WO2015158299A1 - 磺酰胺类化合物在气道慢性炎症性疾病中的应用 - Google Patents

磺酰胺类化合物在气道慢性炎症性疾病中的应用 Download PDF

Info

Publication number
WO2015158299A1
WO2015158299A1 PCT/CN2015/076855 CN2015076855W WO2015158299A1 WO 2015158299 A1 WO2015158299 A1 WO 2015158299A1 CN 2015076855 W CN2015076855 W CN 2015076855W WO 2015158299 A1 WO2015158299 A1 WO 2015158299A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
airway
cells
inflammatory cells
Prior art date
Application number
PCT/CN2015/076855
Other languages
English (en)
French (fr)
Inventor
沈华浩
应颂敏
田宝平
陈志华
李雯
Original Assignee
沈华浩
应颂敏
田宝平
陈志华
李雯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈华浩, 应颂敏, 田宝平, 陈志华, 李雯 filed Critical 沈华浩
Publication of WO2015158299A1 publication Critical patent/WO2015158299A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/145Amines having sulfur, e.g. thiurams (>N—C(S)—S—C(S)—N< and >N—C(S)—S—S—C(S)—N<), Sulfinylamines (—N=SO), Sulfonylamines (—N=SO2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide

Definitions

  • the bronchial asthma comprises allergic or non-allergic asthma.
  • the reducing the total number of airway inflammatory cells comprises reducing the airway inflammatory cells from 10-15 x 10 4 cells/ml to 4-8 x 10 4 cells/ml, preferably, It was reduced from 11-12 x 10 4 cells/ml to 5-6 x 10 4 cells/ml.
  • the oral preparation comprises a capsule, a granule, a tablet.
  • the inhalation formulation comprises a spray, an aerosol, a dry powder inhaler, or a combination thereof.
  • the compound of the formula of formula I is selected from the group consisting of a compound of formula Ia or Ib:
  • an inhalation preparation for treating a chronic inflammation-related disease of the airway, wherein the inhalation preparation contains the compound of the formula of the formula I as an active ingredient, and a pharmaceutically acceptable carrier.
  • the concentration of the active ingredient is from 50 to 1000 ⁇ g/ml, preferably 200 ⁇ g/ml, based on the total amount of the inhaled preparation of the compound of the formula I represented by the formula I.
  • the decrease in the total number and/or percentage of said inflammatory cells comprises a reduction in the total number of inflammatory cells from 10-15 x 10 4 cells/ml to 4-8 x 10 4 cells/ml, preferably , to decrease from 11-12 ⁇ 10 4 cells/ml to 5-6 ⁇ 10 4 cells/ml; and/or
  • Figure 5 shows asthmatic mice with neutrophil infiltration, the total number of inflammatory cells, eosinophils, neutrophils and lymphocytes in alveolar lavage fluid decreased significantly after intragastric administration of CompoundA. .
  • Figure 8 shows in vitro culture of neutrophils from alveolar lavage fluid from asthmatic mice. Intervention with dexamethasone and CompoundA, flow cytometry showed that CompoundA significantly reduced neutrophils compared to the blank control. The amount, while dexamethasone has no significant effect.
  • Figure 9 shows in vitro culture of neutrophils from alveolar lavage fluid from asthmatic mice. Intervention with dexamethasone and CompoundA, flow cytometry showed that CompoundA was significantly promoted compared with the blank control. Neutrophil apoptosis, while dexamethasone had no significant effect.
  • Figure 10 shows a significant reduction in the recruitment of inflammatory cells following airway administration in Compound A1 (C 45 H 50 ClN 7 O 7 S) asthma mice.
  • Figure 11A-B shows that the total number of inflammatory cells and eosinophils in the alveolar lavage fluid was significantly reduced after topical administration of Compound A to the airway of mice with eosinophilic airway inflammation;
  • Figure 11C shows the withering of eosinophils. There was a statistically significant difference in the level of death (Annexin V/PI);
  • Figure 11D shows a mouse with eosinophilic airway inflammation locally administered to the Compound A airway, and the recruitment of inflammatory cells around the airway was significantly reduced.
  • Figure 13 shows a repeated experiment with Compound A, in which Figures 13A-B show a significant reduction in the total number of inflammatory cells and neutrophils in alveolar washes; Figure 13C shows the level of apoptosis in neutrophils (AnnexinV) /PI) There was a statistically significant difference; Figure 13D shows that mice with neutrophil airway inflammation locally administered to the Compound A airway had significantly reduced recruitment of inflammatory cells around the airway, but inflammatory cells were recruited in the dexamethasone-treated group. Not inhibited.
  • the present inventors have unexpectedly discovered for the first time that the compound of the formula I has a good therapeutic effect on chronic inflammatory diseases of the airway, mainly by inhibiting eosinophils and neutrophils.
  • the recruitment of cells promotes apoptosis, thereby reducing the aggregation of airway inflammatory cells and the inflammatory factors produced by them, especially for the treatment of neutrophil-enhanced airway chronic inflammatory diseases, which can be used for glucocorticoid resistance. Ineffective asthma.
  • the present invention has been completed.
  • sulfonamide compound As used herein, the terms “sulfonamide compound”, “a compound of the formula I”, “active ingredient”, “compound of the invention” are used interchangeably. Reference is made to a compound of the formula of formula I for use in the preparation of a pharmaceutical composition for the treatment of chronic inflammatory diseases of the airways:
  • the compounds of the invention may contain one or more asymmetric centers and thus occur as racemates, racemic mixtures, single enantiomers, diastereomeric compounds and single diastereomers.
  • the asymmetric center that can exist depends on the nature of the various substituents on the molecule. Each such asymmetric center will independently produce two optical isomers, and all possible optical isomers and diastereomeric mixtures and pure or partially pure compounds are included within the scope of the invention.
  • the invention includes all isomeric forms of the compounds.
  • the airway chronic inflammation-related disease includes a chronic airway disease caused by an infective or non-infectious factor that is infiltrated by inflammatory cells into a pathological manifestation.
  • Bronchial asthma is involved in inflammatory cells (such as eosinophils, mast cells, basophils, T lymphocytes, neutrophils, smooth muscle cells, airway epithelial cells, etc.) and cellular components.
  • inflammatory cells such as eosinophils, mast cells, basophils, T lymphocytes, neutrophils, smooth muscle cells, airway epithelial cells, etc.
  • the main features include qi. Chronic inflammation, extensive and variable reversible airflow limitation, high reactivity of the airway to various stimuli, and a series of changes in airway structure as the disease progresses.
  • Inflammatory cells recruited in the airways of asthma and their secreted inflammatory factors play a crucial role in the pathogenesis of asthma.
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising (a) a safe and effective amount of an active ingredient of the invention; and (b) a pharmaceutically acceptable carrier or excipient.
  • the amount of the active ingredient of the present invention is usually from 10 ⁇ g to 100 mg per dose, preferably from 100 to 1000 ⁇ g per dose.
  • an effective dose is from about 0.01 mg/kg to 50 mg/kg, preferably from 0.05 mg/kg to 10 mg/kg body weight of the polypeptide of the invention.
  • the polypeptides of the invention may be used alone or in combination with other therapeutic agents (e.g., formulated in the same pharmaceutical composition).
  • the pharmaceutical composition may also contain a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a carrier for the administration of a therapeutic agent.
  • pharmaceutical carriers which do not themselves induce the production of antibodies harmful to the individual receiving the composition and which are not excessively toxic after administration. These vectors are common in the art Well known to the skilled person. A thorough discussion of pharmaceutically acceptable excipients can be found in Remington&apos;s Pharmaceutical Sciences (Mack Pub. Co., N. J. 1991).
  • Such carriers include, but are not limited to, saline, buffer, dextrose, water, glycerol, ethanol, adjuvants, and combinations thereof.
  • the pharmaceutically acceptable carrier in the therapeutic composition may contain a liquid such as water, saline, glycerol and ethanol.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering substances and the like may also be present in these carriers.
  • the therapeutic compositions can be formulated as injectables, such as liquid solutions or suspensions; solid forms such as liquid carriers, which may be formulated in solution or suspension prior to injection.
  • compositions can be formulated by mixing, diluting or dissolving according to conventional methods, and occasionally adding suitable pharmaceutical additives such as excipients, disintegrating agents, binders, lubricants, diluents, buffers, isotonicity Isotonicities, preservatives, wetting agents, emulsifiers, dispersing agents, stabilizers and solubilizers, and the formulation process can be carried out in a customary manner depending on the dosage form.
  • suitable pharmaceutical additives such as excipients, disintegrating agents, binders, lubricants, diluents, buffers, isotonicity Isotonicities, preservatives, wetting agents, emulsifiers, dispersing agents, stabilizers and solubilizers, and the formulation process can be carried out in a customary manner depending on the dosage form.
  • composition of the invention can be administered by conventional routes including, but not limited to, orally, intramuscularly, intravenously, subcutaneously, intradermally, intra airways, mucosally, or topically, Preferably, the composition is administered intratracheally.
  • the subject to be prevented or treated may be an animal; especially a human.
  • compositions of the invention may also be administered in the form of sustained release agents.
