WO2016068079A1 - Method for producing polycarbonate-polyorganosiloxane copolymer - Google Patents

Method for producing polycarbonate-polyorganosiloxane copolymer Download PDF

Info

Publication number
WO2016068079A1
WO2016068079A1 PCT/JP2015/080121 JP2015080121W WO2016068079A1 WO 2016068079 A1 WO2016068079 A1 WO 2016068079A1 JP 2015080121 W JP2015080121 W JP 2015080121W WO 2016068079 A1 WO2016068079 A1 WO 2016068079A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyorganosiloxane
polycarbonate
group
producing
organic solvent
Prior art date
Application number
PCT/JP2015/080121
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 長尾
昌博 田中
安田 俊之
石川 康弘
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2016068079A1 publication Critical patent/WO2016068079A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences

Definitions

  • the present invention relates to a method for producing a polycarbonate-polyorganosiloxane copolymer.
  • Polycarbonate-polyorganosiloxane copolymers are attracting attention because of their high impact resistance, chemical resistance, and flame retardancy, and are widely used in various fields such as electrical and electronic equipment and automobile fields. Use is expected. In particular, the use of portable telephones, mobile personal computers, digital cameras, video cameras, power tools and other housings, and other daily necessities is expanding.
  • a typical polycarbonate a homopolycarbonate in which the starting dihydric phenol is 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is generally used.
  • a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane with homopolycarbonate is known.
  • the polycarbonate-polyorganosiloxane copolymer is produced by an interfacial polymerization method, a transesterification method, or the like, and it is required to produce a polycarbonate-polyorganosiloxane copolymer containing a raw material polyorganosiloxane in a predetermined content ratio. .
  • the polycarbonate-polyorganosiloxane copolymer is generally produced by reacting raw material dihydric phenol, carbonate precursor and polyorganosiloxane in the presence of an alkaline aqueous solution and an organic solvent.
  • a polycarbonate oligomer is prepared by reacting a dihydric phenol and a carbonate precursor in the presence of an alkaline aqueous solution and an organic solvent. It is preferable to polymerize in the presence (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 disclose that when a polycarbonate oligomer or the like and a raw material polyorganosiloxane are reacted in the presence of an alkaline aqueous solution and an organic solvent, the polyorganosiloxane is diluted with an organic solvent and introduced.
  • polyorganosiloxane is preferably dissolved or mixed in an organic solvent”.
  • the raw material polyorganosiloxane is added to the polycarbonate oligomer as a stock solution (without mixing with an organic solvent), the unreacted raw material polyorganosiloxane remains in the polycarbonate-polyorganosiloxane copolymer and the resulting product becomes cloudy. There's a problem.
  • An object of the present invention is to provide a method for producing a polycarbonate-polyorganosiloxane copolymer having excellent transparency.
  • the present inventors have found that the amount of unreacted polyorganosiloxane can be reduced by supplying an organic solvent to the raw material polyorganosiloxane under specific conditions, thereby solving the above-mentioned problems. That is, the present invention relates to the following [1] to [16].
  • [1] A method for producing a polycarbonate-polyorganosiloxane copolymer by introducing a polycarbonate oligomer, an alkaline aqueous solution of a dihydric phenol and a polyorganosiloxane into a polycondensation reaction zone and subjecting the polycondensation reaction zone to a polycondensation reaction.
  • an organic solvent is supplied to the polyorganosiloxane to prepare a polyorganosiloxane solution, and a plurality of organic solvents are supplied in the step (1).
  • a process for producing a polycarbonate-polyorganosiloxane copolymer which is carried out in stages, and the concentration of the polyorganosiloxane solution is lowered stepwise.
  • step (1) Production of polycarbonate-polyorganosiloxane copolymer according to any one of [1] to [6], wherein in step (1), an organic solvent is supplied to the polyorganosiloxane in two stages.
  • Method. [8] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of the above [1] to [7], wherein the organic solvent in the step (1) is methylene chloride.
  • step (1) is methylene chloride.
  • the polycondensation reaction zone comprises a plurality of reactors.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-.
  • a and b are each independently an integer of 0 to 4.
  • Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O—, and a plurality of Y may be the same or different from each other.
  • R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group.
  • R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • R 9 represents a diarylene group.
  • R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group.
  • Z represents a hydrogen atom or a halogen atom, and a plurality of Z may be the same as or different from each other.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid.
  • p and q are each an integer of 1 or more, the sum of p and q is 20 to 500, and n is an average number of repetitions of 20 to 500.
  • the resulting polycarbonate-polyorganosiloxane copolymer and its molded article have excellent transparency. Have sex.
  • the method for producing a polycarbonate-polyorganosiloxane copolymer of the present invention comprises introducing a polycarbonate oligomer, an aqueous alkali solution of dihydric phenol and a polyorganosiloxane into a polycondensation reaction zone, and subjecting the polycondensation reaction zone to a polycondensation reaction.
  • -A method of producing a polyorganosiloxane copolymer comprising the step (1) of supplying an organic solvent to the polyorganosiloxane to prepare a polyorganosiloxane solution before introducing it into the polycondensation reaction zone.
  • the organic solvent is supplied in a plurality of stages to reduce the polyorganosiloxane solution concentration stepwise.
  • the method for producing the polycarbonate-polyorganosiloxane copolymer of the present invention will be described in detail.
  • Step (1) is a step of preparing a polyorganosiloxane solution by supplying an organic solvent to the polyorganosiloxane before introducing the raw material polyorganosiloxane into the polycondensation reaction zone.
  • the solvent is supplied in a plurality of stages.
  • An organic solvent is supplied to the polyorganosiloxane in a plurality of stages, and finally the concentration of the polyorganosiloxane solution introduced into the polycondensation reaction zone is determined.
  • the first step when the organic solvent is supplied to the polyorganosiloxane in a plurality of steps, the first step (that is, the step of first supplying the organic solvent to the raw material polyorganosiloxane; hereinafter referred to as “step (1)”. It is preferable to supply an organic solvent to the raw material polyorganosiloxane so that the polyorganosiloxane solution concentration in (also referred to as -A)) is 10% by mass or more. Since the polyorganosiloxane has a relatively high viscosity, the dispersibility thereof in the polycarbonate oligomer and the organic solvent tends to be inferior.
  • the dispersibility of the polyorganosiloxane introduced into the polycondensation reaction zone into the polycarbonate oligomer and the organic solvent is low, the transparency of the obtained polycarbonate-polyorganosiloxane copolymer and the molded product thereof is lowered. I found out.
  • the concentration of the polyorganosiloxane solution in step (1) -A is more preferably 15% by mass or more.
  • the upper limit value of the polyorganosiloxane solution concentration in step (1) -A is usually 60% by mass, preferably 40% by mass, more preferably 30% by mass.
  • the polyorganosiloxane solution concentration in step (1) -A exceeds 60% by mass, the difference in viscosity before and after the subsequent organic solvent supply step, for example, the second step (hereinafter also referred to as “step (1) -B”). Therefore, the effect of the present invention cannot be exhibited, and the transparency of the obtained polycarbonate-polyorganosiloxane copolymer is lowered.
  • step (1) -A after the polyorganosiloxane solution concentration is set to 10% by mass or more as described above, an organic solvent is further supplied to the polyorganosiloxane solution to further reduce the polyorganosiloxane solution concentration.
  • the number of stages for supplying the organic solvent after step (1) -A is arbitrary, and as long as the organic solvent is supplied to the raw polyorganosiloxane as a result before introducing it into the polycondensation reaction zone. Satisfy the conditions of the present invention.
  • the concentration of the polyorganosiloxane solution immediately before introduction into the polycondensation reaction zone depends on the subsequent polymerization conditions or the amount of polyorganosiloxane in the target polycarbonate-polyorganosiloxane copolymer, but it is 1 to 6% by mass. Preferably, it is 1 to 4% by mass.
  • the organic solvent is supplied in a plurality of stages including step (1) -A so that the concentration of the polyorganosiloxane solution immediately before being introduced into the polycondensation reaction zone is within the above range.
  • an organic solvent to the raw material polyorganosiloxane solution in two stages of step (1) -A and step (1) -B.
  • a double plunger pump to suppress flow rate fluctuations and a micro motion type flow meter to detect the flow rate.
  • the flow meter is preferably installed at the outlet of step (1) -A or the outlet of step (1) -B, and more preferably at the outlet of step (1) -A.
  • an organic solvent is preferably supplied to the raw material polyorganosiloxane with stirring. Dispersibility of the polyorganosiloxane in the organic solvent is further improved by supplying the mixture under stirring.
  • the dispersibility of the polyorganosiloxane in the polycarbonate oligomer is increased. Can be increased.
  • the above step (1) -A is the first step for supplying the organic solvent to the raw material polyorganosiloxane, in order to improve the dispersibility of the relatively high viscosity polyorganosiloxane in the organic solvent.
  • the organic solvent it is preferable to supply the organic solvent to the polyorganosiloxane with stirring.
  • Any stirring means can be used, for example, a static mixer.
  • the Reynolds number in piping after supply is 1x10 ⁇ 4 > or more. When the Reynolds number is within the above range, the fluid in the pipe becomes a turbulent flow, and the dispersibility of the polyorganosiloxane in the organic solvent can be further enhanced.
  • Organic solvent used in the step (1) of the present invention for example, halogenated hydrocarbons such as methylene chloride, chlorobenzene and chloroform are preferable, and methylene chloride is more preferable.
  • R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms,
  • the plurality of R 3 to R 6 may be the same as or different from each other.
  • Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O—, and a plurality of Y may be the same or different from each other.
  • R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group.
  • R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • R 9 represents a diarylene group.
  • R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group.
  • Z represents a hydrogen atom or a halogen atom, and a plurality of Z may be the same as or different from each other.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid.
  • p and q are each an integer of 1 or more, the sum of p and q is 20 to 500, and n is an average number of repetitions of 20 to 500. ]
  • Examples of the halogen atom independently represented by R 3 to R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkyl group independently represented by R 3 to R 6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched ones) And the same applies hereinafter), various pentyl groups, and various hexyl groups.
  • Examples of the alkoxy group independently represented by R 3 to R 6 include a case where the alkyl group moiety is the alkyl group.
  • Examples of the aryl group independently represented by R 3 to R 6 include a phenyl group and a naphthyl group.
  • R 3 to R 6 are each preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the polyorganosiloxane represented by at least one selected from the group consisting of general formulas (2), (3) and (4) those in which R 3 to R 6 are all methyl groups are preferred.
  • Y represents -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R
  • Examples of the linear or branched alkylene group represented by R 7 in 7 O—R 10 —O— include an alkylene group having 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms. Examples thereof include cycloalkylene groups having 5 to 15, preferably 5 to 10 carbon atoms.
  • the aryl-substituted alkylene group represented by R 7 may have a substituent such as an alkoxy group or an alkyl group on the aromatic ring.
  • a substituent such as an alkoxy group or an alkyl group on the aromatic ring.
  • Specific examples of the structure include, for example, the following general formula (5) or ( The structure of 6) can be shown.
  • the alkylene group is couple
  • the diarylene group represented by R 7 , R 9 and R 10 is a group in which two arylene groups are linked directly or via a divalent organic group.
  • —Ar 1 —W— A group having a structure represented by Ar 2 —.
  • Ar 1 and Ar 2 represent an arylene group
  • W represents a single bond or a divalent organic group.
  • the divalent organic group represented by W is, for example, an isopropylidene group, a methylene group, a dimethylene group, or a trimethylene group.
  • Examples of the arylene group represented by R 7 , Ar 1, and Ar 2 include arylene groups having 6 to 14 ring carbon atoms such as a phenylene group, a naphthylene group, a biphenylene group, and an anthrylene group. These arylene groups may have an arbitrary substituent such as an alkoxy group or an alkyl group.
  • the alkyl group represented by R 8 is linear or branched having 1 to 8, preferably 1 to 5 carbon atoms.
  • Examples of the alkenyl group include straight or branched chain groups having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group include a phenylmethyl group and a phenylethyl group.
  • the linear, branched or cyclic alkylene group represented by R 10 is the same as R 7 .
  • Y is preferably —R 7 O—, wherein R 7 is an aryl-substituted alkylene group, particularly a residue of a phenolic compound having an alkyl group, an organic residue derived from allylphenol, and eugenol.
  • the organic residue derived from is more preferable.
  • the average number of repetitions n is 20 to 500, more preferably 50 to 400, still more preferably 70 to 300. When n is 20 or more, not only excellent impact resistance characteristics can be obtained, but also significant recovery of impact resistance characteristics can be achieved.
  • n 500 or less, it is excellent in handling when producing PC-POS.
  • the number of repeating units n can be calculated by 1 H-NMR.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid.
  • is represented by the following general formulas (7-1) to (7-5). And a divalent group.
  • Examples of the polyorganosiloxane represented by the general formula (2) include compounds represented by the following general formulas (2-1) to (2-11).
  • R 3 to R 6 , n and R 8 are as defined above, and preferred ones are also the same.
  • c represents a positive integer and is usually an integer of 1 to 6.
  • the phenol-modified polyorganosiloxane represented by the general formula (2-1) is preferable from the viewpoint of ease of polymerization.
  • ⁇ , ⁇ -bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-2), ⁇ , ⁇ -bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-3) is preferable.
  • the viscosity average molecular weight (Mv) of the polycarbonate-polyorganosiloxane is usually 10,000 to 30,000, preferably 12,000 to 28,000, more preferably 15,000 to 25,000.
  • the method for producing the polyorganosiloxane used in the present invention is not particularly limited.
  • cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize ⁇ , ⁇ -dihydrogenorganopentasiloxane, Phenol compounds having an unsaturated group in the ⁇ , ⁇ -dihydrogenorganopentasiloxane in the presence of a hydrosilylation catalyst (eg 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.), etc.
  • a hydrosilylation catalyst eg 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.
  • polyorganosiloxane can be obtained by subjecting polysiloxane to an addition reaction with a phenol compound having an unsaturated group in the presence of a hydrosilylation reaction catalyst.
  • the ⁇ , ⁇ -dihydrogenorganopolysiloxane can be used by appropriately adjusting the chain length n depending on the polymerization conditions, or a commercially available ⁇ , ⁇ -dihydrogenorganopolysiloxane may be used. .
  • a transition metal catalyst may be mentioned, and among them, a platinum catalyst is preferably used from the viewpoint of reaction rate and selectivity.
  • a platinum catalyst is preferably used from the viewpoint of reaction rate and selectivity.
  • Specific examples of the platinum-based catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, a complex of platinum and a vinyl group-containing siloxane, platinum-supported silica, platinum-supported activated carbon, and the like.
