer). / 99 to 80/20, and the ratio of the first polymer unit to the second polymer unit is 10/90 to the molar ratio of the former (first polymer unit) / the latter (second polymer unit). The aspect which is 90/10 is mentioned.
  • the manufacturing method of the block polymer of this embodiment is not particularly limited.
  • the block polymer of this embodiment is obtained by polymerizing the first polymerizable monomer and the second polymerizable monomer by living polymerization to obtain the first polymer unit, and then the first polymerizable monomer and the third polymerizable monomer. It can be obtained by adding a polymerizable monomer and chain extending the second polymer unit.
  • Living polymerization includes anion polymerization, atom transfer radical polymerization (ATRP), nitroxide living radical polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, organic tellurium mediated living radical polymerization (TERP), reversible chain transfer catalytic polymerization. (RTCP) or the like can be used.
  • ATRP atom transfer radical polymerization
  • NMP nitroxide living radical polymerization
  • RAFT reversible addition-fragmentation chain transfer
  • TERP organic tellurium mediated living radical polymerization
  • RTCP reversible chain transfer catalytic polymerization.
  • RAFT reversible addition-fragmentation chain transfer polymerization
  • a thioester as a protecting group which is a chain transfer agent
  • it has many polymerizable monomer species and can directly copolymerize acrylic acid or methacrylic acid.
  • a thiocarbonate compound having a structure represented by the following general formula (1) can be used as a chain transfer agent.
  • R cumyl group, cyanopropyl group, phenylpropyl group, cyanophenylmethyl group, ethylcarboxypropyl group, 2,4,4-trimethylpentan-2-yl group, 1-cyanoethyl group, 1-phenyl Preferred examples include an ethyl group, a tert-butyl group, a cyanomethyl group, and a benzyl group.
  • Z is preferably a phenyl group, methylthioyl group, pyrrole group, methyl group, phenoxy group, ethoxy group, dimethylamino group or the like.
  • chain transfer agents include cumyl dithiobenzoate, 2-cyano-2-propylbenzothioate, 4-cyano-4 [(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, cyanomethylmethyl (phenyl) Carbamodithioate, 4-cyano-4- (phenylcarbonothioylthio) pentanoic acid, 2-cyano-2-propyldodecyltrithiocarbonate, 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid, And cyanomethyldodecyl trithiocarbonate. Although these are marketed, a chain transfer agent is not limited to these.
  • (meth) acrylic monomer refers to a monomer having an acryloyl group (CH ⁇ CH—CO—) or a methacryloyl group (CH ⁇ C (CH 3 ) —CO—)
  • (meth) “Acrylic polymer” refers to a polymer obtained by polymerization using at least a part of monomers having these groups.
  • a (meth) acrylic polymer using a (meth) acrylic monomer and a styrene monomer as a polymerizable monomer is preferable.
  • a 1st polymerizable monomer For example, a carboxyl group containing monomer is mentioned, Especially, (meth) acrylic acid (acrylic acid or methacrylic acid) etc. are mentioned as a preferable thing. .
  • the second polymerizable monomer and the third polymerizable monomer (meth) acrylic monomer, styrene monomer, (meth) acrylic acid ester, acrylonitrile, etc. other than the first polymerizable monomer are preferable.
  • styrene is preferable as the second polymerizable monomer.
  • the third polymerizable monomer (meth) acrylic acid ester (acrylic acid ester or methacrylic acid ester) is preferable.
  • the styrene monomer include styrene and ⁇ -methylstyrene.
  • (Meth) acrylates include benzyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and lauryl (meth) acrylate Etc.
  • the first polymerizable monomer is (meth) acrylic acid
  • the second and third polymerizable monomers are styrene, (meth ) Benzyl acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, and the like.
  • the block polymer of this embodiment may further include a third polymer unit different from the first polymer unit and the second polymer unit.
  • the third polymer unit has, for example, a structural unit derived from the first polymerizable monomer similar to the first polymer unit and the second polymer unit.
  • the polymerizable monomer giving the third polymer unit the above polymerizable monomer used for obtaining the first polymer unit and the second polymer unit can be used.
  • the thiocarbonate compound having the structure represented by the general formula (1) is used as a chain transfer agent, and the first polymerizable monomer (for example, acrylic acid or methacrylic acid) and the second polymerizable monomer are living.
  • the first polymer unit is synthesized by polymerization, the polymer that becomes the first polymer unit is recovered by reprecipitation or distillation under reduced pressure after the polymerization has progressed to some extent, and then the first polymerizable monomer and By adding with the third polymerizable monomer, the second polymer unit can be chain extended. In this case, a small amount of radical initiator may be added.
  • the first polymer unit is synthesized by polymerizing the first polymerizable monomer and the second polymerizable monomer by living polymerization using the thiocarbonate compound having the structure represented by the general formula (1) as a chain transfer agent.
  • the first polymer monomer and the third polymer monomer are added to the same reactor to extend the second polymer unit, thereby causing the block polymer of the present embodiment. Can be obtained.
  • Molar amounts of the first polymerizable monomer used first, the second polymerizable monomer polymerizable with the first polymerizable monomer, the first polymerizable monomer charged later, and the third polymerizable monomer polymerizable with the first polymerizable monomer By controlling the molar ratio of the thiocarbonate compound represented by the general formula (1), the molecular weight of the obtained block polymer, the molecular weight (chain length) of the first polymer unit, and the second polymer unit It is possible to adjust the molecular weight (chain length).
  • the molar ratio of the chain transfer agent (specifically, for example, the compound represented by the general formula (1)) to the radical initiator (chain transfer agent / radical initiator) is 20/1 to 1/5. 10/1 to 1/4 is more preferable. Since the ratio of the chain transfer agent (the compound represented by the general formula (1)) and the radical initiator is 20/1 or less, the polymerization reaction rate can be increased while maintaining monodispersity. Industrially preferable. On the other hand, by setting the ratio to 1/5 or more, chain transfer from the radical initiator directly to the monomer can be avoided, and various polymers (random polymer, first polymer different from the block polymer of this embodiment) can be avoided. It is possible to suppress a by-product of a polymer unit alone, a second polymer unit alone, or the like, and obtain a good block polymer.
  • the temperature of the polymerization reaction varies depending on the decomposition temperature of the radical initiator to be used, and is not particularly limited.
  • the half-life decomposition temperature is minus 2 ° C. to plus 20 ° C. (half-life decomposition temperature ⁇ 2 ° C. to half) It is preferable to carry out at the periodical decomposition temperature + 20 ° C.).
  • radical initiators for synthesizing the block polymer of this embodiment include benzoyl peroxide, acetyl peroxide, lauroyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, and the like.
  • peroxide initiators such as AIBN (2,2′-azobisisobutyronitrile), V-65 (azobisdimethylvaleronitrile) and the like. Of these, AIBN (2,2'-azobisisobutyronitrile) is preferable.
  • the block polymer of this embodiment can be synthesized by solution polymerization, suspension polymerization, emulsion polymerization, solid phase polymerization, etc., but solution polymerization is preferable to obtain a resin having a weight average molecular weight of 2000 to 300,000. Suspension polymerization is preferred to obtain a resin having a weight average molecular weight of 300,000 to 1,000,000.
  • the polymerization method is appropriately selected depending on the polarity or reactivity of the monomer to be used, but when acrylic acid or methacrylic acid is used, in order to synthesize a (meth) acrylic polymer soluble in a solvent, a solution is used. It is preferable to carry out by polymerization.
  • the weight average molecular weight of the block polymer of this embodiment is not particularly limited, but is preferably 10,000 or more, more preferably 12,000 or more, and further preferably 15,000 or more from the viewpoint of strength, elongation, adhesiveness, and the like.
  • the weight average molecular weight of the block polymer is preferably 200000 or less, more preferably 180000 or less, and further preferably 150,000 or less from the viewpoint of solubility and the like. From these viewpoints, the molecular weight of the block polymer is preferably 10,000 to 200,000, more preferably 12,000 to 180000, and further preferably 15,000 to 150,000.
  • the molecular weight dispersity (weight average molecular weight Mw / number average molecular weight Mn) of the block polymer of this embodiment is preferably 1.1 or more, and more preferably 1.2 or more, from the viewpoint of high elongation, high strength, high adhesion, and the like. .
  • the molecular weight dispersity of the block polymer is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less, from the viewpoints of dispersibility, compatibility and the like. From these viewpoints, the molecular weight dispersity of the block polymer is preferably 1.1 to 4.0, more preferably 1.2 to 3.0, and still more preferably 1.2 to 2.0.
  • molecular weight (weight average molecular weight Mw and number average molecular weight Mn) can be calculated
  • Solution polymerization is performed by dissolving a polymerizable monomer, a chain transfer agent, and a radical initiator in a solvent capable of dissolving the produced resin and heating to a temperature determined by the radical initiator. At this time, the polymerization can be carried out even under air, but it is preferably carried out under nitrogen.
  • the solvent used in the solution polymerization is not particularly limited as long as it can dissolve a polymerizable monomer, a chain transfer agent, a radical initiator, and a resin to be formed, but preferably has a boiling point equal to or higher than the temperature at which the polymerization is performed.
  • the temperature at which the polymerization is carried out is higher than the boiling point of the solvent used, the polymerization can be carried out by a reaction under pressure.
  • Solvents used include methoxyethanol, ethoxyethanol, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanol, cyclohexanone, butyl acetate, chlorobenzene, dioxane, propylene glycol monomethyl ether, etc. Not. These can be used alone or in appropriate mixture.
  • RAFT polymerization in general, chain transfer from the acrylic growth terminal to the methacrylate monomer does not occur. Therefore, the monomer blending procedure or combination when copolymerizing a plurality of monomers is important. Therefore, when simultaneously charging a plurality of monomers, it is preferable to carry out a combination of only monomers having an acryloyl group or only a monomer having a methacryloyl group.
  • polymerization is performed with a combination of only monomers having an acryloyl group, or a monomer having a methacryloyl group is polymerized only with a combination of monomers having a methacryloyl group. Thereafter, it is preferable to polymerize a monomer having an acryloyl group.
  • the block polymer of this embodiment is expected to exhibit various characteristics in applications such as photosensitive materials, adhesives, adhesives, coating materials, and dispersants.
  • Example 1 In a 500 mL (milliliter) separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (Wako Pure Chemical Industries, Ltd.) 67.5 g (648 mmol), cumyldithiobenzoate 1.46 g (5.36 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.45 g (2.73 mmol) was bubbled with nitrogen at room temperature and stirred for 30 minutes. The temperature was raised to 65 ° C.
  • Example 2 In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 67 0.5 g (648 mmol), cumyl dithiobenzoate 0.68 g (2.5 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.21 g (1.28 mmol) were charged, Nitrogen was bubbled at room temperature and stirred for 30 minutes.
  • the temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C.
  • 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred.
  • the mixture was stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured.
  • the polymerization rate calculated from the solid content was 92%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 21,400, and the number average molecular weight (Mn) was 16,900.
  • Example 3 In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 67 0.5 g (648 mmol), cumyl dithiobenzoate 1.12 g (4.11 mmol), and azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%) 0.17 g (1.01 mmol) were charged, Nitrogen was bubbled at room temperature and stirred for 30 minutes.
  • methacrylic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • styrene manufactured by Wako Pure Chemical Industries, Ltd.
  • cumyl dithiobenzoate 1.12 g (4.11 mmol
  • the temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C.
  • 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred.
  • the mixture was stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured.
  • the polymerization rate calculated from the solid content was 92%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 11300, and the number average molecular weight (Mn) was 9000.
  • reaction solution was reprecipitated with hexane and vacuum dried at 40 ° C. 50.0 g of the obtained solid, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution, 15.5 g (181 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), and benzyl methacrylate (Hitachi) 42.0 g (238 mmol) of a product made by Kasei Co., Ltd. (Fancryl FA-BZM) was added and stirred. After the solid matter was dissolved, the temperature was raised to 70 ° C. and stirred.
  • the final (meth) acrylic polymer including the methacrylic acid / benzyl methacrylate unit had a weight average molecular weight (Mw) of 30,500, a number average molecular weight (Mn) of 23800, and a varnish solid content of 34% by mass.
  • Example 6 A (meth) acrylic polymer was obtained according to Example 1 except that the combinations of monomers and RAFT agents shown in Table 2 and Table 3 below were used.
  • Example 7 In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 67 0.5 g (648 mmol), cumyl dithiobenzoate 1.46 g (5.36 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.45 g (2.73 mmol) were charged, Nitrogen was bubbled at room temperature and stirred for 30 minutes.
  • the temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C.
  • 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred.
  • the mixture was stirred at 80 ° C. for 4 hours, and the solid content and molecular weight were measured.
  • the polymerization rate calculated from the solid content was 93%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 12900, and the number average molecular weight (Mn) was 10400.
  • the weight average molecular weight of the obtained polymer was 34600, the number average molecular weight was 26400, and the total polymerization rate was 94%.
  • the reaction solution was cooled to room temperature to obtain a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer having three polymer units.
  • Example 8 A toluene / propylene glycol monomethyl ether of a (meth) acrylic polymer having three types of polymer units according to Example 7 except that the monomer added for the third time was lauryl methacrylate / methacrylic acid in the amount shown in Table 4. A 2/3 mass ratio) mixed solution was obtained.
  • the temperature was raised to 65 ° C. and stirred for 30 minutes, then the temperature was raised to 70 ° C. and stirred for 2 hours, and further stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured.
  • the polymerization rate calculated from the solid content was 96%, the weight average molecular weight (Mw) of the styrene / benzyl methacrylate unit was 14100, and the number average molecular weight (Mn) was 11300.
  • Comparative Example 2 A (meth) acrylic polymer having benzyl methacrylate and styrene as block units was obtained in accordance with Comparative Example 1 except that the monomers shown in Table 5 were used.
  • the temperature was raised to 65 ° C. and stirred for 30 minutes, and then the temperature was raised to 70 ° C. and stirred for 2 hours.
  • the viscosity of the reaction solution increased, 46 g of propylene glycol monomethyl ether that had been separately bubbled with nitrogen for 30 minutes was added. Stir further. Furthermore, it stirred at 80 degreeC for 4 hours and measured solid content and molecular weight. The polymerization rate calculated from the solid content was 96%.
  • a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer was obtained.
  • the weight average molecular weight (Mw) of the obtained polymer was 31,000, the number average molecular weight (Mn) was 25400, and the solid content of the varnish was 34% by mass.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and Mw / Mn of the (meth) acrylic polymer of Examples and Comparative Examples are the chromatograms of the molecular weight distribution of the (meth) acrylic polymer by GPC (gel permeation chromatography). ) And calculated from the elution time of standard polystyrene at 25 ° C.
  • the measuring device is EcoSEC, HLC-8320GPC manufactured by Tosoh Corporation, and tetrahydrofuran is used as the eluent of the gel.
  • the columns are Gelpack GL-A-150 and Gelpack GL-A-10 (Hitachi High-Technologies Corporation). (Product name, product name) directly connected. In addition, it measured similarly about the molecular weight of the polymer in a reaction liquid.
  • FIG. 1 shows a gel permeation chromatogram at the time of synthesizing the first polymer unit of Example 1 and after the second polymer unit chain extension.
  • Reference numeral 1 denotes a gel permeation at the time of synthesizing the first polymer unit.
  • a chromatogram is shown
  • reference numeral 2 denotes a gel permeation chromatogram after the second polymer unit chain extension.
  • FIG. 2 shows a 1 H-NMR spectrum during the synthesis of the first polymer unit of Example 1.
  • Reference numeral 3 indicates an OH signal of methacrylic acid
  • reference numeral 4 indicates a signal of an aromatic ring of styrene.
  • reference numeral 5 indicates the OH signal of methacrylic acid
  • reference numeral 6 indicates the aromatic ring of styrene and benzyl methacrylate
  • symbol 7 shows the signal of the methylene of benzyl methacrylate.
  • x 10 ⁇ Vf ⁇ 56.1 / (Wp ⁇ I) ( ⁇ )
  • x represents an acid value (mgKOH / g)
  • Vf represents a titration amount (mL) of a 0.1N KOH aqueous solution
  • Wp represents the mass (g) of the measured resin solution
  • I Indicates the ratio (mass%) of the non-volatile content in the measured resin solution.
  • Elongation at break (%) [(Distance between chucks when fractured ⁇ First distance between chucks (60 mm)) / First distance between chucks (60 mm)] ⁇ 100

