WO2015154486A1 - 一种超声探测成像方法与装置 - Google Patents

一种超声探测成像方法与装置 Download PDF

Info

Publication number
WO2015154486A1
WO2015154486A1 PCT/CN2014/092522 CN2014092522W WO2015154486A1 WO 2015154486 A1 WO2015154486 A1 WO 2015154486A1 CN 2014092522 W CN2014092522 W CN 2014092522W WO 2015154486 A1 WO2015154486 A1 WO 2015154486A1
Authority
WO
WIPO (PCT)
Prior art keywords
stepping motor
ultrasonic probe
ultrasonic
detection
image
Prior art date
Application number
PCT/CN2014/092522
Other languages
English (en)
French (fr)
Inventor
韦岗
宁更新
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2015154486A1 publication Critical patent/WO2015154486A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8936Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in three dimensions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe

Definitions

  • the invention relates to an ultrasonic detecting technology with flexible detection range, in particular to an ultrasonic detecting imaging method and device.
  • the line array detection method refers to arranging the detecting elements in a row, and then performing a row-by-row continuous scanning on the detecting object through the relatively uniform motion of the detected object and the redirected detecting element (generally the uniform motion of the detected object), thereby
  • the image is processed by splicing and the like, and the multi-line line image is formed into an area array image.
  • the area array detection method refers to directly arranging the detecting elements into a matrix, and directly detecting the detected object with the arranged detecting elements to obtain an area array image.
  • the area array detection method is relatively straightforward and the detection speed is fast, but the required detection components are relatively high, the cost is high, and the detection elements of each line are generally less than the line array, so the detection accuracy is also limited; the line array detection method has only one line of detection elements. Therefore, it is possible to arrange the detection elements that are dense relative to the array to achieve higher detection accuracy of the line, but the line array detection method requires image splicing and thus requires a more complicated image processing method.
  • Ultrasonic detection technology is also divided into manual detection and automatic detection.
  • the detection area of the manual detection is flexible, but since the accurate position of the ultrasonic probe is not known, the image processing after the detection is confusing, which makes the post-processing algorithm complicated and the imaging accuracy is not high. Automatic detection Because the position information of the ultrasonic probe is known, it is easy to deal with the problem of image stitching after the detection, but the detection area is generally fixed.
  • the primary object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide an ultrasonic imaging imaging method, which utilizes a foldable multi-stage rotating ultrasonic probe for area scanning, and a foldable multi-stage rotating ultrasonic probe in a stepping motor. Driven to collect the detection area information at a fixed time interval for imaging, and finally achieve image stitching of each line through image processing technology.
  • Another object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide an apparatus for realizing an ultrasonic detection imaging method, which adopts a line array detection technology, has a simple structure, and is accurate in positioning and easy to operate in an area scan. Party Control, high precision.
  • an ultrasonic imaging method comprising the following steps:
  • Step 1 The stepping motor drives the foldable multi-stage rotating ultrasonic probe, and the ultrasonic probe of the foldable multi-stage rotating ultrasonic probe transmits an ultrasonic signal, and the ultrasonic echo detecting signal is collected and transmitted to the detecting host;
  • Step 2 The signal processing module performs positioning calculation on the position information of the ultrasonic probe, and transmits the position information to the detecting host;
  • Step 3 The detecting host images the picked ultrasonic echo detecting signal, and performs image stitching according to the position information to obtain an image of the detecting target;
  • Step 4 The detecting host displays the obtained image through the image display
  • step 2 the method of performing the positioning calculation includes the following steps:
  • the collapsible multi-stage rotary ultrasonic probe described in step 21 and step 1 has n stepping motors and n-1 struts, n is a positive integer greater than 2; the left end of the n-1th rod L n-1 The n-1 stepping motor On -1 is connected to the chuck 1, and the right end of the n-1th rod Ln-1 passes through the n-2 stepping motor On -2 and the n-2th rod L.
  • n-2-struts right L n-2 of n-3 n-3 O stepping motor is connected to the left end struts of the n-3 n-3 through L, so Similarly, until the right end of the second strut L 2 is connected to the left end of the first strut L 1 through the first stepping motor O 1 , and the right end of the first strut L 1 passes through the stepping motor O and the left end of the ultrasonic probe L Connected, the right end of the ultrasonic probe L is set to R;
  • Step 22 fixing the suction cup 1, setting the coordinates of the n-1 stepping motor O n-1 point as the coordinate origin (0, 0), and establishing a plane rectangular coordinate system at the coordinate origin, the n-1 pole L n- 1
  • the angle with the horizontal positive direction is ⁇
  • the angle between the n-2th rod L n-2 and the horizontal positive direction is ⁇
  • so on until the angle between the ultrasonic probe L and the horizontal positive direction is r
  • the coordinates of the n-2 stepping motor O n-2 point are o n-2 (x n-2 , y n-2 ):
  • the coordinates o n-3 (x n-3 , y n-3 ) of the n-3 stepping motor O n-3 point are:
  • the coordinates R(x, y) of the R point on the right end of the ultrasound probe are:
  • the stepping motor drives the struts to rotate, and the image of the detection area of the ultrasonic probe L scan is represented by coordinates O(x 0 , y 0 ) and R(x, y). Accurate positioning.
  • the multi-level rotation based area scanning device has flexibility, is convenient to control and can be prepared for positioning, overcomes the difficulty of stitching the detected image caused by the inaccurate positioning of the ultrasonic probe, and the complicated problem of the existing ultrasonic probe array device.
  • the step 3 includes the following steps:
  • Step 31 The detecting host obtains an image of the detecting area according to the existing ultrasonic imaging signal according to the existing B-ultrasound imaging method according to the received ultrasonic signal;
  • Step 32 splicing the image: according to the detection position information obtained by the digital signal processing module, the detecting host puts the image of the detection area into the corresponding position, and splices the image obtained by the scanning;
  • Step 33 Repeat steps 31 through 32 until an image with a complete scan area is obtained.
  • the step 1 includes the following steps:
  • Step 11 Fix the suction cup 1 in a suitable position according to the size and shape of the scanning area;
  • Step 12 setting the speed of the stepping motor of each stage, and the ultrasonic probe scans and collects the reflected ultrasonic signal of the detection area under the driving of the stepping motor to form an ultrasonic echo detection signal;
  • Step 13 Pass the ultrasonic echo detection signal to the detection host.
  • the foldable multi-stage rotary ultrasonic probe may have two stepping motors and one strut.
  • the specific method for performing the positioning calculation includes the following steps:
  • Step A connecting the left end of the first strut L 1 to the suction cup 1 through the first stepping motor O 1 , and the right end of the first strut L 1 is connected to the left end of the ultrasonic probe L through the stepping motor O, the ultrasonic probe L The right end is set to R;
  • Step B fixing the suction cup 1, setting the coordinate of the first stepping motor O 1 point to the coordinate origin (0, 0), and establishing a plane rectangular coordinate system at the coordinate origin, the angle between the first strut L 1 and the horizontal positive direction
  • the angle between the ultrasonic probe L and the horizontal positive direction
  • the coordinates of the O point of the stepping motor
  • the R coordinate of the right end of the ultrasonic probe L is:
  • the O coordinate of the stepping motor is O(x 0 y 0 ), and the coordinate of the right end R of the ultrasonic probe is R(x, y);
  • the suction cup 1 When scanning the detection area, the suction cup 1 is fixed at an appropriate position, the first stepping motor O 1 drives the first struts L 1 to rotate at a certain angular velocity ⁇ 1 , and the stepping motor O drives the ultrasonic probe L at another angular velocity.
  • ⁇ 0 rotates
  • the angles ⁇ and ⁇ are determined by the number of pulses of the stepping motor; the ultrasonic probe L is matched with the scanning motion, and the image of the detection area is acquired by using the line array detection technology.
  • the O coordinate O( x0 , y 0 ) determined by the formula (1) and the R coordinate R(x, y) determined by the formula (2) accurately position the ultrasonic probe L, thereby Each part of the image in the detection area is accurately positioned.
  • each part of the area image can be accurately positioned, then the detection host will splicing the scanned image to recover a high-precision image, thereby achieving the purpose of area scanning.
  • Selecting the angle between the struts of the appropriate size and the horizontal positive direction will make the pattern obtained by scanning the ultrasonic probe L for one week as a ring shape, and if only one stepping motor O is used to drive the ultrasonic probe L, the area of one rotation of the scan is round. . Therefore, the area of the area scanned by such a two-stage rotating device is much larger than the area of the area in which the ultrasonic probe L is rotated by one rotation, so that a shorter ultrasonic probe can obtain a larger scanning area, thereby saving the cost of the ultrasonic probe.
  • the angle between the strut and the horizontal positive direction can be adaptively controlled and adjusted during the scanning process to achieve complete scanning of the area, so that some areas cannot be scanned and covered.
  • the foldable multi-stage rotary ultrasonic probe may also have three stepping motors and two poles.
  • the specific method for performing the positioning calculation includes the following steps:
  • step I the left end of the second strut L 2 is connected to the suction cup 1 by the second stepping motor O 2 , and the right end of the second strut L 2 is used by the first stepping motor O 1 and the first strut L 1 .
  • the left end is connected;
  • the right end of the first rod L 1 is connected to the left end of the ultrasonic probe L by a stepping motor O, and the right end of the ultrasonic probe L is set to R;
  • Step II fixing the suction cup 1, setting the coordinates of the O 2 point of the second stepping motor to the coordinate origin (0, 0), and establishing a plane rectangular coordinate system at the coordinate origin (0, 0), the second pole L 2 and the level
  • the angle between the positive direction is ⁇
  • the angle between the first struts l 1 and the horizontal positive direction is ⁇
  • the angle between the ultrasonic probe L and the horizontal positive direction is ⁇
  • the coordinate of the first stepping motor O 1 point O 1 (x 1 , y 1 ) is:
  • the coordinate O(x 0 , y 0 ) of the step O of the stepping motor is:
  • the coordinates R(x, y) of the R point on the right end of the ultrasound probe are:
  • the second stepping motor O 2 drives the second strut L 2 to rotate at a certain angular velocity ⁇ 2
  • the first stepping motor O 1 drives the first strut L 1 to rotate at a certain angular velocity ⁇ 1
  • the stepping motor O drives the ultrasonic probe L to rotate at a certain angular velocity ⁇ 0.
  • the angles ⁇ , ⁇ , ⁇ are added to the stepping motor.
  • the number of pulses is determined to be that the image of the detection area scanned by the ultrasonic probe L is accurately positioned by the coordinates O(x 0 , y 0 ) and R(x, y).
  • the area scanning device based on the three-stage rotation can obtain a larger scanning area by the ultrasonic probe having a shorter length.
  • the three-level rotation-based area scanning device of the present invention performs scanning, which is flexible, convenient to control and ready for positioning, and overcomes the difficulty that the existing equipment cannot scan in some areas.
  • an apparatus for implementing an ultrasonic imaging method comprising: a suction cup 1, an image display, a detection host, a power module, a signal processing module, and a foldable multi-stage rotary ultrasonic probe
  • the foldable multi-stage rotary ultrasonic probe comprises a foldable multi-stage rotary support and an ultrasonic probe
  • the foldable multi-stage rotary support comprises two struts to y
  • the brackets are movably connected in sequence