  • the transition metal derived from the transition metal catalyst used as the hydrosilylation catalyst contained in the polyorganosiloxane is adsorbed on the adsorbent and removed.
  • the adsorbent for example, one having an average pore diameter of 1000 mm or less can be used. If the average pore diameter is 1000 mm or less, the transition metal in the polyorganosiloxane can be efficiently removed. From such a viewpoint, the average pore diameter of the adsorbent is preferably 500 mm or less, more preferably 200 mm or less, still more preferably 150 mm or less, and still more preferably 100 mm or less. From the same viewpoint, the adsorbent is preferably a porous adsorbent.
  • the adsorbent is not particularly limited as long as it has the above average pore diameter.
  • Cellulose and the like can be used, and at least one selected from the group consisting of activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica and silica-magnesia-based adsorbent is preferable.
  • the adsorbent can be separated from the polyorganosiloxane by any separation means.
  • means for separating the adsorbent from the polyorganosiloxane include a filter and centrifugal separation.
  • a filter such as a membrane filter, a sintered metal filter, or a glass fiber filter can be used, but it is particularly preferable to use a membrane filter.
  • the average particle size of the adsorbent is usually 1 ⁇ m to 4 mm, preferably 1 to 100 ⁇ m.
  • the amount used is not particularly limited.
  • An amount of the porous adsorbent in the range of preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass can be used with respect to 100 parts by mass of the polyorganosiloxane.
  • the polyorganosiloxane to be treated is not in a liquid state due to its high molecular weight, it may be heated to a temperature at which the polyorganosiloxane is in a liquid state when adsorbing with the adsorbent and separating the adsorbent. . Alternatively, it may be carried out by dissolving in a solvent such as methylene chloride and hexane.
  • Polycarbonate oligomers are prepared by reacting a dihydric phenol with a carbonate precursor.
  • a dihydric phenol with a carbonate precursor.
  • the reaction between the dihydric phenol and the carbonate precursor is not particularly limited, and a known method can be adopted, and it is preferably carried out by an interfacial polymerization method in the presence of an organic solvent. If necessary, the reaction can be carried out in the presence of a molecular weight regulator and a polymerization catalyst.
  • the dihydric phenol is used as an aqueous alkali solution of dihydric phenol in which dihydric phenol is dissolved in an aqueous solution of an alkali compound.
  • a dihydric phenol represented by the following general formula (1).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-.
  • a and b are each independently an integer of 0 to 4.
  • Examples of the dihydric phenol represented by the general formula (1) include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane and 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) And cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone. It is done.
  • dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • bis (hydroxyphenyl) alkane is preferable as the dihydric phenol
  • bisphenol A is more preferable.
  • dihydric phenols other than bisphenol A include bis (hydroxyaryl) alkanes, bis (hydroxyaryl) cycloalkanes, dihydroxyaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, and dihydroxy. Examples include diphenyls, dihydroxydiarylfluorenes, dihydroxydiaryladamantanes and the like. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • bis (hydroxyaryl) alkanes examples include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxy Phenyl) naphthylmethane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy) -3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorofe) Le) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane.
  • Examples of bis (hydroxyaryl) cycloalkanes include 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 1,1-bis (4-hydroxyphenyl) cyclododecane and the like.
  • Examples of dihydroxyaryl ethers include 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether.
  • dihydroxydiaryl sulfides examples include 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, and the like.
  • dihydroxydiaryl sulfoxides examples include 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, and the like.
  • dihydroxydiaryl sulfones examples include 4,4'-dihydroxydiphenyl sulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone.
  • dihydroxydiphenyls examples include 4,4'-dihydroxydiphenyl.
  • dihydroxydiarylfluorenes include 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene.
  • dihydroxydiaryladamantanes examples include 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7- Examples thereof include dimethyladamantane.
  • dihydric phenols for example, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5 -Bis (4-hydroxyphenylthio) -2,3-dioxapentane and the like.
  • Carbonate precursor As the carbonate precursor, phosgene derivatives such as phosgene, triphosgene, phosgene dimer, bromophosgene, bisimidazole ketone, and bis (p-nitrophenyl) carbonate can be used. Of these, phosgene or bromophosgene is preferable, and phosgene is more preferable.
  • alkaline aqueous solution examples include aqueous solutions of alkaline inorganic compounds such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. Among these, an aqueous solution of an alkali metal hydroxide is preferable, and an aqueous solution of sodium hydroxide is more preferable.
  • the aqueous alkali solution for dissolving the dihydric phenol those having an alkali concentration of 1 to 15% by mass are preferably used.
  • the amount of dihydric phenol in the alkaline aqueous solution of dihydric phenol is usually selected in the range of 0.5 to 20% by mass.
  • Organic solvent the same solvents as those mentioned in the above step (1) are preferably used. Methylene chloride is more preferred as in step (1).
  • the amount of the organic solvent used is usually selected so that the volume ratio of the organic phase to the aqueous phase is preferably 5/1 to 1/7, more preferably 2/1 to 1/4.
  • the reaction temperature in the preparation of the polycarbonate oligomer is usually selected in the range of 0 to 80 ° C, preferably 5 to 70 ° C.
  • Examples of the polymerization catalyst include tertiary amines or quaternary ammonium salts.
  • Examples of the tertiary amine include trimethylamine, triethylamine, and tripropylamine.
  • Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride and triethylbenzylammonium chloride.
  • As the polymerization catalyst a tertiary amine is preferable, and triethylamine is more preferable.
  • the molecular weight regulator is not particularly limited as long as it is a monohydric phenol.
  • the obtained reaction mixture is a mixture containing an organic phase containing a polycarbonate oligomer and an aqueous phase containing impurities such as sodium chloride. Therefore, the organic phase containing the polycarbonate oligomer obtained by performing stationary separation etc. is used in the polycondensation process which manufactures a copolymer.
  • the weight average molecular weight (Mw) of the polycarbonate oligomer is generally less than 5000.
  • the lower limit of the weight average molecular weight of the polycarbonate oligomer is usually about 500.
  • the polyorganosiloxane solution obtained by the above step (1), a polycarbonate oligomer, and an alkaline aqueous solution of dihydric phenol are introduced into a polycondensation reaction zone, and a polymerization catalyst, a molecular weight regulator, an alkaline aqueous solution and a non-aqueous solution are introduced as necessary.
  • a water-soluble organic solvent is added to cause interfacial polymerization to produce a polycarbonate-polyorganosiloxane copolymer.
  • a polycarbonate oligomer, the polyorganosiloxane solution obtained in step (1), an organic solvent, and an alkaline compound aqueous solution are optionally mixed in the presence of a polymerization catalyst,
  • the reaction is usually carried out at a temperature in the range of 0 to 50 ° C., preferably 20 to 40 ° C.
  • a molecular weight modifier, an aqueous alkali solution, and an aqueous alkali solution of a dihydric phenol are mixed, and the polycondensation reaction is completed at a temperature usually in the range of 0 to 50 ° C., preferably 20 to 40 ° C.
  • the alkaline aqueous solution, the organic solvent, the polymerization catalyst, the dihydric phenol and the molecular weight regulator in the polycondensation step can include those described above.
  • a line mixer, a static mixer, an orifice mixer, a stirring tank, a multi-stage tower type stirring tank, a non-stirring tank, piping, or the like can be used as a reactor.
  • the number of reactors used in the polycondensation step may be one or plural. That is, the polycondensation step may be composed of a plurality of reactors.
  • the first reactor is preferably one having a stirring function in the reactor, preferably a line mixer, a static mixer, an orifice mixer, a stirring tank, etc. It is more preferable to use a mixer or a static mixer.
  • a line mixer, a static mixer, an orifice mixer, a stirring tank, a multistage tower type stirring tank, a non-stirring tank, piping, etc. can be used arbitrarily.
  • the content of the polyorganosiloxane part in the polycarbonate-polyorganosiloxane copolymer is 1 to 20% by mass, preferably 3 from the viewpoints of flame retardancy imparting effect, impact resistance imparting effect, and economic balance. It is preferable to set it to ⁇ 12% by mass, more preferably 3 to 9% by mass.
  • a polycarbonate-polyorganosiloxane copolymer powder or granulated product can be obtained by subsequently separating, washing, concentrating, pulverizing / granulating the reaction solution obtained by the polycondensation step. it can.
  • the method for producing a polycarbonate-polyorganosiloxane copolymer of the present invention by having the step (1) of supplying an organic solvent to the raw material polyorganosiloxane in a plurality of stages before introduction into the polycondensation reaction zone.
  • the amount of unreacted polyorganosiloxane can be reduced. Therefore, the obtained polycarbonate-polyorganosiloxane copolymer and the molded product thereof have excellent transparency.
  • Synthesis Example 1 (Preparation of polycarbonate oligomer) To a 5.6 mass% aqueous sodium hydroxide solution, 2000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter abbreviated as BPA), which is dissolved later, and the concentration of bisphenol A is 13.5 mass. % BPA was dissolved to prepare an aqueous sodium hydroxide solution of BPA. Phosgene was continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m at a flow rate of 4.0 kg / hr at a flow rate of 40 L / hr of sodium hydroxide aqueous solution of BPA and 15 L / hr of methylene chloride.
  • BPA bisphenol A
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further 2.8 L / hr of sodium hydroxide aqueous solution of bisphenol A, 25
  • the reaction was carried out by adding 0.04 L / hr of a mass% aqueous sodium hydroxide solution, 17 L / hr of water, and 0.64 L / hr of an aqueous 1 mass% triethylamine solution.
  • the reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer solution (methylene chloride solution) thus obtained had a concentration of 324 g / L and a chloroformate group concentration of 0.74 mol / L.
  • the weight average molecular weight (Mw) of the polycarbonate oligomer was 1,190.
  • the weight average molecular weight (Mw) was measured using GPC [column: TOSOH TSK-GEL MULTIPIORE HXL-M (2) + Shodex KF801 (1)], temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
  • Example 1 ⁇ Step (1) -A> An allylphenol-terminated polydimethylsiloxane having a repeating number n of 40 dimethylsiloxane units (abbreviated as PDMS) and methylene chloride (sometimes abbreviated as MC), a static mixer (manufactured by Noritake Company Limited, C- Series (inner diameter 5 mm, number of elements 12)) was mixed well to obtain a 20 wt% PDMS / MC solution.
  • PDMS / MC solution obtained in the step (1) -A was further supplied with methylene chloride in the pipe to obtain a 3.7 wt% PDMS / MC solution.
  • Step (1) -A and step (1) -B were performed continuously.
  • the preparation conditions of the PDMS / MC solution before introduction into the polycondensation reaction zone are summarized in Table 1.
  • ⁇ Polycondensation reaction> The polycarbonate oligomer (abbreviated as PCO) solution produced in Synthesis Example 1 is mixed with the PDMS / MC solution (concentration: 3.7 wt%) prepared in step (1) in a pipe, and then a static mixer may be used. After mixing, the mixture was cooled to 19-22 ° C. with a heat exchanger.
  • a methylene chloride solution (TEA / MC) of triethylamine (abbreviated as TEA) is mixed in the pipe with the cooled mixture, and then mixed well with a static mixer, and then immediately before the reactor (Rx-1).
  • TEA triethylamine
  • a 4% by mass aqueous sodium hydroxide solution was added, and the reaction (prepolymerization) of PCO and allylphenol end-modified PDMS was carried out in the reactor (Rx-1) while using the methylene chloride phase as a continuous phase.
  • the reactor (Rx-1) was a line mixer and was operated at a rotational speed of 4400 rpm.
  • the prepolymerized solution exiting the reactor (Rx-1) was cooled to 17 to 20 ° C.
  • PTBP pt-butylphenol
  • PTBP / MC methylene chloride solution
  • BPNa aqueous solution BPNa sodium hydroxide solution
  • the reactor (Rx-2) was a mixer provided with turbine blades and operated at a rotational speed of 4400 rpm.
  • the concentration of pt-butylphenol in methylene chloride was 24% by mass
  • the aqueous solution of sodium hydroxide in BPA was 6.4% by mass in the aqueous solution excluding BPA
  • the BPA concentration in the aqueous sodium solution was 11.1% by mass.
  • the polymerization reaction solution exiting the reactor (Rx-2) was sequentially led to the reactor (Rx-3) and the reactor (Rx-4), and the polymerization reaction was completed while controlling the temperature to 38 ° C. or lower.
  • the reactor (Rx-3) is a reactor having an orifice plate and a cooling jacket
  • the reactor (Rx-4) is a column type five-stage reactor having a cooling jacket.
  • Unreacted PDMS of the obtained flakes was quantified by 1 H-NMR. Further, as a simple evaluation of transparency, the flakes were put in an MI meter, melted and extruded to obtain a strand, and the transparency of the strand was visually confirmed. Table 2 shows the results of analysis of the amount of unreacted PDMS in the flakes and the result of visual confirmation of transparency. The quantification of unreacted PDMS in 1 H-NMR was determined by the following method.
  • step (1) -A allylphenol-terminated PDMS and methylene chloride having a repeating number n of dimethylsiloxane units of 40 are prepared in advance in a dissolving tank to a 20 wt% PDMS / MC solution.
  • the polycondensation reaction was carried out in the same manner as in Example 1 except that the solution was extracted and methylene chloride was further supplied in Step (1) -B to obtain a 3.7 wt% PDMS / MC solution.
  • Table 1 shows the preparation conditions of the PDMS / MC solution.
  • Table 2 shows the results of analyzing the amount of unreacted PDMS in the obtained PC-PDMS copolymer flakes and the result of visual confirmation of transparency.
  • Example 3 A polycondensation reaction was carried out in the same manner as in Example 1 except that the PDMS / MC solution concentration was changed to 50 wt% in the step (1) -A.
  • Table 1 shows the preparation conditions of the PDMS / MC solution.
  • Table 2 shows the results of analyzing the amount of unreacted PDMS in the obtained PC-PDMS copolymer flakes and the result of visual confirmation of transparency.
  • Comparative Example 1 does not have the step (1) of supplying a solvent to PDMS.
  • Comparative Example 2 In Comparative Example 2, the solvent is supplied to PDMS only in one stage.
  • the amount of unreacted PDMS in the PC-PDMS copolymer is a low value of less than 150 ppm by mass, and the PC-PDMS copolymer flakes are excellent in transparency. Is obtained.
  • Comparative Example 1 in which no solvent was supplied to the raw material PDMS before introduction into the polycondensation reaction zone, the amount of unreacted PDMS in the obtained PC-PDMS copolymer was as high as 1200 ppm by mass. The PDMS copolymer flakes were also cloudy.
  • the present invention it is possible to reduce the amount of unreacted polyorganosiloxane by having the step (1) of supplying an organic solvent to the raw material polyorganosiloxane in a plurality of stages before introducing it into the polycondensation reaction zone. Can do. Therefore, the obtained polycarbonate-polyorganosiloxane copolymer and the molded product thereof have excellent transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A method for producing a polycarbonate-polyorganosiloxane copolymer by introducing a polycarbonate oligomer, an alkaline aqueous solution of a divalent phenol and a polyorganosiloxane into a polycondensation reaction zone and causing a polycondensation reaction thereof in the polycondensation reaction zone. This method for producing a polycarbonate-polyorganosiloxane copolymer comprises, before the introduction into the polycondensation reaction zone, a step (1) wherein an organic solvent is supplied to the polyorganosiloxane, thereby preparing a polyorganosiloxane solution; and the supply of the organic solvent in the step (1) is carried out in a plurality of stages, thereby decreasing the concentration of the polyorganosiloxane solution in stages.