Abstract

The present invention provides a block polymer that is a (meth)acrylic polymer formed by polymerizing at least three polymerizable monomer components, said block polymer having: a first polymer unit that includes a structural unit derived from a first polymerizable monomer and a structural unit derived from a second polymerizable monomer; and a second polymer unit that includes a structural unit derived from the first polymerizable monomer and a structural unit derived from a third polymerizable monomer that is different from the second polymerizable monomer.

Description

ブロックポリマBlock polymer
 本発明は、三成分以上のモノマを重合してなる(メタ)アクリルブロックポリマに関する。 The present invention relates to a (meth) acrylic block polymer obtained by polymerizing a monomer having three or more components.
 (メタ)アクリルポリマは、(メタ)アクリルモノマをラジカル重合することで容易に製造することが可能であり、目的に応じて数種の(メタ)アクリルモノマを共重合することで樹脂の特性を幅広く変えることが可能であることから、広く工業的に製造されている。また、(メタ)アクリルポリマの製造方法は、塊状重合、溶液重合、懸濁重合等が普及しており、製造する(メタ)アクリルポリマの分子量又はコスト等を鑑み選択されている。従来、(メタ)アクリルポリマは、一般的にフリーラジカル重合で製造されているため、多成分モノマから得られる(メタ)アクリルポリマはランダム共重合体であり、広い分子量分布を有している。 (Meth) acrylic polymers can be easily produced by radical polymerization of (meth) acrylic monomers, and resin properties can be improved by copolymerizing several (meth) acrylic monomers depending on the purpose. Since it can be widely changed, it is widely manufactured industrially. In addition, bulk polymerization, solution polymerization, suspension polymerization, and the like are widespread as methods for producing (meth) acrylic polymers, and are selected in view of the molecular weight or cost of the (meth) acrylic polymer to be produced. Conventionally, since (meth) acrylic polymers are generally produced by free radical polymerization, (meth) acrylic polymers obtained from multi-component monomers are random copolymers and have a wide molecular weight distribution.
 (メタ)アクリルポリマは、モノマ種の選択により透明性、接着性、低弾性、高硬度等の特徴を発現でき、光学分野、電子材料分野、構造材料分野等に展開されている。また、アクリル酸又はメタクリル酸を(メタ)アクリルポリマの成分として共重合することにより、アルカリ水溶液可溶性を付与して、感光性レジスト材料に供されている。また、グリシジルメタクリレートを共重合することにより硬化反応性を組み込むことが可能であり、光反応性基を導入することにより光反応性を組み込むことが可能である。これにより、例えば、接着剤の耐熱性を高めること、又は、感光性を付与することが可能である。 (Meth) acrylic polymers can exhibit characteristics such as transparency, adhesiveness, low elasticity, and high hardness by selecting monomer types, and are being developed in the fields of optics, electronic materials, and structural materials. Further, acrylic acid or methacrylic acid is copolymerized as a component of (meth) acrylic polymer to impart alkali aqueous solubility, and is used as a photosensitive resist material. Further, it is possible to incorporate curing reactivity by copolymerizing glycidyl methacrylate, and it is possible to incorporate photoreactivity by introducing a photoreactive group. Thereby, for example, it is possible to increase the heat resistance of the adhesive or to impart photosensitivity.
 近年、(メタ)アクリルポリマの高性能化又は高機能化を実現するため、ブロックポリマ、グラフトポリマ、星型ポリマ等の構造制御を可能とするリビングラジカル重合が、種々、開発されている。(メタ)アクリルポリマの合成法として可逆的付加開裂連鎖移動(RAFT)重合が、リビングラジカル重合方法として開発されている。RAFT重合は、チオカーボネート構造を有する連鎖移動剤を用いることでポリマ成長末端が可逆的な付加開裂を起こしモノマへの連鎖移動を起こすことでリビング重合の挙動をとる。RAFT重合は、アクリル酸又はメタクリル酸を保護基なしで重合することが可能であり、種々のアクリル酸エステル、メタクリル酸エステル、スチレン等との共重合を可能とする(下記特許文献1、2を参照)。 In recent years, various living radical polymerizations capable of controlling the structure of block polymers, graft polymers, star polymers and the like have been developed in order to achieve high performance or high functionality of (meth) acrylic polymers. As a synthesis method of (meth) acrylic polymer, reversible addition-fragmentation chain transfer (RAFT) polymerization has been developed as a living radical polymerization method. RAFT polymerization takes the behavior of living polymerization by using a chain transfer agent having a thiocarbonate structure to cause reversible addition cleavage at the polymer growth terminal and causing chain transfer to a monomer. RAFT polymerization can polymerize acrylic acid or methacrylic acid without a protective group, and enables copolymerization with various acrylic esters, methacrylic esters, styrene, and the like (see Patent Documents 1 and 2 below). reference).
特表2000-515181号公報Special Table 2000-515181 特開2010-59231号公報JP 2010-59231 A
 本発明は、三成分以上の多成分共重合ポリマにおいて、特定の重合性モノマに起因するポリマの物性がポリマのシークエンスにより変化しないように、他のモノマのブロック性を高めたブロックポリマを得ることを課題とする。 The present invention provides a block polymer in which the block properties of other monomers are improved so that the physical properties of the polymer resulting from a specific polymerizable monomer in a multi-component copolymer polymer of three or more components are not changed by the sequence of the polymer. Is an issue.
 本発明は、三成分以上の重合性モノマを重合してなる(メタ)アクリルポリマであり、第一の重合性モノマ由来の構造単位と、第二の重合性モノマ由来の構造単位とを含む第一のポリマユニット、及び、前記第一の重合性モノマ由来の構造単位と、前記第二の重合性モノマとは異なる第三の重合性モノマ由来の構造単位を含む第二のポリマユニットを有する、ブロックポリマに関する。 The present invention is a (meth) acrylic polymer obtained by polymerizing a polymerizable monomer having three or more components, and includes a structural unit derived from a first polymerizable monomer and a structural unit derived from a second polymerizable monomer. One polymer unit, and a second polymer unit including a structural unit derived from the first polymerizable monomer and a structural unit derived from a third polymerizable monomer different from the second polymerizable monomer, Regarding block polymers.
 また、本発明は、前記第一のポリマユニットの片末端又は両末端に前記第二のポリマユニットが結合している、前記ブロックポリマに関する。
 また、本発明は、前記第一の重合性モノマが(メタ)アクリル酸(アクリル酸又はメタクリル酸)である、前記ブロックポリマに関する。
 また、本発明は、前記第二の重合性モノマがスチレンである、前記ブロックポリマに関する。
 また、本発明は、前記第三の重合性モノマが(メタ)アクリル酸エステル(アクリル酸エステル又はメタクリル酸エステル)である、前記ブロックポリマに関する。
 また、本発明は、重量平均分子量が10000~200000である、前記のブロックポリマに関する。
 さらに、本発明は、分子量分散度が1.2~4.0である、前記ブロックポリマに関する。
The present invention also relates to the block polymer in which the second polymer unit is bonded to one end or both ends of the first polymer unit.
The present invention also relates to the block polymer, wherein the first polymerizable monomer is (meth) acrylic acid (acrylic acid or methacrylic acid).
The present invention also relates to the block polymer, wherein the second polymerizable monomer is styrene.
The present invention also relates to the block polymer, wherein the third polymerizable monomer is a (meth) acrylic acid ester (acrylic acid ester or methacrylic acid ester).
The present invention also relates to the above block polymer having a weight average molecular weight of 10,000 to 200,000.
Furthermore, the present invention relates to the block polymer having a molecular weight dispersity of 1.2 to 4.0.
 本発明のブロックポリマは、三成分以上の多成分共重合ポリマにおいて、特定の重合性モノマに起因するポリマの物性がポリマのシークエンスにより変化しないように他のモノマのブロック性を高めたものである。得られる(メタ)アクリルブロックポリマは、感光性レジスト、接着剤、光硬化用樹脂等として良好な特性を示すものとして適用可能である。 The block polymer of the present invention is a multi-component copolymer polymer having three or more components, in which the block properties of other monomers are enhanced so that the physical properties of the polymer resulting from a specific polymerizable monomer do not change due to the sequence of the polymer. . The obtained (meth) acrylic block polymer is applicable as a photosensitive resist, an adhesive, a photo-curing resin and the like exhibiting good characteristics.
図1は、実施例1の第一のポリマユニット合成時、及び、第二のポリマユニット鎖伸張後のゲルパーミエーションクロマトグラムを示す。FIG. 1 shows a gel permeation chromatogram during synthesis of the first polymer unit of Example 1 and after elongation of the second polymer unit chain. 図2は、実施例1の第一のポリマユニット合成時のH-NMRスペクトルを示す。FIG. 2 shows the 1 H-NMR spectrum obtained when the first polymer unit of Example 1 was synthesized. 図3は、実施例1の第二のポリマユニット鎖伸張後のH-NMRスペクトルを示す。FIG. 3 shows the 1 H-NMR spectrum after extension of the second polymer unit chain of Example 1.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はそれに対応するメタクリル酸を意味する。「(メタ)アクリル酸エステル」等の他の類似の表現においても同様である。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組合せて用いてもよい。 In this specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid corresponding thereto. The same applies to other similar expressions such as “(meth) acrylic acid ester”. “A or B” only needs to include either A or B, and may include both. The materials exemplified below may be used singly or in combination of two or more unless otherwise specified.
 本実施形態のブロックポリマは、三成分以上の重合性モノマを重合してなる(メタ)アクリルポリマであり、第一の重合性モノマ由来の構造単位と、第二の重合性モノマ由来の構造単位とを含む第一のポリマユニット、及び、前記第一の重合性モノマ由来の構造単位と、前記第二の重合性モノマとは異なる第三の重合性モノマ由来の構造単位とを含む第二のポリマユニットを有する。第三の重合性モノマは、前記第一の重合性モノマとも異なる。前記三成分以上の重合性モノマは、少なくとも(メタ)アクリル酸を含む。 The block polymer of this embodiment is a (meth) acrylic polymer obtained by polymerizing a polymerizable monomer having three or more components, and a structural unit derived from the first polymerizable monomer and a structural unit derived from the second polymerizable monomer. A second polymer unit comprising: a first polymer unit comprising: a structural unit derived from the first polymerizable monomer; and a structural unit derived from a third polymerizable monomer different from the second polymerizable monomer. It has a polymer unit. The third polymerizable monomer is different from the first polymerizable monomer. The three or more polymerizable monomers contain at least (meth) acrylic acid.
 本実施形態のブロックポリマは、三成分以上の多成分共重合ポリマにおいて、特定の重合性モノマに起因するポリマの物性がポリマのシークエンスにより変化しないように他のモノマのブロック性を高めたものである。具体的には、本実施形態のブロックポリマは、少なくとも(メタ)アクリル酸を含む三成分以上の重合性モノマを重合してなる(メタ)アクリルブロックポリマであって、(メタ)アクリル酸以外の重合性モノマ由来の構造単位をブロック化でき、溶剤及びアルカリ水溶液への溶解性に優れるブロックポリマである。 The block polymer of this embodiment is a multi-component copolymer polymer having three or more components, in which the block properties of other monomers are enhanced so that the physical properties of the polymer due to a specific polymerizable monomer do not change due to the sequence of the polymer. is there. Specifically, the block polymer of the present embodiment is a (meth) acrylic block polymer obtained by polymerizing a polymerizable monomer containing at least three components including (meth) acrylic acid, and other than (meth) acrylic acid. It is a block polymer that can block a structural unit derived from a polymerizable monomer and is excellent in solubility in a solvent and an aqueous alkali solution.
 本実施形態のブロックポリマは、第一のポリマユニットをブロックとして有し、第一のポリマユニットの片末端(一方の末端)又は両末端に第二のポリマユニットがブロックとして結合している(第一のポリマユニットの片末端又は両末端に第二のポリマユニットを有する)ことが好ましい。 The block polymer of the present embodiment has a first polymer unit as a block, and a second polymer unit is bonded as a block to one end (one end) or both ends of the first polymer unit (first block). It is preferable to have a second polymer unit at one or both ends of one polymer unit).