  • the suction cup 1 and the ultrasonic probe pass through Folding a multi-stage rotating bracket movable connection
  • the movable connection is provided with a stepping motor
  • the stepping motor is used for converting an electric pulse signal into an angular displacement or a linear displacement, when the stepping motor of the stepping motor receives the pulse signal
  • the stepping drive drives the stepping motor to rotate a corresponding angle according to the set direction, and controls the speed and acceleration of the stepping motor rotation by the pulse frequency, and controls the rod
  • the image display, the detecting host, the signal processing module, the foldable multi-stage rotating ultrasonic probe, and the power module are sequentially connected, and the power module is further connected to the signal processing module;
  • the image display, the signal processing module and the ultrasonic probe are electrically connected to the detecting host, the signal processing module and the stepping motor are electrically connected, and the ultrasonic probe scans the detecting area at a constant speed under the driving of the stepping motor to obtain an ultrasonic detecting echo signal, and
  • the collected ultrasonic detecting echo signal is returned to the detecting host for imaging processing;
  • the stepping motor returns the positioning signal to the signal processing module for processing, and returns to the detecting host specific position information, and the detecting host receives the signal processed by the signal processing module.
  • the images are stitched together and the image is displayed through the image display.
  • the apparatus for implementing an ultrasonic detection imaging method of the present invention further includes a wireless transceiver module, wherein the wireless transceiver module, the signal processing module, the foldable multi-stage rotary ultrasound probe and the power module are sequentially connected, and the power source is connected.
  • the module is also connected to the wireless transceiver module;
  • the image display, the signal processing module, and the ultrasonic probe are all electrically connected to the wireless transceiver module, and the detecting host passes through
  • the line transceiver module wirelessly communicates with the signal processing module and the ultrasound probe.
  • the stepping motor is an open loop control element stepping motor;
  • the ultrasonic probe is a line array ultrasonic detecting array, and the line array ultrasonic detecting array performs uniform motion under the driving of the stepping motor to scan the detecting area, and Real-time transmission of photoelectrically converted signals and dynamic measurement to obtain high-precision, accurate positioning ultrasonic echo detection signals,
  • the linear array ultrasonic detection array picks up ultrasonic detection echo signals of the detection area, and the position information of the detection area of the signal processing module
  • the processing is performed, and the detecting host images and splices the acquired ultrasonic detecting echo signals and position information to generate an image, and finally sends the image to the image display.
  • the line array ultrasonic detection array has a simple structure and a low cost compared to the area array ultrasonic detection array. Under the premise of the same measurement accuracy, the linear array ultrasonic detection array measurement range can be made even larger.
  • the linear array ultrasonic detection array has the advantages of real-time transmission of photoelectric conversion signals, fast self-scanning speed, high frequency response, dynamic measurement, and ability to work under low illumination and pick up high image resolution images.
  • the linear array ultrasonic detection array is driven by the stepping motor to perform uniform motion to scan the area to obtain high-precision, accurate positioning ultrasonic detection echo information.
  • the detection host communicates with the ultrasonic probe, the signal processing module and the image display through wired or wireless means, realizes data collection and transmission, analysis processing and display functions, and issues instructions to each part to complete the transmission and reception of mechanical transmission and ultrasonic signals.
  • Image processing and detection The ultrasonic probe is matched with the ultrasonic detection echo signal of the scanning motion pickup detection area, and the signal processing module processes the position information of the detection area, and the detection host images and splices the acquired ultrasonic detection echo signal and position information to generate an image, and finally The image is sent to the image display.
  • the area scanning device realizes accurate image positioning based on multi-level rotational energy line array detection technology to realize imaging.
  • Step 1 The detecting host obtains an image of the detecting area according to the existing imaging method according to the received ultrasonic signal and according to the existing imaging method;
  • Step 2 splicing the image: according to the detection position information obtained by the digital signal processing module, the image of the obtained detection area is placed at the corresponding position;
  • Step 3 Repeat steps 1 and 2 by continuous positioning scan to get a complete image.
  • the ultrasonic probe transmits the ultrasonic signal under the driving of the stepping motor and collects the ultrasonic echo detection signal and transmits it to the detecting host.
  • the signal processing module performs positioning calculation on the position information of the ultrasonic probe array.
  • the position information is transmitted to the detecting host, and the detecting host images the picked ultrasonic echo detecting signal, and performs image stitching according to the position information to obtain an image of the detecting target, and finally the image obtained by the detecting host is displayed through the image display.
  • the main steps of the ultrasonic detection method for collapsible multi-stage rotation are as follows: according to the size and shape of the scanning area, the suction cup 1 is fixed at a suitable position, and the speed of the stepping motor of each stage is set, and the ultrasonic probe is driven by the stepping motor. Scanning the acquired ultrasound signal from the detection area provides information for subsequent imaging.
  • the specific method of positioning the ultrasound probe is as follows:
  • FIG. 3a The specific device for area scanning based on two-stage rotation is shown in Fig. 3a, and the schematic diagram of the device is shown in Fig. 3b.
  • the mathematical model of the two-stage rotational positioning method is shown in Fig. 3c.
  • Two stepper motors are used in the unit.
  • a first strut and a left end L 1 chuck 1 stepping motor O 1 is connected to a first pole connected to the right end of the stepping motor 1 L O, L ultrasound probe connected to the left end of the stepping motor O, the right end of the ultrasonic probe L
  • the angle between the first strut L 1 and the horizontal positive direction is ⁇
  • ultrasonic The angle between the probe L and the horizontal positive direction is ⁇ , then the coordinates of the O point of the stepping motor are:
  • the R coordinate of the right end of the ultrasonic probe L is:
  • the O coordinate is O(x 0 y 0 ), and the R coordinate is R(x, y).
  • the suction cup 1 is fixed at a suitable position, the first stepping motor O 1 drives the first rod L 1 to rotate at a certain angular velocity ⁇ 1 , and the stepping motor O drives the ultrasonic probe L to another angular velocity ⁇ 0 .
  • the angles ⁇ and ⁇ are determined by the number of pulses applied to the stepping motor.
  • the ultrasonic probe L is equipped with a scanning motion to acquire an image of the detection area by line array detection technology.
  • the O coordinate O(x 0 , y 0 ) determined by the formula (1) and the R determined by the formula (2) are determined.
  • the coordinate R(x, y) enables accurate positioning of the ultrasonic probe L, thereby achieving accurate positioning of the image of each portion of the detection area.
  • Each part of the area image can be accurately positioned, then the detection host will splicing the scanned image to recover a high-precision image, thereby achieving the purpose of area scanning.
  • Selecting the appropriate size of ⁇ 1 , ⁇ 0 will make the pattern obtained by scanning the ultrasonic probe L for one week as a ring shape, and if only one stepping motor O is used to drive the ultrasonic probe L, the area of one rotation scan is a circle.
  • the area of the area scanned by such a two-stage rotating device is much larger than the area of the area in which the ultrasonic probe L is rotated by one rotation, so that a shorter ultrasonic probe can obtain a larger scanning area, thereby saving the cost of the ultrasonic probe.
  • the size of ⁇ 1 and ⁇ 0 can be adaptively controlled and adjusted during the scanning process to achieve complete scanning of the area, so that some areas cannot be scanned and covered.
  • the specific device for area scanning based on three-stage rotation is shown in Figure 4a.
  • the schematic diagram of the device is shown in Figure 4b.
  • the mathematical model of the three-stage rotational positioning method is shown in Figure 4c.
  • Three stepping motors are used in the device.
  • the left end of the rod L 2 is connected to the suction cup 1 through the second stepping motor O 2 , and the right end of the second rod L 2 is connected to the first stepping motor O 1 ;
  • the left end of the first rod L 1 and the first stepping motor O 1 is connected, the right end of the first rod L 1 is connected with the stepping motor O;
  • the left end of the ultrasonic probe L line array ultrasonic detecting array
  • the stepping motor O the right end of the ultrasonic probe L is R, the fixed suction cup 1 is set, and the second step is set.
  • the coordinate of the O 2 point of the motor is the coordinate origin (0,0) and a plane rectangular coordinate system is established at the coordinate origin.
  • the angle between the second pole L 2 and the horizontal positive direction is ⁇ , and the first pole L 1 and the horizontal
  • the angle between the directions is ⁇ , and the angle between the ultrasonic probe L and the horizontal positive direction is ⁇ , then the coordinate O 1 (x 1 , y 1 ) of the first stepping motor O 1 point is:
  • the coordinate O(x 0 , y 0 ) of the step O of the stepping motor is:
  • the coordinates R(x, y) of the R point on the right end of the ultrasound probe are:
  • the second stepping motor O 2 drives the second strut L 2 to rotate at a certain angular velocity ⁇ 2
  • the first stepping motor O 1 drives the first strut L 1 to rotate at a certain angular velocity ⁇ 1
  • the stepping motor O drives the ultrasonic probe L to rotate at a certain angular velocity ⁇ 0.
  • the angles ⁇ , ⁇ , and ⁇ are added to the stepping motor. The number of pulses is determined.
  • the image of the detection area scanned by the ultrasound probe L is accurately positioned by the coordinates O(x 0 , y 0 ) and R(x, y).
  • the area scanning device based on the three-stage rotation can obtain a larger scanning area by the ultrasonic probe having a shorter length.
  • the three-level rotation-based area scanning device of the present invention performs scanning, which is flexible, convenient to control and ready for positioning, and overcomes the difficulty that the existing equipment cannot scan in some areas.
  • the controllable area scanning device based on multi-level rotation is composed of a detecting host, an ultrasonic probe, a power module and a plurality of stepping motors.
  • the number of stepping motors is n (n is a positive integer greater than or equal to 2), that is, a controllable area scanning device based on n-level rotation.
  • Fig. 5a The specific device for area scanning based on n-level rotation is shown in Fig. 5a, and the schematic diagram of the device is shown in Fig. 5b.
  • the mathematical model of the n-level rotational positioning method is shown in Fig. 5c. N stepper motors are used in the unit.
  • the left end of the n-1th rod L n-1 is connected to the suction cup 1, the n-1 stepping motor O n-1 , the right end of the n-1th rod L n-1 and the n-2 stepping motor O n- 2 connected; the left end of the n-2 pole L n-2 is connected to the n-2 stepping motor On 2 , the right end of the n-2 pole L n-2 and the n-3 stepping motor O n- 3 connected, and so on; the left end of the ultrasonic probe L (line array ultrasonic detection array) is connected to the stepping motor O, and the right end of the ultrasonic probe L is R.
  • the ultrasonic probe L line array ultrasonic detection array
  • the suction cup 1 set the coordinates of the n-1 stepping motor O n-1 point to the coordinate origin (0,0) and establish a plane rectangular coordinate system at the coordinate origin, the n-1th rod L n-1 and the horizontal positive
  • the angle between the directions is ⁇
  • the angle between the n-2th rod L n-2 and the horizontal positive direction is ⁇
  • the angle between the ultrasonic probe L and the horizontal positive direction is r
  • the coordinates of the entry point O n-2 are o n-2 (x n-2 , y n-2 ):