Description

ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法Method for producing polycarbonate-polyorganosiloxane copolymer
 本発明は、ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法に関する。 The present invention relates to a method for producing a polycarbonate-polyorganosiloxane copolymer.
 ポリカーボネート-ポリオルガノシロキサン共重合体は、その高い耐衝撃性、耐薬品性、及び難燃性等の優れた性質から注目されており、電気及び電子機器分野、自動車分野等の様々な分野における幅広い利用が期待されている。特に、携帯電話、モバイルパソコン、デジタルカメラ、ビデオカメラ、電動工具などの筐体、及びその他の日用品への利用が広がっている。
 代表的なポリカーボネートとして、原料の二価フェノールが2,2-ビス(4-ヒドロキシフェニル)プロパン[通称:ビスフェノールA]であるホモポリカーボネートが一般的に用いられる。このホモポリカーボネートの難燃性及び耐衝撃性等の物性を改良するために、ホモポリカーボネートにポリオルガノシロキサンを共重合させたポリカーボネート-ポリオルガノシロキサン共重合体が知られている。
 上記ポリカーボネート-ポリオルガノシロキサン共重合体は、界面重合法、エステル交換法等により製造され、原料のポリオルガノシロキサンを所定の含有割合で含むポリカーボネート-ポリオルガノシロキサン共重合体を製造することが求められる。
Polycarbonate-polyorganosiloxane copolymers are attracting attention because of their high impact resistance, chemical resistance, and flame retardancy, and are widely used in various fields such as electrical and electronic equipment and automobile fields. Use is expected. In particular, the use of portable telephones, mobile personal computers, digital cameras, video cameras, power tools and other housings, and other daily necessities is expanding.
As a typical polycarbonate, a homopolycarbonate in which the starting dihydric phenol is 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is generally used. In order to improve the physical properties such as flame retardancy and impact resistance of this homopolycarbonate, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane with homopolycarbonate is known.
The polycarbonate-polyorganosiloxane copolymer is produced by an interfacial polymerization method, a transesterification method, or the like, and it is required to produce a polycarbonate-polyorganosiloxane copolymer containing a raw material polyorganosiloxane in a predetermined content ratio. .
 界面重合法では、ポリカーボネート-ポリオルガノシロキサン共重合体は一般に、原料の二価フェノール、カーボネート前駆体及びポリオルガノシロキサンをアルカリ性水溶液及び有機溶媒の存在下で反応させることにより製造される。上記製造時において、二価フェノールとカーボネート前駆体とをアルカリ性水溶液及び有機溶媒の存在下において反応させてポリカーボネートオリゴマーを調製した後、このポリカーボネートオリゴマーと原料のポリオルガノシロキサンとをアルカリ性水溶液及び有機溶媒の存在下で重合させることが好ましい(特許文献1及び2)。 In the interfacial polymerization method, the polycarbonate-polyorganosiloxane copolymer is generally produced by reacting raw material dihydric phenol, carbonate precursor and polyorganosiloxane in the presence of an alkaline aqueous solution and an organic solvent. In the above production, a polycarbonate oligomer is prepared by reacting a dihydric phenol and a carbonate precursor in the presence of an alkaline aqueous solution and an organic solvent. It is preferable to polymerize in the presence (Patent Documents 1 and 2).
特許第3703500号公報Japanese Patent No. 3703500 特開2014-15498号公報JP 2014-15498 A
 ポリカーボネートオリゴマー等と原料のポリオルガノシロキサンとをアルカリ水溶液及び有機溶媒の存在下で反応させる際に、上記ポリオルガノシロキサンを有機溶媒で希釈して導入することが特許文献1及び2には開示されていて、例えば「ポリオルガノシロキサンを有機溶媒に溶解又は混合しておくことが好ましい」と記載されている。
 原料のポリオルガノシロキサンを原液で(有機溶媒と混合することなく)ポリカーボネートオリゴマーに添加すると、未反応の原料ポリオルガノシロキサンがポリカーボネート-ポリオルガノシロキサン共重合体中に残留し、得られる製品が白濁する問題がある。
 本発明は、透明性に優れるポリカーボネート-ポリオルガノシロキサン共重合体を製造する方法を提供することを目的とする。
Patent Documents 1 and 2 disclose that when a polycarbonate oligomer or the like and a raw material polyorganosiloxane are reacted in the presence of an alkaline aqueous solution and an organic solvent, the polyorganosiloxane is diluted with an organic solvent and introduced. For example, it is described that “polyorganosiloxane is preferably dissolved or mixed in an organic solvent”.
When the raw material polyorganosiloxane is added to the polycarbonate oligomer as a stock solution (without mixing with an organic solvent), the unreacted raw material polyorganosiloxane remains in the polycarbonate-polyorganosiloxane copolymer and the resulting product becomes cloudy. There's a problem.
An object of the present invention is to provide a method for producing a polycarbonate-polyorganosiloxane copolymer having excellent transparency.
 本発明者らは、原料のポリオルガノシロキサンに特定の条件下で有機溶媒を供給することにより、未反応のポリオルガノシロキサン量を低減させることができ、上記課題が解決することを見出した。
 すなわち、本発明は以下の[1]~[16]に関する。
[1]ポリカーボネートオリゴマー、二価フェノールのアルカリ水溶液及びポリオルガノシロキサンを重縮合反応帯域に導入し、該重縮合反応帯域で重縮合反応させてポリカーボネート-ポリオルガノシロキサン共重合体を製造する方法であって、前記重縮合反応帯域に導入する前に、ポリオルガノシロキサンに有機溶媒を供給してポリオルガノシロキサン溶液を調製する工程(1)を有し、前記工程(1)における有機溶媒の供給を複数段階にて行い、ポリオルガノシロキサン溶液濃度を段階的に低下させる、ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[2]前記工程(1)において、前記重縮合反応帯域に導入する直前のポリオルガノシロキサン溶液濃度を1~6質量%とする、上記[1]に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[3]前記工程(1)において、ポリオルガノシロキサン溶液濃度が10質量%以上となるように1段階目における有機溶媒の供給を行う、上記[1]または[2]に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[4]前記工程(1)において、ポリオルガノシロキサンに対する有機溶媒の供給を撹拌下で行う、上記[1]~[3]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[5]前記工程(1)において、少なくとも1段階目におけるポリオルガノシロキサンに対する有機溶媒の供給をスタティックミキサーを用いて行う、上記[1]~[4]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[6]前記工程(1)において、2段階目以降におけるポリオルガノシロキサンに対する有機溶媒の供給を配管内で行い、供給後の配管内のレイノルズ数を1×10以上とする、上記[1]~[5]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[7]前記工程(1)において、ポリオルガノシロキサンに対する有機溶媒の供給を2段階で行う、上記[1]~[6]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[8]前記工程(1)における有機溶媒が塩化メチレンである、上記[1]~[7]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[9]前記重縮合反応帯域が複数の反応器からなる、上記[1]~[8]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[10]前記工程(1)で調製されたポリオルガノシロキサン溶液を、前記重縮合反応帯域における最初の反応器入口に導入する、上記[9]に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[11]前記重縮合反応帯域の複数の反応器のうち、最初の反応器がラインミキサーである、上記[9]または[10]に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[12]前記ポリカーボネートオリゴマーの重量平均分子量が5000未満である、上記[1]~[11]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[13]前記二価フェノールが、下記一般式(1)で表わされる二価フェノールである、上記[1]~[12]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
Figure JPOXMLDOC01-appb-C000003

[式中、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-、または-CO-を示す。a及びbは、それぞれ独立に0~4の整数である。]
[14]前記ポリオルガノシロキサンが、下記一般式(2)、(3)及び(4)からなる群から選ばれる少なくとも1つで表わされるポリオルガノシロキサンである、上記[1]~[13]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
Figure JPOXMLDOC01-appb-C000004

[式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示し、複数のR~Rは、互いに同一であっても異なっていてもよい。Yは-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-を示し、複数のYは、互いに同一であっても異なっていてもよい。前記Rは、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。Rは、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。Rは、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示し、複数のZは、互いに同一であっても異なっていてもよい。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqはそれぞれ1以上の整数であり、pとqの和は20~500であり、nは20~500の平均繰り返し数を示す。]
[15]前記二価フェノールがビスフェノールAである、上記[1]~[14]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
[16]前記アルカリ水溶液が水酸化ナトリウム水溶液である、上記[1]~[15]のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
The present inventors have found that the amount of unreacted polyorganosiloxane can be reduced by supplying an organic solvent to the raw material polyorganosiloxane under specific conditions, thereby solving the above-mentioned problems.
That is, the present invention relates to the following [1] to [16].
[1] A method for producing a polycarbonate-polyorganosiloxane copolymer by introducing a polycarbonate oligomer, an alkaline aqueous solution of a dihydric phenol and a polyorganosiloxane into a polycondensation reaction zone and subjecting the polycondensation reaction zone to a polycondensation reaction. Before introducing into the polycondensation reaction zone, an organic solvent is supplied to the polyorganosiloxane to prepare a polyorganosiloxane solution, and a plurality of organic solvents are supplied in the step (1). A process for producing a polycarbonate-polyorganosiloxane copolymer, which is carried out in stages, and the concentration of the polyorganosiloxane solution is lowered stepwise.
[2] The polycarbonate-polyorganosiloxane copolymer according to [1], wherein in the step (1), the concentration of the polyorganosiloxane solution immediately before introduction into the polycondensation reaction zone is 1 to 6% by mass. Production method.
[3] The polycarbonate-polyorgano described in [1] or [2], wherein in the step (1), the organic solvent is supplied in the first step so that the polyorganosiloxane solution concentration is 10% by mass or more. A method for producing a siloxane copolymer.
[4] Production of the polycarbonate-polyorganosiloxane copolymer according to any one of [1] to [3] above, wherein in the step (1), the organic solvent is supplied to the polyorganosiloxane with stirring. Method.
[5] The polycarbonate-poly (any one of the above [1] to [4]), wherein in the step (1), the organic solvent is supplied to the polyorganosiloxane in at least the first stage using a static mixer. A method for producing an organosiloxane copolymer.
[6] In the step (1), the organic solvent is supplied to the polyorganosiloxane in the second and subsequent stages in the pipe, and the Reynolds number in the pipe after the supply is set to 1 × 10 4 or more. [1] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of [5] to [5].
[7] Production of polycarbonate-polyorganosiloxane copolymer according to any one of [1] to [6], wherein in step (1), an organic solvent is supplied to the polyorganosiloxane in two stages. Method.
[8] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of the above [1] to [7], wherein the organic solvent in the step (1) is methylene chloride.
[9] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of the above [1] to [8], wherein the polycondensation reaction zone comprises a plurality of reactors.
[10] Production of the polycarbonate-polyorganosiloxane copolymer according to [9] above, wherein the polyorganosiloxane solution prepared in the step (1) is introduced into the first reactor inlet in the polycondensation reaction zone. Method.
[11] The method for producing a polycarbonate-polyorganosiloxane copolymer according to [9] or [10] above, wherein the first reactor among the plurality of reactors in the polycondensation reaction zone is a line mixer.
[12] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of [1] to [11] above, wherein the polycarbonate oligomer has a weight average molecular weight of less than 5000.
[13] Production of the polycarbonate-polyorganosiloxane copolymer according to any one of [1] to [12] above, wherein the dihydric phenol is a dihydric phenol represented by the following general formula (1): Method.
Figure JPOXMLDOC01-appb-C000003

[Wherein, R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-. a and b are each independently an integer of 0 to 4. ]
[14] The above-mentioned [1] to [13], wherein the polyorganosiloxane is a polyorganosiloxane represented by at least one selected from the group consisting of the following general formulas (2), (3) and (4): The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of the above.
Figure JPOXMLDOC01-appb-C000004