 また、前記第一の重合性モノマが(メタ)アクリル酸(アクリル酸又はメタクリル酸)であるブロックポリマであるものが好ましい態様である。前記第二の重合性モノマがスチレンであるものが好ましい態様である。前記第三の重合性モノマが(メタ)アクリル酸エステル(アクリル酸エステル又はメタクリル酸エステル)であるものが好ましい態様である。本実施形態のブロックポリマの分子量に特に制限はないが、本実施形態のブロックポリマの重量平均分子量は10000~200000が好ましい。本実施形態のブロックポリマの分子量分散度は1.2~4.0が好ましい。 Also, a preferred embodiment is that the first polymerizable monomer is a block polymer that is (meth) acrylic acid (acrylic acid or methacrylic acid). In a preferred embodiment, the second polymerizable monomer is styrene. In a preferred embodiment, the third polymerizable monomer is a (meth) acrylic acid ester (acrylic acid ester or methacrylic acid ester). The molecular weight of the block polymer of this embodiment is not particularly limited, but the weight average molecular weight of the block polymer of this embodiment is preferably 10,000 to 200,000. The molecular weight dispersity of the block polymer of this embodiment is preferably 1.2 to 4.0.
 また、本実施形態のブロックポリマにおいて、それぞれのモノマの割合、及び、それぞれのポリマユニットの割合に特に制限はなく、様々なものが挙げられる。 In the block polymer of the present embodiment, the ratio of each monomer and the ratio of each polymer unit are not particularly limited, and various types can be mentioned.
 本実施形態のブロックポリマにおける第一の重合性モノマと第二の重合性モノマの割合は、溶媒への溶解性、相溶性の制御等の観点から、前者(第一の重合性モノマ)/後者(第二の重合性モノマ)のモル比で、1/99~80/20であってもよく、3/97~70/30であってもよく、5/95~60/40であってもよい。第一の重合性モノマと第三の重合性モノマの割合は、溶媒への溶解性、相溶性の制御等の観点から、前者(第一の重合性モノマ)/後者(第三の重合性モノマ)のモル比で、1/99~80/20であってもよく、3/97~80/20であってもよく、5/95~60/40であってもよい。第一のポリマユニットと第二のポリマユニットの割合は、高伸び、高強度、高接着性等の観点から、前者(第一のポリマユニット)/後者(第二のポリマユニット)のモル比で、10/90~90/10であってもよく、20/80~80/20であってもよく、30/70~70/30であってもよい。なお、上記割合における各重合性モノマの量は、ブロックポリマ全体における総量である。 The ratio of the first polymerizable monomer and the second polymerizable monomer in the block polymer of the present embodiment is the former (first polymerizable monomer) / the latter from the viewpoint of solubility in a solvent, compatibility control, and the like. The molar ratio of (second polymerizable monomer) may be 1/99 to 80/20, 3/97 to 70/30, or 5/95 to 60/40. Good. The ratio of the first polymerizable monomer to the third polymerizable monomer is determined by the former (first polymerizable monomer) / the latter (third polymerizable monomer) from the viewpoints of solubility in a solvent and compatibility control. ) May be 1/99 to 80/20, 3/97 to 80/20, or 5/95 to 60/40. The ratio of the first polymer unit and the second polymer unit is the molar ratio of the former (first polymer unit) / the latter (second polymer unit) from the viewpoints of high elongation, high strength, high adhesion, etc. It may be 10/90 to 90/10, 20/80 to 80/20, or 30/70 to 70/30. The amount of each polymerizable monomer in the above ratio is the total amount in the entire block polymer.
 例えば、本実施形態のブロックポリマにおける第一の重合性モノマと第二の重合性モノマの割合が前者(第一の重合性モノマ)/後者(第二の重合性モノマ)のモル比で1/99~80/20であり、かつ、第一の重合性モノマと第三の重合性モノマの割合が前者(第一の重合性モノマ)/後者(第三の重合性モノマ)のモル比で1/99~80/20であり、かつ、第一のポリマユニットと第二のポリマユニットの割合が前者(第一のポリマユニット)/後者(第二のポリマユニット)のモル比で10/90~90/10である態様が挙げられる。 For example, the ratio of the first polymerizable monomer and the second polymerizable monomer in the block polymer of this embodiment is 1 / (molar ratio of the former (first polymerizable monomer) / the latter (second polymerizable monomer)). 99 to 80/20, and the ratio of the first polymerizable monomer to the third polymerizable monomer is 1 in terms of a molar ratio of the former (first polymerizable monomer) / the latter (third polymerizable monomer). / 99 to 80/20, and the ratio of the first polymer unit to the second polymer unit is 10/90 to the molar ratio of the former (first polymer unit) / the latter (second polymer unit). The aspect which is 90/10 is mentioned.
 本実施形態のブロックポリマの製造方法は、特に制限されない。本実施形態のブロックポリマは、第一の重合性モノマと第二の重合性モノマとをリビング重合により重合して第一のポリマユニットを得た後、前記第一の重合性モノマと第三の重合性モノマとを添加して第二のポリマユニットを鎖伸張させることにより得ることができる。 The manufacturing method of the block polymer of this embodiment is not particularly limited. The block polymer of this embodiment is obtained by polymerizing the first polymerizable monomer and the second polymerizable monomer by living polymerization to obtain the first polymer unit, and then the first polymerizable monomer and the third polymerizable monomer. It can be obtained by adding a polymerizable monomer and chain extending the second polymer unit.
 リビング重合としては、アニオン重合、原子移動ラジカル重合(ATRP)、ニトロキシドリビングラジカル重合(NMP)、可逆的付加開裂連鎖移動(RAFT)重合、有機テルル媒介リビングラジカル重合(TERP)、可逆連鎖移動触媒重合(RTCP)等が利用できる。 Living polymerization includes anion polymerization, atom transfer radical polymerization (ATRP), nitroxide living radical polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, organic tellurium mediated living radical polymerization (TERP), reversible chain transfer catalytic polymerization. (RTCP) or the like can be used.
 リビングラジカル重合では、ラジカル重合において、成長ラジカルを可逆的に保護し、保護基の脱保護(活性化)、モノマの付加(成長)、保護(不活性化)の繰り返しにより分子鎖が少しずつ、ほぼ均等に成長し、分子量分布の狭い高分子が得られる。モノマが反応系から枯渇しても新たにモノマを供給することにより重合が開始され鎖伸張が起こる。中でも、連鎖移動剤である保護基としてチオエステルを用いる可逆的付加開裂連鎖移動重合(RAFT)は、重合可能なモノマ種が多く、アクリル酸又はメタクリル酸を直接、共重合できる点で好ましい。 In living radical polymerization, in the radical polymerization, the growing radical is reversibly protected, and the molecular chain is gradually changed by repeating deprotection (activation), addition of monomer (growth), and protection (inactivation) of the protecting group, The polymer grows almost uniformly and a polymer with a narrow molecular weight distribution is obtained. Even if the monomer is depleted from the reaction system, polymerization is started by supplying a new monomer, and chain elongation occurs. Among these, reversible addition-fragmentation chain transfer polymerization (RAFT) using a thioester as a protecting group which is a chain transfer agent is preferable in that it has many polymerizable monomer species and can directly copolymerize acrylic acid or methacrylic acid.
 このRAFT重合においては、下記一般式(1)で表される構造のチオカーボネート化合物を連鎖移動剤として用いることができる。 In this RAFT polymerization, a thiocarbonate compound having a structure represented by the following general formula (1) can be used as a chain transfer agent.
Figure JPOXMLDOC01-appb-C000001
(Rは、一価の基を示し、Zは、一価の基を示す。)
Figure JPOXMLDOC01-appb-C000001
(R represents a monovalent group, and Z represents a monovalent group.)
 ここで、Rとしては、クミル基、シアノプロピル基、フェニルプロピル基、シアノフェニルメチル基、エチルカルボキシプロピル基、2,4,4-トリメチルペンタン-2-イル基、1-シアノエチル基、1-フェニルエチル基、tert-ブチル基、シアノメチル基、ベンジル基等が好ましいものとして挙げられる。 Here, as R, cumyl group, cyanopropyl group, phenylpropyl group, cyanophenylmethyl group, ethylcarboxypropyl group, 2,4,4-trimethylpentan-2-yl group, 1-cyanoethyl group, 1-phenyl Preferred examples include an ethyl group, a tert-butyl group, a cyanomethyl group, and a benzyl group.
 また、Zとしては、フェニル基、メチルチオイル基、ピロール基、メチル基、フェノキシ基、エトキシ基、ジメチルアミノ基等が好ましいものとして挙げられる。 Z is preferably a phenyl group, methylthioyl group, pyrrole group, methyl group, phenoxy group, ethoxy group, dimethylamino group or the like.
 これらの連鎖移動剤の具体例としては、クミルジチオベンゾエート、2-シアノ-2-プロピルベンゾチオエート、4-シアノ-4[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタン酸、シアノメチルメチル(フェニル)カルバモジチオエート、4-シアノ-4-(フェニルカルボノチオイルチオ)ペンタン酸、2-シアノ-2-プロピルドデシルトリチオカーボネート、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸、シアノメチルドデシルトリチオカーボネート等が挙げられる。これらは市販されているが、連鎖移動剤はこれらに限定されるものではない。 Specific examples of these chain transfer agents include cumyl dithiobenzoate, 2-cyano-2-propylbenzothioate, 4-cyano-4 [(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, cyanomethylmethyl (phenyl) Carbamodithioate, 4-cyano-4- (phenylcarbonothioylthio) pentanoic acid, 2-cyano-2-propyldodecyltrithiocarbonate, 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid, And cyanomethyldodecyl trithiocarbonate. Although these are marketed, a chain transfer agent is not limited to these.
 本実施形態において、重合性モノマとしては、重合性炭素炭素不飽和二重結合(C=C)を有するモノマが挙げられ、具体的には、(メタ)アクリルモノマ、スチレン系モノマ、アクリロニトリル等が挙げられる。 In the present embodiment, examples of the polymerizable monomer include monomers having a polymerizable carbon-carbon unsaturated double bond (C = C). Specifically, (meth) acrylic monomers, styrene monomers, acrylonitrile, and the like are used. Can be mentioned.
 なおここで、「(メタ)アクリルモノマ」とは、アクリロイル基(CH=CH-CO-)又はメタクリロイル基(CH=C(CH)-CO-)を有するモノマをさし、「(メタ)アクリルポリマ」とは、これらの基を有するモノマを少なくとも一部用いて重合して得られるポリマをさす。 Here, “(meth) acrylic monomer” refers to a monomer having an acryloyl group (CH═CH—CO—) or a methacryloyl group (CH═C (CH 3 ) —CO—), and “(meth) “Acrylic polymer” refers to a polymer obtained by polymerization using at least a part of monomers having these groups.
 本実施形態においては、(メタ)アクリルモノマ及びスチレン系モノマを重合性モノマとして用いた(メタ)アクリルポリマが好ましい。本実施形態において、第一の重合性モノマとしては、特に制限はなく、例えば、カルボキシル基含有モノマが挙げられ、中でも、(メタ)アクリル酸(アクリル酸又はメタクリル酸)等が好ましいものとして挙げられる。 In this embodiment, a (meth) acrylic polymer using a (meth) acrylic monomer and a styrene monomer as a polymerizable monomer is preferable. In this embodiment, there is no restriction | limiting in particular as a 1st polymerizable monomer, For example, a carboxyl group containing monomer is mentioned, Especially, (meth) acrylic acid (acrylic acid or methacrylic acid) etc. are mentioned as a preferable thing. .
 また、第二の重合性モノマ及び第三の重合性モノマとしては、前記第一の重合性モノマ以外の、(メタ)アクリルモノマ、スチレン系モノマ、(メタ)アクリル酸エステル、アクリロニトリル等が好ましいものとして挙げられる。中でも、第二の重合性モノマとしては、スチレンが好ましい。第三の重合性モノマとしては、(メタ)アクリル酸エステル(アクリル酸エステル又はメタクリル酸エステル)が好ましい。スチレン系モノマとしては、スチレン、α-メチルスチレン等が挙げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸ベンジル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル等が挙げられる。 Further, as the second polymerizable monomer and the third polymerizable monomer, (meth) acrylic monomer, styrene monomer, (meth) acrylic acid ester, acrylonitrile, etc. other than the first polymerizable monomer are preferable. As mentioned. Among these, styrene is preferable as the second polymerizable monomer. As the third polymerizable monomer, (meth) acrylic acid ester (acrylic acid ester or methacrylic acid ester) is preferable. Examples of the styrene monomer include styrene and α-methylstyrene. (Meth) acrylates include benzyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and lauryl (meth) acrylate Etc.
 中でも、本実施形態の製造方法において用いることが好適なモノマの組合せとして、第一の重合性モノマが(メタ)アクリル酸であり、かつ、第二及び第三の重合性モノマがスチレン、(メタ)アクリル酸ベンジル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル等であるものが挙げられる。 Among these, as a combination of monomers suitable for use in the production method of the present embodiment, the first polymerizable monomer is (meth) acrylic acid, and the second and third polymerizable monomers are styrene, (meth ) Benzyl acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, and the like.
 本実施形態のブロックポリマは、第一のポリマユニット及び第二のポリマユニットとは異なる第三のポリマユニットを更に有していてもよい。第三のポリマユニットは、例えば、第一のポリマユニット及び第二のポリマユニットと同様の第一の重合性モノマ由来の構造単位を有している。第三のポリマユニットを与える重合性モノマとしては、第一のポリマユニット及び第二のポリマユニットを得るために用いる上記重合性モノマを用いることができる。 The block polymer of this embodiment may further include a third polymer unit different from the first polymer unit and the second polymer unit. The third polymer unit has, for example, a structural unit derived from the first polymerizable monomer similar to the first polymer unit and the second polymer unit. As the polymerizable monomer giving the third polymer unit, the above polymerizable monomer used for obtaining the first polymer unit and the second polymer unit can be used.