  • the coordinates o n-3 (x n-3 , y n-3 ) of the n-3 stepping motor O n-3 point are:
  • the coordinates R(x, y) of the R point on the right end of the ultrasound probe are:
  • the multi-level rotation based area scanning device has flexibility, is convenient to control and can be prepared for positioning, overcomes the difficulty of stitching the detected image caused by the inaccurate positioning of the ultrasonic probe, and the complicated problem of the existing ultrasonic probe array device.
  • the ultrasonic detecting device of the foldable multi-stage rotation After the ultrasonic detecting device of the foldable multi-stage rotation acquires the ultrasonic detecting echo signal, the signal is sent to the detecting host, and the detecting host performs regional imaging on the picked-up signal, and then splicing and processing the images of different detecting regions to obtain accurate positioning. The image thus enables the scanning of the area.
  • the device of the present invention has two implementations: a wired system device and a wireless system device.
  • the wired system device is shown in FIG. 1 and includes an image display, a detection host, a signal processing module, an ultrasonic probe, a stepping motor, and a power module.
  • the ultrasonic probe and the stepping motor are combined into a multi-stage rotating ultrasonic probe.
  • the detecting host is connected with the image display, the signal processing module and the ultrasonic probe, and the signal processing module is also connected with the stepping motor.
  • the ultrasonic probe scans the detection area at a constant speed under the driving of the stepping motor to obtain the ultrasonic detecting echo signal, and detects the collected ultrasonic wave.
  • the wave signal is returned to the detecting host for imaging processing; the stepping motor returns the positioning signal to the signal processing module for processing, and returns to the detecting host specific position information, and the detecting host receives the position information processed by the signal processing module, and performs image processing. Stitching, and finally displaying the image through the image display.
  • the system signal flow of the wireless system is shown in Figure 2, including image display, detection host, wireless transceiver module, signal processing module, ultrasonic probe, stepper motor and power module.
  • the ultrasonic probe and the stepping motor are combined into a multi-stage rotating ultrasonic probe.
  • the wireless transceiver module is connected with the image display, the signal processing module and the ultrasonic probe, and the signal processing module is connected with the stepping motor, and the detecting host and the image display communicate with each other through the wireless transceiver module, the signal processing module and the ultrasonic probe.
  • the collapsible multi-stage rotating ultrasonic probe has an ultrasonic probe, a stepping motor, a suction cup 1 and a strut.
  • the ultrasonic probe is a linear array ultrasonic detection array
  • the linear array ultrasonic detection array has a simple structure and a low cost compared to the area array ultrasonic detection array. Under the premise of the same measurement accuracy, the linear array ultrasonic detection array measurement range can be made even larger.
  • the linear array ultrasonic detection array has the advantages of real-time transmission of photoelectric conversion signals, fast self-scanning speed, high frequency response, dynamic measurement, and ability to work under low illumination and pick up high image resolution images.
  • the linear array ultrasonic detection array is driven by the stepping motor to perform uniform motion to scan the area to obtain high-precision, accurate positioning ultrasonic detection echo information.
  • a stepping motor is an open-loop control element stepping motor that converts an electrical pulse signal into an angular displacement or a linear displacement.
  • the stepper driver receives a pulse signal, it drives the stepper motor to rotate a fixed angle in the set direction, and controls the speed and acceleration of the motor rotation by controlling the pulse frequency.
  • the stepping motor mainly drives the strut and the ultrasonic probe and controls the rotational speed of the strut and the scanning speed of the ultrasonic probe.
  • the suction cup 1 is a fixed ultrasonic probe, and the struts are a function of combining the ultrasonic probe, the motor and the suction cup 1.
  • the detection host communicates with the ultrasonic probe, the signal processing module and the image display through wired or wireless means, realizes data collection and transmission, analysis processing and display functions, and issues instructions to each part to complete the transmission and reception of mechanical transmission and ultrasonic signals.
  • Image processing and detection The ultrasonic probe is matched with the ultrasonic detection echo signal of the scanning motion pickup detection area, and the signal processing module processes the position information of the detection area, and detects the image obtained by the host to image and splicing the acquired ultrasonic detection echo signal and the position information, and finally Send the image to the image display.
  • the area scanning device realizes accurate image positioning based on multi-level rotational energy line array detection technology to realize imaging.
  • Adjustable ultrasonic imaging device and method In order to overcome the inaccurate positioning of the ultrasonic probe manually detected, and the fixed detection area of the automatic detection, and the complexity of the existing ultrasonic probe array device, a foldable multi-stage rotation and a flexible detection area are proposed.
  • Ultrasonic detection imaging device and method The method utilizes a multi-stage stepping motor to drive a linear array ultrasonic detection array for area scanning.
  • the line array ultrasonic detection array collects detection area information according to a fixed time interval driven by a stepping motor, performs imaging, and finally realizes each line image through image processing technology. Splicing.
  • the method adopts line array detection technology, and the device is simple.
  • the ultrasonic probe is accurately positioned in the area scan, easy to operate, convenient to control, and high in precision.
  • the ultrasonic probe of the invention has accurate positioning, accurate image stitching, wide application range, high calculation precision, low cost, simple installation and easy control. Easy to use.
  • the present invention overcomes the insufficiency of the detection range of the automatic ultrasonic detecting device.
  • the detection area of the present invention has a large dynamic range and can perform detection of a designated area.
  • the invention overcomes the difficulty in stitching the detected image caused by the inaccurate positioning of the ultrasonic probe in the manual detection.
  • the invention adopts a multi-step stepping motor to drive the ultrasonic probe to rotate, and each stepping motor can be accurately positioned, so that the ultrasonic probe can be accurately positioned, and thus the image of each region collected by the ultrasonic probe during the scanning process can be accurately positioned. It is convenient for splicing images, so high-precision detection images can be obtained during area scanning.
  • the invention adopts the linear array detecting technology, and the ultrasonic probe adopts the linear array ultrasonic detecting array, and the structure of the ultrasonic array is simpler and lower than the surface array ultrasonic detecting array.
  • the invention is based on multi-stage rotation, and can obtain a larger scanning area with a shorter ultrasonic probe, thereby reducing the cost of the ultrasonic probe.
  • the device of the invention has a simple structure, is foldable, portable and low in cost.
  • the multi-step stepping motor is used to drive the ultrasonic probe to rotate, and the rotation speed of each stepping motor can be adaptively adjusted, so that the range of scanning coverage is large enough to avoid some areas cannot be scanned.
  • Figure 1 is a block diagram showing the system signal flow of the wired connection mode of the apparatus of the present invention.
  • FIG. 2 is a block diagram of a system signal flow of a wireless connection mode of the apparatus of the present invention.
  • Figure 3a is a diagram of a specific device for area scanning based on secondary rotation.
  • Figure 3b is a schematic diagram of a zone scanning device based on secondary rotation.
  • Figure 3c is a mathematical model diagram of a zone scanning device based on secondary rotation.
  • Fig. 4a is a diagram of a specific device for area scanning based on three-stage rotation.
  • Figure 4b is a schematic diagram of an area scanning device based on three-stage rotation.
  • Figure 4c is a mathematical model diagram of a zone scanning device based on three-stage rotation.
  • Figure 5a is a detailed diagram of an area scan based on n-level rotation.
  • Figure 5b is a schematic diagram of an area scanning device based on n-level rotation.
  • Figure 5c is a mathematical model diagram of an area scanning device based on n-level rotation.
  • Figure 6 is a flow chart showing the algorithm of the apparatus of the present invention.
  • Figure 7 is a block diagram showing the system structure of the wired connection mode of the device of the present invention.
  • FIG. 8 is a block diagram showing the system structure of the wireless connection mode of the device of the present invention.
  • FIG. 1 it is a system signal flow diagram of a B-mode system, including a suction cup 1 and a foldable multi-stage rotary ultrasonic probe, the foldable multi-stage rotary ultrasonic probe including a strut, an ultrasonic probe and two steps.
  • the stepping motor adopts the small stepping motor of model PM42 of Changzhou Juli Precision Motor Co., Ltd.
  • the suction cup 1 adopts 30x30 (mm) round plastic suction cup 1, the material of the rod is PVC plastic, and the ultrasonic probe B type ultrasonic Linear array ultrasound probe array.
  • Fig. 3a The specific device for area scanning based on two-stage rotation is shown in Fig. 3a, and the schematic diagram of the device is shown in Fig. 3b.
  • the mathematical model of the two-stage rotational positioning method is shown in Fig. 3c.
  • Two stepper motors, one strut and one ultrasonic probe are used in the device, and the ultrasonic probe uses a linear array ultrasonic probe array.
  • a first strut and a left end L 1 of the chuck, a first stepping motor O 1 is connected to a first pole connected to the right end of the stepping motor 1 L O, L ultrasound probe connected to the left end of the stepping motor O, L ultrasound probe The right end is R.
  • the R coordinate of the right end of the ultrasonic probe L is:
  • the coordinate of the O point is O(x 0 , y 0 ), and the coordinate of the R point is R(x, y).
  • the suction cup 1 is fixed at an appropriate position, the first stepping motor O 1 drives the strut L 1 to rotate at a certain angular velocity ⁇ 1 , and the stepping motor O drives the ultrasonic probe L to rotate at another angular velocity ⁇ 0 .
  • the angles ⁇ and ⁇ are determined by the number of pulses applied to the stepping motor.
  • the ultrasonic probe L is combined with the scanning motion to acquire the image of the detection area by line array detection technology.
  • the O coordinate O(x 0 , y 0 ) determined by the formula (10) and the R determined by the formula (11) are determined.
  • the coordinate R(x, y) enables accurate positioning of the ultrasonic probe L, thereby achieving accurate positioning of the image of each portion of the detection area.
  • the ultrasonic probe transmits the ultrasonic signal under the driving of the stepping motor and collects the ultrasonic echo detection signal and transmits it to the detection host.
  • the signal processing module performs the position information of the ultrasonic probe array.
  • the positioning calculation transmits the position information to the detecting host, and the detecting host images the picked ultrasonic echo detecting signal, and performs image stitching according to the position information to obtain an image of the detecting target, and finally the image obtained by the detecting host is displayed through the image display. .
  • the imaging process of the probe host is:
  • Step 1 The detecting host obtains an image of the detecting area according to the existing B-ultrasound imaging method according to the transmitted ultrasonic signal according to the transmitted ultrasonic signal;
  • Step 2 splicing the image: according to the detection position information obtained by the digital signal processing module, the image of the obtained detection area is placed at the corresponding position;
  • Step 3 Repeat steps 1 through 2 by continuous positioning scan to obtain a complete image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种超声探测成像方法,包括以下步骤:步骤1、步进电机驱动可折叠多级旋转超声探头,所述可折叠多级旋转超声探头的超声探头发射超声信号,并采集超声回波探测信号并传给探测主机;步骤2、信号处理模块对超声探头位置信息进行定位计算,将位置信息传给探测主机;步骤3、探测主机对拾取的超声回波探测信号进行成像,并根据位置信息进行图像拼接,获得探测目标的图像;步骤4、图像显示器显示图像;一种实现超声探测成像方法的装置,包括:吸盘、图像显示器、探测主机、电源模块、信号处理模块和可折叠多级旋转超声探头,具有装置简单,易于操作,方便控制和精度高等优点。