[Wherein R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, The plurality of R 3 to R 6 may be the same as or different from each other. Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O—, and a plurality of Y may be the same or different from each other. R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group. R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 9 represents a diarylene group. R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom, and a plurality of Z may be the same as or different from each other. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. p and q are each an integer of 1 or more, the sum of p and q is 20 to 500, and n is an average number of repetitions of 20 to 500. ]
[15] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of the above [1] to [14], wherein the dihydric phenol is bisphenol A.
[16] The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of the above [1] to [15], wherein the alkaline aqueous solution is a sodium hydroxide aqueous solution.
 本発明によれば、ポリカーボネート-ポリオルガノシロキサン共重合体の製造における未反応のポリオルガノシロキサン量を低減させることができるため、得られるポリカーボネート-ポリオルガノシロキサン共重合体及びその成形体は優れた透明性を有する。 According to the present invention, since the amount of unreacted polyorganosiloxane in the production of the polycarbonate-polyorganosiloxane copolymer can be reduced, the resulting polycarbonate-polyorganosiloxane copolymer and its molded article have excellent transparency. Have sex.
 本発明のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法は、ポリカーボネートオリゴマー、二価フェノールのアルカリ水溶液及びポリオルガノシロキサンを重縮合反応帯域に導入し、該重縮合反応帯域で重縮合反応させてポリカーボネート-ポリオルガノシロキサン共重合体を製造する方法であって、前記重縮合反応帯域に導入する前に、ポリオルガノシロキサンに有機溶媒を供給してポリオルガノシロキサン溶液を調製する工程(1)を有し、前記工程(1)における有機溶媒の供給を複数段階にて行い、ポリオルガノシロキサン溶液濃度を段階的に低下させるものである。
 以下、本発明のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法について詳述する。
The method for producing a polycarbonate-polyorganosiloxane copolymer of the present invention comprises introducing a polycarbonate oligomer, an aqueous alkali solution of dihydric phenol and a polyorganosiloxane into a polycondensation reaction zone, and subjecting the polycondensation reaction zone to a polycondensation reaction. -A method of producing a polyorganosiloxane copolymer, comprising the step (1) of supplying an organic solvent to the polyorganosiloxane to prepare a polyorganosiloxane solution before introducing it into the polycondensation reaction zone. In the step (1), the organic solvent is supplied in a plurality of stages to reduce the polyorganosiloxane solution concentration stepwise.
Hereinafter, the method for producing the polycarbonate-polyorganosiloxane copolymer of the present invention will be described in detail.
[工程(1)]
 工程(1)では、上記重縮合反応帯域に原料のポリオルガノシロキサンを導入する前に、ポリオルガノシロキサンに有機溶媒を供給してポリオルガノシロキサン溶液を調製する工程であり、ポリオルガノシロキサンへの有機溶媒の供給を複数段階にて行うことを特徴とする。ポリオルガノシロキサンに有機溶媒を複数段階にて供給して、最終的に重縮合反応帯域に導入するポリオルガノシロキサン溶液濃度を決定する。
[Step (1)]
Step (1) is a step of preparing a polyorganosiloxane solution by supplying an organic solvent to the polyorganosiloxane before introducing the raw material polyorganosiloxane into the polycondensation reaction zone. The solvent is supplied in a plurality of stages. An organic solvent is supplied to the polyorganosiloxane in a plurality of stages, and finally the concentration of the polyorganosiloxane solution introduced into the polycondensation reaction zone is determined.
 工程(1)において、ポリオルガノシロキサンへの有機溶媒の供給を複数段階にて行うに際して、1段階目(すなわち、原料のポリオルガノシロキサンに有機溶媒を最初に供給する段階;以下「工程(1)-A」ともいう)におけるポリオルガノシロキサン溶液濃度が10質量%以上となるように原料のポリオルガノシロキサンに有機溶媒を供給することが好ましい。ポリオルガノシロキサンはその粘度が比較的高いため、ポリカーボネートオリゴマー及び有機溶媒への分散性が劣る傾向にある。本発明者等は、重縮合反応帯域に導入するポリオルガノシロキサンのポリカーボネートオリゴマー及び有機溶媒への分散性が低いと、得られるポリカーボネート-ポリオルガノシロキサン共重合体及びその成形体の透明性が低下することを見出した。
 工程(1)-Aにおけるポリオルガノシロキサン溶液濃度の下限値を10質量%とすることで、重縮合反応帯域におけるポリカーボネートオリゴマーへのポリオルガノシロキサンの分散性が良好となる。工程(1)-Aにおけるポリオルガノシロキサン溶液濃度はより好ましくは15質量%以上である。
 なお、工程(1)-Aにおけるポリオルガノシロキサン溶液濃度の上限値は通常60質量%、好ましくは40質量%、より好ましくは30質量%である。工程(1)-Aにおけるポリオルガノシロキサン溶液濃度が60質量%を超えると、続く有機溶媒供給段階、例えば2段階目(以下、「工程(1)-B」ともいう)の前後での粘度差が大きくなるため、本発明の効果が発揮できず、得られるポリカーボネート-ポリオルガノシロキサン共重合体の透明性が低下する。
In the step (1), when the organic solvent is supplied to the polyorganosiloxane in a plurality of steps, the first step (that is, the step of first supplying the organic solvent to the raw material polyorganosiloxane; hereinafter referred to as “step (1)”. It is preferable to supply an organic solvent to the raw material polyorganosiloxane so that the polyorganosiloxane solution concentration in (also referred to as -A)) is 10% by mass or more. Since the polyorganosiloxane has a relatively high viscosity, the dispersibility thereof in the polycarbonate oligomer and the organic solvent tends to be inferior. When the dispersibility of the polyorganosiloxane introduced into the polycondensation reaction zone into the polycarbonate oligomer and the organic solvent is low, the transparency of the obtained polycarbonate-polyorganosiloxane copolymer and the molded product thereof is lowered. I found out.
By setting the lower limit value of the polyorganosiloxane solution concentration in step (1) -A to 10% by mass, the dispersibility of the polyorganosiloxane in the polycarbonate oligomer in the polycondensation reaction zone is improved. The concentration of the polyorganosiloxane solution in step (1) -A is more preferably 15% by mass or more.
The upper limit value of the polyorganosiloxane solution concentration in step (1) -A is usually 60% by mass, preferably 40% by mass, more preferably 30% by mass. When the polyorganosiloxane solution concentration in step (1) -A exceeds 60% by mass, the difference in viscosity before and after the subsequent organic solvent supply step, for example, the second step (hereinafter also referred to as “step (1) -B”). Therefore, the effect of the present invention cannot be exhibited, and the transparency of the obtained polycarbonate-polyorganosiloxane copolymer is lowered.
 工程(1)-Aにおいて上記の通りポリオルガノシロキサン溶液濃度を10質量%以上とした後、このポリオルガノシロキサン溶液にさらに有機溶媒を供給してさらにポリオルガノシロキサン溶液濃度を低下させる。
 工程(1)-Aの後の有機溶媒を供給する段階数は任意であり、重縮合反応帯域に導入する前に原料のポリオルガノシロキサンに結果として複数の段階で有機溶媒を供給していれば本発明の条件を満たす。
 重縮合反応帯域に導入する直前のポリオルガノシロキサン溶液濃度は続く重合条件又は目的とするポリカーボネート-ポリオルガノシロキサン共重合体中のポリオルガノシロキサン量に依存するが、1~6質量%であることが好ましく、1~4質量%であることがより好ましい。重縮合反応帯域に導入する直前のポリオルガノシロキサン溶液濃度が上記範囲となるように、工程(1)-Aを含む複数の段階で有機溶媒を供給する。本発明の一態様によれば、効率面から、工程(1)-A及び工程(1)-Bの2段階にて原料のポリオルガノシロキサン溶液に有機溶媒を供給することが好ましい。
 また、ポリオルガノシロキサンに有機溶媒を連続的に供給する場合は、流量変動を抑えるために二連式のプランジャーポンプを用い、流量検知のためにマイクロモーション式流量計を用いることが好ましい。流量計は、工程(1)-A出口または工程(1)-B出口に設置することが好ましく、工程(1)-A出口に設置することがより好ましい。
In step (1) -A, after the polyorganosiloxane solution concentration is set to 10% by mass or more as described above, an organic solvent is further supplied to the polyorganosiloxane solution to further reduce the polyorganosiloxane solution concentration.
The number of stages for supplying the organic solvent after step (1) -A is arbitrary, and as long as the organic solvent is supplied to the raw polyorganosiloxane as a result before introducing it into the polycondensation reaction zone. Satisfy the conditions of the present invention.
The concentration of the polyorganosiloxane solution immediately before introduction into the polycondensation reaction zone depends on the subsequent polymerization conditions or the amount of polyorganosiloxane in the target polycarbonate-polyorganosiloxane copolymer, but it is 1 to 6% by mass. Preferably, it is 1 to 4% by mass. The organic solvent is supplied in a plurality of stages including step (1) -A so that the concentration of the polyorganosiloxane solution immediately before being introduced into the polycondensation reaction zone is within the above range. According to one embodiment of the present invention, from the viewpoint of efficiency, it is preferable to supply an organic solvent to the raw material polyorganosiloxane solution in two stages of step (1) -A and step (1) -B.
In addition, when an organic solvent is continuously supplied to the polyorganosiloxane, it is preferable to use a double plunger pump to suppress flow rate fluctuations and a micro motion type flow meter to detect the flow rate. The flow meter is preferably installed at the outlet of step (1) -A or the outlet of step (1) -B, and more preferably at the outlet of step (1) -A.
 工程(1)において、原料のポリオルガノシロキサンに有機溶媒を好ましくは撹拌下で供給することが好ましい。撹拌下で供給を行うことにより、ポリオルガノシロキサンの有機溶媒への分散性をさらに高め、該溶液を重縮合反応帯域においてポリカーボネートオリゴマーに供給した際には、ポリカーボネートオリゴマーへのポリオルガノシロキサンの分散性を高めることができる。
 中でも、上記工程(1)-Aは原料のポリオルガノシロキサンに有機溶媒を供給する第1段階目の工程であるため、比較的粘度の高いポリオルガノシロキサンの有機溶媒への分散性を高めるためにポリオルガノシロキサンに対する有機溶媒の供給を撹拌下で行うことが好ましい。
 撹拌手段としては、任意のものを用いることができ、例えばスタティックミキサーを挙げることができる。
 また、2段階目以降におけるポリオルガノシロキサンに対する有機溶媒の供給を配管内で行う際には、供給後の配管内のレイノルズ数が1×10以上であることが好ましい。レイノルズ数が上記範囲内にあると、配管内の流体が乱流となり、ポリオルガノシロキサンの有機溶媒への分散性をより高めることができる。
In the step (1), an organic solvent is preferably supplied to the raw material polyorganosiloxane with stirring. Dispersibility of the polyorganosiloxane in the organic solvent is further improved by supplying the mixture under stirring. When the solution is supplied to the polycarbonate oligomer in the polycondensation reaction zone, the dispersibility of the polyorganosiloxane in the polycarbonate oligomer is increased. Can be increased.
In particular, since the above step (1) -A is the first step for supplying the organic solvent to the raw material polyorganosiloxane, in order to improve the dispersibility of the relatively high viscosity polyorganosiloxane in the organic solvent. It is preferable to supply the organic solvent to the polyorganosiloxane with stirring.
Any stirring means can be used, for example, a static mixer.
Moreover, when supplying the organic solvent with respect to the polyorganosiloxane in a 2nd step or more in piping, it is preferable that the Reynolds number in piping after supply is 1x10 < 4 > or more. When the Reynolds number is within the above range, the fluid in the pipe becomes a turbulent flow, and the dispersibility of the polyorganosiloxane in the organic solvent can be further enhanced.
<有機溶媒>
 本発明の工程(1)において用いる有機溶媒としては、例えば塩化メチレン、クロロベンゼン、クロロホルム等のハロゲン化炭化水素が好ましく、中でも塩化メチレンがより好ましい。
<Organic solvent>
As the organic solvent used in the step (1) of the present invention, for example, halogenated hydrocarbons such as methylene chloride, chlorobenzene and chloroform are preferable, and methylene chloride is more preferable.
<ポリオルガノシロキサン>
 工程(1)におけるポリオルガノシロキサンとしては、以下の一般式(2)、(3)及び(4)からなる群から選ばれる少なくとも1つに示すものを用いることができる。
Figure JPOXMLDOC01-appb-C000005

[式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示し、複数のR~Rは、互いに同一であっても異なっていてもよい。Yは-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-を示し、複数のYは、互いに同一であっても異なっていてもよい。前記Rは、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。Rは、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。Rは、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示し、複数のZは、互いに同一であっても異なっていてもよい。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqはそれぞれ1以上の整数であり、pとqの和は20~500であり、nは20~500の平均繰り返し数を示す。]
<Polyorganosiloxane>
As the polyorganosiloxane in the step (1), those shown in at least one selected from the group consisting of the following general formulas (2), (3) and (4) can be used.
Figure JPOXMLDOC01-appb-C000005

[Wherein R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, The plurality of R 3 to R 6 may be the same as or different from each other. Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O—, and a plurality of Y may be the same or different from each other. R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group. R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 9 represents a diarylene group. R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom, and a plurality of Z may be the same as or different from each other. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. p and q are each an integer of 1 or more, the sum of p and q is 20 to 500, and n is an average number of repetitions of 20 to 500. ]
 R~Rがそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。R~Rがそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、及び各種ヘキシル基が挙げられる。R~Rがそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R~Rがそれぞれ独立して示すアリール基としては、フェニル基、ナフチル基等が挙げられる。
 R~Rとしては、いずれも、好ましくは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基である。
 一般式(2)、(3)及び(4)からなる群から選ばれる少なくとも1つで表されるポリオルガノシロキサンとしては、R~Rがいずれもメチル基であるものが好ましい。
Examples of the halogen atom independently represented by R 3 to R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl group independently represented by R 3 to R 6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched ones) And the same applies hereinafter), various pentyl groups, and various hexyl groups. Examples of the alkoxy group independently represented by R 3 to R 6 include a case where the alkyl group moiety is the alkyl group. Examples of the aryl group independently represented by R 3 to R 6 include a phenyl group and a naphthyl group.
R 3 to R 6 are each preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
As the polyorganosiloxane represented by at least one selected from the group consisting of general formulas (2), (3) and (4), those in which R 3 to R 6 are all methyl groups are preferred.
 Yが示す-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-におけるRが表す直鎖又は分岐鎖アルキレン基としては、炭素数1~8、好ましくは炭素数1~5のアルキレン基が挙げられ、環状アルキレン基としては、炭素数5~15、好ましくは炭素数5~10のシクロアルキレン基が挙げられる。 Y represents -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R Examples of the linear or branched alkylene group represented by R 7 in 7 O—R 10 —O— include an alkylene group having 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms. Examples thereof include cycloalkylene groups having 5 to 15, preferably 5 to 10 carbon atoms.
 Rが表すアリール置換アルキレン基としては、芳香環にアルコキシ基、アルキル基のような置換基を有していてもよく、その具体的構造としては、例えば、下記の一般式(5)または(6)の構造を示すことができる。なお、アリール置換アルキレン基を有する場合、アルキレン基がSiに結合している。
Figure JPOXMLDOC01-appb-C000006

(式中cは正の整数を示し、通常1~6の整数である)
The aryl-substituted alkylene group represented by R 7 may have a substituent such as an alkoxy group or an alkyl group on the aromatic ring. Specific examples of the structure include, for example, the following general formula (5) or ( The structure of 6) can be shown. In addition, when it has an aryl substituted alkylene group, the alkylene group is couple | bonded with Si.
Figure JPOXMLDOC01-appb-C000006

