WO2015151354A1 - Production method for polycarbonate resin - Google Patents

Production method for polycarbonate resin Download PDF

Info

Publication number
WO2015151354A1
WO2015151354A1 PCT/JP2014/083710 JP2014083710W WO2015151354A1 WO 2015151354 A1 WO2015151354 A1 WO 2015151354A1 JP 2014083710 W JP2014083710 W JP 2014083710W WO 2015151354 A1 WO2015151354 A1 WO 2015151354A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyorganosiloxane
polycarbonate
polycarbonate resin
group
producing
Prior art date
Application number
PCT/JP2014/083710
Other languages
French (fr)
Japanese (ja)
Inventor
石川 康弘
智子 阿部
彰一 古川
中川 秀夫
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2015151354A1 publication Critical patent/WO2015151354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/186Block or graft polymers containing polysiloxane sequences

Definitions

  • the present invention relates to a method for producing a polycarbonate resin.
  • a polycarbonate resin substantially free of polyorganosiloxane is generally used as a copolymerization component using 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] as a dihydric phenol as a raw material. .
  • 2,2-bis (4-hydroxyphenyl) propane commonly name: bisphenol A
  • a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane as a copolymerization component is known (Patent Document 1 and 2).
  • Polycarbonate-polyorganosiloxane copolymers are attracting attention because of their high impact resistance, chemical resistance, and flame retardancy, and are widely used in various fields such as the electrical / electronic equipment field and the automobile field. Use is expected. In particular, the use of portable telephones, mobile personal computers, digital cameras, video cameras, power tools and other housings, and other daily necessities is expanding.
  • a polycarbonate resin and a polycarbonate-polyorganosiloxane copolymer substantially free of polyorganosiloxane represented by the above polycarbonate resin are produced by, for example, an interfacial polymerization method, the quality is obtained by adopting a continuous type instead of a batch type. Can be made constant, and the production efficiency is also excellent.
  • the polycarbonate resin is produced in a continuous manner.
  • a polycarbonate-polyorganosiloxane copolymer is prepared by producing a polycarbonate resin using, for example, only bisphenol A as a dihydric phenol and then supplying polyorganosiloxane using the same production line. Are manufactured continuously.
  • the supply of the polyorganosiloxane is stopped, so that a polycarbonate resin substantially free of polyorganosiloxane is continuously produced again as a copolymer component. can do.
  • polycarbonate resin is used in the present invention as a general term for polycarbonate resins and polycarbonate-polyorganosiloxane copolymers that are substantially free of polyorganosiloxane as a copolymer component.
  • a polycarbonate-polyorganosiloxane copolymer having a set polyorganosiloxane content is produced.
  • a polycarbonate substantially free of polyorganosiloxane as a copolymerization component is produced by continuously producing a polycarbonate-polyorganosiloxane copolymer and then stopping the supply of polyorganosiloxane, the following is performed. Have a problem.
  • Polycarbonate-polyorganosiloxane copolymer produced / recovered before the polyorganosiloxane content in the initial stage of polycarbonate-polyorganosiloxane production reaches the set value is treated as a transition product. Need to be introduced and managed.
  • the present invention relates to a transition product produced at the time of switching between a step of continuously producing a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component and a step of continuously producing a polycarbonate-polyorganosiloxane copolymer.
  • the purpose is to recover efficiently.
  • a polycarbonate resin or a polycarbonate-polyorganosiloxane copolymer substantially free of polyorganosiloxane as a copolymer component of a certain grade (constant quality) can be obtained with good quality.
  • the present inventors By monitoring the polyorganosiloxane content in the polycarbonate resin using near-infrared spectroscopy and fluorescent X-ray analysis instead of the conventional NMR method, the present inventors have made certain grade products and transitional products. It was found that can be efficiently recovered. That is, the present invention includes the following. 1.
  • the polycarbonate-polyorganosiloxane copolymer is recovered while confirming that it is near infrared spectroscopy or fluorescent X-ray analysis (however, the range of (i) and the range of (ii) do not overlap) ,
  • the polycarbonate-polyorganosiloxane copolymer is recovered while confirming that the polyorganosiloxane content is y by near infrared spectroscopy or fluorescent X-ray analysis.
  • a method for producing a polycarbonate resin 2. 2. The method for producing a polycarbonate resin according to 1, wherein the polyorganosiloxane content x is 0.01 to 0.5 mass%. 3. The polycarbonate-polyorganosiloxane copolymer and / or the polycarbonate resin in which the content ratio of the polyorganosiloxane used for confirmation by X-ray fluorescence analysis is less than x is in the form of powder, pellet, sheet or film. 3. A method for producing a polycarbonate resin according to 1 or 2. 4). 4.
  • the method for producing a polycarbonate resin according to 3, wherein the polycarbonate resin in which the content ratio of the polycarbonate-polyorganosiloxane copolymer and / or polyorganosiloxane is less than x is a sheet or film. 5.
  • the form of the polycarbonate resin and / or the polycarbonate-polyorganosiloxane copolymer in which the content ratio of the polyorganosiloxane used for confirmation by near-infrared spectroscopy is less than x is powder or pellets, 1 or 2
  • a polycarbonate resin is produced by polymerizing a dihydric phenol and a carbonate precursor, and in the production steps (II) and (III), the dihydric phenol and a carbonate precursor are polymerized.
  • 6. The method for producing a polycarbonate resin according to any one of 1 to 5, wherein a polyorganosiloxane is added to the reaction system to be copolymerized to produce a polycarbonate-polyorganosiloxane copolymer. 7). 7. The method for producing a polycarbonate resin according to 6, wherein in the production steps (I) to (III), polymerization is performed after preparing a polycarbonate oligomer. 8).
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-.
  • a and b are each independently an integer of 0 to 4.
  • 10. 10 The method for producing a polycarbonate resin according to any one of 6 to 9, wherein the polyorganosiloxane is a polyorganosiloxane represented by the following general formula (2) or (3).
  • R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O— is shown.
  • R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group.
  • R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • R 9 represents a diarylene group.
  • R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group.
  • Z represents a hydrogen atom or a halogen atom.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid.
  • the sum of p and q is n, and n represents an average number of repetitions of 30 to 500. ] 11.
  • a transition product produced when the continuous production of a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component and the continuous production of a polycarbonate-polyorganosiloxane copolymer are alternately switched.
  • a polycarbonate resin substantially free of polyorganosiloxane as a copolymerization component is defined as a polycarbonate resin having a polyorganosiloxane content of less than x.
  • Production process (II) for producing a polycarbonate-polyorganosiloxane copolymer in which polyorganosiloxane content ratio ⁇ y and a recovery process for collecting the polycarbonate-polyorganosiloxane copolymer obtained by the production process (II) ( B), a production process (III) for producing a polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y, and a polycarbonate-polyorganosiloxane copolymer obtained by the production process (III) is recovered.
  • the recovery step (C) is (I And (A) to (III) and (C) in the order, or (III) and (C) to (I) and (A) in the order of the polycarbonate resin production method,
  • A) the polycarbonate resin is recovered while confirming by X-ray fluorescence analysis that the polyorganosiloxane content is less than x.
  • B the recovery step (B), (i) x ⁇ polyorganosiloxane content ratio is confirmed by fluorescent X-ray analysis, and (ii) polyorganosiloxane content ratio ⁇ y.
  • the polycarbonate-polyorganosiloxane copolymer is recovered while being confirmed by near-infrared spectroscopy or fluorescent X-ray analysis (however, the range of (i) does not overlap with the range of (ii))
  • the recovery step (C) the polycarbonate-polyorganosiloxane copolymer is recovered while confirming that the polyorganosiloxane content is y by near infrared spectroscopy or fluorescent X-ray analysis.
  • the production process (I) is a process for producing a polycarbonate resin having a polyorganosiloxane content of less than x.
  • the recovery step (A) is a step of recovering a polycarbonate resin having a polyorganosiloxane content ratio of less than x while confirming that the polyorganosiloxane content ratio is less than x by fluorescent X-ray analysis. .
  • the production step (I) for producing a polycarbonate resin having a polyorganosiloxane content of less than x can be produced by an interfacial polymerization method (phosgene method), a transesterification method (melting method), or the like.
  • the production step (I) generally involves dihydric phenol, here bisphenol A from a bisphenol A dissolution tank 111 in which bisphenol A is dissolved in an alkaline aqueous solution, and a carbonate precursor (phosgene in the figure).
  • a molecular weight regulator such as pt-butylphenol (shown as PTBP in the figure) in an organic solvent as necessary
  • an oligomer preparation step 1 a polycarbonate oligomer, and an aqueous alkaline solution of dihydric phenol
  • a polymerization step 2 in which a polymerization catalyst, a molecular weight regulator, an alkaline aqueous solution and a water-insoluble organic solvent are added and reacted as necessary, an aqueous phase containing an organic phase containing a polycarbonate resin and excess dihydric phenol, etc.
  • the concentrate has the powdered / granulation step 6 of powdered or granulated.
  • the powder or granulated product obtained by the powdering / granulating step 6 is collected in the collecting step (A).
  • the recovery step (A) refers to the measurement of the polyorganosiloxane content by the analyzer 11 after collecting a part of the product obtained after the pulverization / granulation step.
  • the feed controller 12 is automatically controlled to open the on-off valve of the container a and store the polycarbonate resin substantially free of polyorganosiloxane transferred by the transfer line 7 in the container a.
  • any device can be used as long as it can control the opening and closing of the on-off valve of the container.
  • the collecting step (A) a part of the powder or granulated product obtained by the pulverization / granulating step 6 is collected, and it is confirmed that the polyorganosiloxane content ratio is less than x and collected. It is a feature. Therefore, it is possible to obtain a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component obtained by the production process (I) with a constant quality.
  • Such polycarbonate resin is excellent in transparency, mechanical properties, thermal properties, electrical properties, weather resistance, and the like, and can be used for optical molded products such as light guide plates, lenses, and optical fibers.
  • a dihydric phenol and a carbonate precursor are optionally polymerized in the presence of a catalyst to obtain a melt, and then dephenolized and granulated as a copolymer component.
  • a polycarbonate resin substantially free of polyorganosiloxane can be produced.
  • the form of the polycarbonate-polyorganosiloxane copolymer at the time of measurement by X-ray fluorescence analysis may be any of powder, pellet (granulated product), sheet, or film.
  • a sheet or film is obtained by, for example, hot press molding powder or pellets. In general, the sheet or film is processed so as to have a thickness of about 0.2 to 5 mm.
  • a sheet is a soft sheet with a thickness of 0.2 mm or more
  • a film is a soft sheet with a thickness of less than 0.2 mm and a hard sheet with a thickness of less than 0.5 mm. It is stipulated that the thing. In the present invention, there is no need to strictly distinguish between a sheet and a film, and the measurement sample for fluorescent X-ray analysis may be a film even if it has a thickness of about 0.2 to 5 mm. There may be. In terms of measurement accuracy, the thickness of the sheet or film is preferably 0.5 mm or more, more preferably 1.0 mm or more.
  • the polycarbonate-polyorganosiloxane copolymer is preferably in the form of a sheet or film. Processing into a sheet or film makes the sample density uniform. Since the uniformity of the sample density makes the incident depth of the excitation X-ray dose and the generation amount of the fluorescent X-ray dose constant, the measurement accuracy can be guaranteed. Further, by processing into a sheet or film, the surface flatness (no irregularities) becomes good, and the X-ray optical path length is stabilized.
  • Fluorescence X-ray analysis generally has the following advantages. That is, no complicated pretreatment as in the NMR method is required, and as described above, sample preparation is unnecessary, or it can be carried out easily and quickly by pressure treatment or the like. The resulting spectrum is relatively simple and easy to interpret. It is also suitable for trace analysis and has high quantitative accuracy.
  • One of the features of the fluorescent X-ray analysis method is that the analysis can be performed in a very short time. Therefore, in the method for producing the polycarbonate resin of the present invention including measurement of the polyorganosiloxane content ratio in the copolymer by fluorescent X-ray analysis, measurement of the polyorganosiloxane content ratio from sampling after pulverization / granulation. It only takes about an hour to get the result.
  • the measurement result is quickly fed back to the controller 12 that automatically controls the opening / closing valve of the container, and only the polycarbonate resin having a polyorganosiloxane content of less than x in the polycarbonate resin flowing through the transfer line 7 is stored in the container a. can do. As a result, a polycarbonate resin having a constant quality can be obtained efficiently.
  • X-ray fluorescence analyzers are roughly classified into energy dispersion type and wavelength dispersion type, and any of them may be used in the fluorescence X-ray analysis in the present invention.
  • concentration (content ratio) of the target element in the sample is measured by measuring the intensity of the line spectrum (characteristic X-ray) of the wavelength unique to each element obtained by irradiating the sample with X-rays. ).
  • line spectrum characteristic X-ray
  • a wide range of elements can be targeted, but in practice, an element having an atomic number of sodium or higher is often measured.
  • the concentration of silicon in the polycarbonate-polyorganosiloxane copolymer can be determined using a calibration curve.
  • the calibration curve is prepared from the X-ray intensity of the quantitative element (silicon) obtained by performing fluorescent X-ray analysis using a sample whose polyorganosiloxane concentration has been previously determined by NMR.
  • the silicon concentration in the copolymer can be measured in a short time by comparing with the X-ray intensity of the silicon atom obtained from the actual measurement sample.
  • the lower limit of quantification of the polyorganosiloxane content by fluorescent X-ray analysis is about 0.01 to 0.5% by mass. When the polyorganosiloxane content is 0.01% by mass or more, it can be preferably used as the measurement value of the production method of the present invention, assuming that the quantitative value obtained by fluorescent X-ray analysis is significant.
  • the production process (II) is an intermediate process when switching from the production process (I) to the production process (III), and the polyorganosiloxane content ratio is x ⁇ polyorganosiloxane content ratio ⁇ y. This is a process for producing a copolymer.
  • the polyorganosiloxane ratio is (i) x ⁇ polyorganosiloxane content ratio, and (ii) polyorganosiloxane content ratio ⁇ y
  • a polycarbonate-polyorganosiloxane copolymer in which the polyorganosiloxane content ratio is x ⁇ polyorganosiloxane content ratio ⁇ y is defined as “transition product”.
  • the addition of the polyorganosiloxane to the reaction system for polymerizing the dihydric phenol and the carbonate precursor in the production process (I) is started to produce a polycarbonate-polyorganosiloxane copolymer.
  • the polycarbonate oligomer obtained in the oligomer preparation step 1 the alkaline aqueous solution of dihydric phenol and the polyorganosiloxane to be added are introduced. It has a series of processes which manufacture polycarbonate resin similarly to manufacturing process (I) except adding a regulator, aqueous alkali solution, and a water-insoluble organic solvent, and making it react.
  • a polycarbonate-polyorganosiloxane copolymer can be produced by dephenolization and granulation.
  • the analyzer 11 confirms that the polyorganosiloxane content in the polycarbonate resin starts to increase (that is, (i) x ⁇ polyorganosiloxane content).
  • the analysis result is manually input to the control device 12 or automatically sent, and the control device 12 closes the open / close valve of the container a and opens the open / close valve of the container b.
  • the conventional method for analyzing the rising start point using the NMR method has the following problems. It is necessary to sample the polycarbonate-polyorganosiloxane copolymer obtained after pulverization / granulation, weigh an appropriate amount of this solid sample, dissolve it in a dedicated solvent, and then prepare a sample for measurement. Yes, it took about 3 hours until the measurement result was finally obtained.
  • the control device After confirming the increase in the polyorganosiloxane content based on the obtained measurement results, the control device closes the opening / closing valve of the container a, and opens the opening / closing valve of the container b, so that x ⁇ polyorganosiloxane content ratio. Even when siloxane was to be stored in the container b, there was a time lag from sampling to opening and closing of the on-off valve by the control device 12 based on the measured value, and the storage container could not be switched quickly.
  • the measurement can be performed in about one hour from the collection of the powder / granulated product until the measurement result is obtained. Therefore, compared with the NMR method which requires about 3 hours until the measurement result is obtained, there is an advantage that the introduction of the transferred product into the container a can be reduced by at least 2 hours.
  • the polyorganosiloxane content at the starting point of the rise is preferably 0.01% by mass to 0.5% by mass. Since it is included in the range of the lower limit of quantification of silicon atoms in the fluorescent X-ray analysis, the measured value becomes significant. Moreover, it is desirable that the time until the polyorganosiloxane content ratio increases from 0.01% by mass to 0.5% by mass is 1 hour or more. If the continuous production apparatus for polycarbonate resin is enlarged, the residence time (from the polyorganosiloxane addition position 234 in FIG. 1 to the powder collecting part (exit of the powdering step 26)) becomes longer, from 0.01% by mass to 0%. The time to increase to 5% by mass also becomes longer.
  • the polycarbonate-polyorganosiloxane copolymer is continuously recovered while the polyorganosiloxane content ratio is (ii) polyorganosiloxane content ratio ⁇ y. .
  • the polyorganosiloxane content ratio in (ii) is confirmed by near infrared spectroscopy or fluorescent X-ray analysis.
  • the fluorescent X-ray analysis method is as described above. Hereinafter, a case where measurement is performed by near infrared spectroscopy will be described in detail.
  • Measurement of polyorganosiloxane content in polycarbonate resin by near-infrared spectroscopy is done by installing a near-infrared analyzer in the vicinity of the 6 points of the powdering / granulating process. It can be performed by irradiating near infrared rays continuously or intermittently.
  • a scanning near-infrared spectroscopic analysis apparatus (hereinafter referred to as “scanning-type near-infrared spectroscopic analysis apparatus”), which is a combination of a near-infrared spectroscopic analysis apparatus and an apparatus that controls the spectroscopic analysis apparatus including data processing (Sometimes abbreviated as NIR meter), and commercially available products can be used.
  • the wavelength accuracy at the measurement wavelength of 800 to 2500 nm is good and the noise is small, for example, the measurement noise absorbance value is 2 ⁇ 10 ⁇ 5 or less, and the near infrared intensity (absorbance) continuously with the wavelength accuracy of 0.5 nm.
  • An interference filter type can also be used as the near-infrared spectroscopic analyzer.
  • an interference filter can be installed in the range of 800 to 2500 nm in front of the detector to obtain a spectral spectrum.
  • a calibration curve is prepared as follows. Using a sample whose polyorganosiloxane concentration was quantified by NMR before measurement, a near infrared spectrum was measured using a near infrared spectroscopic analyzer, and there were many differences in the measured points (1500 points) of each wavelength. A calibration curve is created by random analysis. Using this calibration curve, the polyorganosiloxane content can be easily measured from the actual sample spectrum. In the measured spectrum, it is necessary to exclude data of 5000 to 5500 cm ⁇ 1 that is affected by moisture.
  • the form of the polycarbonate resin measured by the near infrared spectroscopic analysis method may be either a powder form or a pellet form.
  • the powder or pellet (granulated product) can be measured on the stage of the near infrared analyzer as it is.
  • Transition products obtained in the recovery step (B) are polycarbonate resins having a content of a certain grade of polyorganosiloxane obtained in the recovery step (A) of less than x, and fixed grade polycarbonates obtained in the recovery step (C).
  • polyorganosiloxane there are some differences in properties and the like, but for example, it can be used in housing applications such as electronic equipment and OA equipment, and is suitable for use in the market.
  • a polyorganosiloxane is added to the reaction system for polymerizing the dihydric phenol and the carbonate precursor in the production step (I) to produce a polycarbonate-polyorganosiloxane copolymer.
  • the addition amount and the addition conditions are the same as those confirmed in the recovery step (B) when the polyorganosiloxane content is y.
  • the polymerization step 2 in the polymerization step 2, the polycarbonate oligomer obtained in the oligomer preparation step 1 described above, an alkaline aqueous solution of dihydric phenol and the polyorganosiloxane to be added are introduced, and a polymerization catalyst and molecular weight are added as necessary.
  • polycarbonate resin similarly to manufacturing process (I) except adding a regulator, aqueous alkali solution, and a water-insoluble organic solvent, and making it react.
  • a polymerization reaction by the transesterification method after adding a polyorganosiloxane to a reaction system for polymerizing a dihydric phenol and a carbonate precursor, and optionally copolymerizing in the presence of a catalyst to obtain a melt, A polycarbonate-polyorganosiloxane copolymer can be produced by dephenolization and granulation.
  • the analysis result is manually input to the control device 12 or automatically sent in the recovery step (C).
  • the control device 12 closes the opening / closing valve of the container b and opens the opening / closing valve of the container c.
  • a container-c is filled with a certain grade of polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y. Therefore, it is possible to obtain a polycarbonate-polyorganosiloxane copolymer obtained by the production process (III) with a certain quality.
  • Such a polycarbonate-polyorganosiloxane copolymer is excellent in impact resistance, chemical resistance, flame retardancy, and the like.
  • the polyorganosiloxane content ratio in the recovery step (C) can be confirmed by near infrared spectroscopy or fluorescent X-ray analysis.
  • the near-infrared spectroscopic analysis and the fluorescent X-ray analysis method are as described above.
  • the production method of the present invention performed in the order of (I) and (A) to (III) and (C) has been described in detail.
  • the production method of the present invention can further produce a polycarbonate resin in the order of (III) and (C) to (I) and (A) (in the reverse order of the production process). This is described below.
  • the control device 12 closes the open / close valve of the container c and opens the open / close valve of the container b (corresponding to the recovery step (B)). While the polyorganosiloxane content ratio is x ⁇ polyorganosiloxane content ratio ⁇ y, the transferred product is stored in the container b in the recovery step (B).
  • the analyzer (fluorescence X-ray analyzer) 11 confirmed that the polyorganosiloxane content in the polycarbonate resin was less than x, and the controller 12 then opened the on-off valve of the container b. Close and open the on-off valve of the container a (corresponding to the recovery step (A)).
  • the transition product until obtaining a certain grade of polycarbonate resin having a polyorganosiloxane content ratio of less than x can be efficiently recovered in the recovery step (B).
  • NIR spectroscopic analysis and X-ray fluorescence analysis enable rapid measurement, preventing transition products from being mixed into polycarbonate-polyorganosiloxane copolymers and polycarbonate resins with a polyorganosiloxane content of less than x. be able to.
  • the reaction between the dihydric phenol and the carbonate precursor is not particularly limited, and a known method can be adopted, and the reaction is preferably carried out by an interfacial polymerization method in the presence of a water-insoluble organic solvent. If necessary, the reaction can be carried out in the presence of a polymerization catalyst.
  • the dihydric phenol is used as an aqueous alkali solution of dihydric phenol in which dihydric phenol is dissolved in an aqueous solution of an alkali compound.
  • dihydric phenol As the dihydric phenol, it is preferable to use a dihydric phenol represented by the following general formula (1). In addition, it is preferable to similarly use the dihydric phenol represented by the following general formula (1) for the dihydric phenol used in the present invention regardless of whether or not it has (1) a PC oligomer preparation step.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-.
  • a and b are each independently an integer of 0 to 4.
  • Examples of the dihydric phenol represented by the general formula (1) include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane and 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) And cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone. It is done.
  • dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • bis (hydroxyphenyl) alkane is preferable as the dihydric phenol
  • bisphenol A is more preferable.
  • dihydric phenols other than bisphenol A include bis (hydroxyaryl) alkanes, bis (hydroxyaryl) cycloalkanes, dihydroxyaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, and dihydroxy. Examples include diphenyls, dihydroxydiarylfluorenes, dihydroxydiaryladamantanes and the like. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • bis (hydroxyaryl) alkanes examples include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxy Phenyl) naphthylmethane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy) -3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorofe) Le) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane.
  • Examples of bis (hydroxyaryl) cycloalkanes include 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 1,1-bis (4-hydroxyphenyl) cyclododecane and the like.
  • Examples of dihydroxyaryl ethers include 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether.
  • dihydroxydiaryl sulfides examples include 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, and the like.
  • dihydroxydiaryl sulfoxides examples include 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, and the like.
  • dihydroxydiaryl sulfones examples include 4,4'-dihydroxydiphenyl sulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone.
  • dihydroxydiphenyls examples include 4,4'-dihydroxydiphenyl.
  • dihydroxydiarylfluorenes include 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene.
  • dihydroxydiaryladamantanes examples include 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7- Examples thereof include dimethyladamantane.
  • dihydric phenols for example, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5 -Bis (4-hydroxyphenylthio) -2,3-dioxapentane and the like.
  • the carbonate precursor used in the present invention is not limited to the interfacial polymerization method, and examples thereof include carbonyl halide, carbonic acid diester, haloformate and the like. Specifically, phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like. Among these, phosgene used in the interfacial polymerization method is preferable.
  • aqueous alkali solution for dissolving the dihydric phenol those having an alkali concentration of 1 to 15% by mass are preferably used.
  • the amount of dihydric phenol in the alkaline aqueous solution is usually selected in the range of 0.5 to 20% by mass.
  • the alkaline aqueous solution include aqueous solutions of alkaline inorganic compounds such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide.
  • an aqueous solution of an alkali metal hydroxide is preferable, and an aqueous solution of sodium hydroxide is more preferable.
  • the water-insoluble organic solvent for example, halogenated hydrocarbons such as methylene chloride, chlorobenzene and chloroform are preferable, and methylene chloride is more preferable.
  • the amount of the water-insoluble organic solvent used is usually selected so that the volume ratio of the organic phase to the aqueous phase is preferably 5/1 to 1/7, more preferably 2/1 to 1/4. .
  • the reaction temperature in the oligomer preparation step (1) is usually selected in the range of 0 to 50 ° C., preferably 5 to 40 ° C.
  • Polymerization catalysts include tertiary amines and quaternary ammonium salts.
  • tertiary amine include trimethylamine, triethylamine, and tripropylamine.
  • quaternary ammonium salt include trimethylbenzylammonium chloride and triethylbenzylammonium chloride.
  • a tertiary amine is preferable, and triethylamine is more preferable.
  • a molecular weight regulator may be added as necessary.
  • the molecular weight regulator is not particularly limited as long as it is a monohydric phenol.
  • the obtained reaction product is a mixture containing an organic phase containing a polycarbonate oligomer and an aqueous phase containing impurities such as sodium chloride. Therefore, an organic phase containing a polycarbonate oligomer obtained by performing stationary separation or the like is used in the polymerization step (2).
  • the polycarbonate oligomer solution obtained by the polycarbonate oligomer preparation step (1) an alkaline aqueous solution of a dihydric phenol, A polyorganosiloxane solution diluted with a water-insoluble organic solvent, a water-insoluble organic solvent, and an aqueous alkaline compound solution are optionally mixed in the presence of a polymerization catalyst, usually at 0 to 80 ° C., preferably 5 to 40 ° C. Interfacial polymerization at a range of temperatures.
  • a molecular weight regulator and a catalyst can be used as needed.
  • the polymerization in the production step (I) can be performed in the same manner as in the production steps (II) and (III) except that the above polyorganosiloxane solution is not used.
  • Examples of the alkaline aqueous solution, the water-insoluble organic solvent, the polymerization catalyst, the aromatic dihydric phenol, and the molecular weight regulator in the polymerization step can include those described in the polycarbonate oligomer preparation step (1), and the preferred range is also included. It is the same.
  • the volume ratio of the organic phase to the aqueous phase in the interfacial polymerization is also the same as in the polycarbonate oligomer preparation step (1).
  • polyorganosiloxane those represented by the following general formulas (2) and (3) can be used.
  • R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 R 7 represents O—R 10 —O—, and R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group.
  • R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • R 9 represents a diarylene group.
  • R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group.
  • Z represents a hydrogen atom or a halogen atom.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid.
  • the sum of p and q is n, and n represents an average number of repetitions of 30 to 500. ]
  • Examples of the halogen atom independently represented by R 3 to R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkyl group independently represented by R 3 to R 6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched ones) And the same applies hereinafter), various pentyl groups, and various hexyl groups.
  • Examples of the alkoxy group independently represented by R 3 to R 6 include a case where the alkyl group moiety is the alkyl group.
  • Examples of the aryl group independently represented by R 3 to R 6 include a phenyl group and a naphthyl group.
  • R 3 to R 6 are each preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the polyorganosiloxanes represented by the general formulas (2) and (3) are preferably those in which R 3 to R 6 are all methyl groups.
  • R 7 O—R 10 —O— examples include an alkylene group having 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and examples of the cyclic alkylene group include Examples thereof include a cycloalkylene group having 5 to 15 carbon atoms, preferably 5 to 10 carbon atoms.
  • the aryl-substituted alkylene group represented by R 7 may have a substituent such as an alkoxy group or an alkyl group on the aromatic ring.
  • a substituent such as an alkoxy group or an alkyl group on the aromatic ring.
  • Specific examples of the structure include, for example, the following general formula (4) or ( The structure of 5) can be shown.
  • the alkylene group is couple
  • the diarylene group represented by R 7 , R 9 and R 10 is a group in which two arylene groups are linked directly or via a divalent organic group.
  • —Ar 1 —W— A group having a structure represented by Ar 2 —.
  • Ar 1 and Ar 2 represent an arylene group
  • W represents a single bond or a divalent organic group.
  • the divalent organic group represented by W is, for example, an isopropylidene group, a methylene group, a dimethylene group, or a trimethylene group.
  • Examples of the arylene group represented by R 7 , Ar 1, and Ar 2 include arylene groups having 6 to 14 ring carbon atoms such as a phenylene group, a naphthylene group, a biphenylene group, and an anthrylene group. These arylene groups may have an arbitrary substituent such as an alkoxy group or an alkyl group.
  • the alkyl group represented by R 8 is linear or branched having 1 to 8, preferably 1 to 5 carbon atoms.
  • Examples of the alkenyl group include straight or branched chain groups having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group include a phenylmethyl group and a phenylethyl group.
  • the linear, branched or cyclic alkylene group represented by R 10 is the same as R 7 .
  • Y is preferably —R 7 O—, wherein R 7 is an aryl-substituted alkylene group, particularly a residue of a phenolic compound having an alkyl group, and is an organic residue derived from allylphenol or eugenol. The organic residue derived from is more preferable.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid.
  • is represented by the following general formulas (3-1) to (3-5): And a divalent group represented.
  • Examples of the polyorganosiloxane represented by the general formula (2) include compounds represented by the following general formulas (2-1) to (2-11).
  • R 3 to R 6 , n and R 8 are as defined above, and preferred ones are also the same.
  • c represents a positive integer and is usually an integer of 1 to 6.
  • the phenol-modified polyorganosiloxane represented by the general formula (2-1) is preferable from the viewpoint of ease of polymerization.
  • ⁇ , ⁇ -bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-2), ⁇ , ⁇ -bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-3) is preferable.
  • the method for producing the crude polyorganosiloxane used in the present invention is not particularly limited.
  • cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize ⁇ , ⁇ -dihydrogenorganopentasiloxane, Phenol compounds having an unsaturated group in the ⁇ , ⁇ -dihydrogenorganopentasiloxane in the presence of a hydrosilylation catalyst (eg 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.), etc.
  • a crude polyorganosiloxane can be obtained by addition reaction.
  • octamethylcyclotetrasiloxane and tetramethyldisiloxane are reacted in the presence of sulfuric acid (acidic catalyst), and the resulting ⁇ , ⁇ -dihydrogenorgano is obtained.
  • a crude polyorganosiloxane can be obtained by subjecting polysiloxane to an addition reaction with a phenol compound having an unsaturated group in the presence of a hydrosilylation reaction catalyst.
  • the ⁇ , ⁇ -dihydrogenorganopolysiloxane can be used by appropriately adjusting the chain length n depending on the polymerization conditions, or a commercially available ⁇ , ⁇ -dihydrogenorganopolysiloxane may be used. .
  • a transition metal catalyst may be mentioned, and among them, a platinum catalyst is preferably used from the viewpoint of reaction rate and selectivity.
  • a platinum catalyst is preferably used from the viewpoint of reaction rate and selectivity.
  • Specific examples of the platinum-based catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, a complex of platinum and a vinyl group-containing siloxane, platinum-supported silica, platinum-supported activated carbon, and the like.
  • the transition metal derived from the transition metal catalyst used as the hydrosilylation reaction catalyst contained in the crude polyorganosiloxane is adsorbed on the adsorbent and removed. It is preferable to do.
  • the adsorbent for example, one having an average pore diameter of 1000 mm or less can be used. If the average pore diameter is 1000 mm or less, the transition metal in the crude polyorganosiloxane can be efficiently removed. From such a viewpoint, the average pore diameter of the adsorbent is preferably 500 mm or less, more preferably 200 mm or less, still more preferably 150 mm or less, and still more preferably 100 mm or less. From the same viewpoint, the adsorbent is preferably a porous adsorbent.
  • the adsorbent is not particularly limited as long as it has the above average pore diameter.
  • Cellulose and the like can be used, and at least one selected from the group consisting of activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica and silica-magnesia-based adsorbent is preferable.
  • the adsorbent can be separated from the polyorganosiloxane by any separation means.
  • means for separating the adsorbent from the polyorganosiloxane include a filter and centrifugal separation.
  • a filter such as a membrane filter, a sintered metal filter, or a glass fiber filter can be used, but it is particularly preferable to use a membrane filter.
  • the average particle diameter of the adsorbent is usually 1 ⁇ m to 4 mm, preferably 1 to 100 ⁇ m.
  • the amount used is not particularly limited.
  • An amount of the porous adsorbent in the range of preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the crude polyorganosiloxane can be used.
  • the crude polyorganosiloxane to be treated is not in a liquid state due to its high molecular weight, it may be heated to a temperature at which the polyorganosiloxane is in a liquid state when adsorbing with the adsorbent and separating the adsorbent. Good. Alternatively, it may be carried out by dissolving in a solvent such as methylene chloride or hexane.
  • a line mixer, a static mixer, an orifice mixer, a stirring tank, a multi-stage tower type stirring tank, a non-stirring tank, piping, and the like can be used as a reactor.
  • the number of reactors used in the copolymerization step (2) may be one or plural. That is, the copolymerization step (2) may be composed of a plurality of reactors.
  • it is preferable to use a reactor having a stirring function in the reactor it is preferable to use a line mixer, a static mixer, an orifice mixer, a stirring tank, or the like.
  • a line mixer, a static mixer, an orifice mixer, a stirring tank, a multistage tower type stirring tank, a non-stirring tank, piping, etc. can be used arbitrarily.
  • This step is a step of separating the polymerization liquid obtained in step (2) into an aqueous phase and a water-insoluble organic phase.
  • the resulting polymerization solution is appropriately diluted with an inert organic solvent such as methylene chloride.
  • the diluted solution is allowed to stand or centrifuged to separate the aqueous phase and the organic phase containing polycarbonate-polyorganosiloxane.
  • centrifugation there are no particular limitations on the centrifugation conditions, but it is usually preferable that the rotational speed be about 1,000 to 3,000 rpm.
  • the water-insoluble organic solvent phase is washed with an alkaline aqueous solution (hereinafter sometimes referred to as alkali washing).
  • alkali washing an alkaline aqueous solution
  • alkali washing examples include the same as those used in the step (1), and preferred ones are also the same.
  • After washing with alkali it is separated into an aqueous phase and an organic phase. Also in this case, there is no particular limitation on the separation method, and it may be stationary separation or centrifugation.
  • the amount of the aqueous alkaline solution used for washing is not particularly limited, but is preferably about 5 to 40% by volume, more preferably 5 to 30% by volume in the total liquid, from the viewpoint of the washing effect and reduction of the amount of wastewater generated. More preferably, it is 10 to 20% by volume. If it is 40 volume% or less, a continuous phase will not convert into a water phase from an organic phase, but the extraction efficiency from an organic phase can be maintained highly. Since the aqueous phase obtained in the step (3) contains a dihydric phenol or an alkaline compound, the aqueous phase is used in the step (1) or (2), particularly the step (1) from the viewpoint of production cost. It is preferable to reuse it.
  • washing step (4) the water-insoluble organic solvent phase separated in step (3) is washed with an acidic aqueous solution (hereinafter sometimes referred to as acid washing), and then the aqueous phase and water-insoluble.
  • acid washing an acidic aqueous solution
  • This is a step of separating into an organic solvent phase.
  • a polymerization catalyst and a trace amount of an alkaline compound that can be contained in the organic phase separated in the step (3) can be removed.
  • separate, and stationary separation may be sufficient.
  • Examples of the acid used for the preparation of the acidic aqueous solution include hydrochloric acid, phosphoric acid, and the like, and hydrochloric acid is preferable, but is not particularly limited thereto.
  • the organic phase obtained by the separation tends to contain the acid or inorganic substance used in the washing, it is preferably washed with water once or more (hereinafter sometimes referred to as water washing).
  • the cleanliness of the water-insoluble organic solvent phase can be evaluated by the electrical conductivity of the water phase after washing.
  • the target electric conductivity is preferably 1 mS / m or less, more preferably 0.5 mS / m or less. After washing with water, it is separated into an aqueous phase and a water-insoluble organic solvent phase.
  • aqueous phase (including the aqueous phase after washing with water) separated in step (4) may contain a polycarbonate-polyorganosiloxane copolymer, this is extracted with an organic solvent, and a part of the extract or It is preferable to reuse the whole for the step (1) or (2), particularly the step (1) after appropriately passing through a devolatilization step for removing carbon dioxide and a distillation purification step.
  • a devolatilization step the method described in JP-A-2005-60599 can be employed.
  • Step (5) Concentration step In this step, the organic phase obtained through step (4) is concentrated. In the subsequent step (6), it is concentrated to a concentration range suitable for pulverization / granulation, preferably 10 to 45% by mass.
  • the water-insoluble organic solvent removed in the concentration step (5) can be reused in the step (1) or (2), or the polycarbonate-polyorganosiloxane copolymer or the like can be recovered from the aqueous phase separated in the washing step. It is preferably reused as a solvent for extracting organic substances.
  • the production method of the present invention preferably includes a distillation purification step of a water-insoluble organic solvent, a devolatilization step for removing carbon dioxide in the water-insoluble organic solvent, and the like.
  • Powdering / granulating step The organic phase containing the polycarbonate-polyorganosiloxane copolymer concentrated in the concentrating step (5) is subjected to the kneader method, hot water granulation in the powdering / granulating step (6).
  • a powder (flakes) or a granulated product can be obtained by a known method such as a method or a powder bed granulation method. After pulverization / granulation, it is usually preferable to dry the powder (flake) or granulated product obtained at about 80 to 160 ° C. under reduced pressure.
  • a transition product (x ⁇ polyorganosiloxane) produced when switching from continuous production of polycarbonate having a polyorganosiloxane content of less than x to continuous production of a polycarbonate-polyorganosiloxane copolymer.
  • the present invention will be described more specifically with reference to the production line shown in FIG. 2 by way of examples. However, the present invention is not limited to these examples.
  • the viscosity number and the viscosity average molecular weight (Mv) were determined by the following methods.
  • Example 1 (Production process (I) ⁇ Production process (II) ⁇ Production process (III))
  • Bisphenol A sodium hydroxide aqueous solution and polycarbonate oligomer ⁇ Bisphenol A sodium hydroxide aqueous solution>
  • a bisphenol A dissolution tank 233 2,000 mass ppm sodium dithionite was added to a 5.6 mass% sodium hydroxide aqueous solution with respect to bisphenol A to be dissolved later.
  • bisphenol A as an aromatic dihydric phenol was dissolved so that the concentration in the aqueous solution was 13.5% by mass to prepare an aqueous sodium hydroxide solution of bisphenol A.
  • PTBP pt-butylphenol
  • CF chloroformate
  • the weight average molecular weight (Mw) was determined by using THF (tetrahydrofuran) as a developing solvent, GPC [column: TOSOH TSK-GEL MULTIPORE HXL-M (two) + Shodex KF801 (one), temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
  • the reactor 222 (Rx-1) was a mixer “Pipeline Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.) equipped with turbine blades and operated at a rotational speed of 4,400 rpm.
  • the reactor 223 (Rx-2) was a mixer “Pipeline Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.) equipped with turbine blades and operated at a rotational speed of 4,400 rpm.
  • the polymerization reaction liquid exiting the reactor 223 (Rx-2) is sequentially led to the reactor 224 (Rx-3) and the reactor 225 (Rx-4) to complete the polymerization reaction while controlling the temperature to 38 ° C. or lower. I let you.
  • the reactor 224 (Rx-3) is a reactor having an orifice plate and a cooling jacket
  • the reactor 225 (Rx-4) is a column type five-stage reactor having a cooling jacket.
  • This concentrated solution is put into a kneader, and solids obtained by evaporating methylene chloride as a solvent under reduced pressure and heating are pulverized to obtain white bisphenol A polycarbonate powder (a polycarbonate substantially free of polyorganosiloxane). Powder) was continuously obtained at 8 kg / hr (powdering step 26). The viscosity number and viscosity average molecular weight (Mv) of a polycarbonate resin substantially free of polyorganosiloxane produced continuously were measured. The results are shown in Table 2. This polycarbonate resin substantially free of polyorganosiloxane was continuously introduced into the container a (29) by controlling the opening / closing of the on-off valve by the control device.
  • Concentration of polyorganosiloxane is a calibration curve based on the X-ray intensity of silicon atoms measured with X-ray fluorescence analyzer 27 using a sample whose polyorganosiloxane concentration has been determined in advance by NMR. And it measured from the intensity
  • the polycarbonate powder obtained 4 hours after the start of the supply of polydimethylsiloxane was introduced into the container b (30) as a transition product. It was confirmed with a near-infrared spectroscopic analyzer that the polyorganosiloxane content increased with the aim of reaching 6.0% by mass of the set value.
  • the measured value by a near-infrared spectroscopy analyzer can obtain a measured value in about 5 minutes after extract
  • Example 2 (Production process (III) ⁇ Production process (II) ⁇ Production process (I)) A polycarbonate-polydimethylsiloxane copolymer was continuously produced using the production line shown in FIG. Specifically, it is as follows. (1) Sodium hydroxide aqueous solution of bisphenol A and polycarbonate oligomer An aqueous sodium hydroxide solution of bisphenol A was prepared in the same manner as in Example 1. The same polycarbonate oligomer as in Example 1 was used.
  • the polycarbonate powder obtained every 5 minutes was collected, and the polyorganosiloxane content ratio was measured using a near infrared spectroscopic analyzer.
  • the polyorganosiloxane concentration (polyorganosiloxane content ratio) is measured using an analyzer 27 (near infrared (NIR) spectrometer) using a sample whose polyorganosiloxane concentration is quantified in advance by NMR, The polyorganosiloxane concentration was calculated from the spectrum of the actual sample using a calibration curve prepared by multivariate analysis of the variation at each wavelength measurement point (1500 points).
  • Measurement wavelengths were 4000 to 5000 cm ⁇ 1 (2500 to 2000 nm) and 5500 to 10000 cm ⁇ 1 (1820 to 800 nm). Note that 5000 to 5500 cm ⁇ 1 was excluded because it was affected by moisture. Since it was confirmed that the polyorganosiloxane content in the polycarbonate powder measured 3 hours after the supply of polydimethylsiloxane was stopped was 5.8% by mass, the container that immediately received the powder was changed to container b (30). Three hours after the supply of polydimethylsiloxane was stopped, polycarbonate powder obtained every 30 minutes was collected, and the content of polyorganosiloxane was measured using a fluorescent X-ray apparatus.
  • a polycarbonate resin substantially free of polyorganosiloxane as a certain grade of copolymer component having a polyorganosiloxane content ratio of 0.03% by mass is hardly introduced into the transition product container b (30). a (29).
  • Example 1 (Production process (I) ⁇ Production process (II) ⁇ Production process (III))
  • the polyorganosiloxane content was measured by NMR, and the transition product was managed. In the NMR measurement, it takes 3 hours from taking the polycarbonate powder until the measured value is obtained. For example, even if the sample is taken at the starting point of the increase in the polycarbonate content, All the transition products produced in time will be introduced into the container a for polycarbonate resin substantially free of polyorganosiloxane.
  • Example 2 (Production process (III) ⁇ Production process (II) ⁇ Production process (I))
  • the polyorganosiloxane content was measured by NMR and the transition product was managed. In the NMR measurement, it takes 3 hours from taking the polycarbonate-polyorganosiloxane powder until the measured value is obtained. For example, even if the sample is taken at the starting point of the descent and the analysis result is obtained, the 3 All transition products produced over time will be introduced into the container c (31) for polycarbonate-polyorganosiloxane.
  • the polycarbonate powder can be collected when the polyorganosiloxane content is 0.03% by mass, it takes 3 hours until the measured value is obtained.
  • the polycarbonate resin which does not substantially contain is to be introduced into the transition product container b (30), leading to a decrease in the production amount of the polycarbonate resin which does not substantially contain a certain grade of polyorganosiloxane. It was confirmed.
  • a transition product (x ⁇ polyorganosiloxane ratio ⁇ y) produced when switching from continuous production of polycarbonate having a polyorganosiloxane content of less than x to continuous production of a polycarbonate-polyorganosiloxane copolymer. ) Is confirmed using a fluorescent X-ray apparatus or a near-infrared spectroscopic analyzer, so that the transferred product can be efficiently recovered.
  • a fluorescent X-ray apparatus or a near-infrared spectroscopic analyzer so that the transferred product can be efficiently recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is a production method for a polycarbonate resin in which the following are continuously performed either in the order (I) and (A) to (III) and (C) or in the order (III) and (C) to (I) and (A): a production step (I) in which a polycarbonate resin that has a polyorganosiloxane content that is less than (x) is produced and a recovery step (A) in which the polycarbonate resin that is obtained by the production step (I) is recovered; a production step (II) in which a polycarbonate-polyorganosiloxane copolymer that has a polyorganosiloxane content that satisfies x ≤ polyorganosiloxane content < y is produced and a recovery step (B) in which the polycarbonate-polyorganosiloxane copolymer that is obtained by the production step (II) is recovered; and a production step (III) in which a polycarbonate-polyorganosiloxane copolymer that has a polyorganosiloxane content of (y) is produced and a recovery step (C) in which the polycarbonate-polyorganosiloxane copolymer that is obtained by the production step (III) is recovered.