 本実施形態において、前記一般式(1)で表される構造のチオカーボネート化合物を連鎖移動剤として用い、第一の重合性モノマ(例えばアクリル酸又はメタクリル酸)と第二の重合性モノマをリビング重合により重合して第一のポリマユニットを合成した場合、重合がある程度進んだ時点で、第一のポリマユニットとなるポリマを再沈殿又は減圧留去により回収した後、第一の重合性モノマと第三の重合性モノマと共に加えることで、第二のポリマユニットを鎖伸張させることができる。この場合、少量のラジカル開始剤を添加してもよい。 In this embodiment, the thiocarbonate compound having the structure represented by the general formula (1) is used as a chain transfer agent, and the first polymerizable monomer (for example, acrylic acid or methacrylic acid) and the second polymerizable monomer are living. When the first polymer unit is synthesized by polymerization, the polymer that becomes the first polymer unit is recovered by reprecipitation or distillation under reduced pressure after the polymerization has progressed to some extent, and then the first polymerizable monomer and By adding with the third polymerizable monomer, the second polymer unit can be chain extended. In this case, a small amount of radical initiator may be added.
 また、一般式(1)で表される構造のチオカーボネート化合物を連鎖移動剤として用い、第一の重合性モノマと第二の重合性モノマをリビング重合により重合して第一のポリマユニットを合成し、重合がある程度進んだ時点で、同じ反応器に、第一の重合性モノマと第三の重合性モノマを添加して第二のポリマユニットを鎖伸張させることで、本実施形態のブロックポリマを得ることができる。 In addition, the first polymer unit is synthesized by polymerizing the first polymerizable monomer and the second polymerizable monomer by living polymerization using the thiocarbonate compound having the structure represented by the general formula (1) as a chain transfer agent. When the polymerization proceeds to some extent, the first polymer monomer and the third polymer monomer are added to the same reactor to extend the second polymer unit, thereby causing the block polymer of the present embodiment. Can be obtained.
 最初に用いる第一の重合性モノマ、これと重合可能な第二の重合性モノマ、後から投入する第一の重合性モノマ及びこれと重合可能な第三の重合性モノマの、それぞれのモル量、及び、一般式(1)で表されるチオカーボネート化合物のモル比を制御することで、得られるブロックポリマの分子量、第一のポリマユニットの分子量(鎖長)、及び、第二のポリマユニットの分子量(鎖長)を調整することが可能である。 Molar amounts of the first polymerizable monomer used first, the second polymerizable monomer polymerizable with the first polymerizable monomer, the first polymerizable monomer charged later, and the third polymerizable monomer polymerizable with the first polymerizable monomer By controlling the molar ratio of the thiocarbonate compound represented by the general formula (1), the molecular weight of the obtained block polymer, the molecular weight (chain length) of the first polymer unit, and the second polymer unit It is possible to adjust the molecular weight (chain length).
 一般的に、連鎖移動剤(具体的には例えば、一般式(1)表される化合物)とラジカル開始剤とのモル比率(連鎖移動剤/ラジカル開始剤)は、20/1~1/5が好ましく、10/1~1/4がより好ましい。連鎖移動剤(一般式(1)で表される化合物等)とラジカル開始剤との比率を20/1以下とすることで、単分散性を保ちつつ重合反応速度を速めとすることができるので工業的に好ましい。一方、前記比率を1/5以上とすることで、ラジカル開始剤から直接モノマへの連鎖移動が起こることを避けることができ、本実施形態のブロックポリマとは異なる各種ポリマ(ランダムポリマ、第一のポリマユニット単独、第二のポリマユニット単独等のポリマ)の副生を抑制し、良好なブロックポリマを得ることが可能である。 Generally, the molar ratio of the chain transfer agent (specifically, for example, the compound represented by the general formula (1)) to the radical initiator (chain transfer agent / radical initiator) is 20/1 to 1/5. 10/1 to 1/4 is more preferable. Since the ratio of the chain transfer agent (the compound represented by the general formula (1)) and the radical initiator is 20/1 or less, the polymerization reaction rate can be increased while maintaining monodispersity. Industrially preferable. On the other hand, by setting the ratio to 1/5 or more, chain transfer from the radical initiator directly to the monomer can be avoided, and various polymers (random polymer, first polymer different from the block polymer of this embodiment) can be avoided. It is possible to suppress a by-product of a polymer unit alone, a second polymer unit alone, or the like, and obtain a good block polymer.
 重合反応の温度は、使用するラジカル開始剤の分解温度により異なり、特に制限するものではないが、一般的に、半減期分解温度マイナス2℃からプラス20℃(半減期分解温度-2℃~半減期分解温度+20℃)で行うことが好ましい。温度を半減期分解温度に対してこの範囲に制御することにより、分子量分布を小さくでき、一般式(1)の構造を持たないポリマの副生によるブロック化低下の抑制が可能となる。 The temperature of the polymerization reaction varies depending on the decomposition temperature of the radical initiator to be used, and is not particularly limited. In general, the half-life decomposition temperature is minus 2 ° C. to plus 20 ° C. (half-life decomposition temperature −2 ° C. to half) It is preferable to carry out at the periodical decomposition temperature + 20 ° C.). By controlling the temperature within this range with respect to the half-life decomposition temperature, it is possible to reduce the molecular weight distribution, and it is possible to suppress a decrease in blocking due to a by-product of a polymer not having the structure of the general formula (1).
 本実施形態のブロックポリマを合成するためのラジカル開始剤としては、過酸化ベンゾイル、過酸化アセチル、過酸化ラウロイル、過酸化ジt-ブチル、クメンヒドロペルオキシド、t-ブチルヒドロペルオキシド、ジクミルペルオキシド等の過酸化物開始剤;AIBN(2、2’-アゾビスイソブチロニトリル)、V-65(アゾビスジメチルバレロニトリル)等のアゾ開始剤などが挙げられる。中でもAIBN(2、2’-アゾビスイソブチロニトリル)が好ましい。 Examples of radical initiators for synthesizing the block polymer of this embodiment include benzoyl peroxide, acetyl peroxide, lauroyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, and the like. And peroxide initiators such as AIBN (2,2′-azobisisobutyronitrile), V-65 (azobisdimethylvaleronitrile) and the like. Of these, AIBN (2,2'-azobisisobutyronitrile) is preferable.
 本実施形態のブロックポリマは、溶液重合、懸濁重合、乳化重合、固相重合等で合成することが可能であるが、重量平均分子量で2000~300000の樹脂を得るには溶液重合が好ましく、重量平均分子量で300000~1000000の樹脂を得るには懸濁重合が好ましい。用いるモノマの極性又は反応性により重合方法は適宜選択されるが、アクリル酸又はメタクリル酸を用いる場合、その溶解性の点から、溶媒に可溶な(メタ)アクリルポリマを合成するには、溶液重合で行うことが好ましい。 The block polymer of this embodiment can be synthesized by solution polymerization, suspension polymerization, emulsion polymerization, solid phase polymerization, etc., but solution polymerization is preferable to obtain a resin having a weight average molecular weight of 2000 to 300,000. Suspension polymerization is preferred to obtain a resin having a weight average molecular weight of 300,000 to 1,000,000. The polymerization method is appropriately selected depending on the polarity or reactivity of the monomer to be used, but when acrylic acid or methacrylic acid is used, in order to synthesize a (meth) acrylic polymer soluble in a solvent, a solution is used. It is preferable to carry out by polymerization.
 本実施形態のブロックポリマの重量平均分子量は、特に制限はないが、強度、伸び、接着性等の観点から、10000以上が好ましく、12000以上がより好ましく、15000以上がさらに好ましい。ブロックポリマの重量平均分子量は、溶解性等の観点から、200000以下が好ましく、180000以下がより好ましく、150000以下がさらに好ましい。これらの観点から、ブロックポリマの分子量は、10000~200000が好ましく、12000~180000がより好ましく、15000~150000がさらに好ましい。 The weight average molecular weight of the block polymer of this embodiment is not particularly limited, but is preferably 10,000 or more, more preferably 12,000 or more, and further preferably 15,000 or more from the viewpoint of strength, elongation, adhesiveness, and the like. The weight average molecular weight of the block polymer is preferably 200000 or less, more preferably 180000 or less, and further preferably 150,000 or less from the viewpoint of solubility and the like. From these viewpoints, the molecular weight of the block polymer is preferably 10,000 to 200,000, more preferably 12,000 to 180000, and further preferably 15,000 to 150,000.
 本実施形態のブロックポリマの分子量分散度(重量平均分子量Mw/数平均分子量Mn)は、高伸び、高強度、高接着等の観点から、1.1以上が好ましく、1.2以上がより好ましい。ブロックポリマの分子量分散度は、分散性、相溶性等の観点から、4.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましい。これらの観点から、ブロックポリマの分子量分散度は、1.1~4.0が好ましく、1.2~3.0がより好ましく、1.2~2.0がさらに好ましい。 The molecular weight dispersity (weight average molecular weight Mw / number average molecular weight Mn) of the block polymer of this embodiment is preferably 1.1 or more, and more preferably 1.2 or more, from the viewpoint of high elongation, high strength, high adhesion, and the like. . The molecular weight dispersity of the block polymer is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less, from the viewpoints of dispersibility, compatibility and the like. From these viewpoints, the molecular weight dispersity of the block polymer is preferably 1.1 to 4.0, more preferably 1.2 to 3.0, and still more preferably 1.2 to 2.0.
 なお、分子量(重量平均分子量Mw及び数平均分子量Mn)は、ゲルパーミエーションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて換算することで求めることができる。 In addition, molecular weight (weight average molecular weight Mw and number average molecular weight Mn) can be calculated | required by measuring by a gel permeation chromatography method and converting using a standard polystyrene calibration curve.
 溶液重合は、重合可能なモノマ、連鎖移動剤及びラジカル開始剤を、生成する樹脂を溶解可能な溶剤に溶かし、ラジカル開始剤によって決まる温度まで加温することで行われる。このとき空気下でも重合を行うことは可能であるが、窒素下で行うことが好ましい。 Solution polymerization is performed by dissolving a polymerizable monomer, a chain transfer agent, and a radical initiator in a solvent capable of dissolving the produced resin and heating to a temperature determined by the radical initiator. At this time, the polymerization can be carried out even under air, but it is preferably carried out under nitrogen.
 溶液重合で使用する溶剤は、重合可能なモノマ、連鎖移動剤、ラジカル開始剤、及び、生成する樹脂を溶解可能であれば特に制限されないが、重合を行う温度以上の沸点を有することが好ましい。重合を行う温度が、使用する溶剤の沸点よりも高い場合には、加圧下での反応により行うことができる。 The solvent used in the solution polymerization is not particularly limited as long as it can dissolve a polymerizable monomer, a chain transfer agent, a radical initiator, and a resin to be formed, but preferably has a boiling point equal to or higher than the temperature at which the polymerization is performed. When the temperature at which the polymerization is carried out is higher than the boiling point of the solvent used, the polymerization can be carried out by a reaction under pressure.
 用いる溶剤(有機溶媒等)としては、メトキシエタノール、エトキシエタノール、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノール、シクロヘキサノン、酢酸ブチル、クロルベンゼン、ジオキサン、プロピレングリコールモノメチルエーテル等が用いられ、特に制限されない。これらは単独で、又は、適宜混合して用いることができる。 Solvents (organic solvents, etc.) used include methoxyethanol, ethoxyethanol, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanol, cyclohexanone, butyl acetate, chlorobenzene, dioxane, propylene glycol monomethyl ether, etc. Not. These can be used alone or in appropriate mixture.
 RAFT重合では、一般的に、アクリル成長末端からメタクリレートモノマへの連鎖移動は起こらない。このため、複数のモノマを共重合するときのモノマの配合手順又は組合せは重要である。よって、複数のモノマを同時に仕込む場合には、アクリロイル基を有するモノマのみの組合せ、又は、メタクリロイル基を有するモノマのみの組合せで行うのが好ましい。 In RAFT polymerization, in general, chain transfer from the acrylic growth terminal to the methacrylate monomer does not occur. Therefore, the monomer blending procedure or combination when copolymerizing a plurality of monomers is important. Therefore, when simultaneously charging a plurality of monomers, it is preferable to carry out a combination of only monomers having an acryloyl group or only a monomer having a methacryloyl group.
 本実施形態において、ブロック重合で段階的にポリマを成長させるには、アクリロイル基を有するモノマのみの組合せで重合するか、又は、メタクリロイル基を有するモノマのみの組合せでメタクリロイル基を有するモノマを重合させた後にアクリロイル基を有するモノマを重合することが好ましい。 In this embodiment, in order to grow the polymer stepwise by block polymerization, polymerization is performed with a combination of only monomers having an acryloyl group, or a monomer having a methacryloyl group is polymerized only with a combination of monomers having a methacryloyl group. Thereafter, it is preferable to polymerize a monomer having an acryloyl group.