(Wherein c represents a positive integer, usually an integer of 1 to 6)
 R、R及びR10が示すジアリーレン基とは、二つのアリーレン基が直接、又は二価の有機基を介して連結された基のことであり、具体的には-Ar-W-Ar-で表わされる構造を有する基である。ここで、Ar及びArは、アリーレン基を示し、Wは単結合、又は2価の有機基を示す。Wの示す2価の有機基は、例えばイソプロピリデン基、メチレン基、ジメチレン基、トリメチレン基である。
 R、Ar及びArが表すアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントリレン基などの環形成炭素数6~14のアリーレン基が挙げられる。これらアリーレン基は、アルコキシ基、アルキル基等の任意の置換基を有していてもよい。
 Rが示すアルキル基としては炭素数1~8、好ましくは1~5の直鎖または分岐鎖のものである。アルケニル基としては、炭素数2~8、好ましくは2~5の直鎖または分岐鎖のものが挙げられる。アリール基としてはフェニル基、ナフチル基等が挙げられる。アラルキル基としては、フェニルメチル基、フェニルエチル基等が挙げられる。
 R10が示す直鎖、分岐鎖もしくは環状アルキレン基は、Rと同様である。
The diarylene group represented by R 7 , R 9 and R 10 is a group in which two arylene groups are linked directly or via a divalent organic group. Specifically, —Ar 1 —W— A group having a structure represented by Ar 2 —. Here, Ar 1 and Ar 2 represent an arylene group, and W represents a single bond or a divalent organic group. The divalent organic group represented by W is, for example, an isopropylidene group, a methylene group, a dimethylene group, or a trimethylene group.
Examples of the arylene group represented by R 7 , Ar 1, and Ar 2 include arylene groups having 6 to 14 ring carbon atoms such as a phenylene group, a naphthylene group, a biphenylene group, and an anthrylene group. These arylene groups may have an arbitrary substituent such as an alkoxy group or an alkyl group.
The alkyl group represented by R 8 is linear or branched having 1 to 8, preferably 1 to 5 carbon atoms. Examples of the alkenyl group include straight or branched chain groups having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the aralkyl group include a phenylmethyl group and a phenylethyl group.
The linear, branched or cyclic alkylene group represented by R 10 is the same as R 7 .
 Yとしては、好ましくは-RO-であって、Rが、アリール置換アルキレン基であって、特にアルキル基を有するフェノール系化合物の残基であり、アリルフェノール由来の有機残基及びオイゲノール由来の有機残基がより好ましい。
 なお、一般式(3)中のp及びqについては、p=q、すなわち、p=n/2、q=n/2であることが好ましい。
 平均繰り返し数nは20~500であり、より好ましくは50~400、さらに好ましくは70~300である。nが20以上であれば、優れた耐衝撃特性を得ることができるだけでなく、耐衝撃特性の大幅な回復を達成することができる。nが、500以下であれば、PC-POSを製造する際のハンドリングに優れる。なお、繰り返し単位数nはH-NMRにより算出できる。
 また、βは、ジイソシアネート化合物由来の2価の基又はジカルボン酸又はジカルボン酸のハロゲン化物由来の2価の基を示し、例えば、以下の一般式(7-1)~(7-5)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Y is preferably —R 7 O—, wherein R 7 is an aryl-substituted alkylene group, particularly a residue of a phenolic compound having an alkyl group, an organic residue derived from allylphenol, and eugenol. The organic residue derived from is more preferable.
In addition, about p and q in General formula (3), it is preferable that it is p = q, ie, p = n / 2, q = n / 2.
The average number of repetitions n is 20 to 500, more preferably 50 to 400, still more preferably 70 to 300. When n is 20 or more, not only excellent impact resistance characteristics can be obtained, but also significant recovery of impact resistance characteristics can be achieved. When n is 500 or less, it is excellent in handling when producing PC-POS. The number of repeating units n can be calculated by 1 H-NMR.
Β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. For example, β is represented by the following general formulas (7-1) to (7-5). And a divalent group.
Figure JPOXMLDOC01-appb-C000007
 一般式(2)で表されるポリオルガノシロキサンとしては、例えば、以下の一般式(2-1)~(2-11)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Examples of the polyorganosiloxane represented by the general formula (2) include compounds represented by the following general formulas (2-1) to (2-11).
Figure JPOXMLDOC01-appb-C000008
 上記一般式(2-1)~(2-11)中、R~R、n及びRは上記の定義の通りであり、好ましいものも同じである。cは正の整数を示し、通常1~6の整数である。
 これらの中でも、重合の容易さの観点においては、上記一般式(2-1)で表されるフェノール変性ポリオルガノシロキサンが好ましい。また、入手の容易さの観点においては、上記一般式(2-2)で表される化合物中の一種であるα,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、上記一般式(2-3)で表される化合物中の一種であるα,ω-ビス[3-(4-ヒドロキシ-3-メトキシフェニル)プロピル]ポリジメチルシロキサンが好ましい。
 ポリカーボネート-ポリオルガノシロキサンの粘度平均分子量(Mv)は、通常10,000~30,000であり、好ましくは12,000~28,000、より好ましくは15,000~25,000である。なお、本発明において、粘度平均分子量(Mv)は、ウベローデ型粘度管にて、20℃における塩化メチレン溶液の極限粘度〔η〕を測定し、Schnellの式(〔η〕=1.23×10-5×Mv0.83)より算出した値である。
In the above general formulas (2-1) to (2-11), R 3 to R 6 , n and R 8 are as defined above, and preferred ones are also the same. c represents a positive integer and is usually an integer of 1 to 6.
Among these, the phenol-modified polyorganosiloxane represented by the general formula (2-1) is preferable from the viewpoint of ease of polymerization. In view of availability, α, ω-bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-2), Α, ω-bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (2-3) is preferable.
The viscosity average molecular weight (Mv) of the polycarbonate-polyorganosiloxane is usually 10,000 to 30,000, preferably 12,000 to 28,000, more preferably 15,000 to 25,000. In the present invention, the viscosity average molecular weight (Mv) is determined by measuring the intrinsic viscosity [η] of a methylene chloride solution at 20 ° C. with an Ubbelohde viscometer and calculating the Schnell equation ([η] = 1.23 × 10 −5 × Mv 0.83 ).
 本発明に用いられるポリオルガノシロキサンの製造方法は特に限定されない。例えば、特開平11-217390号公報に記載の方法によれば、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させて、α,ω-ジハイドロジェンオルガノペンタシロキサンを合成し、次いで、ヒドロシリル化反応用触媒の存在下に、該α,ω-ジハイドロジェンオルガノペンタシロキサンに不飽和基を有するフェノール化合物(例えば2-アリルフェノール、4-アリルフェノール、オイゲノール、2-プロペニルフェノール等)等を付加反応させることで、ポリオルガノシロキサンを得ることができる。また、特許第2662310号公報に記載の方法によれば、オクタメチルシクロテトラシロキサンとテトラメチルジシロキサンとを硫酸(酸性触媒)の存在化で反応させ、得られたα,ω-ジハイドロジェンオルガノポリシロキサンを上記と同様に、ヒドロシリル化反応用触媒の存在下に不飽和基を有するフェノール化合物等を付加反応させることで、ポリオルガノシロキサンを得ることができる。なお、α,ω-ジハイドロジェンオルガノポリシロキサンは、その重合条件によりその鎖長nを適宜調整して用いることもできるし、市販のα,ω-ジハイドロジェンオルガノポリシロキサンを用いてもよい。 The method for producing the polyorganosiloxane used in the present invention is not particularly limited. For example, according to the method described in JP-A-11-217390, cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize α, ω-dihydrogenorganopentasiloxane, Phenol compounds having an unsaturated group in the α, ω-dihydrogenorganopentasiloxane in the presence of a hydrosilylation catalyst (eg 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.), etc. By addition reaction, polyorganosiloxane can be obtained. Further, according to the method described in Japanese Patent No. 2662310, octamethylcyclotetrasiloxane and tetramethyldisiloxane are reacted in the presence of sulfuric acid (acidic catalyst), and the resulting α, ω-dihydrogenorgano is obtained. Similarly to the above, polyorganosiloxane can be obtained by subjecting polysiloxane to an addition reaction with a phenol compound having an unsaturated group in the presence of a hydrosilylation reaction catalyst. The α, ω-dihydrogenorganopolysiloxane can be used by appropriately adjusting the chain length n depending on the polymerization conditions, or a commercially available α, ω-dihydrogenorganopolysiloxane may be used. .
 上記ヒドロシリル化反応用触媒としては、遷移金属系触媒が挙げられるが、中でも反応速度及び選択性の点から白金系触媒が好ましく用いられる。白金系触媒の具体例としては、塩化白金酸,塩化白金酸のアルコール溶液,白金のオレフィン錯体,白金とビニル基含有シロキサンとの錯体,白金担持シリカ,白金担持活性炭等が挙げられる。 As the hydrosilylation reaction catalyst, a transition metal catalyst may be mentioned, and among them, a platinum catalyst is preferably used from the viewpoint of reaction rate and selectivity. Specific examples of the platinum-based catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, a complex of platinum and a vinyl group-containing siloxane, platinum-supported silica, platinum-supported activated carbon, and the like.
 ポリオルガノシロキサンを吸着剤と接触させることにより、ポリオルガノシロキサン中に含まれる、上記ヒドロシリル化反応用触媒として使用された遷移金属系触媒に由来する遷移金属を、吸着剤に吸着させて除去することが好ましい。
 吸着剤としては、例えば、1000Å以下の平均細孔直径を有するものを用いることができる。平均細孔直径が1000Å以下であれば、ポリオルガノシロキサン中の遷移金属を効率的に除去することができる。このような観点から、吸着剤の平均細孔直径は、好ましくは500Å以下、より好ましくは200Å以下、更に好ましくは150Å以下、より更に好ましくは100Å以下である。また同様の観点から、吸着剤は多孔性吸着剤であることが好ましい。
By bringing the polyorganosiloxane into contact with the adsorbent, the transition metal derived from the transition metal catalyst used as the hydrosilylation catalyst contained in the polyorganosiloxane is adsorbed on the adsorbent and removed. Is preferred.
As the adsorbent, for example, one having an average pore diameter of 1000 mm or less can be used. If the average pore diameter is 1000 mm or less, the transition metal in the polyorganosiloxane can be efficiently removed. From such a viewpoint, the average pore diameter of the adsorbent is preferably 500 mm or less, more preferably 200 mm or less, still more preferably 150 mm or less, and still more preferably 100 mm or less. From the same viewpoint, the adsorbent is preferably a porous adsorbent.
 吸着剤としては、上記の平均細孔直径を有するものであれば特に限定されないが、例えば活性白土、酸性白土、活性炭、合成ゼオライト、天然ゼオライト、活性アルミナ、シリカ、シリカ-マグネシア系吸着剤、珪藻土、セルロース等を用いることができ、活性白土、酸性白土、活性炭、合成ゼオライト、天然ゼオライト、活性アルミナ、シリカ及びシリカ-マグネシア系吸着剤からなる群から選ばれる少なくとも1種であることが好ましい。 The adsorbent is not particularly limited as long as it has the above average pore diameter. For example, activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica, silica-magnesia-based adsorbent, diatomaceous earth. Cellulose and the like can be used, and at least one selected from the group consisting of activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica and silica-magnesia-based adsorbent is preferable.
 ポリオルガノシロキサン中に含まれる遷移金属を吸着剤に吸着させた後、吸着剤は任意の分離手段によってポリオルガノシロキサンから分離することができる。ポリオルガノシロキサンから吸着剤を分離する手段としては、例えばフィルタ及び遠心分離等が挙げられる。フィルタを用いる場合は、メンブランフィルタ、焼結金属フィルタ、ガラス繊維フィルタ等のフィルタを用いることができるが、特にメンブランフィルタを用いることが好ましい。
 遷移金属の吸着後に吸着剤をポリオルガノシロキサンから分離する観点から、吸着剤の平均粒子径は、通常1μm~4mm、好ましくは1~100μmである。
After the transition metal contained in the polyorganosiloxane is adsorbed on the adsorbent, the adsorbent can be separated from the polyorganosiloxane by any separation means. Examples of means for separating the adsorbent from the polyorganosiloxane include a filter and centrifugal separation. When a filter is used, a filter such as a membrane filter, a sintered metal filter, or a glass fiber filter can be used, but it is particularly preferable to use a membrane filter.
From the viewpoint of separating the adsorbent from the polyorganosiloxane after adsorption of the transition metal, the average particle size of the adsorbent is usually 1 μm to 4 mm, preferably 1 to 100 μm.
 吸着剤を使用する場合には、その使用量は特に限定されない。ポリオルガノシロキサン100質量部に対して、好ましくは1~30質量部、より好ましくは2~20質量部の範囲の量の多孔性吸着剤を使用することができる。
 なお、処理するポリオルガノシロキサンの分子量が高いために液体状態でない場合は、吸着剤による吸着及び吸着剤の分離を行う際に、ポリオルガノシロキサンが液体状態となるような温度に加熱してもよい。または、塩化メチレン及びヘキサン等の溶剤に溶かして行ってもよい。
When an adsorbent is used, the amount used is not particularly limited. An amount of the porous adsorbent in the range of preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass can be used with respect to 100 parts by mass of the polyorganosiloxane.
If the polyorganosiloxane to be treated is not in a liquid state due to its high molecular weight, it may be heated to a temperature at which the polyorganosiloxane is in a liquid state when adsorbing with the adsorbent and separating the adsorbent. . Alternatively, it may be carried out by dissolving in a solvent such as methylene chloride and hexane.
<ポリカーボネートオリゴマー>
 ポリカーボネートオリゴマーは二価フェノールとカーボネート前駆体とを反応させることにより調製される。ポリカーボネートオリゴマーの調製方法について特に制限はなく、例えば次に示す方法を好ましく用いることができる。
 二価フェノールとカーボネート前駆体との反応は、特に制限されるものではなく、公知の方法を採用でき、有機溶媒の存在下、界面重合法によって実施することが好ましい。必要に応じて、分子量調節剤及び重合触媒の存在下に反応させることもできる。なお、二価フェノールは、二価フェノールをアルカリ化合物の水溶液に溶解させた二価フェノールのアルカリ水溶液として用いる。
<Polycarbonate oligomer>
Polycarbonate oligomers are prepared by reacting a dihydric phenol with a carbonate precursor. There is no restriction | limiting in particular about the preparation method of a polycarbonate oligomer, For example, the method shown next can be used preferably.
The reaction between the dihydric phenol and the carbonate precursor is not particularly limited, and a known method can be adopted, and it is preferably carried out by an interfacial polymerization method in the presence of an organic solvent. If necessary, the reaction can be carried out in the presence of a molecular weight regulator and a polymerization catalyst. The dihydric phenol is used as an aqueous alkali solution of dihydric phenol in which dihydric phenol is dissolved in an aqueous solution of an alkali compound.
<二価フェノール>
 二価フェノールとしては、下記一般式(1)で表される二価フェノールを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000009

[式中、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-、または-CO-を示す。a及びbは、それぞれ独立に0~4の整数である。]
<Dihydric phenol>
As the dihydric phenol, it is preferable to use a dihydric phenol represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009