Description

一种超声探测成像方法与装置 技术领域
本发明涉及一种探测范围灵活可调的超声探测技术,特别涉及一种超声探测成像方法与装置。
背景技术
随着科技日益发展,对探测区域要求灵活多变且要对探测物体内部特性进行探测的超声探测技术也显得越来越重要,这类探测技术在工业、医疗、安全以及科研领域都有着广泛应用,像是工业超声检测、医疗超声探测等等都离不开探测区域灵活多变的超声探测技术。因此,高精度、低成本、探测区域灵活的超声探测技术显得尤为重要和迫切。目前针对物体内部信息进行扫描探测主要采用线阵探测和面阵探测两种方式。线阵探测方式是指将探测元件排列成一行,然后通过被探测物体和改行探测元件的相对匀速运动(一般是被探测物体匀速运动)进行对探测物体的逐行连续扫描,进而将一行行的图像进行拼接等处理,将多行线阵图像组成面阵图像。而面阵探测方式是指将探测元件直接排成一个矩阵,用排列好的探测元件直接对被探测物体进行探测得到面阵图像。面阵探测方式比较直观、探测速度快,但所需探测元件比较多,成本较高,而且每行的探测元件一般比线阵少故探测精度也受到限制;线阵探测方式只有一行探测元件,因此可以布置相对面阵密集的探测元件以达到该行有较高的探测精度,但线阵探测方式需要进行图像的拼接因此需要较为复杂的图像处理方法。超声探测技术从探测方式也分为手动探测和自动探测。手动探测的探测区域灵活可变,但是由于不知道超声探头的准确位置,导致探测后处理的图像拼接上带来很***烦,使得探测后处理算法复杂,成像准确性不高。自动探测由于知道超声探头的位置信息,很容易处理探测后处理的图像拼接问题,但是这种探测一般探测区域是固定的。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种超声探测成像方法,该方法利用了可折叠多级旋转超声探头进行区域扫描,可折叠多级旋转超声探头在步进电机的驱动下按照固定时间间隔采集探测区域信息,进行成像,最后通过图像处理技术实现各行图像的拼接。
本发明的另一目的在于克服现有技术的缺点与不足,提供一种实现超声探测成像方法的装置,该装置采用了线阵探测技术,结构简单,在区域扫描中超声探头定位准确,易于操作,方 便控制,精度高。
本发明的首要目的通过下述技术方案实现:一种超声探测成像方法,包括以下步骤:
步骤1、步进电机驱动可折叠多级旋转超声探头,所述可折叠多级旋转超声探头的超声探头发射超声信号,采集超声回波探测信号并传给探测主机;
步骤2、信号处理模块对超声探头的位置信息进行定位计算,将位置信息传给探测主机;
步骤3、探测主机对拾取的超声回波探测信号进行成像,并根据位置信息进行图像拼接,获得探测目标的图像;
步骤4、探测主机将得到的图像通过图像显示器显示出来;
在步骤2中,进行所述定位计算的方法包括以下步骤:
步骤21、步骤1中所述的可折叠多级旋转超声探头具有n个步进电机和n-1个支杆,n为大于2的正整数;第n-1支杆Ln-1的左端通过第n-1步进电机On-1与吸盘1相连接,第n-1支杆Ln-1的右端通过第n-2步进电机On-2与第n-2支杆Ln-2的左端相连接,第n-2支杆Ln-2的右端通过第n-3步进电机On-3与第n-3支杆Ln-3的左端相连接,依此类推,直到第2支杆L2的右端通过第1步进电机O1与第1支杆L1的左端相连接,第1支杆L1的右端通过步进电机O与超声探头L的左端相连接,超声探头L的右端设为R;
步骤22、固定吸盘1,设第n-1步进电机On-1点的坐标为坐标原点(0,0),并在坐标原点建立平面直角坐标系,第n-1支杆Ln-1与水平正方向的夹角为α,第n-2支杆Ln-2与水平正方向的夹角为β,依此类推,直到超声探头L与水平正方向的夹角为r,则第n-2步进电机On-2点的坐标为on-2(xn-2,yn-2):
xn-2=Ln-1cosα
                公式(6)
yn-2=Ln-1sinα
第n-3步进电机On-3点的坐标on-3(xn-3,yn-3)为:
xn-3=xn-2+Ln-2cosβ
                    公式(7)
yn-3=yn-2+Ln-2sinβ’
依此类推,则步进电机O的坐标O(x0,y0)为:
x0=x1+L1cosγ
                 公式(8)
y0=y1+L1sinγ’
超声探头右端R点的坐标R(x,y)为:
x=x0+L cos r
                    公式(9)
y=y0+L sin r’
采用可折叠多级旋转超声探头对探测区域进行扫描时,步进电机驱动支杆旋转,超声探头L扫描的探测区域的图像由坐标O(x0,y0)和R(x,y)来准确定位。
基于多级旋转的区域扫描装置,具有灵活性,方便控制并能准备定位,克服了超声探头定位不准确带来的探测图像拼接困难,以及现有能定位超声探头阵列装置复杂的问题。
所述步骤3包括以下步骤:
步骤31:探测主机根据发收的超声信号,在信号收发的探测区域根据现有的B超成像方法,得到探测区域的图像;
步骤32:图像的拼接:根据数字信号处理模块获得的探测位置信息,探测主机将获得探测区域的图像放到相应位置上,对扫描获取的图像进行拼接;
步骤33:重复步骤31至32,直到得到扫描区域完整的图像为止。
所述步骤1包括以下步骤:
步骤11、根据扫描区域的大小和形状,将吸盘1固定在合适的位置;
步骤12、设置各级步进电机的速度,超声探头在步进电机的驱动下进行扫描采集探测区域的反射超声信号,形成超声回波探测信号;
步骤13、将超声回波探测信号传给探测主机。
作为优先,在步骤1中,所述的可折叠多级旋转超声探头可以具有二个步进电机和一个支杆,在步骤2中,进行所述定位计算的具体方法包括以下步骤:
步骤A、把第1支杆L1的左端通过第1步进电机O1与吸盘1相连,第1支杆L1的右端通过步进电机O与超声探头L的左端相连,超声探头L的右端设为R;
步骤B、固定吸盘1,设第1步进电机O1点的坐标为坐标原点(0,0),并在坐标原点建立平面直角坐标系,第1支杆L1与水平正方向的夹角为α,超声探头L与水平正方向的夹角为β,那么步进电机O点的坐标为:
x0=L1cosα
                 公式(1)
y0=L1sinα
超声探头L右端的R坐标为:
x=x0+L cosβ
                            公式(2)
y=y0+L sinβ,
即步进电机O坐标为O(x0y0),超声探头右端R的坐标为R(x,y);
对探测区域进行扫描时,将吸盘1固定在合适的位置,第1步进电机O1驱动第1支杆L1以某一角速度ω1旋转,步进电机O驱动超声探头L以另一角速度ω0旋转,第1支杆L1和超声探头L同时旋转时,角度α、β由步进电机的脉冲个数来确定;超声探头L配以扫描运动采用线阵探测技术采集探测区域的图像,在图像的采集过程中,由公式(1)确定的O坐标O(x0,y0)和公式(2)确定的R坐标R(x,y),对超声探头L进行准确定位,从而对探测区域中的每部分图像进行准确定位。
每部分区域图像都能准确定位,那么探测主机将扫描获取的图像进行拼接,能恢复出高精度的图像,从而达到区域扫描的目的。选取合适大小的支杆与水平正方向之间的夹角,将会使超声探头L扫描一周得到的图形为环形,而若只采用一个步进电机O驱动超声探头L旋转扫描一周的区域为圆。因此,采用这样的二级旋转装置扫描一周的区域面积比超声探头L单独旋转扫描一周的区域面积大得多,从而可以较短的超声探头获得较大的扫描面积,节省超声探头成本。针对扫描区域难以完全扫描到的情况,扫描过程中可自适应地控制和调整支杆与水平正方向之间的夹角大小,实现区域的完全扫描,避免有些区域无法扫描覆盖。
作为优先,在步骤1中,所述的可折叠多级旋转超声探头也可以具有三个步进电机和二个支杆,在步骤2中,进行所述定位计算的具体方法包括以下步骤:
步骤I、把第2支杆L2的左端用第2步进电机O2与吸盘1相连接,把第2支杆L2的右端用第1步进电机O1与第1支杆L1左端相连接;把第1支杆L1的右端用步进电机O与超声探头L的左端相连接,超声探头L右端设为R;
步骤II、固定吸盘1,设第2步进电机O2点的坐标为坐标原点(0,0),并在坐标原点(0,0)建立平面直角坐标系,第2支杆L2与水平正方向的夹角为α,第1支杆l1与水平正方向的夹角为β,超声探头L与水平正方向的夹角为γ,则第1步进电机O1点的坐标O1(x1,y1)为:
x1=L2cosα
              公式(3)
y1=L2sinα’
步进电机O点的坐标O(x0,y0)为:
x0=x1+L1cosβ
             公式(4)
y0=y1+L1sinβ’
超声探头右端R点的坐标R(x,y)为:
x=x0+L cosγ
             公式(5)
y=y0+L sinγ’
对探测区域进行扫描时,第2步进电机O2驱动第2支杆L2以某一角速度ω2旋转,第1步进电机O1驱动第1支杆L1以某一角速度ω1旋转,步进电机O驱动超声探头L以某一角速度ω0旋转,第2支杆L2、第1支杆L1和超声探头L同时旋转时,角度α、β、γ由给步进电机加的脉冲个数来确定,超声探头L扫描的探测区域的图像由坐标O(x0,y0)和R(x,y)来进行准确定位。
相比基于二级旋转的区域扫描装置,基于三级旋转的区域扫描装置可以长度更短的超声探头获得较大的扫描面积。对于某些难以安放扫描设备的区域,采用本发明的基于三级旋转的区域扫描装置进行扫描,具有灵活性,方便控制并能准备定位,克服了现有设备对有些区域无法扫描的困难。