  • the active ingredient of the present invention can be incorporated into a pill or microcapsule in which the sustained release polymer is used as a carrier, and then the pill or microcapsule is surgically implanted into the tissue to be treated.
  • the sustained-release polymer include ethylene-vinyl acetate copolymer, polyhydrometaacrylate, polyacrylamide, polyvinylpyrrolidone, methylcellulose, and lactic acid polymer.
  • a lactic acid-glycolic acid copolymer or the like is preferably exemplified by a biodegradable polymer such as a lactic acid polymer and a lactic acid-glycolic acid copolymer.
  • the dose of the active ingredient of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient may be based on the body weight, age, sex, and degree of symptoms of each patient to be treated. And reasonably determined.
  • the compound of the formula of the formula I of the present invention may form an inhalation formulation with a pharmaceutically acceptable carrier.
  • the inhalation formulation can include an aerosol, a spray, a dry powder inhaler, or a combination thereof.
  • the inhalation formulation of the invention may be an aerosol.
  • the compound of the formula of formula I which can be used in the inhalation formulation of the invention has a concentration in the pharmaceutical preparation of from 50 to 1000 ⁇ g/ml (based on the mass of the compound of the formula shown in formula I) in an amount of about per spray or 200 ⁇ g per suck.
  • the inhaled formulations of the present invention generally require dispersion of the active ingredient in a pharmaceutical carrier to obtain an inhalable formulation in the form of inhalable particulates
  • the dispersion includes a solvent, suspension or emulsion.
  • the inhalable particles in the inhalation preparation of the present invention are particles suitable for inhalation size, that is, particles which are sufficient to inhale into the upper respiratory tract, lung bronchus and alveoli through the oral cavity and the pharynx, and generally have a particle size of about 0.05 to 500 ⁇ m. Preferably, it is from 0.1 to 100 ⁇ m, more preferably from 0.5 to 50 ⁇ m.
  • the inhalation preparation of the present invention can be prepared into a liquid-containing aerosol preparation or a spray preparation by mixing the active ingredient with a suitable carrier or by mixing it with a suitable liquid carrier.
  • the active ingredient of the present invention when the active ingredient of the present invention is a dry powder inhaler, the active ingredient of the present invention can be prepared into dry fine particles by a conventional technique, for example, dry powder preparation by drying, grinding, sieving, or the like. Appropriate mixing with the active ingredient of the present invention may be carried out using a suitable dispersing agent such as lactose. Of course, other dispersants can also be used for the preparation.
  • a suitable dispersing agent such as lactose.
  • other dispersants can also be used for the preparation.
  • the inhalation preparation of the present invention may further comprise a propellant such as a hydrocarbon or a compressed gas such as air, nitrogen, carbon dioxide, dichlorodifluoromethane, trichlorofluoromethane or nitrous oxide, etc., so that the inhalation preparation of the present invention can be Through the narrow vent of the sprayer, through the nasal cavity or mouth of the human body in an accelerated manner.
  • a propellant such as a hydrocarbon or a compressed gas such as air, nitrogen, carbon dioxide, dichlorodifluoromethane, trichlorofluoromethane or nitrous oxide, etc.
  • the inhalant of the present invention can be ejected by the aerosol generator in a manner that is about 10-150 L per minute, preferably 30 per minute. -100L, more preferably about 60L per minute.
  • the compounds of the formula of the formula I of the present invention are useful for the treatment of chronic inflammatory diseases of the airways.
  • the total number and/or percentage of inflammatory cells in the local (airway) and systemic (blood) is reduced, for example, by reducing the recruitment and infiltration of inflammatory cells, promoting inflammatory cell apoptosis, and the like.
  • the compound of the formula of the formula I of the present invention can be effectively used for chronic inflammatory diseases of the airway, particularly glucocorticoid-resistant asthma or chronic obstructive pulmonary disease, which reduces the recruitment of inflammatory cells and induces apoptosis of inflammatory cells. , thereby reducing the release of inflammatory factors, thereby expanding the bronchus, reducing inflammatory secretions, and achieving therapeutic purposes.
  • the experimental mouse strain was C57BL/6, 8 weeks old, and was purchased from the Experimental Animal Center of Zhejiang University.
  • mice were intraperitoneally injected with sensitizing solution on days 0 and 14;
  • mice On days 24, 25, and 26, the mice were placed in a closed container, and the allergen solution was inhaled for 40 minutes for three consecutive days.
  • control group was sensitized and atomized by replacing the allergen with the same dose of physiological saline.
  • mice were intraperitoneally injected with sensitizing solution;
  • mice were placed in a closed container and the allergen solution was inhaled for 40 min.
  • control group was sensitized and atomized by replacing the allergen with the same dose of physiological saline.
  • Negative control group Allergic challenge was induced in mice by replacing saline with normal allergens
  • Positive control group Mice treated with allergens were treated with dexamethasone and evaluated for their ability to induce neutrophil apoptosis with Compound A or A1.
  • Compound A or A1 doses were grouped into 50 ⁇ g/only, 100 ⁇ g/only, 200 ⁇ g/only.
  • Modeled mouse alveolar lavage cells were used. Specific steps: anesthetized mice were intraperitoneally injected with 1.5% sodium pentobarbital, the trachea was exposed before the neck, and a T-shaped incision was made at the epiglottic cartilage. Insert improvement The 18G tracheal intubation needle was bronchoalveolar lavage and was lavaged three times with 0.7 ml PBS. The recovery rate was above 80% and collected in a 1.5 ml Eppendorf tube (placed on an ice box). After the BALF solution was mixed, 10 ⁇ L of the cell count was taken (to calculate the total number of cells).
  • the supernatant was inhaled into another 1.5 ml Eppendorf tube and stored in a 20 ° C (or 80 ° C) refrigerator, leaving the cytokine to be tested.
  • the cell pellet was resuspended and counted by flow cytometry or Giemsa staining.
  • Count of inflammatory cells The inflammatory cells before and after the intervention were counted by flow cytometry and the number of apoptosis was counted.
  • mice were intraperitoneally injected with sensitizing solution on days 0 and 14;
  • mice On days 24, 25, and 26, the mice were placed in a closed container, and the allergen solution was inhaled for 40 minutes for three consecutive days.
  • control group was sensitized and atomized by replacing the allergen with the same dose of physiological saline.
  • Compound A airway administration inhibits total inflammatory cells, eosinophils, and airways in the airways of mice with inflammation Collection of neutrophils and lymphocytes (classification of Wright-Giems staining of alveolar lavage cells). (figure 1)
  • Compound A airway administration relieves inflammatory cell infiltration in lung tissue of inflammatory mice (HE pathology of lung tissue).
  • Example 2 The effect of Compound A on airway inflammation dominated by neutrophil infiltration:
  • mice were intraperitoneally injected with sensitizing solution;
  • mice were placed in a closed container and the allergen solution was inhaled for 40 min.
  • control group was sensitized and atomized by replacing the allergen with the same dose of physiological saline.
  • mice were intraperitoneally injected with sensitizing solution;
  • mice were placed in a closed container and the allergen solution was inhaled for 40 min.
  • control group was sensitized and atomized by replacing the allergen with the same dose of physiological saline.
  • Group A Compound A 50ug/mouse, Group B Compound A 100ug/mouse; Group C: Compound A 250ug/mouse; Group D Compound A 500ug/mouse; Group E: Compound A1000ug/ Mouse.
  • RESULTS The total number of alveolar lavage fluid cells was counted by Giemsa staining to evaluate the infiltration of inflammatory cells.
  • HE staining of lung tissue was used to evaluate the inflammatory cells and airway damage of lung tissue. According to the results, it was found that the results were effective when Compound A 100 ug/mouse was treated, and no significant airway damage occurred.
  • Example 4 Comparison of the ability of Compound A to induce neutrophil apoptosis and hormone ability
  • Example 5 Compound A1 inhibits airway inflammation mainly by eosinophil infiltration
  • Example 2 The procedure was the same as in Example 1, except that the present example used compound A1 to verify the inhibitory effect on the airway inflammatory response of eosinophil infiltration.
  • Compound A1 can significantly alleviate airway inflammation, possibly in part due to the induction of eosinophil apoptosis, with the classic therapeutic airway inflammatory hormone drug dexamethasone Similar efficacy.
  • Example 6 Compound A1 inhibits airway inflammation mainly by neutrophil infiltration
  • Example 2.2 The method was the same as in Example 2.2 except that the present example used compound A1 to verify the inhibitory effect on the airway inflammatory response of neutrophil infiltration.
  • Compound A1 can significantly alleviate airway inflammation, probably due in part to the induction of neutrophil apoptosis, but the treatment of dexamethasone has no significant effect. It can be seen that Compound A1 is more effective than dexamethasone in relieving airway inflammation in a mouse model of neutrophil airway inflammation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了磺酰胺类化合物(即式I所示的通式化合物)在气道慢性炎症性疾病中的应用,具体地,为Compound A或其类似物(Compound A1)的用途,用于制备治疗气道慢性炎症相关疾病的药物组合物。本发明Compound A或其类似物可用减少炎症细胞尤其是中性粒细胞的侵润与募集,并诱导炎症细胞的凋亡,从而用于支气管哮喘、COPD等气道慢性疾病,尤其是糖皮质激素治疗无效的气道慢性疾病的治疗。