 本実施形態のブロックポリマは、例えば、感光性材料、接着剤、粘着剤、コーティング材料、分散剤等の用途において優れた諸特性を示すことが期待される。 The block polymer of this embodiment is expected to exhibit various characteristics in applications such as photosensitive materials, adhesives, adhesives, coating materials, and dispersants.
 以下、実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下、特に断らない限り、「%」は「質量%」を意味する。 Hereinafter, although an example is given and explained, the present invention is not limited to these. Hereinafter, unless otherwise specified, “%” means “mass%”.
(実施例1)
 環流冷却器、温度計、撹拌器、窒素導入管を備えた500mL(ミリリットル)のセパラブルフラスコに、メタクリル酸(和光純薬株式会社製)25.0g(290mmol)、スチレン(和光純薬株式会社製)67.5g(648mmol)、クミルジチオベンゾエート1.46g(5.36mmol)、及び、アゾビスイソブチロニトリル(和光純薬株式会社製、純度98%)0.45g(2.73mmol)を仕込み、室温で窒素をバブリングし、30分間撹拌した。温度を65℃に上げ30分撹拌し、その後温度を70℃に上げた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で2時間撹拌し、固形分と分子量を測定した。固形分から換算した重合率は94%、スチレン/メタクリル酸ユニットの重量平均分子量(Mw)は12900、数平均分子量(Mn)は9200であった。この反応液にメタクリル酸(和光純薬株式会社製)15.5g(181mmol)、及び、メタクリル酸ベンジル(日立化成株式会社製、ファンクリルFA-BZM)42.0g(238mmol)を加えてさらに70℃で撹拌を続けた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で4時間撹拌し、固形分と分子量を測定した。反応終了後、(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。得られたポリマの重量平均分子量(Mw)は21900、数平均分子量(Mn)は15100、ワニスの固形分は34質量%であった。
Example 1
In a 500 mL (milliliter) separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (Wako Pure Chemical Industries, Ltd.) 67.5 g (648 mmol), cumyldithiobenzoate 1.46 g (5.36 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.45 g (2.73 mmol) Was bubbled with nitrogen at room temperature and stirred for 30 minutes. The temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured. The polymerization rate calculated from the solid content was 94%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 12900, and the number average molecular weight (Mn) was 9200. To this reaction solution, 15.5 g (181 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 42.0 g (238 mmol) of benzyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., funkrill FA-BZM) were further added to add 70 Stirring was continued at 0 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 4 hours, and the solid content and molecular weight were measured. After completion of the reaction, a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer was obtained. The weight average molecular weight (Mw) of the obtained polymer was 21900, the number average molecular weight (Mn) was 15100, and the solid content of the varnish was 34% by mass.
(実施例2)
 環流冷却器、温度計、撹拌器、窒素導入管を備えた500mLのセパラブルフラスコに、メタクリル酸(和光純薬株式会社製)25.0g(290mmol)、スチレン(和光純薬株式会社製)67.5g(648mmol)、クミルジチオベンゾエート0.68g(2.5mmol)、及び、アゾビスイソブチロニトリル(和光純薬株式会社製、純度98%)0.21g(1.28mmol)を仕込み、室温で窒素をバブリングし、30分間撹拌した。温度を65℃に上げ30分撹拌し、その後温度を70℃に上げた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で2時間撹拌し、固形分と分子量を測定した。固形分から換算した重合率は92%、スチレン/メタクリル酸ユニットの重量平均分子量(Mw)は21400、数平均分子量(Mn)は16900であった。この反応液にメタクリル酸(和光純薬株式会社製)15.5g(181mmol)、及び、メタクリル酸ベンジル(日立化成株式会社製、ファンクリルFA-BZM)42.0g(238mmol)を加えてさらに70℃で撹拌を続けた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で4時間撹拌し、固形分と分子量を測定した。反応終了後、(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。得られたポリマの重量平均分子量(Mw)は40300、数平均分子量(Mn)は32000、ワニスの固形分は34質量%であった。
(Example 2)
In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 67 0.5 g (648 mmol), cumyl dithiobenzoate 0.68 g (2.5 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.21 g (1.28 mmol) were charged, Nitrogen was bubbled at room temperature and stirred for 30 minutes. The temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured. The polymerization rate calculated from the solid content was 92%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 21,400, and the number average molecular weight (Mn) was 16,900. To this reaction solution, 15.5 g (181 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 42.0 g (238 mmol) of benzyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., funkrill FA-BZM) were further added to add 70 Stirring was continued at 0 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 4 hours, and the solid content and molecular weight were measured. After completion of the reaction, a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer was obtained. The weight average molecular weight (Mw) of the obtained polymer was 40300, the number average molecular weight (Mn) was 32000, and the solid content of the varnish was 34% by mass.
(実施例3)
 環流冷却器、温度計、撹拌器、窒素導入管を備えた500mLのセパラブルフラスコに、メタクリル酸(和光純薬株式会社製)25.0g(290mmol)、スチレン(和光純薬株式会社製)67.5g(648mmol)、クミルジチオベンゾエート1.12g(4.11mmol)、及び、アゾビスイソブチロニトリル(和光純薬株式会社製、純度98%)0.17g(1.01mmol)を仕込み、室温で窒素をバブリングし、30分間撹拌した。温度を65℃に上げ30分撹拌し、その後温度を70℃に上げた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で2時間撹拌し、固形分と分子量を測定した。固形分から換算した重合率は92%、スチレン/メタクリル酸ユニットの重量平均分子量(Mw)は11300、数平均分子量(Mn)は9000であった。室温に冷却後、反応液をヘキサンで再沈し40℃で真空乾燥した。得られた固形物50.0g、トルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液46g、メタクリル酸(和光純薬株式会社製)15.5g(181mmol)、及び、メタクリル酸ベンジル(日立化成株式会社製、ファンクリルFA-BZM)42.0g(238mmol)を加えて撹拌し、固形物が溶解後、温度を70℃に上げ撹拌した。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で2時間撹拌し、固形分と分子量を測定した。反応終了後、(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。メタクリル酸/メタクリル酸ベンジルのユニットを含めた最終の(メタ)アクリルポリマの重量平均分子量(Mw)は30500、数平均分子量(Mn)は23800、ワニスの固形分は34質量%であった。
Example 3
In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 67 0.5 g (648 mmol), cumyl dithiobenzoate 1.12 g (4.11 mmol), and azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%) 0.17 g (1.01 mmol) were charged, Nitrogen was bubbled at room temperature and stirred for 30 minutes. The temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured. The polymerization rate calculated from the solid content was 92%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 11300, and the number average molecular weight (Mn) was 9000. After cooling to room temperature, the reaction solution was reprecipitated with hexane and vacuum dried at 40 ° C. 50.0 g of the obtained solid, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution, 15.5 g (181 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), and benzyl methacrylate (Hitachi) 42.0 g (238 mmol) of a product made by Kasei Co., Ltd. (Fancryl FA-BZM) was added and stirred. After the solid matter was dissolved, the temperature was raised to 70 ° C. and stirred. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured. After completion of the reaction, a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer was obtained. The final (meth) acrylic polymer including the methacrylic acid / benzyl methacrylate unit had a weight average molecular weight (Mw) of 30,500, a number average molecular weight (Mn) of 23800, and a varnish solid content of 34% by mass.
(実施例4~6)
 下記表2及び表3に示したモノマ及びRAFT化剤の組合せを用いたこと以外は、実施例1に従い、(メタ)アクリルポリマを得た。
(Examples 4 to 6)
A (meth) acrylic polymer was obtained according to Example 1 except that the combinations of monomers and RAFT agents shown in Table 2 and Table 3 below were used.
(実施例7)
 環流冷却器、温度計、撹拌器、窒素導入管を備えた500mLのセパラブルフラスコに、メタクリル酸(和光純薬株式会社製)25.0g(290mmol)、スチレン(和光純薬株式会社製)67.5g(648mmol)、クミルジチオベンゾエート1.46g(5.36mmol)、及び、アゾビスイソブチロニトリル(和光純薬株式会社製、純度98%)0.45g(2.73mmol)を仕込み、室温で窒素をバブリングし、30分間撹拌した。温度を65℃に上げ30分撹拌し、その後温度を70℃に上げた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で4時間撹拌し、固形分と分子量を測定した。固形分から換算した重合率は93%、スチレン/メタクリル酸ユニットの重量平均分子量(Mw)は12900、数平均分子量(Mn)は10400であった。この反応液にメタクリル酸(和光純薬株式会社製)15.5g(181mmol)、及び、メタクリル酸ベンジル(日立化成株式会社製、ファンクリルFA-BZM)42.0g(238mmol)を加えてさらに70℃で撹拌を続けた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で3時間撹拌し、固形分と分子量を測定した。得られたポリマの重量平均分子量(Mw)は21900、数平均分子量(Mn)は17000で、全重合率は92%であった。
(Example 7)
In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.), styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 67 0.5 g (648 mmol), cumyl dithiobenzoate 1.46 g (5.36 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.45 g (2.73 mmol) were charged, Nitrogen was bubbled at room temperature and stirred for 30 minutes. The temperature was raised to 65 ° C. and stirred for 30 minutes, after which the temperature was raised to 70 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 4 hours, and the solid content and molecular weight were measured. The polymerization rate calculated from the solid content was 93%, the weight average molecular weight (Mw) of the styrene / methacrylic acid unit was 12900, and the number average molecular weight (Mn) was 10400. To this reaction solution, 15.5 g (181 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 42.0 g (238 mmol) of benzyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., funkrill FA-BZM) were further added to add 70 Stirring was continued at 0 ° C. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 3 hours, and the solid content and molecular weight were measured. The weight average molecular weight (Mw) of the obtained polymer was 21900, the number average molecular weight (Mn) was 17000, and the total polymerization rate was 92%.
 さらに、この反応液に、メタクリル酸(和光純薬株式会社製)25.0g(290mmol)、及び、スチレン(和光純薬株式会社製)67.5g(648mmol)を加えてさらに70℃で撹拌を続けた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液を46g加えてさらに撹拌した。80℃で3時間撹拌し、固形分と分子量を測定した。得られたポリマの重量平均分子量は34600、数平均分子量は26400で、全重合率は94%であった。反応液を室温まで冷却し、3個のポリマユニットを有する(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。 Further, 25.0 g (290 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 67.5 g (648 mmol) of styrene (manufactured by Wako Pure Chemical Industries, Ltd.) were added to the reaction liquid, and further stirred at 70 ° C. Continued. When the viscosity of the reaction solution increased, 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution separately bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 3 hours, and the solid content and molecular weight were measured. The weight average molecular weight of the obtained polymer was 34600, the number average molecular weight was 26400, and the total polymerization rate was 94%. The reaction solution was cooled to room temperature to obtain a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer having three polymer units.
(実施例8)
 3回目に加えたモノマが、表4に示す量のメタクリル酸ラウリル/メタクリル酸であること以外は実施例7に従い、3種のポリマユニットを有する(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。
(Example 8)
A toluene / propylene glycol monomethyl ether of a (meth) acrylic polymer having three types of polymer units according to Example 7 except that the monomer added for the third time was lauryl methacrylate / methacrylic acid in the amount shown in Table 4. A 2/3 mass ratio) mixed solution was obtained.
(比較例1)
 環流冷却器、温度計、撹拌器、窒素導入管を備えた500mLのセパラブルフラスコに、スチレン(和光純薬株式会社製)63.0g(605mmol)、メタクリル酸ベンジル(日立化成株式会社製、ファンクリルFA-BZM)39.2g(222mmol)、クミルジチオベンゾエート1.34g(4.93mmol)、及び、アゾビスイソブチロニトリル(和光純薬株式会社製、純度98%)0.184g(1.10mmol)を仕込み、室温で窒素をバブリングし、30分間撹拌した。温度を65℃に上げ30分撹拌し、その後温度を70℃に上げ2時間撹拌し、さらに80℃で2時間撹拌し、固形分と分子量を測定した。固形分から換算した重合率は96%、スチレン/メタクリル酸ベンジルユニットの重量平均分子量(Mw)は14100、数平均分子量(Mn)は11300であった。この反応液にメタクリル酸(和光純薬株式会社製)37.8g(439mmol)、及び、トルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合液46gを加えて70℃で撹拌を続けた。反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたプロピレングリコールモノメチルエーテルを46g加えてさらに撹拌した。80℃で4時間撹拌し、固形分と分子量を測定した。反応終了後、(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。得られたポリマの重量平均分子量(Mw)は20900、数平均分子量(Mn)は16000、ワニスの固形分は34質量%であった。