本发明的另一目的通过以下技术方案实现:一种实现超声探测成像方法的装置,包括:吸盘1、图像显示器、探测主机、电源模块、信号处理模块和可折叠多级旋转超声探头,所述可折叠多级旋转超声探头包括可折叠多级旋转支架和超声探头,所述可折叠多级旋转支架包括至y两个支杆,所述支架依次活动连接,所述吸盘1和超声探头通过可折叠多级旋转支架活动连接,所述活动连接处设置有步进电机;所述步进电机用于将电脉冲信号转变为角位移或线位移,当步进电机的步进驱动器接收到脉冲信号时,步进驱动器驱动步进电机按照设定的方向转动一个相应的角度,并通过脉冲频率来控制步进电机转动的速度和加速度,通过步进电机转动的速度和加速度控制支杆和超声探头的旋转速度和超声探头的扫描速度;所述吸盘1用于把可折叠多级旋转超声探头安置在合适的位置;
如图7所示,所述图像显示器、探测主机、信号处理模块、可折叠多级旋转超声探头和电源模块依次连接,电源模块还和信号处理模块连接;
所述图像显示器、信号处理模块和超声探头均与探测主机电气连接,信号处理模块和步进电机电气连接,超声探头在步进电机的驱动下匀速扫描探测区域,获得超声探测回波信号,并将采集到的超声探测回波信号返回给探测主机进行成像处理;步进电机将定位信号返回给信号处理模块处理后,返回给探测主机具体的位置信息,探测主机接收经信号处理模块处理过的位置信息后,进行图像的拼接,并通过图像显示器将图像显示出来。
如图8所示,本发明的实现一种超声探测成像方法的装置还包括无线收发模块,所述无线收发模块、信号处理模块、可折叠多级旋转超声探头和电源模块依次连接,所述电源模块还和无线收发模块相连接;
所述图像显示器、信号处理模块、超声探头均与无线收发模块电气连接,探测主机通过无 线收发模块与信号处理模块和超声探头进行无线通信。
所述步进电机为开环控制元步进电机;所述超声探头为线阵超声探测阵列,所述线阵超声探测阵列在步进电机的驱动下做匀速运动,对探测区域进行扫描,并实时传输光电变换信号和进行动态测量,以获取高精度、定位准确的超声回波探测信号,所述线阵超声探测阵列拾取探测区域的超声探测回波信号,信号处理模块对探测区域的位置信息进行处理,探测主机将获取的超声探测回波信号和位置信息进行成像和拼接生成图像,最后将图像发送给图像显示器。
线阵超声探测阵列相比面阵超声探测阵列结构简单,成本低。在同等测量精度的前提下,线阵超声探测阵列测量范围可以做的更大。线阵超声探测阵列有实时传输光电变换信号、自扫描速度快、频率响应高、能够实现动态测量、并能在低照度下工作、拾取高图像分辨率图像等优点。线阵超声探测阵列在步进电机驱动下做匀速运动对区域进行扫描获取高精度、定位准确的超声探测回波信息。探测主机与超声探头、信号处理模块和图像显示器之间通过有线或无线方式进行通信,实现数据的采集传送、分析处理和显示功能,并向各部分发出指令,完成机械传动、超声信号的收发、图像处理及探测功能。超声探头配以扫描运动拾取探测区域的超声探测回波信号,信号处理模块对探测区域的位置信息进行处理,探测主机将获取的超声探测回波信号和位置信息进行成像和拼接生成图像,最后将图像发送给图像显示器。该区域扫描装置基于多级旋转能在线阵探测技术下实现图像的准确定位,实现成像。
本发明的技术方案还可以描述如下:
具体的成像步骤如下:
步骤1:探测主机根据发收的超声信号,在信号收发的探测区域根据现有的成像方法,得到探测区域的图像;
步骤2:图像的拼接:根据数字信号处理模块获得的探测位置信息,将获得探测区域的图像放到相应位置上去;
步骤3:通过不断的定位扫描,重复步骤1和2,从而得到完整的图像。
***具体流程如图6所示:首先超声探头在步进电机的驱动下进行发射超声信号并采集超声回波探测信号并传给探测主机,信号处理模块对超声探头阵列位置信息进行定位计算,将位置信息传给探测主机,探测主机对拾取的超声回波探测信号进行成像,并根据位置信息进行图像拼接,获得探测目标的图像,最后探测主机将得到的图像通过图像显示器显示出来。
1、可折叠多级旋转的超声探测方法:
可折叠多级旋转的超声探测方法的主要步骤如下:根据扫描区域的大小和形状,将吸盘1固定在合适的位置,设置各级步进电机的速度,超声探头在步进电机的驱动下进行扫描采集探测区域的反射超声信号,为后面的成像提供信息。超声探头定位的具体方法如下:
(1)二级旋转定位方法:
基于二级旋转的区域扫描具体装置如图3a所示,其装置示意图如图3b所示,二级旋转定位方法的数学模型如图3c所示。装置中采用了两个步进电机。第1支杆L1左端与吸盘1、第1步进电机O1相连,第1支杆L1右端与步进电机O相连,超声探头L的左端与步进电机O相连,超声探头L右端为R。固定吸盘1,设第1步进电机O1点的坐标为坐标原点(0,0)并在坐标原点建立平面直角坐标系,第1支杆L1与水平正方向的夹角为α,超声探头L与水平正方向的夹角为β,那么步进电机O点的坐标为:
x0=L1cosα
                  公式(1)
y0=L1sinα
超声探头L右端的R坐标为:
x=x0+L cosβ
                        公式(2)
y=y0+L sinβ,
即O坐标为O(x0y0),R坐标为R(x,y)。进行区域扫描时,将吸盘1固定在合适的位置,第1步进电机O1驱动第1支杆L1以某一角速度ω1旋转,步进电机O驱动超声探头L以另一角速度ω0旋转,第1支杆L1和超声探头L同时旋转时,角度α、β是由给步进电机加的脉冲个数确定。超声探头L配以扫描运动采用线阵探测技术采集探测区域的图像,在图像的采集过程中,由公式(1)确定的O坐标O(x0,y0)和公式(2)确定的R坐标R(x,y)能对超声探头L进行准确定位,因而实现对每部分探测区域图像的准确定位。每部分区域图像都能准确定位,那么探测主机将扫描获取的图像进行拼接,能恢复出高精度的图像,从而达到区域扫描的目的。选取合适大小的ω1、ω0,将会使超声探头L扫描一周得到的图形为环形,而若只采用一个步进电机O驱动超声探头L旋转扫描一周的区域为圆。因此,采用这样的二级旋转装置扫描一周的区域面积比超声探头L单独旋转扫描一周的区域面积大得多,从而可以较短的超声探头获得较大的扫描面积,节省超声探头成本。针对扫描区域难以完全扫描到的情况,扫描过程中可自适应地控制和调整ω1、ω0的大小,实现区域的完全扫描,避免有些区域无法扫描覆盖。
(2)三级旋转定位方法:
基于三级旋转的区域扫描具体装置如图4a所示,其装置示意图如图4b所示,三级旋转定位方法的数学模型如图4c所示,装置中采用了三个步进电机,第2支杆L2左端通过第2步进电机O2与吸盘1相连接,第2支杆L2右端与第1步进电机O1相连;第1支杆L1左端与第1步进电机O1 相连,第1支杆L1右端与步进电机O相连;超声探头L(线阵超声探测阵列)左端与步进电机O相连,超声探头L右端为R,固定吸盘1,设第2步进电机O2点的坐标为坐标原点(0,0)并在坐标原点建立平面直角坐标系,第2支杆L2与水平正方向的夹角为α,第1支杆L1与水平正方向的夹角为β,超声探头L与水平正方向的夹角为γ,那么第1步进电机O1点的坐标O1(x1,y1)为:
x1=L2cosα
                公式(3)
y1=L2sinα’
步进电机O点的坐标O(x0,y0)为:
x0=x1+L1cosβ
             公式(4)
y0=y1+L1sinβ’
超声探头右端R点的坐标R(x,y)为:
x=x0+L cosγ
              公式(5)
y=y0+L sinγ’
对区域进行扫描时,第2步进电机O2驱动第2支杆L2以某一角速度ω2旋转,第1步进电机O1驱动第1支杆L1以某一角速度ω1旋转,步进电机O驱动超声探头L以某一角速度ω0旋转,第2支杆L2、第1支杆L1和超声探头L同时旋转时,角度α、β、γ由给步进电机加的脉冲个数确定。超声探头L扫描的探测区域的图像由坐标O(x0,y0)和R(x,y)准确定位。相比基于二级旋转的区域扫描装置,基于三级旋转的区域扫描装置可以长度更短的超声探头获得较大的扫描面积。对于某些难以安放扫描设备的区域,采用本发明的基于三级旋转的区域扫描装置进行扫描,具有灵活性,方便控制并能准备定位,克服了现有设备对有些区域无法扫描的困难。
(3)多级旋转定位方法:
基于多级旋转的可控区域扫描装置,由探测主机、超声探头、电源模块和多个步进电机组成。步进电机个数为n(n为大于或等于2的正整数),即为基于n级旋转的可控区域扫描装置。
基于n级旋转的区域扫描具体装置如图5a所示,其装置示意图如图5b所示,n级旋转定位方法的数学模型如图5c所示。装置中采用了n个步进电机。第n-1支杆Ln-1左端与吸盘1、第n-1步进电机On-1相连,第n-1支杆Ln-1右端与第n-2步进电机On-2相连;第n-2支杆Ln-2左端与第n-2步进电机On-2相连,第n-2支杆Ln-2右端与第n-3步进电机On-3相连,依此类推;超声探头L(线阵超声探测阵列)左端与步进电机O相连,超声探头L右端为R。固定吸盘1,设第n-1 步进电机On-1点的坐标为坐标原点(0,0)并在坐标原点建立平面直角坐标系,第n-1支杆Ln-1与水平正方向的夹角为α,第n-2支杆Ln-2与水平正方向的夹角为β,依此类推,超声探头L与水平正方向的夹角为r,那么第n-2步进电机On-2点的坐标为on-2(xn-2,yn-2)为:
xn-2=Ln-1cosα
                    公式(6)
yn-2=Ln-1sinα’
第n-3步进电机On-3点的坐标on-3(xn-3,yn-3)为:
xn-3=xn-2+Ln-2cosβ
                      公式(7)
yn-3=yn-2+Ln-2sinβ’
依此类推,步进电机O的坐标O(x0,y0)为:
x0=x1+L1cosγ
                                公式(8)