Description

ポリカーボネート樹脂の製造方法Method for producing polycarbonate resin
 本発明は、ポリカーボネート樹脂の製造方法に関する。 The present invention relates to a method for producing a polycarbonate resin.
 原料の二価フェノールとして2,2-ビス(4-ヒドロキシフェニル)プロパン[通称:ビスフェノールA]を用いた共重合成分として実質的にポリオルガノシロキサンを含まないポリカーボネート樹脂が一般的に使用されている。このポリカーボネート樹脂の難燃性や耐衝撃性等の物性を改良するために、共重合成分としてポリオルガノシロキサンを共重合させたポリカーボネート-ポリオルガノシロキサン共重合体が知られている(特許文献1及び2参照)。
 ポリカーボネート-ポリオルガノシロキサン共重合体は、その高い耐衝撃性、耐薬品性、及び難燃性等の優れた性質から注目されており、電気・電子機器分野、自動車分野等の様々な分野における幅広い利用が期待されている。特に、携帯電話、モバイルパソコン、デジタルカメラ、ビデオカメラ、電動工具などの筐体、及びその他の日用品への利用が広がっている。
 上記ポリカーボネート樹脂に代表されるポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂及びポリカーボネート-ポリオルガノシロキサン共重合体を例えば界面重合方法で製造する場合、バッチ式でなく連続式を採用して製造すると品質を一定とすることができ、かつ生産効率にも優れる。従って、ポリカーボネート樹脂は連続式で製造されることが好ましい。
 連続式による製造の場合には、二価フェノールとして例えばビスフェノールAのみを使用したポリカーボネート樹脂を製造した後、同一の製造ラインを用いてポリオルガノシロキサンを供給することによりポリカーボネート-ポリオルガノシロキサン共重合体を連続して製造する。
 また、連続式によりポリカーボネート-ポリオルガノシロキサン共重合体を製造した後、ポリオルガノシロキサンの供給を停止することにより、再び共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を連続して製造することができる。このように、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂またはポリカーボネート-ポリオルガノシロキサン共重合体を連続して製造する系へのポリオルガノシロキサンの供給を開始または停止することにより、所望のポリカーボネート樹脂を連続して製造することが行われている。
 なお、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂及びポリカーボネート-ポリオルガノシロキサン共重合体の総称として、ポリカーボネート樹脂という用語を本発明においては用いるものとする。
A polycarbonate resin substantially free of polyorganosiloxane is generally used as a copolymerization component using 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] as a dihydric phenol as a raw material. . In order to improve the physical properties such as flame retardancy and impact resistance of this polycarbonate resin, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane as a copolymerization component is known (Patent Document 1 and 2).
Polycarbonate-polyorganosiloxane copolymers are attracting attention because of their high impact resistance, chemical resistance, and flame retardancy, and are widely used in various fields such as the electrical / electronic equipment field and the automobile field. Use is expected. In particular, the use of portable telephones, mobile personal computers, digital cameras, video cameras, power tools and other housings, and other daily necessities is expanding.
When a polycarbonate resin and a polycarbonate-polyorganosiloxane copolymer substantially free of polyorganosiloxane represented by the above polycarbonate resin are produced by, for example, an interfacial polymerization method, the quality is obtained by adopting a continuous type instead of a batch type. Can be made constant, and the production efficiency is also excellent. Therefore, it is preferable that the polycarbonate resin is produced in a continuous manner.
In the case of continuous production, a polycarbonate-polyorganosiloxane copolymer is prepared by producing a polycarbonate resin using, for example, only bisphenol A as a dihydric phenol and then supplying polyorganosiloxane using the same production line. Are manufactured continuously.
In addition, after the polycarbonate-polyorganosiloxane copolymer is produced by a continuous method, the supply of the polyorganosiloxane is stopped, so that a polycarbonate resin substantially free of polyorganosiloxane is continuously produced again as a copolymer component. can do. In this way, by starting or stopping the supply of polyorganosiloxane to a system for continuously producing a polycarbonate resin or a polycarbonate-polyorganosiloxane copolymer substantially free of polyorganosiloxane as a copolymerization component, A desired polycarbonate resin is continuously produced.
The term polycarbonate resin is used in the present invention as a general term for polycarbonate resins and polycarbonate-polyorganosiloxane copolymers that are substantially free of polyorganosiloxane as a copolymer component.
 しかしながら、ポリカーボネート-ポリオルガノシロキサン共重合体を連続式により製造する場合に以下の問題点が存在する。すなわち、例えば、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を連続して製造する系へのポリオルガノシロキサンの供給を開始しても、共重合体中のポリオルガノシロキサンの含有割合が設定された値に到達し回収されるまで時間を要する。そのため、製造初期は共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネートやポリオルガノシロキサン量が設定値に満たない共重合体のみが製造/回収される。ポリオルガノシロキサンの添加に伴いポリカーボネート樹脂中のポリオルガノシロキサン含有割合が上昇した後、設定値のポリオルガノシロキサン含有割合を有するポリカーボネート-ポリオルガノシロキサン共重合体が製造される。逆に、ポリカーボネート-ポリオルガノシロキサン共重合体を連続製造した後、ポリオルガノシロキサンの供給を停止することにより、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネートを製造する場合には以下の問題を有する。すなわち、ポリオルガノシロキサンの供給を停止してもポリカーボネート樹脂中のポリオルガノシロキサンの含有割合が一定値未満となるまで時間を要し、しばらくは設定値のポリオルガノシロキサン含有割合を有するポリカーボネート-ポリオルガノシロキサン共重合体が得られることとなる。その後、ポリカーボネート樹脂中のポリオルガノシロキサン含有割合が低下し始め、ポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を製造/回収することができる。 However, the following problems exist when the polycarbonate-polyorganosiloxane copolymer is produced in a continuous manner. That is, for example, even if the supply of polyorganosiloxane to a system for continuously producing a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component is started, the content of polyorganosiloxane in the copolymer It takes time to reach the set value and be recovered. Therefore, at the initial stage of production, only a polycarbonate which does not substantially contain polyorganosiloxane as a copolymerization component or a copolymer whose polyorganosiloxane amount is less than the set value is produced / recovered. After the polyorganosiloxane content in the polycarbonate resin increases with the addition of the polyorganosiloxane, a polycarbonate-polyorganosiloxane copolymer having a set polyorganosiloxane content is produced. Conversely, when a polycarbonate substantially free of polyorganosiloxane as a copolymerization component is produced by continuously producing a polycarbonate-polyorganosiloxane copolymer and then stopping the supply of polyorganosiloxane, the following is performed. Have a problem. That is, even if the supply of the polyorganosiloxane is stopped, it takes time until the polyorganosiloxane content in the polycarbonate resin becomes less than a certain value, and for a while, the polycarbonate-polyorgano having the set polyorganosiloxane content A siloxane copolymer will be obtained. Thereafter, the polyorganosiloxane content in the polycarbonate resin starts to decrease, and a polycarbonate resin substantially free of polyorganosiloxane can be produced / recovered.
 ポリカーボネート-ポリオルガノシロキサン共重合体製造初期のポリオルガノシロキサン含有割合が設定値に到達するまでの間に製造/回収されたポリカーボネート-ポリオルガノシロキサン共重合体は移行品として扱い、移行品だけを別の容器に導入して管理する必要がある。同様に、ポリオルガノシロキサンの供給停止を伴うポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂の製造初期において、ポリカーボネート樹脂がポリオルガノシロキサンを実質的に含まなくなるまでの間に製造/回収されたポリカーボネート樹脂は、移行品として別の容器に導入して管理する必要がある。 Polycarbonate-polyorganosiloxane copolymer produced / recovered before the polyorganosiloxane content in the initial stage of polycarbonate-polyorganosiloxane production reaches the set value is treated as a transition product. Need to be introduced and managed. Similarly, a polycarbonate resin produced / recovered in the initial stage of production of a polycarbonate resin substantially free of polyorganosiloxane accompanied by a supply stop of polyorganosiloxane until the polycarbonate resin is substantially free of polyorganosiloxane. Must be introduced and managed in a separate container as a transitional product.
 従来、ポリカーボネート樹脂中のポリオルガノシロキサンの含有割合を測定するために、一般にNMR法が用いられていた。しかしながら、ポリオルガノシロキサンの含有割合を測定するに当たり、粉末化/造粒後に得られたポリカーボネート樹脂をNMR法で測定する場合、煩雑な前処理が必要となる。そのため、測定値が得られるまでに3時間程度の時間を要する。ポリオルガノシロキサンの供給を開始した後のポリカーボネート樹脂中のポリオルガノシロキサン含有割合の上昇開始点にてサンプリングして移行品(すなわち、ポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂の一定グレードから外れる製品)を分別しようとしても、測定結果が得られるまで3時間を要する。従って、別容器に分別すべき移行品が分別されることなく、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂の製造容器に混入する問題があった。さらに、ポリオルガノシロキサン含有割合が設定値に到達した時点でサンプリングした場合にも、NMR法による測定結果は3時間後に得られるために、設定値のポリオルガノシロキサン含有割合を有するポリカーボネート-ポリオルガノシロキサン共重合体が移行品用の容器に導入されてしまい移行品として扱われてしまうという問題が発生していた。 Conventionally, in order to measure the content of polyorganosiloxane in a polycarbonate resin, an NMR method has been generally used. However, when measuring the content ratio of the polyorganosiloxane, a complicated pretreatment is required when the polycarbonate resin obtained after pulverization / granulation is measured by the NMR method. Therefore, it takes about 3 hours to obtain the measured value. Sampling at the beginning of the increase in the polyorganosiloxane content in the polycarbonate resin after the supply of the polyorganosiloxane is started, that is, a transition product (that is, a product deviating from a certain grade of polycarbonate resin substantially free of polyorganosiloxane) ), It takes 3 hours until the measurement result is obtained. Therefore, there is a problem that a transition product to be separated into a separate container is not separated and mixed into a polycarbonate resin production container substantially free of polyorganosiloxane as a copolymerization component. Further, even when sampling is performed when the polyorganosiloxane content reaches the set value, the measurement result by the NMR method is obtained after 3 hours, so that the polycarbonate-polyorganosiloxane having the set polyorganosiloxane content is obtained. There has been a problem that the copolymer is introduced into the container for the transitional product and handled as the transitional product.
 同様に、ポリオルガノシロキサンの供給を停止し、ポリカーボネート樹脂中のポリオルガノシロキサン含有割合の下降開始点でサンプリングしても、3時間後に分析結果がでるために、別容器に分別すべき移行品(すなわち、目的のポリカーボネート-ポリオルガノシロキサン共重合体の一定グレードから外れる製品)が分別されることなくポリカーボネート-ポリオルガノシロキサン共重合体の製造容器に混入する問題があった。また、ポリオルガノシロキサンを実質的に含まなくなる地点でサンプリングしても、分析結果を得るまで時間を要するため、ポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を移行品用の容器に導入してしまう問題があった。
 以上のように、NMR法によるポリオルガノシロキサンの含有割合の測定では、移行品の管理を十分に行うことができず、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂やポリカーボネート-ポリオルガノシロキサン共重合体の品質や生産量に悪影響を与えていた。
Similarly, even if the supply of polyorganosiloxane is stopped and sampling is performed at the starting point of the decrease in the content of polyorganosiloxane in the polycarbonate resin, an analysis result is obtained after 3 hours. That is, there is a problem that the product of the target polycarbonate-polyorganosiloxane copolymer deviating from a certain grade is mixed into the polycarbonate-polyorganosiloxane copolymer production container without being separated. In addition, even if sampling is performed at a point where polyorganosiloxane is not substantially contained, it takes time to obtain an analysis result, and therefore, a polycarbonate resin substantially free of polyorganosiloxane is introduced into the container for the transition product. There was a problem.
As described above, in the measurement of the content ratio of polyorganosiloxane by NMR method, it is not possible to sufficiently manage the transferred product, and polycarbonate resin or polycarbonate-polycarbonate which does not substantially contain polyorganosiloxane as a copolymerization component. The quality and production amount of the organosiloxane copolymer were adversely affected.
特許第2662310号公報Japanese Patent No. 2662310 特開2011-21127号公報JP 2011-21127 A
 本発明は、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を連続して製造する工程とポリカーボネート-ポリオルガノシロキサン共重合体を連続して製造する工程との切り替え時に生じる移行品を効率よく回収することを目的とする。移行品を効率よく回収することにより、一定グレード(一定品質)の共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂やポリカーボネート-ポリオルガノシロキサン共重合体も品質よく得ることができる。 The present invention relates to a transition product produced at the time of switching between a step of continuously producing a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component and a step of continuously producing a polycarbonate-polyorganosiloxane copolymer. The purpose is to recover efficiently. By efficiently recovering the transition product, a polycarbonate resin or a polycarbonate-polyorganosiloxane copolymer substantially free of polyorganosiloxane as a copolymer component of a certain grade (constant quality) can be obtained with good quality.
 本発明者らは、従来のNMR法に代えて近赤外分光分析法及び蛍光X線分析法を用いてポリカーボネート樹脂中のポリオルガノシロキサン含有割合を監視することにより、一定グレードの製品と移行品とを効率よく回収することができることを見出した。
 すなわち本発明は以下を含むものである。
1.ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を製造する製造工程(I)及び該製造工程(I)により得られるポリカーボネート樹脂を回収する回収工程(A)、
 ポリオルガノシロキサンの含有割合がx≦ポリオルガノシロキサン含有割合<yであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する製造工程(II)及び該製造工程(II)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を回収する回収工程(B)、
 ポリオルガノシロキサンの含有割合がyであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する製造工程(III)及び該製造工程(III)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を回収する回収工程(C)
を(I)及び(A)~(III)及び(C)の順に、または(III)及び(C)~(I)及び(A)の順に連続的に有するポリカーボネート樹脂の製造方法において、ここで
 前記回収工程(A)においては、前記ポリオルガノシロキサンの含有割合がx未満であることを蛍光X線分析法により確認しながらポリカーボネート樹脂を回収し、
 前記回収工程(B)においては、前記ポリオルガノシロキサン含有割合が(i)x≦ポリオルガノシロキサン含有割合であることを蛍光X線分析法により確認し、及び(ii)ポリオルガノシロキサン含有割合<yであることを近赤外分光分析法または蛍光X線分析法により確認しながらポリカーボネート-ポリオルガノシロキサン共重合体を回収し(但し、(i)の範囲と(ii)の範囲とは重複しない)、
 前記回収工程(C)においては、ポリオルガノシロキサンの含有割合がyであることを近赤外分光分析法または蛍光X線分析法により確認しながらポリカーボネート-ポリオルガノシロキサン共重合体を回収する、
ポリカーボネート樹脂の製造方法。
2.前記ポリオルガノシロキサン含有割合xが0.01~0.5質量%である、1に記載のポリカーボネート樹脂の製造方法。
3.蛍光X線分析法による確認に供する前記ポリカーボネート-ポリオルガノシロキサン共重合体及び/またはポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂の形態が粉末状、ペレット状、シート状またはフィルム状である、1または2に記載のポリカーボネート樹脂の製造方法。
4.前記ポリカーボネート-ポリオルガノシロキサン共重合体及び/またはポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂の形態がシート状またはフィルム状である、3に記載のポリカーボネート樹脂の製造方法。
5.近赤外分光分析法による確認に供する前記ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂及び/またはポリカーボネート-ポリオルガノシロキサン共重合体の形態が粉末状またはペレット状である、1または2に記載のポリカーボネート樹脂の製造方法。
6.前記製造工程(I)においては二価フェノールとカーボネート前駆体とを重合させることによりポリカーボネート樹脂を製造し、前記製造工程(II)及び(III)においては前記二価フェノールとカーボネート前駆体とを重合させる反応系にポリオルガノシロキサンを添加して共重合させることによりポリカーボネート-ポリオルガノシロキサン共重合体を製造する、1~5のいずれかに記載のポリカーボネート樹脂の製造方法。
7.前記製造工程(I)~(III)において、ポリカーボネートオリゴマーを調製した後に重合を行う、6に記載のポリカーボネート樹脂の製造方法。
8.前記カーボネート前駆体がホスゲンである、6または7に記載のポリカーボネート樹脂の製造方法。
9.前記二価フェノールが、下記一般式(1)で表される、6~8のいずれかに記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000003

[式中、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-、または-CO-を示す。a及びbは、それぞれ独立に0~4の整数である。]
10.前記ポリオルガノシロキサンが、下記一般式(2)または(3)で表されるポリオルガノシロキサンである、6~9のいずれかに記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000004

[式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Yは-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-を示す。前記Rは、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。Rは、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。Rは、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqの和はnであり、nは30~500の平均繰り返し数を示す。]
11.1~10のいずれかに記載の方法により製造されるポリカーボネート樹脂。
By monitoring the polyorganosiloxane content in the polycarbonate resin using near-infrared spectroscopy and fluorescent X-ray analysis instead of the conventional NMR method, the present inventors have made certain grade products and transitional products. It was found that can be efficiently recovered.
That is, the present invention includes the following.
1. A production step (I) for producing a polycarbonate resin having a polyorganosiloxane content of less than x, and a recovery step (A) for collecting the polycarbonate resin obtained by the production step (I),
Production process (II) for producing a polycarbonate-polyorganosiloxane copolymer in which the polyorganosiloxane content ratio is x ≦ polyorganosiloxane content ratio <y, and the polycarbonate-polyorganosiloxane copolymer obtained by the production process (II). A recovery step (B) for recovering the polymer;
Production process (III) for producing a polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y, and a recovery process for collecting the polycarbonate-polyorganosiloxane copolymer obtained by the production process (III) ( C)
In the process for producing a polycarbonate resin, wherein (I) and (A) to (III) and (C) or in the order of (III) and (C) to (I) and (A), In the recovery step (A), the polycarbonate resin is recovered while confirming by X-ray fluorescence analysis that the content ratio of the polyorganosiloxane is less than x.
In the recovery step (B), it is confirmed by fluorescent X-ray analysis that the polyorganosiloxane content ratio is (i) x ≦ polyorganosiloxane content ratio, and (ii) polyorganosiloxane content ratio <y The polycarbonate-polyorganosiloxane copolymer is recovered while confirming that it is near infrared spectroscopy or fluorescent X-ray analysis (however, the range of (i) and the range of (ii) do not overlap) ,
In the recovery step (C), the polycarbonate-polyorganosiloxane copolymer is recovered while confirming that the polyorganosiloxane content is y by near infrared spectroscopy or fluorescent X-ray analysis.
A method for producing a polycarbonate resin.
2. 2. The method for producing a polycarbonate resin according to 1, wherein the polyorganosiloxane content x is 0.01 to 0.5 mass%.
3. The polycarbonate-polyorganosiloxane copolymer and / or the polycarbonate resin in which the content ratio of the polyorganosiloxane used for confirmation by X-ray fluorescence analysis is less than x is in the form of powder, pellet, sheet or film. 3. A method for producing a polycarbonate resin according to 1 or 2.
4). 4. The method for producing a polycarbonate resin according to 3, wherein the polycarbonate resin in which the content ratio of the polycarbonate-polyorganosiloxane copolymer and / or polyorganosiloxane is less than x is a sheet or film.
5. The form of the polycarbonate resin and / or the polycarbonate-polyorganosiloxane copolymer in which the content ratio of the polyorganosiloxane used for confirmation by near-infrared spectroscopy is less than x is powder or pellets, 1 or 2 The manufacturing method of polycarbonate resin of description.
6). In the production step (I), a polycarbonate resin is produced by polymerizing a dihydric phenol and a carbonate precursor, and in the production steps (II) and (III), the dihydric phenol and a carbonate precursor are polymerized. 6. The method for producing a polycarbonate resin according to any one of 1 to 5, wherein a polyorganosiloxane is added to the reaction system to be copolymerized to produce a polycarbonate-polyorganosiloxane copolymer.
7). 7. The method for producing a polycarbonate resin according to 6, wherein in the production steps (I) to (III), polymerization is performed after preparing a polycarbonate oligomer.
8). The method for producing a polycarbonate resin according to 6 or 7, wherein the carbonate precursor is phosgene.
9. The method for producing a polycarbonate resin according to any one of 6 to 8, wherein the dihydric phenol is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003

[Wherein, R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-. a and b are each independently an integer of 0 to 4. ]
10. 10. The method for producing a polycarbonate resin according to any one of 6 to 9, wherein the polyorganosiloxane is a polyorganosiloxane represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000004