Description

磺酰胺类化合物在气道慢性炎症性疾病中的应用 技术领域
本发明属于医疗领域,具体地,涉及磺酰胺类化合物即式I所示的通式化合物(如compound A、A1)在治疗气道慢性炎症性疾病中的应用。
背景技术
气道慢性炎症性疾病如支气管哮喘、慢性阻塞性肺病等是在各种内外界刺激因子作用下由气道固有细胞、炎症细胞和炎症因子参与的非特异性炎症性疾病。就哮喘而言,是由炎症细胞(如嗜酸粒细胞、肥大细胞、嗜碱粒细胞、T淋巴细胞、中性粒细胞、平滑肌细胞、气道上皮细胞等)和细胞组分参与的,主要特征包括气道慢性炎症,广泛多变的可逆性气流受限,气道对多种刺激因素呈现的高反应性,以及随病程的延长而产生一系列气道结构的改变。募集于哮喘气道中的炎症细胞及其分泌的炎症因子在哮喘的发病过程中发挥至关重要的作用。
嗜酸性粒细胞浸润是过敏性哮喘炎症最主要的标志之一,能分泌大量炎症因子,介导和促进呼吸道炎症。哮喘患者外周血、痰液、肺泡灌洗液或支气管黏膜活检中发现嗜酸性粒细胞及其产物可以提示哮喘炎症反应的持续存在,且其浸
润程度始终与气道重构、肺功能的衰退及威胁生命的发作性哮喘的严重程度有关。此外,嗜酸性粒细胞分泌的细胞因子IL-4、6、11、13、17和转化生长因子(TGF-β)、神经生长因子(NGF)、血小板衍化生长因子(PDGF)等炎症因子直接作用于肺成纤维细胞,引起后者的迁移、分化,同时促使大量气道***的生成及细胞外基质的合成,导致气道壁平滑肌细胞层增厚、气道纤维化及气道重塑的发生。
近年来研究表明,中性粒细胞浸润引起的气道炎症在哮喘的发生发展中也发挥重要作用。哮喘患者的痰液、支气管肺泡灌洗液或气道活组织检查均发现中性粒细胞明显增多,且部分患者仅表现为中性粒细胞增多,而嗜酸粒细胞不增多。突发致命性哮喘、哮喘持续状态以及糖皮质激素治疗无效的哮喘中,中性粒细胞引起的气道炎症起决定性作用。其可能性的机制是中性粒细胞激活后释放IL-8、氧自由基、胰肽酶等介质引起肺组织损伤,从而介导哮喘的发生发展。
慢性阻塞性肺病同是由多种炎症细胞、炎症介质参与的气道慢性炎症性疾病, 与哮喘的不同之处在于前者常为非***反应所触发,比如长期的吸烟史,而且其气道气流受限为不完全可逆性、呈进行性发展。此外,慢性阻塞性肺病主要累及患者的小气道及肺间质,但随着疾病的进展也会影响到大气道。此外,慢性阻塞性肺病不同于哮喘的另一个特征是其肺泡壁的破坏即肺气肿的发生,这一变化是由蛋白酶所介导的***特别是弹性蛋白的降解以及Ⅰ型肺泡细胞和内皮细胞的凋亡所引起。就主要炎症细胞而言,通过对此类疾病患者的支气管活检发现,气道的募集的细胞主要为T淋巴细胞(以Th1型为主)及大量的中性粒细胞,而且后者的浸润程度疾病的严重性正相关。所以,介导慢性阻塞性肺病的细胞因子主要是与中性粒细胞相关的CXCL-1(GROα)、CXCL-8(IL-8)。同时发现,慢性阻塞性肺病患者气道中的巨噬细胞数量要远远多于其在哮喘患者气道中的数量,而巨噬细胞则可以通过募集中性粒细胞、单核细胞及T淋巴细胞以及释放蛋白酶而介导疾病发生发展。
目前,哮喘治疗方案主要是脱离变应原、解痉平喘以及应用糖皮质激素等抗炎治疗;慢性阻塞性肺病则以戒烟、避免感染、抗炎药、支气管扩张药、氧疗甚至是肺减容术为主要的治疗手段。但是上述方法并不能应用于所有类型疾病,并且效果也有不理想之处。通常嗜酸性粒细胞介导为主的慢性气道炎症对激素治疗效果较好;而中性粒细胞介导的慢性气道炎症(包括重症哮喘和慢性阻塞性肺疾病)对激素治疗不敏感。
因此,本领域迫切需要开发一种能够有效改善气道炎症,尤其是激素治疗无效的气道炎症性疾病的药物。
发明内容
本发明提供了磺酰胺类化合物,尤其是式I所示化合物用于治疗气道炎症,尤其是激素治疗无效的气道炎症的用途。
本发明第一方面,提供了一种如式I所示的通式化合物的用途,用于制备治疗气道慢性炎症相关疾病的药物组合物;
Figure PCTCN2015076855-appb-000001
式I;
其中,R1选自
Figure PCTCN2015076855-appb-000002
R2选自H或
Figure PCTCN2015076855-appb-000003
R3选自H、C1-6的烷基、硝基、或卤素;R4、R5与和其相连的双键共同组成不饱和的6元环,所述的6元环上的碳原子可以被一个或多个(较佳地1-3个)C1-6的直链或支链烷基取代;R6选自卤素;或R7选自H或
Figure PCTCN2015076855-appb-000004
在另一优选例中,所述的气道慢性炎症相关疾病包括支气管哮喘、慢性阻塞性肺病。
在另一优选例中,所述的支气管哮喘为糖皮质激素无效的支气管哮喘。
在另一优选例中,所述的支气管哮喘包括过敏性或非过敏性哮喘。
在另一优选例中,所述的药物组合物还用于降低气道炎症细胞的总数和/或百分比。
在另一优选例中,所述气道炎症细胞包括嗜酸性粒细胞、中性粒细胞、淋巴细胞或其组合。
在另一优选例中,所述降低气道炎症细胞的总数和/或百分比包括抑制所述气道炎症细胞的募集和/或诱导所述气道炎症细胞的凋亡。
在另一优选例中,所述降低气道炎症细胞的总数包括将所述气道炎症细胞从10-15×104细胞/ml降低至4-8×104细胞/ml,较佳地,为从11-12×104细胞/ml降低至5-6×104细胞/ml。
在另一优选例中,所述降低气道炎症细胞的百分比包括将所述气道炎症细胞从80-90%降低至50-70%。
在另一优选例中,所述的药物组合物包括式I所示的通式化合物作为活性成分,以及药学上可接受的载体。
在另一优选例中,所述的药物组合物包括为吸入制剂、口服制剂、静脉注射制剂、肌肉注射;较佳地,所述的药物组合物是吸入制剂。
在另一优选例中,所述的口服制剂包括胶囊剂、颗粒剂、片剂。
在另一优选例中,所述的吸入制剂包括喷雾剂、气雾剂、干粉吸入剂或其组合。
在另一优选例中,所述的式I所示的通式化合物选自如式Ia或Ib所示的化合物:
Figure PCTCN2015076855-appb-000005
式Ia(Compound A);或
Figure PCTCN2015076855-appb-000006
式Ib(Compound A1)。
本发明第二方面,提供了一种治疗气道慢性炎症相关性疾病的吸入制剂,所述的吸入制剂含有式I所示的通式化合物作为活性成分,以及药学上可接受的载体。
在另一优选例中,所述的活性成分为液态和/或固态的可吸入微粒。
在另一优选例中,所述药学上可接受的载体包括推进剂、分散剂、表面活性剂。
在另一优选例中,所述的活性成分的浓度以式I所示的通式化合物占吸入制剂的总量计为50-1000μg/ml,较佳地,为200μg/ml。
在另一优选例中,所述的可吸入微粒直径为0.05-500μm。
在另一优选例中,所述药学上可接受的载体包括液体载体和/或固体载体。
本发明第三方面,提供了一种体外非治疗性的降低炎症细胞的方法,将所述的炎症细胞与式I所示的通式化合物接触,从而降低炎症细胞的总数和/或百分比。
在另一优选例中,所述的炎症细胞包括嗜酸性粒细胞、中性粒细胞、淋巴细胞或其组合。
在另一优选例中,所述的接触包括培养接触。
在另一优选例中,所述的炎症细胞来源于经过敏原致敏后的气道、肺泡灌洗液。
在另一优选例中,所述的炎症细胞的总数和/或百分比的下降包括炎症细胞的总数从10-15×104细胞/ml降低至4-8×104细胞/ml,较佳地,为从11-12×104细胞/ml降低至5-6×104细胞/ml;和/或
所述气道炎症细胞的百分比从80-90%降低至50-70%。
本发明第四方面,提供了一种治疗气道慢性炎症性疾病的方法,向需要的对象施用式I所示的通式化合物或本发明第二方面所述的吸入制剂。
在另一优选例中,所述需要的对象包括人或非人哺乳动物,较佳地,为人、小鼠或大鼠。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示了哮喘小鼠气道局部用药给予CompoundA治疗之后,肺泡灌洗液中炎症细胞总数、嗜酸性粒细胞、中性粒细胞及淋巴细胞数量明显下降。
图2哮喘小鼠气道局部用药给予CompoundA治疗之后,流式细胞术检测小鼠肺泡灌洗液中嗜酸性粒细胞,其数量明显下降。
图3显示哮喘小鼠气道局部用药给予CompoundA治疗之后,流式细胞术检测小鼠肺泡灌洗液中嗜酸性粒细胞凋亡水平,CompoundA明显促进了嗜酸性粒细胞的凋亡。
图4显示哮喘小鼠气道局部用药给予CompoundA治疗之后,肺组织病理提示炎症细胞在肺部的募集缓解。
图5显示以中性粒细胞浸润为主的哮喘小鼠,其气道局部用药给予CompoundA治疗之后,肺泡灌洗液中炎症细胞总数、嗜酸性粒细胞、中性粒细胞及淋巴细胞数量明显下降。
图6显示以中性粒细胞浸润为主的哮喘小鼠,其气道局部用药给予CompoundA治疗之后,流式细胞术检测小鼠肺泡灌洗液中嗜酸性粒细胞,其数量明显下降。