[Wherein, R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-. a and b are each independently an integer of 0 to 4. ]
 上記一般式(1)で表される二価フェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン等のビス(ヒドロキシフェニル)アルカン系、4,4'-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン等が挙げられる。これらの二価フェノールは、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 これらの中でも、ビス(ヒドロキシフェニル)アルカン系が二価フェノールとして好ましく、ビスフェノールAがより好ましい。二価フェノールとしてビスフェノールAを用いた場合、上記一般式(1)において、Xがイソプロピリデン基であり、且つa=b=0のポリカーボネート-ポリオルガノシロキサン共重合体となる。
Examples of the dihydric phenol represented by the general formula (1) include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane and 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) And cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone. It is done. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
Among these, bis (hydroxyphenyl) alkane is preferable as the dihydric phenol, and bisphenol A is more preferable. When bisphenol A is used as the dihydric phenol, a polycarbonate-polyorganosiloxane copolymer in which X is an isopropylidene group and a = b = 0 in the above general formula (1) is obtained.
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(ヒドロキシアリール)アルカン類、ビス(ヒドロキシアリール)シクロアルカン類、ジヒドロキシアリールエーテル類、ジヒドロキシジアリールスルフィド類、ジヒドロキシジアリールスルホキシド類、ジヒドロキシジアリールスルホン類、ジヒドロキシジフェニル類、ジヒドロキシジアリールフルオレン類、ジヒドロキシジアリールアダマンタン類等が挙げられる。これらの二価フェノールは、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of dihydric phenols other than bisphenol A include bis (hydroxyaryl) alkanes, bis (hydroxyaryl) cycloalkanes, dihydroxyaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, and dihydroxy. Examples include diphenyls, dihydroxydiarylfluorenes, dihydroxydiaryladamantanes and the like. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 ビス(ヒドロキシアリール)アルカン類としては、例えばビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等が挙げられる。 Examples of bis (hydroxyaryl) alkanes include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxy Phenyl) naphthylmethane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy) -3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorofe) Le) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane.
 ビス(ヒドロキシアリール)シクロアルカン類としては、例えば1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等が挙げられる。ジヒドロキシアリールエーテル類としては、例えば4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等が挙げられる。 Examples of bis (hydroxyaryl) cycloalkanes include 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 1,1-bis (4-hydroxyphenyl) cyclododecane and the like. Examples of dihydroxyaryl ethers include 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether.
 ジヒドロキシジアリールスルフィド類としては、例えば4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等が挙げられる。ジヒドロキシジアリールスルホキシド類としては、例えば4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等が挙げられる。ジヒドロキシジアリールスルホン類としては、例えば4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等が挙げられる。 Examples of dihydroxydiaryl sulfides include 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, and the like. Examples of dihydroxydiaryl sulfoxides include 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, and the like. Examples of the dihydroxydiaryl sulfones include 4,4'-dihydroxydiphenyl sulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone.
 ジヒドロキシジフェニル類としては、例えば4,4’-ジヒドロキシジフェニル等が挙げられる。ジヒドロキシジアリールフルオレン類としては、例えば9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。ジヒドロキシジアリールアダマンタン類としては、例えば1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。 Examples of dihydroxydiphenyls include 4,4'-dihydroxydiphenyl. Examples of dihydroxydiarylfluorenes include 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. Examples of the dihydroxydiaryladamantanes include 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7- Examples thereof include dimethyladamantane.
 上記以外の二価フェノールとしては、例えば4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。 As other dihydric phenols, for example, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5 -Bis (4-hydroxyphenylthio) -2,3-dioxapentane and the like.
<カーボネート前駆体>
 カーボネート前駆体としては、ホスゲン、トリホスゲン,ホスゲンダイマー、ブロモホスゲン、ビスイミダゾールケトン、ビス(p-ニトロフェニル)カーボネート等のホスゲン誘導体を用いることができる。中でもホスゲンまたはブロモホスゲンが好ましく、ホスゲンがより好ましい。
<Carbonate precursor>
As the carbonate precursor, phosgene derivatives such as phosgene, triphosgene, phosgene dimer, bromophosgene, bisimidazole ketone, and bis (p-nitrophenyl) carbonate can be used. Of these, phosgene or bromophosgene is preferable, and phosgene is more preferable.
<アルカリ水溶液>
 アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物などのアルカリ性無機化合物の水溶液を挙げることができる。これらの中でも、アルカリ金属水酸化物の水溶液が好ましく、水酸化ナトリウムの水溶液がより好ましい。
 二価フェノールを溶解させるアルカリ水溶液は、通常そのアルカリ濃度が1~15質量%のものが好ましく用いられる。二価フェノールのアルカリ水溶液中の二価フェノール量は、通常0.5~20質量%の範囲で選ばれる。
<Alkaline aqueous solution>
Examples of the alkaline aqueous solution include aqueous solutions of alkaline inorganic compounds such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. Among these, an aqueous solution of an alkali metal hydroxide is preferable, and an aqueous solution of sodium hydroxide is more preferable.
As the aqueous alkali solution for dissolving the dihydric phenol, those having an alkali concentration of 1 to 15% by mass are preferably used. The amount of dihydric phenol in the alkaline aqueous solution of dihydric phenol is usually selected in the range of 0.5 to 20% by mass.
<有機溶媒>
 有機溶媒としては、上記工程(1)で挙げたものと同一のものが好ましく用いられる。工程(1)と同様に塩化メチレンがより好ましい。
 有機溶媒の使用量は、通常、有機相と水相との容量比が、好ましくは5/1~1/7、より好ましくは2/1~1/4となるように選択される。
 ポリカーボネートオリゴマーの調製における反応温度は通常0~80℃、好ましくは5~70℃の範囲で選ばれる。
<Organic solvent>
As the organic solvent, the same solvents as those mentioned in the above step (1) are preferably used. Methylene chloride is more preferred as in step (1).
The amount of the organic solvent used is usually selected so that the volume ratio of the organic phase to the aqueous phase is preferably 5/1 to 1/7, more preferably 2/1 to 1/4.
The reaction temperature in the preparation of the polycarbonate oligomer is usually selected in the range of 0 to 80 ° C, preferably 5 to 70 ° C.
<重合触媒>
 重合触媒としては、第三級アミン又は第四級アンモニウム塩が挙げられる。第三級アミンとしては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン等が挙げられる。第四級アンモニウム塩としては、例えばトリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等が挙げられる。重合触媒としては、第三級アミンが好ましく、トリエチルアミンがより好ましい。
<Polymerization catalyst>
Examples of the polymerization catalyst include tertiary amines or quaternary ammonium salts. Examples of the tertiary amine include trimethylamine, triethylamine, and tripropylamine. Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride and triethylbenzylammonium chloride. As the polymerization catalyst, a tertiary amine is preferable, and triethylamine is more preferable.
<分子量調節剤>
 オリゴマーを調製する際に、必要に応じて分子量調節剤を添加してもよい。分子量調節剤としては、一価フェノールであれば特に制限は無く、例えば、フェノール、o-n-ブチルフェノール、m-n-ブチルフェノール、p-n-ブチルフェノール、o-イソブチルフェノール、m-イソブチルフェノール、p-イソブチルフェノール、o-t-ブチルフェノール、m-t-ブチルフェノール、p-t-ブチルフェノール、o-n-ペンチルフェノール、m-n-ペンチルフェノール、p-n-ペンチルフェノール、o-n-ヘキシルフェノール、m-n-ヘキシルフェノール、p-n-ヘキシルフェノール、p-t-オクチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-n-ノニルフェノール、m-n-ノニルフェノール、p-n-ノニルフェノール、o-クミルフェノール、m-クミルフェノール、p-クミルフェノール、o-ナフチルフェノール、m-ナフチルフェノール、p-ナフチルフェノール、2,5-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルフェノール、2,5-ジクミルフェノール、3,5-ジクミルフェノール、p-クレゾール、p-ブロモフェノール、2,4,6-トリブロモフェノール、平均炭素数12~35の直鎖状又は分岐状のアルキル基をオルト位、メタ位又はパラ位に有するモノアルキルフェノール、3-ペンタデシルフェノール、9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル)フルオレン、9-(4-ヒドロキシ-3-メチルフェニル)-9-(4-メトキシ-3-メチルフェニル)フルオレン、4-(1-アダマンチル)フェノールなどが挙げられる。これらの中でも、p-t-ブチルフェノール、p-クミルフェノール、p-フェニルフェノールが好ましく、p-t-ブチルフェノールがより好ましい。
<Molecular weight regulator>
When preparing an oligomer, you may add a molecular weight modifier as needed. The molecular weight regulator is not particularly limited as long as it is a monohydric phenol. For example, phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p -Isobutylphenol, ot-butylphenol, mt-butylphenol, pt-butylphenol, on-pentylphenol, mn-pentylphenol, pn-pentylphenol, on-hexylphenol, mn-hexylphenol, pn-hexylphenol, pt-octylphenol, o-cyclohexylphenol, m-cyclohexylphenol, p-cyclohexylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol O-n-nonylphenol, mn-nonylphenol, pn-nonylphenol, o-cumylphenol, m-cumylphenol, p-cumylphenol, o-naphthylphenol, m-naphthylphenol, p- Naphthylphenol, 2,5-di-t-butylphenol, 2,4-di-t-butylphenol, 3,5-di-t-butylphenol, 2,5-dicumylphenol, 3,5-dicumylphenol, p -Cresol, p-bromophenol, 2,4,6-tribromophenol, monoalkylphenol having a linear or branched alkyl group having an average carbon number of 12 to 35 in the ortho, meta or para position, 3- Pentadecylphenol, 9- (4-hydroxyphenyl) -9- (4-methoxyphenyl) fluorene, 9- 4-hydroxy-3-methylphenyl) -9- (4-methoxy-3-methylphenyl) fluorene, 4- (1-adamantyl) phenol and the like. Among these, pt-butylphenol, p-cumylphenol, and p-phenylphenol are preferable, and pt-butylphenol is more preferable.
 得られた反応混合物は、ポリカーボネートオリゴマーを含む有機相と塩化ナトリウム等の不純物を含む水相とを含む混合物である。そのため、静置分離等を行うことにより得られるポリカーボネートオリゴマーを含む有機相を、共重合体を製造する重縮合工程において用いる。
 ポリカーボネートオリゴマーの重量平均分子量(Mw)は、一般に5000未満である。ポリカーボネートオリゴマーの重量平均分子量の下限値は、通常約500程度である。
The obtained reaction mixture is a mixture containing an organic phase containing a polycarbonate oligomer and an aqueous phase containing impurities such as sodium chloride. Therefore, the organic phase containing the polycarbonate oligomer obtained by performing stationary separation etc. is used in the polycondensation process which manufactures a copolymer.
The weight average molecular weight (Mw) of the polycarbonate oligomer is generally less than 5000. The lower limit of the weight average molecular weight of the polycarbonate oligomer is usually about 500.
[重縮合工程]
 上記工程(1)により得られたポリオルガノシロキサン溶液と、ポリカーボネートオリゴマーと、二価フェノールのアルカリ水溶液とを重縮合反応帯域に導入し、必要に応じて重合触媒、分子量調節剤、アルカリ水溶液及び非水溶性有機溶媒を加えて界面重合させてポリカーボネート-ポリオルガノシロキサン共重合体を製造する。
 重縮合工程の一例を具体的に示すと、ポリカーボネートオリゴマーと、工程(1)により得られたポリオルガノシロキサン溶液と、有機溶媒と、アルカリ性化合物水溶液とを任意に重合触媒の存在下で混合し、通常0~50℃、好ましくは20~40℃の範囲の温度において反応させる。
 次に、分子量調節剤と、アルカリ水溶液と、二価フェノールのアルカリ水溶液とを混合し、通常0~50℃、好ましくは20~40℃の範囲の温度において重縮合反応を完結させる。
 重縮合工程におけるアルカリ水溶液、有機溶媒、重合触媒、二価フェノール及び分子量調節剤は、上記したものを挙げることができる。
[Polycondensation step]
The polyorganosiloxane solution obtained by the above step (1), a polycarbonate oligomer, and an alkaline aqueous solution of dihydric phenol are introduced into a polycondensation reaction zone, and a polymerization catalyst, a molecular weight regulator, an alkaline aqueous solution and a non-aqueous solution are introduced as necessary. A water-soluble organic solvent is added to cause interfacial polymerization to produce a polycarbonate-polyorganosiloxane copolymer.
Specifically showing an example of the polycondensation step, a polycarbonate oligomer, the polyorganosiloxane solution obtained in step (1), an organic solvent, and an alkaline compound aqueous solution are optionally mixed in the presence of a polymerization catalyst, The reaction is usually carried out at a temperature in the range of 0 to 50 ° C., preferably 20 to 40 ° C.
Next, a molecular weight modifier, an aqueous alkali solution, and an aqueous alkali solution of a dihydric phenol are mixed, and the polycondensation reaction is completed at a temperature usually in the range of 0 to 50 ° C., preferably 20 to 40 ° C.
Examples of the alkaline aqueous solution, the organic solvent, the polymerization catalyst, the dihydric phenol and the molecular weight regulator in the polycondensation step can include those described above.
 重縮合工程においては、ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽、多段塔型撹拌槽、無撹拌槽、配管などを反応器として用いることができる。
 重縮合工程で用いられる反応器の数は1つであってもよいし、複数であってもよい。つまり、重縮合工程が複数の反応器から構成されていてもよい。
 複数の反応器を用いる場合、第1番目の反応器としては反応器内に攪拌機能を有するものを用いることが好ましく、ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽等を用いることが好ましく、ラインミキサーまたはスタティックミキサーを用いることがより好ましい。また、第2番目以降に用いられる反応器としては、ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽、多段塔型撹拌槽、無撹拌槽、配管などを任意に用いることができる。
In the polycondensation step, a line mixer, a static mixer, an orifice mixer, a stirring tank, a multi-stage tower type stirring tank, a non-stirring tank, piping, or the like can be used as a reactor.
The number of reactors used in the polycondensation step may be one or plural. That is, the polycondensation step may be composed of a plurality of reactors.
When using a plurality of reactors, the first reactor is preferably one having a stirring function in the reactor, preferably a line mixer, a static mixer, an orifice mixer, a stirring tank, etc. It is more preferable to use a mixer or a static mixer. Moreover, as a reactor used after 2nd, a line mixer, a static mixer, an orifice mixer, a stirring tank, a multistage tower type stirring tank, a non-stirring tank, piping, etc. can be used arbitrarily.
 ポリカーボネート-ポリオルガノシロキサン共重合体中のポリオルガノシロキサン部の含有量は、難燃性付与効果、耐衝撃性付与効果、及び経済性のバランスなどの観点から、1~20質量%、好ましくは3~12質量%、さらに好ましくは3~9質量%とすることが好ましい。 The content of the polyorganosiloxane part in the polycarbonate-polyorganosiloxane copolymer is 1 to 20% by mass, preferably 3 from the viewpoints of flame retardancy imparting effect, impact resistance imparting effect, and economic balance. It is preferable to set it to ˜12% by mass, more preferably 3 to 9% by mass.
 詳述しないが、重縮合工程により得られた反応液を、続いて分離、洗浄、濃縮、粉末化/造粒することによりポリカーボネート-ポリオルガノシロキサン共重合体の粉末または造粒物を得ることができる。 Although not described in detail, a polycarbonate-polyorganosiloxane copolymer powder or granulated product can be obtained by subsequently separating, washing, concentrating, pulverizing / granulating the reaction solution obtained by the polycondensation step. it can.