[Wherein R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O— is shown. R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group. R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 9 represents a diarylene group. R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. The sum of p and q is n, and n represents an average number of repetitions of 30 to 500. ]
11. A polycarbonate resin produced by the method according to any one of 11.1 to 10.
 本発明の製造方法によれば、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂の連続製造と、ポリカーボネート-ポリオルガノシロキサン共重合体の連続製造とを交互に切り替える際に生じる移行品(x≦ポリオルガノシロキサン割合<y)の存在を蛍光X線装置又は近赤外分光分析装置を用いて確認することにより、移行品を効率よく回収することができる。移行品を効率よく回収することにより、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂やポリカーボネート-ポリオルガノシロキサン共重合体を一定品質で効率よく得ることができる。 According to the production method of the present invention, a transition product produced when the continuous production of a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component and the continuous production of a polycarbonate-polyorganosiloxane copolymer are alternately switched. By confirming the presence of (x ≦ polyorganosiloxane ratio <y) using a fluorescent X-ray apparatus or a near-infrared spectroscopic analyzer, the transition product can be efficiently recovered. By efficiently recovering the transition product, it is possible to efficiently obtain a polycarbonate resin or a polycarbonate-polyorganosiloxane copolymer substantially free of polyorganosiloxane as a copolymerization component with a certain quality.
界面重合法により本発明の製造方法によりポリカーボネート樹脂を製造する製造ラインの一態様を示す概略図である。It is the schematic which shows the one aspect | mode of the manufacturing line which manufactures polycarbonate resin by the manufacturing method of this invention by the interfacial polymerization method. 本発明の実施例におけるポリカーボネート樹脂の製造ラインの一態様を示す概略図である。It is the schematic which shows the one aspect | mode of the production line of polycarbonate resin in the Example of this invention.
 本発明において、共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂とは、ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を指すものとして定義する。
以下、本発明のポリカーボネート樹脂の製造方法について図1を参照しながら詳述する。
 ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を製造する製造工程(I)及び該製造工程(I)により得られるポリカーボネート樹脂を回収する回収工程(A)、ポリオルガノシロキサンの含有割合がx≦ポリオルガノシロキサン含有割合<yであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する製造工程(II)及び該製造工程(II)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を回収する回収工程(B)、ポリオルガノシロキサンの含有割合がyであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する製造工程(III)及び該製造工程(III)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を回収する回収工程(C)を(I)及び(A)~(III)及び(C)の順に、または(III)及び(C)~(I)及び(A)の順に連続的に有するポリカーボネート樹脂の製造方法において、ここで
 前記回収工程(A)においては、前記ポリオルガノシロキサンの含有割合がx未満であることを蛍光X線分析法により確認しながらポリカーボネート樹脂を回収し、
 前記回収工程(B)においては、(i)x≦ポリオルガノシロキサン含有割合となることを蛍光X線分析法により確認し、(ii)ポリオルガノシロキサン含有割合<yとなるポリオルガノシロキサン含有割合を近赤外分光分析法または蛍光X線分析法により確認しながらポリカーボネート-ポリオルガノシロキサン共重合体を回収し(但し、(i)の範囲と(ii)の範囲とは重複しない)、
 前記回収工程(C)においては、ポリオルガノシロキサンの含有割合がyであることを近赤外分光分析法または蛍光X線分析法により確認しながらポリカーボネート-ポリオルガノシロキサン共重合体を回収することを特徴とする。
In the present invention, a polycarbonate resin substantially free of polyorganosiloxane as a copolymerization component is defined as a polycarbonate resin having a polyorganosiloxane content of less than x.
Hereinafter, the manufacturing method of the polycarbonate resin of the present invention will be described in detail with reference to FIG.
A production step (I) for producing a polycarbonate resin having a polyorganosiloxane content of less than x, a recovery step (A) for collecting the polycarbonate resin obtained by the production step (I), and a polyorganosiloxane content of x ≦ Production process (II) for producing a polycarbonate-polyorganosiloxane copolymer in which polyorganosiloxane content ratio <y, and a recovery process for collecting the polycarbonate-polyorganosiloxane copolymer obtained by the production process (II) ( B), a production process (III) for producing a polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y, and a polycarbonate-polyorganosiloxane copolymer obtained by the production process (III) is recovered. The recovery step (C) is (I And (A) to (III) and (C) in the order, or (III) and (C) to (I) and (A) in the order of the polycarbonate resin production method, In A), the polycarbonate resin is recovered while confirming by X-ray fluorescence analysis that the polyorganosiloxane content is less than x.
In the recovery step (B), (i) x ≦ polyorganosiloxane content ratio is confirmed by fluorescent X-ray analysis, and (ii) polyorganosiloxane content ratio <y. The polycarbonate-polyorganosiloxane copolymer is recovered while being confirmed by near-infrared spectroscopy or fluorescent X-ray analysis (however, the range of (i) does not overlap with the range of (ii))
In the recovery step (C), the polycarbonate-polyorganosiloxane copolymer is recovered while confirming that the polyorganosiloxane content is y by near infrared spectroscopy or fluorescent X-ray analysis. Features.
<製造工程(I)及び回収工程(A)>
 製造工程(I)は、ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を製造する工程である。また、回収工程(A)は、ポリオルガノシロキサンの含有割合がx未満であることを蛍光X線分析法により確認しながらポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を回収する工程である。
 ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を製造する製造工程(I)の製造は、界面重合方法(ホスゲン法)、エステル交換法(溶融法)等により行うことができる。特に界面重合法の場合には、後述するポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を含む有機相と未反応物や触媒残渣等を含む水相との分離、及びアルカリ洗浄、酸洗浄、純水洗浄による各洗浄工程における該ポリカーボネート樹脂を含む有機相と水相との分離が容易であり、効率よく該ポリカーボネート樹脂を得ることができる。
<Manufacturing process (I) and recovery process (A)>
The production process (I) is a process for producing a polycarbonate resin having a polyorganosiloxane content of less than x. The recovery step (A) is a step of recovering a polycarbonate resin having a polyorganosiloxane content ratio of less than x while confirming that the polyorganosiloxane content ratio is less than x by fluorescent X-ray analysis. .
The production step (I) for producing a polycarbonate resin having a polyorganosiloxane content of less than x can be produced by an interfacial polymerization method (phosgene method), a transesterification method (melting method), or the like. Especially in the case of the interfacial polymerization method, separation between an organic phase containing a polycarbonate resin whose polyorganosiloxane content, which will be described later, is less than x, and an aqueous phase containing unreacted substances, catalyst residues, etc., and alkali washing and acid washing In addition, it is easy to separate the organic phase containing the polycarbonate resin and the aqueous phase in each washing step by pure water washing, and the polycarbonate resin can be obtained efficiently.
 以下、界面重合法によりポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を製造する場合を例に詳述する。
 図1に示すように、製造工程(I)は一般的に、二価フェノール、ここではビスフェノールAをアルカリ水溶液に溶解させたビスフェノールA溶解槽111からのビスフェノールAと、カーボネート前駆体(図中ホスゲンで示す)と、必要に応じてp-t-ブチルフェノール等の分子量調節剤(図中、PTBPで示す)とを有機溶媒中で反応させるオリゴマー調製工程1、ポリカーボネートオリゴマーと、二価フェノールのアルカリ水溶液とを導入し、必要に応じて重合触媒、分子量調節剤、アルカリ水溶液及び非水溶性有機溶媒を加えて反応させる重合工程2、ポリカーボネート樹脂を含む有機相と過剰の二価フェノール等を含む水相とを分離する分離工程3、得られた有機相を洗浄する洗浄工程4、洗浄後の有機相を濃縮する濃縮工程5、濃縮物を粉末化または造粒する粉末化/造粒工程6を有する。粉末化/造粒工程6により得られる粉末または造粒物を回収工程(A)において回収する。
 回収工程(A)とは、図1において、粉末化/造粒工程後に得られる製品の一部を採取した後に分析装置11によりポリオルガノシロキサン含有割合を測定し、この測定データを上記制御装置12に手動で入力するか又は自動的に送り制御装置12を自動制御し、容器aの開閉弁を開けて移送ライン7により移送されるポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を容器aに貯蔵するまでを示すものとする。制御装置12としては、容器の開閉弁の開閉を制御することができるものであれば任意のものを用いることができる。
 回収工程(A)においては、粉末化/造粒工程6により得られる粉末または造粒物の一部を採取し、そのポリオルガノシロキサン含有割合がx未満であることを確認し、回収することを特徴としている。従って、製造工程(I)により得られる共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を一定品質で得ることが可能である。このようなポリカーボネート樹脂は透明性、機械的性質、熱的性質、電気的性質及び耐候性等に優れ、例えば、導光板、レンズ、光ファイバー等の光学成形品用途に使用可能である。
Hereinafter, a case where a polycarbonate resin having a polyorganosiloxane content of less than x is produced by an interfacial polymerization method will be described in detail.
As shown in FIG. 1, the production step (I) generally involves dihydric phenol, here bisphenol A from a bisphenol A dissolution tank 111 in which bisphenol A is dissolved in an alkaline aqueous solution, and a carbonate precursor (phosgene in the figure). And a molecular weight regulator such as pt-butylphenol (shown as PTBP in the figure) in an organic solvent as necessary, an oligomer preparation step 1, a polycarbonate oligomer, and an aqueous alkaline solution of dihydric phenol A polymerization step 2 in which a polymerization catalyst, a molecular weight regulator, an alkaline aqueous solution and a water-insoluble organic solvent are added and reacted as necessary, an aqueous phase containing an organic phase containing a polycarbonate resin and excess dihydric phenol, etc. Separation step 3 for separating the organic phase, washing step 4 for washing the obtained organic phase, concentration step 5 for concentrating the washed organic phase The concentrate has the powdered / granulation step 6 of powdered or granulated. The powder or granulated product obtained by the powdering / granulating step 6 is collected in the collecting step (A).
In FIG. 1, the recovery step (A) refers to the measurement of the polyorganosiloxane content by the analyzer 11 after collecting a part of the product obtained after the pulverization / granulation step. Or the feed controller 12 is automatically controlled to open the on-off valve of the container a and store the polycarbonate resin substantially free of polyorganosiloxane transferred by the transfer line 7 in the container a. It will be shown until. As the control device 12, any device can be used as long as it can control the opening and closing of the on-off valve of the container.
In the collecting step (A), a part of the powder or granulated product obtained by the pulverization / granulating step 6 is collected, and it is confirmed that the polyorganosiloxane content ratio is less than x and collected. It is a feature. Therefore, it is possible to obtain a polycarbonate resin substantially free of polyorganosiloxane as a copolymer component obtained by the production process (I) with a constant quality. Such polycarbonate resin is excellent in transparency, mechanical properties, thermal properties, electrical properties, weather resistance, and the like, and can be used for optical molded products such as light guide plates, lenses, and optical fibers.
 エステル交換法により重合反応を行う場合には、二価フェノールとカーボネート前駆体とを任意に触媒の存在下で重合させ溶融物を得た後、脱フェノール化し、造粒することにより共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を製造することができる。 When conducting a polymerization reaction by transesterification, a dihydric phenol and a carbonate precursor are optionally polymerized in the presence of a catalyst to obtain a melt, and then dephenolized and granulated as a copolymer component. A polycarbonate resin substantially free of polyorganosiloxane can be produced.
<蛍光X線分析法による測定>
 本発明においては、回収工程(A)におけるポリオルガノシロキサンの含有割合がx未満であることの確認を蛍光X線分析法により行う。すなわち、分析装置11として蛍光X線分析装置を用いる。
 蛍光X線分析法においては、粉末化/造粒後に得られる粉末または造粒物を一部採取し、粉末または造粒物そのもの、あるいは粉末または造粒物を加工したシートまたはフィルムを測定用試料として用いる。従って、蛍光X線分析法による測定時のポリカーボネート-ポリオルガノシロキサン共重合体の形態は、粉末状、ペレット(造粒物)状、シート状またはフィルム状のいずれであっても良い。
 シートまたはフィルムは、粉末またはペレットを例えば加熱プレス成形することにより得られる。一般に、該シートまたはフィルムが0.2~5mm程度の厚みを有するように加工する。日本標準産業分類によれば、シートとは、厚さが0.2mm以上で軟質製のものを、フィルムとは、厚さが0.2mm未満で軟質製のもの及び0.5mm未満で硬質製のものをいうと規定されている。本発明においては、シートとフィルムとを厳格に区別する必要はなく、0.2~5mm程度の厚みを有するものであれば、蛍光X線分析用測定試料はシート状であってもフィルム状であってもよい。なお測定精度の点から、シートまたはフィルムの厚さを好ましくは0.5mm以上、より好ましくは1.0mm以上とすることが好ましい。
 蛍光X線分析法においては、ポリカーボネート-ポリオルガノシロキサン共重合体の形態はシート状またはフィルム状であることが好ましい。シートまたはフィルムに加工することにより試料密度が均一になる。試料密度の均一性は励起X線量の入射深さ、蛍光X線量の発生量を一定にするため、測定精度を保証することができる。また、シートまたはフィルムに加工することにより表面の平坦性(凹凸の無い)が良好となり、X線光路長が安定する。
<Measurement by X-ray fluorescence analysis>
In the present invention, it is confirmed by fluorescent X-ray analysis that the polyorganosiloxane content in the recovery step (A) is less than x. That is, a fluorescent X-ray analyzer is used as the analyzer 11.
In fluorescent X-ray analysis, a part of the powder or granulated product obtained after pulverization / granulation is collected, and the powder or granulated product itself or a sheet or film processed from the powder or granulated product is used as a measurement sample Used as Therefore, the form of the polycarbonate-polyorganosiloxane copolymer at the time of measurement by X-ray fluorescence analysis may be any of powder, pellet (granulated product), sheet, or film.
A sheet or film is obtained by, for example, hot press molding powder or pellets. In general, the sheet or film is processed so as to have a thickness of about 0.2 to 5 mm. According to the Japanese standard industrial classification, a sheet is a soft sheet with a thickness of 0.2 mm or more, and a film is a soft sheet with a thickness of less than 0.2 mm and a hard sheet with a thickness of less than 0.5 mm. It is stipulated that the thing. In the present invention, there is no need to strictly distinguish between a sheet and a film, and the measurement sample for fluorescent X-ray analysis may be a film even if it has a thickness of about 0.2 to 5 mm. There may be. In terms of measurement accuracy, the thickness of the sheet or film is preferably 0.5 mm or more, more preferably 1.0 mm or more.
In the X-ray fluorescence analysis, the polycarbonate-polyorganosiloxane copolymer is preferably in the form of a sheet or film. Processing into a sheet or film makes the sample density uniform. Since the uniformity of the sample density makes the incident depth of the excitation X-ray dose and the generation amount of the fluorescent X-ray dose constant, the measurement accuracy can be guaranteed. Further, by processing into a sheet or film, the surface flatness (no irregularities) becomes good, and the X-ray optical path length is stabilized.
 蛍光X線分析法は一般に以下の利点を有する。すなわち、NMR法のような煩雑な前処理を必要とせず、上述した通り試料作成は不要であるか、または加圧処理等により簡便に速やかに行うことができる。得られるスペクトルは比較的単純であり、解釈も容易である。微量分析にも適しており、定量精度も高い。また、蛍光X線分析法は、非常に短時間で分析を行うことができることもその特徴の1つである。従って、共重合体中のポリオルガノシロキサン含有割合の蛍光X線分析法による測定を含む本発明のポリカーボネート樹脂の製造方法においては、粉末化/造粒後のサンプリングから上記ポリオルガノシロキサン含有割合の測定結果が得られるまで1時間程度しか要しない。そのため、測定結果を速やかに容器の開閉弁を自動制御する制御装置12にフィードバックして、移送ライン7を流れるポリカーボネート樹脂のうちポリオルガノシロキサン含有割合がx未満であるポリカーボネート樹脂のみを容器aに貯蔵することができる。結果として、一定品質のポリカーボネート樹脂を効率的に得ることができる。 Fluorescence X-ray analysis generally has the following advantages. That is, no complicated pretreatment as in the NMR method is required, and as described above, sample preparation is unnecessary, or it can be carried out easily and quickly by pressure treatment or the like. The resulting spectrum is relatively simple and easy to interpret. It is also suitable for trace analysis and has high quantitative accuracy. One of the features of the fluorescent X-ray analysis method is that the analysis can be performed in a very short time. Therefore, in the method for producing the polycarbonate resin of the present invention including measurement of the polyorganosiloxane content ratio in the copolymer by fluorescent X-ray analysis, measurement of the polyorganosiloxane content ratio from sampling after pulverization / granulation. It only takes about an hour to get the result. Therefore, the measurement result is quickly fed back to the controller 12 that automatically controls the opening / closing valve of the container, and only the polycarbonate resin having a polyorganosiloxane content of less than x in the polycarbonate resin flowing through the transfer line 7 is stored in the container a. can do. As a result, a polycarbonate resin having a constant quality can be obtained efficiently.
 蛍光X線分析装置はエネルギー分散型と波長分散型に大別されるが、本発明における蛍光X線分析においてはいずれを用いてもよい。蛍光X線分析においては、試料にX線を照射することにより得られる各元素に固有な波長の線スペクトル(特性X線)の強度を測定することにより、試料中の目的元素の濃度(含有割合)を求めることができる。
 蛍光X線分析においては幅広い範囲の元素を対象とすることができるが、実用上はナトリウム以上の原子番号を持つ元素を測定対象とすることが多い。本発明においては、ポリカーボネート-ポリオルガノシロキサン共重合体中のケイ素の濃度を、検量線を用いて求めることができる。検量線は、事前にNMRでポリオルガノシロキサン濃度を定量したサンプルを用いて蛍光X線分析を行い、得られた定量元素(ケイ素)のX線強度から作成する。この検量線を用いて、実際の測定サンプルから得られたケイ素原子のX線強度と比較することにより短時間で共重合体中のケイ素濃度を測定することができる。
 また、特に詳述しないが、蛍光X線分析法において知られる他の定量法、例えばFP法等により共重合体中のケイ素原子濃度を決定することも可能である。
 蛍光X線分析法によるポリオルガノシロキサン含有割合の定量下限値は、約0.01~0.5質量%程度である。ポリオルガノシロキサン含有割合が0.01質量%以上である場合に、蛍光X線分析法により求めた定量値は有意であるとして本発明の製造方法の測定値として好ましくは用いることができる。
X-ray fluorescence analyzers are roughly classified into energy dispersion type and wavelength dispersion type, and any of them may be used in the fluorescence X-ray analysis in the present invention. In fluorescent X-ray analysis, the concentration (content ratio) of the target element in the sample is measured by measuring the intensity of the line spectrum (characteristic X-ray) of the wavelength unique to each element obtained by irradiating the sample with X-rays. ).
In a fluorescent X-ray analysis, a wide range of elements can be targeted, but in practice, an element having an atomic number of sodium or higher is often measured. In the present invention, the concentration of silicon in the polycarbonate-polyorganosiloxane copolymer can be determined using a calibration curve. The calibration curve is prepared from the X-ray intensity of the quantitative element (silicon) obtained by performing fluorescent X-ray analysis using a sample whose polyorganosiloxane concentration has been previously determined by NMR. By using this calibration curve, the silicon concentration in the copolymer can be measured in a short time by comparing with the X-ray intensity of the silicon atom obtained from the actual measurement sample.
Further, although not specifically described in detail, it is also possible to determine the silicon atom concentration in the copolymer by other quantitative methods known in the fluorescent X-ray analysis method, for example, the FP method.
The lower limit of quantification of the polyorganosiloxane content by fluorescent X-ray analysis is about 0.01 to 0.5% by mass. When the polyorganosiloxane content is 0.01% by mass or more, it can be preferably used as the measurement value of the production method of the present invention, assuming that the quantitative value obtained by fluorescent X-ray analysis is significant.
<製造工程(II)及び回収工程(B)>
 製造工程(II)は、製造工程(I)から製造工程(III)に切り替える際の中間工程であり、ポリオルガノシロキサンの含有割合がx≦ポリオルガノシロキサン含有割合<yであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する工程である。また、回収工程(B)は、上記ポリオルガノシロキサン割合が、(i)x≦ポリオルガノシロキサン含有割合となることを蛍光X線分析法により確認し、及び(ii)ポリオルガノシロキサン含有割合<yとなることを近赤外分光分析法または蛍光X線分析法により確認しながら(但し、(i)の範囲と(ii)の範囲とは重複しない)回収する工程である。
 なお、本発明においては、ポリオルガノシロキサンの含有割合がx≦ポリオルガノシロキサン含有割合<yであるポリカーボネート-ポリオルガノシロキサン共重合体を「移行品」と定義する。
<Manufacturing step (II) and recovery step (B)>
The production process (II) is an intermediate process when switching from the production process (I) to the production process (III), and the polyorganosiloxane content ratio is x ≦ polyorganosiloxane content ratio <y. This is a process for producing a copolymer. In the recovery step (B), it is confirmed by fluorescent X-ray analysis that the polyorganosiloxane ratio is (i) x ≦ polyorganosiloxane content ratio, and (ii) polyorganosiloxane content ratio <y This is a step of recovering while confirming by the near infrared spectroscopic analysis method or the fluorescent X-ray analysis method (however, the range of (i) and the range of (ii) do not overlap).
In the present invention, a polycarbonate-polyorganosiloxane copolymer in which the polyorganosiloxane content ratio is x ≦ polyorganosiloxane content ratio <y is defined as “transition product”.
 製造工程(II)においては、製造工程(I)において二価フェノールとカーボネート前駆体とを重合させる反応系へのポリオルガノシロキサンの添加を開始して、ポリカーボネート-ポリオルガノシロキサン共重合体を製造する。
 製造工程(II)は、重合工程2において、上記したオリゴマー調製工程1で得られたポリカーボネートオリゴマーと、二価フェノールのアルカリ水溶液及び添加するポリオルガノシロキサンを導入し、必要に応じて重合触媒、分子量調節剤、アルカリ水溶液及び非水溶性有機溶媒を加えて反応させること以外は、製造工程(I)と同様にポリカーボネート樹脂を製造する一連の工程を有する。
 エステル交換法により重合反応を行う場合には、二価フェノールとカーボネート前駆体とを重合させる反応系にポリオルガノシロキサンを添加し、任意に触媒の存在下で共重合させ溶融物を得た後、脱フェノール化し、造粒することによりポリカーボネート-ポリオルガノシロキサン共重合体を製造することができる。
In the production process (II), the addition of the polyorganosiloxane to the reaction system for polymerizing the dihydric phenol and the carbonate precursor in the production process (I) is started to produce a polycarbonate-polyorganosiloxane copolymer. .
In the production step (II), in the polymerization step 2, the polycarbonate oligomer obtained in the oligomer preparation step 1, the alkaline aqueous solution of dihydric phenol and the polyorganosiloxane to be added are introduced. It has a series of processes which manufacture polycarbonate resin similarly to manufacturing process (I) except adding a regulator, aqueous alkali solution, and a water-insoluble organic solvent, and making it react.
When performing a polymerization reaction by the transesterification method, after adding a polyorganosiloxane to a reaction system for polymerizing a dihydric phenol and a carbonate precursor, and optionally copolymerizing in the presence of a catalyst to obtain a melt, A polycarbonate-polyorganosiloxane copolymer can be produced by dephenolization and granulation.
 ポリオルガノシロキサンの添加を開始した初期においては、添加開始後の反応液が各工程(例えば重合工程2~粉末化/造粒工程6)を経て粉末化/造粒が完了するまでは、分析装置11により測定されている製品はポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂のみとなる。従って、ポリオルガノシロキサンの添加開始後であっても、しばらくはポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂が各容器への移送ライン7中を流れていることになる。このポリカーボネート樹脂は、回収工程(A)にて述べた通り、容器aの開閉弁を操作して容器aに充填することとする。 In the initial stage when the addition of polyorganosiloxane is started, until the reaction solution after the start of addition passes through each step (for example, polymerization step 2 to powdering / granulating step 6) and powdering / granulating is completed, an analyzer The product measured by 11 is only a polycarbonate resin having a polyorganosiloxane content of less than x. Therefore, even after the start of addition of the polyorganosiloxane, the polycarbonate resin having a polyorganosiloxane content of less than x flows for a while in the transfer line 7 to each container. As described in the recovery step (A), this polycarbonate resin is filled into the container a by operating the on-off valve of the container a.
 続いて、製造工程(II)においてポリオルガノシロキサン添加の開始後、ポリカーボネート樹脂中のポリオルガノシロキサンの含有割合の上昇開始(すなわち、(i)x≦ポリオルガノシロキサン含有割合)を分析装置11により確認した後、回収工程(B)においてこの分析結果を制御装置12に手動で入力するか又は自動的に送り、制御装置12により容器aの開閉弁を閉じ、容器bの開閉弁を開ける。続いて、製造工程(III)における設定値yまでのポリオルガノシロキサンの含有割合の変化(すなわち、(ii)ポリオルガノシロキサン含有割合<y)を分析装置11により確認し、上昇開始点~設定値yまで(x≦ポリオルガノシロキサン含有割合<y)のポリカーボネート樹脂を移行品として容器bに充填する。 Subsequently, after the start of polyorganosiloxane addition in the production process (II), the analyzer 11 confirms that the polyorganosiloxane content in the polycarbonate resin starts to increase (that is, (i) x ≦ polyorganosiloxane content). After that, in the recovery step (B), the analysis result is manually input to the control device 12 or automatically sent, and the control device 12 closes the open / close valve of the container a and opens the open / close valve of the container b. Subsequently, the change in the polyorganosiloxane content ratio up to the set value y in the production process (III) (that is, (ii) polyorganosiloxane content ratio <y) is confirmed by the analyzer 11, and the rising start point to the set value The container b is filled with a polycarbonate resin up to y (x ≦ polyorganosiloxane content ratio <y) as a transitional product.
 本発明の回収工程(B)においてはポリオルガノシロキサン含有割合の上昇開始点(x=ポリオルガノシロキサン含有割合)を含む(i)x≦ポリオルガノシロキサンの範囲を蛍光X線分析法により確認する。
 従来から使用されるNMR法を用いて上昇開始点を分析する方法では以下の問題点があった。粉末化/造粒後に得られるポリカーボネート-ポリオルガノシロキサン共重合体をサンプリングし、この固体試料を適量秤量し、専用溶媒を用いて溶解させた後に専用チューブに仕込む等の測定用試料調製が必要であり、測定結果が最終的に得られるまで約3時間が必要であった。得られた測定結果に基づきポリオルガノシロキサン含有割合の上昇を確認した後、制御装置により容器aの開閉弁を閉じて、容器bの開閉弁を開けてx≦ポリオルガノシロキサン含有割合となるポリオルガノシロキサンを容器bに貯蔵しようとした場合であっても、サンプリングから測定値に基づく制御装置12による開閉弁の開閉までタイムラグが生じており、迅速な貯蔵容器の切り替えができなかった。そのため、一定品質のポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を貯蔵している容器aへの移行品の混入を効率よく防ぐことが不可能であり、ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂の品質に悪影響を与えていた。
 蛍光X線分析法では、粉末・造粒化物を採取してから測定結果が得られるまで、1時間程度で測定をすることができる。従って、測定結果が得られるまで3時間程度を要するNMR法と比較して、少なくとも2時間分少なく移行品の容器aへの導入を減らすことができるという利点を有する。
In the recovery step (B) of the present invention, the range of (i) x ≦ polyorganosiloxane including the starting point of increase in the polyorganosiloxane content (x = polyorganosiloxane content) is confirmed by fluorescent X-ray analysis.
The conventional method for analyzing the rising start point using the NMR method has the following problems. It is necessary to sample the polycarbonate-polyorganosiloxane copolymer obtained after pulverization / granulation, weigh an appropriate amount of this solid sample, dissolve it in a dedicated solvent, and then prepare a sample for measurement. Yes, it took about 3 hours until the measurement result was finally obtained. After confirming the increase in the polyorganosiloxane content based on the obtained measurement results, the control device closes the opening / closing valve of the container a, and opens the opening / closing valve of the container b, so that x ≦ polyorganosiloxane content ratio. Even when siloxane was to be stored in the container b, there was a time lag from sampling to opening and closing of the on-off valve by the control device 12 based on the measured value, and the storage container could not be switched quickly. Therefore, it is impossible to efficiently prevent the migration product from being mixed into the container a storing the polycarbonate resin in which the content ratio of the polyorganosiloxane having a certain quality is less than x, and the content ratio of the polyorganosiloxane is x The quality of the polycarbonate resin, which is less than that, was adversely affected.
In the X-ray fluorescence analysis, the measurement can be performed in about one hour from the collection of the powder / granulated product until the measurement result is obtained. Therefore, compared with the NMR method which requires about 3 hours until the measurement result is obtained, there is an advantage that the introduction of the transferred product into the container a can be reduced by at least 2 hours.
 なお、製造工程(II)において、上昇開始点におけるポリオルガノシロキサン含有割合は、好ましくは0.01質量%から0.5質量%である。上記範囲であると、蛍光X線分析におけるケイ素原子の定量下限値の範囲に含まれるため、測定値が有意となる。また、ポリオルガノシロキサン含有割合が0.01質量%から0.5質量%まで上昇するまでの時間が1時間以上であることが望ましい。ポリカーボネート樹脂の連続製造装置が大型化すれば、その滞留時間(図1におけるポリオルガノシロキサン添加位置234から粉末採取部(粉末化工程26の出口)まで)は長くなり、0.01質量%から0.5質量%まで上昇するまでの時間も長くなる。 In the production step (II), the polyorganosiloxane content at the starting point of the rise is preferably 0.01% by mass to 0.5% by mass. Since it is included in the range of the lower limit of quantification of silicon atoms in the fluorescent X-ray analysis, the measured value becomes significant. Moreover, it is desirable that the time until the polyorganosiloxane content ratio increases from 0.01% by mass to 0.5% by mass is 1 hour or more. If the continuous production apparatus for polycarbonate resin is enlarged, the residence time (from the polyorganosiloxane addition position 234 in FIG. 1 to the powder collecting part (exit of the powdering step 26)) becomes longer, from 0.01% by mass to 0%. The time to increase to 5% by mass also becomes longer.
 回収工程(B)は、ポリオルガノシロキサン含有割合が上昇した後、ポリオルガノシロキサン含有割合が(ii)ポリオルガノシロキサン含有割合<yである間連続してポリカーボネート-ポリオルガノシロキサン共重合体を回収する。(ii)におけるポリオルガノシロキサン含有割合の確認は、近赤外分光分析法または蛍光X線分析法により行う。蛍光X線分析法については上述した通りである。以下、近赤外分光分析法により測定を行う場合について詳述する。 In the recovery step (B), after the polyorganosiloxane content ratio is increased, the polycarbonate-polyorganosiloxane copolymer is continuously recovered while the polyorganosiloxane content ratio is (ii) polyorganosiloxane content ratio <y. . The polyorganosiloxane content ratio in (ii) is confirmed by near infrared spectroscopy or fluorescent X-ray analysis. The fluorescent X-ray analysis method is as described above. Hereinafter, a case where measurement is performed by near infrared spectroscopy will be described in detail.
<近赤外分光分析法による測定>
 近赤外分光分析法によるポリカーボネート樹脂中のポリオルガノシロキサン含有割合の測定は、粉末化/造粒工程6地点の近傍に近赤外分析計を設置し、一部採取した粉末若しくは造粒物に連続的にまたは断続的に近赤外を照射することにより行うことができる。
 近赤外分光分析法による測定には、近赤外分光分析装置とデータ処理を含めその分光分析装置を制御する装置とが組み合わせられた装置である走査型の近赤外分光分析装置(以下、NIR計と略記することがある)を用いることができ、市販のものが使用することができる。中でも、800~2500nmの測定波長における波長精度がよく、ノイズが小さいもの、例えば、測定ノイズ吸光度値2×10-5以下であり、波長精度0.5nmで連続的に近赤外強度(吸光度)を測定できるものが使用することが好ましい。
 また、近赤外分光分析装置として、干渉フィルタ型を用いることもできる。例えば、検出器の前に800~2500nmの範囲に干渉フィルタを設置して分光されたスペクトルを取得することができる。
<Measurement by near infrared spectroscopy>
Measurement of polyorganosiloxane content in polycarbonate resin by near-infrared spectroscopy is done by installing a near-infrared analyzer in the vicinity of the 6 points of the powdering / granulating process. It can be performed by irradiating near infrared rays continuously or intermittently.
For the measurement by the near-infrared spectroscopic analysis method, a scanning near-infrared spectroscopic analysis apparatus (hereinafter referred to as “scanning-type near-infrared spectroscopic analysis apparatus”), which is a combination of a near-infrared spectroscopic analysis apparatus and an apparatus that controls the spectroscopic analysis apparatus including data processing (Sometimes abbreviated as NIR meter), and commercially available products can be used. Among them, the wavelength accuracy at the measurement wavelength of 800 to 2500 nm is good and the noise is small, for example, the measurement noise absorbance value is 2 × 10 −5 or less, and the near infrared intensity (absorbance) continuously with the wavelength accuracy of 0.5 nm. It is preferable to use one that can measure
An interference filter type can also be used as the near-infrared spectroscopic analyzer. For example, an interference filter can be installed in the range of 800 to 2500 nm in front of the detector to obtain a spectral spectrum.
 近赤外分光分析装置を用いて、ポリカーボネート樹脂中のポリオルガノシロキサン含有割合を測定するに当たっては、以下のように検量線を作成する。測定前にNMRでポリオルガノシロキサン濃度を定量したサンプルを用いて、近赤外分光分析装置を用いて近赤外スペクトルを測定し、測定された各波長の測定点(1500ポイント)の違いを多変量解析して検量線を作成する。この検量線を用いて、実際のサンプルスペクトルから容易にポリオルガノシロキサン含有割合を測定することができる。なお、測定されたスペクトルにおいて、水分の影響を受ける5000~5500cm-1のデータは除いておく必要がある。
 近赤外分光分析法により測定されるポリカーボネート樹脂の形態は、粉末状又はペレット状のいずれであっても良い。粉末またはペレット(造粒物)をそのまま近赤外分析装置のステージにのせて測定することができる。
In measuring the polyorganosiloxane content ratio in the polycarbonate resin using a near-infrared spectrometer, a calibration curve is prepared as follows. Using a sample whose polyorganosiloxane concentration was quantified by NMR before measurement, a near infrared spectrum was measured using a near infrared spectroscopic analyzer, and there were many differences in the measured points (1500 points) of each wavelength. A calibration curve is created by random analysis. Using this calibration curve, the polyorganosiloxane content can be easily measured from the actual sample spectrum. In the measured spectrum, it is necessary to exclude data of 5000 to 5500 cm −1 that is affected by moisture.
The form of the polycarbonate resin measured by the near infrared spectroscopic analysis method may be either a powder form or a pellet form. The powder or pellet (granulated product) can be measured on the stage of the near infrared analyzer as it is.
 回収工程(B)により得られる移行品は、回収工程(A)において得られる一定グレードのポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂や回収工程(C)において得られる一定グレードのポリカーボネート-ポリオルガノシロキサンと比べると、その性質等において相違する部分はあるが、例えば、電子機器、OA機器等のハウジジングへの用途における使用は十分に可能であり、十分市場での使用に適する。 Transition products obtained in the recovery step (B) are polycarbonate resins having a content of a certain grade of polyorganosiloxane obtained in the recovery step (A) of less than x, and fixed grade polycarbonates obtained in the recovery step (C). Compared with polyorganosiloxane, there are some differences in properties and the like, but for example, it can be used in housing applications such as electronic equipment and OA equipment, and is suitable for use in the market.
<製造工程(III)及び回収工程(C)>
 回収工程(B)においてポリオルガノシロキサン含有割合がyに到達したことを確認した後、製造工程(III)において、当該製造条件下(ポリオルガノシロキサン含有割合=yとなる製造条件)にて、ポリオルガノシロキサンの含有割合=yであるポリカーボネート-ポリオルガノシロキサン共重合体を連続して製造する。製造工程(III)により得られるポリオルガノシロキサン含有割合=yであるポリカーボネート-ポリオルガノシロキサン共重合体を回収工程(C)にて回収する。
<Manufacturing step (III) and recovery step (C)>
After confirming that the polyorganosiloxane content has reached y in the recovery step (B), in the production step (III), under the production conditions (production conditions for polyorganosiloxane content = y), A polycarbonate-polyorganosiloxane copolymer having an organosiloxane content ratio = y is continuously produced. The polycarbonate-polyorganosiloxane copolymer with polyorganosiloxane content ratio = y obtained in the production step (III) is recovered in the recovery step (C).
 製造工程(III)においては、製造工程(I)において二価フェノールとカーボネート前駆体とを重合させる反応系にポリオルガノシロキサンを添加して、ポリカーボネート-ポリオルガノシロキサン共重合体を製造する。添加量及び添加条件は、回収工程(B)にてポリオルガノシロキサン含有割合がyであることを確認した条件をそのまま使用する。
 製造工程(III)は、重合工程2において、上記したオリゴマー調製工程1で得られたポリカーボネートオリゴマーと、二価フェノールのアルカリ水溶液及び添加するポリオルガノシロキサンを導入し、必要に応じて重合触媒、分子量調節剤、アルカリ水溶液及び非水溶性有機溶媒を加えて反応させること以外は、製造工程(I)と同様にポリカーボネート樹脂を製造する一連の工程を有する。
 エステル交換法により重合反応を行う場合には、二価フェノールとカーボネート前駆体とを重合させる反応系にポリオルガノシロキサンを添加し、任意に触媒の存在下で共重合させ溶融物を得た後、脱フェノール化し、造粒することによりポリカーボネート-ポリオルガノシロキサン共重合体を製造することができる。
In the production step (III), a polyorganosiloxane is added to the reaction system for polymerizing the dihydric phenol and the carbonate precursor in the production step (I) to produce a polycarbonate-polyorganosiloxane copolymer. The addition amount and the addition conditions are the same as those confirmed in the recovery step (B) when the polyorganosiloxane content is y.
In the production step (III), in the polymerization step 2, the polycarbonate oligomer obtained in the oligomer preparation step 1 described above, an alkaline aqueous solution of dihydric phenol and the polyorganosiloxane to be added are introduced, and a polymerization catalyst and molecular weight are added as necessary. It has a series of processes which manufacture polycarbonate resin similarly to manufacturing process (I) except adding a regulator, aqueous alkali solution, and a water-insoluble organic solvent, and making it react.
When performing a polymerization reaction by the transesterification method, after adding a polyorganosiloxane to a reaction system for polymerizing a dihydric phenol and a carbonate precursor, and optionally copolymerizing in the presence of a catalyst to obtain a melt, A polycarbonate-polyorganosiloxane copolymer can be produced by dephenolization and granulation.
 製造工程(III)においてポリカーボネート樹脂中のポリオルガノシロキサンの含有割合がyであることを確認しながら、回収工程(C)においてこの分析結果を制御装置12に手動で入力するか又は自動的に送ることにより、制御装置12により容器bの開閉弁を閉じ、容器cの開閉弁を開ける。ポリオルガノシロキサン含有割合がyである一定グレードのポリカーボネート-ポリオルガノシロキサン共重合体を容器cに充填する。従って、製造工程(III)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を一定品質で得ることが可能である。このようなポリカーボネート-ポリオルガノシロキサン共重合体は耐衝撃性、耐薬品性、及び難燃性等に優れ、例えば、携帯電話、モバイルパソコン、デジタルカメラ、ビデオカメラ、電動工具などの筐体、及びその他の日用品に利用することができる。 While confirming that the polyorganosiloxane content in the polycarbonate resin is y in the production step (III), the analysis result is manually input to the control device 12 or automatically sent in the recovery step (C). Thus, the control device 12 closes the opening / closing valve of the container b and opens the opening / closing valve of the container c. A container-c is filled with a certain grade of polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y. Therefore, it is possible to obtain a polycarbonate-polyorganosiloxane copolymer obtained by the production process (III) with a certain quality. Such a polycarbonate-polyorganosiloxane copolymer is excellent in impact resistance, chemical resistance, flame retardancy, and the like. For example, a casing of a mobile phone, a mobile personal computer, a digital camera, a video camera, an electric tool, It can be used for other daily necessities.
 回収工程(C)におけるポリオルガノシロキサン含有割合の確認は、近赤外分光分析法または蛍光X線分析法により行うことができる。
 近赤外分光分析及び蛍光X線分析法については上述した通りである。
The polyorganosiloxane content ratio in the recovery step (C) can be confirmed by near infrared spectroscopy or fluorescent X-ray analysis.
The near-infrared spectroscopic analysis and the fluorescent X-ray analysis method are as described above.
 以上、(I)及び(A)~(III)及び(C)の順に行う本発明の製造方法を詳述した。本発明の製造方法はさらに(III)及び(C)~(I)及び(A)の順に(上記製造工程順とは逆の順番で)ポリカーボネート樹脂を製造することができる。以下、記載する。
 ポリオルガノシロキサン含有割合がyであるポリカーボネート-ポリオルガノシロキサン共重合体を連続製造した後、再びポリオルガノシロキサン含有割合がx未満であるポリカーボネート樹脂を製造する必要が生じた際は、以下の通りの操作を行う。
 すなわち、製造工程(III)において重合工程2にけるポリオルガノシロキサンの添加を停止し、ポリカーボネート樹脂中のポリオルガノシロキサンの含有割合がy未満になるのを近赤外分光分析法または蛍光X線分析法により確認した後、制御装置12により容器cの開閉弁を閉じて容器bの開閉弁を開ける(回収工程(B)に相当)。ポリオルガノシロキサンの含有割合がx≦ポリオルガノシロキサン含有割合<yである間は回収工程(B)にて容器bに移行品を貯蔵する。ポリオルガノシロキサンの添加停止後、ポリカーボネート樹脂中のポリオルガノシロキサン含有割合がx未満となったのを分析装置(蛍光X線分析装置)11により確認した後、制御装置12により容器bの開閉弁を閉じて容器aの開閉弁を開ける(回収工程(A)に相当)。このようにポリオルガノシロキサンの添加停止後もポリオルガノシロキサン含有割合がx未満である一定グレードのポリカーボネート樹脂を得るまでの移行品を効率よく回収工程(B)にて回収することができる。近赤外分光分析及び蛍光X線分析では迅速な測定が可能なため、移行品がポリカーボネート-ポリオルガノシロキサン共重合体やポリオルガノシロキサン含有割合がx未満であるポリカーボネート樹脂中に混入することを防ぐことができる。
The production method of the present invention performed in the order of (I) and (A) to (III) and (C) has been described in detail. The production method of the present invention can further produce a polycarbonate resin in the order of (III) and (C) to (I) and (A) (in the reverse order of the production process). This is described below.
After continuously producing a polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y, it is necessary to produce a polycarbonate resin having a polyorganosiloxane content of less than x. Perform the operation.
That is, the addition of the polyorganosiloxane in the polymerization step 2 in the production step (III) is stopped, and the content of the polyorganosiloxane in the polycarbonate resin becomes less than y. After confirmation by the method, the control device 12 closes the open / close valve of the container c and opens the open / close valve of the container b (corresponding to the recovery step (B)). While the polyorganosiloxane content ratio is x ≦ polyorganosiloxane content ratio <y, the transferred product is stored in the container b in the recovery step (B). After the addition of polyorganosiloxane was stopped, the analyzer (fluorescence X-ray analyzer) 11 confirmed that the polyorganosiloxane content in the polycarbonate resin was less than x, and the controller 12 then opened the on-off valve of the container b. Close and open the on-off valve of the container a (corresponding to the recovery step (A)). Thus, even after the addition of polyorganosiloxane is stopped, the transition product until obtaining a certain grade of polycarbonate resin having a polyorganosiloxane content ratio of less than x can be efficiently recovered in the recovery step (B). NIR spectroscopic analysis and X-ray fluorescence analysis enable rapid measurement, preventing transition products from being mixed into polycarbonate-polyorganosiloxane copolymers and polycarbonate resins with a polyorganosiloxane content of less than x. be able to.
 以下、界面重合法を例に、製造工程(I)~(III)が有する各種工程を詳述する。
(1)ポリカーボネートオリゴマー調製工程
 ポリカーボネート(以下、PCと略記することがある)オリゴマーの調製方法については特に制限はないが、例えば次に示す方法を好ましく用いることができる。
 二価フェノールとカーボネート前駆体との反応は、特に制限されるものではなく、公知の方法を採用でき、非水溶性有機溶媒の存在下、界面重合法によって実施することが好ましい。必要に応じて、重合触媒の存在下に反応させることもできる。なお、二価フェノールは、二価フェノールをアルカリ化合物の水溶液に溶解させた二価フェノールのアルカリ水溶液として用いる。
Hereinafter, the various steps of the production steps (I) to (III) will be described in detail by taking the interfacial polymerization method as an example.
(1) Polycarbonate oligomer preparation process Although there is no restriction | limiting in particular about the preparation method of a polycarbonate (henceforth abbreviated as PC) oligomer, For example, the method shown next can be used preferably.
The reaction between the dihydric phenol and the carbonate precursor is not particularly limited, and a known method can be adopted, and the reaction is preferably carried out by an interfacial polymerization method in the presence of a water-insoluble organic solvent. If necessary, the reaction can be carried out in the presence of a polymerization catalyst. The dihydric phenol is used as an aqueous alkali solution of dihydric phenol in which dihydric phenol is dissolved in an aqueous solution of an alkali compound.
 二価フェノールとしては、下記一般式(1)で表される二価フェノールを用いることが好ましい。なお、(1)PCオリゴマー調製工程を有するか否かに係らず、本発明において用いられる二価フェノールについても同様に下記一般式(1)で表される二価フェノールを用いることが好ましい。 As the dihydric phenol, it is preferable to use a dihydric phenol represented by the following general formula (1). In addition, it is preferable to similarly use the dihydric phenol represented by the following general formula (1) for the dihydric phenol used in the present invention regardless of whether or not it has (1) a PC oligomer preparation step.
Figure JPOXMLDOC01-appb-C000005