图7显示以中性粒细胞浸润为主的哮喘小鼠,其气道局部用药给予CompoundA治疗之后,流式细胞术检测小鼠肺泡灌洗液中性粒细胞,其数量明显下降。
图8显示来自于哮喘小鼠的肺泡灌洗液的中性粒细胞体外培养,以***及CompoundA干预,流式细胞术检测可见,与空白对照相比CompoundA明显减少了中性粒细胞的数量,而***则无明显作用。
图9显示来自于哮喘小鼠的肺泡灌洗液的中性粒细胞体外培养,以***及CompoundA干预,流式细胞术检测可见,与空白对照相比CompoundA明显促进了 中性粒细胞的凋亡,而***则无明显作用。
图10显示Compound A1(C45H50ClN7O7S)哮喘小鼠气道给药之后,明显减少炎症细胞的募集。
图11A-B显示了嗜酸性粒细胞气道炎症小鼠气道局部給予Compound A之后,肺泡盥洗液中炎症细胞总数和嗜酸性粒细胞数量均显著减少;图11C显示了嗜酸性粒细胞的凋亡水平(AnnexinV/PI)有明显统计学差异;图11D显示了CompoundA气道局部给药的嗜酸性粒细胞气道炎症小鼠,其气道周围炎症细胞的募集明显减少。
图12显示了采用Compound A1的重复试验,其中,图12A-B显示了肺泡盥洗液中炎症细胞总数和嗜酸性粒细胞数量均显著减少;图12C显示了嗜酸性粒细胞的凋亡水平(AnnexinV/PI)有明显统计学差异。
图13显示了采用Compound A的重复试验,其中,图13A-B显示了肺泡盥洗液中炎症细胞总数和中性粒细胞数量均显著减少;图13C显示了中性粒细胞的凋亡水平(AnnexinV/PI)有明显统计学差异;图13D显示Compound A气道局部给药的中性粒细胞气道炎症小鼠,其气道周围炎症细胞的募集明显减少,但是***治疗组炎症细胞募集未受抑制。
图14显示了采用Compound A1的重复试验,其中,图14A-B显示了肺泡盥洗液中炎症细胞总数和中性粒细胞数量均显著减少;图14C显示了中性粒细胞的凋亡水平(AnnexinV/PI)有明显统计学差异
具体实施方式
本发明人经过广泛而深入的研究,首次意外地发现了,式I所示的通式化合物对气道慢性炎症性疾病具有良好的治疗作用,其主要在于抑制了嗜酸性粒细胞以及中性粒细胞的募集并促进其凋亡,从而减少气道炎症细胞及其所产生的炎症因子的聚集,尤其对中性粒细胞增高型的气道慢性炎症疾病具有治疗作用,从而可用于糖皮质激素抵抗无效型的哮喘。在此基础上,完成了本发明。
术语
如本文所用,术语“磺酰胺类化合物”、“式I所示的通式化合物”、“活性成分”、“本发明化合物”可互换使用。均指用于制备治疗气道慢性炎症性疾病药物组合物的式I所示的通式化合物:
Figure PCTCN2015076855-appb-000007
式I;
其中,R1选自
Figure PCTCN2015076855-appb-000008
R2选自H或
Figure PCTCN2015076855-appb-000009
R3选自H、C1-6的烷基、硝基、或卤素;R4、R5与和其相连的双键共同组成不饱和的6元环,所述的6元环上的碳原子可以被一个或多个(较佳地1-3个)C1-6的直链或支链烷基取代;R6选自卤素;或R7选自H或
Figure PCTCN2015076855-appb-000010
如本文所用,“C1-6烷基”是指具有1-6个碳原子的直链或支链烷基,例如甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、或类似基团。
术语“卤素”指氟、氯、溴、或碘。术语“卤代的”指被相同或不同的一个或多个上述卤原子取代的基团,例如三氟甲基、五氟乙基、七氟异丙基、或类似基团。
本发明化合物
本发明的化合物可以含有一个或多个不对称中心,并因此以消旋体、外消旋混合物、单一对映体、非对映异构体化合物和单一非对映体的形式出现。可以存在的不对称中心,取决于分子上各种取代基的性质。每个这种不对称中心将独立地产生两个旋光异构体,并且所有可能的旋光异构体和非对映体混合物和纯或部分纯的化合物包括在本发明的范围之内。本发明包括化合物的所有异构形式。
其中,优选的式I所示的通式化合物包括Compound A或Compound B,所述的Compound A为C42H45ClN6O5S2(式Ia),(4-[4-[(4'-氯[1,1'-联苯]-2-基)甲基]-1-哌嗪基]-N-[[4-[[(1R)-3-(二甲基氨基)-1-[(苯硫基)甲基]丙基]氨基]-3-硝基苯基]磺酰基]苯甲酰胺),其结构式由式Ia所示:
Figure PCTCN2015076855-appb-000011
式Ia(Compound A)
所述Compound A1为C45H50ClN7O7S(式Ib),4-(4-{[2-(4-氯苯基)-4,4-二甲基环己基-1-烯-1-基]甲基}哌嗪-1-基)-N-({3-硝基-4-[(四氢基-2H-吡喃-4-基甲基)氨基]苯基}磺酰基)-2-(1H-吡咯[2,3-b]吡啶-5-基氧基)苯甲酰胺。
((4-(4-{[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-({3-ni tro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide)),其结构式如式Ib所示:
Figure PCTCN2015076855-appb-000012
式Ib(Compound A1)
气道慢性炎症相关疾病
如本文所用,所述气道慢性炎症相关性疾病包括由感染或非感染因素引起的由炎症细胞侵润为病理表现的慢性气道疾病。
在临床上,所述气道慢性炎症相关疾病包括支气管哮喘、慢性阻塞性肺病(COPD)等。动物实验证明,式I所示的通式化合物能够对气道慢性炎症相关疾病有较佳的治疗效果。其能够有效地减少炎症细胞(如嗜酸性粒细胞或中性粒细胞)的募集或侵润,也能够诱导炎症细胞加速凋亡,从而减缓气道炎症,达到治疗目的。
支气管哮喘
支气管哮喘是由炎症细胞(如嗜酸粒细胞、肥大细胞、嗜碱粒细胞、T淋巴细胞、中性粒细胞、平滑肌细胞、气道上皮细胞等)和细胞组分参与的,主要特征包括气道慢性炎症,广泛多变的可逆性气流受限,气道对多种刺激因素呈现的高反应性,以及随病程的延长而产生一系列气道结构的改变。募集于哮喘气道中的炎症细胞及其分泌的炎症因子在哮喘的发病过程中发挥至关重要的作用。
慢性阻塞性肺病
慢性阻塞性肺病同是由多种炎症细胞、炎症介质参与的气道慢性炎症性疾病,与哮喘的不同之处在于前者常为非***反应所触发,比如长期的吸烟史,而且其气道气流受限为不完全可逆性、呈进行性发展。此外,慢性阻塞性肺病主要累及 患者的小气道及肺间质,但随着疾病的进展也会影响到大气道。此外,慢性阻塞性肺病不同于哮喘的另一个特征是其肺泡壁的破坏即肺气肿的发生,这一变化是由蛋白酶所介导的***特别是弹性蛋白的降解以及Ⅰ型肺泡细胞和内皮细胞的凋亡所引起。就主要炎症细胞而言,通过对此类疾病患者的支气管活检发现,气道的募集的细胞主要为T淋巴细胞(以Th1型为主)及大量的中性粒细胞,而且后者的浸润程度疾病的严重性正相关。所以,介导慢性阻塞性肺病的细胞因子主要是与中性粒细胞相关的CXCL-1(GROα)、CXCL-8(IL-8)。同时发现,慢性阻塞性肺病患者气道中的巨噬细胞数量要远远多于其在哮喘患者气道中的数量,而巨噬细胞则可以通过募集中性粒细胞、单核细胞及T淋巴细胞以及释放蛋白酶而介导疾病发生发展。
糖皮质激素抵抗性哮喘
又称为糖皮质激素治疗无效性哮喘,指的是激素依赖性/抵抗性哮喘,指的是这类患者常常存在持续的气流受限,气流受限可逆性差,表现出不同程度的激素抵抗,需要长期依赖吸入大量激素甚至是口服激素。
COPD患者气道中多以中性粒细胞浸润为主。皮质激素对于COPD的治疗效果尚不明确,COPD加重期考虑患者可能合并哮喘或对β-2受体激动剂有肯定效果时,可口服或静滴皮质激素,但应避免长期使用。COPD稳定期患者皮质激素治疗,约仅仅10%患者可获FEV1改善,吸入激素治疗效果目前尚无明确结论。不推荐长期口服、肌注或静脉应用糖皮质激素。
药物组合物
本发明还提供了一种药物组合物,它含有(a)安全有效量的本发明活性成分;以及(b)药学上可接受的载体或赋形剂。本发明活性成分的数量通常为10微克-100毫克/剂,较佳地为100-1000微克/剂。
为了本发明的目的,有效的剂量为给予个体约0.01毫克/千克至50毫克/千克,较佳地0.05毫克/千克至10毫克/千克体重的本发明多肽。此外,本发明的多肽可以单用,也可与其他治疗剂一起使用(如配制在同一药物组合物中)。