y0=y1+L1sinγ’
超声探头右端R点的坐标R(x,y)为:
x=x0+L cosr
                  公式(9)
y=y0+L sinr’
采用基于n级旋转的装置对区域进行扫描时,所有支杆在步进电机的驱动下旋转,超声探头L扫描的探测区域的图像由坐标O(x0,y0)和R(x,y)准确定位。基于多级旋转的区域扫描装置,具有灵活性,方便控制并能准备定位,克服了超声探头定位不准确带来的探测图像拼接困难,以及现有能定位超声探头阵列装置复杂的问题。
2、可折叠多级旋转扫描的超声成像方法:
可折叠多级旋转的超声探测装置采集到超声探测回波信号后,将信号送给探测主机,探测主机对拾取的信号进行区域成像,然后对不同探测区域的图像进行拼接并处理进而获得定位准确的图像,从而实现区域的扫描探测。
本发明的装置有两种实现方式:有线***装置和无线***装置。有线***装置如图1所示,包括图像显示器、探测主机、信号处理模块、超声探头、步进电机和电源模块。其中超声探头和步进电机组合成了一个可折叠多级旋转的超声探头。探测主机和图像显示器、信号处理模块、超声探头相连,信号处理模块还和步进电机相连,超声探头在步进电机的驱动下匀速扫描探测区域获得超声探测回波信号,并将采集超声探测回波信号返回给探测主机进行成像处理;步进电机将定位信号返回给信号处理模块处理后,返回给探测主机具体的位置信息,探测主机接收经信号处理模块处理过的位置信息后、进行图像的拼接,最后通过图像显示器将图像显示出来。
无线***的***信号流程如图2所示,包括图像显示器、探测主机、无线收发模块、信号处理模块、超声探头、步进电机和电源模块。其中超声探头和步进电机组合成了一个可折叠多级旋转的超声探头。无线收发模块和图像显示器、信号处理模块、超声探头相连,信号处理模块与步进电机相连,探测主机和图像显示器通过无线收发模块与信号处理模块、超声探头之间进行通信。
所述可折叠多级旋转的超声探头,具有超声探头、步进电机、吸盘1和支杆。
超声探头是线阵超声探测阵列,线阵超声探测阵列相比面阵超声探测阵列结构简单,成本低。在同等测量精度的前提下,线阵超声探测阵列测量范围可以做的更大。线阵超声探测阵列有实时传输光电变换信号、自扫描速度快、频率响应高、能够实现动态测量、并能在低照度下工作、拾取高图像分辨率图像等优点。线阵超声探测阵列在步进电机驱动下做匀速运动对区域进行扫描获取高精度、定位准确的超声探测回波信息。
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,并通过控制脉冲频率来控制电机转动的速度和加速度。本发明中步进电机主要是对支杆和超声探头起驱动作用并控制支杆旋转速度和超声探头扫描速度。
吸盘1是固定超声探头作用,支杆是将超声探头、电机和吸盘1组合到一起的作用。
探测主机与超声探头、信号处理模块和图像显示器之间通过有线或无线方式进行通信,实现数据的采集传送、分析处理和显示功能,并向各部分发出指令,完成机械传动、超声信号的收发、图像处理及探测功能。超声探头配以扫描运动拾取探测区域的超声探测回波信号,信号处理模块对探测区域的位置信息进行处理,探测主机将获取的超声探测回波信号和位置信息进行成像和拼接生成的图像,最后将图像发送给图像显示器。该区域扫描装置基于多级旋转能在线阵探测技术下实现图像的准确定位,实现成像。
本发明相对于现有技术具有如下的优点及效果:
本发明为了克服手动探测的超声探头定位不准,以及自动探测的探测区域不能灵活可调,以及现有能定位超声探头阵列装置复杂的问题,提出了一种可折叠多级旋转、探测区域灵活可调的超声探测成像装置及方法。本发明为了克服手动探测的超声探头定位不准,以及自动探测的探测区域固定,以及现有能定位超声探头阵列装置复杂的不足,提出了一种可折叠多级旋转、探测区域灵活可调的超声探测成像装置及方法。该方法利用多级步进电机驱动线阵超声探测阵列进行区域扫描,线阵超声探测阵列在步进电机的驱动下按照固定时间间隔采集探测区域信息,进行成像,最后通过图像处理技术实现各行图像的拼接。该方法采用线阵探测技术,装置简单,在区域扫描中超声探头定位准确,易于操作,方便控制,精度高。本发明区域扫描时超声探头定位准确,探测图像拼接准确,应用范围广,计算精度高,成本低廉,安装简单,易于控制, 使用方便。
本发明克服了自动超声探测装置的探测范围固定的不足。本发明的探测区域的动态范围大,可以进行指定区域探测。本发明克服了手动探测中,超声探头定位不准确带来的探测图像拼接困难。本发明采用多级步进电机驱动超声探头旋转,每一级步进电机都能准确定位,使得超声探头能被准确定位,因而超声探头在扫描过程中采集的各区域图像都能被准确定位,为图像的拼接带来了方便,因而在区域扫描时能获得高精度的探测图像。本发明采用线阵探测技术,超声探头采用线阵超声探测阵列,相比面阵超声探测阵列结构简单,成本低。本发明基于多级旋转,能以较短的超声探头获得较大的扫描面积,故能降低超声探头成本。本发明装置结构简单,可折叠,便携和成本低。采用多级步进电机驱动超声探头旋转,可以自适应地调节各步进电机的转速,使得扫描覆盖的范围达到足够大,能避免有些区域不能被扫描到。
附图说明
图1是本发明装置的有线连接方式的***信号流程框图。
图2是本发明装置的无线连接方式的***信号流程框图。
图3a是基于二级旋转的区域扫描具体装置图。
图3b是基于二级旋转的区域扫描装置示意图。
图3c是基于二级旋转的区域扫描装置的数学模型图。
图4a是基于三级旋转的区域扫描具体装置图。
图4b是基于三级旋转的区域扫描装置示意图。
图4c是基于三级旋转的区域扫描装置的数学模型图。
图5a是基于n级旋转的区域扫描具体装置图。
图5b是基于n级旋转的区域扫描装置示意图。
图5c是基于n级旋转的区域扫描装置的数学模型图。
图6是本发明装置的算法流程示意图。
图7为本发明装置的有线连接方式的***结构框图。
图8为本发明装置的无线连接方式的***结构框图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
如图1所示,是一个B超***的***信号流程框图,包括吸盘1和可折叠多级旋转超声探头, 所述可折叠多级旋转超声探头包括一个支杆、超声探头和二个步进电机,所述步进电机采用常州巨力精密电机有限公司型号为PM42的小型步进电机,吸盘1采用30x30(mm)圆形塑料吸盘1,支杆的材料为PVC塑料,超声探头B型超声线阵超声探头阵列。本发明装置中信号处理模块模块的控制处理器使用ARM-9芯片实现,探测主机采用B超探测主机,步进电机的个数为2,即为基于2级旋转的可控区域扫描装置,第1支杆L1=8cm,超声探头L的长度为4cm,ω0取30度/秒,ω1取90度/分钟,探测中,α的角度从0到360度,β的角度从0到90度。
基于二级旋转的区域扫描具体装置如图3a所示,其装置示意图如图3b所示,二级旋转定位方法的数学模型如图3c所示。装置中采用了两个步进电机、一个支杆和一个超声探头,所述超声探头采用线阵超声探测阵列。第1支杆L1的左端与吸盘1、第1步进电机O1相连,第1支杆L1右端与步进电机O相连,超声探头L的左端与步进电机O相连,超声探头L右端为R。固定吸盘1,设第1步进电机O1点的坐标为坐标原点(0,0)并在坐标原点建立平面直角坐标系,第1支杆L1与水平正方向的夹角为α,超声探头L与水平正方向的夹角为β,那么步进电机O点的坐标为:
x0=15cosα
                    公式(10)
y0=15sinα
超声探头L右端的R坐标为:
x=x0+10cosβ
                        公式(11)
y=y0+10sinβ
即O点的坐标为O(x0,y0),R点的坐标为R(x,y)。进行区域扫描时,将吸盘1固定在合适的位置,第1步进电机O1驱动支杆L1以某一角速度ω1旋转,步进电机O驱动超声探头L以另一角速度ω0旋转,第1支杆L1和超声探头L同时旋转时,角度α、β是由给步进电机加的脉冲个数确定。超声探头L配以扫描运动采用线阵探测技术采集探测区域的图像,在图像的采集过程中,由公式(10)确定的O坐标O(x0,y0)和公式(11)确定的R坐标R(x,y)能对超声探头L进行准确定位,因而实现对每部分探测区域图像的准确定位。
整个探测***具体的算法流程如图6所示:首先超声探头在步进电机的驱动下进行发射超声信号并采集超声回波探测信号并传给探测主机,信号处理模块对超声探头阵列位置信息进行定位计算,将位置信息传给探测主机,探测主机对拾取的超声回波探测信号进行成像,并根据位置信息进行图像拼接,获得探测目标的图像,最后探测主机将得到的图像通过图像显示器显示出来。
其中,探测主机的成像过程为:
步骤1:探测主机根据发收的超声信号,在信号收发的探测区域根据现有的B超的成像方法,得到探测区域的图像;
步骤2:图像的拼接:根据数字信号处理模块获得的探测位置信息,将获得探测区域的图像放到相应位置上去;
步骤3:通过不断的定位扫描,重复步骤1至2,从而得到完整的图像。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种超声探测成像方法,其特征在于,包括以下步骤:
    步骤1、步进电机驱动可折叠多级旋转超声探头,所述可折叠多级旋转超声探头的超声探头发射超声信号,采集超声回波探测信号并传给探测主机;
    步骤2、信号处理模块对超声探头位置信息进行定位计算,将位置信息传给探测主机;
    步骤3、探测主机对拾取的超声回波探测信号进行成像,并根据位置信息进行图像拼接,获得探测目标的图像;
    步骤4、探测主机将得到的图像通过图像显示器显示出来;