 本発明のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法によれば、重縮合反応帯域に導入する前に原料のポリオルガノシロキサンに有機溶媒を複数段階にて供給する工程(1)を有することにより、未反応のポリオルガノシロキサン量を低減させることができる。このため、得られるポリカーボネート-ポリオルガノシロキサン共重合体及びその成形体は優れた透明性を有する。 According to the method for producing a polycarbonate-polyorganosiloxane copolymer of the present invention, by having the step (1) of supplying an organic solvent to the raw material polyorganosiloxane in a plurality of stages before introduction into the polycondensation reaction zone. The amount of unreacted polyorganosiloxane can be reduced. Therefore, the obtained polycarbonate-polyorganosiloxane copolymer and the molded product thereof have excellent transparency.
 本発明を実施例によりさらに詳しく説明するが、本発明はこれらにより何ら限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
合成例1(ポリカーボネートオリゴマーの調製)
 5.6質量%水酸化ナトリウム水溶液に、後から溶解するビスフェノールA(以下、BPAと略記する)に対して2000質量ppmの亜二チオン酸ナトリウムを加え、これにビスフェノールA濃度が13.5質量%になるようにBPAを溶解し、BPAの水酸化ナトリウム水溶液を調製した。
 このBPAの水酸化ナトリウム水溶液40L/hr、塩化メチレン15L/hrの流量で、ホスゲンを4.0kg/hrの流量で、内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は、後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入され、ここにさらにビスフェノールAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hr、1質量%トリエチルアミン水溶液を0.64L/hr添加して反応を行なった。槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。
 このようにして得られたポリカーボネートオリゴマー溶液(塩化メチレン溶液)は、濃度324g/L、クロロホーメート基濃度0.74mol/Lであった。また、ポリカーボネートオリゴマーの重量平均分子量(Mw)は、1,190であった。
 なお、重量平均分子量(Mw)は、展開溶媒としてTHF(テトラヒドロフラン)を用い、GPC〔カラム:TOSOH TSK-GEL MULTIPORE HXL-M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI〕にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
Synthesis Example 1 (Preparation of polycarbonate oligomer)
To a 5.6 mass% aqueous sodium hydroxide solution, 2000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter abbreviated as BPA), which is dissolved later, and the concentration of bisphenol A is 13.5 mass. % BPA was dissolved to prepare an aqueous sodium hydroxide solution of BPA.
Phosgene was continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m at a flow rate of 4.0 kg / hr at a flow rate of 40 L / hr of sodium hydroxide aqueous solution of BPA and 15 L / hr of methylene chloride. The tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
The reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further 2.8 L / hr of sodium hydroxide aqueous solution of bisphenol A, 25 The reaction was carried out by adding 0.04 L / hr of a mass% aqueous sodium hydroxide solution, 17 L / hr of water, and 0.64 L / hr of an aqueous 1 mass% triethylamine solution. The reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
The polycarbonate oligomer solution (methylene chloride solution) thus obtained had a concentration of 324 g / L and a chloroformate group concentration of 0.74 mol / L. Moreover, the weight average molecular weight (Mw) of the polycarbonate oligomer was 1,190.
The weight average molecular weight (Mw) was measured using GPC [column: TOSOH TSK-GEL MULTIPIORE HXL-M (2) + Shodex KF801 (1)], temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
実施例1
<工程(1)-A>
 ジメチルシロキサン単位の繰返し数nが40であるアリルフェノール末端変性ポリジメチルシロキサン(PDMSと略記する。)と塩化メチレン(MCと略記することがある。)をスタティックミキサー(ノリタケカンパニーリミテド社製、C-シリーズ(内径5mm、エレメント数12))でよく混合して、20wt%のPDMS/MC溶液とした。
<工程(1)-B>
 工程(1)-Aで得られたPDMS/MC溶液に、さらに配管内で塩化メチレンを供給して、3.7wt%のPDMS/MC溶液とした。このとき、配管内の流体のレイノルズ数は、約1×10であった。なお、工程(1)-Aと工程(1)-Bは連続的に行った。
 重縮合反応帯域に導入する前のPDMS/MC溶液の調製条件を表1にまとめる。
<重縮合反応>
 合成例1で製造したポリカーボネートオリゴマー(PCOと略記する。)溶液に、工程(1)で調製したPDMS/MC溶液(濃度:3.7wt%)を配管内で混合し、その後、スタティックミキサーでよく混合した後、混合液を熱交換器により19~22℃に冷却した。
 冷却した混合液に、トリエチルアミン(TEAと略記する。)の塩化メチレン溶液(TEA/MC)を配管内で混合し、その後、スタティックミキサーでよく混合した後、反応器(Rx-1)直前で6.4質量%水酸化ナトリウム水溶液を加え、反応器(Rx-1)にて塩化メチレン相を連続相としながらPCOとアリルフェノール末端変性PDMSの反応(予備重合)を行った。なお、反応器(Rx-1)はラインミキサーであり、回転数4400rpmで運転した。
 反応器(Rx-1)を出た予備重合液を熱交換器で17~20℃まで冷却した後、反応器(Rx-2)の直前で、p-t-ブチルフェノール(PTBPと略記する)の塩化メチレン溶液(PTBP/MC)及びBPAの水酸化ナトリウム水溶液(BPNa水溶液)を配管内で混合し、反応器(Rx-2)にて重合反応(本重合)を行った。なお、反応器(Rx-2)はタービン翼を供えたミキサーであり、回転数4400rpmで運転した。ここで、p-t-ブチルフェノールの塩化メチレン溶液の濃度は24質量%、BPAの水酸化ナトリウム水溶液は、BPAを除いた状態の水溶液の水酸化ナトリウム濃度が6.4質量%、BPAの水酸化ナトリウム水溶液中のBPA濃度は11.1質量%であるものを使用した。
 反応器(Rx-2)を出た重合反応液は、反応器(Rx-3)と反応器(Rx-4)に順次導き、温度を38℃以下に制御しながら重合反応を完結させた。反応器(Rx-3)はオリフィスプレートと冷却ジャケットを有する反応器であり、反応器(Rx-4)は冷却ジャケットを有する塔型の5段反応器である。
 反応器(Rx-4)から採取した重合反応液35Lと希釈用の塩化メチレン10Lを、邪魔板及びパドル型攪拌翼を備えた50L槽型洗浄槽に仕込み、240rpmで10分間攪拌した後、1時間静置することでポリカーボネート-ポリジメチルシロキサン共重合体を含む有機相と過剰のBPA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。
 こうして得られたポリカーボネート-ポリジメチルシロキサン(PC-PDMSと略記する)共重合体の塩化メチレン溶液を濃縮した後、粉砕し、得られたフレークを減圧下に120℃で乾燥した。得られたフレークの未反応PDMSをH-NMRで定量した。また、透明性の簡便な評価として、フレークをMI計に入れて溶融し押出すことでストランドを得、そのストランドの透明性を目視で確認した。フレーク中の未反応PDMS量分析結果、および透明性の目視確認結果を表2に示す。
 なお、未反応PDMSのH-NMRにおける定量は以下の方法によって求めた。
 (i)上記方法により得られたポリカーボネート-ポリジメチルシロキサン共重合体フレーク6gを塩化メチレン50mlに溶解した溶液に、アセトン50ml及びn-ヘキサン150mlを添加して混合した後、30分間静置した。
 (ii)濾紙(アドバンテック社、No.5A)を用いて吸引ろ過によりろ液を回収し、回収したろ液を濃縮乾固し、得られた乾固物の重量を測定した。得られた乾固物を重クロロホルムに溶解し、H-NMR測定を行なった。未反応のフェノール変性ポリジメチルシロキサンの水酸基のオルト位のプロトン(δ6.7ppm)の積分値x、メチレン鎖に帰属されるプロトン(δ0.6ppm)の積分値yから、下記式により、未反応PDMSの割合z(%)を算出した。
   z=2×x÷y×100
 (iii)一方、標準サンプルとして準備した実質的に未反応PDMSを含まないポリカーボネート-ポリジメチルシロキサン共重合体にフェノール変性ポリジメチルシロキサンを150~2,000ppm添加した標準試料を別途用意し、上記同様の操作を行なうことで、zと未反応PDMS量(ppm,=フェノール変性ポリジメチルシロキサン添加量)との関係式(検量線)を求めた。
 前記(ii)で求めたzと前記(iii)で求めた関係式から、未反応PDMS量(ppm)を算出した。
Example 1
<Step (1) -A>
An allylphenol-terminated polydimethylsiloxane having a repeating number n of 40 dimethylsiloxane units (abbreviated as PDMS) and methylene chloride (sometimes abbreviated as MC), a static mixer (manufactured by Noritake Company Limited, C- Series (inner diameter 5 mm, number of elements 12)) was mixed well to obtain a 20 wt% PDMS / MC solution.
<Step (1) -B>
The PDMS / MC solution obtained in the step (1) -A was further supplied with methylene chloride in the pipe to obtain a 3.7 wt% PDMS / MC solution. At this time, the Reynolds number of the fluid in the piping was about 1 × 10 5 . Step (1) -A and step (1) -B were performed continuously.
The preparation conditions of the PDMS / MC solution before introduction into the polycondensation reaction zone are summarized in Table 1.
<Polycondensation reaction>
The polycarbonate oligomer (abbreviated as PCO) solution produced in Synthesis Example 1 is mixed with the PDMS / MC solution (concentration: 3.7 wt%) prepared in step (1) in a pipe, and then a static mixer may be used. After mixing, the mixture was cooled to 19-22 ° C. with a heat exchanger.
A methylene chloride solution (TEA / MC) of triethylamine (abbreviated as TEA) is mixed in the pipe with the cooled mixture, and then mixed well with a static mixer, and then immediately before the reactor (Rx-1). A 4% by mass aqueous sodium hydroxide solution was added, and the reaction (prepolymerization) of PCO and allylphenol end-modified PDMS was carried out in the reactor (Rx-1) while using the methylene chloride phase as a continuous phase. The reactor (Rx-1) was a line mixer and was operated at a rotational speed of 4400 rpm.
The prepolymerized solution exiting the reactor (Rx-1) was cooled to 17 to 20 ° C. with a heat exchanger, and immediately before the reactor (Rx-2), the pt-butylphenol (abbreviated as PTBP) A methylene chloride solution (PTBP / MC) and an aqueous BPA sodium hydroxide solution (BPNa aqueous solution) were mixed in a pipe, and a polymerization reaction (main polymerization) was performed in a reactor (Rx-2). The reactor (Rx-2) was a mixer provided with turbine blades and operated at a rotational speed of 4400 rpm. Here, the concentration of pt-butylphenol in methylene chloride was 24% by mass, the aqueous solution of sodium hydroxide in BPA was 6.4% by mass in the aqueous solution excluding BPA, and the hydroxylation of BPA. The BPA concentration in the aqueous sodium solution was 11.1% by mass.
The polymerization reaction solution exiting the reactor (Rx-2) was sequentially led to the reactor (Rx-3) and the reactor (Rx-4), and the polymerization reaction was completed while controlling the temperature to 38 ° C. or lower. The reactor (Rx-3) is a reactor having an orifice plate and a cooling jacket, and the reactor (Rx-4) is a column type five-stage reactor having a cooling jacket.
35 L of the polymerization reaction solution collected from the reactor (Rx-4) and 10 L of methylene chloride for dilution were charged into a 50 L tank type washing tank equipped with baffle plates and paddle type stirring blades, and stirred at 240 rpm for 10 minutes. By standing for a period of time, the organic phase containing a polycarbonate-polydimethylsiloxane copolymer and the aqueous phase containing excess BPA and sodium hydroxide were separated, and the organic phase was isolated.
The methylene chloride solution of the polycarbonate-polydimethylsiloxane (abbreviated as PC-PDMS) copolymer thus obtained was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure. Unreacted PDMS of the obtained flakes was quantified by 1 H-NMR. Further, as a simple evaluation of transparency, the flakes were put in an MI meter, melted and extruded to obtain a strand, and the transparency of the strand was visually confirmed. Table 2 shows the results of analysis of the amount of unreacted PDMS in the flakes and the result of visual confirmation of transparency.
The quantification of unreacted PDMS in 1 H-NMR was determined by the following method.
(i) To a solution of 6 g of the polycarbonate-polydimethylsiloxane copolymer flakes obtained by the above method dissolved in 50 ml of methylene chloride, 50 ml of acetone and 150 ml of n-hexane were added and mixed, and then allowed to stand for 30 minutes.
(ii) The filtrate was collected by suction filtration using a filter paper (Advantech, No. 5A), the collected filtrate was concentrated to dryness, and the weight of the obtained dried product was measured. The obtained dried product was dissolved in deuterated chloroform and subjected to 1 H-NMR measurement. From the integral value x of the proton at the ortho position of the hydroxyl group of the unreacted phenol-modified polydimethylsiloxane (δ6.7 ppm) and the integral value y of the proton (δ0.6 ppm) attributed to the methylene chain, unreacted PDMS The ratio z (%) of was calculated.
z = 2 × x ÷ y × 100
(iii) On the other hand, a standard sample prepared by adding 150 to 2,000 ppm of phenol-modified polydimethylsiloxane to a polycarbonate-polydimethylsiloxane copolymer substantially free of unreacted PDMS prepared as a standard sample is prepared separately. Thus, a relational expression (calibration curve) between z and the amount of unreacted PDMS (ppm, = phenol-modified polydimethylsiloxane added amount) was obtained.
The amount of unreacted PDMS (ppm) was calculated from z obtained in (ii) and the relational expression obtained in (iii).
実施例2
 工程(1)-Aにおいてジメチルシロキサン単位の繰返し数nが40であるアリルフェノール末端変性PDMSと塩化メチレンを予め溶解槽にて20wt%PDMS/MC溶液に調製して、上記溶解槽からPDMS/MC溶液を抜きだし、工程(1)-Bにてさらに塩化メチレンを供給して3.7wt%のPDMS/MC溶液とした以外は、実施例1と同様に重縮合反応を行った。PDMS/MC溶液の調製条件を表1に示す。
 得られたPC-PDMS共重合体フレーク中の未反応PDMS量分析結果、および透明性の目視確認結果を表2に示す。
Example 2
In step (1) -A, allylphenol-terminated PDMS and methylene chloride having a repeating number n of dimethylsiloxane units of 40 are prepared in advance in a dissolving tank to a 20 wt% PDMS / MC solution. The polycondensation reaction was carried out in the same manner as in Example 1 except that the solution was extracted and methylene chloride was further supplied in Step (1) -B to obtain a 3.7 wt% PDMS / MC solution. Table 1 shows the preparation conditions of the PDMS / MC solution.
Table 2 shows the results of analyzing the amount of unreacted PDMS in the obtained PC-PDMS copolymer flakes and the result of visual confirmation of transparency.
実施例3
 工程(1)-AにおいてPDMS/MC溶液濃度を50wt%とした以外は、実施例1と同様に重縮合反応を行った。PDMS/MC溶液の調製条件を表1に示す。
 得られたPC-PDMS共重合体フレーク中の未反応PDMS量分析結果、および透明性の目視確認結果を表2に示す。
Example 3
A polycondensation reaction was carried out in the same manner as in Example 1 except that the PDMS / MC solution concentration was changed to 50 wt% in the step (1) -A. Table 1 shows the preparation conditions of the PDMS / MC solution.
Table 2 shows the results of analyzing the amount of unreacted PDMS in the obtained PC-PDMS copolymer flakes and the result of visual confirmation of transparency.
比較例1
 合成例1で製造したPCO溶液と塩化メチレンを配管内で混合した後に得られた混合液と、有機溶媒で濃度を低下させていないジメチルシロキサン単位の繰返し数nが40であるアリルフェノール末端変性PDMSを、スタティックミキサーでよく混合した以外は、実施例1と同様に重縮合反応を行った。
 得られたPC-PDMS共重合体フレーク中の未反応PDMS量分析結果、および透明性の目視確認結果を表2に示す。
Comparative Example 1
Allylphenol terminal-modified PDMS having a repeating number n of 40 dimethylsiloxane units not reduced in concentration with an organic solvent, after mixing the PCO solution produced in Synthesis Example 1 and methylene chloride in the pipe. The polycondensation reaction was performed in the same manner as in Example 1 except that the mixture was mixed well with a static mixer.
Table 2 shows the results of analyzing the amount of unreacted PDMS in the obtained PC-PDMS copolymer flakes and the result of visual confirmation of transparency.
比較例2
 ジメチルシロキサン単位の繰返し数nが40であるアリルフェノール末端変性PDMSと塩化メチレンとをスタティックミキサーでよく混合して3.7wt%のPDMS/MC溶液とした。PDMS/MC溶液の調製条件を表1にまとめる。
 合成例1で製造したPCO溶液に、上記PDMS/MC溶液を配管内で混合し、その後、スタティックミキサーでよく混合した以外は、実施例1と同様に重縮合反応を行った。
 得られたPC-PDMS共重合体フレーク中の未反応PDMS量分析結果、および透明性の目視確認結果を表2に示す。
Comparative Example 2
Allylphenol terminal-modified PDMS having a repeating number n of 40 dimethylsiloxane units and methylene chloride were mixed well with a static mixer to obtain a 3.7 wt% PDMS / MC solution. The preparation conditions of the PDMS / MC solution are summarized in Table 1.
A polycondensation reaction was performed in the same manner as in Example 1 except that the PDMS / MC solution was mixed in the pipe with the PCO solution produced in Synthesis Example 1 and then mixed well with a static mixer.
Table 2 shows the results of analyzing the amount of unreacted PDMS in the obtained PC-PDMS copolymer flakes and the result of visual confirmation of transparency.
Figure JPOXMLDOC01-appb-T000010