药物组合物还可含有药学上可接受的载体。术语“药学上可接受的载体”指用于治疗剂给药的载体。该术语指这样一些药剂载体:它们本身不诱导产生对接受该组合物的个体有害的抗体,且给药后没有过分的毒性。这些载体是本领域普通 技术人员所熟知的。在Remington’s Pharmaceutical Sciences(Mack Pub.Co.,N.J.1991)中可找到关于药学上可接受的赋形剂的充分讨论。这类载体包括(但并不限于):盐水、缓冲液、葡萄糖、水、甘油、乙醇、佐剂及其组合。
治疗性组合物中药学上可接受的载体可含有液体,如水、盐水、甘油和乙醇。另外,这些载体中还可能存在辅助性的物质,如润湿剂或乳化剂、pH缓冲物质等。
通常,可将治疗性组合物制成可注射剂,例如液体溶液或悬液;还可制成在注射前适合配入溶液或悬液中、液体载体的固体形式。
这些药物组合物可根据常规方法通过混合、稀释或溶解而进行配制,并且偶尔添加合适的药物添加剂,如赋形剂、崩解剂、粘合剂、润滑剂、稀释剂、缓冲剂、等渗剂(isotonicities)、防腐剂、润湿剂、乳化剂、分散剂、稳定剂和助溶剂,而且该配制过程可根据剂型用惯常方式进行。
一旦配成本发明的组合物,可将其通过常规途径进行给药,其中包括(但并不限于):口服、肌内、静脉内、皮下、皮内、气道内、粘膜、或局部给药,较佳地,为气道内施用的组合物。待预防或治疗的对象可以是动物;尤其是人。
本发明的药物组合物还可以缓释剂形式给药。例如,本发明活性成分可被掺入以缓释聚合物为载体的药丸或微囊中,然后将该药丸或微囊通过手术植入待治疗的组织。作为缓释聚合物的例子,可例举的有乙烯-乙烯基乙酸酯共聚物、聚羟基甲基丙烯酸酯(polyhydrometaacrylate)、聚丙烯酰胺、聚乙烯吡咯烷酮、甲基纤维素、乳酸聚合物、乳酸-乙醇酸共聚物等,较佳地可例举的是可生物降解的聚合物如乳酸聚合物和乳酸-乙醇酸共聚物。
当本发明的药物组合物被用于实际治疗时,作为活性成分的本发明活性成分或其药学上可接受的盐的剂量,可根据待治疗的每个病人的体重、年龄、性别、症状程度而合理地加以确定。
吸入制剂
本发明式I所示的通式化合物可与药学上可接受的载体形成吸入制剂。通常,所述的吸入制剂可包括气雾剂、喷雾剂、干粉吸入剂或其组合。优选的,本发明吸入制剂可以是气雾剂。
可用于本发明吸入制剂的式I所示的通式化合物,其药物制剂中的浓度为50-1000μg/ml(以式I所示的通式化合物的质量计),其用量大约为每喷或每吸200μg。
当本发明吸入制剂通常需要将活性成分散在药物载体中以获得可吸入微粒形式的吸入制剂,所述分散体系包括溶剂、混悬剂或乳剂。
本发明吸入制剂中的可吸入微粒为适于吸入大小的微粒,即足以随吸气经口腔和咽部进入到上呼吸道、肺支气管和肺泡的微粒,通常,微粒大小约为0.05-500μm,较佳地为0.1-100μm,更佳地为0.5-50μm。
本发明吸入制剂可通过将活性成分与适当的载体混合或经适当的液相载体混合包容制成含有液体的气雾制剂或喷雾制剂。
当本发明活性成分为干粉吸入剂时,可将本发明活性成分采用常规技术制成干微粒,例如将活性成分通过干燥、研磨、过筛等方法进行干微粒制备。可采用适当的分散剂(例如乳糖)与本发明活性成分进行适当混合。当然,也可采用其他分散剂进行制备。
此外,本发明吸入制剂还可以包括推进剂,例如碳氢化合物或压缩气体,如空气、氮气、二氧化碳、二氯二氟甲烷、三氯氟甲烷或氧化亚氮等,以使本发明吸入制剂可通过喷雾器的狭窄喷口,以加速的方式通过人体鼻腔或口腔。
本发明吸入剂无论是以固体或液体或混悬液的形式存在,均可以由气雾发生器以一定的方式喷出,喷出速率从每分钟约10-150L,较佳地为每分钟30-100L,更佳地为每分钟约60L。
临床应用
本发明式I所示的通式化合物可用于治疗气道慢性炎症疾病。例如通过减少炎症细胞的募集和浸润、促进炎症细胞凋亡等,减少炎症细胞在局部(气道)以及全身(血液)中的总数和/或百分比。
本发明的有益效果:
本发明式I所示的通式化合物可以有效用于气道慢性炎症性疾病,尤其是糖皮质激素抵抗性的哮喘或慢性阻塞性肺病,其通过降低炎症细胞的募集并诱导炎症细胞的凋亡,从而减少炎症因子的释放,从而扩张支气管,减少炎症分泌物,并达到治疗的目的。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通 常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
通用方法:
实验小鼠品系为C57BL/6,8周龄,购自浙江大学实验动物中心。
致敏液配制:20mg卵清蛋白(ovalbumin)加入1ml生理盐水中充分溶解,取0.4ml加入到9.6ml生理盐水中混匀,取该液体与等体积铝剂混匀,30分钟后使用。
1.建立小鼠气道炎症模型同时予以气道局部用药治疗
(1)建立嗜酸性粒细胞浸润为主的气道炎症模型,任选同时予以Compound A(A1)气道局部用药治疗或***激素治疗:
1)选用8周龄健康小鼠;
2)致敏:第O、14天小鼠腹腔注射致敏液;
3)过敏原雾化激发:第24、25、26天,将小鼠置于一密闭容器,过敏原溶液雾化吸入40min,连续三天。
4)对照组以同等剂量的生理盐水代替过敏原行致敏及雾化激发。
5)气道局部用药治疗:
Ⅰ)给药时间:第24、25、26天过敏原雾化激发后4小时,连续三天;
Ⅱ)给药剂量:Compound A(A1)100ug/小鼠;
Ⅲ)给药方式:小鼠麻醉状态下气道给药;
Ⅳ)对照组以同等剂量的Compound A(A1)溶剂气道给药。
6)***治疗组给药:
Ⅰ)给药时间:第24、25、26天过敏原雾化激发后4小时,连续三天;
Ⅱ)给药剂量:***2mg/kg小鼠;
Ⅲ)给药方式:腹腔注射,0.2ml***药物溶液。
(2)建立中性粒细胞浸润为主的气道炎症模型,任选同时予以Compound A(A1)气道局部用药治疗或***激素治疗:
1)选用8周龄健康小鼠;
2)致敏:第O天小鼠腹腔注射致敏液;
3)过敏原雾化激发:第14天,将小鼠置于一密闭容器,过敏原溶液雾化吸入40min。
4)对照组以同等剂量的生理盐水代替过敏原行致敏及雾化激发。
5)Compound A(A1)气道局部用药治疗:
Ⅰ)给药时间:第14天过敏原雾化激发后4小时;
Ⅱ)给药剂量:Compound A(A1)100ug/小鼠;
Ⅲ)给药方式:小鼠麻醉状态下气道给药;
Ⅳ)对照组以同等剂量的Compound A(A1)溶剂气道给药。
6)***治疗组给药:
Ⅰ)给药时间:第14天过敏原雾化激发后4小时;
Ⅱ)给药剂量:***2mg/kg小鼠;
Ⅲ)给药方式:腹腔注射,0.2ml***药物溶液。
2.小鼠气道炎症水平的评估:
末次过敏原雾化激发后48小时收集小鼠肺泡灌洗液细胞,处理肺组织,进行以下相关检测:
(1)利用Neubauer计数板计肺泡灌洗液炎症细胞总数;瑞士-吉姆萨(Wright-Giems)染色并于显微镜下对细胞行分类统计;
(2)相应抗体标记肺泡灌洗液中嗜酸性粒细胞及中性粒细胞,流式细胞术对细胞进行分析统计;
(3)在标记出肺泡灌洗液中的嗜酸性粒细胞及中性粒细胞的基础之上,标记凋亡相关抗体,流式细胞术对细胞凋亡进行分析统计;
(4)***灌注小鼠肺组织固定,石蜡包埋,制成蜡块,行苏木精-伊红(HE)染色评价肺组织气道周围炎症细胞浸润情况。
阴性对照组:以生理盐水代替过敏源对小鼠进行过敏源激发;
阳性对照组:对过敏源激发后的小鼠采用***进行治疗,并评估其与Compound A或A1诱导中性粒细胞凋亡的能力的比较。
Compound A或A1剂量分组为50μg/只,100μg/只,200μg/只。
炎症细胞的收集:采用建模后的小鼠肺泡灌洗液细胞,具体步骤:以1.5%戊巴比妥钠腹腔注射麻醉小鼠,颈前暴露气管,在会厌软骨处做一T形切口,***改良 的18G气管插管针,行支气管肺泡灌洗,用0.7ml PBS来回灌洗3次,回收率在80%以上,收集于1.5ml Eppendorf管中(置于冰盒上)。BALF液混匀后,吸取10μL行细胞计数(计算出细胞总数)。后以2000rprn离心10min(4℃),上清吸入另一1.5mlEppendorf管中,置于一20℃(或一80。C)冰箱内保存,留待测细胞因子。细胞沉淀重悬后流式细胞术检测或Giemsa染色行分类计数。
炎症细胞的计数:采用流式细胞仪对干预前后的炎症细胞进行计数并统计其凋亡数量。
实施例1Compound A对嗜酸性粒细胞浸润为主的气道炎症的作用:
方法:
1.1
1)选用8周龄健康小鼠;
2)致敏:第O、14天小鼠腹腔注射致敏液;
3)过敏原雾化激发:第24、25、26天,将小鼠置于一密闭容器,过敏原溶液雾化吸入40min,连续三天。
4)对照组以同等剂量的生理盐水代替过敏原行致敏及雾化激发。
5)Compound A气道局部用药治疗:
Ⅰ)给药时间:第24、25、26天过敏原雾化激发后4小时,连续三天;
Ⅱ)给药剂量:Compound A 100ug/小鼠;
Ⅲ)给药方式:小鼠麻醉状态下气道给药;
Ⅳ)对照组以同等剂量的Compound A溶剂气道给药。
1.2
重复以上方法进行第二次试验,其中,进一步采用***治疗作为阳性对照
6)***治疗组给药:
Ⅰ)给药时间:第24、25、26天过敏原雾化激发后4小时,连续三天;
Ⅱ)给药剂量:***2mg/kg小鼠;
Ⅲ)给药方式:腹腔注射,0.2ml***药物溶液;
结果:
1.1
(1)Compound A气道给药抑制炎症小鼠气道中总炎症细胞、嗜酸性粒细胞、中 性粒细胞、淋巴细胞的募集(肺泡灌洗液细胞Wright-Giems染色分类计数)。(图1)
(2)Compound A气道给药抑制炎症小鼠气道中嗜酸性粒细胞募集,促进嗜酸性粒细胞凋亡(流式细胞术检测)。图2-3分别显示了以anti-SiglecF/anti-Gr-1标记肺泡灌洗液嗜酸性粒细胞以及AnnexinV/PI标记检测嗜酸性粒细胞凋亡水平。
(3)Compound A气道给药缓解炎症小鼠肺组织炎症细胞浸润(肺组织HE病理)。
1.2
(1)嗜酸性粒细胞气道炎症小鼠气道局部給予Compound A之后,肺泡盥洗液中炎症细胞总数从23.61X104/ml减少为10.96X104/ml(图11A),嗜酸性粒细胞数量从11.07X104/ml减少为4.89X104/ml(图11B),均有明显统计学差异(*P<0.05,**P<0.05)。
(2)利用流式细胞术计数标记出肺泡盥洗液中的嗜酸性粒细胞(anti-SiglecF/anti-Gr-1),在此基础上检测嗜酸性粒细胞的凋亡水平(AnnexinV/PI)(图11C),有明显统计学差异(*P<0.05,**P<0.05)。
(3)肺组织病理切片HE染色可见,Compound A气道局部给药的嗜酸性粒细胞气道炎症小鼠,其气道周围炎症细胞的募集明显减少(图11D)。
以上两次重复试验结果提示,嗜酸性粒细胞气道炎症小鼠模型中,Compound A能够明显缓解气道炎症,可能的部分原因是诱导了嗜酸性粒细胞的凋亡,具有与经典的治疗气道炎症激素药物***类似的药效。
实施例2Compound A对中性粒细胞浸润为主的气道炎症的作用:
2.1
方法:
1)选用8周龄健康小鼠;
2)致敏:第O天小鼠腹腔注射致敏液;
3)过敏原雾化激发:第14天,将小鼠置于一密闭容器,过敏原溶液雾化吸入40min。
4)对照组以同等剂量的生理盐水代替过敏原行致敏及雾化激发。
5)Compound A气道局部用药治疗:
Ⅰ)给药时间:第14天过敏原雾化激发后4小时;
Ⅱ)给药剂量:Compound A 100ug/小鼠;
Ⅲ)给药方式:小鼠麻醉状态下气道给药;
Ⅳ)对照组以同等剂量的Compound A溶剂气道给药。
2.2
重复以上方法进行第二次试验,其中,进一步采用***治疗作为阳性对照(具体见通用方法2)
结果:
2.1
(1)Compound A气道给药抑制炎症小鼠气道中总炎症细胞、嗜酸性粒细胞、中性粒细胞、淋巴细胞的募集(肺泡灌洗液细胞Wright-Giems染色分类计数)。(图5)
(2)Compound A气道给药抑制炎症小鼠气道中嗜酸性粒细胞及中性粒细胞募集(流式细胞术检测)。图6-7分别显示了以anti-SiglecF/anti-Gr-1标记肺泡灌洗液嗜酸性粒细胞以及AnnexinV/PI标记检测嗜酸性粒细胞凋亡水平。
2.2
(1)中性粒细胞气道炎症小鼠气道局部給予Compound A之后(图13),肺泡盥洗液中炎症细胞总数从18.02X104/ml减少为7.60X104/ml(图13A),中性粒细胞数量从4.51X104/ml减少为1.57X104/ml(图13B),均有明显统计学差异(*P<0.05,**P<0.05)。
(2)利用流式细胞术计数标记出肺泡盥洗液中的中性粒细胞(anti-Gr-1/anti-CD11b),在此基础上检测中性粒细胞的凋亡水平(AnnexinV/PI)(图13C),有明显统计学差异(*P<0.05,**P<0.05)。
(3)肺组织病理切片HE染色可见,Compound A气道局部给药的中性粒细胞气道炎症小鼠,其气道周围炎症细胞的募集明显减少,但是***治疗组炎症细胞募集未受抑制(图13D)。
以上两次重复试验结果提示,在中性粒细胞气道炎症小鼠模型中,Compound A能够显著缓解气道炎症,可能的部分原因是诱导了中性粒细胞的凋亡,但是***的治疗无明显效果,可见,在中性粒细胞气道炎症小鼠模型中Compound A较***能够有效的缓解气道炎症。
实施例3Compound A的剂量选择
1)选用8周龄健康小鼠;
2)致敏:第O天小鼠腹腔注射致敏液;
3)过敏原雾化激发:第14天,将小鼠置于一密闭容器,过敏原溶液雾化吸入40min。
4)对照组以同等剂量的生理盐水代替过敏原行致敏及雾化激发。
5)Compound A气道局部用药治疗:
Ⅰ)给药时间:第14天过敏原雾化激发后4小时;
Ⅱ)给药剂量:组A:Compound A 50ug/小鼠,组B Compound A 100ug/小鼠;组C:Compound A 250ug/小鼠;组D Compound A 500ug/小鼠;组E:Compound A1000ug/小鼠。
Ⅲ)给药方式:小鼠麻醉状态下气道给药;
Ⅳ)对照组以同等剂量的Compound A溶剂气道给药。
结果评价:肺泡盥洗液细胞计总数、行Giemsa染色,评价炎症细胞浸润情况;肺组织行HE染色评价肺组织炎症细胞及气道损伤情况。根据结果可知以CompoundA 100ug/小鼠治疗时结果有效,且无明显气道损伤发生。
实施例4Compound A诱导中性粒细胞凋亡的能力与激素能力对比
对哮喘小鼠的肺泡灌洗液的中性粒细胞体外培养,以***及CompoundA干预。
通过流式细胞术检测可见(图8-9),以anti-Gr-1/anti-CD11b标记肺泡灌洗液中性粒细胞和AnnexinV/PI标记检测中性粒细胞凋亡水平中,与空白对照相比CompoundA明显减少了中性粒细胞的数量,而***则无明显作用。
实施例5Compound A1对嗜酸性粒细胞浸润为主的气道炎症的抑制反应
方法同实施例1,进行两次试验,不同在于本实施例采用compound A1验证对嗜酸性粒细胞浸润的气道炎症反应的抑制作用。
4.1第一次试验结果证明(图10),Compound A1(C45H50ClN7O7S)哮喘小鼠气道给药之后,明显减少炎症细胞的募集。肺泡灌洗液中炎症细胞总数从12.31×104细胞/ml降低至7.63×104细胞/ml。
4.2第二次重复试验中结果可见(图12),肺泡盥洗液中炎症细胞总数从23.61X104/ml减少为12.95X104/ml(图12A),嗜酸性粒细胞数量从11.07X104/ml减少为5.60X104/ml(图12B),均有明显统计学差异(*P<0.05,**P<0.05)。利用流式细胞术计数标记出肺泡盥洗液中的嗜酸性粒细胞 (anti-SiglecF/anti-Gr-1),在此基础上检测嗜酸性粒细胞的凋亡水平(AnnexinV/PI)(图12C),有明显统计学差异(*P<0.05,**P<0.05)。在嗜酸性粒细胞气道炎症小鼠模型中,Compound A1能够明显缓解气道炎症,可能的部分原因是诱导了嗜酸性粒细胞的凋亡,具有与经典的治疗气道炎症激素药物***类似的药效。
实施例6Compound A1对中性粒细胞浸润为主的气道炎症的抑制反应
方法同实施例2.2,不同在于本实施例采用compound A1验证对中性粒细胞浸润的气道炎症反应的抑制作用。
结果:
(1)中性粒细胞气道炎症小鼠气道局部給予Compound A1之后(图14),肺泡盥洗液中炎症细胞总数从18.02X104/ml减少为10.27X104/ml(图14A),中性粒细胞数量从4.51X104/ml减少为2.19X104/ml(图14B),均有明显统计学差异(*P<0.05,**P<0.05)。
(2)利用流式细胞术计数标记出肺泡盥洗液中的中性粒细胞(anti-Gr-1/anti-CD11b),在此基础上检测中性粒细胞的凋亡水平(AnnexinV/PI)(图14C),有明显统计学差异(*P<0.05,**P<0.05)。
从以上结果在中性粒细胞气道炎症小鼠模型中,Compound A1能够明显缓解气道炎症,可能的部分原因是诱导了中性粒细胞的凋亡,但是***的治疗无明显效果,可见,在中性粒细胞气道炎症小鼠模型中Compound A1较***能够有效的缓解气道炎症。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (11)