    在步骤2中,进行所述定位计算的方法包括以下步骤:
    步骤21、步骤1中所述的可折叠多级旋转超声探头具有n个步进电机和n-1个支杆,n为大于或等于2的正整数;第n-1支杆(Ln-1)的左端通过第n-1步进电机(On-1)与吸盘相连接,第n-1支杆(Ln-1)的右端通过第n-2步进电机(On-2)与第n-2支杆(Ln-2)的左端相连接,第n-2支杆(Ln-2)的右端通过第n-3步进电机(On-3)与第n-3支杆(Ln-3)的左端相连接,依此类推,直到第2支杆(L2)的右端通过第1步进电机(O1)与第1支杆(L1)的左端相连接,第1支杆(L1)的右端通过步进电机(O)与超声探头(L)的左端相连接,超声探头(L)的右端为(R);
    步骤22、固定吸盘,设第n-1步进电机(On-1)点的坐标为坐标原点(0,0),并在坐标原点建立平面直角坐标系,第n-1支杆(Ln-1)与水平正方向的夹角为α,第n-2支杆(Ln-2)与水平正方向的夹角为β,依此类推,直到超声探头(L)与水平正方向的夹角为r,则第n-2步进电机(On-2)的坐标为on-2(xn-2,yn-2):
    xn-2=Ln-1cosα
                   ,               公式(6)
    yn-2=Ln-1sinα
    第n-3步进电机(On-3)的坐标on-3(xn-3,yn-3)为:
    xn-3=xn-2+Ln-2cosβ
                        ,          公式(7)
    yn-3=yn-2+Ln-2sinβ
    依此类推,则步进电机(O)的坐标O(x0,y0)为:
    x0=x1+L1cosγ
                    ,             公式(8)
    y0=y1+L1sinγ
    超声探头右端(R)的坐标R(x,y)为:
    x=x0+L cos r
                   ,        公式(9)
    y=y0+L sin r
    采用可折叠多级旋转超声探头对探测区域进行扫描时,步进电机驱动支杆旋转,超声探头(L)扫描的探测区域的图像由坐标O(x0,y0)和R(x,y)来定位。
  2. 根据权利要求1所述的超声探测成像方法,其特征在于,所述步骤3包括以下步骤:
    步骤31:探测主机根据发收的超声信号,在信号收发的探测区域根据B超成像方法,得到探测区域的图像;
    步骤32:图像的拼接:根据数字信号处理模块获得的探测位置信息,探测主机将获得探测区域的图像放到相应位置上,对扫描获取的图像进行拼接;
    步骤33:重复步骤31至32,直到得到扫描区域完整的图像为止。
  3. 根据权利要求1所述的超声探测成像方法,其特征在于,所述步骤1包括以下步骤:
    步骤11、根据扫描区域的大小和形状,将吸盘固定在合适的位置;
    步骤12、设置各级步进电机的速度,超声探头在步进电机的驱动下进行扫描采集探测区域的反射超声信号,形成超声回波探测信号;
    步骤13、将超声回波探测信号传给探测主机。
  4. 根据权利要求1所述的超声探测成像方法,其特征在于,在步骤1中,所述的可折叠多级旋转超声探头具有二个步进电机和一个支杆,在步骤2中,进行所述定位计算的具体方法包括以下步骤:
    步骤A、把第1支杆(L1)的左端通过第1步进电机(O1)与吸盘相连,第1支杆(L1)的右端通过步进电机(O)与超声探头(L)的左端相连,超声探头(L)的右端设为(R);
    步骤B、固定吸盘,设第1步进电机(O1)的坐标为坐标原点(0,0),并在坐标原点建立平面直角坐标系,第1支杆(L1)与水平正方向的夹角为α,超声探头(L)与水平正方向的夹角为β,那么步进电机(O)的坐标为:
    x0=L1cosα
                   ,          公式(1)
    y0=L1sinα
    超声探头(L)右端(R)的坐标为:
    x=x0+L cosβ
    y=y0+L sinβ,                           公式(2)
    即步进电机(O)的坐标为O(x0,y0),超声探头右端(R)的坐标为R(x,y);
    对探测区域进行扫描时,第1步进电机(O1)驱动第1支杆(L1)以某一角速度ω1旋转,步进电机(O)驱动超声探头(L)以另一角速度ω0旋转,第1支杆(L1)和超声探头(L)同时旋转时,角度α、β由步进电机的脉冲个数来确定;超声探头(L)配以扫描运动采用线阵探测技术采集探测区域的图像,在图像的采集过程中,由公式(1)确定的步进电机(O)坐标O(x0,y0)和公式(2)确定的超声探头右端(R)坐标R(x,y),对超声探头(L)进行定位,从而对探测区域中的每部分图像进行定位。
  5. 根据权利要求1所述的超声探测成像方法,其特征在于,在步骤1中,所述的可折叠多级旋转超声探头具有三个步进电机和二个支杆,在步骤2中,进行所述定位计算的具体方法包括以下步骤:
    步骤I、把第2支杆(L2)的左端用第2步进电机(O2)与吸盘相连接,把第2支杆(L2)的右端用第1步进电机(O1)与第1支杆(L1)左端相连接;把第1支杆(L1)的右端用步进电机(O)与超声探头(L)的左端相连接,超声探头(L)右端设为(R);
    步骤II、固定吸盘,设第2步进电机(O2)的坐标为坐标原点(0,0),并在坐标原点(0,0)建立平面直角坐标系,第2支杆(L2)与水平正方向的夹角为α,第1支杆(L1)与水平正方向的夹角为β,超声探头(L)与水平正方向的夹角为γ,则第1步进电机(O1)点的坐标O1(x1,y1)为:
    x1=L2cosα
                ,             公式(3)
    y1=L2sinα
    步进电机(O)的坐标O(x0,y0)为:
    x0=x1+L1cosβ
                 ,               公式(4)
    y0=y1+L1sinβ
    超声探头右端(R)的坐标R(x,y)为:
    x=x0+L cosγ
                ,               公式(5)
    y=y0+L sinγ
    对探测区域进行扫描时,第2步进电机(O2)驱动第2支杆(L2)以某一角速度ω2旋转,第1步进电机(O1)驱动第1支杆(L1)以某一角速度ω1旋转,步进电机(O)驱动超声探头(L) 以某一角速度ω0旋转,第2支杆(L2)、第1支杆(L1)和超声探头(L)同时旋转时,角度α、β、γ由步进电机的脉冲个数来确定,超声探头(L)扫描的探测区域的图像由坐标O(x0,y0)和R(x,y)来进行定位。
  6. 一种实现权利要求1所述的超声探测成像方法的装置,包括:吸盘、图像显示器、探测主机、电源模块和信号处理模块,其特征在于,还包括可折叠多级旋转超声探头,所述可折叠多级旋转超声探头包括可折叠多级旋转支架和超声探头,所述可折叠多级旋转支架包括至少两个支杆,所述支架依次活动连接,所述吸盘和超声探头通过可折叠多级旋转支架活动连接,所述活动连接处设置有步进电机;所述步进电机用于将电脉冲信号转变为角位移或线位移,当步进电机的步进驱动器接收到脉冲信号时,步进驱动器驱动步进电机按照设定的方向转动一个相应的角度,并通过脉冲频率来控制步进电机转动的速度和加速度,通过步进电机转动的速度和加速度控制支杆和超声探头的旋转速度和超声探头的扫描速度;所述吸盘用于把可折叠多级旋转超声探头安置在合适的位置;
    所述图像显示器、探测主机、信号处理模块、可折叠多级旋转超声探头和电源模块依次连接,电源模块还和信号处理模块连接;
    所述图像显示器、信号处理模块和超声探头均与探测主机电气连接,信号处理模块和步进电机电气连接,超声探头在步进电机的驱动下匀速扫描探测区域,获得超声探测回波信号,并将采集到的超声探测回波信号返回给探测主机进行成像处理;步进电机将定位信号返回给信号处理模块处理后,返回给探测主机具体的位置信息,探测主机接收经信号处理模块处理过的位置信息后,进行图像的拼接,并通过图像显示器将图像显示出来。
  7. 根据权利要求6所述的装置,其特征在于,还包括无线收发模块,所述无线收发模块、信号处理模块、可折叠多级旋转超声探头和电源模块依次连接,所述电源模块还和无线收发模块相连接;
    所述图像显示器、信号处理模块、超声探头均与无线收发模块电气连接,探测主机通过无线收发模块与信号处理模块和超声探头进行无线通信。
  8. 根据权利要求6所述的装置,其特征在于,所述步进电机为开环控制元步进电机;所述超声探头为线阵超声探测阵列,所述线阵超声探测阵列在步进电机的驱动下做匀速运动,对探测区域进行扫描,并实时传输光电变换信号和进行动态测量,以获取超声回波探测信号,所述线阵超声探测阵列拾取探测区域的超声探测回波信号,信号处理模块对探测区域的位置信息进行处理,探测主机将获取的超声探测回波信号和位置信息进行成像和拼接生成图像,最后将图像发送给图像显示器。
PCT/CN2014/092522 2014-04-10 2014-11-28 一种超声探测成像方法与装置 WO2015154486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410144020.6 2014-04-10
CN201410144020.6A CN103954966A (zh) 2014-04-10 2014-04-10 一种超声探测成像方法与装置