*1:比較例1はPDMSに溶媒を供給する工程(1)を有さない。
*2:比較例2はPDMSに溶媒を1段階のみで供給する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000010

* 1: Comparative Example 1 does not have the step (1) of supplying a solvent to PDMS.
* 2: In Comparative Example 2, the solvent is supplied to PDMS only in one stage.
Figure JPOXMLDOC01-appb-T000011
 表からも明らかな通り、本発明の製造方法によれば、PC-PDMS共重合体中の未反応PDMS量は150質量ppm未満と低い値であり、透明性に優れるPC-PDMS共重合体フレークが得られる。
 一方、重縮合反応帯域に導入する前に原料のPDMSに一切溶媒を供給しなかった比較例1では、得られるPC-PDMS共重合体中の未反応PDMS量は1200質量ppmと高く、PC-PDMS共重合体フレークも白濁していた。
 また、重縮合反応帯域に導入する前に原料のPDMSに溶媒を一段階のみで供給した比較例2においても、得られるPC-PDMS共重合体中の未反応PDMS量は200質量ppmであり、PC-PDMS共重合体フレークも不透明であった。
As is apparent from the table, according to the production method of the present invention, the amount of unreacted PDMS in the PC-PDMS copolymer is a low value of less than 150 ppm by mass, and the PC-PDMS copolymer flakes are excellent in transparency. Is obtained.
On the other hand, in Comparative Example 1 in which no solvent was supplied to the raw material PDMS before introduction into the polycondensation reaction zone, the amount of unreacted PDMS in the obtained PC-PDMS copolymer was as high as 1200 ppm by mass. The PDMS copolymer flakes were also cloudy.
Also in Comparative Example 2 where the solvent was supplied to the raw material PDMS in only one stage before being introduced into the polycondensation reaction zone, the amount of unreacted PDMS in the obtained PC-PDMS copolymer was 200 ppm by mass, PC-PDMS copolymer flakes were also opaque.
 本発明によれば、重縮合反応帯域に導入する前に原料のポリオルガノシロキサンに有機溶媒を複数段階にて供給する工程(1)を有することにより、未反応のポリオルガノシロキサン量を低減させることができる。このため、得られるポリカーボネート-ポリオルガノシロキサン共重合体及びその成形体は優れた透明性を有する。 According to the present invention, it is possible to reduce the amount of unreacted polyorganosiloxane by having the step (1) of supplying an organic solvent to the raw material polyorganosiloxane in a plurality of stages before introducing it into the polycondensation reaction zone. Can do. Therefore, the obtained polycarbonate-polyorganosiloxane copolymer and the molded product thereof have excellent transparency.

Claims (16)

  1.  ポリカーボネートオリゴマー、二価フェノールのアルカリ水溶液及びポリオルガノシロキサンを重縮合反応帯域に導入し、該重縮合反応帯域で重縮合反応させてポリカーボネート-ポリオルガノシロキサン共重合体を製造する方法であって、前記重縮合反応帯域に導入する前に、ポリオルガノシロキサンに有機溶媒を供給してポリオルガノシロキサン溶液を調製する工程(1)を有し、前記工程(1)における有機溶媒の供給を複数段階にて行い、ポリオルガノシロキサン溶液濃度を段階的に低下させる、ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 A method for producing a polycarbonate-polyorganosiloxane copolymer by introducing a polycarbonate oligomer, an alkaline aqueous solution of a dihydric phenol and a polyorganosiloxane into a polycondensation reaction zone and subjecting the polycondensation reaction zone to a polycondensation reaction, Before introducing into the polycondensation reaction zone, the organic solvent is supplied to the polyorganosiloxane to prepare a polyorganosiloxane solution (1), and the supply of the organic solvent in the step (1) is performed in a plurality of stages. A process for producing a polycarbonate-polyorganosiloxane copolymer, which is carried out to reduce the polyorganosiloxane solution concentration stepwise.
  2.  前記工程(1)において、前記重縮合反応帯域に導入する直前のポリオルガノシロキサン溶液濃度を1~6質量%とする、請求項1に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to claim 1, wherein the concentration of the polyorganosiloxane solution immediately before introduction into the polycondensation reaction zone in the step (1) is 1 to 6% by mass.
  3.  前記工程(1)において、ポリオルガノシロキサン溶液濃度が10質量%以上となるように1段階目における有機溶媒の供給を行う、請求項1または2に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The production of the polycarbonate-polyorganosiloxane copolymer according to claim 1 or 2, wherein in the step (1), the organic solvent is supplied in the first stage so that the polyorganosiloxane solution concentration is 10% by mass or more. Method.
  4.  前記工程(1)において、ポリオルガノシロキサンに対する有機溶媒の供給を撹拌下で行う、請求項1~3のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 3, wherein in the step (1), the organic solvent is supplied to the polyorganosiloxane with stirring.
  5.  前記工程(1)において、少なくとも1段階目におけるポリオルガノシロキサンに対する有機溶媒の供給をスタティックミキサーを用いて行う、請求項1~4のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 4, wherein in the step (1), the organic solvent is supplied to the polyorganosiloxane in at least the first stage using a static mixer. Production method.
  6.  前記工程(1)において、2段階目以降におけるポリオルガノシロキサンに対する有機溶媒の供給を配管内で行い、供給後の配管内のレイノルズ数を1×10以上とする、請求項1~5のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 In the step (1), the organic solvent is supplied to the polyorganosiloxane in the second and subsequent stages in the pipe, and the Reynolds number in the pipe after the supply is set to 1 × 10 4 or more. A process for producing the polycarbonate-polyorganosiloxane copolymer according to any one of the above.
  7.  前記工程(1)において、ポリオルガノシロキサンに対する有機溶媒の供給を2段階で行う、請求項1~6のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 6, wherein in the step (1), the organic solvent is supplied to the polyorganosiloxane in two stages.
  8.  前記工程(1)における有機溶媒が塩化メチレンである、請求項1~7のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 7, wherein the organic solvent in the step (1) is methylene chloride.
  9.  前記重縮合反応帯域が複数の反応器からなる、請求項1~8のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 8, wherein the polycondensation reaction zone comprises a plurality of reactors.
  10.  前記工程(1)で調製されたポリオルガノシロキサン溶液を、前記重縮合反応帯域における最初の反応器入口に導入する、請求項9に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to claim 9, wherein the polyorganosiloxane solution prepared in the step (1) is introduced into the first reactor inlet in the polycondensation reaction zone.
  11.  前記重縮合反応帯域の複数の反応器のうち、最初の反応器がラインミキサーである、請求項9または10に記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to claim 9 or 10, wherein the first reactor among the plurality of reactors in the polycondensation reaction zone is a line mixer.
  12.  前記ポリカーボネートオリゴマーの重量平均分子量が5000未満である、請求項1~11のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 11, wherein the polycarbonate oligomer has a weight average molecular weight of less than 5,000.
  13.  前記二価フェノールが、下記一般式(1)で表わされる二価フェノールである、請求項1~12のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    [式中、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-、または-CO-を示す。a及びbは、それぞれ独立に0~4の整数である。]
    The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 12, wherein the dihydric phenol is a dihydric phenol represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2- , -O-, or -CO-. a and b are each independently an integer of 0 to 4. ]
  14.  前記ポリオルガノシロキサンが、下記一般式(2)、(3)及び(4)からなる群から選ばれる少なくとも1つで表わされるポリオルガノシロキサンである、請求項1~13のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    [式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示し、複数のR~Rは、互いに同一であっても異なっていてもよい。Yは-RO-、-RCOO-、-RNH-、-RNR-、-COO-、-S-、-RCOO-R-O-、または-RO-R10-O-を示し、複数のYは、互いに同一であっても異なっていてもよい。前記Rは、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。Rは、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。Rは、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示し、複数のZは、互いに同一であっても異なっていてもよい。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqはそれぞれ1以上の整数であり、pとqの和は20~500であり、nは20~500の平均繰り返し数を示す。]
    The polyorganosiloxane is the polyorganosiloxane represented by at least one selected from the group consisting of the following general formulas (2), (3), and (4). A process for producing a polycarbonate-polyorganosiloxane copolymer.
    Figure JPOXMLDOC01-appb-C000002

    [Wherein R 3 to R 6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, The plurality of R 3 to R 6 may be the same as or different from each other. Y is -R 7 O -, - R 7 COO -, - R 7 NH -, - R 7 NR 8 -, - COO -, - S -, - R 7 COO-R 9 -O-, or -R 7 O—R 10 —O—, and a plurality of Y may be the same or different from each other. R 7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group. R 8 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 9 represents a diarylene group. R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom, and a plurality of Z may be the same as or different from each other. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. p and q are each an integer of 1 or more, the sum of p and q is 20 to 500, and n is an average number of repetitions of 20 to 500. ]
  15.  前記二価フェノールがビスフェノールAである、請求項1~14のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 14, wherein the dihydric phenol is bisphenol A.
  16.  前記アルカリ水溶液が水酸化ナトリウム水溶液である、請求項1~15のいずれか1つに記載のポリカーボネート-ポリオルガノシロキサン共重合体の製造方法。 The method for producing a polycarbonate-polyorganosiloxane copolymer according to any one of claims 1 to 15, wherein the alkaline aqueous solution is an aqueous sodium hydroxide solution.
PCT/JP2015/080121 2014-10-30 2015-10-26 Method for producing polycarbonate-polyorganosiloxane copolymer WO2016068079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-222082 2014-10-30
JP2014222082A JP2016088974A (en) 2014-10-30 2014-10-30 Method for manufacturing polycarbonate-polyorganosiloxane copolymer

Publications (1)

Publication Number Publication Date
WO2016068079A1 true WO2016068079A1 (en) 2016-05-06

Family

ID=55857418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080121 WO2016068079A1 (en) 2014-10-30 2015-10-26 Method for producing polycarbonate-polyorganosiloxane copolymer

Country Status (3)

Country Link
JP (1) JP2016088974A (en)
TW (1) TW201623375A (en)
WO (1) WO2016068079A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703500B2 (en) * 1992-09-21 2005-10-05 出光興産株式会社 Method for producing polycarbonate-polyorganosiloxane copolymer
JP2011122048A (en) * 2009-12-10 2011-06-23 Idemitsu Kosan Co Ltd Polycarbonate-polyorganosiloxane copolymer, method for producing the same, and polycarbonate resin containing the copolymer
WO2013058214A1 (en) * 2011-10-18 2013-04-25 出光興産株式会社 Polycarbonate-polyorganosiloxane copolymer and method for producing same
JP2014015498A (en) * 2012-07-05 2014-01-30 Idemitsu Kosan Co Ltd Polycarbonate-polyorganosiloxane copolymer and method for continuously manufacturing the same
JP2014080462A (en) * 2012-10-12 2014-05-08 Idemitsu Kosan Co Ltd Method for continuously producing polycarbonate-polyorganosiloxane copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703500B2 (en) * 1992-09-21 2005-10-05 出光興産株式会社 Method for producing polycarbonate-polyorganosiloxane copolymer
JP2011122048A (en) * 2009-12-10 2011-06-23 Idemitsu Kosan Co Ltd Polycarbonate-polyorganosiloxane copolymer, method for producing the same, and polycarbonate resin containing the copolymer
WO2013058214A1 (en) * 2011-10-18 2013-04-25 出光興産株式会社 Polycarbonate-polyorganosiloxane copolymer and method for producing same
JP2014015498A (en) * 2012-07-05 2014-01-30 Idemitsu Kosan Co Ltd Polycarbonate-polyorganosiloxane copolymer and method for continuously manufacturing the same
JP2014080462A (en) * 2012-10-12 2014-05-08 Idemitsu Kosan Co Ltd Method for continuously producing polycarbonate-polyorganosiloxane copolymer

Also Published As

Publication number Publication date
JP2016088974A (en) 2016-05-23
TW201623375A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
JP6915941B2 (en) How to use polyorganosiloxane
TWI547509B (en) Polycarbonate-polyorganosiloxane copolymer and method for producing the same
WO2016080496A1 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
WO2014058033A1 (en) Method for continuous production of polycarbonate-polyorganosiloxane copolymer
JP6665394B2 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
TWI544033B (en) Polycarbonate - Polyorganosiloxane Copolymer Continuous Manufacturing Method
WO2015146575A1 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
US10738154B2 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
US20170327639A1 (en) Polycarbonate-polyorganosiloxane copolymer production method
TWI545159B (en) Polycarbonate - Polyorganosiloxane Copolymer Continuous Manufacturing Method
WO2016068079A1 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
US10059800B2 (en) Process for producing polycarbonate
WO2015145874A1 (en) Polycarbonate-polyorganosiloxane copolymer production method
US20170313824A1 (en) Method for preparing polycarbonate-polyorganosiloxane copolymer
WO2015151354A1 (en) Production method for polycarbonate resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855412

Country of ref document: EP

Kind code of ref document: A1