  1. 一种如式I所示的通式化合物的用途,其特征在于,用于制备治疗气道慢性炎症相关疾病的药物组合物;
    Figure PCTCN2015076855-appb-100001
    式I;
    其中,R1选自
    Figure PCTCN2015076855-appb-100002
    R2选自H或
    Figure PCTCN2015076855-appb-100003
    R3选自H、C1-6的烷基、硝基、或卤素;R4、R5与和其相连的双键共同组成不饱和的6元环,所述的6元环上的碳原子可以被一个或多个(较佳地1-3个)C1-6的直链或支链烷基取代;R6选自卤素;或R7选自H或
    Figure PCTCN2015076855-appb-100004
  2. 如权利要求1所述的用途,其特征在于,所述的气道慢性炎症相关疾病包括支气管哮喘、慢性阻塞性肺病。
  3. 如权利要求1所述的用途,其特征在于,所述的药物组合物还用于降低气道炎症细胞的总数和/或百分比。
  4. 如权利要求1所述的用途,其特征在,所述的药物组合物包括式I所示的通式化合物作为活性成分,以及药学上可接受的载体。
  5. 如权利要求1所述的用途,其特征在于,所述的药物组合物包括为吸入制剂、口服制剂、静脉注射制剂、肌肉注射;较佳地,所述的药物组合物是吸入制剂。
  6. 如权利要求1所述的用途,其特征在于,所述的式I所示的通式化合物选自如 式Ia或Ib所示的化合物:
    Figure PCTCN2015076855-appb-100005
    式Ia(Compound A);或
    Figure PCTCN2015076855-appb-100006
    式Ib(Compound A1)。
  7. 一种治疗气道慢性炎症相关性疾病的吸入制剂,其特征在于,所述的吸入制剂含有式I所示的通式化合物作为活性成分,以及药学上可接受的载体。
  8. 如权利要求7所述的吸入制剂,其特征在于,所述的活性成分的浓度以式I所示的通式化合物占吸入制剂的总量计为50-1000μg/ml,较佳地,为200μg/m。
  9. 一种体外非治疗性的降低炎症细胞的方法,其特征在于,将所述的炎症细 胞与式I所示的通式化合物接触,从而降低炎症细胞的总数和/或百分比。
  10. 如权利要求9所述的方法,其特征在于,所述的炎症细胞的总数和/或百分比的下降包括炎症细胞的总数从10-15×104细胞/ml降低至4-8×104细胞/ml,较佳地,为从11-12×104细胞/ml降低至5-6×104细胞/ml;和/或
    所述气道炎症细胞的百分比从80-90%降低至50-70%。
  11. 一种治疗气道慢性炎症性疾病的方法,向需要的对象施用式I所示的通式化合物或权利要求7所述的吸入制剂。
PCT/CN2015/076855 2014-04-17 2015-04-17 磺酰胺类化合物在气道慢性炎症性疾病中的应用 WO2015158299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410155060.0 2014-04-17
CN201410155060.0A CN105012318B (zh) 2014-04-17 2014-04-17 磺酰胺类化合物在气道慢性炎症性疾病中的应用