[式中、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-、または-CO-を示す。a及びbは、それぞれ独立に0~4の整数である。]
Figure JPOXMLDOC01-appb-C000005

[Wherein, R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-. a and b are each independently an integer of 0 to 4. ]
 上記一般式(1)で表される二価フェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン等のビス(ヒドロキシフェニル)アルカン系、4,4'-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン等が挙げられる。これらの二価フェノールは、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 これらの中でも、ビス(ヒドロキシフェニル)アルカン系が二価フェノールとして好ましく、ビスフェノールAがより好ましい。二価フェノールとしてビスフェノールAを用いた場合、上記一般式(1)において、Xがイソプロピリデン基であり、且つa=b=0のポリカーボネート-ポリオルガノシロキサン共重合体となる。
Examples of the dihydric phenol represented by the general formula (1) include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane and 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) And cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone. It is done. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
Among these, bis (hydroxyphenyl) alkane is preferable as the dihydric phenol, and bisphenol A is more preferable. When bisphenol A is used as the dihydric phenol, a polycarbonate-polyorganosiloxane copolymer in which X is an isopropylidene group and a = b = 0 in the above general formula (1) is obtained.
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(ヒドロキシアリール)アルカン類、ビス(ヒドロキシアリール)シクロアルカン類、ジヒドロキシアリールエーテル類、ジヒドロキシジアリールスルフィド類、ジヒドロキシジアリールスルホキシド類、ジヒドロキシジアリールスルホン類、ジヒドロキシジフェニル類、ジヒドロキシジアリールフルオレン類、ジヒドロキシジアリールアダマンタン類等が挙げられる。これらの二価フェノールは、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of dihydric phenols other than bisphenol A include bis (hydroxyaryl) alkanes, bis (hydroxyaryl) cycloalkanes, dihydroxyaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, and dihydroxy. Examples include diphenyls, dihydroxydiarylfluorenes, dihydroxydiaryladamantanes and the like. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 ビス(ヒドロキシアリール)アルカン類としては、例えばビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等が挙げられる。 Examples of bis (hydroxyaryl) alkanes include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxy Phenyl) naphthylmethane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy) -3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorofe) Le) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane.
 ビス(ヒドロキシアリール)シクロアルカン類としては、例えば1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等が挙げられる。ジヒドロキシアリールエーテル類としては、例えば4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等が挙げられる。 Examples of bis (hydroxyaryl) cycloalkanes include 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 1,1-bis (4-hydroxyphenyl) cyclododecane and the like. Examples of dihydroxyaryl ethers include 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether.
 ジヒドロキシジアリールスルフィド類としては、例えば4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等が挙げられる。ジヒドロキシジアリールスルホキシド類としては、例えば4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等が挙げられる。ジヒドロキシジアリールスルホン類としては、例えば4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等が挙げられる。 Examples of dihydroxydiaryl sulfides include 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, and the like. Examples of dihydroxydiaryl sulfoxides include 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, and the like. Examples of the dihydroxydiaryl sulfones include 4,4'-dihydroxydiphenyl sulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone.
 ジヒドロキシジフェニル類としては、例えば4,4’-ジヒドロキシジフェニル等が挙げられる。ジヒドロキシジアリールフルオレン類としては、例えば9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。ジヒドロキシジアリールアダマンタン類としては、例えば1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。 Examples of dihydroxydiphenyls include 4,4'-dihydroxydiphenyl. Examples of dihydroxydiarylfluorenes include 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. Examples of the dihydroxydiaryladamantanes include 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7- Examples thereof include dimethyladamantane.
 上記以外の二価フェノールとしては、例えば4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。 As other dihydric phenols, for example, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5 -Bis (4-hydroxyphenylthio) -2,3-dioxapentane and the like.
 なお、界面重合法に限らず、本発明で用いるカーボネート前駆体としては、例えばカルボニルハライド、炭酸ジエステル、ハロホルメート等を挙げることができる。具体的には、ホスゲン、ジフェニルカーボネート、二価フェノールのジハロホルメート等である。これらの中でも、界面重合法で使用されるホスゲンが好ましい。 The carbonate precursor used in the present invention is not limited to the interfacial polymerization method, and examples thereof include carbonyl halide, carbonic acid diester, haloformate and the like. Specifically, phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like. Among these, phosgene used in the interfacial polymerization method is preferable.
 二価フェノールを溶解させるアルカリ水溶液は、通常そのアルカリ濃度が1~15質量%のものが好ましく用いられる。アルカリ水溶液中の二価フェノール量は、通常0.5~20質量%の範囲で選ばれる。
 アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物などのアルカリ性無機化合物の水溶液を挙げることができる。これらの中でも、アルカリ金属水酸化物の水溶液が好ましく、水酸化ナトリウムの水溶液がより好ましい。
As the aqueous alkali solution for dissolving the dihydric phenol, those having an alkali concentration of 1 to 15% by mass are preferably used. The amount of dihydric phenol in the alkaline aqueous solution is usually selected in the range of 0.5 to 20% by mass.
Examples of the alkaline aqueous solution include aqueous solutions of alkaline inorganic compounds such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. Among these, an aqueous solution of an alkali metal hydroxide is preferable, and an aqueous solution of sodium hydroxide is more preferable.
 非水溶性有機溶媒としては、例えば塩化メチレン、クロロベンゼン、クロロホルム等のハロゲン化炭化水素が好ましく、塩化メチレンがより好ましい。
 非水溶性有機溶媒の使用量は、通常、有機相と水相との容量比が、好ましくは5/1~1/7、より好ましくは2/1~1/4となるように選択される。
 オリゴマー調製工程(1)における反応温度は通常0~50℃、好ましくは5~40℃の範囲で選ばれる。
As the water-insoluble organic solvent, for example, halogenated hydrocarbons such as methylene chloride, chlorobenzene and chloroform are preferable, and methylene chloride is more preferable.
The amount of the water-insoluble organic solvent used is usually selected so that the volume ratio of the organic phase to the aqueous phase is preferably 5/1 to 1/7, more preferably 2/1 to 1/4. .
The reaction temperature in the oligomer preparation step (1) is usually selected in the range of 0 to 50 ° C., preferably 5 to 40 ° C.
 重合触媒としては、第三級アミンや第四級アンモニウム塩が挙げられる。第三級アミンとしては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン等が挙げられる。第四級アンモニウム塩としては、例えばトリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等が挙げられる。重合触媒としては、第三級アミンが好ましく、トリエチルアミンがより好ましい。 Polymerization catalysts include tertiary amines and quaternary ammonium salts. Examples of the tertiary amine include trimethylamine, triethylamine, and tripropylamine. Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride and triethylbenzylammonium chloride. As the polymerization catalyst, a tertiary amine is preferable, and triethylamine is more preferable.
 オリゴマー調製工程(1)では、必要に応じて分子量調節剤を添加してもよい。分子量調節剤としては、一価フェノールであれば特に制限は無く、例えば、フェノール、o-n-ブチルフェノール、m-n-ブチルフェノール、p-n-ブチルフェノール、o-イソブチルフェノール、m-イソブチルフェノール、p-イソブチルフェノール、o-t-ブチルフェノール、m-t-ブチルフェノール、p-t-ブチルフェノール、o-n-ペンチルフェノール、m-n-ペンチルフェノール、p-n-ペンチルフェノール、o-n-ヘキシルフェノール、m-n-ヘキシルフェノール、p-n-ヘキシルフェノール、p-t-オクチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-n-ノニルフェノール、m-n-ノニルフェノール、p-n-ノニルフェノール、o-クミルフェノール、m-クミルフェノール、p-クミルフェノール、o-ナフチルフェノール、m-ナフチルフェノール、p-ナフチルフェノール、2,5-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルフェノール、2,5-ジクミルフェノール、3,5-ジクミルフェノール、p-クレゾール、p-ブロモフェノール、2,4,6-トリブロモフェノール、平均炭素数12~35の直鎖状又は分岐状のアルキル基をオルト位、メタ位又はパラ位に有するモノアルキルフェノール、3-ペンタデシルフェノール、9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル)フルオレン、9-(4-ヒドロキシ-3-メチルフェニル)-9-(4-メトキシ-3-メチルフェニル)フルオレン、4-(1-アダマンチル)フェノールなどが挙げられる。これらの中でも、p-t-ブチルフェノール、p-クミルフェノール、p-フェニルフェノールが好ましく、p-t-ブチルフェノールがより好ましい。 In the oligomer preparation step (1), a molecular weight regulator may be added as necessary. The molecular weight regulator is not particularly limited as long as it is a monohydric phenol. For example, phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p -Isobutylphenol, ot-butylphenol, mt-butylphenol, pt-butylphenol, on-pentylphenol, mn-pentylphenol, pn-pentylphenol, on-hexylphenol, mn-hexylphenol, pn-hexylphenol, pt-octylphenol, o-cyclohexylphenol, m-cyclohexylphenol, p-cyclohexylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol O-n-nonylphenol, mn-nonylphenol, pn-nonylphenol, o-cumylphenol, m-cumylphenol, p-cumylphenol, o-naphthylphenol, m-naphthylphenol, p- Naphthylphenol, 2,5-di-t-butylphenol, 2,4-di-t-butylphenol, 3,5-di-t-butylphenol, 2,5-dicumylphenol, 3,5-dicumylphenol, p -Cresol, p-bromophenol, 2,4,6-tribromophenol, monoalkylphenol having a linear or branched alkyl group having an average carbon number of 12 to 35 in the ortho, meta or para position, 3- Pentadecylphenol, 9- (4-hydroxyphenyl) -9- (4-methoxyphenyl) fluorene, 9- 4-hydroxy-3-methylphenyl) -9- (4-methoxy-3-methylphenyl) fluorene, 4- (1-adamantyl) phenol and the like. Among these, pt-butylphenol, p-cumylphenol, and p-phenylphenol are preferable, and pt-butylphenol is more preferable.
 オリゴマー調製工程(1)では、得られた反応物はポリカーボネートオリゴマーを含む有機相と、塩化ナトリウム等の不純物を含む水相とを含む混合物となっている。そのため、静置分離等を行うことにより得られるポリカーボネートオリゴマーを含む有機相を重合工程(2)で使用する。 In the oligomer preparation step (1), the obtained reaction product is a mixture containing an organic phase containing a polycarbonate oligomer and an aqueous phase containing impurities such as sodium chloride. Therefore, an organic phase containing a polycarbonate oligomer obtained by performing stationary separation or the like is used in the polymerization step (2).
(2)重合工程
 本工程においては、アルカリ水溶液、非水溶性有機溶媒及び必要に応じて重合触媒、分子量調節剤の存在下で、上記ポリカーボネートオリゴマー、芳香族二価フェノールのアルカリ水溶液を添加して、また製造工程(II)及び(III)においては更にポリオルガノシロキサンを添加して界面重合させて共重合反応を完結させる。
(2) Polymerization step In this step, an alkaline aqueous solution, a water-insoluble organic solvent and, if necessary, an alkaline aqueous solution of the above polycarbonate oligomer and aromatic dihydric phenol are added in the presence of a polymerization catalyst and a molecular weight regulator. In the production steps (II) and (III), a polyorganosiloxane is further added and subjected to interfacial polymerization to complete the copolymerization reaction.
 重合工程(2)の一例を具体的に示すと、製造工程(II)及び(III)においては、ポリカーボネートオリゴマー調製工程(1)により得られたポリカーボネートオリゴマー溶液と、二価フェノールのアルカリ水溶液と、非水溶性有機溶媒により希釈したポリオルガノシロキサン溶液と、非水溶性有機溶媒と、アルカリ性化合物水溶液とを任意に重合触媒の存在下で混合し、通常0~80℃、好ましくは5~40℃の範囲の温度において界面重合させる。なお、必要に応じて、分子量調節剤や触媒を用いることができる。
 製造工程(I)における重合は、上記のポリオルガノシロキサン溶液を用いないこと以外は、製造工程(II)及び(III)と同様に行うことができる。
 なお、重合工程におけるアルカリ水溶液、非水溶性有機溶媒、重合触媒、芳香族二価フェノール及び分子量調節剤としては、上記ポリカーボネートオリゴマー調製工程(1)で記載したものを挙げることができ、好ましい範囲も同様である。また、界面重合における有機相と水相との容量比についても、ポリカーボネートオリゴマー調製工程(1)と同様である。
Specifically showing one example of the polymerization step (2), in the production steps (II) and (III), the polycarbonate oligomer solution obtained by the polycarbonate oligomer preparation step (1), an alkaline aqueous solution of a dihydric phenol, A polyorganosiloxane solution diluted with a water-insoluble organic solvent, a water-insoluble organic solvent, and an aqueous alkaline compound solution are optionally mixed in the presence of a polymerization catalyst, usually at 0 to 80 ° C., preferably 5 to 40 ° C. Interfacial polymerization at a range of temperatures. In addition, a molecular weight regulator and a catalyst can be used as needed.
The polymerization in the production step (I) can be performed in the same manner as in the production steps (II) and (III) except that the above polyorganosiloxane solution is not used.
Examples of the alkaline aqueous solution, the water-insoluble organic solvent, the polymerization catalyst, the aromatic dihydric phenol, and the molecular weight regulator in the polymerization step can include those described in the polycarbonate oligomer preparation step (1), and the preferred range is also included. It is the same. The volume ratio of the organic phase to the aqueous phase in the interfacial polymerization is also the same as in the polycarbonate oligomer preparation step (1).
 ポリオルガノシロキサンとしては、以下の一般式(2)及び(3)に示すものを用いることができる。 As the polyorganosiloxane, those represented by the following general formulas (2) and (3) can be used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Yは-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-を示し、前記Rは、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。Rは、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。Rは、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqの和はnであり、nは30~500の平均繰り返し数を示す。] [Wherein R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 R 7 represents O—R 10 —O—, and R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group. R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 9 represents a diarylene group. R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. The sum of p and q is n, and n represents an average number of repetitions of 30 to 500. ]
 R~Rがそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。R~Rがそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、及び各種ヘキシル基が挙げられる。R~Rがそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R~Rがそれぞれ独立して示すアリール基としては、フェニル基、ナフチル基等が挙げられる。
 R~Rとしては、いずれも、好ましくは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基である。
 一般式(2)及び(3)で表されるポリオルガノシロキサンとしては、R~Rがいずれもメチル基であるものが好ましい。
Examples of the halogen atom independently represented by R 3 to R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl group independently represented by R 3 to R 6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched ones) And the same applies hereinafter), various pentyl groups, and various hexyl groups. Examples of the alkoxy group independently represented by R 3 to R 6 include a case where the alkyl group moiety is the alkyl group. Examples of the aryl group independently represented by R 3 to R 6 include a phenyl group and a naphthyl group.
R 3 to R 6 are each preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
The polyorganosiloxanes represented by the general formulas (2) and (3) are preferably those in which R 3 to R 6 are all methyl groups.
 Yが示す、-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-におけるRが表す直鎖又は分岐鎖アルキレン基としては、炭素数1~8、好ましくは炭素数1~5のアルキレン基が挙げられ、環状アルキレン基としては、炭素数5~15、好ましくは炭素数5~10のシクロアルキレン基が挙げられる。 Y indicated, -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or - Examples of the linear or branched alkylene group represented by R 7 in R 7 O—R 10 —O— include an alkylene group having 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and examples of the cyclic alkylene group include Examples thereof include a cycloalkylene group having 5 to 15 carbon atoms, preferably 5 to 10 carbon atoms.
 Rが表すアリール置換アルキレン基としては、芳香環にアルコキシ基、アルキル基のような置換基を有していてもよく、その具体的構造としては、例えば、下記の一般式(4)または(5)の構造を示すことができる。なお、アリール置換アルキレン基を有する場合、アルキレン基がSiに結合している。 The aryl-substituted alkylene group represented by R 7 may have a substituent such as an alkoxy group or an alkyl group on the aromatic ring. Specific examples of the structure include, for example, the following general formula (4) or ( The structure of 5) can be shown. In addition, when it has an aryl substituted alkylene group, the alkylene group is couple | bonded with Si.
Figure JPOXMLDOC01-appb-C000007