(Comparative Example 1)
In a 500 mL separable flask equipped with a reflux condenser, thermometer, stirrer, and nitrogen inlet tube, 63.0 g (605 mmol) of styrene (manufactured by Wako Pure Chemical Industries, Ltd.), benzyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., fan) (Cryl FA-BZM) 39.2 g (222 mmol), cumyldithiobenzoate 1.34 g (4.93 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.184 g (1 .10 mmol) was charged and nitrogen was bubbled at room temperature and stirred for 30 minutes. The temperature was raised to 65 ° C. and stirred for 30 minutes, then the temperature was raised to 70 ° C. and stirred for 2 hours, and further stirred at 80 ° C. for 2 hours, and the solid content and molecular weight were measured. The polymerization rate calculated from the solid content was 96%, the weight average molecular weight (Mw) of the styrene / benzyl methacrylate unit was 14100, and the number average molecular weight (Mn) was 11300. To this reaction solution, 37.8 g (439 mmol) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 46 g of a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution were added, and stirring was continued at 70 ° C. When the viscosity of the reaction solution increased, 46 g of propylene glycol monomethyl ether that had been bubbled with nitrogen for 30 minutes was added and further stirred. The mixture was stirred at 80 ° C. for 4 hours, and the solid content and molecular weight were measured. After completion of the reaction, a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer was obtained. The weight average molecular weight (Mw) of the obtained polymer was 20900, the number average molecular weight (Mn) was 16000, and the solid content of the varnish was 34% by mass.
(比較例2)
 表5に示すモノマを用いたこと以外は比較例1に従い、メタクリル酸ベンジル及びスチレンをそれぞれブロックユニットとする(メタ)アクリルポリマを得た。
(Comparative Example 2)
A (meth) acrylic polymer having benzyl methacrylate and styrene as block units was obtained in accordance with Comparative Example 1 except that the monomers shown in Table 5 were used.
(参考例1)
 環流冷却器、温度計、撹拌器、窒素導入管を備えた500mLのセパラブルフラスコに、スチレン(和光純薬株式会社製)45.0g(432mmol)、メタクリル酸(和光純薬株式会社製)27.0g(314mmol)、メタクリル酸ベンジル(日立化成株式会社製、ファンクリルFA-BZM)28.0g(159mmol)、クミルジチオベンゾエート1.24g(4.55mmol)、及び、アゾビスイソブチロニトリル(和光純薬株式会社製、純度98%)0.15g(0.88mmol)を仕込み、室温で窒素をバブリングし、30分間撹拌した。温度を65℃に上げ30分撹拌し、その後温度を70℃に上げ2時間撹拌し、反応液の粘度が上がったら、別途、窒素を30分間バブリングしておいたプロピレングリコールモノメチルエーテルを46g加えてさらに撹拌した。さらに、80℃で4時間撹拌し、固形分と分子量を測定した。固形分から換算した重合率は96%であった。反応終了後、(メタ)アクリルポリマのトルエン/プロピレングリコールモノメチルエーテル(2/3質量比)混合溶液を得た。得られたポリマの重量平均分子量(Mw)は31000、数平均分子量(Mn)は25400、ワニスの固形分は34質量%であった。
(Reference Example 1)
In a 500 mL separable flask equipped with a reflux condenser, a thermometer, a stirrer, and a nitrogen introduction tube, 45.0 g (432 mmol) of styrene (Wako Pure Chemical Industries, Ltd.), methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 27 0.0 g (314 mmol), benzyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., funcryl FA-BZM) 28.0 g (159 mmol), cumyldithiobenzoate 1.24 g (4.55 mmol), and azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., purity 98%) 0.15 g (0.88 mmol) was charged, nitrogen was bubbled at room temperature, and the mixture was stirred for 30 minutes. The temperature was raised to 65 ° C. and stirred for 30 minutes, and then the temperature was raised to 70 ° C. and stirred for 2 hours. When the viscosity of the reaction solution increased, 46 g of propylene glycol monomethyl ether that had been separately bubbled with nitrogen for 30 minutes was added. Stir further. Furthermore, it stirred at 80 degreeC for 4 hours and measured solid content and molecular weight. The polymerization rate calculated from the solid content was 96%. After completion of the reaction, a toluene / propylene glycol monomethyl ether (2/3 mass ratio) mixed solution of (meth) acrylic polymer was obtained. The weight average molecular weight (Mw) of the obtained polymer was 31,000, the number average molecular weight (Mn) was 25400, and the solid content of the varnish was 34% by mass.
(評価)
 反応液、及び、得られた(メタ)アクリルポリマの評価は以下に従い行った。
(Evaluation)
The reaction solution and the obtained (meth) acrylic polymer were evaluated according to the following.
[固形分及び反応率(重合率)の測定]
 反応液又は(メタ)アクリルポリマワニスの固形分は精秤したアルミシャーレに約1gを精秤し150℃で15分加熱した後に再度、精秤し以下の式により求めた。
 {固形分(%)}=[加熱後の質量(g)-アルミシャーレの質量(g)]/(メタ)アクリルポリマワニスの質量(g)×100
 {反応率(%)}=固形分(%)/[全仕込みアクリルモノマ(g)/全仕込み量(g)×100]
[Measurement of solid content and reaction rate (polymerization rate)]
The solid content of the reaction solution or (meth) acrylic polymer varnish was accurately weighed in an aluminum petri dish that had been accurately weighed, heated at 150 ° C. for 15 minutes, and then weighed again to obtain the following formula.
{Solid content (%)} = [mass after heating (g) −mass of aluminum petri dish (g)] / mass of (meth) acrylic polymer varnish (g) × 100
{Reaction rate (%)} = Solid content (%) / [Total charged acrylic monomer (g) / Total charged amount (g) × 100]
[分子量の測定]
 実施例及び比較例の(メタ)アクリルポリマの数平均分子量(Mn)、重量平均分子量(Mw)及びMw/Mnは、(メタ)アクリルポリマの分子量分布のクロマトグラムをGPC(ゲルパーミエーションクロマトグラフィー)により測定し、25℃における標準ポリスチレンの溶離時間から換算して求めた。なお、測定装置は、東ソー株式会社製EcoSEC、HLC-8320GPC、GPCの溶離液としては、テトラヒドロフランを使用し、カラムは、ゲルパックGL-A-150、ゲルパックGL-A-10(日立ハイテクノロジーズ株式会社製、商品名)を直結したものを使用した。なお、反応液中のポリマの分子量についても同様に測定した。
[Measurement of molecular weight]
The number average molecular weight (Mn), weight average molecular weight (Mw), and Mw / Mn of the (meth) acrylic polymer of Examples and Comparative Examples are the chromatograms of the molecular weight distribution of the (meth) acrylic polymer by GPC (gel permeation chromatography). ) And calculated from the elution time of standard polystyrene at 25 ° C. The measuring device is EcoSEC, HLC-8320GPC manufactured by Tosoh Corporation, and tetrahydrofuran is used as the eluent of the gel. The columns are Gelpack GL-A-150 and Gelpack GL-A-10 (Hitachi High-Technologies Corporation). (Product name, product name) directly connected. In addition, it measured similarly about the molecular weight of the polymer in a reaction liquid.
[(メタ)アクリルポリマのモノマ組成解析]
 実施例及び比較例の(メタ)アクリルポリマのモノマ組成は核磁気共鳴スペクトル(NMR)により求めた。なお、反応液中のポリマの組成についても同様に解析した。
[Monomer composition analysis of (meth) acrylic polymer]
The monomer composition of the (meth) acrylic polymer of the examples and comparative examples was determined by nuclear magnetic resonance spectrum (NMR). In addition, it analyzed similarly about the composition of the polymer in a reaction liquid.
 図1は、実施例1の第一のポリマユニット合成時、及び、第二のポリマユニット鎖伸張後のゲルパーミエーションクロマトグラムを示し、符号1は、第一のポリマユニット合成時のゲルパーミエーションクロマトグラムを示し、符号2は、第二のポリマユニット鎖伸張後のゲルパーミエーションクロマトグラムを示す。図2は、実施例1の第一のポリマユニット合成時のH-NMRスペクトルを示し、符号3は、メタクリル酸のOHのシグナルを示し、符号4は、スチレンの芳香環のシグナルを示す。図3は、実施例1の第二のポリマユニット鎖伸張後のH-NMRスペクトルを示し、符号5は、メタクリル酸のOHのシグナルを示し、符号6は、スチレンとメタクリル酸ベンジルの芳香環のシグナルを示し、符号7は、メタクリル酸ベンジルのメチレンのシグナルを示す。 FIG. 1 shows a gel permeation chromatogram at the time of synthesizing the first polymer unit of Example 1 and after the second polymer unit chain extension. Reference numeral 1 denotes a gel permeation at the time of synthesizing the first polymer unit. A chromatogram is shown, and reference numeral 2 denotes a gel permeation chromatogram after the second polymer unit chain extension. FIG. 2 shows a 1 H-NMR spectrum during the synthesis of the first polymer unit of Example 1. Reference numeral 3 indicates an OH signal of methacrylic acid, and reference numeral 4 indicates a signal of an aromatic ring of styrene. FIG. 3 shows the 1 H-NMR spectrum after extension of the second polymer unit chain of Example 1, reference numeral 5 indicates the OH signal of methacrylic acid, and reference numeral 6 indicates the aromatic ring of styrene and benzyl methacrylate. The code | symbol 7 shows the signal of the methylene of benzyl methacrylate.
[酸価の測定]
 三角フラスコに合成したバインダーポリマー約1gを秤量し、混合溶剤(質量比:トルエン/メタノール=70/30)を加えて溶解後、指示薬としてフェノールフタレイン溶液を適量添加し、0.1Nの水酸化カリウム水溶液で滴定し、下記式(α)より酸価を測定した。
  x=10×Vf×56.1/(Wp×I)   …(α)
 式(α)中、xは酸価(mgKOH/g)を示し、Vfは0.1NのKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合(質量%)を示す。
[Measurement of acid value]
About 1 g of the binder polymer synthesized in an Erlenmeyer flask is weighed, dissolved by adding a mixed solvent (mass ratio: toluene / methanol = 70/30), and then an appropriate amount of a phenolphthalein solution is added as an indicator, followed by 0.1N hydroxylation. The solution was titrated with an aqueous potassium solution, and the acid value was measured from the following formula (α).
x = 10 × Vf × 56.1 / (Wp × I) (α)
In the formula (α), x represents an acid value (mgKOH / g), Vf represents a titration amount (mL) of a 0.1N KOH aqueous solution, Wp represents the mass (g) of the measured resin solution, and I Indicates the ratio (mass%) of the non-volatile content in the measured resin solution.
[溶剤溶解性の評価]
 トルエン/プロピレングリコールモノメチルエーテル(2/3質量比)に10質量%以上溶解した場合を「○」と評価し、10質量%未満の場合を「×」と評価した。分離した場合は「分離」と表記した。
[Evaluation of solvent solubility]
The case where 10% by mass or more was dissolved in toluene / propylene glycol monomethyl ether (2/3 mass ratio) was evaluated as “◯”, and the case of less than 10% by mass was evaluated as “x”. When separated, it was described as “separated”.
[アルカリ水溶液溶解性の評価]
 2%NaOH水溶液に10質量%以上溶解した場合を「○」と評価し、10質量%未満の場合を「×」と評価した。
[Evaluation of aqueous alkali solubility]
The case where 10% by mass or more was dissolved in a 2% NaOH aqueous solution was evaluated as “◯”, and the case of less than 10% by mass was evaluated as “x”.
[破断伸びの測定]
 離型処理PET(ポリエチレンテレフタレート)フィルムに、バーコータを用い、乾燥後の厚みが100μmになるように前記各ワニスを塗布した後、60℃で20分間乾燥した。次に、110℃で2時間硬化した後、硬化物を離型処理PETフィルムから剥がし、試料とした。試料を幅10mm、長さ100mmに打ち抜いてテストピースとして使用した。テストピースをEZテスターにチャック間距離60mmでセッティングし、引張り速度50mm/分で長さ方向に引っ張り、破断したときの伸びを破断伸び(%)として、以下の式で算出した。
 破断伸び(%)=[(破断したときのチャック間距離-最初のチャック間距離(60mm))/最初のチャック間距離(60mm)]×100
[Measurement of elongation at break]
Each varnish was applied to a release-treated PET (polyethylene terephthalate) film using a bar coater so that the thickness after drying was 100 μm, and then dried at 60 ° C. for 20 minutes. Next, after curing at 110 ° C. for 2 hours, the cured product was peeled off from the release-treated PET film to prepare a sample. A sample was punched into a width of 10 mm and a length of 100 mm and used as a test piece. The test piece was set on an EZ tester with a distance between chucks of 60 mm, pulled in the length direction at a pulling speed of 50 mm / min, and elongation at break was calculated as the elongation at break (%) by the following formula.
Elongation at break (%) = [(Distance between chucks when fractured−First distance between chucks (60 mm)) / First distance between chucks (60 mm)] × 100
(評価結果)
 評価結果を下記表1~表5に示す。なお、実施例1~8では、第一のポリマユニットの両末端に第二のポリマユニットが結合している。
(Evaluation results)
The evaluation results are shown in Tables 1 to 5 below. In Examples 1 to 8, the second polymer unit is bonded to both ends of the first polymer unit.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 