Publications (1)

Publication Number Publication Date
WO2015158299A1 true WO2015158299A1 (zh) 2015-10-22

Family

ID=54323505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076855 WO2015158299A1 (zh) 2014-04-17 2015-04-17 磺酰胺类化合物在气道慢性炎症性疾病中的应用

Country Status (2)

Country Link
CN (1) CN105012318B (zh)
WO (1) WO2015158299A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318134B2 (en) 2018-01-10 2022-05-03 Recurium Ip Holdings, Llc Benzamide compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917921A (zh) * 2003-12-05 2007-02-21 布里斯托尔-迈尔斯·斯奎布公司 降钙素基因相关肽受体拮抗剂
CN101511831A (zh) * 2006-09-14 2009-08-19 诺瓦提斯公司 作为a2a受体激动剂的腺苷衍生物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917921A (zh) * 2003-12-05 2007-02-21 布里斯托尔-迈尔斯·斯奎布公司 降钙素基因相关肽受体拮抗剂
CN101511831A (zh) * 2006-09-14 2009-08-19 诺瓦提斯公司 作为a2a受体激动剂的腺苷衍生物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318134B2 (en) 2018-01-10 2022-05-03 Recurium Ip Holdings, Llc Benzamide compounds
US11344546B2 (en) 2018-01-10 2022-05-31 Recurium IP Holding, LLC Benzamide compounds
US11590126B2 (en) 2018-01-10 2023-02-28 Recurium Ip Holdings, Llc Benzamide compounds
US11813260B1 (en) 2018-01-10 2023-11-14 Recurium Ip Holdings, Llc Benzamide compounds
US11813259B2 (en) 2018-01-10 2023-11-14 Recurium Ip Holdings, Llc Benzamide compounds

Also Published As

Publication number Publication date
CN105012318B (zh) 2020-02-11
CN105012318A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6099609B2 (ja) 肺炎症を低減するためのレボフロキサシンの吸入
JP6827948B2 (ja) 呼吸器疾患の治療
KR102035716B1 (ko) 간엽줄기세포 유래 인공나노좀을 포함하는 폐질환 예방 또는 치료용 약학적 조성물
JP2019512506A (ja) 呼吸器系疾患の治療のためのグルココルチコイドとポリエチレングリコール修飾インターロイキン2の組合せ
EP2414376A1 (en) Pharmaceutical composition comprising a steroidal[3,2-c]pyrazole derivative and a second pharmaceutically active compound
JP2017515833A (ja) Copdの治療のためのフォルモテロール及びブデソニドの組み合わせ
WO2011098801A1 (en) Inflammatory disease treatment
JP2004505036A (ja) 肺気腫の治療のための13−cis−レチノイン酸の使用
JP2022520990A (ja) 呼吸器疾患の治療の方法
CA2827299A1 (en) Liquid propellant-free formulation comprising an antimuscarinic drug
WO2015158299A1 (zh) 磺酰胺类化合物在气道慢性炎症性疾病中的应用
WO2011098799A2 (en) Respiratory disease treatment
KR20130126595A (ko) 신규한 조합물
EP3820526B1 (en) Combinations of ppar agonists and p38 kinase inhibitors for preventing or treating fibrotic diseases
JP2002539270A (ja) 抗線維形成活性を発揮する低分子量ペプチドによる治療
EP1906960A1 (en) New combination 1
JP6527305B2 (ja) 禁煙のためのβ−アドレナリン作動性インバースアゴニストの使用
TW200303754A (en) Pharmaceutical combination
KR20090130360A (ko) 섬유모세포 성장인자 2를 유효성분으로 함유하는 천식 및 만성폐쇄성 폐질환 치료 또는 예방을 위한 흡입용 약제학적 조성물
JP7309791B2 (ja) イソグリチルリチン酸またはその塩の吸入製剤および呼吸器疾患を治療する薬物の製造におけるそれらの使用
JP2005060408A (ja) 慢性閉塞性肺疾患の予防ないし治療剤
WO2013131324A1 (zh) 卢帕他定在制备治疗慢性阻塞性肺病药物组合物中的应用
WO2022161510A1 (zh) 坎格列净在制备治疗结节性硬化症介导的疾病的药物中的用途
WO2007008157A1 (en) New combination 2
EA042855B1 (ru) КОМБИНАЦИИ АГОНИСТОВ PPAR И ИНГИБИТОРОВ КИНАЗЫ p38 ДЛЯ ПРЕДОТВРАЩЕНИЯ ИЛИ ЛЕЧЕНИЯ ФИБРОЗИРУЮЩИХ ЗАБОЛЕВАНИЙ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780276

Country of ref document: EP

Kind code of ref document: A1