[式中、cは正の整数を示し、通常1~6の整数である]
Figure JPOXMLDOC01-appb-C000007

[Wherein c represents a positive integer and is usually an integer of 1 to 6]
 R、R及びR10が示すジアリーレン基とは、二つのアリーレン基が直接、又は二価の有機基を介して連結された基のことであり、具体的には-Ar-W-Ar-で表わされる構造を有する基である。ここで、Ar及びArは、アリーレン基を示し、Wは単結合、又は2価の有機基を示す。Wの示す2価の有機基は、例えばイソプロピリデン基、メチレン基、ジメチレン基、トリメチレン基である。
 R、Ar及びArが表すアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントリレン基などの環形成炭素数6~14のアリーレン基が挙げられる。これらアリーレン基は、アルコキシ基、アルキル基等の任意の置換基を有していてもよい。
 Rが示すアルキル基としては、炭素数1~8、好ましくは1~5の直鎖または分岐鎖のものである。アルケニル基としては、炭素数2~8、好ましくは2~5の直鎖または分岐鎖のものが挙げられる。アリール基としてはフェニル基、ナフチル基等が挙げられる。アラルキル基としては、フェニルメチル基、フェニルエチル基等が挙げられる。
 R10が示す直鎖、分岐鎖もしくは環状アルキレン基は、Rと同様である。
 Yとしては、好ましくは-RO-であって、Rが、アリール置換アルキレン基であって、特にアルキル基を有するフェノール系化合物の残基であり、アリルフェノール由来の有機残基やオイゲノール由来の有機残基がより好ましい。
 なお、一般式(3)中のp及びqについては、p=q、すなわち、p=n/2、q=n/2であることが好ましい。
 また、βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示し、例えば、以下の一般式(3-1)~(3-5)で表される2価の基が挙げられる。
The diarylene group represented by R 7 , R 9 and R 10 is a group in which two arylene groups are linked directly or via a divalent organic group. Specifically, —Ar 1 —W— A group having a structure represented by Ar 2 —. Here, Ar 1 and Ar 2 represent an arylene group, and W represents a single bond or a divalent organic group. The divalent organic group represented by W is, for example, an isopropylidene group, a methylene group, a dimethylene group, or a trimethylene group.
Examples of the arylene group represented by R 7 , Ar 1, and Ar 2 include arylene groups having 6 to 14 ring carbon atoms such as a phenylene group, a naphthylene group, a biphenylene group, and an anthrylene group. These arylene groups may have an arbitrary substituent such as an alkoxy group or an alkyl group.
The alkyl group represented by R 8 is linear or branched having 1 to 8, preferably 1 to 5 carbon atoms. Examples of the alkenyl group include straight or branched chain groups having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the aralkyl group include a phenylmethyl group and a phenylethyl group.
The linear, branched or cyclic alkylene group represented by R 10 is the same as R 7 .
Y is preferably —R 7 O—, wherein R 7 is an aryl-substituted alkylene group, particularly a residue of a phenolic compound having an alkyl group, and is an organic residue derived from allylphenol or eugenol. The organic residue derived from is more preferable.
In addition, about p and q in General formula (3), it is preferable that it is p = q, ie, p = n / 2, q = n / 2.
Β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. For example, β is represented by the following general formulas (3-1) to (3-5): And a divalent group represented.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(2)で表されるポリオルガノシロキサンとしては、例えば、以下の一般式(2-1)~(2-11)の化合物が挙げられる。 Examples of the polyorganosiloxane represented by the general formula (2) include compounds represented by the following general formulas (2-1) to (2-11).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(2-1)~(2-11)中、R~R、n及びRは上記の定義の通りであり、好ましいものも同じである。cは正の整数を示し、通常1~6の整数である。
 これらの中でも、重合の容易さの観点においては、上記一般式(2-1)で表されるフェノール変性ポリオルガノシロキサンが好ましい。また、入手の容易さの観点においては、上記一般式(2-2)で表される化合物中の一種であるα,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、上記一般式(2-3)で表される化合物中の一種であるα,ω-ビス[3-(4-ヒドロキシ-3-メトキシフェニル)プロピル]ポリジメチルシロキサンが好ましい。
In the above general formulas (2-1) to (2-11), R 3 to R 6 , n and R 8 are as defined above, and preferred ones are also the same. c represents a positive integer and is usually an integer of 1 to 6.
Among these, the phenol-modified polyorganosiloxane represented by the general formula (2-1) is preferable from the viewpoint of ease of polymerization. In view of availability, α, ω-bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-2), Α, ω-bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-3) is preferable.
 本発明に用いられる粗ポリオルガノシロキサンの製造方法は特に限定されない。例えば、特開平11-217390号公報に記載の方法によれば、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させて、α,ω-ジハイドロジェンオルガノペンタシロキサンを合成し、次いで、ヒドロシリル化反応用触媒の存在下に、該α,ω-ジハイドロジェンオルガノペンタシロキサンに不飽和基を有するフェノール化合物(例えば2-アリルフェノール、4-アリルフェノール、オイゲノール、2-プロペニルフェノール等)等を付加反応させることで、粗ポリオルガノシロキサンを得ることができる。また、特許第2662310号公報に記載の方法によれば、オクタメチルシクロテトラシロキサンとテトラメチルジシロキサンとを硫酸(酸性触媒)の存在化で反応させ、得られたα,ω-ジハイドロジェンオルガノポリシロキサンを上記と同様に、ヒドロシリル化反応用触媒の存在下に不飽和基を有するフェノール化合物等を付加反応させることで、粗ポリオルガノシロキサンを得ることができる。なお、α,ω-ジハイドロジェンオルガノポリシロキサンは、その重合条件によりその鎖長nを適宜調整して用いることもできるし、市販のα,ω-ジハイドロジェンオルガノポリシロキサンを用いてもよい。 The method for producing the crude polyorganosiloxane used in the present invention is not particularly limited. For example, according to the method described in JP-A-11-217390, cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize α, ω-dihydrogenorganopentasiloxane, Phenol compounds having an unsaturated group in the α, ω-dihydrogenorganopentasiloxane in the presence of a hydrosilylation catalyst (eg 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.), etc. A crude polyorganosiloxane can be obtained by addition reaction. Further, according to the method described in Japanese Patent No. 2662310, octamethylcyclotetrasiloxane and tetramethyldisiloxane are reacted in the presence of sulfuric acid (acidic catalyst), and the resulting α, ω-dihydrogenorgano is obtained. Similarly to the above, a crude polyorganosiloxane can be obtained by subjecting polysiloxane to an addition reaction with a phenol compound having an unsaturated group in the presence of a hydrosilylation reaction catalyst. The α, ω-dihydrogenorganopolysiloxane can be used by appropriately adjusting the chain length n depending on the polymerization conditions, or a commercially available α, ω-dihydrogenorganopolysiloxane may be used. .
 上記ヒドロシリル化反応用触媒としては、遷移金属系触媒が挙げられるが、中でも反応速度及び選択性の点から白金系触媒が好ましく用いられる。白金系触媒の具体例としては、塩化白金酸,塩化白金酸のアルコール溶液,白金のオレフィン錯体,白金とビニル基含有シロキサンとの錯体,白金担持シリカ,白金担持活性炭等が挙げられる。 As the hydrosilylation reaction catalyst, a transition metal catalyst may be mentioned, and among them, a platinum catalyst is preferably used from the viewpoint of reaction rate and selectivity. Specific examples of the platinum-based catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, a complex of platinum and a vinyl group-containing siloxane, platinum-supported silica, platinum-supported activated carbon, and the like.
 粗ポリオルガノシロキサンを吸着剤と接触させることにより、粗ポリオルガノシロキサン中に含まれる、上記ヒドロシリル化反応用触媒として使用された遷移金属系触媒に由来する遷移金属を、吸着剤に吸着させて除去することが好ましい。
 吸着剤としては、例えば、1000Å以下の平均細孔直径を有するものを用いることができる。平均細孔直径が1000Å以下であれば、粗ポリオルガノシロキサン中の遷移金属を効率的に除去することができる。このような観点から、吸着剤の平均細孔直径は、好ましくは500Å以下、より好ましくは200Å以下、更に好ましくは150Å以下、より更に好ましくは100Å以下である。また同様の観点から、吸着剤は多孔性吸着剤であることが好ましい。
By bringing the crude polyorganosiloxane into contact with the adsorbent, the transition metal derived from the transition metal catalyst used as the hydrosilylation reaction catalyst contained in the crude polyorganosiloxane is adsorbed on the adsorbent and removed. It is preferable to do.
As the adsorbent, for example, one having an average pore diameter of 1000 mm or less can be used. If the average pore diameter is 1000 mm or less, the transition metal in the crude polyorganosiloxane can be efficiently removed. From such a viewpoint, the average pore diameter of the adsorbent is preferably 500 mm or less, more preferably 200 mm or less, still more preferably 150 mm or less, and still more preferably 100 mm or less. From the same viewpoint, the adsorbent is preferably a porous adsorbent.
 吸着剤としては、上記の平均細孔直径を有するものであれば特に限定されないが、例えば活性白土、酸性白土、活性炭、合成ゼオライト、天然ゼオライト、活性アルミナ、シリカ、シリカ-マグネシア系吸着剤、珪藻土、セルロース等を用いることができ、活性白土、酸性白土、活性炭、合成ゼオライト、天然ゼオライト、活性アルミナ、シリカ及びシリカ-マグネシア系吸着剤からなる群から選ばれる少なくとも1種であることが好ましい。 The adsorbent is not particularly limited as long as it has the above average pore diameter. For example, activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica, silica-magnesia-based adsorbent, diatomaceous earth. Cellulose and the like can be used, and at least one selected from the group consisting of activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica and silica-magnesia-based adsorbent is preferable.
 粗ポリオルガノシロキサン中に含まれる遷移金属を吸着剤に吸着させた後、吸着剤は任意の分離手段によってポリオルガノシロキサンから分離することができる。ポリオルガノシロキサンから吸着剤を分離する手段としては、例えばフィルタや遠心分離等が挙げられる。フィルタを用いる場合は、メンブランフィルタ、焼結金属フィルタ、ガラス繊維フィルタ等のフィルタを用いることができるが、特にメンブランフィルタを用いることが好ましい。
 遷移金属の吸着後に吸着剤をポリオルガノシロキサンから分離する観点から、吸着剤の平均粒子径は、通常1μm~4mm、好ましくは1~100μmである。
After the transition metal contained in the crude polyorganosiloxane is adsorbed on the adsorbent, the adsorbent can be separated from the polyorganosiloxane by any separation means. Examples of means for separating the adsorbent from the polyorganosiloxane include a filter and centrifugal separation. When a filter is used, a filter such as a membrane filter, a sintered metal filter, or a glass fiber filter can be used, but it is particularly preferable to use a membrane filter.
From the viewpoint of separating the adsorbent from the polyorganosiloxane after the adsorption of the transition metal, the average particle diameter of the adsorbent is usually 1 μm to 4 mm, preferably 1 to 100 μm.
 本発明において吸着剤を使用する場合には、その使用量は特に限定されない。粗ポリオルガノシロキサン100質量部に対して、好ましくは1~30質量部、より好ましくは2~20質量部の範囲の量の多孔性吸着剤を使用することができる。 When the adsorbent is used in the present invention, the amount used is not particularly limited. An amount of the porous adsorbent in the range of preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the crude polyorganosiloxane can be used.
 なお、処理する粗ポリオルガノシロキサンの分子量が高いために液体状態でない場合は、吸着剤による吸着及び吸着剤の分離を行う際に、ポリオルガノシロキサンが液体状態となるような温度に加熱してもよい。または、塩化メチレンやヘキサン等の溶剤に溶かして行ってもよい。 If the crude polyorganosiloxane to be treated is not in a liquid state due to its high molecular weight, it may be heated to a temperature at which the polyorganosiloxane is in a liquid state when adsorbing with the adsorbent and separating the adsorbent. Good. Alternatively, it may be carried out by dissolving in a solvent such as methylene chloride or hexane.
 共重合工程(2)においては、ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽、多段塔型撹拌槽、無撹拌槽、配管などを反応器として用いることができる。
 共重合工程(2)にて用いられる反応器の数は1つであってもよいし、複数であってもよい。つまり、共重合工程(2)が複数の反応器から構成されていてもよい。
 複数の反応器を用いる場合、第1番目の反応器としては反応器内に攪拌機能を有するものを用いることが好ましく、ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽等を用いることが好ましい。また、第2番目以降に用いられる反応器としては、ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽、多段塔型撹拌槽、無撹拌槽、配管などを任意に用いることができる。
In the copolymerization step (2), a line mixer, a static mixer, an orifice mixer, a stirring tank, a multi-stage tower type stirring tank, a non-stirring tank, piping, and the like can be used as a reactor.
The number of reactors used in the copolymerization step (2) may be one or plural. That is, the copolymerization step (2) may be composed of a plurality of reactors.
When using a plurality of reactors, it is preferable to use a reactor having a stirring function in the reactor, and it is preferable to use a line mixer, a static mixer, an orifice mixer, a stirring tank, or the like. Moreover, as a reactor used after 2nd, a line mixer, a static mixer, an orifice mixer, a stirring tank, a multistage tower type stirring tank, a non-stirring tank, piping, etc. can be used arbitrarily.
(3)分離工程
 本工程は、工程(2)で得た重合液を水相と非水溶性有機相とに分離する工程である。
 重合工程(2)の後、得られる重合液を塩化メチレン等の不活性有機溶媒で適宜希釈する。この希釈溶液を静置することにより、または遠心分離することにより、水相とポリカーボネート-ポリオルガノシロキサンを含む有機相とに分離する。遠心分離を行なう場合には、遠心分離条件に特に制限は無いが、通常、回転速度は1,000~3,000rpm程度であることが好ましい。
 上記分離後に得られた有機相は、微量の二価フェノールを含有していることが多いため、該非水溶性有機溶媒相をアルカリ水溶液で洗浄(以下、アルカリ洗浄と称することがある。)することが好ましい。アルカリ水溶液に用いるアルカリ性化合物は、工程(1)にて使用したものと同じものが挙げられ、好ましいものも同様である。アルカリ洗浄した後、水相と有機相とに分離する。この際も、分離する方法に特に制限は無く、静置分離でも、遠心分離でもよい。洗浄に使用するアルカリ水溶液の量に特に制限は無いが、洗浄効果と排水発生量低減の観点から、全液体中の5~40体積%程度であることが好ましく、より好ましくは5~30体積%、さらに好ましくは10~20体積%である。40体積%以下であれば、連続相が有機相から水相に転換せず、有機相からの抽出効率を高く維持することができる。
 工程(3)で得られた水相には、二価フェノールやアルカリ性化合物が含まれているため、製造コストの観点から、該水相を工程(1)または(2)、特に工程(1)に再利用することが好ましい。
(3) Separation step This step is a step of separating the polymerization liquid obtained in step (2) into an aqueous phase and a water-insoluble organic phase.
After the polymerization step (2), the resulting polymerization solution is appropriately diluted with an inert organic solvent such as methylene chloride. The diluted solution is allowed to stand or centrifuged to separate the aqueous phase and the organic phase containing polycarbonate-polyorganosiloxane. When centrifugation is performed, there are no particular limitations on the centrifugation conditions, but it is usually preferable that the rotational speed be about 1,000 to 3,000 rpm.
Since the organic phase obtained after the separation often contains a trace amount of dihydric phenol, the water-insoluble organic solvent phase is washed with an alkaline aqueous solution (hereinafter sometimes referred to as alkali washing). Is preferred. Examples of the alkaline compound used in the alkaline aqueous solution include the same as those used in the step (1), and preferred ones are also the same. After washing with alkali, it is separated into an aqueous phase and an organic phase. Also in this case, there is no particular limitation on the separation method, and it may be stationary separation or centrifugation. The amount of the aqueous alkaline solution used for washing is not particularly limited, but is preferably about 5 to 40% by volume, more preferably 5 to 30% by volume in the total liquid, from the viewpoint of the washing effect and reduction of the amount of wastewater generated. More preferably, it is 10 to 20% by volume. If it is 40 volume% or less, a continuous phase will not convert into a water phase from an organic phase, but the extraction efficiency from an organic phase can be maintained highly.
Since the aqueous phase obtained in the step (3) contains a dihydric phenol or an alkaline compound, the aqueous phase is used in the step (1) or (2), particularly the step (1) from the viewpoint of production cost. It is preferable to reuse it.
(4)洗浄工程
 洗浄工程(4)は、工程(3)で分離した非水溶性有機溶媒相を酸性水溶液で洗浄(以下、酸洗浄と称することがある)した後、水相と非水溶性有機溶媒相とに分離する工程である。この酸洗浄によって、工程(3)で分離した有機相に含まれ得る重合触媒や微量のアルカリ性化合物を除去することができる。なお、分離する方法に特に制限は無く、静置分離でよい。酸性水溶液の調製に用いる酸としては、例えば塩酸、リン酸等が挙げられ、塩酸が好ましいが、特にこれらに制限されるものではない。
 上記分離によって得られる有機相には、洗浄で用いた酸や無機物が含まれる傾向にあるため、1回以上水によって洗浄(以下、水洗と称することがある)することが好ましい。ここで、非水溶性有機溶媒相の清浄度は、洗浄後の水相の電気伝導度により評価できる。目標とする電気伝導度は、好ましくは1mS/m以下、より好ましくは0.5mS/m以下である。水で洗浄した後、水相と非水溶性有機溶媒相とに分離する。この際も、分離する方法に特に制限は無く、静置分離でよい。
 工程(4)で分離した水相(水洗後の水相も含む)には、ポリカーボネート-ポリオルガノシロキサン共重合体が含まれ得るため、有機溶媒にてこれを抽出し、抽出液の一部又は全部を、適宜、二酸化炭素除去のための脱揮工程や蒸留精製工程を経てから、工程(1)または(2)、特に工程(1)に再利用することが好ましい。脱揮工程については、特開2005-60599号公報に記載の方法を採用できる。
(4) Washing step In the washing step (4), the water-insoluble organic solvent phase separated in step (3) is washed with an acidic aqueous solution (hereinafter sometimes referred to as acid washing), and then the aqueous phase and water-insoluble. This is a step of separating into an organic solvent phase. By this acid washing, a polymerization catalyst and a trace amount of an alkaline compound that can be contained in the organic phase separated in the step (3) can be removed. In addition, there is no restriction | limiting in particular in the method to isolate | separate, and stationary separation may be sufficient. Examples of the acid used for the preparation of the acidic aqueous solution include hydrochloric acid, phosphoric acid, and the like, and hydrochloric acid is preferable, but is not particularly limited thereto.
Since the organic phase obtained by the separation tends to contain the acid or inorganic substance used in the washing, it is preferably washed with water once or more (hereinafter sometimes referred to as water washing). Here, the cleanliness of the water-insoluble organic solvent phase can be evaluated by the electrical conductivity of the water phase after washing. The target electric conductivity is preferably 1 mS / m or less, more preferably 0.5 mS / m or less. After washing with water, it is separated into an aqueous phase and a water-insoluble organic solvent phase. Also in this case, there is no particular limitation on the separation method, and stationary separation may be used.
Since the aqueous phase (including the aqueous phase after washing with water) separated in step (4) may contain a polycarbonate-polyorganosiloxane copolymer, this is extracted with an organic solvent, and a part of the extract or It is preferable to reuse the whole for the step (1) or (2), particularly the step (1) after appropriately passing through a devolatilization step for removing carbon dioxide and a distillation purification step. For the devolatilization step, the method described in JP-A-2005-60599 can be employed.
(5)濃縮工程
 本工程において、工程(4)を経て得られた有機相を濃縮する。続く工程(6)において粉末化/造粒するに適正な濃度範囲、好ましくは10~45質量%に濃縮される。
 濃縮工程(5)にて除去された非水溶性有機溶媒は、工程(1)または(2)に再利用するか、洗浄工程において分離された水相からポリカーボネート-ポリオルガノシロキサン共重合体等の有機物を抽出する溶媒として再利用することが好ましい。
 また、前述したように、工程(1)で得られた反応混合液から分離した水相及び工程(4)における酸性水溶液による洗浄後に分離して得られる水相の少なくとも一方(好ましくは両方)を、非水溶性有機溶媒で抽出し、得られた抽出液を工程(2)で使用する非水溶性有機溶媒の一部又は全部として利用する排水処理工程を有することが好ましい。
 その他にも、本発明の製造方法は、非水溶性有機溶媒の蒸留精製工程や、非水溶性有機溶媒中の二酸化炭素除去のための脱揮工程等を有することが好ましい。
(5) Concentration step In this step, the organic phase obtained through step (4) is concentrated. In the subsequent step (6), it is concentrated to a concentration range suitable for pulverization / granulation, preferably 10 to 45% by mass.
The water-insoluble organic solvent removed in the concentration step (5) can be reused in the step (1) or (2), or the polycarbonate-polyorganosiloxane copolymer or the like can be recovered from the aqueous phase separated in the washing step. It is preferably reused as a solvent for extracting organic substances.
In addition, as described above, at least one (preferably both) of the aqueous phase separated from the reaction mixture obtained in step (1) and the aqueous phase obtained after separation with the acidic aqueous solution in step (4) is preferably used. It is preferable to have a wastewater treatment step in which extraction is performed with a water-insoluble organic solvent, and the resulting extract is used as part or all of the water-insoluble organic solvent used in step (2).
In addition, the production method of the present invention preferably includes a distillation purification step of a water-insoluble organic solvent, a devolatilization step for removing carbon dioxide in the water-insoluble organic solvent, and the like.
(6)粉末化/造粒工程
 濃縮工程(5)により濃縮されたポリカーボネート-ポリオルガノシロキサン共重合体を含む有機相を、粉末化/造粒工程(6)にて、ニーダー法、温水造粒法、粉体床造粒法等既知の方法にて粉末(フレーク)または造粒物を得ることができる。粉末化/造粒を行った後、通常、減圧下に80~160℃程度で得られた粉末(フレーク)または造粒物を乾燥させることが好ましい。
(6) Powdering / granulating step The organic phase containing the polycarbonate-polyorganosiloxane copolymer concentrated in the concentrating step (5) is subjected to the kneader method, hot water granulation in the powdering / granulating step (6). A powder (flakes) or a granulated product can be obtained by a known method such as a method or a powder bed granulation method. After pulverization / granulation, it is usually preferable to dry the powder (flake) or granulated product obtained at about 80 to 160 ° C. under reduced pressure.
 本発明の製造方法によれば、ポリオルガノシロキサンの含有割合がx未満であるポリカーボネートの連続製造からポリカーボネート-ポリオルガノシロキサン共重合体の連続製造へと切り替える際に生じる移行品(x≦ポリオルガノシロキサン割合<y)の存在を蛍光X線装置又近赤外分光分析装置を用いて確認することにより、移行品を効率よく回収することができる。移行品を効率よく回収することにより、共重合成分としてポリオルガノシロキサンを実質的に含まない、すなわちポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂や、ポリカーボネート-ポリオルガノシロキサン共重合体を一定品質で効率よく得ることができる。 According to the production method of the present invention, a transition product (x ≦ polyorganosiloxane) produced when switching from continuous production of polycarbonate having a polyorganosiloxane content of less than x to continuous production of a polycarbonate-polyorganosiloxane copolymer. By confirming the presence of the ratio <y) using a fluorescent X-ray apparatus or a near-infrared spectroscopic analyzer, the transferred product can be efficiently recovered. By efficiently recovering the transition product, the polycarbonate resin and the polycarbonate-polyorganosiloxane copolymer that contain substantially no polyorganosiloxane as a copolymer component, that is, the polyorganosiloxane content is less than x, are fixed. Can be obtained efficiently with quality.
 以下、本発明を実施例により図2に示す製造ラインを用いてさらに具体的に説明するが、本発明はこれらの例により何ら限定されるものではない。ここで、各例において、粘度数及び粘度平均分子量(Mv)は、以下の方法によって求めた。 Hereinafter, the present invention will be described more specifically with reference to the production line shown in FIG. 2 by way of examples. However, the present invention is not limited to these examples. Here, in each example, the viscosity number and the viscosity average molecular weight (Mv) were determined by the following methods.
1.粘度数
 ISO1628-4(1999)に準拠して粘度数を測定した。
2.粘度平均分子量(Mv)の測定方法
 ウベローデ型粘度管にて、20℃における塩化メチレン溶液の極限粘度〔η〕を測定し、次の関係式(Schnellの式)より計算した。
   [η]=1.23×10-5×Mv0.83
1. Viscosity number The viscosity number was measured in accordance with ISO 1628-4 (1999).
2. Method for Measuring Viscosity Average Molecular Weight (Mv) The intrinsic viscosity [η] of a methylene chloride solution at 20 ° C. was measured with an Ubbelohde viscometer and calculated from the following relational expression (Schnell's formula).
[Η] = 1.23 × 10 −5 × Mv 0.83
実施例1(製造工程(I)→製造工程(II)→製造工程(III))
(1)ビスフェノールAの水酸化ナトリウム水溶液及びポリカーボネートオリゴマー
<ビスフェノールAの水酸化ナトリウム水溶液>
 ビスフェノールAの溶解槽233にて、5.6質量%水酸化ナトリウム水溶液に、後から溶解するビスフェノールAに対して2,000質量ppmの亜二チオン酸ナトリウムを加えた。この水酸化ナトリウム水溶液に、芳香族二価フェノールとしてビスフェノールAを、水溶液中の濃度が13.5質量%になるように溶解し、ビスフェノールAの水酸化ナトリウム水溶液を調製した。
<ポリカーボネートオリゴマー>
 ポリカーボネートオリゴマーとしてビスフェノールAのアルカリ水溶液、ホスゲン、塩化メチレン及びp-t-ブチルフェノールを用いて製造された、濃度318g/L、クロロホーメート基濃度0.75mol/L、重量平均分子量(Mw)=3,100、NMRより求めた末端基モル分率がp-t-ブチルフェノール(PTBP):OH:クロロホーメート(CF)基=3.3:7.7:89.0のポリカーボネートオリゴマーの塩化メチレン溶液を原料に使用した。