Claims (7)

  1.  三成分以上の重合性モノマを重合してなる(メタ)アクリルポリマであり、
     第一の重合性モノマ由来の構造単位と、第二の重合性モノマ由来の構造単位とを含む第一のポリマユニット、及び、
     前記第一の重合性モノマ由来の構造単位と、前記第二の重合性モノマとは異なる第三の重合性モノマ由来の構造単位とを含む第二のポリマユニットを有する、ブロックポリマ。
    It is a (meth) acrylic polymer obtained by polymerizing a polymerizable monomer of three or more components,
    A first polymer unit comprising a structural unit derived from a first polymerizable monomer and a structural unit derived from a second polymerizable monomer; and
    A block polymer having a second polymer unit including a structural unit derived from the first polymerizable monomer and a structural unit derived from a third polymerizable monomer different from the second polymerizable monomer.
  2.  前記第一のポリマユニットの片末端又は両末端に前記第二のポリマユニットが結合している、請求項1記載のブロックポリマ。 The block polymer according to claim 1, wherein the second polymer unit is bonded to one end or both ends of the first polymer unit.
  3.  前記第一の重合性モノマが(メタ)アクリル酸である、請求項1又は2記載のブロックポリマ。 The block polymer according to claim 1 or 2, wherein the first polymerizable monomer is (meth) acrylic acid.
  4.  前記第二の重合性モノマがスチレンである、請求項1~3のいずれか一項に記載のブロックポリマ。 The block polymer according to any one of claims 1 to 3, wherein the second polymerizable monomer is styrene.
  5.  前記第三の重合性モノマが(メタ)アクリル酸エステルである、請求項1~4のいずれか一項に記載のブロックポリマ。 The block polymer according to any one of claims 1 to 4, wherein the third polymerizable monomer is a (meth) acrylic acid ester.
  6.  重量平均分子量が10000~200000である、請求項1~5のいずれか一項に記載のブロックポリマ。 The block polymer according to any one of claims 1 to 5, wherein the weight average molecular weight is 10,000 to 200,000.
  7.  分子量分散度が1.2~4.0である、請求項1~6のいずれか一項に記載のブロックポリマ。
     