Publications (1)

Publication Number Publication Date
WO2015154486A1 true WO2015154486A1 (zh) 2015-10-15

Family

ID=51332262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092522 WO2015154486A1 (zh) 2014-04-10 2014-11-28 一种超声探测成像方法与装置

Country Status (2)

Country Link
CN (1) CN103954966A (zh)
WO (1) WO2015154486A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970150A (zh) * 2017-04-14 2017-07-21 中国科学院声学研究所 一种固定吸附式扫查器装置及调整方法
CN107179354A (zh) * 2017-04-19 2017-09-19 中国科学院声学研究所 一种水平旋转扫描装置及调整方法
CN110346450A (zh) * 2018-04-03 2019-10-18 长沙芬贝电子科技有限公司 一种无线喷墨打标超声检测爬行器
CN111281424A (zh) * 2018-12-07 2020-06-16 深圳迈瑞生物医疗电子股份有限公司 一种超声成像范围的调节方法及相关设备
CN112444492A (zh) * 2020-10-09 2021-03-05 中国科学院深圳先进技术研究院 一种光声成像方法、计算机设备、***以及存储介质
CN112617891A (zh) * 2020-12-22 2021-04-09 居天智慧(深圳)有限公司 生殖卵泡检测仪
CN116058866A (zh) * 2022-12-12 2023-05-05 声索生物科技(上海)有限公司 用于超声成像设备的深度检测装置及检测方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954966A (zh) * 2014-04-10 2014-07-30 华南理工大学 一种超声探测成像方法与装置
CN104644214B (zh) * 2014-12-05 2017-04-12 广州丰谱信息技术有限公司 一种平面曲形轨道扫描的超声探测成像装置与方法
CN105982693A (zh) * 2015-01-27 2016-10-05 中慧医学成像有限公司 一种成像方法
CN106377278A (zh) * 2015-07-28 2017-02-08 中慧医学成像有限公司 一种三维成像超声波扫描方法
CN105030280B (zh) * 2015-09-02 2019-03-05 宁波美童智能科技有限公司 一种无线智能超声胎儿成像***
CN105167801B (zh) * 2015-09-02 2019-02-01 宁波美童智能科技有限公司 一种无线智能超声胎儿成像***的控制方法
CN105804728B (zh) * 2016-03-18 2018-12-25 郑州大学 一种落鱼定位方法
CN105649612B (zh) * 2016-03-18 2018-12-25 郑州大学 一种落鱼定位仪
CN112512430A (zh) * 2018-08-27 2021-03-16 深圳迈瑞生物医疗电子股份有限公司 一种超声成像***
CN109350113A (zh) * 2018-11-22 2019-02-19 山东省千佛山医院 一种b超医疗检测机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180695A (ja) * 2001-12-14 2003-07-02 Olympus Optical Co Ltd 超音波プローブ駆動装置
US6679843B2 (en) * 2002-06-25 2004-01-20 Siemens Medical Solutions Usa , Inc. Adaptive ultrasound image fusion
CN201263686Y (zh) * 2008-07-18 2009-07-01 李昌伟 经***超声手术探头万向定位装置
CN101700187A (zh) * 2009-09-09 2010-05-05 北京汇影互联科技有限公司 一种进行超声扫查的设备和方法
CN101816571A (zh) * 2009-02-11 2010-09-01 美国西门子医疗解决公司 用于超声扫描的支撑臂
CN102908168A (zh) * 2012-10-24 2013-02-06 华南理工大学 一种基于机械扫描的a超弹性成像***及其方法
CN103954966A (zh) * 2014-04-10 2014-07-30 华南理工大学 一种超声探测成像方法与装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455576B (zh) * 2007-12-12 2012-10-10 深圳迈瑞生物医疗电子股份有限公司 超声宽景成像的方法、装置与***
TWI476403B (zh) * 2011-04-22 2015-03-11 Pai Chi Li 超音波自動掃描系統及其掃描方法
CN102590814B (zh) * 2012-03-02 2014-04-02 华南理工大学 一种超声波探头空间位置和三维姿态的检测装置及方法
CN103315821B (zh) * 2013-07-08 2015-04-08 宁波艾克伦医疗科技有限公司 一种阻力式三轴四连杆伸降旋转平台
CN103552057A (zh) * 2013-10-17 2014-02-05 上海海洋大学 多自由度水下作业机械臂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180695A (ja) * 2001-12-14 2003-07-02 Olympus Optical Co Ltd 超音波プローブ駆動装置
US6679843B2 (en) * 2002-06-25 2004-01-20 Siemens Medical Solutions Usa , Inc. Adaptive ultrasound image fusion
CN201263686Y (zh) * 2008-07-18 2009-07-01 李昌伟 经***超声手术探头万向定位装置
CN101816571A (zh) * 2009-02-11 2010-09-01 美国西门子医疗解决公司 用于超声扫描的支撑臂
CN101700187A (zh) * 2009-09-09 2010-05-05 北京汇影互联科技有限公司 一种进行超声扫查的设备和方法
CN102908168A (zh) * 2012-10-24 2013-02-06 华南理工大学 一种基于机械扫描的a超弹性成像***及其方法
CN103954966A (zh) * 2014-04-10 2014-07-30 华南理工大学 一种超声探测成像方法与装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970150A (zh) * 2017-04-14 2017-07-21 中国科学院声学研究所 一种固定吸附式扫查器装置及调整方法
CN106970150B (zh) * 2017-04-14 2023-05-02 中国科学院声学研究所 一种固定吸附式扫查器装置及调整方法
CN107179354A (zh) * 2017-04-19 2017-09-19 中国科学院声学研究所 一种水平旋转扫描装置及调整方法
CN107179354B (zh) * 2017-04-19 2023-10-03 中国科学院声学研究所 一种水平旋转扫描装置及调整方法
CN110346450A (zh) * 2018-04-03 2019-10-18 长沙芬贝电子科技有限公司 一种无线喷墨打标超声检测爬行器
CN110346450B (zh) * 2018-04-03 2024-05-07 曼图电子(上海)有限公司 一种无线喷墨打标超声检测爬行器
CN111281424A (zh) * 2018-12-07 2020-06-16 深圳迈瑞生物医疗电子股份有限公司 一种超声成像范围的调节方法及相关设备
CN112444492A (zh) * 2020-10-09 2021-03-05 中国科学院深圳先进技术研究院 一种光声成像方法、计算机设备、***以及存储介质
CN112444492B (zh) * 2020-10-09 2023-05-12 中国科学院深圳先进技术研究院 一种光声成像方法、计算机设备、***以及存储介质
CN112617891A (zh) * 2020-12-22 2021-04-09 居天智慧(深圳)有限公司 生殖卵泡检测仪
CN112617891B (zh) * 2020-12-22 2023-02-10 居天智慧(深圳)有限公司 生殖卵泡检测仪
CN116058866A (zh) * 2022-12-12 2023-05-05 声索生物科技(上海)有限公司 用于超声成像设备的深度检测装置及检测方法

Also Published As

Publication number Publication date
CN103954966A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2015154486A1 (zh) 一种超声探测成像方法与装置
CN104237850B (zh) 一种多个机器人之间相互定位及确认的方法与装置
CN1305443C (zh) 超声波成像设备
CN106645152A (zh) 一种图像采集装置
CN106596550A (zh) 一种微小昆虫标本图像采集***
CN1785124A (zh) 超声成像设备
CN102697524B (zh) 全聚焦超声成像方法及其在血流成像中的运用
TW201643775A (zh) 監測系統及其操作方法
CN109238304B (zh) 空间相机超高速变行频测试装置
CN104013424A (zh) 一种基于深度信息的超声宽景成像方法
CN102478655A (zh) 超声波测距方法、测距***及具有其的摄像组件
WO2019109846A1 (zh) 摄影机器人
CN107289874A (zh) 三维采集装置
CN207936927U (zh) 一种目标物体轮廓检测***
CN109642820B (zh) 光传感装置、检测***及检测方法
CN203414589U (zh) 一种多个机器人之间相互定位及确认的装置
US10413274B2 (en) Method for controlling wireless intelligent ultrasound fetal imaging system
CN116723371A (zh) 一种基于振镜的360度全景拍摄装置
CN105430300A (zh) 一种影像扫描***、装置及方法
CN206019661U (zh) 虚拟现实姿态及坐标被动测量装置
CN207215013U (zh) 虚拟现实姿态及坐标定位装置
CN207008404U (zh) 一种基于机器视觉的自走餐车识别定位***
CN205123882U (zh) 一种影像扫描***及装置
CN112304250B (zh) 一种移动物体之间的三维匹配设备及方法
CN105744166B (zh) 图像扫描时的自动聚焦装置及其自动聚焦方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889156

Country of ref document: EP

Kind code of ref document: A1