 なお、重量平均分子量(Mw)は、展開溶媒としてTHF(テトラヒドロフラン)を用い、GPC[カラム:TOSOH TSK-GEL MULTIPORE HXL-M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI]にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
Example 1 (Production process (I) → Production process (II) → Production process (III))
(1) Bisphenol A sodium hydroxide aqueous solution and polycarbonate oligomer <Bisphenol A sodium hydroxide aqueous solution>
In a bisphenol A dissolution tank 233, 2,000 mass ppm sodium dithionite was added to a 5.6 mass% sodium hydroxide aqueous solution with respect to bisphenol A to be dissolved later. In this aqueous sodium hydroxide solution, bisphenol A as an aromatic dihydric phenol was dissolved so that the concentration in the aqueous solution was 13.5% by mass to prepare an aqueous sodium hydroxide solution of bisphenol A.
<Polycarbonate oligomer>
Manufactured using an aqueous solution of bisphenol A as a polycarbonate oligomer, phosgene, methylene chloride and pt-butylphenol, concentration 318 g / L, chloroformate group concentration 0.75 mol / L, weight average molecular weight (Mw) = 3 , 100, Methylene chloride solution of polycarbonate oligomer having a terminal group molar fraction determined by NMR of pt-butylphenol (PTBP): OH: chloroformate (CF) group = 3.3: 7.7: 89.0 Was used as a raw material.
The weight average molecular weight (Mw) was determined by using THF (tetrahydrofuran) as a developing solvent, GPC [column: TOSOH TSK-GEL MULTIPORE HXL-M (two) + Shodex KF801 (one), temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
(2)重合工程
 重合工程(2)-1及び(2)-2における各成分の流量を以下の表1に示す。
<(2)-1>
 表1に示す流量で、上記(1)のポリカーボネートオリゴマー溶液と、塩化メチレンとを配管内で混合(塩化メチレン中でのポリカーボネートオリゴマーの濃度:216g/L)し、さらにスタティックミキサーでよく混合した後、混合液を熱交換器により19~22℃に冷却した。
 冷却した混合液を、さらにスタティックミキサーでよく混合した後、反応器222(Rx-1)に導入した。なお、反応器222(Rx-1)はタービン翼を供えたミキサー「パイプラインホモミキサー」[特殊機化工業(株)製]であり、回転数4,400rpmで運転した。
(2) Polymerization Step Table 1 below shows the flow rate of each component in the polymerization steps (2) -1 and (2) -2.
<(2) -1>
After mixing the polycarbonate oligomer solution of the above (1) and methylene chloride in the pipe at the flow rate shown in Table 1 (concentration of polycarbonate oligomer in methylene chloride: 216 g / L) and further mixing well with a static mixer The mixture was cooled to 19-22 ° C. with a heat exchanger.
The cooled mixture was further mixed well with a static mixer and then introduced into the reactor 222 (Rx-1). The reactor 222 (Rx-1) was a mixer “Pipeline Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.) equipped with turbine blades and operated at a rotational speed of 4,400 rpm.
<(2)-2>
 反応器222(Rx-1)を出た反応液を熱交換器で17~20℃まで冷却した後、反応器223(Rx-2)の直前で、まずはトリエチルアミンの1質量%水溶液(TEA水溶液)を加えた。次いで、ビスフェノールAの水酸化ナトリウム水溶液[(1)においてビスフェノールAの溶解槽233にて調製したもの]と15質量%水酸化ナトリウム水溶液(NaOH水溶液-2)とを合流させてスタティックミキサーでよく混合した後、さらにp-t-ブチルフェノール(PTBP)の8質量%塩化メチレン溶液を加えて配管内で混合したものを加えて反応器223(Rx-2)にて反応を行った。なお、反応器223(Rx-2)はタービン翼を供えたミキサー「パイプラインホモミキサー」[特殊機化工業(株)製]であり、回転数4,400rpmで運転した。
 反応器223(Rx-2)を出た重合反応液は、反応器224(Rx-3)と反応器225(Rx-4)に順次導き、温度を38℃以下に制御しながら重合反応を完結させた。反応器224(Rx-3)はオリフィスプレートと冷却ジャケットを有する反応器であり、反応器225(Rx-4)は冷却ジャケットを有する塔型の5段反応器である。
<(2) -2>
The reaction solution exiting the reactor 222 (Rx-1) was cooled to 17 to 20 ° C. with a heat exchanger, and immediately before the reactor 223 (Rx-2), first, a 1% by mass aqueous solution of triethylamine (TEA aqueous solution) Was added. Next, a sodium hydroxide aqueous solution of bisphenol A [prepared in bisphenol A dissolution tank 233 in (1)] and a 15% by mass sodium hydroxide aqueous solution (NaOH aqueous solution-2) were combined and mixed well with a static mixer. After that, an 8 mass% methylene chloride solution of pt-butylphenol (PTBP) was further added and mixed in the pipe, and the reaction was carried out in the reactor 223 (Rx-2). The reactor 223 (Rx-2) was a mixer “Pipeline Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.) equipped with turbine blades and operated at a rotational speed of 4,400 rpm.
The polymerization reaction liquid exiting the reactor 223 (Rx-2) is sequentially led to the reactor 224 (Rx-3) and the reactor 225 (Rx-4) to complete the polymerization reaction while controlling the temperature to 38 ° C. or lower. I let you. The reactor 224 (Rx-3) is a reactor having an orifice plate and a cooling jacket, and the reactor 225 (Rx-4) is a column type five-stage reactor having a cooling jacket.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(3)分離工程,(4)濃縮工程,(5)粉末化工程
 この塔型反応器225(Rx-4)の上部からオーバーフローした重合反応物については、静置分離にて有機層と水相を分離した後、pHを13.5に調整した水酸化ナトリウム水溶液、pHを1.5に調整した塩酸水溶液及び純水を用いてポリマーを含む有機相(ポリマー溶液)を順次洗浄し、清澄なポリマー溶液を得た(ポリマー濃度:15質量%)。この清澄なポリマー溶液から塩化メチレンを加熱減圧下で蒸発させ、ビスフェノールAポリカーボネート溶液を35質量%に濃縮させた(分離/洗浄/濃縮工程24)。この濃縮液をニーダーに投入して、減圧、加熱下で溶媒である塩化メチレンを蒸発させて得られた固形物を粉砕して白色のビスフェノールAポリカーボネート粉末(ポリオルガノシロキサンを実質的に含まないポリカーボネート粉末)を8kg/hrで連続して得た(粉末化工程26)。連続製造されたポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂の粘度数及び粘度平均分子量(Mv)を測定した。結果を表2に示す。このポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂は、制御装置28により開閉弁の開閉を制御して容器a(29)に連続して導入した。
(3) Separation step, (4) Concentration step, (5) Powdering step For the polymerization reaction product overflowing from the upper part of the tower reactor 225 (Rx-4), the organic layer and the aqueous phase were separated by stationary separation. The organic phase containing the polymer (polymer solution) was washed successively with an aqueous sodium hydroxide solution adjusted to pH 13.5, an aqueous hydrochloric acid solution adjusted to pH 1.5 and pure water, A polymer solution was obtained (polymer concentration: 15% by mass). From this clear polymer solution, methylene chloride was evaporated under heating and reduced pressure, and the bisphenol A polycarbonate solution was concentrated to 35% by mass (separation / washing / concentration step 24). This concentrated solution is put into a kneader, and solids obtained by evaporating methylene chloride as a solvent under reduced pressure and heating are pulverized to obtain white bisphenol A polycarbonate powder (a polycarbonate substantially free of polyorganosiloxane). Powder) was continuously obtained at 8 kg / hr (powdering step 26). The viscosity number and viscosity average molecular weight (Mv) of a polycarbonate resin substantially free of polyorganosiloxane produced continuously were measured. The results are shown in Table 2. This polycarbonate resin substantially free of polyorganosiloxane was continuously introduced into the container a (29) by controlling the opening / closing of the on-off valve by the control device.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<製造工程(II)>
 50時間連続製造後、ポリオルガノシロキサン含有割合が6.0質量%(y=6.0)のポリカーボネート-ポリオルガノシロキサン共重合体を製造するために、ジメチルシロキサン単位の繰り返し数(n)が90であるアリルフェノール末端変性ポリジメチルシロキサンの20質量%塩化メチレン溶液を2.6kg/hrの導入速度で、ポリカーボネートオリゴマー溶液と、塩化メチレンとの混合溶液中に添加位置234にて導入し、スタティックミキサーでよく混合し熱交換器で冷却した混合液に、トリエチルアミン(TEA)の1質量%塩化メチレン溶液を配管内で混合した。スタティックミキサーで混合しながら、反応器222(Rx-1)直前で8.0質量%水酸化ナトリウム水溶液(NaOH水溶液-1)を加え、反応器222(Rx-1)にて塩化メチレン相を連続相としながらポリカーボネートオリゴマーとアリルフェノール末端変性PDMSの反応(予備重合)を行った以外は、製造工程(I)と同様にして連続運転を行った。
 アリルフェノール末端変性ポリジメチルシロキサンの供給開始後、30分おきに得られたポリカーボネート粉末を採取して、蛍光X線装置を用いてポリオルガノシロキサン含有割合の測定を行った。
 ポリオルガノシロキサンの濃度(ポリオルガノシロキサン含有割合)は、事前にNMRでポリオルガノシロキサン濃度を定量したサンプルを用いて蛍光X線分析装置27にて測定したケイ素原子のX線強度から検量線を作成し、実際のサンプルを測定することにより得られるX線の強度比から測定した。
 ポリジメチルシロキサンの供給開始後、3時間後に測定したポリカーボネート粉末中のポリオルガノシロキサン含有割合が0.01質量%であることを確認した。
 測定時間に1時間を要したため、ポリジメチルシロキサンの供給開始後、4時間後から得られたポリカーボネート粉末を、容器b(30)に移行品として導入した。ポリオルガノシロキサン含有割合は、設定値の6.0質量%を目指して上昇していくのを近赤外分光分析装置で確認した。なお、近赤外分光分析装置による分析値は、ポリカーボネート粉末を採取後5分程度で測定値が得られるので、5質量%を超えてからは10分間隔で測定した。
 ポリジメチルシロキサンの供給開始後、6時間後に近赤外分光分析装置により測定したポリオルガノシロキサン含有割合が6.0質量%であることを確認したので、直ちに、容器c(31)にポリオルガノシロキサン含有割合が6.0質量%のポリカーボネート-ポリオルガノシロキサン共重合体として導入した。
 移行品用の容器b(30)には、2時間の間に製造された移行品が貯蔵された。また、ポリオルガノシロキサン含有割合が6.0質量%である一定グレードのポリカーボネート-ポリオルガノシロキサン共重合体を、移行品用の容器b(30)にほとんど導入することなく、容器c(31)に導入することができた。
<Manufacturing process (II)>
In order to produce a polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of 6.0% by mass (y = 6.0) after 50 hours of continuous production, the repeat number (n) of dimethylsiloxane units was 90 A 20% by mass methylene chloride solution of allylphenol-terminated polydimethylsiloxane is introduced at a rate of 2.6 kg / hr into a mixed solution of a polycarbonate oligomer solution and methylene chloride at an addition position 234, and a static mixer A 1% by mass methylene chloride solution of triethylamine (TEA) was mixed in a pipe with the mixed solution which was mixed well and cooled with a heat exchanger. While mixing with a static mixer, 8.0 mass% sodium hydroxide aqueous solution (NaOH aqueous solution-1) was added immediately before the reactor 222 (Rx-1), and the methylene chloride phase was continuously added in the reactor 222 (Rx-1). A continuous operation was carried out in the same manner as in the production step (I) except that the reaction (preliminary polymerization) of the polycarbonate oligomer and the allylphenol terminal-modified PDMS was performed while maintaining the phase.
After starting the supply of allylphenol terminal-modified polydimethylsiloxane, the polycarbonate powder obtained every 30 minutes was collected, and the polyorganosiloxane content ratio was measured using a fluorescent X-ray apparatus.
Concentration of polyorganosiloxane (polyorganosiloxane content) is a calibration curve based on the X-ray intensity of silicon atoms measured with X-ray fluorescence analyzer 27 using a sample whose polyorganosiloxane concentration has been determined in advance by NMR. And it measured from the intensity | strength ratio of X-rays obtained by measuring an actual sample.
It was confirmed that the polyorganosiloxane content in the polycarbonate powder measured 0.01 hours after starting the supply of polydimethylsiloxane was 0.01% by mass.
Since 1 hour was required for the measurement time, the polycarbonate powder obtained 4 hours after the start of the supply of polydimethylsiloxane was introduced into the container b (30) as a transition product. It was confirmed with a near-infrared spectroscopic analyzer that the polyorganosiloxane content increased with the aim of reaching 6.0% by mass of the set value. In addition, since the measured value by a near-infrared spectroscopy analyzer can obtain a measured value in about 5 minutes after extract | collecting polycarbonate powder, it measured at intervals of 10 minutes after exceeding 5 mass%.
6 hours after starting the supply of polydimethylsiloxane, it was confirmed that the polyorganosiloxane content measured by the near-infrared spectrometer was 6.0% by mass, so that the polyorganosiloxane was immediately placed in the container c (31). It was introduced as a polycarbonate-polyorganosiloxane copolymer having a content of 6.0% by mass.
The transition product produced in 2 hours was stored in the transition product container b (30). In addition, a specific grade of polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of 6.0% by mass is introduced into the container c (31) with almost no introduction into the container b (30) for the transition product. Could be introduced.
実施例2(製造工程(III)→製造工程(II)→製造工程(I))
 図2に示す製造ラインを用いて、ポリカーボネート-ポリジメチルシロキサン共重合体を連続的に製造した。具体的には以下の通りである。
(1)ビスフェノールAの水酸化ナトリウム水溶液及びポリカーボネートオリゴマー
 実施例1と同様にビスフェノールAの水酸化ナトリウム水溶液を調製した。また、実施例1と同じポリカーボネートオリゴマーを用いた。
Example 2 (Production process (III) → Production process (II) → Production process (I))
A polycarbonate-polydimethylsiloxane copolymer was continuously produced using the production line shown in FIG. Specifically, it is as follows.
(1) Sodium hydroxide aqueous solution of bisphenol A and polycarbonate oligomer An aqueous sodium hydroxide solution of bisphenol A was prepared in the same manner as in Example 1. The same polycarbonate oligomer as in Example 1 was used.
(2)重合工程~(6)造粒工程
 表1に示す流量で、上記ポリカーボネートオリゴマー溶液と、塩化メチレンを配管内で混合(ポリカーボネートオリゴマーの濃度:221g/L)してから、最初からジメチルシロキサン単位の繰り返し数(n)が90であるアリルフェノール末端変性ポリジメチルシロキサンの20質量%塩化メチレン溶液を加えて配管内で混合したこと以外は、実施例1と同様に重合を行った。各成分の流量等を表3に示す。
(2) Polymerization step to (6) Granulation step The above-mentioned polycarbonate oligomer solution and methylene chloride were mixed in the pipe at the flow rate shown in Table 1 (polycarbonate oligomer concentration: 221 g / L), and then dimethylsiloxane from the beginning. Polymerization was carried out in the same manner as in Example 1 except that a 20% by mass methylene chloride solution of allylphenol terminal-modified polydimethylsiloxane having a unit repeating number (n) of 90 was added and mixed in the pipe. Table 3 shows the flow rate of each component.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<製造工程(II)>
 50時間連続製造後、ビスフェノールAポリカーボネート(ポリオルガノシロキサンを実質的に含まないポリカーボネート)を製造するために、
(1)アリルフェノール末端変性ポリジメチルシロキサンの20質量%塩化メチレン溶液、
(2)トリエチルアミン(TEA)の1質量%塩化メチレン溶液、
(3)8.0質量%水酸化ナトリウム水溶液(NaOH水溶液-1)、
の順で、各溶液の供給を停止した。
 アリルフェノール末端変性ポリジメチルシロキサンの供給停止後、5分おきに得られたポリカーボネート粉末を採取して、近赤外分光分析装置を用いてポリオルガノシロキサン含有割合の測定を行った。
 ポリオルガノシロキサン濃度(ポリオルガノシロキサン含有割合)は、事前にNMRでポリオルガノシロキサン濃度を定量したサンプルを用いて分析装置27(近赤外(NIR)分光分析計)を用いてスペクトルを測定し、各波長の測定点(1500ポイント)における変動を多変量解析して作成した検量線を用い、実際のサンプルのスペクトルからポリオルガノシロキサン濃度を算出した。測定波長は4000~5000cm-1(2500~2000nm)、5500~10000cm-1(1820~800nm)までの各波長を使用した。なお、5000~5500cm-1は水分の影響を受けるので除外した。
 ポリジメチルシロキサンの供給停止から3時間後に測定したポリカーボネート粉末中のポリオルガノシロキサン含有割合が5.8質量%であることを確認したため、直ちに粉末を受け入れる容器を容器b(30)に変更した。
 ポリジメチルシロキサンの供給停止から3時間後から、30分おきに得られたポリカーボネート粉末を採取して、蛍光X線装置を用いてポリオルガノシロキサン含有割合の測定を行った。ポリジメチルシロキサンの供給停止後、6時間後に測定したポリカーボネート粉末中のポリオルガノシロキサン含有割合が0.03質量%であることを確認した。測定時間に1時間を要したので、ポリジメチルシロキサンの供給停止後、7時間後から得られたポリカーボネート粉末は、容器a(29)にビスフェノールAポリカーボネート(共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂)として導入した。
 移行品用の容器b(30)には、3時間分の間に製造された移行品が貯蔵された。また、ポリオルガノシロキサン含有割合が0.03質量%である一定グレードの共重合成分としてポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂を、移行品容器b(30)にほとんど導入することなく、容器a(29)に導入することができた。
<Manufacturing process (II)>
In order to produce bisphenol A polycarbonate (polycarbonate substantially free of polyorganosiloxane) after 50 hours of continuous production,
(1) 20% by mass methylene chloride solution of allylphenol-terminated polydimethylsiloxane,
(2) 1% by mass methylene chloride solution of triethylamine (TEA),
(3) 8.0% by mass sodium hydroxide aqueous solution (NaOH aqueous solution-1),
In this order, the supply of each solution was stopped.
After stopping the supply of allylphenol terminal-modified polydimethylsiloxane, the polycarbonate powder obtained every 5 minutes was collected, and the polyorganosiloxane content ratio was measured using a near infrared spectroscopic analyzer.
The polyorganosiloxane concentration (polyorganosiloxane content ratio) is measured using an analyzer 27 (near infrared (NIR) spectrometer) using a sample whose polyorganosiloxane concentration is quantified in advance by NMR, The polyorganosiloxane concentration was calculated from the spectrum of the actual sample using a calibration curve prepared by multivariate analysis of the variation at each wavelength measurement point (1500 points). Measurement wavelengths were 4000 to 5000 cm −1 (2500 to 2000 nm) and 5500 to 10000 cm −1 (1820 to 800 nm). Note that 5000 to 5500 cm −1 was excluded because it was affected by moisture.
Since it was confirmed that the polyorganosiloxane content in the polycarbonate powder measured 3 hours after the supply of polydimethylsiloxane was stopped was 5.8% by mass, the container that immediately received the powder was changed to container b (30).
Three hours after the supply of polydimethylsiloxane was stopped, polycarbonate powder obtained every 30 minutes was collected, and the content of polyorganosiloxane was measured using a fluorescent X-ray apparatus. After stopping the supply of polydimethylsiloxane, it was confirmed that the polyorganosiloxane content in the polycarbonate powder measured 6 hours later was 0.03% by mass. Since 1 hour was required for the measurement time, the polycarbonate powder obtained 7 hours after the supply of polydimethylsiloxane was stopped, the container a (29) was substantially charged with bisphenol A polycarbonate (polyorganosiloxane as a copolymerization component). Polycarbonate resin not containing).
The transition product manufactured in 3 hours was stored in the transition product container b (30). In addition, a polycarbonate resin substantially free of polyorganosiloxane as a certain grade of copolymer component having a polyorganosiloxane content ratio of 0.03% by mass is hardly introduced into the transition product container b (30). a (29).
比較例1(製造工程(I)→製造工程(II)→製造工程(III))
 実施例1において、蛍光X線装置及び近赤外分光分析装置を使用する代わりに、NMRで測定することにより、ポリオルガノシロキサン含有割合を測定し、移行品の管理を行った。NMRの測定では、ポリカーボネート粉末を採取してから、測定値が出るまでに3時間かかり、例え運よくポリカーボネート含有割合の上昇開始点においてサンプルを採取し、分析結果が得られたとしても、その3時間で製造された移行品は全て、ポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂用の容器aに導入されることとなる。また、ポリオルガノシロキサン含有割合が6.0質量%になった時点でのポリカーボネート粉末を採取できたとしても、測定値が出るまでに3時間かかり、その間に製造された一定グレードのポリカーボネート-ポリオルガノシロキサン共重合体は、移行品用容器b(30)に導入されることとなり、規格品の製造量の減少を招くこととなったことを確認した。
Comparative Example 1 (Production process (I) → Production process (II) → Production process (III))
In Example 1, instead of using a fluorescent X-ray apparatus and a near-infrared spectroscopic analyzer, the polyorganosiloxane content was measured by NMR, and the transition product was managed. In the NMR measurement, it takes 3 hours from taking the polycarbonate powder until the measured value is obtained. For example, even if the sample is taken at the starting point of the increase in the polycarbonate content, All the transition products produced in time will be introduced into the container a for polycarbonate resin substantially free of polyorganosiloxane. Even if the polycarbonate powder can be collected when the polyorganosiloxane content is 6.0% by mass, it takes 3 hours to obtain the measured value. It was confirmed that the siloxane copolymer was introduced into the transition product container b (30), leading to a decrease in the production amount of the standard product.
比較例2(製造工程(III)→製造工程(II)→製造工程(I))
 実施例2において、蛍光X線装置及び近赤外分光分析装置を使用する代わりに、NMRで測定することにより、ポリオルガノシロキサン含有割合を測定し、移行品の管理を行った。NMRの測定では、ポリカーボネート-ポリオルガノシロキサン粉末を採取してから、測定値が出るまでに3時間かかり、例え運よく下降開始点でサンプルを採取し、分析結果が得られたとしても、その3時間で製造された移行品は全て、ポリカーボネート-ポリオルガノシロキサン用の容器c(31)に導入されることとなる。
 また、ポリオルガノシロキサン含有割合が0.03質量%になった時点でのポリカーボネート粉末を採取できたとしても、測定値が出るまでに3時間かかり、その間に製造された一定グレードのポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂は、移行品用容器b(30)に導入されることとなり、一定グレードのポリオルガノシロキサンを実質的に含まないポリカーボネート樹脂の製造量の減少を招くこととなったことを確認した。
Comparative Example 2 (Production process (III) → Production process (II) → Production process (I))
In Example 2, instead of using a fluorescent X-ray apparatus and a near-infrared spectroscopic analyzer, the polyorganosiloxane content was measured by NMR and the transition product was managed. In the NMR measurement, it takes 3 hours from taking the polycarbonate-polyorganosiloxane powder until the measured value is obtained. For example, even if the sample is taken at the starting point of the descent and the analysis result is obtained, the 3 All transition products produced over time will be introduced into the container c (31) for polycarbonate-polyorganosiloxane.
Moreover, even if the polycarbonate powder can be collected when the polyorganosiloxane content is 0.03% by mass, it takes 3 hours until the measured value is obtained. The polycarbonate resin which does not substantially contain is to be introduced into the transition product container b (30), leading to a decrease in the production amount of the polycarbonate resin which does not substantially contain a certain grade of polyorganosiloxane. It was confirmed.
 本発明によれば、ポリオルガノシロキサンの含有割合がx未満であるポリカーボネートの連続製造からポリカーボネート-ポリオルガノシロキサン共重合体の連続製造へと切り替える際に生じる移行品(x≦ポリオルガノシロキサン割合<y)の存在を蛍光X線装置又近赤外分光分析装置を用いて確認することにより、移行品を効率よく回収することができる。移行品を効率よく回収することにより、ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂や、ポリカーボネート-ポリオルガノシロキサン共重合体を一定品質で効率よく得ることができる。 According to the present invention, a transition product (x ≦ polyorganosiloxane ratio <y) produced when switching from continuous production of polycarbonate having a polyorganosiloxane content of less than x to continuous production of a polycarbonate-polyorganosiloxane copolymer. ) Is confirmed using a fluorescent X-ray apparatus or a near-infrared spectroscopic analyzer, so that the transferred product can be efficiently recovered. By efficiently recovering the transition product, it is possible to efficiently obtain a polycarbonate resin having a polyorganosiloxane content of less than x and a polycarbonate-polyorganosiloxane copolymer with a certain quality.
111 ビスフェノールA溶解槽
  1 オリゴマー調製工程
  2 重合工程
  3 分離工程
  4 洗浄工程
  5 濃縮工程
  6 粉末化/造粒工程
  7 移送ライン
 11 分析装置
 12 制御装置
233 ビスフェノールA溶解槽
234 ポリオルガノシロキサン添加位置
222 共重合反応器
223 共重合反応器
224 共重合反応器
225 共重合反応器
 24 分離/洗浄/濃縮工程
 26 粉末化工程
 27 近赤外分光分析または蛍光X線分析装置
 28 制御装置
 29 容器a
 30 容器b
 31 容器c
111 Bisphenol A dissolution tank 1 Oligomer preparation process 2 Polymerization process 3 Separation process 4 Washing process 5 Concentration process 6 Pulverization / granulation process 7 Transfer line 11 Analyzer 12 Controller 233 Bisphenol A dissolution tank 234 Polyorganosiloxane addition position 222 Polymerization reactor 223 Copolymerization reactor 224 Copolymerization reactor 225 Copolymerization reactor 24 Separation / washing / concentration step 26 Powdering step 27 Near-infrared spectroscopic analysis or X-ray fluorescence analysis device 28 Control device 29 Container a
30 container b
31 container c