    The block polymer according to any one of claims 1 to 6, having a molecular weight dispersity of 1.2 to 4.0.
PCT/JP2015/062112 2014-04-21 2015-04-21 Block polymer WO2015163321A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016514947A JPWO2015163321A1 (en) 2014-04-21 2015-04-21 Block polymer
KR1020167026306A KR20160147722A (en) 2014-04-21 2015-04-21 Block polymer
CN201580020336.7A CN106232652A (en) 2014-04-21 2015-04-21 Block polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014087281 2014-04-21
JP2014-087281 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015163321A1 true WO2015163321A1 (en) 2015-10-29

Family

ID=54332485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062112 WO2015163321A1 (en) 2014-04-21 2015-04-21 Block polymer

Country Status (4)

Country Link
JP (2) JPWO2015163321A1 (en)
KR (1) KR20160147722A (en)
CN (1) CN106232652A (en)
WO (1) WO2015163321A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129750A1 (en) * 2018-12-18 2020-06-25 東亞合成株式会社 Binder for secondary battery electrodes and use of same
WO2020149386A1 (en) * 2019-01-16 2020-07-23 積水フーラー株式会社 Crosslinkable block copolymer, production method therefor, and hot-melt adhesive
WO2022044825A1 (en) * 2020-08-25 2022-03-03 大日精化工業株式会社 A-b block copolymer, polymer emulsion and water-based inkjet ink
JP7319572B1 (en) 2022-03-29 2023-08-02 藤倉化成株式会社 adhesive composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298248A (en) * 1997-02-27 1998-11-10 Sekisui Chem Co Ltd Acrylic copolymer, acrylic block copolymer, and self-adhesive composition
JP2003527458A (en) * 1999-09-01 2003-09-16 ロディア・シミ Gelled aqueous composition comprising a block copolymer containing at least one water-soluble block and at least one hydrophobic block
JP2004323759A (en) * 2003-04-28 2004-11-18 Mitsui Chemicals Inc Aqueous solution containing block copolymer and preparation of the same
JP2010511089A (en) * 2006-11-28 2010-04-08 アルケマ フランス Optical three-dimensional (3D) recording apparatus comprising a block copolymer containing a photoactive monomer having a group capable of photoisomerization
JP2013216714A (en) * 2012-04-04 2013-10-24 Sanyo Shikiso Kk Copolymer for color filter, pigment dispersion, and resist composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69709110T2 (en) 1996-07-10 2002-04-25 Du Pont POLYMERIZATION WITH "LIVING" MARKING
US6437040B2 (en) * 1999-09-01 2002-08-20 Rhodia Chimie Water-soluble block copolymers comprising a hydrophilic block and a hydrophobic block
FR2931153B1 (en) * 2008-05-19 2010-05-28 Arkema France PROCESS FOR PREPARING A DISPERSION OF POLYMERIC PARTICLES IN AQUEOUS MEDIUM
JP5252492B2 (en) 2008-09-01 2013-07-31 国立大学法人福井大学 Production method of block copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298248A (en) * 1997-02-27 1998-11-10 Sekisui Chem Co Ltd Acrylic copolymer, acrylic block copolymer, and self-adhesive composition
JP2003527458A (en) * 1999-09-01 2003-09-16 ロディア・シミ Gelled aqueous composition comprising a block copolymer containing at least one water-soluble block and at least one hydrophobic block
JP2004323759A (en) * 2003-04-28 2004-11-18 Mitsui Chemicals Inc Aqueous solution containing block copolymer and preparation of the same
JP2010511089A (en) * 2006-11-28 2010-04-08 アルケマ フランス Optical three-dimensional (3D) recording apparatus comprising a block copolymer containing a photoactive monomer having a group capable of photoisomerization
JP2013216714A (en) * 2012-04-04 2013-10-24 Sanyo Shikiso Kk Copolymer for color filter, pigment dispersion, and resist composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129750A1 (en) * 2018-12-18 2020-06-25 東亞合成株式会社 Binder for secondary battery electrodes and use of same
WO2020149386A1 (en) * 2019-01-16 2020-07-23 積水フーラー株式会社 Crosslinkable block copolymer, production method therefor, and hot-melt adhesive
WO2022044825A1 (en) * 2020-08-25 2022-03-03 大日精化工業株式会社 A-b block copolymer, polymer emulsion and water-based inkjet ink
JP7319572B1 (en) 2022-03-29 2023-08-02 藤倉化成株式会社 adhesive composition

Also Published As

Publication number Publication date
CN106232652A (en) 2016-12-14
JP2020100852A (en) 2020-07-02
KR20160147722A (en) 2016-12-23
JPWO2015163321A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP2020100852A (en) Block polymer
Lessard et al. One-step poly (styrene-alt-maleic anhydride)-block-poly (styrene) copolymers with highly alternating styrene/maleic anhydride sequences are possible by nitroxide-mediated polymerization
CN103282340A (en) Substituted 3-xopentanoates and their uses in coating compositions
JPH02281013A (en) Diketone compound copolymer
CN103261237A (en) Process for the preparation of radiation curable compositions
JP2019023319A (en) Block polymer and method for producing the same
JP2015214614A (en) Block polymer and production method thereof
JP6372565B2 (en) Method for producing block polymer
JP7318883B2 (en) (Meth) acrylic resin composition
JP6484928B2 (en) Block polymer and method for producing the same
JP6484927B2 (en) Block polymer and method for producing the same
JP2014105265A (en) (meth)acrylic ester and (co)polymer thereof
JP2016029129A (en) Adhesive composition and adhesive film
KR102177072B1 (en) Process for producing short-chain macromolecules based on acrylate monomers
JP2019023320A (en) Block polymer and method for producing the same
JPH0577683B2 (en)
CN110546223B (en) Adhesive and structure
JP5596390B2 (en) Soluble polyfunctional (meth) acrylic acid ester copolymer having alcoholic hydroxyl group and method for producing the same
JP4001108B2 (en) Method for producing cured product and coating film
JP6025019B2 (en) Method for producing reactive polymer solution
JP6592882B2 (en) Graft polymer and process for producing the same
JP2001049149A (en) Production of coating varnish
JP2009185119A (en) Method for producing acrylic copolymer
JPH0725938A (en) Curable vinyl polymer and its production
JP2002128837A (en) Method of producing copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514947

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167026306

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783891

Country of ref document: EP

Kind code of ref document: A1