Claims (11)

  1.  ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂を製造する製造工程(I)及び該製造工程(I)により得られるポリカーボネート樹脂を回収する回収工程(A)、
     ポリオルガノシロキサンの含有割合がx≦ポリオルガノシロキサン含有割合<yであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する製造工程(II)及び該製造工程(II)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を回収する回収工程(B)、
     ポリオルガノシロキサンの含有割合がyであるポリカーボネート-ポリオルガノシロキサン共重合体を製造する製造工程(III)及び該製造工程(III)により得られるポリカーボネート-ポリオルガノシロキサン共重合体を回収する回収工程(C)
    を(I)及び(A)~(III)及び(C)の順に、または(III)及び(C)~(I)及び(A)の順に連続的に有するポリカーボネート樹脂の製造方法において、ここで
     前記回収工程(A)においては、前記ポリオルガノシロキサンの含有割合がx未満であることを蛍光X線分析法により確認しながらポリカーボネート樹脂を回収し、
     前記回収工程(B)においては、前記ポリオルガノシロキサン含有割合が、(i)x≦ポリオルガノシロキサン含有割合であることを蛍光X線分析法により確認し、及び(ii)ポリオルガノシロキサン含有割合<yであることを近赤外分光分析法または蛍光X線分析法により確認しながらポリカーボネート-ポリオルガノシロキサン共重合体を回収し(但し、(i)の範囲と(ii)の範囲とは重複しない)、
     前記回収工程(C)においては、ポリオルガノシロキサンの含有割合がyであることを近赤外分光分析法または蛍光X線分析法により確認しながらポリカーボネート-ポリオルガノシロキサン共重合体を回収する、
    ポリカーボネート樹脂の製造方法。
    A production step (I) for producing a polycarbonate resin having a polyorganosiloxane content of less than x, and a recovery step (A) for collecting the polycarbonate resin obtained by the production step (I),
    Production process (II) for producing a polycarbonate-polyorganosiloxane copolymer in which the polyorganosiloxane content ratio is x ≦ polyorganosiloxane content ratio <y, and the polycarbonate-polyorganosiloxane copolymer obtained by the production process (II). A recovery step (B) for recovering the polymer;
    Production process (III) for producing a polycarbonate-polyorganosiloxane copolymer having a polyorganosiloxane content of y, and a recovery process for collecting the polycarbonate-polyorganosiloxane copolymer obtained by the production process (III) ( C)
    In the process for producing a polycarbonate resin, wherein (I) and (A) to (III) and (C) or in the order of (III) and (C) to (I) and (A), In the recovery step (A), the polycarbonate resin is recovered while confirming by X-ray fluorescence analysis that the content ratio of the polyorganosiloxane is less than x.
    In the recovery step (B), the polyorganosiloxane content ratio is confirmed by fluorescent X-ray analysis that (i) x ≦ polyorganosiloxane content ratio, and (ii) polyorganosiloxane content ratio < The polycarbonate-polyorganosiloxane copolymer is recovered while confirming y by near-infrared spectroscopy or fluorescent X-ray analysis (however, the range of (i) and the range of (ii) do not overlap) ),
    In the recovery step (C), the polycarbonate-polyorganosiloxane copolymer is recovered while confirming that the polyorganosiloxane content is y by near infrared spectroscopy or fluorescent X-ray analysis.
    A method for producing a polycarbonate resin.
  2.  前記ポリオルガノシロキサン含有割合xが0.01~0.5質量%である、請求項1に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 1, wherein the polyorganosiloxane content x is 0.01 to 0.5 mass%.
  3.  蛍光X線分析法による確認に供する前記ポリカーボネート-ポリオルガノシロキサン共重合体及び/またはポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂の形態が粉末状、ペレット状、シート状またはフィルム状である、請求項1または2に記載のポリカーボネート樹脂の製造方法。 The polycarbonate-polyorganosiloxane copolymer and / or the polycarbonate resin in which the content ratio of the polyorganosiloxane used for confirmation by X-ray fluorescence analysis is less than x is in the form of powder, pellet, sheet or film. The manufacturing method of the polycarbonate resin of Claim 1 or 2.
  4.  前記ポリカーボネート-ポリオルガノシロキサン共重合体及び/またはポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂の形態がシート状またはフィルム状である、請求項3に記載のポリカーボネート樹脂の製造方法。 4. The method for producing a polycarbonate resin according to claim 3, wherein the polycarbonate resin in which the content ratio of the polycarbonate-polyorganosiloxane copolymer and / or the polyorganosiloxane is less than x is a sheet or a film.
  5.  近赤外分光分析法による確認に供する前記ポリオルガノシロキサンの含有割合がx未満であるポリカーボネート樹脂及び/またはポリカーボネート-ポリオルガノシロキサン共重合体の形態が粉末状またはペレット状である、請求項1または2に記載のポリカーボネート樹脂の製造方法。 The form of the polycarbonate resin and / or the polycarbonate-polyorganosiloxane copolymer in which the content ratio of the polyorganosiloxane used for confirmation by near infrared spectroscopy is less than x is a powder or a pellet. 2. A method for producing a polycarbonate resin according to 2.
  6.  前記製造工程(I)においては二価フェノールとカーボネート前駆体とを重合させることによりポリカーボネート樹脂を製造し、前記製造工程(II)及び(III)においては前記二価フェノールとカーボネート前駆体とを重合させる反応系にポリオルガノシロキサンを添加して共重合させることによりポリカーボネート-ポリオルガノシロキサン共重合体を製造する、請求項1~5のいずれかに記載のポリカーボネート樹脂の製造方法。 In the production step (I), a polycarbonate resin is produced by polymerizing a dihydric phenol and a carbonate precursor, and in the production steps (II) and (III), the dihydric phenol and a carbonate precursor are polymerized. The method for producing a polycarbonate resin according to any one of claims 1 to 5, wherein a polycarbonate-polyorganosiloxane copolymer is produced by adding polyorganosiloxane to the reaction system to be copolymerized.
  7.  前記製造工程(I)~(III)において、ポリカーボネートオリゴマーを調製した後に重合を行う、請求項6に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 6, wherein in the production steps (I) to (III), a polymerization is performed after preparing a polycarbonate oligomer.
  8.  前記カーボネート前駆体がホスゲンである、請求項6または7に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 6 or 7, wherein the carbonate precursor is phosgene.
  9.  前記二価フェノールが、下記一般式(1)で表される、請求項6~8のいずれかに記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    [式中、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-、または-CO-を示す。a及びbは、それぞれ独立に0~4の整数である。]
    The method for producing a polycarbonate resin according to any one of claims 6 to 8, wherein the dihydric phenol is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-. a and b are each independently an integer of 0 to 4. ]
  10.  前記ポリオルガノシロキサンが、下記一般式(2)または(3)で表されるポリオルガノシロキサンである、請求項6~9のいずれかに記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    [式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Yは-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-を示す。前記Rは、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。Rは、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。Rは、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqの和はnであり、nは30~500の平均繰り返し数を示す。]
    The method for producing a polycarbonate resin according to any one of claims 6 to 9, wherein the polyorganosiloxane is a polyorganosiloxane represented by the following general formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002

    [Wherein R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O— is shown. R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group. R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 9 represents a diarylene group. R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. The sum of p and q is n, and n represents an average number of repetitions of 30 to 500. ]
  11.  請求項1~10のいずれかに記載の方法により製造されるポリカーボネート樹脂。 A polycarbonate resin produced by the method according to any one of claims 1 to 10.
PCT/JP2014/083710 2014-03-31 2014-12-19 Production method for polycarbonate resin WO2015151354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073443A JP2015196692A (en) 2014-03-31 2014-03-31 Method for producing polycarbonate resin
JP2014-073443 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151354A1 true WO2015151354A1 (en) 2015-10-08

Family

ID=54239711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083710 WO2015151354A1 (en) 2014-03-31 2014-12-19 Production method for polycarbonate resin

Country Status (3)

Country Link
JP (1) JP2015196692A (en)
TW (1) TW201536834A (en)
WO (1) WO2015151354A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255595A (en) * 1992-03-16 1993-10-05 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH06100684A (en) * 1992-09-21 1994-04-12 Idemitsu Petrochem Co Ltd Production of polycarbonate-polyorganosiloxane copolymer
JPH10158499A (en) * 1996-10-03 1998-06-16 Mitsubishi Gas Chem Co Inc Polycarbonate resin composition
JPH10158379A (en) * 1996-10-03 1998-06-16 Mitsubishi Gas Chem Co Inc New polycarbonate polymer
JP2004325372A (en) * 2003-04-28 2004-11-18 Teijin Chem Ltd Method of measuring concentration of component of alkali metal salt of aromatic dihydroxy compound, method of preparing raw material, and manufacturing method for aromatic polycarbonate
JP2012521482A (en) * 2009-03-24 2012-09-13 スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for monitoring monomer concentration in interfacial polycarbonate manufacturing process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255595A (en) * 1992-03-16 1993-10-05 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH06100684A (en) * 1992-09-21 1994-04-12 Idemitsu Petrochem Co Ltd Production of polycarbonate-polyorganosiloxane copolymer
JPH10158499A (en) * 1996-10-03 1998-06-16 Mitsubishi Gas Chem Co Inc Polycarbonate resin composition
JPH10158379A (en) * 1996-10-03 1998-06-16 Mitsubishi Gas Chem Co Inc New polycarbonate polymer
JP2004325372A (en) * 2003-04-28 2004-11-18 Teijin Chem Ltd Method of measuring concentration of component of alkali metal salt of aromatic dihydroxy compound, method of preparing raw material, and manufacturing method for aromatic polycarbonate
JP2012521482A (en) * 2009-03-24 2012-09-13 スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for monitoring monomer concentration in interfacial polycarbonate manufacturing process

Also Published As

Publication number Publication date
TW201536834A (en) 2015-10-01
JP2015196692A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
WO2015146575A1 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
JP6457384B2 (en) Polycarbonate-polyorganosiloxane copolymer and method for producing the same
JP6915941B2 (en) How to use polyorganosiloxane
JP6355951B2 (en) Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same
TWI547509B (en) Polycarbonate-polyorganosiloxane copolymer and method for producing the same
CN106977710B (en) Polycarbonate-polyorganosiloxane copolymer
JP6913028B2 (en) Polycarbonate resin composition
CN107406668B (en) Polycarbonate resin composition and molded article thereof
WO2016080496A1 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
TWI544033B (en) Polycarbonate - Polyorganosiloxane Copolymer Continuous Manufacturing Method
JP6589248B2 (en) Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same
JPH04288332A (en) Flame retardant organopolysiloxane- polycarbonate block copolymer
WO2015145874A1 (en) Polycarbonate-polyorganosiloxane copolymer production method
US10738154B2 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
WO2015151354A1 (en) Production method for polycarbonate resin
US20170327639A1 (en) Polycarbonate-polyorganosiloxane copolymer production method
EP3207079B1 (en) Polysiloxane-polycarbonate copolymers and method for production thereof
TWI664205B (en) Manufacturing method of polycarbonate
US10059800B2 (en) Process for producing polycarbonate
WO2016068079A1 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
US20170313824A1 (en) Method for preparing polycarbonate-polyorganosiloxane copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887726

Country of ref document: EP

Kind code of ref document: A1